
Chapter 36
Advanced Monte Carlo Pricing
of European Options in a Market Model
with Two Stochastic Volatilities
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and Sergei Silvestrov

Abstract We consider a market model with four correlated factors and two stochas-
tic volatilities, one of which is rapid-changing, while another one is slow-changing
in time. An advancedMonte Carlo method based on the theory of cubature inWiener
space is used to find the no-arbitrage price of the European call option in the above
model.
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36.1 Introduction

Consider a market model

dX(t) = μ(t,X(t)) dt +
d∑

i=1

Vi (t,X(t)) dW ∗
i (t),

X(0) = X0,

(36.1)
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whereX(t) : [0, T ] → Rm is a stochastic process, μ : [0, T ]×Rm → Rm is the drift,
Vi : [0, T ] × Rm → Rm are the diffusion coefficients and W ∗

i (t) are the standard
independentBrownianmotions under the risk-neutral probabilitymeasureP∗ defined
on a measurable space (Ω,F). Currently, two general methods of pricing contingent
claims in such a model are available: the Feynman–Kac theorem and Monte Carlo
simulation.

Using the former method, Canhanga et al. [1–7] priced a European call option in
the model with stochastic security price S, two stochastic volatilities V1 and V2 and
four factors:

dS = (r − q)S dt + √
V1S dW∗

1 + √
V2S dW∗

2 ,

dV1 =
(
1

ε
(θ1 − V1) − λ1V1

)
dt + 1√

ε
ξ1

√
V1ρ13 dW∗

1 + 1√
ε
ξ1

√
V1(1 − ρ213) dW∗

3 ,

dV2 = (δ(θ2 − V2) − λ2V2) dt + √
δξ2

√
V2ρ24 dW∗

2 + √
δξ2

√
V2(1 − ρ224) dW∗

4 .

(36.2)
Here r is the spot risk-free interest rate, q is the continuously compounded div-
idend rate, λ1, λ2 are two constants determining market prices of variance risks,
the processes V1, V2 are mean-reverting variance processes with reversion rates of
1
ε
, δ, volatilities

√
1
ε
ξ1 and

√
δξ2, and long run averages of θ1, θ2 respectively. The

processes W ∗
i are independent Brownian motions. Note that the model (36.2) is a

particular case of model (36.1) for m = 3, d = 4. In Ni et al. [15], they used the
latter method and compared the answers.

We would like also to refer to the comprehensive books on Monte Carlo based
on Glasserman [10] and other stochastic approximation methods by Silvestrov [18,
19] for pricing processes, where the readers also can find extended bibliographies of
works in the area.

In this paper, we apply an advanced numerical Monte Carlo scheme, based on the
theory of cubature in Wiener space, to the system (36.2) and discuss the advantages
and the properties of the scheme.

The rest of the paper is organised as follows. In Sect. 36.2 we give a quick intro-
duction to the advanced Monte Carlo simulation scheme using theory of cubature
in Wiener space. The simulation algorithm is described in details in Sect. 36.3. The
results of simulation are presented in Sect. 36.4. Section36.5 concludes. Necessary
results from tensor algebra are described in Sect. 36.6.

36.2 Stochastic Cubature Formulae

To introduce the subject, consider the one-dimensional Itô stochastic differential
equation in integral form:

X (t) = X (0) +
∫ t

0
μ(X (s)) ds +

∫ t

0
σ(X (s)) dW ∗(s), (36.3)
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and assume that the functions μ and σ are infinitely differentiable and satisfy the
linear growth bound. For any twice continuously differentiable function f , the Itô
formula gives

f (X (t)) = f (X (0)) +
∫ t

0
L0 f (X (s)) ds +

∫ t

0
L1 f (X (s)) dW ∗(s), (36.4)

where

L0 = μ
∂

∂x
+ 1

2
σ 2 ∂2

∂x2
, L1 = σ

∂

∂x
.

Apply the Itô formula (36.4) to the functions f = μ and f = σ in (36.3). We obtain
the simplest non-trivial Taylor–Itô expansion

X (t) = X (0) + μ(X (0))
∫ t

0
ds + σ(X (0))

∫ t

0
dW (s) + R

with remainder

R =
∫ t

0

∫ s

0
L0μ(X (u)) du ds +

∫ t

0

∫ s

0
L1μ(X (u)) dW ∗(u) ds

+
∫ t

0

∫ s

0
L0σ(X (u)) du dW ∗(s) +

∫ t

0

∫ s

0
L1σ(X (u)) dW ∗(u) dW ∗(s),

see Kloeden and Platen [12]. One can continue the above process to arbitrarily high
order. The result by Kloeden and Platen [12, Sect. 5.5] is complicated, because the
differential operator L0 contains the second derivative.

To overcome this difficulty, replace Eq. (36.3) with the equivalent one-dimensio-
nal Stratonovich stochastic differential equation in integral form:

X (t) = X (0) +
∫ t

0
μ̃(X (s)) ds +

∫ t

0
σ(X (s)) ◦ dW ∗(s),

where the second integral is the Stratonovich stochastic integral and the coefficients
μ̃ and μ are connected with the Stratonovich correction

μ̃ = μ − 1

2
σσ�.

The solution of a Stratonovich stochastic differential equation transforms according
to the deterministic chain rule, so Eq. (36.4) becomes

f (X (t)) = f (X (0)) +
∫ t

0
L̃0 f (X (s)) ds +

∫ t

0
L1 f (X (s)) ◦ dW ∗(s),
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where

L̃0 = μ̃
∂

∂x
.

The simplest nontrivial Stratonovich–Itô expansion takes the form

X (t) = X (0) + μ̃(X (0))
∫ t

0
ds + σ(X (0))

∫ t

0
◦ dW (s) + R

with remainder

R =
∫ t

0

∫ s

0
L̃0μ̃(X (u)) du ds +

∫ t

0

∫ s

0
L1μ̃(X (u)) ◦ dW ∗(u) ds

+
∫ t

0

∫ s

0
L̃0σ(X (u)) du ◦ dW ∗(s) +

∫ t

0

∫ s

0
L1σ(X (u)) ◦ dW ∗(u) ◦ dW ∗(s).

Write down the market model (36.1) in the Stratonovich form

X(t) = X(0) +
d∑

i=0

∫ t

0
Vi (X(s)) ◦ dW ∗

i (s), (36.5)

where the Stratonovich correction takes the form

V j
0 (y) = μ j (y) − 1

2

d∑

i=1

m∑

k=1

V k
i (y)

∂V j
i

∂yk
(y), 1 ≤ j ≤ m. (36.6)

Define the action of the vector fieldVi on the set of infinitely differentiable functions
f (y) by

(Vi f )(y) =
m∑

k=1

V k
i (y)

∂ f

∂yk
(y).

Let k be a nonnegative integer, and let α be either the empty set if k = 0 or a multi-
index α = (α1, . . . , αk) with integer components 0 ≤ αi ≤ d. Define the number
‖α‖ as k plus the number of zeroes among the αi ’s and call it the degree of α. Let
I (t, ∅, ◦dW∗) be the identity operator, and let

I (t, α, ◦dW∗) =
∫ t

0
· · ·

∫ tk−2

0

∫ tk−1

0
◦dW ∗

αk
(tk) ◦ · · · ◦ dW ∗

α1
(t1)

be the multiple Stratonovich integral. The Stratonovich–Itô expansion takes the form

f (X(t)) =
∑

‖α‖≤n

I (t, α, ◦dW∗)(Vαk · · ·Vα1 f )(x) + Rn,
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where n is a positive integer, and where the remainder Rn contains multiple Strato-
novich integrals of degrees greater than n.

Let C0,BV([0, 1];Rd+1) be the Banach space of Rd+1-valued continuous functions
of bounded variation in [0, 1] which start at 0 ∈ Rd+1 with norm

‖g‖ =
(

d∑

i=0

(Var([0, 1]; gi ))
2

)1/2

,

where Var([0, 1]; gi ) is the total variation of the i th component gi of a function
g ∈ C0,BV([0, 1];Rd+1). Let B be the σ -field of the Borel sets of the above space.
A random path is a measurable map ω : Ω → C0,BV([0, 1];Rd+1).

Along with the system (36.5), consider the following system of random ordinary
differential equations in the integral form:

X̃(t) = X(0) +
d∑

i=0

∫ t

0
Vi (X̃(s)) dωi (s). (36.7)

Let X̃ω(t) be its solution.
Define the time-scaled random path ω[t](s) : Ω → C0,BV([0, t];Rd+1) by

ωi [t](s) =
{

tω0(s/t), if i = 0,√
tωi (s/t), if 1 ≤ i ≤ d,

and the probability measure μ on B by

μ(A) = P∗(ω−1(A)), A ∈ B.

Let f (y) be the discounted payoff of a financial instrument. We would like to
estimate the weak approximation error

|E∗[ f (X(t))] − E[ f (X̃ω[t](t))]|
=

∣∣∣∣
∫

Ω

f (X(t)) dP∗(ω) −
∫

C0,BV([0,t];Rd+1)

f (X̃ω[t](t)) dμ(ω)

∣∣∣∣ ,

when we replace the true price E∗[ f (X(t))] of the financial instrument with its
approximate value E[ f (X̃ω[t](t))]. The deterministic Taylor formula for f (X̃ω[t](t))
has the form

f (X̃ω[t](t)) =
∑

‖α‖≤n

I (t, α, dω[t])(Vαk · · ·Vα1 f )(x) + R̃n,
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where

I (t, α, dω[t]) =
∫ t

0
· · ·

∫ tk−2

0

∫ tk−1

0
dωαk (tk) · · · dωα1(t1).

The following definition was proposed by Kusuoka [13].

Definition 36.1 (The moment matching condition) The measure μ satisfies the
moment matching condition of order n and is called a cubature formula of degree n,
if

E∗[I (t, α, ◦dW∗)] = E[I (t, α, dω)], ‖α‖ ≤ n.

For such a measure μ we obtain

|E∗[ f (X(t))] − E[ f (X̃ω[t](t))]| = |Rn − R̃n|,

and we expect that this difference is small. Indeed, we have

Theorem 36.1 (Tanaka [20]) Let μ satisfies the moment matching condition. If f
is infinitely differentiable with bounded derivatives of all orders, then there exists a
constant C = C(n, f ) such that

|E∗[ f (X(t))] − E[ f (X̃ω[t](t))]| ≤ Ct (n+1)/2.

If t is not small, create N independent copiesω(i) of the random pathω and define
a new random path ω in [0, 1] by

ω(t) = ω(i)[1/N ](t − (i − 1)/N ),

if (i − 1)/N ≤ t < i/N .

Theorem 36.2 (Tanaka [20]) If f is infinitely differentiable with bounded deriva-
tives of all orders, then there exists a constant C = C(n, f ) such that

|E∗[ f (X(1))] − E[ f (X̃ω(1))]| ≤ C

N (n−1)/2
.

Using the results in Kusuoka [13], one can show the convergence for the case of
only Lipschitz continuous f under mild conditions on the vector fields Vi . We will
not consider these generalisations here.

Definition 36.2 (Lyons and Victoir [14]) A measure μ is called a classical cubature
formula of degree n if it satisfies the moment matching condition of order n and is
supported on a finite set.

In the case of a classical cubature formula the approximationE[ f (X̃ω(1))] can be
computed exactly (without integration error!) by solving the system (36.7). Lyons
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and Victoir [14] proved the existence of classical cubature formulae and gave explicit
but complicated examples for arbitrary d and degrees n = 3 and n = 5. Gyurkó and
Lyons [11] found even more sophisticated classical cubature formulae in some cases
of n ≥ 7 for d = 1, 2.

In calculations, we will use a simple non-classical cubature formula of degree 5
proposed by Ninomiya and Victoir [16].

Example 36.1 (The Ninomiya–Victoir scheme) Let Λ be a Bernoulli random vari-
able independent of W(t) and taking values ±1 with probability 1/2. The random
path is

dωi (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(d + 2) dt, if i = 0, t ∈ [0, 1
d+2 ) ∪ [ d+1

d+2 , 1),

(d + 2)Wi (1) dt, if 1 ≤ i ≤ d,Λ = 1, t ∈ [ i
d+2 ,

i+1
d+2 ),

(d + 2)Wi (1) dt, if 1 ≤ i ≤ d,Λ = −1, t ∈ [ d+1−i
d+2 , d+2−i

d+2 ),

0, otherwise.

(36.8)

This non-classical cubature formula is of degree 5.

36.3 The Simulation Algorithm

As a first step, apply the Stratonovich correction (36.6) to the system (36.2). We
obtain the system (36.5) with

V0 =
⎛

⎜⎝

(
r − q − 1

2 (V1 + V2) − 1
4

(
1√
ε
ξ1ρ13 + √

δξ2ρ24

))
S

1
ε

(
θ1 − V1 − 1

4ξ
2
1

) − λ1V1

δ
(
θ2 − V2 − 1

4ξ
2
2

) − λ2V2

⎞

⎟⎠

and

V1 =
(√

V1S,
1√
ε
ξ1

√
V1ρ13, 0

)�
,

V2 =
(√

V2S, 0,
√

δξ2
√

V2ρ24

)�
,

V3 =
(
0,

1√
ε
ξ1

√
V1(1 − ρ2

13), 0

)�
,

V4 =
(
0, 0,

√
δξ2

√
V2(1 − ρ2

24)

)�
.

Next,wewrite down the system (36.7), using theNinomiya–Victoir scheme (36.8).
Following Ninomiya and Victoir [16], denote by exp(Vi )x the solution at time 1 of
the boundary value problem
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dz(t)
dt

= Vi (z(t)), z(0) = x. (36.9)

Let T be the maturity and K be the strike price of the European call option with
Lipschitz continuous payoff f (S(T )) = max{S(T ) − K , 0}. Divide the interval
[0, T ] into N intervals of equal length. Let Zi , 0 ≤ i ≤ N − 1 be the independent
standard normal 4-dimensional random vectors, let Λi , 0 ≤ i ≤ N − 1 be the
Bernoulli randomvariables of Example 36.1, and assume all of them are independent.
Define the set of random vectors Xi/N , 0 ≤ i ≤ N − 1 by

X0 = X(0),

X(i+1)/N =
⎧
⎨

⎩
exp

(
T
2N V0

)
exp

(√
T Zi

1√
N

V1

)
· · · exp

(√
T Zi

4√
N

V4

)
exp

(
T
2N V0

)
Xi/N ,

exp
(

T
2N V0

)
exp

(√
T Zi

4√
N

V4

)
· · · exp

(√
T Zi

1√
N

V1

)
exp

(
T
2N V0

)
Xi/N ,

where the upper formula is used whenever Λi = 1, while the lower formula is used
whenever Λi = −1. By [16, Theorem 2.1], for an arbitrary Lipschitz continuous
function f we have

|E∗[ f (X(T ))] − E[ f (X1)]| ≤ C

N 2
,

where C is a constant.
The solution to the systems (36.9) has the form

exp(sV1)x =
⎛

⎜⎝x1 exp

⎛

⎜⎝
√

ε

(
ξ1ρ13
2
√

ε
s + √

x2
)2 − x2

ξ1ρ13

⎞

⎟⎠ ,

(
ξ1ρ13

2
√

ε
s + √

x2

)2
, x3

⎞

⎟⎠

�

,

(exp(sV2)x)1 = x1 exp

⎛

⎜⎝

(
1
2 ξ2ρ24

√
δs + √

x3
)2 − x3

ξ2ρ24
√

δ

⎞

⎟⎠ ,

(exp(sV2)x)2 = x2,

(exp(sV2)x)3 =
(
1

2
ξ2ρ24

√
δs + √

x3

)2
,

exp(sV3)x =
⎛

⎜⎝x1,

⎛

⎝
ξ1

√
1 − ρ213

2
√

ε
s + √

x2

⎞

⎠
2

, x3

⎞

⎟⎠

�

,

exp(sV4)x =
(

x1, x2,

(
1

2
ξ2

√
δ(1 − ρ224)s + √

x3

)2
)�

.
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Fig. 36.1 20 simulated stock price paths for multi-scale stochastic volatility model: (left) original
paths; (right) the “advanced MC” scheme

and

exp(sV0)x =

⎛

⎜⎜⎜⎜⎝

x1 exp
([

r − q − 1
4

(
1√
ε
ξ1ρ13 + √

δξ2ρ24

)
− (J2 + J3)/2

]
s

+ 1
2

(
x2−J2
ε−1+λ1

(e−(ε−1+λ1)s − 1) + x3−J3
δ+λ2

(e−(δ+λ2)s − 1)
))

(x2 − J2)e−(ε−1+λ1)s + J2
(x3 − J3)e−(δ+λ2)s + J3

⎞

⎟⎟⎟⎟⎠
,

where

J2 = θ1 − ξ 2
1 /4

1 + λ1ε
, J3 = δ(θ2 − ξ 2

2 /4)

δ + λ2
.

We can implement this algorithm/scheme with weak convergence of order two using
Monte-Carlo technique to obtain E[ f (X1)]. For convenience we refer to this scheme
hereafter as the “advancedMC” scheme. For illustration, in Fig. 36.1we plot 20 paths
using the “advancedMC” scheme (right) in comparison to the original paths (approx-
imated by Euler scheme). Note that in this figure the “advanced MC” scheme has
a small number of time steps i.e. N = 5. However the approximation in European
option price is plausible even with such a small value of N , as to be shown in the
next section.

36.4 Numerical Results

We implement the advancedMCschemeusingMATLAB in a PCwith Intel i5-5200U
CPU and 16 GB RAM. We consider European option pricing in the model (36.2)
under the set of parameters in Table36.1 unless stated otherwise. The initial values
are S0 = 100, V1 = 0.03, V2 = 0.03 and the day convention is assumed to be 252
trading days per year. The problem is to compute the option price as a discounted
expectation i.e. C = e−rTE[ f (ST )].
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Table 36.1 Model parameters (shortened as param) used in numerical experiments

Param Value V1 Param Value V2 Param Value

S0 100 ε 0.001, 0.01, . . . , 0.5 δ 0.1

K 70, 80, . . . , 120 θ1 0.04 θ2 0.01

r 0.05 λ1 0.1 λ2 0.1

q 0 ξ1 0.1 ξ2 0.1

T 90/252 years ρ13 0.5 ρ24 0.5

We use N time steps on the time interval [0, T ] and simulate M = 100,000 sample
paths which follow our scheme. In this way we generate M independent realisations
of the random variable ST , Si,T , i = 1, . . . , M , and approximating

C = e−rTE[ f (ST )] ≈ Ĉ := e−rT 1

M

M∑

i=1

f (ST,i ).

Note that Ĉ is a random variable with mean C (only approximately due to the
discretisation error) and standard deviation σC of order O(

√
M) by the central limit

theorem.We do an experiment of 50 trails and obtain Ĉi , i = 1, . . . , 50.We compute
the mean and standard deviation of these 50 draws of Ĉ , denote it as Ĉavg and sĈ

respectively. The quantity Ĉavg is our approximation price. Note that Ĉavg ≈ E[Ĉ] ≈
C and sĈ ≈ σC .

Most of the experiments have been performed using both the traditional order-
one Euler–Maruyama scheme and the order-two advanced MC scheme. For both
schemes, while fixing M , increasing N will reduce the discretisation error and
improve accuracy of Ĉavg , reducing the value of σC is mainly achieved by increasing
the number of sample paths M (or using variance-reduction techniques). For the same
M and N , both schemes have similar values for standard error sĈ , hence we focus on
the effect of N on the accuracy of Ĉavg . A reference price CC Z is calculated for each
experiment using the approach byChiarella and Ziveyi [9]. For small values ofmodel
parameters ε and δ, i.e. when the variance processes are fast mean-reverting and slow
mean-reverting respectively, the price CC Z is very close to the approximated price
using an asymptotic approach in Canhanga et al. [1] and [7]. For other values of ε

and δ we have run Monte-Carlo simulations using the traditional Euler–Maruyama
scheme and confirmed that CC Z is accurate enough as a reference price. We refer to
Canhanga et al. [15] for an option pricing formula adapted to the model (36.2) using
the Chiarella and Ziveyi approach.
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36.4.1 Rate of Convergence

An inspection of formulas in the advanced MC scheme indicates that, for the same
number of time steps, i.e. for same N , the traditional Euler–Maruyama scheme
involves simpler computation and hence should run faster which is indeed the case in
simulations. It should be possible to improve the performance of the advanced MC
scheme and hence reduce its execution time without altering the problem/algorithm
but our main concern is on comparing rate of convergence. As a scheme with weak
convergence of order two, the advancedMC scheme has its relative errors decreasing
faster with respect to N in many cases. We found the clearest evidence under a large
mean-reversion rate e.g. for ε ≤ 0.01, as illustrated in Tables36.2 (ε = 0.01) and
36.3 (ε = 0.001). This advantage of advanced Monte-Carlo scheme is more obvious
for the smaller value of N and for the smaller value of ε i.e. ε = 0.001. Experiments
in Tables36.2 and 36.3 use K = 90. Similar pattern in the rate of convergence can
be observed for other values of K under large mean-reversion rates, as shown in
Fig. 36.2. Here we plot the relative errors of the two schemes for 8 different values
of N : N = 210−p for 1 ≤ p ≤ 8. Note that for the case of K = 120 we plot the
relative errors only for N : N = 210−p for 1 ≤ p ≤ 7. In other words we drop the
case of p = 8, i.e. N = 4 since the relative error of the Euler scheme is far too large
for such a small value of N.

As we are pricing a plain vanilla European option, the traditional Euler–Maruya-
ma scheme is sufficiently accurate with a moderate large N . A larger N might be
needed if we use Euler–Maruyama scheme in pricing for example an Asian option.
In the examples above, let N ≥ 100, both schemes perform well and in general
generate relative errors of similar magnitude for same values of M and N . Therefore
our discussions hereafter concentrate on the properties of the advanced MC scheme
by itself.

Table 36.2 Relative errors
under advanced MC and
Euler–Maruyama scheme

N Advanced MC Euler–Maruyama

5 0.0181 0.1034

10 0.0073 0.0600

30 0.0011 0.0014

100 7.8534 × 10−4 9.1042 × 10−4

Table 36.3 Relative errors
under advanced MC and
Euler–Maruyama scheme

N Advanced MC Euler–Maruyama

5 0.2477 0.9148

10 0.1269 0.8052

30 0.0394 0.3488

100 0.0082 0.0711

300 0.0020 0.0016
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Fig. 36.2 Relative errors under Advanced MC and Euler–Maruyama scheme for different strikes

36.4.2 The Effect of Mean-Reversion Rates

As the model was proposed in Canhanga et al. [1–7] as having a fast mean-reverting
variance process and a slow mean-reverting process. It is interesting to study how
the mean-reversion rates 1/ε and δ affect the accuracy of Ĉavg . We fix the number
of sample path M = 100,000 and let the number of time steps be N = 5. Note that
T = 90

252 here so N = 5 is relatively small. The parameters are as shown in Table36.1
with K = 100, i.e. we price an at-the-money(ATM) option. The relative error (Rel
error ) is defined as |Ĉavg − CC Z |/CC Z .

As Ĉavg is a random variable, the values of relative errors will be slightly different
in another experiment but the pattern is similar. Table36.4 indicates that, under these
value of M and N , the approximations are poor when ε is too small (ε < 0.01)
i.e. the mean-reversion rate for the process V1 is too large. We study also the effect
of a slow mean-reversion rate (small δ) and the effect of different combinations of
mean-reversion rates. The results are given in Table36.5, from which we conclude
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Table 36.4 Relative errors for ATM call options under various ε

ε Rel error sĈ
0.5 1.6613 × 10−4 0.0379

0.4 4.6014 × 10−4 0.0338

0.2 4.9700 × 10−4 0.0311

0.15 8.9606 × 10−4 0.0327

0.10 0.0010 0.0338

0.05 0.0056 0.0325

0.01 0.0490 0.0412

0.005 0.1121 0.0404

0.001 0.5562 0.0651

Table 36.5 Relative errors for ATM call options under various pairs of ε and δ

ε = 0.001 0.01 0.05 0.1 0.5

δ = 0.001 0.5524 0.0479 0.0051 3.9138×10−4 8.9138×10−4

0.01 0.5550 0.0490 0.0048 0.0010 4.4174×10−4

0.1 0.5544 0.0488 0.0058 0.0013 7.8530×10−4

0.5 0.5619 0.0501 0.0039 0.0023 8.1812 ×10−4

that slow mean reversion rate has little impact on the accuracy of our scheme. We
discuss below on how to fix the problem of large mean reversion rate.

As shown in Tables36.4 and 36.5, when the mean-reversion rate 1
ε
is too large, a

small value of N = 5 is not sufficient. Increasing M reduces sĈ but does not help
muchwith reducingRel error. The problemcanbefixed by increasing N . Figure36.3
shows how the relative error decreases as one increases N under ε = 0.001. To save
time, the experiments behind this figure were carried out for smaller M(= 50000).
In particular, the relative error reduced from 55.54 to 0.31% when we increase N
from N = 5 to N = 320.

36.4.3 The Effect of Moneyness

In this section we consider various strike prices K . The effect of mean-reversion rate
e.g. ε is similar to the at-the-money case studied above.We fix therefore ε = 0.1 in all
experiments. Also T = 90

252 , N = 5. The values of sĈ of these experiments are in the
range of 0.012 − 0.017. Table36.6 lists out the reference prices, our approximation
prices and the relative errors. It suggests that the accuracy of Ĉavg is good for deep
in-the-money, in-the-money, at-the-money andmoderately out-of-the-money options
with relative error of order 10−4 or 10−3. For deep out-of-the-money options, i.e.,
when K ≥ 120, the relative error is of order 10−2. Increasing N from 5 to 100
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Fig. 36.3 Increasing N improves the accuracy under large mean-reversion rate (ε = 0.0001)

Table 36.6 Relative errors under various strike price K

K CC Z Ĉavg Rel error

70 31.2430 31.2586 0.0005

80 21.6904 21.7017 0.0005

90 13.2286 13.2489 0.0015

105 4.7854 4.8029 0.0036

110 3.1855 3.2040 0.0058

120 1.2967 1.3186 0.0169

130 0.4778 0.5016 0.0498

yields only a slight improvement in reducing Rel error (0.0275) and increasing M
simultaneously (from 100000 to 500000) reduces sĈ to 0.0037 but does not reduce
Rel error. In particular when K = 130, increasing N from N = 16 to N = 1024
does not change the magnitude of the relative error of about 3 percent. On the other
hand, the Euler–Maruyama scheme gives approximations very consistent with our
algorithm even under large N and M . Therefore some caution should be paid while
pricing a deep out-of-the-money option.

36.4.4 The Effect of Correlation Coefficient

Our advanced Monte-Carlo scheme provides good approximation for any combina-
tion of the pair (ρ13, ρ24). The onlywarning is that none of the correlation coefficients
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may take value zero. This is because ρ13 and ρ24 appear as denominators in our algo-
rithm as shown in Sect. 36.3. However, for the zero correlation case, i.e. ρ13 = 0
and/or ρ24 = 0, one may instead use a correlation coefficient that is very close to
zero. For example with ρ13 = 0.0001, our advanced Monte-Carlo scheme performs
well.

36.5 Conclusions and Further Remarks

We obtained an advanced Monte-Carlo algorithm/scheme with explicit expressions
using Ninomiya–Victoir scheme. The numerical results show that this algorithm in
general gives accurate approximation for European option pricing under the param-
eters studied. A larger number of time steps, i.e. a larger N , is required when the
mean-reversion rate is too high, for example if ε = 0.001. Some caution should be
paid when one prices a deep out-of-the-money option. If the mean-reversion rate is
large, it is clear that the advanced Monte-Carlo scheme has a better order of con-
vergence than the first-order Euler–Maruyama scheme. Further studies may involve
exotic option pricing with comparison to the traditional Euler–Maruyama scheme.

36.6 Cubature on a Tensor Algebra

Let { ei : 0 ≤ i ≤ d } be the standard basis of the space R1+d . Define e∅ = 1 and

eα = eα1 ⊗ · · · ⊗ eαk

for any multi-index α = (α1, . . . , αk). Let Uk(R1+d) be the linear space of rank k
tensors with the basis {eα : ‖α‖ = k }. Denote by T (R1+d) the direct sum of the
spaces Uk(R1+d) over all nonnegative k, and let a0 ∈ U0(R1+d), …, ak ∈ Uk(R1+d),
…be the components of an element a ∈ T (R1+d). Define the sum, tensor product,
the action of scalars by

(a + b)k = ak + bk,

(a ⊗ b)k =
k∑

l=0

al ⊗ bk−l ,

(λa)k = λak .

With this operations, T (R1+d) becomes an associative algebra. Define the exponent
and logarithm on T (R1+d) by
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exp(a) =
∞∑

k=0

a⊗k

k! ,

ln(a) = ln(a0) +
∞∑

k=1

(−1)k−1

k
(a−1

0 a − 1)⊗k, a0 > 0,

where the series converge coordinate-wise. The truncated tensor algebra of degree n,
T (n)(R1+d), is the direct sum of the linear spaces Uk(R1+d), 0 ≤ k ≤ n. Let πn be
the natural projection of T (R1+d) to T (n)(R1+d). Finally, the operation [a,b] =
a ⊗ b − b ⊗ a defines a Lie bracket on both T (R1+d) and T (n)(R1+d). Let U be the
space of linear combinations of finite sequences of Lie brackets of elements of R1+d .
Then U is the free Lie algebra generated by R1+d , see [17]. An element of the set
πn(U) is called a Lie polynomial of degree n, and an element a ∈ T (R1+d) is called
a Lie series if all πna are Lie polynomials.

Define a map S : C0,BV([0, T ];Rd+1) → T (R1+d) by

S(ω) =
∑

α

I (T, α, dω[T ])eα,

and call S(ω) the signature of the path ω. Not all elements in T (R1+d) represent a
signature. However, Chen [8] proved the following result. The truncated logarithmic
signature πn ln S(ω) of any path ω ∈ C0,BV([0, T ];Rd+1) is a Lie polynomial. Con-
versely, for any Lie polynomial L ∈ πnU there is a path ω ∈ C0,BV([0, T ];R1+d)

with πn ln S(ω) = L.
Similarly, define the Wiener signature by

S(W∗
[0,T ]) =

∑

α

I (T, α, ◦dW∗)eα.

It is easy to see the following. Ameasureμ is a classical cubature formula of degree n
if and only if there are Lie polynomials L1, …, Lm and positive weights λ1, …, λm

such that

πnE[S(W∗
[0,1])] =

m∑

j=1

λ jπn exp(L j ).

The expectation in the left hand side of this equation was calculated by Lyons and
Victoir in [14]. They obtained the following result:

E[S(W∗
[0,1])] = exp

(
e0 + 1

2

d∑

i=1

ei ⊗ ei

)
.

In order to find a classical cubature formula of degree n, one has to find Lie polyno-
mials L1, …, Lm ∈ πmU and positive weights λ1, …, λm with λ1 + · · · + λm = 1
such that
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πn exp

(
e0 + 1

2

d∑

i=1

ei ⊗ ei

)
=

m∑

j=1

λ jπn exp(L j ).

Given the solution, we need to construct the paths ω j of bounded variation on [0, T ]
satisfying πn ln S(ω j ) = L j . To perform these tasks, Gyurkó, Lyons, and Victoir
use methods based on technical tools from the theory of free Lie algebras like the
Lyndon words basis, the Philip Hall basis, Poincaré–Birkhoff–Witt theorem and
Baker–Campbell–Hausdorff formula, see [11, 14, 17] and Chap.35 in this book.
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