
Chapter 40
On Pade Approximants Series Solutions
of MHD Flow Equations with Heat and
Mass Transfer Due to a Point Sink

Imran Chandarki and Brijbhan Singh

Abstract Theobjective is to revisit the problempertaining to the similarity boundary
layer equations governing magneto-fluid dynamic steady incompressible laminar
boundary layer flow for a point sink with an applied magnetic field, heat and mass
transfer. The series solution method has been effectively implemented to a related
integro-differential equation. The condition at infinity is applied to a related Pade
approximants of the obtained series solution. The features of the flow characteristic,
heat andmass transfer have been analyzed and discussed with respect to the pertinent
parameters viz magnetic and suction/injection parameters. It has been found that the
magnetic filed increases the skin friction but it reduces the heat transfer. Comparison
of the obtained results for some particular cases of the present study has been done
with the earlier results and they have been found in good agreement.

Keywords MHD flow equations · Heat and mass transfer · Pade approximants ·
Incompressible laminar boundary layer

40.1 Introduction

The prophecy of the flow field and heat transfer in MHD boundary-layer flows plays
a basic role in various branches of technology such as in vortex chambers, MHD
power generators, nuclear reactors, geophysical fluid dynamics, etc. The exploration
of the boundary layer flow of an electrically conducting fluid on a cone due to a
point sink with an applied magnetic field is relevant in the study of conical nozzle
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Fig. 40.1 Axi-symmetric
boundary layer flow of an
electrically conducting fluid
in a circular cone at the
vertex

or diffuser-flow problems and hence has been undertaken by Choi and Wilhelm [3].
The preceding problem in the absence of magnetic field, mass flux diffusion and
heat transfer has been studied in [4]. The same problem was studied by Takhar [9] to
include the effects of the magnetic field, mass flux diffusion and heat transfer. The
problem was solved by shooting method on the lines of Soundalgekar et al. [6].

The objective of the present research paper is to obtain the solution of the third
order non-linear differential equation pertaining to the similarity boundary layer
equations governing magneto-fluid dynamic steady incompressible laminar bound-
ary layer flow for a point sink with an applied magnetic field, heat and mass transfer
by using series solution method as suggested by Wazwaz [10]. This problem has
already been tackled by Takhar et al. [9]. In this research paper, the condition at
infinity has been applied to a related Pade approximants of the obtained series solu-
tion. The features of the flow characteristic have been analyzed. The results of this
research work have been compared graphically with those of [9] who obtained the
solutions of the same problem by applying numerical treatment for the pertinent
parameters. Our results have been found in excellent agreement with those given
in [9].

40.2 Governing Equations

We have considered the steady laminar incompressible axisymmetric boundary layer
flow of an electrically conducting fluid in a circular cone at the vertex (Fig. 40.1).
The hole can be regarded as a three-dimensional sink.

A magnetic field B0, fixed relative to the fluid, is applied in z-direction. The
magnetic Reynolds number is assumed to be small so that the induced magnetic field
can be neglected in comparison with the applied magnetic field. The wall and the
free-stream are maintained at a constant temperature and concentration. The Hall
effect and the dissipation terms are neglected. The effect of mass transfer (suction
and injection) has been included in the analysis. It is assumed that the injected gas
possesses the same physical properties as the boundary layer gas and has a static
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temperature equal to the wall temperature. Both gases are assumed to be perfect
gases. The boundary layer equations under the foregoing assumptions are:

(ru)r + (rw)z = 0 (40.1)

uur + wuz = −ρ−1Pr + νuzz − ρ−1σ B2
0u (40.2)

uTr + wTz = αTzz (40.3)

uCr + wCz = DCzz (40.4)

where
− ρ−1Pr = UUr + ρ−1σ B2

0U, U = −m1

r2
, m1 > 0 (40.5)

The boundary conditions are given by

{
u(r, 0) = 0, w(r, 0) = ww, T (r, 0) = Tw, C(r, 0) = Cw

u(r,∞) = U, T (r,∞) = T∞, C(r,∞) = C∞.
(40.6)

Applying the following transformations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

η = m1
1/2z

(2νr2)1/2 , ru = ψz, rw = −ψr , ψ = −(2m1νr)1/2 f

u = U f ′(η), w = (m1ν
2r2

)1/2
( f − 3η f ′)

T−T∞
Tw−T∞ = g(η), C−C∞

Cw−C∞ = G(η)

M = 2σ B2
0 r

3

m1ρ
, Pr = ν

α
, Sc = ν

D , Kw = ww

(
2r3

m1ν

)1/2

(40.7)

to Eqs. (40.1)–(40.4), we find that the Eq. (40.1) is satisfied identically and
Eqs. (40.2)–(40.4) reduce to self-similar equations given by

f ′′′ − f f ′′ + 4(1 − f ′2) + M(1 − f ′) = 0 (40.8)

g′′ − Pr f g
′ = 0 (40.9)

G ′′ − Sc f G
′ = 0 (40.10)

The boundary conditions (40.6) reduce to

f (0) = Kw, f ′(0) = 0, f ′(∞) = 1 (40.11)

g(0) = 1, g(∞) = 0 (40.12)

G(0) = 1, G(∞) = 0 (40.13)
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where r and z are the distance along and perpendicular to the cone; R is the radius
of the cone (R = rsinφ), φ is the semi-vertical angle of the cone; u and w are
velocity components along r and z directions; ψ and f are the dimensional and
dimensionless stream functions; C and T are concentration and temperature; g and
G are dimensionless temperature and concentration; η is similarity variables; σ ,
ν and ρ are the density, kinematic viscosity and electrical conductivity; B0 is the
magnetic field; α and D are thermal diffusivity and binary diffusion coefficient;U is
the inviscid flow velocity; m1 is the strength of the point sink; Pr and Sc are Prandtl
number and Schmidt number; M is the magnetic parameter; Kw is the mass transfer
parameter of the sink flow. The subscripts r and z denote derivative w.r.t. r and z; the
subscripts w and ∞ denote conditions at the wall and in the free stream; and prime
denotes derivative with respect to η.

It is here remarked that the mass transfer parameter Kw will be treated as constant
if the velocity normal to the wall ww varies as r−3/2 as m1ν is constant for our
mathematical analysis (Ref. Takhar et al. [9]). Also, the magnetic parameter M can
be treated locally as constant for a fixed r as first considered by Takhar [7] and then
by Takhar and Nath [8]. Also in a sink flow, Kw < 0 for suction and Kw > 0 for
injection (cf. Takhar et al. [9] and Schlichting and Gersten [5], pp. 294–298).

The Pade Approximants constitute the best approximation of a function by a
rational function of a given order. Developed by Henri Pade, Pade approximants
often provide better approximation of a function than Taylor Series truncating does
and they may still work in cases in which the Taylor Series does not converge. For
these reasons, Pade approximants are used extensively in computer calculations and
it is now well known that these approximants have the advantage of being able to
manipulate polynomial approximation into the rational functions of polynomials.
Pade approximant is the ratio of two polynomials constructed from the coefficients
of the Taylor series expansion of a function (Refs. [2, 10]). The [L/M] Pade approx-
imant to a formal power series is given by [L/M] = PL(x)/QM(x), where PL(x)
is a polynomial of degree at most L and QM(x) is a polynomial of degree at most
M. Without loss of generality, we can assume QM(0) to be 1. Furthermore, PL(x)
and QM(x) have no common factors. This means that the formal power series A(x)
equals the [L/M] approximant through L + M + 1 terms. It is a well known fact
that Pade approximants will converge on the entire real axis if f (η) is free of singu-
larities on the entire real axis. More importantly, the diagonal approximants are the
most accurate approximants, therefore we will construct on diagonal approximants.
Using the boundary condition f ′(∞) = 1, the diagonal approximants [M/M] vanish
if the coefficients of numerator vanish with the highest power in the η. Choosing the
coefficients of the highest power of η as equal to zero, we get a polynomial equa-
tion in η which can be solved very easily by using the built-in utilities in the most
manipulation languages such as Scilab, Matlab and Mathematica.
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40.3 Mathematical Analysis

Here we consider the initial value problem (40.8) with the boundary conditions

f (0) = Kw, f ′(0) = 0, f ′′(0) = β0(say), (40.14)

f ′(∞) = 1 (40.15)

The Eq. (40.8) can be written as

f ′′′ = f f ′′ − 4(1 − f ′2) − M(1 − f ′) (40.16)

Integrating both sides of (40.16) from 0 to η and using the condition f ′′(0) = β0,

yields

f ′′(η) = β0 − (4 + M)η − MKw +
∫ η

0
f (t) f ′′(t)dt

+ 4
∫ η

0
f ′(t)2dt + M f (η)

Integrating both sides of (40.3) from 0 to η and noting the condition f ′(0) = 0,
yields

f ′(η) = (β0 − MKw)η − (4 + M)
η2

2
+

∫ η

0

∫ η

0
f (t) f ′′(t)dtdt

+ 4
∫ η

0

∫ η

0
f ′(t)2dtdt + M

∫ η

0
f (t)dt (40.17)

so that by integrating again, we obtain

f (η) = Kw + (β0 − MKw)
η2

2
− (4 + M)

η3

6

+
∫ η

0

∫ η

0

∫ η

0
f (t) f ′′(t)dtdtdt + 4

∫ η

0

∫ η

0

∫ η

0
f ′(t)2dtdtdt

+ M
∫ η

0

∫ η

0
f (t)dtdt

The following integro-differential equation

f (η) = Kw + (β0 − MKw)
η2

2
− (4 + M)

η3

6
+

∫ η

0

(η − t)2

2
f (t) f ′′(t)dt

+ 2
∫ η

0
(η − t)2 f ′(t)2dt + M

∫ η

0
(η − t) f (t)dt (40.18)
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is obtained from (40.17) upon converting the triple integral to a single integral. To
determine a solution of (40.18), we use the series solution method used by Wazwaz
[10]. Therefore, we express f (η) as a power series of the form

f (η) =
∞∑
n=0

anη
n (40.19)

Substituting (40.19) into (40.18), and using only a few terms for simplicity reasons,
we get

a0 + ηa1 + η2a2 + η3a3 + η4a4 + η5a5 + η6a6 + η7a7 + · · ·
= Kw + (β0 − MKw)

η2

2
− (4 + M)

η3

6
+

∫ η

0

(η − t)2

2
(a0

+ ta1 + t2a2 + t3a3 + t4a4 + t5a5 + t6a6 + t7a7 + t8a8
+ t9a9 + · · · ) (

2a2 + 6ta3 + 12t2a4 + 20t3a5 + 30t4a6

+ 42t5a7 + 56t6a8 + 72t7a9 + · · · ) dt + 2
∫ η

0
(η − t)2(

a1 + 2ta2 + 3t2a3 + 4t3a4 + 5t4a5 + 6t5a6

+ 7t6a7 + 8t7a8 + 9t8a9 + · · · ) 2dt

+ M
∫ η

0
(η − t)

(
a0 + ta1 + t2a2

+ t3a3 + t4a4 + t5a5 + t6a6
+ t7a7 + t8a8 + t9a9 + · · · ) dt (40.20)

which gives after integration and simplification

a0 + ηa1 + η2a2 + η3a3 + η4a4 + η5a5 + η6a6 + η7a7 + · · ·
= Kw + 1

2
(−KwM + β0)η

2 − 1

6
(4 + M)η3 + 1

3
η3a0a2

+ 1

12
η4a1a2 + 1

30
η5a22 + 1

4
η4a0a3 + 1

10
η5a1a3

+ 1

15
η6a2a3 + 1

35
η7a23 + 1

5
η5a0a4 + 1

10
η6a1a4

+ 1

15
η7a2a4 + 3

56
η8a3a4 + 1

42
η9a24 + 1

6
η6a0a5

+ 2

21
η7a1a5 + 11

168
η8a2a5 + 13

252
η9a3a5 + 2

45
η10a4a5

+ 2

99
η11a25 + 1

7
η7a0a6 + 5

56
η8a1a6 + 4

63
η9a2a6

+ 1

20
η10a3a6 + 7

165
η11a4a6 + 5

132
η12a5a6 + 5

286
η13a26
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+ 1

8
η8a0a7 + 1

12
η9a1a7 + 11

180
η10a2a7 + 8

165
η11a3a7

+ 9

220
η12a4a7 + 31

858
η13a5a7 + 3

91
η14a6a7 + 1

65
η15a27

+ 1

9
η9a0a8 + 7

90
η10a1a8 + 29

495
η11a2a8 + 31

660
η12a3a8

+ 17

429
η13a4a8 + 19

546
η14a5a8 + 43η15a6a8

1365
+ 7

240
η16a7a8

+ 7

510
η17a28 + 1

10
η10a0a9 + 4

55
η11a1a9 + 37

660
η12a2a9

+ 1

22
η13a3a9 + 1

26
η14a4a9 + 46η15a5a9

1365
+ 17

560
η16a6a9

+ 19

680
η17a7a9 + 4

153
η18a8a9 + 4

323
η19a29 + · · · (40.21)

Equating the coefficients of like powers of η in both sides leads to

a0 = Kw, a1 = 0, a2 = β0

2
, a3 = 1

6
(−4 − M + Kwβ0),

a4 = 1

24

(−4Kw − KwM + Kw
2β0 + Mβ0

)
,

a5 = 1

120

(−4Kw
2 − 4M − Kw

2M − M2 + Kw
3β0

+ 2KwMβ0 + 9β2
0

)
,

a6 = 1

720

(−4Kw
3 − 8KwM − Kw

3M − 2KwM
2 − 112β0

+ Kw
4β0 − 28Mβ0 + 3Kw

2Mβ0 + M2β0 + 37Kwβ2
0

)
,

a7 = 1

5040

(
448 − 4Kw

4 + 224M − 12Kw
2M − Kw

4M + 24M2

− 3Kw
2M2 − M3 − 492Kwβ0 + Kw

5β0 − 123KwMβ0 + 4Kw
3Mβ0

+ 3KwM
2β0 + 104Kw

2β2
0 + 48Mβ2

0

)
,

a8 = 1

40320

(
1968Kw − 4Kw

5 + 984KwM − 16Kw
3M

− Kw
5M + 111KwM

2 − 4Kw
3M2 − 3KwM

3 − 1456Kw
2β0

+ Kw
6β0 − 696Mβ0 − 364Kw

2Mβ0 + 5Kw
4Mβ0 − 174M2β0

+ 6Kw
2M2β0 + M3β0 + 250Kw

3β2
0 + 282KwMβ2

0 + 459β3
0

)
,

a9 = 1

362880

(
5824Kw

2 − 4Kw
6 + 2784M + 2912Kw

2M

− 20Kw
4M − Kw

6M + 1392M2 + 340Kw
2M2 − 5Kw

4M2

+ 170M3 − 6Kw
2M3 − M4 − 3640Kw

3β0 + Kw
7β0 − 4212KwMβ0

− 910Kw
3Mβ0 + 6Kw

5Mβ0 − 1053KwM
2β0 + 10Kw

3M2β0
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+ 4KwM
3β0 − 12424β2

0 + 555Kw
4β2

0 − 3106Mβ2
0 + 1060Kw

2Mβ2
0

+ 207M2β2
0 + 4141Kwβ3

0

)
, . . . (40.22)

Accordingly, the solution of (40.8) in a series form is given by

f (η) = Kw + η2 β0

2
+ η3

6
(−4 − M + Kwβ0)

+ η4

24

(−4Kw − KwM + Kw
2β0 + Mβ0

)
+ η5

120

(−4Kw
2 − 4M − Kw

2M − M2 + Kw
3β0 + 2KwMβ0 + 9β2

0

)
+ η6

720

(−4Kw
3 − 8KwM − Kw

3M − 2KwM
2 − 112β0 + Kw

4β0

− 28Mβ0 + 3Kw
2Mβ0 + M2β0 + 37Kwβ2

0

)
+ η7

5040

(
448 − 4Kw

4 + 224M − 12Kw
2M − Kw

4M + 24M2

− 3Kw
2M2 − M3 − 492Kwβ0 + Kw

5β0 − 123KwMβ0 + 4Kw
3Mβ0

+ 3KwM
2β0 + 104Kw

2β2
0 + 48Mβ2

0

)
+ η8

40320

(
1968Kw − 4Kw

5 + 984KwM − 16Kw
3M − Kw

5M

+ 111KwM
2 − 4Kw

3M2 − 3KwM
3 − 1456Kw

2β0 + Kw
6β0

− 696Mβ0 − 364Kw
2Mβ0 + 5Kw

4Mβ0 − 174M2β0 + 6Kw
2M2β0

+ M3β0 + 250Kw
3β2

0 + 282KwMβ2
0 + 459β3

0

) + · · · (40.23)

f ′(η) = β0η + η2

2
(−4 − M + Kwβ0)

+ η3

6
(−4Kw − KwM + Kw

2β0 + Mβ0)

+ η4

24
(−4Kw

2 − 4M − Kw
2M − M2 + Kw

3β0 + 2KwMβ0 + 9β2
0 )

+ η5

120

(−4Kw
3 − 8KwM − Kw

3M − 2KwM
2 − 112β0 + Kw

4β0

− 28Mβ0 + 3Kw
2Mβ0 + M2β0 + 37Kwβ2

0

)
+ η6

720

(
448 − 4Kw

4 + 224M − 12Kw
2M − Kw

4M + 24M2

− 3Kw
2M2 − M3 − 492Kwβ0 + Kw

5β0 − 123KwMβ0 + 4Kw
3Mβ0

+ 3KwM
2β0 + 104Kw

2β2
0 + 48Mβ2

0

)
+ η7

5040

(
1968Kw − 4Kw

5 + 984KwM − 16Kw
3M − Kw

5M
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+ 111KwM
2 − 4Kw

3M2 − 3KwM
3 − 1456Kw

2β0 + Kw
6β0

− 696Mβ0 − 364Kw
2Mβ0 + 5Kw

4Mβ0 − 174M2β0 + 6Kw
2M2β0

+ M3β0 + 250Kw
3β2

0 + 282KwMβ2
0 + 459β3

0

) + · · · (40.24)

The heat and concentration equations can easily be solved by assuming that we
already posses suitable accurate solutions to the velocity equation. It is very much
precise to obtain solution of Eq. (40.9) and consequently (40.10) by replacing g by
G and Pr by Sc as

g(η) = 1 −
∫ η

0 ePr
∫ x
0 f (y)dydx∫ ∞

0 ePr
∫ x
0 f (y)dydx

(40.25)

g′(η) = − ePr
∫ η

0 f (y)dy∫ ∞
0 ePr

∫ x
0 f (y)dydx

(40.26)

and heat transfer parameter is given by

g′(0) = − 1∫ ∞
0 ePr

∫ x
0 f (y)dydx

. (40.27)

40.4 Results and Discussion

We here note that the series solution (40.23) can also be obtained by using the
series solution near the ordinary point η = 0 directly into the nonlinear equation
(40.8). Further, the result (40.23) may also be determined by using the Adomian’s
decomposition method (Adomian [1]). Our goal now is to determine the constant
β0 by using the condition f ′(∞) = 1. It is easily seen that this condition cannot
be applied directly to (40.24). We can achieve our goal by representing the series
(40.24) by a rational function h(η) by using the powerful Pade approximants [L/M]
of this series. In Baker [2], a Pade approximant to the power series (40.24) is defined
as

[L/M] = PL(η)

QM(η)
(40.28)

where PL(η) and QM(η) are polynomials of degrees at most L andM respectively.
Besides, we may consider QM(0) = 1, and PL(η) and QM(η) have no common
factors.

In the following, we have determined the Pade approximants [2/2] of (40.24).
The Pade approximants [3/3] and [4/4] can also be determined in a parallel manner.
To determine the Pade approximants [2/2] to f ′(η) of degree 4, it requires choosing
of A0, A1, A2, B1 and B2 so that the coefficients of ηk for k = 0, 1, 2, 3, 4 are zero
in the expression
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(
β0η + η2

2
(−4 − M + Kwβ0) + η3

6
(−4Kw − KwM + Kw

2β0 + Mβ0)

+ η4

24
(−4Kw

2 − 4M − Kw
2M − M2 + Kw

3β0 + 2KwMβ0 + 9β2
0 ) . . .

)
× (

1 + B1η + B2η
2) = (

A0 + A1η + A2η
2) (40.29)

Expanding (40.29) by putting M = Kw = 0 (Rosenhead [4]) and equating the
coefficients of ηk for k = 0, 1, 2, 3, 4 to ‘1’ yields Pade approximant [2/2].

Consequently, the Pade approximant [2/2] is given by

[2/2] = β0η + 1
32

(−64 + 3β4
0

)
η2

1 + 3β3
0η

32 + 3β2
0η

2

16

(40.30)

Applying the condition f ′(∞) = 1 to (40.30) gives

β0 = f ′′(0) = 2.3928. (40.31)

In a manner parallel to our above discussion, the approximants [3/3] and [4/4]
are obtained and the values of the constant β0 = f ′′(0) are found to be very close to
that of (40.31). Again, the value of β0 = f ′′(0) is calculated for different values of
the pertinent parameters Kw (for both suction and injection) and M = 0, 1, 2 which
are tabulated below in the Tables 40.1 and 40.2.

From the Table 40.1, it is obvious that the skin friction i.e. f ′′(0) increases along
with increasing values of the mass suction parameter (Kw < 0) and magnetic param-
eter (M) for the different Pade approximants. From the Table 40.2, it is obvious that
the skin friction i.e. f ′′(0) increases along with increasing values of magnetic param-
eter (M) but decreasing values of the mass injection parameter (Kw > 0) for the
different Pade approximants.

Thus these numerical results given in Tables 40.1 and 40.2 are highly in con-
formation with the graphical results given in Figs. 40.2 and 40.3 respectively. The
effects of the mass suction/injection parameter Kw and the magnetic parameter M
have been depicted in the Fig. 40.2. The present results have been compared with
Takhar et al. [9]. From the figure, it is evident that the present results are in good
agreement with those obtained by [9].

The heat transfer andmass flux diffusion parameters have been foundwith the help
of the Eq. (40.27) and using the values in Tables 40.1 and 40.2. Hence for the sake
of brevity, it has not been described here. The heat transfer and mass flux diffusion
parameters increase with an increase in suction (Kw < 0) and they decrease with an
increase in the injection parameter (Kw > 0).

From the Figs. 40.2 and 40.3, it is clear that the magnetic parameter increases the
skin friction but decreases the heat and mass flux diffusion parameters. However, the
effect of magnetic field on −g′(0) and −G ′(0) is too little as compared to its effect
on skin friction. In the Fig. 40.4, the velocity profiles have been found to be very
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Table 40.1 Values of β0 = f ′′(0) for different values of M and Kw < 0

M Kw [L/M] β0 Present case Takhar et al. [9]

0 –2 [2, 2] 4 3.51069 3.5182

[3, 3] 3.29017

[4, 4] 3.51069

–1 [2, 2] 3.10165 2.87481 2.8772

[3, 3] 2.67469

[4, 4] 2.87481

0.5 –2 [2, 2] 4.09212 3.60755 3.6162

[3, 3] 3.42054

[4, 4] 3.60755

–1 [2, 2] 3.20699 2.95113 3.0231

[3, 3] 2.82088

[4, 4] 2.95113

1 –2 [2, 2] 4.18121 3.70103 3.7124

[3, 3] 3.53775

[4, 4] 3.70103

–1 [2, 2] 3.30797 3.05035 3.1121

[3, 3] 2.94427

[4, 4] 3.05035

much steep due to suction (Kw < 0) and an opposite tendency is seen for injection
(Kw > 0). Here the temperature and concentration parameters have similar nature
for Pr = Sc. That is why, only temperature profiles have been plotted. From the Fig.
40.5, it is clear that the Prandtl number Pr and Schmidt number Sc respectively have
significant effects on temperature and concentration profiles respectively. It is evident
that the effects of mass transfer on f ′′(0), −g′(0), −G ′(0) are well pronounced as
compared to those of the magnetic field. From the Fig. 40.5,

40.5 Concluding Remarks

1. Our results are in excellent agreement with those obtained by Takhar et al. [9].
2. The skin-friction increases with increasing magnetic field. The skin-friction is

greater for suction parameter (Kw < 0) as compared to injection parameter
(Kw > 0).

3. The heat transfer and mass diffusion parameters −g′(0) and −G ′(0) decrease
with increasing magnetic parameter, whereas they increase with increasing mass
transfer parameters; i.e., suction and injection.

4. The velocity profiles increase with increasing magnetic parameter and decrease
with increasing mass transfer parameters.
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Fig. 40.2 Variation of skin friction with Kw for M = 0, 0.5, 1, 2 (Comparison with [9].)

Fig. 40.3 Variation of heat transfer and mass diffusion parameters with Kw for M = 0, 0.5, 1, 2
and Pr = Sc = 0.7 (Comparison with [9].)
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Fig. 40.4 Variation of velocity profiles with Kw for M = 0, 1, 2 (Kw = −2, 0, 2)

Fig. 40.5 Variation of temperature profiles for M = 1, Pr = 0.7 and Pr = 7 (Kw = −2, 0, 2)
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Table 40.2 Values of β0 = f ′′(0) for different values of M and Kw > 0

M Kw [L/M] β0 Present case Takhar et al. [9] Rosenhead [4]

0 0 [2, 2] 2.3928 2.27229 2.2728 2.273

[3, 3] 2.22496

[4, 4] 2.27229

1 [2, 2] 1.84939 1.75217 1.7505 –

[3, 3] 1.75217

[4, 4] 1.79594

2 [2, 2] 1.44298 1.41415 1.4121 –

[3, 3] 1.41415

[4, 4] 1.42072

0.5 0 [2, 2] 2.50437 2.3797 2.392 –

[3, 3] 2.29964

[4, 4] 2.3797

1 [2, 2] 1.96066 1.96066 1.973 –

[3, 3] 2.10025

[4, 4] 1.90371

2 [2, 2] 1.54922 1.54922 1.5529 –

[3, 3] 1.51835

[4, 4] 1.52432

1 0 [2, 2] 2.43084 2.43084 2.4552 –

[3, 3] 2.42256

[4, 4] 2.48248

1 [2, 2] 2.06689 2.06689 2.0825 –

[3, 3] 1.98361

[4, 4] 2.0067

2 [2, 2] 1.65093 1.62377 1.6345 –

[3, 3] 1.50109

[4, 4] 1.62377

5. The temperature and mass diffusion profiles increase with increasing Prandtl
number and with increasing mass transfer parameters.
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