
Chapter 37
Lie Symmetry Analysis on Pricing
Weather Derivatives by Partial
Differential Equations

Clarinda Nhangumbe, Ebrahim Fredericks and Betuel Canhanga

Abstract Weather derivatives are priced considering weather variables such as rain-
fall, temperature, humidity and wind as the underlying asset. Some recent researches
suggest to model the amount of rain using the mean reverting process. The Ornstein
Uhlenbeck Process was proposed in [29] tomodel the irregularity of rainfall intensity
as well as duration of dry spells. By using the Feynman-Kac theorem and the rainfall
indexes we derive the partial differential equation(PDE) that governs the price of an
option. We apply the Lie analysis theory to solve this PDE, we provide the group
classification and we use it to find the invariant analytical solutions.
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37.1 Introduction

In general companies activities face risks related to changes in the weather. The
agriculture industry and energetic industry are examples of sectors that their activi-
ties can be influenced by weather variables such as rainfall, snowfall, temperature,
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humidity and wind. For example, by turn on the cooler or the heating one makes
the energy supplier sells more than the normal days. But these positive impacts, can
also turn into negative since the electricity supply can be influenced negatively for
example by wind. To face these risks companies must choose according of the nature
of theirs activities, which kind of weather protections they must use. In agriculture
for example, the crop yield can depend on quantities of rainfall. As shown, for exam-
ple by Odening, Musshoff and Xu in [21] and by Stoppa and Hess in [27] there is
a strong correlation between the amount of rainfall and wheat yield. Geyser in [11]
also shown the strong correlation between the amount of rainfall and maize yield.
So that, the crop yield will depend on an expected (normal) amount of rainfall. If the
observed amount of rain is less or more than the amount required, the farmers can
lose or get few crop yield than expected. If the farmers can protect themselves again
adverse rainfall patterns during the critical stages of growth, the crop yield risk will
substantially decrease. Geyser proposed some possible rainfall options strategies for
maize yield. She suggested a options risk protection strategy called long strangle,
where a long call and a long put are combined. This combination provides to the
farmer a hedge traditionally associated in the financial markets with high volatility
of the underlying risk exposure.

As one can see, weather risks are also managed by using the financial instru-
ments, and they are called financialWeather contract since they are related to weather
variables. Following [8], we can define a financial weather contract as a “weather
contingent contractwhose payoff is determined by a futureweather events and the set-
tlement value of these weather events is determined from a weather index expressed
as values of a weather variable measured at a stated location”. The financial weather
contract can take the form of a weather derivative (WD) or of a weather insur-
ance (WI) contract. The significant difference between the Weather derivatives and
weather insurance contracts, as appointed by [11, 27], following on regulatory and
legal point of views are:

• the insurance contracts cover only high risks, with low probability of occurrence,
whereas weather derivatives also cover low risks, with high probability of occur-
rence;

• the WI usually are more expensive and require a demonstration of losses whereas
theWD are cheaper and do not depend on losses, it only depend on the observation
of the weather indexes;

• the payoff on weather derivatives must be proportional to magnitude of the phe-
nomena whereas on weather insurance contracts it can only depend on the amount
of losses.

So, depending on circumstances, the flexibility and efficiency of weather deriva-
tives contracts make them more attractive than the weather insurance contracts.
Weather derivatives, as financial instruments to manage a risk, are also negotiated
on a formal market. The first weather derivative was executed in the United State of
America in 1997, between two energy companies (Koch Industries and Enron), using
a swap on temperature indexes to hedge against warm days in winter. Two years later,
the expansion of the climatic contracts gave birth to an organized electronic platform
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launched by the ChicagoMercantile Exchange (CME) [17]. The first contracts traded
were essentially degree days in temperature contracts. In 2003, the CME opened at
two subsidiary respectively in Europe and in Japan. In Africa, few countries started
to offer weather derivatives contracts and in very small volume. Morocco and South
Africa have launched a few over-the-counter (OTC) contracts. Other initiatives by
theWorld Bank associated with private companies to reduce natural extremeweather
risks in developing countries have shown to be very important demanded by small
farm holders notably for example in Ethiopia. The proportion of all type of climatic
contracts negotiated was appointed by [17] to be more significantly on CME market
in 2005, with 95% of contracts against 5% of OTC contracts. The weather derivative
contract can be formulated as in [30] specifying the following parameters:

• Contract type, if it is European or American option, Future, Swap, among others;
• Contract period, usually 1month or 6months (Six months corresponds to hedging
either the winter or summer season);

• The referential point, from which the meteorological data is obtained;
• The underlying index of the contract (can be, Temperature degree days (DD) and
their variants “heat degree days (HHD) or cool degree days (CDD)”, rainfall, etc.)
for each commodity;

• Pre-negotiated threshold, or strike level for weather index (S);
• Tick or constant payment for a linear or binary payment scheme, “τ” (translate
the payoff into monetary terms), and

• The premium.

In most cases the rainfall is modeled through an cumulative of daily average amount
of rain, [9]. But, was show for example by Odening, Musshoff and Xu in [21] that
the indexes constructed by the principle similar to that of degree-days indexes used
to modeling temperature derivatives, gives higher hedging effectiveness. Hence, we
present two ways of modeling rainfall derivatives contracts similar to the ones used
to modeling temperature derivatives by degree-days indexes. Bellow we present an
adaptation from [1] of the two alternatives.

Definition 37.1 We define rain defice day and denote RDD as the number of mil-
limeters by which the daily average rain Xt is below the base rain Xref i.e:

f (Xt , t) = (Xref − Xt )
+. (37.1)

Definition 37.2 We define rain excess day and denote RED as the number of mil-
limeters by which the daily average rain Xt is above the base rain Xref i.e:

f (Xt , t) = (Xt − Xref )
+. (37.2)

The “RDD” can be thought in terms of necessity of water in non raining periods,
whereas, “RED” can be thought in terms of existence of more water than required
in raining periods. Hence, an investor wants to protect himself against higher levels
of rain, he can take position on RED contracts and the payment has a payoff defined
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according to the Eq. (37.2). On the other hand if the protection is against lower levels
of rain he can take position on RDD contracts and contract will pays according to the
Eq. (37.1). For the strategy proposed in [11] with the expected amount of rainfall per
year between 200 and 800mm, the investors must take position on both RDD and
RED contracts, considering the annual base raining of 200mm for RDD contracts
and the annual base raining of 800mm for RED contracts.

In order to price weather derivatives one need to consider that the underlying vari-
able is non trad-able asset and that theweathermodels do not followGeometricBrow-
nian motion (see [1]), therefore Black-Scholes methodology can not be implemented
directly for weather derivative pricing. Alternative methods based on arbitrage-free
pricingmethods [25, 26], equilibriummodels [5] and actuarial approach [3] was pro-
posed. But their technical inefficiency and limitation for weather risk management
still makes necessary to develop efficient schemes of pricing. The methods based on
partial differential equations (PDEs) were suggested to model temperature deriva-
tives by Pirrong and Jermakyan in [25] and posteriori adopted by other researchers,
such as [1, 2, 18, 26]. The arbitrage-free prices of weather options are determined
using the market prices of risk from the quotations of the weather futures, since the
underlying is non-tradable asset, and then the price is determined under the theory
of incomplete markets. The mean reverting process model was proposed to model
rainfall by Emmerich, Günther, and Nelles in [9], they were based on the fact that as
well as the other Weather variables the rainfall exhibits seasonal patterns and usually
reverts to themean. Additionally the value of themean is dependent on the time of the
year and does not grow or fall indefinitely. Unami, Abagale, Yangyuoru, Alam and
Kranjac-Berisavljevic in [29] proposed the Ornstein-Uhlenbeck process, the sim-
plest model having the mean reversion property, as a model to assessing drought and
flood risks. They proposed numeric schemes to price weather derivatives. The effi-
ciency of these numeric schemes can be improved by providing analytical solutions
of associated equations.

The Lie group analysis, is used to analyze symmetries of differential equations
and construct their analytical invariant solutions. It was introduced by Sophus Lie in
1880. In his paper, “On integration of a class of linear partial differential equations
by means of definite integrals” [19], Lie identified a set of equations that could be
integrated or reduced to a lower-order equations by group theoretic algorithms and
proposed the group classification of the linear seconder-order partial differential
equation with two independent variables. He pointed that all parabolic equations
admitting the symmetry group of the highest order could be reduced to the heat
conduction equation. The collections of Lie results on regard to group analysis of
differential equation can be found in [16].

In financial mathematics the Lie analysis was applied firstly by Gazizov and
Ibragimov in [10]. They started by analyzing the complete symmetry of one dimen-
sional Black-Scholesmodel and showed that this equation is included in Sophus Lie’s
classification of linear second-order partial differential equation with two indepen-
dents variables, and it can be reduced to the heat equation. For Jacobs-Jones models,
they carried out the classification according to their symmetry groups, providing a
theoretic background for constructing exact (invariant) solutions for this equation,
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since it does not admit the symmetry group of the highest order.More research on this
area have been developed, for example by Paliathanasis, Krishnakumar, Tamizhmani,
and Leach in [24]who provided a Lie group classification of the Lie point symmetries
for the Black-Scholes-MertonModel for European options with stochastic volatility.
The volatility was defined following stochastic differential equation with an Orstein-
Uhlenbeck term. In this model, the value of the option is given by a linear (1 + 2)
dimensional evolution partial differential equation. They found that for arbitrary
functional form of the volatility, the evolution PDE always admits two Lie point
symmetries in addition to the automatic linear symmetry and the infinite number
of symmetries solution. However, for a particular value of the functional volatility
and the price of the option depending on the second Brownian motion in which
the volatility is defined, the evolutionary PDE is not reduced to the Black-Scholes-
Merton equation. Themodel admits five Lie point symmetries in addition to the linear
symmetry and the infinite number of symmetries solution. By applying the zero-order
invariants of the Lie symmetries they reduced the (1 + 2) dimensional evolutionary
PDE to a linear second-order ordinary differential equation. They studied the Heston
model and the Stein-Stein model. Lo and Hui in [20], applyingWei-Norman theorem
derived the analytical closed-form for pricing weather derivatives by exploiting the
dynamical symmetry of the (1 + 1) dimensional pricing PDE describing financial
derivatives with time-dependent parameters.

On this paper, we propose to solve the PDEofmean revertingOrnstein-Uhlenbeck
process, by applying the theory of Lie analysis. We get a group classification of the
PDE, and we seek for some invariant analytical solutions under the group generated
by particular generators. We also find the generators which are compatible with
boundary conditions.

37.1.1 Model Description

Some recent researches suggest to model the amount of rain using the mean revert-
ing process, see for example [9]. The Ornstein-Uhlenbeck process, particular case
of mean reverting process, was suggested in [29] to model the irregularity of rain-
fall intensity as well as duration of dry spells. We consider the deterministic mean
reverting Ornstein-Uhlenbeck process

dXt = [k(θ(t) − Xt ) + θ ′(t)]dt + σt dWt (37.3)

where k is the rate of the mean reversion, σt the volatility of the rainfall, dWt rep-
resenting the Brownian increment under the real probability and θ(t), the long term
mean of the process, is given by

θ(t) = m + Σn
i=0αi sin

(
(2i + 1)2π(t − υ)

12

)
. (37.4)
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The υ represent the shift of the X -axis (to scale up to months we divide by 12), α
determines the oscillation and m is the mean of the sine curve.

Under the risk neutral measure Q, characterized by the market price of risk λ,

the Eq. (37.3) takes the form

dXt = [k(θ(t) − Xt ) + θ ′(t) − λσt ]dt + σt dW
Q
t . (37.5)

where dW Q
t is the Brownian increment under risk neutral measure Q, see [18, 25,

26]. The market price of risk is the difference between the expected rate of return of
the underlying and the risk-less interest rate, reported to the quantity of riskmeasured
by the volatility [12]. It can be extracted from quotations of the weather futures, as
suggested by Pirrong and Martin in [25, 26]. Weather derivative incomes depend on
the evolution of an underlying meteorological index [12]. The cumulative index Yt ,
of the underlying weather variable can be described by the following equation (see
for example, [18])

dYt = f (Xt , t)dt. (37.6)

In this case the indexes Yt represents the amount of rainfall over all period
t ∈ [0, T ]. The index is a quantity of RDD or RED over all considered period.
Additionally, we consider t ≥ 0, k ≥ 0 and the initial condition X0 = x0.

The mean reverting model of the rainfall process was proposed by Emmerich,
Günther, and Nelles in [9] and its simplest case, the Ornstein-Uhlenbeck process,
suggested in [29]. The Ornstein-Uhlenbeck process was also suggested by Alaton,
Djehiche and Stillberger in [1] and by Li in [18] to model temperature process.
The number of sine terms can be found individually by analyzing the data from the
weather station which will be used to estimate the parameters and the appropriate
choice was shown to be n = 3. For simplicity we will consider the case when n = 0
(one sine term). Then the deterministic function θ(t) is defined as

θ(t) = m + α sin

(
π(t − υ)

6

)
(37.7)

The derivative of θ(t) is

θ ′(t) = π

6
α cos

(
π(t − υ)

6

)
(37.8)

Using financial theory, from the rainfall model, one canmeasure the amount of the
rainfall in certain weather station and period, with this, depending on the contract
(RDD or RED) one can use Eq. (37.1) or (37.2) as the payoff functions. Under
risk neutral probability measure, a contingent claim, for example an option price
V (Xt ,Yt , t) can be given as discounting conditionally expected payoff at maturity.
For such complex model it is not easy to compute the conditional expectation. In
order to avoid a lot of computation one can apply the Feynman-Kac theorem, and the
value of the weather option V (Xt ,Yt , t) should satisfy the following bivariate PDE,
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∂V

∂t
= rV − f (x, t)

∂V

∂y
− γ (x, t)

∂V

∂x
− 1

2
σ 2
t

∂2V

∂x2
(37.9)

where γ (x, t) = k(θ(t) − Xt ) + θ ′(t) − λσt , and the terminal conditions, depends
on derivatives to be analyzed. The payoff is defined as f (x, t) = f (x).

When the underlying variable follow Ornstein-Uhlenbeck process, if one con-
sider some weather indexes, the prices for weather derivatives can be governed by a
convection-diffusion equation (37.9), that belongs to the wider class of Kolmogorov
backward equations. The diffusion effects are much smaller than the convection
effects. Pirrong and Jermakyan [25] suggested a method based on PDEs to price
weather derivatives. They obtained the arbitrage-free prices of weather options by
inducing the market prices of risk from the quotations of the weather futures, con-
sidering the liquidity of the weather options market.

In practise the weather option contract does not have a negotiable underlying
index, and the model is still far from the reality. For practical uses, improvements of
weather derivatives pricing byPDEs can be found for example inBroni [4].Assuming
mean-self financing portfolio and partial hedging Broni derived a PDE introducing
a hedging instrument H that is imperfectly correlated with the underlying index.
Another improvement of (37.9), can be made if one consider a stochastic volatility,
which will allow to compute the market prices of risk instead of extracting them
from quotations, but it is still necessary to have available quotations of the weather
contracts in order to extract a risk-neutral distribution. Both risk-neutral distribution
and market prices of risk requires the liquidity of the quoted weather contracts [12].

The rain risk can bemanaged buyingRDDorRED (American,Asian or European)
options, taking short or long positions. The limit on the financial gains or losses are
defined by the following terminal condition:

• for an RDD European put

V (x, y, t) = tick × (S − y(T ))+ (37.10)

• and, for an RDD European call

V (x, y, t) = tick × (y(T ) − S)+ (37.11)

where y(T ) is the value of RDD or RED index at maturity, S is strike level (that
is defined at time t) and “tick” is used to convert the quantity (y(T ) − K )+ into
monetary terms, see for example [4, 25, 26, 28].

Our aim in this paper is to make a Lie group classification for the PDE (37.9).
By making a group classification one can realize that the PDE can be reduced to the
heat equation and if not we can use the subalgebras to find their invariant solutions.

Some PDEs can be reduced to the heat equation by change of variables if they
have a symmetry of highest order [19]. As we know the heat equation has a known
fundamental solutions. If we are interested to find the solution for a PDE, we can
reduce it to heat equation, but some times, as illustrated byCraddock andGrasselli [6]
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on the boundary, if it is a boundary value problem, the solutions produced may not
be necessary a probability density. In order to show this, they considered a problem
which vanish in the boundary, but by changing the variables they found that some
fundamental solution were not defined in the boundaries. Also by making further
change of variables they produced a problem which was more complicated than
the original, showing the importance of the techniques which allows to solve PDE
avoiding change of variables. One way to do so, is to consider all the symmetries
admitted by the PDEs and find the ones mapping the boundary and final conditions to
the values of the original problem. This will be the technique that we will implement
in order to solve (37.9).

This paper is divided in 4 sections. After the introduction in Sect. 37.1 we present
in Sect. 37.2 a brief background of the Lie group analysis. Section37.3 is divided in
3 parts where we present some basic transformations of the PDE (37.9). We present
also the result of the Lie group classification of the equation with the coefficients
satisfying the restrictions σ �= 0, k(k2 + π2) �= 0, showing that the dimension of the
symmetry group depends on the values of the parameters σ and k. We present the
constructions of invariant solutions and we end Sect. 37.3 with the determination of
the one dimensional optimal system. We finalize the paper in Sect. 37.3 where we
present the conclusions.

37.2 Outline of Lie Symetries Method for PDEs

In this sectionwe provide a summary of concepts andmain theorems of Lie symmetry
theory for PDEs. We gives the general description of the Lie symmetry method,
explaining how to compute the infinitesimal symmetries and the invariant solutions
of the PDEs. Furthermore, one can refer for more details to [14, 15, 22, 23].

37.2.1 Infinitesimal Symmetries

Consider a partial differential equation

Eσ (x, u, u(1), u(2), . . . , u(k)) = 0, σ = 1, . . . , m̃ (37.12)

where u = (u1, . . . , um) is a function of the independent variable x = (x1, . . . , xn).
u1, . . . , um are the sets of all first, second up to kth-order partial derivatives:

u(1) = {uα
i } = {u1x1 , . . . , u1xn , . . . , uα

x1 , . . . , u
α
xn },

u(2) = {uα
i j } = {u1x1x1 , u1x1x2 , . . . , u1x1xn , . . . , uα

x1x1 , u
α
x1x2 , . . . , u

α
x1xn },

...
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u(k) = {uα
ik } = {u1

x1 · · · x1︸ ︷︷ ︸
×k

, u1x1x2···xk , u
1

x1 x2 · · · x2︸ ︷︷ ︸
×(k−1)

· · · , u1xn · · · xn︸ ︷︷ ︸
×k

, . . .

· · · , uα

x1 · · · x1︸ ︷︷ ︸
×k

, uα
x1x2···xk , u

α

x1 x2 · · · x2︸ ︷︷ ︸
×(k−1)

· · · , uα

xn · · · xn︸ ︷︷ ︸
×k

}.

α = 1, . . . ,m and i, j, i1, . . . , ik = 1, . . . , n. Since we assume that uα
i j = uα

j i , u(2)

contains only the terms uα
i j for which i ≤ j , u(3) contains only the terms for which

i ≤ j ≤ k, and so on for u(4), u(5), . . .. There is a natural ordering in u(k) and the
number of elements is m

(
k
n+k−1

)
.

Recall that the system (37.12) admits the invertible transformation of the variables
x and u, i.e.,

x̄ i = f i (x, u), ūα = φα(x, u), i = 1, . . . , n;α = 1, . . . ,m (37.13)

if it is form-invariant in the new variables x̄ and ū, i.e.,

Eσ (x̄, ū, ū(1), ū(2), . . . , ūk) = 0, σ = 1, . . . , m̃, (37.14)

whenever (37.12) holds. The invertible transformations, are said to be a symmetry
transformation of the system (37.12) and, the set of all these transformation are
defined by

Γa : x̄ i = f i (x, u, a), ūα = φα(x, u, a), i = 1, . . . , n;α = 1, . . . ,m (37.15)

where a is real continuous parameter from a neighborhood of a = 0 and f i , φα are
differentiable functions that forms a local continuous one-parameter Lie group of
transformation G in R.

If the transformation (37.15) of a group G, are symmetry transformations of
(37.12), then G is called a symmetry group of (37.12) and (37.12) is said to admit
G as a group.

According to Lie’s theory, the construction of a one-parameter groupG is equiva-
lent to the determination of the corresponding infinitesimal transformations obtained
by the Taylor series expansion in a of the Eq. (37.15) about a = 0, taking into account
the initial conditions, i.e:

f i |a=0= xi , φα |a=0= uα. (37.16)

The infinitesimal transformations are:

x̄ i ≈ xi + aξ i (x, u), ūα ≈ uα + aηα(x, u) (37.17)
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where

ξ i (x, u) = ∂ f i (x, u, a)

∂a
|a=0, ηα(x, u) = ∂φα(x, u, a)

∂a
|a=0 . (37.18)

By introducing the operator

X = ξ i (x, u)
∂

∂xi
+ ηα(x, u)

∂

∂uα
, (37.19)

the infinitesimal transformation (37.17) can be written as:

x̄ i ≈ (1 + aX)xi , ūα ≈ (1 + aX)uα. (37.20)

The operator (37.19) is known as the infinitesimal operator or generator of the
group G. Therefore, if G is admitted by (37.12), X is also admitted operator of
(37.12).

The one-parameter groups are obtained trough their generators as said on the Lie’s
theorem bellow.

Theorem 37.1 Given the infinitesimal transformations (37.17) or X, the corre-
sponding one-parameter group G is obtained by solution of the Lie equations,

d x̄ i

da
= ξ i (x̄, ū),

dūα

da
= ηα(x̄, ū), (37.21)

subject to the initial conditions (37.16),

x̄ i |a=0= xi , ūα |a=0= uα.

In the space (x, u, u(1), u(2), u(3), . . . , u(k)), the infinitesimal transformation are
obtained by constructing the prolonged group G[k] of G, where k is the highest
order of the derivatives in the system (37.12). For example if one consider the
space (x, u, u(1)), the prolonged group will be G[1], and if the space considered
is (x, u, u(1), u(2)) then the prolonged group will be G[2].

Since the transformation (37.15) is a symmetry groupG of the system (37.12), the
function ū = ū(x̄) satisfies (37.14),whenever the function u = u(x) satisfies (37.12).
The transformation of the derivatives ū(1), ū(2), ū(3), . . . , ū(k), are found from (37.15)
by using the formulae of change of variables in the derivatives with respect to each
of the parameter xi ,

Di = Di ( f
j )D̄ j (37.22)

where

Di = ∂

∂xi
+ uα

i

∂

∂uα
+ uα

i j

∂

∂uα
j

+ · · · (37.23)
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is the total derivative operator with respect to xi and D̄ j is likewise given in terms
of the transformed variables. If we consider

ūα
i = D̄i (ū

α), ūα
i j = D̄i (ū

α
i ) = D̄i (ū

α
j ), . . .

and apply (37.22) in ūα , (37.15) can be written as

Di (φ
α) = Di ( f

j )D̄ j (ū
α) = Di ( f

j )ūα
j . (37.24)

Taking the first and the last terms of (37.24), we get

Di ( f
j )ūα

j = Di (φ
α) ⇔

(
∂ f j

∂xi
+ uβ

i

∂ f j

∂uβ

)
ūα
j = ∂φα

∂xi
+ uβ

i

∂φα

∂uβ
. (37.25)

By solving (37.25) with respect to uα
i , since it is locally invertible equation, we

found the transformation of the derivatives uα
i in uα

i , given by

ūα
i = ψα

i (x, u, u(1), a), ψα
i |a=0= uα

i . (37.26)

The transformation of u(1) on ū(1) togetherwith transformations of (x, u) on (x̄, ū)

will form the first prolongation of the one-parameter group G[1] acting in the space
(x, u, u(1)). From the first prolongation by using the total derivatives, we obtain the
second prolongation one-parameter group G[2] acting in the space (x, u, u(1), u(2))

and successively we obtain the kth prolongation one-parameter group G[k] acting in
the space (x, u, u(1), . . . , u(k)).

Sincewe have the prolonged groupsG[1] toG[k], we have to find their infinitesimal
transformation. Remember that the infinitesimal transforation for (x, u) is given by
(37.17). For (37.26), if we apply the Taylors series expansion, in the neighborhood
of a = 0 and taking into account the initial conditions ψα

i |a=0= uα
i , we will get:

ūα
i ≈ uα

i + aζ α
i (x, u, u(1)),

ūα
i j ≈ uα

i j + aζ α
i j (x, u, u(1), u(2)), (37.27)

...

ūα
i1···i2 ≈ uα

i1···ik + aζ α
i1···i2(x, u, u(1), . . . , u(k)).

Now we have to find the functions ζ α
i , ζ

α
i j and ζ α

i1···ik . Taking Eq. (37.25), consid-
ering only the expressions in the second line, taking into account the values of f j

and φα from (37.17), and of ūα
j from (37.28), consider that

δ
j
i =

{
0, i �= j;
1, i = j.
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Also we considered the fact that this transformation is local, i.e., a is very small and
a2 will be smaller and we take it out. We obtain:

Di (x
j + aξ j )(uα

j + aζ α
j ) = Di (u

α + aηα)

(δ
j
i + aDiξ

j )(uα
j + aζ α

j ) = uα
i + aDiη

α (37.28)

uα
i + aζ α

i + auα
j Diξ

j = uα
i + aDiη

α.

By simplification we find ζ α
i , which is ū

α
i , on the first prolongation formula (37.28).

Higher prolongation formulas, are obtained by introducing the Lie characteristic
function W α = ηα − ξ j uα

j , giving

ζ α
i = Di (W

α) + ξ j uα
j i

ζ α
i j = Di Dj (W

α) + ξ kuα
ki j (37.29)

...

ζ α
i1···ik = Di1 · · · Dik (W

α) + ξ j uα
j i1···i1 .

From (37.28) and (37.29), we can conclude that the functions ζ α
i , ζ α

i j and ζ α
i1···ik in

the Eq. (37.28), are given recursively by the prolongation formulas:

ζ α
i = Di (η

α) − uα
j D j (ξ

j )

ζ α
i j = Dj (ζ

α
i ) − uα

il D j (ξ
l) (37.30)

...

ζi1···ik = Dik (ζi1···ik−1) − uα
i1···ik l D j (ξ

l).

The generators of the prolonged groups are determined in the same way using
Eq. (37.19) to obtain the generator of the group G, which are also referred to as
the k-th prolonged generators,

X [1] = ξ i (x, u)
∂

∂xi
+ ηα(x, u)

∂

∂uα
+ ζα

i (x, u, u1)
∂

∂uα
i

... (37.31)

X [k] = ξ i (x, u)
∂

∂xi
+ ηα(x, u)

∂

∂uα
+ ζα

i (x, u, u1)
∂

∂uα
i

+ ζα
i1···ik (x, u, . . . , uk)

∂

∂uα
i1···ik

.
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37.2.2 Exact Solutions

By considering the symmetry transformation of (37.12), one can use some solutions
of the system to obtain general solutions of the system (group transformation of
known solutions). If the solutions are not known, one can look for the solutions that
are invariant of the group generated by the particular X (invariant solutions). In
order, let us consider first some definitions and theorems about invariant points and
invariant functions:

Definition 37.3 Apoint (x, u) ∈ R
n+m is an invariant point if it remains unaltered by

all transformation of the group G, i.e, (x̄, ū) = (x, u) for all values of a ∈ D′ ⊂ D.

Theorem 37.2 A point (x, u) ∈ Rn+m is an invariant point of a group G with gen-
erator given by (37.19) if and only if ξ i (x, u) = ηα = 0.

Definition 37.4 A function F(x, u) is an invariant of a group G if and only if
F(x̄, ū) = F(x, u), ∀ x , u and a ∈ D′ ⊂ D.

Theorem 37.3 A function F(x, u) is an invariant of group G with generator given
in (37.19) if and only if

X (F) = ξ i (x, u)
∂F

∂xi
+ ηα(x, u)

∂F

∂uα
= 0. (37.32)

The Eq. (37.32) is a linear PDE and can be solved using method of characteristics
that will give the invariant curves which are tangent to the vector (ξ i , ηα), for i =
1, . . . , n and α = 1, . . . ,m. The local invariant surface u(x), which is a solution of a
PDE will be a union of these invarian curves in the neighborhood of the point a = 0.
The characteristics equations are:

dx1

ξ 1(x, u)
= · · · = dxn

ξ n(x, u)
= du1

η1(x, u)
= · · · = dum

ηm(x, u)
. (37.33)

Equation (37.33) holds for exactly m + n − 1 functionally independent first inte-
grals, invariants of a one-parameter group G, called basis of invariants

I1(x, u) = c1, . . . , Im+n−1(x, u) = cm+n−1,

where i = 1, . . .m + n − 1 and ci are constants. But there are other invariant func-
tions which are given by the general solution

F = Λ(I1(x, u), . . . , Im+n−1(x, u)) of X (F) = 0

for an arbitrary function Λ.
Let us now define and present theorems for the invariant points and invariant

functions for prolonged groups.
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Definition 37.5 A differential function F(x, u, . . . , u p), p ≥ 0, is a pth-order dif-
ferential invariant of a group G if

F(x, u, . . . , u p) = F(x̄, ū, . . . , ū p),

i.e., if F is an invariant under the prolonged group G[p], for p = 0, u0 ≡ u and
G[0] ≡ G.

Theorem 37.4 A differential function F(x, u, . . . , u(p)), p ≥ 0, is a pth-order dif-
ferential invariant of a group G if,

X [p]F = 0,

X [p] is the pth prolongation of X and for p = 0, X [0] = X.

Similarly, we will write down the characteristic system corresponding to the linear
PDE on Theorem37.5 and solve it for the differential invariants. To compute the
symmetries of the system (37.12), we start by applying (37.17) in (37.28) i.e.,

Eσ (x̄, ū, ū1, . . . , ūk) ≈ Eσ (x, u, u1, . . . , uk) + a(X [k]Eσ ), σ = 1, . . . , m̃.

(37.34)
For the invariant of (37.12) as can be seen in (37.34) we require that

X [k]Eσ (x, u, u1, . . . , uk) = 0, σ = 1, . . . , m̃, (37.35)

whenever (37.12) is satisfied. The converse also applies.

Theorem 37.5 Equation (37.35) define all infinitesimal symmetries of the system
(37.12).

Equation (37.35) are called the determining equations of (37.12). They are compactly
written as

X [k]Eσ (x, u, u1, . . . , uk) |(37.12)= 0, σ = 1, . . . , m̃, (37.36)

where |(37.12) means that the equation is evaluated on the surface (37.12). Gener-
ally the transformations Γa generated by the Lie equations (37.12) are a result of a
composition of r one-parameter groups, as we can see in the following theorem.

Theorem 37.6 Let Lr be an r-dimensional vector space of operators

Xl = ξ i
l (x, u)

∂

∂xi
+ ηα

l (x, u)
∂

∂uα
, l = 1, . . . , r.

The product Γa = Γar · · ·Γa1 of r one-parameter groups of transformations Γal gen-
erated by each Xl via the Lie equations

dx̄ i

dal
= ξ i

l (x̄, ū),
dūα

dal
= ηα

l (x̄, ū) (37.37)
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subject to the initial conditions

x̄ i |a=0= xi , ūα |a=0= uα

is a local r-parameter group Gr if and only if Lr is a Lie algebra.

If we consider that a multi-parameter group is a composition of a various one-
parameter groups, its invariants can be defined as Definition37.4. Thus, a function
F(x, u) is an invariant of an r -parameter group Gr with generators

Xl = ξ i
l (x, u)

∂

∂xi
+ ηα

l (x, u)
∂

∂uα
, l = 1, . . . , r

if and only if

Xl(F) = ξ i
l (x, u)

∂F

∂xi
+ ηα

l (x, u)
∂F

∂uα
= 0, l = 1, . . . , r.

37.2.3 Group Classification

The treatment given to the equations without arbitrary elements is different from the
one given to the equations with arbitrary elements. If the equation or system does not
contain arbitrary elements, the Lie group analysis will be merely to calculate its full
group (the full Lie algebra of operators) and, if the equation or the system contains
parameters, we have to realize a group classification relative to these parameters.
Consider the class of generalized (1 + 2) dimensional equations of form (37.9).

The principal idea of group classification is, once we have calculated the deter-
mining equation, we realize that some of them depend on arbitrary elements. By
solving it for arbitrary elements, we find the principal Lie algebra of the equation.
The principal Lie group of the PDE, is the group admitted by all equation of the these
form. But, some elements of the group, can admit extension of the principal or full
Lie group. We find this extension by considering particular values of the arbitrary
elements and we extend the kernel of the full Lie algebra. Then we solve this equa-
tions with respect to the arbitrary elements and we find the additional condition for
infinitesimal transformation. By substitution of this conditions into the determining
equation we generate the general structure of the classification equation which is
responsible for the group classification of the equation or system. The values of the
arbitrary elements that can extend the full Lie algebra must be the solution of the
general structure(see, [23]). For further explanation about Lie group classification of
PDE we refer for example to [16, 19] or [15].
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37.3 The PDE of Ornstein-Uhlenbeck Process

In this section we apply the Lie symmetry method described in Sect. 37.2, to the PDE
of Ornstein-Uhlenbeck process. With help of the computer subprogram of Wolfram
Mathematica, SYMLie, we make a group classification of this PDE and we use its
infinitesimal to find some invariant solutions and to construct its one dimensional
optimal system.

37.3.1 The Basic Equation

Weconsider a PDE (37.9), the equation derived from the prices of rainfall derivatives,
when the rainfall follow the Ornstein-Uhlenbeck Process. We consider the function

θ(t) = m + α sin
π(t − ν)

6

and
f (x, t) = f (x) = (Xref − Xt )

+ or f (x, t) = (Xt − Xref )
+,

where Xref is the reference level (the base fromwhich the excess or deficit of rainfall
is determined). Differentiating θ(t) we will get

θ ′(t) = π

6
α cos

π(t − ν)

6
.

In order to reduce the complexity of the computation we consider the following basic
mathematic transformations,

cos(a ± b) = cos a cos b ∓ sin a sin b ∧ sin(a ± b) = sin a cos b ± sin b cos a

for θ(t) and θ ′(t), the Eq. (37.9) can take the following form

∂V

∂t
= rV − f (x)

∂V

∂y
−

(
w1 cos

π t

6
+ w2 sin

π t

6
+ w3 + kx

)
∂V

∂x
− 1

2
σ 2 ∂2V

∂x2
(37.38)

t, x, y are independent variables, V is dependent variable, r, xre f ,w1,w2,w3, k, σ
are parameters and w1,w2,w3 are defined by the following system of equation,

w1 = απ

6
cos

πν

6
− kα sin

πν

6
,

w2 = απ

6
sin

πν

6
+ kα cos

πν

6
,

w3 = km − λσ.



37 Lie Symmetry Analysis on Pricing Weather … 891

37.3.2 Infinitesimal Operators and Group Classification

We construct now the prolonged generator,

X [2] = X + ζ1
∂

∂Vt
+ ζ2

∂

∂Vx
+ ζ3

∂

∂Vy
+ ζ22

∂

∂Vxx
(37.39)

for

X = ξ 1(t, x, y, V )
∂

∂t
+ ξ 2(t, x, y, V )

∂

∂x
+ ξ 3(t, x, y, V )

∂

∂y
+ η(t, x, y, V )

∂

∂V
(37.40)

and we find solutions of the determined equation (the infinitesimals). This solution
can be explicitly determined by hand calculation, but it requires a lot of computations
that can be avoided if one useWolfram Mathematica, SYMLie, [7]. For more details
in the hand calculation, please see [23].

Generally the system of over-determined equations can contain many equations.
In our casewe obtainedmore than hundred equations. Since the determining equation
are linear homogeneous PDEs of order two for the unknown functions ξ i and η, we
generate an over-determined system of algebraic equation with n + m = 3 + 1 = 4
unknowns functions. By solving the over-determined systemwe obtain the unknowns
function ξ i , η and consequently ζi and ζi j . The values of functions ξ i and η, depends
on different values of the parameter k and σ . For a �= 0 ∧ k(36k2 + π2) �= 0 we will
have:

ξ 1 = π

36k2 + π2

[
(πw1 + 6kw2) cos

π t

6
+ (−6kw1 + πw2) sin

π t

6

]
c1 +

+ e−kt
(−e2ktc2 + c3

)
k

− c5,

ξ 2 = 6

36k2 + π2

[
(−6kw1 + πw2) cos

π t

6
− (πw1 + 6kw2) sin

π t

6
+

]
c1 +

+ ektc2 + e−ktc3
k2

+ c4 + tc5,

ξ 3 = c1,

η = V

σ 2k

[
2ekt (w3 − kx)c2 + k

(
k(tw3 − x)c5 + k2(−st + y)c5 + a2c6

)] +
−6V

σ 2π
(
36k2 + π2

) [
2ektπ(−6kw1 + πw2)c2 + k

(
36k2 + π2

)
w2c5

]
cos

π t

6
+

6V

σ 2π
(
36k2 + π2

) [
2ektπ(πw1 + 6kw2)c2 + k

(
36k2 + π2

)
w1c5

]
sin

π t

6
+

+ω(x, y, t),
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where c1, c2, c3, c4, c5, c6, c7 are constants and ω(x, y, t) satisfies (37.38). The
infinitesimal generators are obtained by representing the general solutions of the
determining equations as linear combinations of independent solutions defined by
the constants, i.e., the number of independents solutions will depend on the number
of the constants in the general solution.

The principal Lie algebra Lp, i.e., the Lie algebra of operators admitted by the
linear PDE (37.38) containing arbitrary elements is spanned by the generators

X1 = ∂

∂y
, X2 = V

∂

∂V
, Xω = w(t, x, y)

∂

∂V
, (37.41)

where the function ω(t, x, y) satisfies Eq. (37.38).

37.3.3 Extension of Principal Lie Algebra

For particular choices of the arbitrary elements, we found the possible extensions for
non-degenerate PDE (37.38), satisfying the following conditions:

1. σ �= 0 and (36k2 + π2) = 0 (two cases, k = ±i π
6 ): the principal Lie algebra Lp

admits extension only by one operator.
2. σ �= 0 and k(36k2 + π2) �= 0: the principal Lie algebra Lp admits extension by

four operators.

X3 = −ekt∂x
k

+ ekt∂y
k2

,

X4 = k

σ 2π

(
−ksπ t − πw3t + πx + kπy + 6w2 cos

π t

6
− 6w1 sin

π t

6

)
V ∂V +

− ∂x + t∂y,

X5 = ∂t + π

36k2 + π2

[
(πw1 − 6kw2) cos

π t

6
+ (πw2 + 6kw1) sin

π t

6

]
∂x +

+ 1

36k2 + π2

[
(6πw2 + 36kw1) cos

π t

6
+ (36kw2 − 6πw1) sin

π t

6

]
∂y,

X6 = 72kekt

σ 2(36k2 + π2)

(
−w3 − π2w3

36k2
− kx − π2x

36k
+ w1 cos

π t

6

)
V ∂V +

+ 72kekt

σ 2(36k2 + π2)

[−πw2

6k
cos

π t

6
+ (

πw1

6k
− w2) sin

π t

6

]
V ∂V +

+ e−kt

k
∂x + e−kt

k2
∂y .
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3. σ �= 0 and k = 0: the principal Lie algebra Lp admits extension by 6 operators.

X3 = −∂x + t∂y,

X4 = ∂t +
(
w1 cos

π t

6
+ w2 sin

π t

6

)
∂x +

(
6w2 cos π t

6

π
− 6w1 sin π t

6

π

)
∂y,

X5 = 2

σ 2π

(
πw3t − πx − 6w2 cos

π t

6
+ 6w1 sin

π t

6

)
V ∂V − 2t∂x + t2∂y,

X6 = 3

σ 2

[
2st + w3t

2 − 2t x − 2y + 12(6w1 − w2t)

π
cos

π t

6

]
V ∂V +

+ 36

σ 2 (πw1t + 6w2) sin
π t

6
V ∂V − 3t2∂x + t3∂y,

X7 = 2t∂t +
[
2r t + w3

a2π

(
πw3t − πx − 6w2 cos

π t

6
+ 6w1 sin

π t

6

)]
V ∂V +

+
[
−s + x +

(
2tw1 + 6w2

π

)
cos

π t

6
−

(
6w1

π
− 2tw2

)
sin

π t

6

]
∂x +

+
[
3y −

(
108w1

π2 − 12w2t

π

)
cos

π t

6
−

(
12tw1

π
+ 108w2

π2

)
sin

π t

6

]
∂y,

X8 = 2t2∂t + 4

(
−t + r t2

2
+ sw3t

2σ 2 + w2
3 t

2

4σ 2 − 2sx

σ 2 − w3xt

2σ 2 + x2

σ 2 + 3w3y

2σ 2

)
V ∂V

+ 48w3

σ 2

[
−

(
sw2

πw3
+ 9w1

2π2 + w2t

4π
− w2x

πw3

)
cos

π t

6
− 3(w2

1 − w2
2)

2π2w3
cos

π t

3

]
V ∂V

+ 24

σ 2

[(
2sw1

π
+ w1w3t

2π
− 9w2w3

π2 − 2w1x

π

)
sin

π t

6
− 6w1w2

π2 sin
π t

3

]
V ∂V +

+
[
−2st + 2t x − 6y +

(
216w1

π2 + 2t2w1 + 12tw2

π

)
cos

π t

6

]
∂x +

−
(
12tw1

π
− 216w2

π2 − 2t2w2

)
sin

π t

6
∂x +

+ 6t

[
y −

(
36w1

π2 + 2tw2

π

)
cos

π t

6
−

(
2tw1

π
+ 36w2

π2

)
sin

π t

6

]
∂y,

We can see that the Eq. (37.38) admits a maximum extension by six operators.
Then, the Eq. (37.38) cannot be transformed, for any choice of its coefficients into
heat equation,

ut = uxx + uyy (37.42)

since we know that the heat equation can only be extended by seven additional
operators, see [10, 15].
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37.3.4 Invariant Solutions

As a result of the group classification we realized that one can not reduce the PDE
(37.38) to the heat equation. But we can use the Lie analysis to find the invariant
(exact) solution of the Eq. (37.38). The invariant solutions are those solutions that
transform into themselves under a particular group of symmetries. If Eq. (37.12)
admits a Lie algebra Lr of dimension r > 1 we could consider invariants solutions
based on many (infinite) number of subalgebra of Lr . We consider only the symme-
tries generated in the case where

σ �= 0 ∧ k(k2 + π2) �= 0,

i.e., the volatility and the mean reverting factor are non zero. The first six symmetries
generate the finite dimensional Lie algebra L, allow us to construct a commutator
Table37.1, where the commutator of two symmetries Xi and X j is given by,

[Xi , X j ] = Xi X j − X j Xi ; i, j = 1, 2, . . . , 6 (37.43)

From the commutator Table37.1 we see that the set of operators (or Lie point
symmetry generators) X1, X2, X3, X4, X5, X6 is anti-symmetric and closed under
the product [·, ·]. Since the commutator is bilinear and satisfy the Jacobi identity
we can confirm that the set of these symmetries form the infinite dimensional Lie
algebra of the PDE (37.38). The infinite dimension of the Lie algebra explain the fact
that the PDE has infinitely many linearly independents solutions. The PDE (37.38)
belong to a wide class of (1 + 2) evolutionary equation. To construct their invariant
solution, we have to use two dimensional Lie subalgebra in order to use the two
linearly independent invariants to reduce to an ordinary differential equation. We
will apply the algorithm presented by Gazizov and Ibragimov in [10], following the
steps:

Table 37.1 The commutator table of subalgebras

[,] X1 X2 X3 X4 X5 X6

X1 0 0 0 k2

σ 2 X2 0 0

X2 0 0 0 0 0 0

X3 0 0 0 0 −kX3
2

kσ 2 X2

X4 − k2

σ 2 X2 0 0 0 −X1 +
k2xre f + kw3

σ 2 X2

0

X5 0 0 kX3 X1 −
k2xre f + kw3

σ 2 X2

0 −kX6

X6 0 0 − 2
kσ 2 X2 0 kX6 0
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1. First we choose a set of n operators that are admitted by the equation which
form an subalgebra (for example X1 and X2). This algebra has n functionally
independents invariants (for to the case of n = 2, I1 and I2) and their rank is n.

2. We determine the invariants by the system of n differential equations

X1 I = 0, X2 I = 0, · · · , Xn I = 0.

The invariants solution exists if rank(∂V I1, . . . , ∂V In) = 1.
3. We find the invariant solution in the form

In = φ(I1, . . . , I(n−1)). (37.44)

By substituting the solution (37.44) into (37.38), we get a differential equation for
the function φ. Considering in the case k �= 0 and σ �= 0, the subalgebra spanned by
X2, X3 i.e < X2, X3 >, the independent invariant solutions of these subalgebra are,
I1 = t and I2 = kxekt − ln V . The invariant solution of (37.38) take the form,

kxekt − ln V = φ(t) ⇐⇒ ln V = kxekt − φ(t) ⇐⇒ V = ekxe
kt−φ(t) (37.45)

where φ(t) is determined by the following ordinary differential equation

− φ′(t) = r + k

(
−w3 − w1 cos

π t

6
− w2 sin

π t

6

)
ekt − k2

2
σ 2e2kt . (37.46)

This equation can be integrated by the standard methods and φ is given by

φ(t) = −r t −
[
−w3 − w1

36k2

36k2 + π2

(
cos

π t

6
+ π

6k
sin

π t

6

)
+

−w3
36k2

36k2 − π2

(
sin

π t

6
− π

6k
cos

π t

6

)]
ekt + σ 2

4
e2kt + C. (37.47)

37.3.4.1 Invariant Solutions Compatible with the Terminal Conditions

In financial application, the only relevant invariant solutions are those that are com-
patible with the terminal conditions. Among all symmetries, we will seek for those
which satisfies the system of equation and terminal condition and we use them to find
the invariant solutions. By substituting the invariant solutions into the Eq. (37.38),
we find the solution consistent with the terminal condition by solving the result-
ing ordinary differential equation. We recall the terminal condition (37.10), and we
transform it in a double conditions:

t = T ∧ V = tick × (S − y(T ))+. (37.48)
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The general Lie point symmetry for maximal finite Lie algebra of the Eq. (37.38)
(case: σ �= 0 and k(k2 + π2) �= 0) will be given by

X =
6∑

i=1

ai Xi (37.49)

where the constants ai , i = 1, . . . , 6 must be determined. The application of X for
each terminal condition (37.48) gives:

t = T : a5 = 0, y = y(T ) : a1 + e−kT

k2
+ Ta4 + ekT

k2
a6 = 0,

V = τ · (S − y(T )) : a2 + k2T

σ 2

(
w3 − ks

k
+ ky(T ) − x

kT
− 6

w2 cos πT
6 − w1 sin πT

6

πkT

)
a4

+ 72kekT

σ 2(36k2 + π2)

(
w3 + π2w3

36k2
− kx − π2

36k
x + w1 cos

π t

6

)
a6 +

+ 12πekT

σ 2(36k2 + π2)

[(
w1 + 6kw2

π

)
sin

πT

6
− w2 cos

π t

6

]
a6 = 0.

Solving this equations, and equating the coefficients of the same powers of the vari-
ables x we get

a5 = 0, a4 = −2kekT a6, a1 = − e−kT

k2
a3 − (−2kT ekT + ekT

k2
)a6,

a2 = 12k2ekT

σ 2π

(
π
w3T + k(y(T ) − ST )

6
− w2 cos

πT

6
+ w1 sin

πT

6

)
a6 + (37.50)

+ 72kekT

σ 2(36k2 + π2)

[
w3 − π2w3

36k2
−

(
w1 − πw2

6k

)
cos

πT

6
−

(πw1

6k
+ w2

)
sin

πT

6

]
a6.

As a solution, we have a two parameter symmetry (a3 and a6) which is compatible
with the boundary conditions (37.10). Then we can write the symmetry as the two
one-parameter point symmetries:

Λ1 = − ekt

k
∂x + (− e−kT

k2
+ ekt

k2
)∂y ,

Λ2 =
[
2k2ekT

σ 2π

(
ksπ t + πw3t − πx − kπy − 6w2 cos

π t

6
+ 6w1 sin

π t

6

)]
V ∂V +

+
[
C + 2ekt

σ 2k(36k2 + π2)

(
−36k2w3 − π2w3 − 36k3x − π2kx

)]
V ∂V +

+ 12ekt

σ 2(36k2 + π2)

[
(6kw1 − πw2) cos

π t

6
+ (πw1 − 6kw2) sin

π t

6

]
V ∂V +

+
(

−2kT ekT + e−kt

k

)
∂x +

(
2kT ekT − ekT

k2
+ 2kT ekT t + e−kt

k2

)
∂y
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where C is a constant equal to the coefficient of a6 on the last equation of the system
(37.51). From the invariance under Λ1 we get

z = I1 = −kekt y − (ekt − ekT )x, I2 = t and V = I3,

then the invariant solution of the PDE compatible with the terminal condition is
V = φ(t, z), where the function φ(t, z) is solution of the equation

φt = rφ −
[
z − kSe−kt +

(
w3 + w1 cos

π t

6
+ w2 sin

π t

6

)
(e−kt − e−kT )

]
φz +

+ 1

2
σ 2(e−kt − e−kT )2φzz . (37.51)

With the symmetry Λ1, the PDE was reduced by one independent variable. We can
find the symmetries of the reduced Eq. (37.51) and we use it to find their invariants
solutions, which obviously will give the solution of the Eq. (37.38).

37.3.5 One Dimensional Optimal System of the PDE

Inmany situations some subalgebras are similar, i.e., they are connected each other by
a transformation from the symmetry group with Lie algebraLr . Their corresponding
invariant solutions are also connected by the same transformation. By putting into one
class all subalgebra of a given dimension n, the problem of finding invariant solutions
of the Lie algebra Lr can be reduced to the problem of finding an optimal system
of invariant solutions. The optimal system of order n, can be a set of all invariant
solutions of selected representative from each class of subalgebras of dimension
n. Unfortunately, there is no an efficient method which can be used to find optimal
system. Some algorithms are presented in [13, 22, 23]. Suppose we have to construct
two non similar sub-groups of groupG, say H and K . The invariant solution S under
the subgroup H will satisfy the condition S = hS for all h ∈ H . Since H and K are
non similar sub-groups, the solutions S will be transformed to S̄ under the sub-group
K , i.e., S̄ = k S̄, for all k ∈ K . To find k, we look for g ∈ G such that S̄ = gS.
Since S is invariant under H , we can make the transformation, S̄ = g(hS) = ghS =
ghg−1gS = ghg−1 S̄, and k = ghg−1. K is called the adjoint subgroupof H under the
symmetry group G. We construct an optimal system of one dimensional subalgebra
of Eq. (37.38) and apply the direct algorithm of one-dimensional optimal system
presented by Yu, Li and Chen in [13]. The general operator takes the form,

X = a1X1 + a2X2 + a3X3 + a4X4 + a5X5 + a6X6 (37.52)

and corresponded to a vector of their coefficients

a = (a1, a2, a3, a4, a5, a6).
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Table 37.2 The adjoint table of subalgebras

Ad X1 X2 X3 X4 X5 X6

X1 X1 X2 X3 − k2ε
σ 2 X2 + X4 X5 X6

X2 X1 X2 X3 X4 X5 X6

X3 X1 X2 X3 X4 kεX3 + X5 − 2ε
kσ 2 X2 +

X6

X4 X1 +
k2ε
σ 2 X2

X2 X3 X4 εX1 +
−k2xre f + kw3

σ 2 εX2+
k2ε2

2σ 2 X2 + X5

X6

X5 X1 X2 e−kεX3 X4 X5 −ekεX6

X6 X1 X2
2ε
kσ 2 X2+
X3

−εX1+
k2xre f − kw3

σ 2 εX2+
X4

X5 − kεX6 X6

The goal is to simplify as many as possible the elements ai being zero by application
of the adjoint transformation in X . We applied the direct algorithm by following the
steps:

1. From the commutator Table37.1, we take the matrix of the structure of constants
C( j), j = 1, . . . , 6, i.e., each column determine one matrix;

2. We determine all the vectors rows (a1, a2, a3, a4, a5, a6)C( j), j = 1, . . . , 6;
3. The R − rank(K (a)) functionally independents invariants I (a) are found by

solving the linear system aC( j)∇ I (a) = 0, K (a) is the R × R matrix whose j th
row is aC( j), j = 1, . . . , R (also called Killing matrix in [23] from which the
invariant is determined as a trace of K 2(a)).

4. We determine the adjoint matrix

A( j, ε) = exp(εC( j)) = Σ∞
0 C( j)n

εn

n! , j = 1, . . . 6

from the adjoint representation Table37.2. Each row correspond to one matrix
A( j, ε), by using each position to fill its rows;

5. We construct the general adjoint transformation matrix A = ∏6
j=1 A( j, ε j ) and

we use to simplify a, concentrate on those ai associated with the invariants and
considering all subcases. We select the simplest representative X̃ by solving the
adjoint transformation ã = aA or a = ã A. X must be equivalent to X̃ under the
adjoint action, if the system has solution.

The following adjoint representation table was constructed by using the SYM
package of the software Wolfram Mathematica, see [7], for more detail.

Solving the system aC( j)∇ I (a) = 0, we found the invariants I1 = a5 and
I2 = a4 with degree one, then one can consider the cases, I1 �= 0, I2 �= 0, I1 = 0,
(I �= 0 ∨ I2 = 0) and the subcases given by the new invariant I = a3a6 found by
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substitute a5 = 0 in the system aC( j)∇ I (a) = 0. The algebraic details for com-
putation and all simplifications of ã = aA, j = 1, . . . 6 will be omitted. The one
dimensional optimal subalgebra for the Eq. (37.38) is,

X1, X2, X3 + a1X1, X3 + a4X4, X5 + a4X4, X6 + a1X1, X6 + a4X4,

±X3 + X6 + a1X1,±X3 + X6 + a4X4.

Using the subalgebra X3 + aX1, we get the following invariants for the generator,

I1 = t, I2 = z = ekt

k
y +

(
ekt

k2
+ a

)
x, I3 = V

and the invariant solution for the (37.38) is V = φ(t, z). The substitution of V into
(37.38) yields to the reduced equation by one independent variable

φt = rφ −
[
S + kz +

(
w3 + w1 cos

π t

6
+ w2 sin

π t

6

) (
ekt

k2
+ a

)]
φz − 1

2
σ 2

(
ekt

k2
+ a

)2

φzz

(37.53)
then, φ(t, z) is a solution of the reduced Eq. (37.53).

37.4 Conclusion

We applied Lie analysis of the partial differential equations with three independent
variables, Eq. (37.9). The PDE was derived by applying the Fayman-Kac theorem
on the problem of pricing weather derivatives when the rainfall process follow the
Ornstein-Uhlenbeck process with constant volatility.

By the group classification we have shown that the Lie algebra of the PDE (37.9)
depends on the parameters k and σ . The principal Lie algebra admits the symmetries
∂y , u∂u and w(x, y, t)∂u , where w(x, y, t) is an solution of the Eq. (37.9). The PDE
admits the maximal extension by 6 symmetries for σ �= 0 ∧ k = 0, extension by
4 symmetries for σ �= 0, ∧ k(k2 + π2) �= 0 and by 1 operators for σ �= 0, ∧ (k2 +
π2) = 0.

We realized that the PDE can not be reduced to heat equations for any values
of parameters, since it admits the extension by seven symmetries. We have used
some subalgebra to find some solutions of the Eq. (37.9), although the solution is
not compatible with our boundary conditions. By determining the symmetries which
are compatible with our boundary conditions, we found a subalgebra with only two
symmetries. We used one of them and we reduced the Eq. (37.9) by one independent
variable. Further, we determined the one dimensional optimal system of the algebra
admitted by the PDE (37.9) through algorithm suggested by Yu, Li and Chen in [13].
The optimal system allows to dived the set of all invariant solutions of the PDE into
equivalent classes. The solutions which can be mapped to the other solution by a
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point symmetry of the PDE, are equivalent and belong to the same class. Once we
have constructed a optimal system, we need only to find one invariant solution from
each class, and the whole class can be constructed by applying the symmetries.
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