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Perturbation Analysis for Stationary
Distributions of Markov Chains with
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Abstract Perturbed Markov chains are popular models for description of informa-
tion networks. In such models, the transition matrix P0 of an information Markov
chain is usually approximated by matrix Pε = (1 − ε)P0 + εD, where D is a so-
called damping stochastic matrix with identical rows and all positive elements, while
ε ∈ [0, 1] is a damping (perturbation) parameter. We perform a detailed perturbation
analysis for stationary distributions of such Markov chains, in particular get effec-
tive explicit series representations for the corresponding stationary distributions π̄ε,
upper bounds for the deviation |π̄ε − π̄0|, and asymptotic expansions for π̄ε with
respect to the perturbation parameter ε.
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38.1 Introduction

PerturbedMarkov chains is one of the popular and important objects of studies in the
theory of Markov processes and their applications to stochastic networks, queuing
and reliability models, bio-stochastic systems, and many other stochastic models.

We refer here to some recent books and papers devoted to perturbation problems
for Markov type processes, [5, 6, 11, 13, 14, 21, 23, 24, 26–28, 30–46, 48, 49]. In
particular, we would like to mention works [5, 24, 39, 40], where the extended bibli-
ographies of works in the area and the corresponding methodological and historical
remarks can be found.

We are especially interested in models of Markov chains commonly used for
description of information networks. With recent advancement in technology, filter-
ing information has become a challenge in such systems.Moreover, their significance
is visible as they find their applications in Internet search engines, biological, finan-
cial, transport, queuing networks and many others, [1–10, 12, 15–19, 22, 25, 29,
47]. In suchmodels an information network is represented by theMarkov chain asso-
ciated with the corresponding node links graph. Stationary distributions and other
related characteristics of information Markov chains usually serve as basic tools for
ranking of nodes in information networks.

The ranking problem may be complicated by singularity of the corresponding
informationMarkov chain, where its phase space is split into several weakly or com-
pletely non communicating groups of states. In such models, the matrix of transition
probabilities P0 of information Markov chain is usually regularised and approxi-
mated by the stochastic matrix Pε = (1 − ε)P0 + εD, where D is a so-called damp-
ing stochastic matrix with identical rows and all positive elements, while ε ∈ [0, 1]
is a damping (perturbation) parameter. Let π̄ε be the stationary distribution of a
Markov chain Xε,n with the regularised matrix of transition probabilities Pε. As was
mentioned above this stationary distribution is often used for ranking nodes in the
corresponding information network. The damping parameter 0 < ε ≤ 1 should be
chosen neither too small nor too large. In the first case, where ε takes too small
values, the damping effect will not work against singularity effects. In the second
case, the ranking information (accumulated by matrix P0 via the corresponding sta-
tionary distribution) may be partly lost, due to the deviation of matrix Pε frommatrix
P0. This actualises the problem of estimation for deviation |π̄ε − π̄0| and construc-
tion asymptotic expansions for perturbed stationary distribution π̄ε with respect to
damping parameter ε.

The above problems can also be considered in purely algebraic problem connected
with perturbation analysis of invariant (stationary) distributions π̄ε for perturbed
stochastic matrices Pε = (1 − ε)P0 + εD. The model, where matrix P0 is a matrix
of transition probabilities for a Markov chain, which phase space is one class of
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communicative states, is usually referred as the model with regular perturbations.
The model, where matrix P0 is a matrix of transition probabilities for a Markov
chain, which phase space split in several closed classes of communicative states
plus a class (possibly empty) of transient states, is usually referred as the model
with singular perturbations. The perturbation analysis in the singular case is much
more difficult than in the regular case. The approach used in this paper based on the
use of method of artificial regeneration and renewal techniques for deriving special
series representation for stationary distributions π̄ε and some classical results from
the matrix theory such as Perron–Frobenius theorem and eigenvalues decomposition
representation.

The paper includes six sections. In Sect. 38.2, we describe the algorithm for
stochasticmodellingofMarkovchainswith damping component and theprocedure of
embedding such Markov chains in the model of discrete time regenerative processes
with special damping regenerative times. Also, we derive renewal type equations for
the corresponding transition probabilities. In Sect. 38.3, we present ergodic theorems
for the Markov chains with damping component and give explicit formulas for the
corresponding stationary distributions. In Sect. 38.4, we describe continuity proper-
ties of transition probabilities and stationary distributions with respect to damping
parameter. In Sect. 38.5, explicit upper bounds in approximations of the stationary
distributions for Markov chain with damping component are given. In Sect. 38.6,
we present asymptotic expansions for stationary distribution of Markov chains with
damping component with respect to the damping parameter.

38.2 Markov Chains with Damping Component (MCDC)

In this section, we introduce the model of MCDC, which is often used for descrip-
tion of information networks. We also describe the procedure of embedding such
Markov chains in the model of discrete time regenerative processes with special
damping regenerative times and present the corresponding renewal type equations
for transition probabilities.

38.2.1 Stochastic Modelling of MCDC

Let (a)X = {1, 2, . . . ,m} be a finite space, (b) p̄ = 〈p1, . . . , pm〉, d̄ = 〈d1, . . . , dm〉,
and q̄ = 〈q0, q1〉 be three discrete probability distributions, (c) P0 = ‖p0,i j‖ be a
m × m stochastic matrix and D = ‖di j‖ be a damping m × m stochastic matrix
with elementsdi j = d j > 0, i, j = 1, . . . ,m, andPε = ‖pε,i j‖ = (1 − ε)P0 + εD is
a stochasticmatrixwith elements pε,i j = (1 − ε)p0,i j + εd j , i, j = 1, . . . ,m, where
ε ∈ [0, 1].
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Let us describe an algorithm for stochastic modelling of a discrete time homoge-
neousMarkov chain Xε,n, n = 0, 1, . . .,with the phase spaceX, the initial distribution
p̄, and the matrix of transition probabilities Pε.

Let (a)U is a random variable taking values in spaceX and such thatP{U = j} =
p j , j ∈ X; (b)Ui,n, i ∈ X, n = 1, 2, . . . be a family of independent random variables
taking values in space X and such that P{Ui,n = j} = pi j , i, j ∈ X, n = 1, 2, . . .;
(c) Vn, n = 0, 1, . . . be a sequence of independent random variables taking values
in space X and such that P{Vn = j} = d j , j ∈ X, n = 1, 2, . . .; (d) W is a binary
random variable taking values 0 and 1 with probabilities, respectively q0 and q1; (e)
Wε,n, n = 1, 2, . . . be, for every ε ∈ [0, 1] a sequence of independent binary random
variables taking values 0 and 1 with probabilities, respectively, 1 − ε and ε, for
n = 1, 2, . . .; (f) the random variablesU,W , the family of random variablesUi,n, i ∈
X, n = 1, 2, . . ., and the random sequences Vε,n, n = 1, 2, . . . andWε,n, n = 1, 2, . . .
are mutually independent, for every ε ∈ [0, 1].

Let us now define, for every ε ∈ [0, 1], the random sequence Xε,n, n = 0, 1, . . .,
by the following recurrent relation,

Xε,n = UXε,n−1,nI(Wε,n = 0) + VnI(Wε,n = 1), n = 1, 2, . . . , Xε,0 = U. (38.1)

It is readily seen that the random sequence Xε,n, n = 0, 1, . . . is, for every ε ∈
[0, 1], a homogeneous Markov chain with phase space X, the initial distribution p̄
and the matrix of transition probabilities Pε. This Markov chain can be referred as a
Markov chain with damping component (MCDC).

38.2.2 Regenerative Properties of MCDC

Let us consider the extended random sequence,

Yε,n = (Xε,n,Wε,n), n = 1, 2, . . . , Xε,0 = U, Wε,0 = W. (38.2)

This sequence also is, for every ε ∈ [0, 1], a homogeneous Markov chain, with
phase space Y = X × {0, 1}, the initial distribution pq = 〈piqr , (i, r) ∈ Y〉 and the
transition probabilities,

pε,ir, jk = P{Xε,1 = j,Wε,1 = k/Xε,0 = i,Wε,0 = r}

=
{

(1 − ε)p0,i j for i, j ∈ X, r = 0, 1, k = 0,
εd j for i, j ∈ X, r = 0, 1, k = 1.

(38.3)

It is worth to note that the transition probabilities pε,ir, jk = pε,i, jk, (i, r), ( j, k) ∈
Y do not depend on r = 0, 1 and on i ∈ X if k = 1.

Let us, assume that the damping (perturbation) parameter ε ∈ (0, 1].
Let us define times of sequential hitting state 1 by the second component Wε,n ,
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Tε,n = min(n > Tε,n−1,Wε,n = 1), n = 1, 2, . . . , Tε,0 = 0. (38.4)

The random sequence Yε,n, n = 0, 1, . . . is also a discrete time regenerative pro-
cess with “damping” regeneration times Tε,n, n = 0, 1, . . ..

This follows from independence of transition probabilities pε,ir, jk of the Markov
chain Yε,n , which are given by relation (38.3), on i ∈ X if k = 1.

This is a standard regenerative process, if the initial distribution pq = dq1 =
〈diq1,r , (i, r) ∈ Y〉, where q̄1 = 〈q1,0 = 0, q1,1 = 1〉.

Otherwise, Yε,n is a regenerative process with the transition period [0, Tε,1).
It is useful to note that the inter-regeneration times Sε,n = Tε,n − Tε,n−1, n =

1, 2, . . . are i.i.d. geometrically distributed random variables, with parameter ε, i.e.,

P{Sε,1 = n} =
{
0 for n = 0,
ε(1 − ε)n−1 for n = 1, 2, . . . .

(38.5)

38.2.3 Renewal Type Equations for Transition Probabilities
of MCDC

Let us denote by Pm the class of all initial distributions p̄ = 〈pi , i ∈ X〉.
Let us introduce n-step transition probabilities for the Markov chain Xε,n , for

i, j ∈ X, n = 0, 1, . . .,

pε,i j (n) = P{Xε,n = j/Xε,0 = i}, (38.6)

and probabilities, for p̄ ∈ Pm, j ∈ X, n = 0, 1, . . .,

pε, p̄, j (n) = P p̄{Xε,n = j} =
∑
i∈X

pi pε,i j (n). (38.7)

Here and henceforth, symbols P p̄ and E p̄ are used for probabilities and expecta-
tions related to a Markov chain with an initial distribution p̄. In the case, where the
initial distribution is concentrated in a state i the above symbols take the forms Pi

and Ei .
Clearly, pε,i j (0) = I(i = j), i, j ∈ X and pε,i j (1) = pε,i j , i, j ∈ X. Also,

pε, p̄, j (0) = p j , j ∈ X.
Let us denote by PQm the class of all initial distributions pq = 〈piqr , (i, r) ∈ Y〉.
Analogously, let us introduce n-step transition probabilities for the Markov chain

Yε,n , for (i, r), ( j, k) ∈ Y, n = 0, 1, . . .,

pε,ir, jk(n) = P{Yε,n = ( j, k)/Yε,0 = (i, r)}, (38.8)

and probabilities, for pq ∈ PQm, ( j, k) ∈ Y, n = 0, 1, . . .,
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pε,pq, jk(n) = Ppq{Yε,n = ( j, k)} =
∑

(i,r)∈Y
piqr pε,ir, jk(n) (38.9)

Obviously, pε,ir, jk(0) = I((i, r) = ( j, k)), (i, r), ( j, k) ∈ Y and

pε,ir, jk(1) = pε,ir, jk, (i, r), ( j, k) ∈ Y.

Also, pε, p̄q,( j,k)(0) = p jqk, ( j, k) ∈ Y.
Independence of the transition probabilities pε,ir, jk = pε,i, jk, (i, r), ( j, k) ∈ Y

on r = 0, 1 and on i ∈ X if k = 1, implies that n-step transition probabilities
pε,ir, jk(n) = pε,i, jk(n), (i, r), ( j, k) ∈ Y, n = 0, 1, . . . also are independent on r =
0, 1 and on i ∈ X if k = 1.

This also implies that probabilities pε,pq, jk(n) = pε,p, jk(n), pq ∈ PQm, ( j, k) ∈
Y, n = 1, 2, . . . are independent on the initial distribution q̄ .

Let us assume that the initial distribution pq = dq1. Aswasmentioned above,Yε,n

is, in this case, the standard regenerative process with regeneration times Tε,n, n =
0, 1, . . ..

This fact and relations (38.3) and (38.5) imply that probabilities pε,pq, jk(n), n =
0, 1, . . . are, for every j ∈ X, k = 0, 1, the unique bounded solution for the following
discrete time renewal equation,

pε,dq1, jk
(n) = qε,dq1,ik

(n) +
n∑

l=1

pε,dq1, jk
(n − l)ε(1 − ε)l−1, n ≥ 0, (38.10)

where, for j ∈ X, k = 0, 1, n ≥ 0,

qε,dq1, jk
(n) = Pdq1

{Yε,n = ( j, k), Tε,1 > n}

=
{
p0,d̄, j (n)(1 − ε)nI(n > 0) if k = 0,
d j I(n = 0) if k = 1.

(38.11)

Let us now consider the general case, with some initial distribution

pq = 〈piqr , (i, r) ∈ Y〉 ∈ PQm .

As was mentioned above, Yε,n, is, in this case, the regenerative process with regen-
eration times Tε,n, n = 0, 1, . . . and the transition period [0, Tε,1).

In this case, probabilities pε,pq, jk(n) and pε,dq1, jk
(n) are, for j ∈ X, k = 0, 1,

connected by the following renewal type relation,

pε,pq, jk(n) = qε,pq, jk(n) +
n∑

l=1

pε,dq1, jk
(n − l)ε(1 − ε)l−1, n ≥ 0, (38.12)

where, for j ∈ X, k = 0, 1, n ≥ 0,
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qε,pq, jk(n) = Ppq{Yε,n = ( j, k), Tε,1 > n}

=
{
p0, p̄, j (n)(1 − ε)nI(n > 0) if k = 0,
p j I(n = 0) if k = 1.

(38.13)

The summation of renewal equations (38.10) over k = 0, 1 yields the discrete
time renewal equation for probabilities pε,d̄, j (n), n = 0, 1, . . ., which are, for every
j ∈ X, the unique bounded solution for this equation,

pε,d̄, j (n) = p0,d̄, j (n)(1 − ε)n +
n∑

l=1

pε,d̄, j (n − l)ε(1 − ε)l−1, n ≥ 0. (38.14)

Also, the summation of renewal type equations (38.12) over k = 0, 1 yields that,
in the case of general initial distribution p = 〈pi , i ∈ X〉, the probabilities pε, p̄, j (n)

and pε,d̄, j (n) are, for every j ∈ X, connected by the following renewal type relation,

pε, p̄, j (n) = p0, p̄, j (n)(1 − ε)n +
n∑

l=1

pε,d̄, j (n − l)ε(1 − ε)l−1, n ≥ 0. (38.15)

38.3 Stationary Distributions of MCDC

In this section we present ergodic relations for transition probabilities of MCDC.

38.3.1 Stationary Distributions of Markov Chains Xε,n
and Yε,n

Let us describe ergodic properties ofMarkov chains Xε,n and Yε,n , for the case, where
ε ∈ (0, 1].
Lemma 38.1 Let ε ∈ (0, 1]. Then the following ergodic relation takes place for any
initial distribution pq ∈ PQm and ( j, k) ∈ Y,

pε,pq, jk(n) → πε, jk = ε

∞∑
l=0

qε,dq1, jk
(l) as n → ∞. (38.16)

Proof The geometrical distribution of the regeneration time Tε,1 is aperiodic and has
the first moment ε−1.

This makes it possible to apply the discrete time renewal theorem (see, for
example, [20]) to the renewal equation (38.10) that yields the following ergodic
relation, for ( j, k) ∈ Y,
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pε,dq1, jk
(n) → πε, jk as n → ∞. (38.17)

Obviously qε,pq, jk(n) → 0 as n → ∞, for ( j, k) ∈ Y.
Let us also define pε,dq1, jk

(n − l) = 0, for l > n. Relation (38.17) implies that
pε,dq1, jk

(n − l) → πε, jk as n → ∞, for l ≥ 0 and ( j, k) ∈ Y.
Using relation (38.12), the latter two asymptotic relations and the Lebesgue the-

orem, we get, for pq ∈ PQm, ( j, k) ∈ Y,

lim
n→∞ pε,pq, jk(n) = lim

n→∞ qε,pq, jk(n)

+ lim
n→∞

∞∑
l=1

pε,dq1, jk
(n − l)ε(1 − ε)l−1 = πε, jk . (38.18)

The proof is complete. �

The following lemma is the direct corollary of Lemma38.1.

Lemma 38.2 Let ε ∈ (0, 1]. Then the following ergodic relation takes place for any
initial distribution p̄ ∈ Pm and j ∈ X,

pε, p̄, j (n) → πε, j = ε

∞∑
l=0

p0,d̄, j (l)(1 − ε)l as n → ∞. (38.19)

It is useful to note that the stationary distribution π̄ε = 〈πε, j , j ∈ X〉 is the unique
positive solution for the system of linear equations,

∑
i∈X

πε,i pε,i j = πε, j , j ∈ X,
∑
j∈X

πε, j = 1. (38.20)

Also, the stationary probabilities πε, j can be represented in the form πε, j =
e−1
ε, j , j ∈ X, via the expected return times eε, j , with the use of regeneration prop-
erty of the Markov chain Xε,n at moments of return in state j .

The series representation for the stationary distribution of Markov chain Xε,n ,
given by relation (38.16), is based on the use of alternative damping regeneration
times. This representation is, by our opinion, a more effective tool for performing
asymptotic perturbation analysis for MCDC.

38.3.2 Stationary Distribution of Markov Chain X0,n

Let us describe ergodic properties of the Markov chain X0,n . Its ergodic properties
are determined by communicative properties of its phase space X and the matrix of
transition probabilities P0. The simplest case is where the following condition holds:
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A1: The phase spaceX is one aperiodic class of communicative states for theMarkov
chain X0,n .

In this case, the following ergodic relation holds, for any p̄ ∈ Pm, j ∈ X,

p0, p̄, j (n) → π0, j as ε → 0, (38.21)

The stationary distribution π̄0 = 〈π0, j , j ∈ X〉 is the unique positive solution of
the system of linear equations,

∑
i∈X

π0,i p0,i j = π0, j , j ∈ X,
∑
j∈X

π0, j = 1. (38.22)

A more complex is the case, where the following condition holds:

B1: The phase space X = ∪h
g=0X

(g), where: (a) X(g), g = 0, . . . , h are non-
intersecting subsets of X, (b) X(g), g = 1, . . . , h are non-empty, closed, ape-
riodic classes of communicative states for the Markov chain X0,n , (c) and X(0)

is a class (possibly empty) of transient states for the Markov chain X0,n .

If the initial distribution of there Markov chain X0,n is concentrated at the set
X(g), for some g = 1, . . . , h, then X0,n = X (g)

0,n, n = 0, 1, . . . can be considered as a
Markov chain with the reduced phase space X(g) and the matrix of transition proba-
bilities P0,g = ‖p0,rk‖k,r∈X(g) .

According to condition B1, for any r, k ∈ X(g), g = 1, . . . , h,

p0,rk(n) → π
(g)
0,k as n → ∞, (38.23)

where π̄
(g)
0 = 〈π(g)

0,k , k ∈ X(g)〉 is, for g = 1, . . . , h, the stationary distribution of the

Markov chain X (g)
0,n .

The stationary distribution π̄
(g)
0 is, for every g = 1, . . . , h, the unique positive

solution for the system of linear equations,

π
(g)
0,k =

∑
r∈X(g)

π
(g)
0,r p0,rk, k ∈ X(g),

∑
k∈X(g)

π
(g)
0,k = 1. (38.24)

Let Zε = min(n ≥ 0 : Xε,n ∈ X
(0)

) be the first hitting time of the Markov chain

Xε,n into the set X
(0)
.

Note that Zε = 0, if Xε,0 ∈ X
(0)
, while Zε ≥ 1, if Xε,0 ∈ X(0).

Let also introduce probabilities, for i ∈ X, g = 1, . . . , h,

f (g)
ε,i = Pi {Xε,Zε

∈ X(g)}. (38.25)

The following relation takes place, for p̄ ∈ Pm, k ∈ X(g), g = 1, . . . , h,
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f (g)
ε, p̄ = P p̄{Xε,Zε

∈ X(g)} =
∑
i∈X(g)

pi +
∑
i∈X(0)

pi f
(g)
ε,i

=
∑
i∈X(g)

pi +
∑
i∈X(0)

pi

∞∑
l=1

∑
r∈X(g)

Pi {Zε = l, Xε,l = r}. (38.26)

Note that in the case, where the set X(0) is empty, the second sum disappears in
the above formulas for probabilities f (g)

ε, p̄ .

Lemma 38.3 Let condition B1 holds. Then, the following ergodic relation takes
place, for p̄ ∈ Pm and k ∈ X,

lim
n→∞ p0, p̄,k(n) = π0, p̄,k =

{
f (g)
0, p̄π

(g)
0,k for k ∈ X(g), g = 1, . . . , h,

0 for k ∈ X(0).
(38.27)

Proof Let us assume that X(0) is a non-empty set.
The following relation takes place, for p̄ ∈ Pm, k ∈ X(g), g = 1, . . . , h,

p0, p̄,k(n) =
∑
i∈X(g)

pi p0,ik(n)

+
∑
i∈X(0)

pi

n∑
l=1

∑
r∈X(g)

Pi {Z0 = l, X0,l = r}p0,rk(n − l), n ≥ 0. (38.28)

Define p0,rk(n − l) = 0, for l > n. Relation (38.23) implies that p0,rk(n − l) →
π

(g)
0,k as n → ∞, for l ≥ 0 and r, k ∈ X(g), g = 1, . . . , h.
Using the above relation, relations (38.26), (38.28) and the Lebesgue theorem,

we get, for p̄ ∈ Pm, k ∈ X(g), g = 1, . . . , h,

lim
n→∞ p0, p̄,k(n) = lim

n→∞
∑
i∈X(g)

pi p0,ik(n)

+ lim
n→∞

∑
i∈X(0)

pi

∞∑
l=1

∑
r∈X(g)

Pi {Z0 = l, X0,l = r}p0,rk(n − l)

=
∑
i∈X(g)

piπ
(g)
0,k +

∑
i∈X(0)

pi

∞∑
l=1

∑
r∈X(g)

Pi {Z0 = l, X0,l = r}π(g)
0,k

= f (g)
0, p̄π

(g)
0,k . (38.29)

Also, the following relation holds, for p̄ ∈ Pm, k ∈ X(0),
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π0, p̄,k(n) =
∑
i∈X(0)

piPi {Z0 > n, X0,n = k}

≤
∑
i∈X(0)

piPi {Z0 > n} → 0 as n → ∞. (38.30)

The case, where X(0) = ∅, is trivial. �
Remark 38.1 Ergodic relation (38.27) shows that in the singular case, where con-
dition B1 holds, the stationary probabilities π0, p̄,k defined by the asymptotic relation
(38.27) may depend on the initial distribution.

38.4 Perturbation Model for MCDC

In this section, we show in which way MCDC can be interpreted as a stochastic
perturbed model. We also present results concerning continuity of stationary distri-
butions π̄ε with respect to damping (perturbation) parameter ε.

38.4.1 Continuity Property for Transition Probabilities of
MCDC

In what follows, relation ε → 0 is a reduced version of relation 0 < ε → 0.
The Markov chain Xε,n has the matrix of transition probabilities

Pε = (1 − ε)P0 + εD.

Obviously, for i, j ∈ X,
pε,i j → p0,i j as ε → 0. (38.31)

Also, as well known, matrix ‖pε,i j (n)‖ = Pn
ε , for n = 0, 1, . . ., where P0

ε = ‖I(i =
j)‖.

Therefore, the following asymptotic relation holds, for n ≥ 0, i, j ∈ X,

pε,i j (n) → p0,i j (n) as ε → 0. (38.32)

This relation let one consider theMarkov chain Xε,n , for ε ∈ (0, 1], as a perturbed
version of the Markov chain X0,n and to interpret the damping parameter ε as a
perturbation parameter.

Note that the phase space X of the perturbed Markov chain Xε,n is one aperiodic
class of communicative states, for every ε ∈ (0, 1].

As far as the unperturbed Markov chain X0,n is concerned, there are two different
cases.
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The first one is, where condition A1 holds, i.e., the phase space X is one commu-
nicative class of states also for the Markov chain X0,n . In this case, one can refer to
the corresponding perturbation model as regular.

The second one is, where condition B1 holds, i.e., the phase space X is not one
communicative class of states for the Markov chain X0,n . In this case, one can refer
to the corresponding perturbation model as singular.

38.4.2 Continuity Property for Stationary Distributions of
Regularly Perturbed MCDC

The following proposition takes place.

Lemma 38.4 Let condition A1 holds. Then, the following asymptotic relation holds,
for j ∈ X,

πε, j → π0, j as ε → 0. (38.33)

Proof Let νε be a random variable geometrically distributed with parameter ε, i.e.,
P{νε = n} = ε(1 − ε)n−1, n = 1, 2, . . .. Obviously,

νε − 1
P−→ ∞ as ε → 0. (38.34)

In the case, where condition A1 holds, we get using relations (38.21) and (38.34)
that the following asymptotic relation holds, for j ∈ X,

p0,d̄, j (νε − 1)
P−→ π0, j as ε → 0. (38.35)

It is readily seen that the following representation takes place for the stationary
probabilities πε, j , i ∈ X,

πε, j = ε

∞∑
l=0

p0,d̄, j (l)(1 − ε)l = p0,d̄, j (νε − 1). (38.36)

Since the sequence pp̄, j (n), n = 0, 1, . . . is a bounded, relations (38.35), (38.36)
and the corresponding variant of the Lebesgue theorem imply that the following
asymptotic relation holds, for j ∈ X,

πε, j = Ep0,d̄, j (νε − 1) → π0, j as ε → 0. (38.37)

The proof is complete. �
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38.4.3 Continuity Property for Stationary Distributions of
Singularly Perturbed MCDC

In this case, the following lemma takes place.

Lemma 38.5 Let condition B1 holds. Then, the following asymptotic relation holds,
for k ∈ X,

πε,k → π0,d̄,k as ε → 0. (38.38)

Proof In the case, where condition B1 holds, we get using relations (38.27) and
(38.34) that the following asymptotic relation holds, for k ∈ X,

p0,d̄,k(νε − 1)
P−→ π0,d̄,k as ε → 0. (38.39)

Analogously to the relation (38.37), we get, using relations (38.35) and (38.39),
the following asymptotic relation, for k ∈ X,

πε,k = Ep0,d̄,k(νε − 1) → π0,d̄,k as ε → 0. (38.40)

The proof is complete. �

Remark 38.2 Lemmas38.1 and 38.2 imply that, in the case where condition A1

holds, the continuity property for stationary distributions π̄ε (as ε → 0) takes place.
However, in the case where condition B1 holds, the continuity property for stationary
distributions π̄ε (as ε → 0) takes place under the additional assumption that f (g)

p̄ =
f (g)
d̄

, g = 0, . . . , h.

38.5 Rate of Convergence for Stationary Distributions of
Perturbed MCDC

In this section, we obtain explicit upper bounds for deviations of stationary distribu-
tions of Markov chains Xε,n and X0,n .

38.5.1 Rate of Convergence for Stationary Distributions of
Regularly Perturbed MCDC

Let us get some explicit upper bound for the rate of convergence in the asymptotic
relation (38.33) for the case, where condition A1 holds.

It is well known that, under condition A1, the rate of convergence in the ergodic
relation (38.33) is exponential. This means that there exist some constants C =
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C(P0) ∈ [0,∞), λ = λ(P0) ∈ [0, 1), and distribution π̄0 = 〈π0, j , j ∈ X〉, with all
positive component such that the following relation holds,

max
i, j∈X

|p0,i j (n) − π0, j | ≤ Cλn, n ≥ 1. (38.41)

In fact, condition A1 is equivalent to the following condition:

A2: There exist a constants C = C(P0) ∈ [0,∞), λ = λ(P0) ∈ [0, 1), and a distri-
bution π̄0 = 〈π0, j , j ∈ X〉with all positive component such that relation (38.41)
holds.

Indeed, condition A2 implies that probabilities p0,i j (n) > 0, i, j ∈ X for all large
enough n. This implies that X is one aperiodic class of communicative states. Also,
condition A2 implies that p0,i j (n) → π0, j as n → ∞, for i, j ∈ X, and, thus, π̄0 is
the stationary distribution for the Markov chain X0,n .

According to the Perron–Frobenius theorem, the role of λ can play the absolute
value of the second (by absolute value), eigenvalue for matrix P0. As far as constant
C is concerned, we refer to the book [20], where one can find the algorithms which
let one compute this constant.

The following theorem present explicit upper bounds for deviations of stationary
distributions of Markov chains Xε,n and X0,n .

Theorem 38.1 Let conditionA2 holds. Then the following relation holds, for j ∈ X,

|πε, j − π0, j | ≤ ε(|d j − π0, j | + Cλ

1 − λ
). (38.42)

Proof The inequalities appearing in condition A2 imply that the following relation
holds, for n ≥ 1, j ∈ X,

|p0,d̄, j (n) − π0, j | = |
∑
i∈X

(di p0,i j (n) − diπ0, j )|

≤
∑
i∈X

di |p0,i j (n) − π0, j )| ≤ Cλn. (38.43)

Using relations (38.16) and (38.43), we get the following estimate, for j ∈ X,

|πε, j − π0, j | ≤ |ε
∞∑
l=0

p0,d̄, j (l)(1 − ε)l − π0, j |

= |ε
∞∑
l=0

p0,d̄, j (l)(1 − ε)l − ε

∞∑
l=0

π0, j (1 − ε)l |

≤ ε|d j − π0, j | + ε

∞∑
l=1

Cλl(1 − ε)l
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≤ ε

(
|d j − π0, j | + Cλ(1 − ε)

1 − λ(1 − ε)

)

≤ ε

(
|d j − π0, j | + Cλ

1 − λ

)
. (38.44)

The proof is complete. �

Remark 38.3 The quantities |d j − π0, j | appearing in inequality (38.42) is, in some
sense, determined by a prior information about the stationary probabilities. They
take smaller values if one can choose initial distribution p̄ with smaller deviation of
the stationary distribution π̄0. Inequalities |d j − π0, j | ≤ d j ∨ (1 − d j ) ≤ 1 let one
replace the term |d j − π0, j | in inequality (38.42) by quantities independent on the
corresponding stationary probabilities π0, j .

Remark 38.4 Theorem38.1 remains also valid if conditionA2 is weakened by omit-
ting in it the assumption of positivity for the distribution π̄0 = 〈π0,i , i ∈ X〉 appearing
in this condition. In this case, conditionA2 implies that the phase spaceX = X1 ∪ X0,
where X1 = {i ∈ X : π0,i > 0} is a non-empty closed communicative class of states,
while X0 = {i ∈ X : π0,i = 0} is a the class (possibly empty) of transient states, for
theMarkov chain X0,n . Note that π̄0 still is the stationary distribution for thisMarkov
chain.

We would like also to refer to paper [30], where one can find alternative upper
bounds for the rate of convergence of stationary distributions for perturbed Markov
chains and further related references.

38.5.2 Rate of Convergence for Stationary Distributions of
Singularly Perturbed MCDC

Let now assume that condition B1 holds.
Let us consider matrices, for g = 0, . . . , h and n = 0, 1, . . .,

P0,g = ‖p0,rk‖r,k∈X(g) and Pn
0,g = ‖p(g)

0,rk(n)‖r,k∈X(g) . (38.45)

Note that, for g = 1, . . . , h, probabilities p(g)
0,rk(n) = p0,rk(n), r, k ∈ X(g), n ≥ 0,

since X(g), j = 1, . . . , h are closed classes of states.
The reduced Markov chain X (g)

0,n with the phase space X(g) and the matrix of
transition probabilities P0,g is, for every g = 1, . . . , h, exponentially ergodic and the
following estimates take place, for k ∈ X(g), g = 1, . . . , h and n = 0, 1, . . .,

max
r,k∈X(g)

|p(g)
0,rk(n) − π

(g)
0,k | ≤ Cgλ

n
g, (38.46)
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with some constants Cg = Cg(P0) ∈ [0,∞), λg = λg(P0) ∈ [0, 1), g = 1, . . . , h
and distributions π̄

(g)
0 = 〈π(g)

0,k , k ∈ X(g)〉, g = 1, . . . , h, with all positive component.

Obviously, inequalities (38.46) imply that p(g)
0,rk(n) → π

(g)
0,k as n → ∞, for r, k ∈

X(g), g = 1, . . . , h. Thus, distribution π̄
(g)
0 is the stationary distribution for the

Markov chain X (g)
0,n , for every g = 1, . . . , h.

As has been mentioned above the role of λg can play, for every g = 1, . . . , h,
the absolute value of the second (by absolute value), eigenvalue for matrix P0,g , and
C j is the constant, which as has been mentioned above can be computed using the
algorithm described in the book [20].

As well known, there exists λ0 = λ0(P0) ∈ (0, 1) such that there exist finite expo-
nential moments, for i ∈ X(0),

C0,i = C0,i (P0) = Ei e
(ln λ−1

0 )Z0 = Eiλ
−Z0
0 < ∞. (38.47)

Let us also denote,
C0 = max

i∈X(0)
C0,i . (38.48)

The upper estimates for λ0 can be found, for example, in the book [24].
Let us denote,

λ = max
0≤g≤h

λg, C = max
1≤g≤h

(Cg + CgC0 + C0). (38.49)

Here, one should formally count C0, λ0 = 0, if the class X(0) is empty.
Condition B1 is, in fact, equivalent to the following condition:

B2: The phase space X = ∪h
g=0X

(g), where: (a) X (g), g = 0, . . . , h are non-
intersecting subsets of X, (b) X (g), g = 1, . . . , h are non-empty, closed classes
of states for the Markov chain X0,n such that inequalities (38.46) hold, (c) X (0)

is a class of states for the Markov chain X0,n such that relation (38.47) holds (if
X (0) is a non-empty set).

Indeed, condition B2 implies that probabilities p(g)
0,rk(n) > 0, r, k ∈ X(g), g =

1, . . . , h for all large enough n. This implies that X(g), g = 1, . . . , h are closed
aperiodic classes of communicative states. Also, inequalities (38.46) imply that
p(g)
0,rk(n) → π

(g)
0,k as n → ∞, for r, k ∈ X(g), g = 1, . . . , h, and, thus,

π̄
(g)
0 = 〈π(g)

0,k , k ∈ X(g)〉 is the stationary distribution for the Markov chain X (g)
0,n , for

every g = 1, . . . , h. Also, relation (38.47) implies that probabilities p(0)
0,rk(n) → 0

as n → ∞, for r, k ∈ X(0) (if X (0) is a non-empty set). This implies that X(0) is a
transient class of states for the Markov chain X (0)

0,n .

Theorem 38.2 Let condition B2 holds. Then the following relation holds, for k ∈ X,

|πε,k − π0,d̄,k | ≤ ε

(
|dk − π0,d̄,k | + Cλ

1 − λ

)
. (38.50)
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Proof Let us, first, assume that X (0) = ∅.
In this case, relations (38.26)–(38.28) imply that, for n ≥ 1, k ∈ X(g),

g = 1, . . . , h,

|p0,d̄,k(n) − π0,d̄,k | = |
∑
i∈X (g)

di p
(g)
0,ik(n) −

∑
i∈X (g)

diπ
(g)
0,k |

≤ Cgλ
n
g ≤ Cλn. (38.51)

Let us now assume that X (0) = ∅.
Using relations (38.26)–(38.28) and (38.46)–(38.47),weget the following inequal-

ities, for n ≥ 1, k ∈ X(g), g = 1, . . . , h,

|p0,d̄,k(n) − π0,d̄,k | = |
∑
i∈X(g)

di p
(g)
0,ik(n)

+
∑
i∈X(0)

di

n∑
l=1

∑
r∈X(g)

Pi {Z0 = l, X0,l = r}p(g)
0,rk(n − l) − f (g)

0,d̄
π

(g)
0,k |

≤
∑
i∈X(g)

di |p(g)
0,ik(n) − π

(g)
0,k |

+
∑
i∈X(0)

di

n−1∑
l=1

∑
r∈X(g)

Pi {Z0 = l, X0,l = r}|p(g)
0,rk(n − l) − π

(g)
0,k |

+
∑
i∈X(0)

di
∑
r∈X(g)

Pi {Z0 = n, X0,n = r}|I(r = k) − π
(g)
0,k |

+ |
∑
i∈X(0)

di

n∑
l=1

∑
r∈X(g)

Pi {Z0 = l, X0,l = r} − f (g)
0,d̄

|π(g)
0,k

≤ Cgλ
n
g +

∑
i∈X(0)

di

n−1∑
l=1

Pi {Z0 = l}Cgλ
n−l
g

+
∑
i∈X(0)

diPi {Z0 = n} +
∑
i∈X(0)

diPi {Z0 > n}

≤ Cgλ
n +

∑
i∈X(0)

di

n−1∑
l=1

Pi {Z0 = l}λ−l
0

(
λ0

λ

)l

Cgλ
n + C0λ

n

≤ (Cg + C0Cg + C0)λ
n = Cλn. (38.52)

Also, in this case, the following relation holds, for n ≥ 1, k ∈ X(0),
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π0,d̄,k(n) =
∑
i∈X(0)

diPi {Z0 > n, X0,n = k}

≤
∑
i∈X(0)

diPi {Z0 > n} ≤ C0λ
n
0 ≤ Cλn. (38.53)

Using relation (38.16) and (38.51)–(38.53), we get the following estimate, for
k ∈ X,

|πε,k − π0,d̄,k | ≤ |ε
∞∑
l=0

p0,d̄,k(l)(1 − ε)l − π0,d̄,k |

= |ε
∞∑
l=0

p0,d̄,k(l)(1 − ε)l − ε

∞∑
l=0

π0,d̄,k(1 − ε)l |

≤ ε|dk − π0,d̄,k | + ε

∞∑
l=1

Cλl(1 − ε)l

≤ ε(|dk − π0,d̄,k | + Cλ(1 − ε)

1 − λ(1 − ε)
)

≤ ε(|dk − π0,d̄,k | + Cλ

1 − λ
). (38.54)

The proof is complete. �

38.6 Asymptotic Expansions for Stationary Distributions of
Perturbed MCDC

In this section, we present asymptotic expansions for stationary distributions of per-
turbed MCDC.

38.6.1 Asymptotic Expansions for Stationary Distributions of
Regularly Perturbed MCDC

Let us get some asymptotic expansions for perturbed stationary distributions in the
case, where condition A1 holds.

According the Perron–Frobenius theorem, in this case, the eigenvalues ρ1, . . .,
ρm of the stochastic matrix P0 satisfy the following condition:

A3: ρ1 = 1 > |ρ2| ≥ · · · ≥ |ρm |.
Note that some of eigenvalues ρ2, . . . , ρm can be complex numbers.
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As well known, condition A3 implies that the following eigenvalues decomposi-
tion representation takes place, for i, j ∈ X and n ≥ 1,

p0,i j (n) = π0, j + ρn
2π0,i j [2] + · · · + ρn

mπ0,i j [m], (38.55)

where: (a) π̄0 = 〈π0, j , j ∈ X〉 is distribution with all positive component,
(b) π0,i j [l], i, j ∈ X, l = 2, . . . ,m are some complex- or real-valued coefficients.

Obviously, relation (38.55) implies that probabilities pi j (n) → π0, j as n → ∞,
for i, j ∈ X. Thus, π̄0 is the stationary distribution for the Markov chain X0,n .

In fact, condition A3 is equivalent to condition A1.
Indeed, the convergence relation, p0,i j (n) → π0, j as n → ∞ for i, j ∈ X, implies

that p0,i j (n) > 0, i, j ∈ X, for all large enough n. This implies that X is one com-
municative, aperiodic class of states.

We refer to book [20], where one can find the description of effective algorithm
for finding matrices Πl = ‖π0,i j [l]‖, l = 2, . . . ,m.

Relation (38.55) implies the following relation holds, for j ∈ X and n ≥ 1,

p0,d̄, j (n) = π0, j + ρn
2π0,d̄, j [2] + · · · + ρn

mπ0,d̄, j [m], (38.56)

where, for j ∈ X, l = 2, . . . ,m,

π0,d̄, j [l] =
∑
i∈X

diπ0,i j [l]. (38.57)

Let also define coefficients, for j ∈ X, n ≥ 1,

π̃0,d̄, j [n] =
{
d j − π0, j + ∑m

l=2 π0,d̄, j [l] ρl
1−ρl

for n = 1,

(−1)n−1 ∑m
l=2 π0,d̄, j [l] ρn−1

l
(1−ρl )n

for n > 1.
(38.58)

Below, symbol O(εn) is used for quantities such that O(εn)/εn is bounded as
function of ε ∈ (0, 1].

The following theorem takes place.

Theorem 38.3 Let condition A3 holds. Then, the following asymptotic expansions
take place for every j ∈ X and n ≥ 1,

πε, j = π0, j + π̃0,d̄, j [1]ε + · · · + π̃0,d̄, j [n]εn + O(εn+1). (38.59)

Proof Relations (38.16) and (38.56) imply that the following relation holds, for
j ∈ X,
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πε, j = ε

∞∑
n=0

p0,d̄, j (n)(1 − ε)n

= εd j + ε

∞∑
n=1

(
π0, j +

m∑
l=2

ρn
l π0,d̄, j [l]

)
(1 − ε)n

= π0, j + ε(d j − π0, j ) +
m∑
l=2

π0,d̄, j [l]ε
∞∑
n=1

ρn
l (1 − ε)n

= π0, j + ε(d j − π0, j ) +
m∑
l=2

π0,d̄, j [l]
ρlε(1 − ε)

1 − ρl(1 − ε)

= π0, j + ε(d j − π0, j ) +
m∑
l=2

π0,d̄, j [l]ρlε(1 − ε)(1 − ρl + ρlε)
−1. (38.60)

Functions (a + bε)−1, ε ∈ [0, 1] and bε(1 − ε)(a + bε)−1, ε ∈ [0, 1] admit, for
any complex numbers a = 0 and b, the following Taylor asymptotic expansions, for
every n ≥ 1 and ε → 0,

(a + bε)−1 = a−1 − a−2bε + a−3b2ε2

+ · · · + (−1)na−(n+1)bnεn + O(εn+1), (38.61)

and

bε(1 − ε)(a + bε)−1 = a−1bε − a−1b(1 + a−1b)ε2 + a−2b2(1 + a−1b)ε3

+ · · · + (−1)n−1a−(n−1)bn−1(1 + a−1b)εn + O(εn+1). (38.62)

Relations (38.60)–(38.62) let us write down the following Taylor asymptotic
expansions for stationary probabilities πε, j , j ∈ X, for every n ≥ 1 and ε → 0,

πε, j = π0, j + ε(d j − π0, j ) +
m∑
l=2

π0,d̄, j [l]ρlε(1 − ε)(1 − ρl + ρlε)
−1

= π0, j + π̃0,d̄, j [1]ε + · · · + π̃0,d̄, j [n]εn + O(εn+1). (38.63)

The proof is complete. �
Some of eigenvalues ρl and coefficients π0,i j [r ] can be complex numbers. Despite

of this, coefficients π̃0,d̄, j [n], n ≥ 1 in the expansions given in relation (38.59) are
real numbers.

Indeed, πε, j is a positive number, for every ε ∈ [0, 1]. Relation (38.63) implies
that (πε, j − π0, j )ε

−1 → π̃0,d̄, j [1] as ε → 0. Thus, π̃0,d̄, j [1] is a real number. In this
way, the above proposition can be proved for all coefficients in expansions (38.59).
This implies that the remainders of these expansions O(εn+1) also are real-valued
functions of ε.
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Moreover, since π̄ε = 〈πε, j , j ∈ X〉, ε ∈ (0, 1] and π̄0 = 〈π0, j , j ∈ X〉 are prob-
ability distributions, the following equalities connect coefficients in the asymptotic
expansions (38.59),

∑
j∈X π̃0,d̄, j [n] = 0, for n ≥ 1.

38.6.2 Asymptotic Expansions for Stationary Distributions of
Singularly Perturbed MCDC

Let now consider the case, where condition B1 holds. We can assume that class X(g)

includes mg states, for g = 0, . . . , h, where mg > 0, j = 1, . . . , h, while m0 ≥ 0.
Let us denote by ρg,1, . . ., ρ j,m j the eigenvalues of the stochastic matrices P0,g ,

g = 1, . . . , h and by ρ0,1, . . ., ρ0,m0 the eigenvalues of the sub-stochastic matrix P0,0.
We can assume that these eigenvalues are ordered by absolute values, i.e. |ρg,1| ≥
|ρg,2| ≥ · · · ≥ |ρg,mg |, for g = 0, . . . , h.

Condition B1 is, in fact, equivalent to the following condition:

B3: The phase space X = ∪h
g=0X

(g), where: (a) X (g), j = 0, . . . , h are non-
intersecting subsets ofX, (b) X (g), g = 1, . . . , h are non-empty, closed classes of
states for theMarkov chain X0,n such that inequalities ρg,1 = 1 > |ρg,2| ≥ · · · ≥
|ρg,mg |, g = 1, . . . , h, hold, (c) X (0) is a class of states for theMarkov chain X0,n

such that inequalities |ρ0,1|, . . . , |ρ0,m0 | < 1 hold (if X (0) is a non-empty set).

Inequalities given in condition B3 (c) should be omitted in condition B3, if X (0) =
∅ and, thus, m0 = 0.

Condition B1 implies that condition B3 holds. This follows from the Perron–
Frobenius theorem.

Condition B3 imply that the following eigenvalues decomposition representations
take place, for r, k ∈ X(g), g = 1, . . . , h and n ≥ 1,

p(g)
0,rk(n) = π

(g)
0,k + ρn

g,2π
(g)
0,rk[2] + · · · + ρn

g,m j
π

(g)
0,rk[m j ], (38.64)

and, for r, k ∈ X(0), n ≥ 1,

p(0)
0,rk(n) = ρn

0,1π
(0)
0,rk[1] + · · · + ρn

0,m0
π

(0)
0,rk[m0], (38.65)

where: (a) π̄
(g)
0 = 〈π(g)

0,k , k ∈ X(g)〉 is a distribution with all positive component,

for g = 1, . . . , h, (b) π
(g)
0,rk[l], r, k ∈ X(g), l = 2, . . . ,mg, g = 1, . . . , h and π

(0)
0,rk[l],

r, k ∈ X(0), l = 1, . . . ,m0 are some complex- or real-valued coefficients.
Obviously, relation (38.64) implies that probabilities p(g)

0,rk(n) → π
(g)
0,k as n → ∞,

for r, k ∈ X(g), g = 1, . . . , h. Thus, π̄ (g)
0 is the stationary distribution of the Markov

chain X (g)
0,n , for g = 1, . . . , h.

In fact, condition B3 is equivalent to condition B1.
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Indeed, as was mentioned above, relation (38.64) implies that p(g)
0,rk(n) → π

(g)
0,k

as n → ∞, for r, k ∈ X(g), g = 1, . . . , h. Thus, probabilities p(g)
0,rk(n) > 0, r, k ∈

X, g = 1, . . . , h, for all large enough n. This implies that X(g) is, for every g =
1, . . . , h a communicative, aperiodic class of states for the Markov chain X0,n . Rela-
tion (38.64) also implies that p(0)

0,rk(n) → 0 as n → ∞, for r, k ∈ X(0). This implies
that X(0) is a transient class of states for the Markov chain X0,n .

Thus, condition B3 implies that condition B1 holds.
We again refer to book [20], where one can find the description of effective

algorithm for finding matrices Π
(g)
l = ‖π(g)

0,rk[l]‖, l = 2, . . . ,mg, g = 1, . . . , h and

Π
(0)
l = ‖π(0)

0,rk[l]‖, l = 1, . . . ,m0.
Let us, first, consider the simpler case, where X (0) = ∅.
Relation (38.64) implies, in this case, the following relation holds, for any k ∈

X(g), g = 1, . . . , h and n ≥ 1,

p0,d̄,k(n) = π0,d̄,k + ρn
g,2π

(g)
0,d̄,k

[2] + · · · + ρn
g,mg

π
(g)
0,d̄,k

[mg], (38.66)

where, for k ∈ X(g), l = 2, . . . ,mg, g = 1, . . . , h,

π
(g)
0,d̄,k

[l] =
∑
r∈X(g)

drπ
(g)
0,rk[l]. (38.67)

Let also define coefficients, for k ∈ X(g), g = 1, . . . , h, n ≥ 1,

π̃
(g)
0,d̄,k

[n] =
⎧⎨
⎩
dk − π

(g)
0,k + ∑mg

l=2π
(g)
0,d̄,k

[l] ρg,l

1−ρg,l
for n = 1,

(−1)n−1∑mg

l=2π
(g)
0,d̄,k

[l] ρn−1
g,l

(1−ρg,l )n
for n > 1.

(38.68)

The following theorem takes place.

Theorem 38.4 Let condition B3 (with X (0) = ∅) holds. Then, the following asymp-
totic expansion take place for every for k ∈ X(g), g = 1, . . . , h, n ≥ 1,

πε,k = π0,d̄,k + π̃
(g)
0,d̄,k

[1]ε + · · · + π̃
(g)
0,d̄,k

[n]εn + O(εn+1). (38.69)

The proof of the above theorem is similar with the proof of Theorem38.3.
The case, where the set of transient states X (0) = ∅ is much more complicated.

This is because of the corresponding stationary probabilities take, in this case, much
more complex forms.

Theorem 38.5 Let condition B3 holds. Then, the following asymptotic expansions,
with coefficients given below in relations (38.86)–(38.89) and (38.92)–(38.93), take
place, for k ∈ X(g), g = 1, . . . , h, n ≥ 1,

πε,k = π0,d̄,k + π̃
(g)
0,d̄,k

[1]ε + · · · + π̃
(g)
0,d̄,k

[n]εn + O(εn+1). (38.70)
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and, for k ∈ X(0), n ≥ 1,

πε,k = π̃
(0)
0,d̄,k

[1]ε + · · · + π̃
(0)
0,d̄,k

[n]εn + O(εn+1). (38.71)

Proof Relation (38.28) can be rewritten in the following form, for k ∈ X(g), g =
1, . . . , h and n ≥ 1,

p0,d̄,k(n) =
∑
i∈X(g)

diπ
(g)
0,k +

∑
i∈X(0)

di

∞∑
l=1

Pi {S0 = l, X0,l ∈ X(g)}π(g)
0,k

+
∑
i∈X(g)

di (p
(g)
0,ik(n) − π

(g)
0,k )

+
∑
i∈X(0)

di

n∑
l=1

∑
r∈X(g)

Pi {S0 = l, X0,l = r}(p(g)
0,rk(n − l) − π

(g)
0,k )

−
∑
i∈X(0)

di

∞∑
l=n+1

Pi {S0 = l, X0,l ∈ X(g)}π(g)
0,k

= f (g)
0,d̄

π
(g)
0,k +

∑
i∈X(g)

di (p
(g)
0,ik(n) − π

(g)
0,k )

+
∑

i,s∈X(0)

∑
r∈X(g)

di

n∑
l=1

p(0)
0,is(l − 1)p0,sr (p

(g)
0,rk(n − l) − π

(g)
0,k )

−
∑

i,s∈X(0)

∑
r∈X(g)

di

∞∑
l=n+1

p(0)
0,is(l − 1)p0,srπ

(g)
0,k . (38.72)

By continuing the above relation, we get, for k ∈ X(g), g = 1, . . . , h and n = 1,

p0,d̄,k(1) = π0,d̄,k +
∑
i∈X(g)

di (p
(g)
0,ik(1) − π

(g)
0,k )

+
∑
i∈X(0)

∑
r∈X(g)

di p0,ir (I(r = k) − π
(g)
0,k )

−
∑

i,s∈X(0)

∑
r∈X(g)

di p0,srπ
(g)
0,k

∞∑
l=2

p(0)
0,is(l − 1). (38.73)

and, for k ∈ X(g), g = 1, . . . , h and n ≥ 2,
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p0,d̄,k(n) = π0,d̄,k +
∑
i∈X(g)

di (p
(g)
0,ik(n) − π

(g)
0,k )

+
∑
i∈X(0)

∑
r∈X(g)

di p0,ir (p0,rk(n − 1) − π
(g)
0,k )

+
∑

i,s∈X(0)

∑
r∈X(g)

di

n−1∑
l=2

p(0)
0,is(l − 1)p0,sr (p

(g)
0,rk(n − l) − π

(g)
0,k )

+
∑

i,s∈X(0)

∑
r∈X(g)

di p
(0)
0,is(n − 1)p0,sr (I(k = r) − π

(g)
0,k )

−
∑

i,s∈X(0)

∑
r∈X(g)

di

∞∑
l=n+1

p(0)
0,is(l − 1)p0,srπ

(g)
0,k . (38.74)

By using relations (38.27)–(38.28) and by substituting decomposition expressions
(given for the corresponding transition probabilities in relation (38.64)), in relations
(38.73) and (38.74), we get the following relation, for k ∈ X(g), g = 1, . . . , h and
n = 1,

p0,d̄,k(1) = π0,d̄,k + Ad̄,g,k, (38.75)

where

Ad̄,g,k =
∑
i∈X(g)

mg∑
u=2

diπ
(g)
0,ik[u]ρg,u +

∑
i∈X(0)

∑
r∈X(g)

di p0,ir (I(r = k) − π
(g)
0,k )

−
∑

i,s∈X(0)

∑
r∈X(g)

m0∑
t=1

diπ
(0)
0,is[t]p0,srπ(g)

0,k

ρ0,t

1 − ρ0,t
, (38.76)

and, for k ∈ X(g), g = 1, . . . , h and n ≥ 2,

p0,d̄,k(n) = π0,d̄,k +
mg∑
u=2

Bd̄,g,k(u)ρn−2
g,u

+
mg∑
u=2

Cd̄,g,k(u)(n − 2)ρn−2
g,u +

m0∑
t=1

Dd̄,g,k(t)ρ
n−2
g,t , (38.77)

where

Bd̄,g,k(u) =
∑
i∈X(g)

diπ
(g)
0,ik[u]ρ2

g,u +
∑
i∈X(0)

∑
r∈X(g)

di p0,irπ
(g)
0,rk[u]ρ j,u

+
∑

i,s∈X(0)

∑
r∈X(g)

m0∑
t=1

diπ
(0)
0,is[t]p0,srπ(g)

0,rk[u]I(ρg,u = ρ0,t )
ρg,uρ0,t

ρg,u − ρ0,t
,

(38.78)
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Cd̄,g,k(u) =
∑

i,s∈X(0)

∑
r∈X(g)

m0∑
t=1

diπ
(0)
0,is[t]p0,srπ(g)

0,rk[u]I(ρg,u = ρ0,t )ρg,u, (38.79)

and

Dd̄,g,k(t) =
∑

i,s∈X(0)

∑
r∈X(g)

diπ
(0)
0,is[t]p0,sr (I(k = r) − π

(g)
0,k ) ρ0,t

−
∑

i,s∈X(0)

∑
r∈X(g)

mg∑
u=2

diπ
(0)
0,is[t]p0,srπ(g)

0,rk[u]I(ρg,u = ρ0,t )
ρg,uρ0,t

ρg,u − ρ0,t

−
∑

i,s∈X(0)

∑
r∈X(g)

diπ
(0)
0,is[t]p0,srπ(g)

0,k

ρ2
0,t

1 − ρ0,t
. (38.80)

Two formulas are used, for n ≥ 2, in the above transformations,

∞∑
l=n

ρl
0,t = ρn

0,t
1

1 − ρ0,t
, (38.81)

and
n−1∑
l=2

ρl−1
0,t ρn−l

g,u =
{

ρg,uρ0,t
ρn−2
g,u −ρn−2

0,t

ρg,u−ρ0,t
if ρg,u = ρ0,t ,

(n − 2)ρn−1
g,u if ρg,u = ρ0,t .

(38.82)

Relations (38.16) and (38.76)–(38.82) imply that the following relation holds, for
k ∈ X(g), g = 1, . . . , h,

πε,k = ε

∞∑
n=0

p0,d̄,k(n)(1 − ε)n

= εdk + ε(1 − ε)(π0,d̄,k + Ad̄,g,k)

+ ε(1 − ε)2
( ∞∑

n=2

(
π0,d̄,k +

m j∑
u=2

Bd̄,g,k(u)ρn−2
g,u

+
mg∑
u=2

Cd̄,g,k(u)(n − 2)ρn−2
g,u +

m0∑
t=1

Dd̄,g,k(t)ρ
n−2
j,t

)
(1 − ε)n−2

)

= π0,d̄,k + ε(dk − π0,d̄,k) + ε(1 − ε)Ad̄,g,k

+
mg∑
u=2

Bd̄,g,k(u)
ε(1 − ε)2

1 − ρg,u(1 − ε)

+
mg∑
u=2

Cd̄,g,k(u)
ρg,uε(1 − ε)3

(1 − ρg,u(1 − ε))2
+

m0∑
t=1

Dd̄,g,k(t)
ε(1 − ε)2

1 − ρg,t (1 − ε)
.

(38.83)
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Functions ε(1 − ε)2(a + bε)−1, ε ∈ [0, 1] and bε(1 − ε)3(a + bε)−2, ε ∈ [0, 1]
admit, for any complex numbers a = 0 and b, the followingTaylor asymptotic expan-
sions, for every n ≥ 3 and ε → 0,

ε(1 − ε)2(a + bε)−1 = a−1ε − a−1(a−1b + 2)ε2 + a−1(a−2b2 + 2a−1b + 1)ε3

+ · · · + (−1)n−1a−(n−2)bn−3(a−2b2 + 2a−1b + 1)εn + O(εn+1), (38.84)

and, for every n ≥ 4 and ε → 0,

bε(1 − ε)3(a + bε)−2 = a−2bε − a−2b(2a−1b + 3)ε2

+ a−2b(3a−2b2 + 2 · 3a−1b + 3)ε3

− a−2b(4a−3b3 + 3 · 3a−2b2 + 2 · 3a−1b + 1)ε4

+ · · · + (−1)n−1a−(n−2)bn−3(na−3b3 + (n − 1) · 3a−2b2

+ (n − 2) · 3a−1b + (n − 3))εn + O(εn+1). (38.85)

By expanding the rational functions of ε appearing in the expression on the right
side of relation (38.83) in asymptotic Taylor expansions and gathering coefficients
for εn , we get the asymptotic Taylor expansions (38.70) for stationary probabilities
πε,k , for k ∈ X(g), g = 1, . . . , h, with coefficients given by the following relations,

π̃
(g)
0,d̄,k

[1] = (dk − π0,d̄,k) + Ad̄,g,k +
mg∑
u=2

Bd̄,g,k(u)
1

1 − ρg,u

+
mg∑
u=2

Cd̄,g,k(u)
ρg,u

(1 − ρg,u)2
+

m0∑
t=1

Dd̄,g,k(t)
1

1 − ρg,t
, (38.86)

π̃
(g)
0,d̄,k

[2] = −
mg∑
u=2

Bd̄,g,k(u)
2 − ρg,u

(1 − ρg,u)2
− Ad̄,g,k

−
mg∑
u=2

Cd̄,g,k(u)
ρg,u(3 − ρg,u)

(1 − ρg,u)3
−

m0∑
t=1

Dd̄,g,k(t)
2 − ρ0,t

(1 − ρ0,t )2
, (38.87)

π̃
(g)
0,d̄,k

[3] =
mg∑
u=2

Bd̄,g,k(u)
1

(1 − ρg,u)3

+
mg∑
u=2

Cd̄,g,k(u)
3ρg,u

(1 − ρg,u)4
+

m0∑
t=1

Dd̄,g,k(t)
1

(1 − ρ0,t )3
, (38.88)

and, for n ≥ 4,



38 Perturbation Analysis for Stationary Distributions of Markov Chains … 929

π̃
(g)
0,d̄,k

[n] = (−1)n−1

( mg∑
u=2

Bd̄,g,k(u)
ρn−3
g,u

(1 − ρg,u)n

+
mg∑
u=2

Cd̄,g,k(u)
ρn−3
g,u (3ρg,u + n − 3)

(1 − ρg,u)n+1

+
m0∑
t=1

Dd̄,g,k(t)
ρn−3
0,t

(1 − ρ0,t )n

)
. (38.89)

Also, the following relation takes place, for k ∈ X(0), n ≥ 1,

πε,k = ε

∞∑
n=0

p0,d̄,k(n)(1 − ε)n

= εdk + ε

∞∑
n=1

( ∑
r∈X(0)

dr

m0∑
t=1

π
(0)
0,rk[t]ρn

0,t

)
(1 − ε)n

= εdk +
m0∑
t=1

Ed̄,0,k(t)
ρ0,tε(1 − ε)

1 − ρ0,t (1 − ε)
, (38.90)

where, for k ∈ X(0), t = 1, . . . ,m0,

Ed̄,0,k(t) =
∑
r∈X(0)

drπ
(0)
0,rk[t]. (38.91)

By expanding the rational functions of ε appearing in the expression on the right
side of relation (38.90) in asymptotic Taylor expansions and gathering coefficients
for εn , we get the asymptotic Taylor expansions (38.71) for stationary probabilities
πε,k , for k ∈ X(0), with coefficients given by the following relations,

π̃
(0)
0,d̄,k

[1] = dk +
m0∑
t=1

Ed̄,0,k(t)
ρ0,t

1 − ρ0,t
, (38.92)

and, for n ≥ 2,

π̃
(0)
0,d̄,k

[n] = (−1)n−1
m0∑
t=1

Ed̄,0,k(t)
ρn−1
0,t

(1 − ρ0,t )n
. (38.93)

The proof is complete. �
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38.6.3 Conclusion

The results of the present paper extend results of the paper [3] related to rates of
convergence and asymptotic expansions for stationary distributions π̄ε for model
with singular perturbations. In paper [3], the case, where the class of transient states
X0 is empty, was treated. In the present paper, the general singular case, where the
class of transient statesmay be non-empty is considered. This extension, significantly
complicates the corresponding asymptotic analysis.

In principle, the asymptotic expansions given in Theorems38.3–38.5 can be
improved and given in the variant with explicit upper bounds for remainders,
|O(εn+1)| ≤ Gn+1ε

n+1, ε ∈ (0, εn+1], with explicit formulas for constantsGn+1 and
εn+1. We are going to present the corresponding results as well as results of exper-
imental numerical studies and applications to concrete information networks in the
near future.
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