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Abstract A number of models from mathematics, physics, probability theory and
statistics can be described in terms of Wishart matrices and their eigenvalues. The
most prominent example being the Laguerre ensembles of the spectrum of Wishart
matrix. We aim to express extreme points of the joint eigenvalue probability density
distribution of a Wishart matrix using optimisation techniques for the Vandermonde
determinant over certain surfaces implicitly defined by univariate polynomials.
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34.1 Introduction

In this work, we review and investigate the Gaussian β-ensembles as the basis for a
generalized Wishart density distribution and how this can be optimized over various
surfaces, in particular a unit sphere. We take advantage of the general properties
of Vandermonde determinant. To begin with, we give a brief outline of key terms
including but not limited to Gaussian univariate and multivariate distributions, the
Chi-squared density, the Wishart density, the occurrence of random matrices, their
join eigenvalue probability distribution, the β-ensembles, the Vandermonde matrix
and its determinant.We then illustrate the optimization of the joint probability density
function of the β-ensembles over a unit sphere based on the characteristic properties
of the Vandermonde determinant.

34.1.1 Univariate and Multivariate Normal Distribution

Definition 34.1 The univariate normal probability density function (Gaussian nor-
mal density) for a random variable X , which is the basis for construction of many
multivariate distributions that occur in statistics, can be expressed as [4]:

PX (x) = k exp

{
−1

2
α(x − β)2

}
≡ k exp

{
−1

2
(x − β)α(x − β)

}
(34.1)

where α and k is chosen so that the integral of (34.1) over the entire x−axis is unity
and β is equal to the expectation of X , that is, E[X ] = β. It is then said that X follows
a normal probability density function with parameters α and β, also expressed as
X ∼ N(α, β).

The density function of the multivariate normal distribution of random variables
say X1, . . . , X p is defined analogously. If the scalar variable x in (34.1) is directly
replaced by the vector X = (X1, . . . , X p)

�, the scalar constant β is replaced by a
vector b = (b1, . . . , bp)

� and the positive definite matrix

A =

⎛
⎜⎜⎜⎝
a11 a12 · · · a1p
a21 a22 · · · a2p
...

...
. . .

...

ap1 ap2 · · · app

⎞
⎟⎟⎟⎠ . (34.2)

The expression
α(x − β)2 = (x − β)α(x − β)



34 Optimization of the Wishart Joint Eigenvalue Probability Density … 821

is replaced by the quadratic form

(X − b)�A(X − b) =
p∑

i, j=1

ai j (xi − bi )(x j − b j ). (34.3)

Thus, the density of the p-variate normal distribution becomes

P(X) = K exp

{
1

2
(X − b)�A(X − b)

}
(34.4)

where � denotes transpose and K > 0 is chosen so that the integral over the entire
p-dimensional Euclidean space x1, . . . , xp is unity.

Theorem 34.1 If the density of a p-dimensional random vector X is

√|A|(2π)−
1
2 p exp

{
−1

2
(X − b)�A(X − b)

}
,

then the expected valueofX isband the covariancematrix isA−1, see [4].Conversely,
given avectorμμμ and apositive definitematrixΣΣΣ , there is amultivariate normal density

P(X) = (2π)−
1
2 p|ΣΣΣ |− 1

2 exp
{
(X − μμμ)�ΣΣΣ−1(X − μμμ)

}
(34.5)

such that the expected value of the density is μμμ and the covariance matrix isΣΣΣ .

The density (34.5) is often denoted as X ∼ Np(μμμ,ΣΣΣ).
For example, the diagonal elements of the covariance matrix,ΣΣΣ i i , is the variance

of the i th component of X, which may sometimes be denoted by σ 2
i . The correlation

between Xi and X j is defined as

ρi j = σi j√
σi i

√
σ j j

= σi j

σiσ j

where σk denotes the standard deviation of Xk and σi j = ΣΣΣ i j . This measure of
association is symmetric in Xi and X j such that ρi j = ρ j i . Since

(
σi i σi j

σ j i σ j j

)
=
(

σ 2
i σiσ jρi j

σiσ jρi j σ 2
j

)

is positive-definite, the determinant

∣∣∣∣ σ 2
i σiσ jρi j

σiσ jρi j σ 2
j

∣∣∣∣ = σ 1
i σ 2

j (1 − ρ2
i j )

is positive. Therefore −1 < ρi j < 1.



822 A. K. Muhumuza et al.

34.1.2 Wishart Distribution

The matrix distribution that is now known as aWishart distribution, was first derived
by Wishart in the late 1920s [56]. It is usually regarded as a multivariate extension
of the χ2−distribution.

Theorem 34.2 The sumof squares,χχχ2 = Z2
1 + · · · + Z2

n of n- independent standard
normal variables Zi of mean 0 and variance 1, that is, distributed as N(0, 1) has a
χ2-distribution defined by:

Pχ2χ2χ2(x) = 1

2
1
2 n	

(
1
2n
)e− 1

2 x
2
(χχχ2)

1
2 n−1. (34.6)

where 	 (·) is the Gamma function [40].

Definition 34.2 Let X = (X1, . . . , Xn), where Xi ∼ N(μi ,ΣΣΣ) and Xi is indepen-
dent of X j , where i �= j . The matrix W : p × p is said to be Wishart distributed
[56] if and only if W = XX� for some matrix X in a family of Gaussian matrices
Gm×n,m ≤ n, that is, X ∼ Nm,n(μμμ,ΣΣΣ, I) whereΣΣΣ ≥ 0. Ifμμμ = 0 we have a central
Wishart distribution which will be denoted by W ∼ Wm(ΣΣΣ, n), and if μμμ �= 0 we
have a non-central Wishart distribution which will be denoted W ∼ Wm(ΣΣΣ, n,			),
where			 = μμμμμμ� and n is the number of degrees of freedom.

In our study, we shall mainly focus on the central Wishart distribution for which
μμμ = 0 and X ∼ Nm,n(μμμ,ΣΣΣ, I)

Theorem 34.3 ([4]) Given a random matrix W which can be expressed as W =
XX� where X1, · · · , Xn, (n ≥ p) are independent, each with the distribution
Np(μμμ,ΣΣΣ). Then, the distribution of W ∼ Wp(ΣΣΣ, n). If ΣΣΣ > 0, then the random
matrix W has a joint density functions:

P(W) =

⎧⎪⎨
⎪⎩

1

2
np
2 	p

(
n
2

) |W| n−p−1
2 exp

(
−1

2
Tr
(
ΣΣΣ−1W

))
, if W > 0

0, otherwise.
(34.7)

where the multivariate Gamma function is given by

	p (n/2) = π
p(n−1)

2

p∏
i=1

	

(
1

2
(n + 1 − i)

)
. (34.8)

If p = 1,μμμ = 0 and ΣΣΣ = 1, then the Wishart matrix is identical to a central χχχ2-
variable with n degrees of freedom as defined in (34.6).
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Theorem 34.4 ([24, 39]) If X is distributedasN(μμμ,ΣΣΣ), then the probability density
distribution of the eigenvalues of XX�, denoted λλλ = (λ1, . . . , λm), is given by:

P(λλλ) = π− 1
2 n det(ΣΣΣ)− 1

2 n det(D)
1
2 (n−p−1)

2
1
2 np	p

(
1
2n
)
	p
(
1
2 p
) ∏

i< j

(λi − λ j ) exp

(
−1

2
Tr(ΣΣΣ−1D)

)

(34.9)
where D = diag(λi ) and 	 is the Gamma function.

It will prove useful that (34.9) contains the term
∏
i< j

(λi − λ j )which is the determi-

nant of a Vandermonde matrix [46]. A Vandermonde matrix is a well-known type of
matrix that appears in many different applications both in mathematics, physics and
recently in multivariate statistics, most famously curve-fitting using polynomials, for
details see [46].

Definition 34.3 Square Vandermonde matrices of size n × n are determined by N
values x = (x1, . . . , xn) and is defined as follows:

Vn(x) =

⎡
⎢⎢⎢⎣

1 1 · · · 1
x1 x2 · · · xn
...

...
. . .

...

xn−1
1 xn−1

2 · · · xn−1
n

⎤
⎥⎥⎥⎦ . (34.10)

The determinant of the Vandermonde matrix is well known.

Lemma 34.1 The determinant of square Vandermonde matrices has the form

det Vn(x) ≡ vn(x) =
∏

1≤i< j≤n

(x j − xi ). (34.11)

This determinant is also referred to as theVandermonde determinant orVandermonde
polynomial or Vandermondian [46].

We take advantage of this fact of Vandermonde determinant to establish the rela-
tionship between the product of Vandermonde matrices and joint eigenvalue prob-
ability density functions for large random matrices that occur in various areas of
both classical mechanics, mathematics, statistics and many other areas of science.
We also illustrate the optimization of these densities based of the extreme points
Vandermonde determinant.

The extreme points of the Vandermonde determinant appears in random matrix
theory, for example to compute the limiting value of the so called Stieltjes transform
using the method sometimes called the ‘Coulomb gas analogy’ [32]. This is also
closely related to many problems in quantum mechanics and statistical mechanics.
For an overview of some other applications of the extreme points see [35].

In the next section we give a brief overview of random matrix theory (RMT).



824 A. K. Muhumuza et al.

34.2 Overview of Random Matrix Theory

Random matrices were first introduced in mathematical statistics in the late 1920s
[56] and today the joint probability density function of eigenvalues of randommatri-
ces play a significant role both in probability theory, mathematical physics and quan-
tum mechanics [22]. A random matrix, in simple terms can be defined as any matrix
whose real or complex valued entries are random variables.

Random matrix theory primarily discusses the properties large or complex matri-
ces with random variables as entries by utilizing the existing probability laws, in
particularly, Gaussian distributions [4, 5]. The main motivational question in the
probabilistic approach to random matrices is: what can be said about the proba-
bilities of a few or if not all of its eigenvalues and eigenvectors? This question is
significant inmany areas of science including particle physics,mathematics, statistics
and finance as highlighted here under.

In nuclear physics random matrices were applied in the modelling of the nuclei
of heavy atoms [55]. The main idea was to investigate the spacing between the lines
in the electromagnetic spectrum of a heavy atom nucleus, e.g. Uranium 238, which
resembles the separation between the eigenvalues of a random matrix [32]. These
randommatrices have also been employed in solid-state physics to model the chaotic
behaviour of large disordered Hamiltonians in terms of mean field approximation
[14]. Random matrices have also been applied in quantum chaos to characterise the
spectral statistics of quantum systems [9, 12].

Random unitary matrix transformations has also appears in theoretical physics,
e.g. the boson sampling model [1] has been applied in quantum optics to describe
the advantages of quantum computation over classical computation. Random unitary
transformations can also be directly implemented in an optical circuit, by mapping
their parameters to optical circuit components [41].

Other applications in theoretical physics include, analysing the chiral Dirac oper-
ator [28, 52] quantum chromodynamics, quantum gravity in two dimensions [21],
in mesoscopic physics random matrices are used to characterise materials of inter-
mediate length [43], spin-transfer torque [42], the fractional quantum Hall effect
[10], Anderson localization [25], quantum dots [59] and superconductors [7], elec-
trodynamic properties of structural materials [58], describing electrical conduction
properties of disordered organic and inorganic materials [57], quantum gravity [15]
and string theory [8].

In mathematics some application include the distribution of the zeros of the Rie-
mann zeta function [27], enumeration of permutations having certain particularities
in which the random matrices can help to derive polynomials permutation patterns
[38], counting of certain knots and links as applies to folding and coloring [8].

In multivariate statistics random matrices were introduced for statistical analysis
of large samples in estimation of covariance matrices [18–20, 33, 45, 56]. More
significant results have proven that to extend the classical scalar inequalities for
improved analysis of a structured dimension reduction based on largest eigenvalues
of finite sums of random Hermitian matrices [48].
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Random matrices have also been applied to financial modelling especially risk
models and time series [6, 23, 51, 56].

Random matrices also are increasingly used to model the network of synaptic
connections between neurons in the brain as applies to neural networks or neuro-
science. Neuronal networks can help to construct dynamicalmodels based on random
connectivity matrix [44]. This has also helped to establish the link relating the statis-
tical properties of the spectrum of biologically inspired randommatrix models to the
dynamical behaviour of randomly connected neural networks [13, 26, 36, 47, 53].

In optimal control theory random matrices appear as coefficients in the state
equation of linear evolution. In most problems the values of the parameters in these
matrices are not known with certainty, in which case there are random matrices in
the state equation and the problem is known as one of stochastic control [11, 49, 50].

In the next section, we will discuss some well-known ensembles that that appear
in the mathematical study of random matrices.

34.3 Classical Random Matrix Ensembles

The key famously known classical ensembles include the Gaussian Orthogonal
Ensembles (G.O.E), the Gaussian Unitary Ensembles (G.U.E), the Gaussian Sym-
plectic Ensembles (GSE), the Wishart Ensembles (W.E), the MANOVA Ensembles
(M.E) and the Circular Ensembles (C.E). These can be derived from the multivari-
ate Gaussian matrix, Gβ, β = 1, 2, 4. Since, the multivariate Gaussian possesses
an inherent orthogonal property from the standard normal distribution, that is, they
remain invariant under orthogonal transformations. More detailed discussions on
these ensembles can be found in [3, 4, 32, 37, 54, 56].

Definition 34.4 ([29]) The Gaussian Orthogonal Ensembles (G.O.E) are charac-
terised by the symmetric matrix X = G1(N , N ) obtained as

(
X + X�) /2. The diag-

onal entries of X are independent and identically distributes (i.i.d) with a standard
normal distribution N(0, 1) while the off-diagonal entries are i.i.d with a standard
normal distribution N1(0, 1/2). That is, a random matrix X is called the Gaussian
Orthogonal Ensemble (GOE), if it is symmetric and real-valued (Xi j = X ji ) and has

X−i j =
{√

2ξi i ∼ N1(0, 1), if i = j

ξi j ∼ N1(0, 1/2), i < j.
(34.12)

Definition 34.5 ([16, 29]) The Gaussian Unitary Ensembles (G.U.E), are char-
acterised by the Hermitian complex-valued matrix H = G2(N , N ) obtained as(
H + H�∗)

/2 where �∗ is the operation of taking the Hermitian transpose, that
is, the Hermitian or conjugate transpose of H, and expressed as (H�∗

)i j = H j i .
The diagonal entries of H are independent and identically distributes (i.i.d) with a
standard normal distribution N(0, 1) while the off-diagonal entries are i.i.d with a
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standard normal distributionN2(0, 1/2). That is, random matrix H is called a Gaus-
sian Unitary Ensemble (GUE), if it is complex-valued, Hermitian (H�∗

i j = H j i ), and
the entries satisfy

Hi j =
{√

2ξi i ∼ N2(0, 1), if i = j
1√
2
(ξi j + √−1ηi j ) ∼ N2(0, 1/2), i < j.

(34.13)

Definition 34.6 ([6, 29]) The Gaussian Symplectic Ensembles (GSE), are charac-
terised by the self-dual matrix S = G4(N , N ) obtained as

(
S + S�∗)

/2 where �∗
represents the operation of taking the conjugate transpose of a quaternionmatrix. The
diagonal entries H are independent and identically distributes (i.i.d) with a standard
normal distribution N(0, 1) while the off-diagonal entries are i.i.d with a standard
normal distribution N4(0, 1/2).

Definition 34.7 ([6, 29]) The Wishart Ensembles (W.E), Wβ(m, n),m ≥ n, are
characterised by the symmetric, Hermitian or self-dual matrix W = Wβ(N , N )

obtained as W = AA�, W = HH�, or W = SS� where � represents the opera-
tion of taking the usual transposes of defined in G.O.E, G.U.E and G.S.E above
respectively.

Definition 34.8 ([6, 29]) The MANOVA Ensembles (M.E), Jβ(m1,m2, n),m1,

m2 ≥ n, are characterised by the symmetric, Hermitian or self-dual matrix A/(A +
B) where A and B are Wβ(m1, n) and Wβ(m2, n) respectively.

Definition 34.9 ([16, 29]) The Circular Ensembles (C.E), are characterised by the
special matrix UU� where Uβ, β = 1, 2 is a uniformly distributed unitary matrix.

Lemma 34.2 ([29]) From the Gaussian normal distribution with mean μ and vari-
ance σ 2, that is, X ∼ N(μ, σ 2), given by (34.1) and the multivariate normal dis-
tribution with mean vector μμμ and the covariance matrix is ΣΣΣ , NN (μμμ,ΣΣΣ) given in
(34.5), then it can be verified that the joint density of A is written as:

PX(A) = 1

2n/2

1

πn(n+1)/4
exp

(−‖A‖2F/2
)

where ‖A‖F represents the Frobenius norm of A.

Theorem 34.5 ([4, 16]) If we letX be an N × N randommatrix with entries that are
independently identically distributed as N(0, 1), then the joint density distribution
of the Gaussian ensembles is given by:

Gaussian:

∣∣∣∣∣∣
Orthogonal β = 1
Unitary β = 2

Symplectic β = 4

∣∣∣∣∣∣ Pβ(A) = 1

2n/2

1

πn(n+1) β/4
exp

(
−1

2
‖A‖2F

)
.

Theorem 34.6 ([16, 32]) Considering a Wishart matrix Wβ(m, n) = XX� where
X = Gβ(m, n) is a multivariate Gaussian matrix. Then, the joint elements of
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Wβ(m, n) can be computed in two steps, first writing W = QR and then integrat-
ing out Q leaving R. Secondly applying the transformation W = RR�, which is
the famous Cholesky factorization of matrices in numerical analysis. Then the joint
density distribution for Wishart ensembles of W is given by:

Wishart:

∣∣∣∣∣∣
Orthogonal β = 1
Unitary β = 2

Symplectic β = 4

∣∣∣∣∣∣ Pβ(W ) = exp (−tr(W/2)) (det W)β(m−n+1)/2−1

2mnβ/2	
β
n (mβ/2)

.

Here we notice that the density distribution for both the Gaussian and Wishart
ensembles are made up of determinant term and exponential trace term. This gener-
alizes the fact that indeed the determinant term is actually the Vandermonde deter-
minant in (34.11) for the case of the joint eigenvalue density functions. This concept
further explained in the next section.

34.4 The Vandermonde Determinant and Joint Eigenvalue
Probability Densities for Random Matrices

To obtain the joint eigenvalue densities for random matrices, we apply the the prin-
ciple of matrix factorization, for instance if the random matrix X is expressed as
X = QΛΛΛQ�, then ΛΛΛ directly gives the eigenvalues X [24]. Applying the Jacobian
technique for joint density transformation, see for example [4], this yields the joint
densities of eigenvalues and eigenvectors.

Lemma 34.3 The three Gaussian ensembles have joint eigenvalues probability den-
sity function [32, 37] given by

Gaussian: Pβ(λλλ) = Cβ

N

∏
i< j

|λ1 − λ2|β exp
(

−1

2

N∑
i=1

λ2
i

)
(34.14)

where β = 1 representing reals, β = 2 representing the complexes, and β = 4 rep-
resenting the quaternion, and

Cβ

N = (2π)−N/2
N∏
j=1

	 (1 + β/2)

	 (1 + jβ/2)
.

Lemma 34.4 ([24, 32]) The Wishart (or Laguerre) ensembles have a joint eigen-
value probability density distribution given by

Wishart: Pβ(λ) = Cβ,α

N

∏
i< j

|λ1 − λ2|β
∏
i

λ
α−p
i exp

(
−1

2

N∑
i=1

λ2
i

)
(34.15)
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where α = β

2m and p = 1 + β

2 (N − 1). The β parameter is decided by what type
of elements are in the Wishart matrix, real-valued elements corresponds to β = 1,
complex-valued elements correspond to β = 2 and quarternion elements correspond
to β = 4, and the normalizing constant Cβ,α

N is given by

Cβ,α

N = 2−Nα

N∏
j=1

	 (1 + β/2)

	 (1 + jβ/2) 	
(
α − β

2 (n − j)
) (34.16)

Thus the joint eigenvalue probability density distribution for all the ensembles
can be summarized in the following theorem [18, 29, 32].

Theorem 34.7 Suppose that XN ∈ Hβ for β = 1, 2, 4. Then, the distribution of
eigenvalues of XN is given by

PX(x1, . . . , xN ) = C̄β

N

∏
i< j

|xi − x j |β exp
(

−β

4

∑
i

x2i

)
(34.17)

where C̄ (β)

N are normalized constants and can be computed explicitly.

From (34.17) it should be noted that trivially, the properties of a probability density
function, that is,

0 ≤ P(x) ≤ 1 and
∫
RN

P(x)

N∏
i=1

dxi = 1

do hold as verified in [32].We also notice that the term
∏
i< j

|xi − x j |β in the expression
(34.17) is the determinant of the famous Vandermonde matrix (34.10) raised to the
powerβ = 1, 2, 4. For example, from (34.10) and (34.11) and applying the principles
of linear algebra, that is, ifA is an N × N matrix, then |Aβ | = |A|β , for determinants.
Thus,

∣∣∣VN (x)

∣∣∣β =

∣∣∣∣∣∣∣∣∣

1 1 · · · 1
x1 x2 · · · xN
...

...
. . .

...

xN−1
1 xN−1

2 · · · xN−1
N

∣∣∣∣∣∣∣∣∣

β

=
∣∣∣ ∏
1≤i< j≤N

(x j − xi )
∣∣∣β =

∏
1≤i< j≤N

|x j − xi |β

(34.18)
It should also be noted that the trace exponential term

exp

(
−β

4

N∑
i

x2i

)
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in (34.17) is a product of weight functions of Freud type [30, 34] of the form

ω(x) = exp(−αx2),

whereα = 1, 1/2, 1/4. Theweightsω(x) are bounded, that is, 0 ≤ |ω(x)| ≤ 1. If we
assume the random variables X = {x1, . . . , xN } having normal probability density
functionwithmeanμ = 0 and variance σ 2 = 1, that is, xi are independent identically
distributed i.i.d. as N(0, 1), then it follows that we can construct the normal density
in terms of a Gaussian weights such that

PX(xi ) = 1√
2π

ω(xi ).

Also, from the definition of the p-th moment of a probability density function

E[X p] = x p
i PX(xi )dxi

and we have equivalently in terms of Gaussian weights

E[X p] = x p
i PX(xi )dxi = x p

i · 1√
2π

ω(xi )dxi .

Thus focusing on the coefficients terms of xi , that is,

x p
i · 1√

2π
ω(xi ) = kx p

i ω(xi ), k = 1/
√
2π,

we generate a weighted Vandermonde matrix of the ω(x) weighted form as follows:

VN (ω(x)x) =

⎡
⎢⎢⎢⎢⎢⎣

ω1(x1) ω2(x1) · · · ωN (x1)
ω1(x1)x1 ω2(x2)x2 · · · ωN (xN )xN
ω1(x1)x21 ω2(x2)x22 · · · ωN (xN )x2N

...
...

. . .
...

ω1(x1)x
N−1
1 ω2(x2)x

N−1
2 · · · ωN (xN )xN−1

N

⎤
⎥⎥⎥⎥⎥⎦

. (34.19)

The determinant of theVandermondematrix in (34.19) can also be obtained taking
advantage of the Gaussian weights of the form:

ωi = ω(xi ) = exp

(
−1

4
x2i

)

andproperties of determinant that is, if sayA is an N × N matrix, then |αA| = αN |A|.
Thus,
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∣∣∣ω(x)VN (x)

∣∣∣β =

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

ω1(x1) ω2(x1) · · · ωN (x1)
ω1(x1)x1 ω2(x2)x2 · · · ωN (xN )xN
ω1(x1)x21 ω2(x2)x22 · · · ωN (xN )x2N

...
...

. . .
...

ω1(x1)x
N−1
1 ω2(x2)x

N−1
2 · · · ωN (xN )xN−1

N

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

β

=

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

ω1(x1) 0 0 · · · 0
0 ω2(x2) 0 · · · 0
0 0 ω3(x3) · · · 0
...

...
...

. . .
...

0 0 0 · · · ωN (xN )

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
x1 x2 x3 · · · xN
x21 x22 x23 · · · x2N
...

...
...

. . .
...

xN−1
1 xN−1

2 xN−1
3 · · · xN−1

N

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

β

=
∣∣∣

N∏
i=1

ω(xi )
∏

1≤i< j≤N

(x j − xi )
∣∣∣β

=
[
exp

(
−1

4
x21

)
· · · exp

(
−1

4
x2N

)]β ∣∣∣ ∏
1≤i< j≤N

(x j − xi )
∣∣∣β

=
[
exp

(
−1

4

N∑
i=1

x2i

)]β ∏
1≤i< j≤N

|x j − xi |β

=
∏

1≤i< j≤N

|x j − xi |β exp
(

−β

4

N∑
i=1

x2i

)
.

(34.20)

If X has a central normal distribution, then for any finite non-negative integer p
the plain central moments are given by

E[Xp] =
{
0, if p is odd

σ p(p − 1)!!, if p is even.
(34.21)

where n!! denotes the double factorial, that is, the product of numbers from n to 1
that have same parity as n.

The absolute central moment coincides with the plain moments for all even orders
and are non-zero for odd orders. Thus, for any non-negative integer p

E[|X|p] = σ p(p − 1)!! ·
{√

2
π
, if p is odd

1, if p is even

}
= σ p ·

2p/2Γ
(

p+1
2

)
√

π
. (34.22)

Considering X1, . . . , XN independently normally distributed random variables
with mean μ = 0, then the p-th product moment can be expressed as

E
[
(X1 · · · XN )p

] = E
[
Xp

1

] · · ·E [Xp
N

]
.
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Thus from (34.22), the joint p-th product moment will be given by

E
[|X1|p

] · · ·E [|XN |p] =
[
σ p(p − 1)!! ·

{√
2
π

, if p is odd

1, if p is even

}]N

=
⎡
⎣σ p ·

2p/2	
(

p+1
2

)
√

π

⎤
⎦

N

.

This, thorough examination, generates an equivalent expression for multivariate
Gamma function as defined in (34.16), which is also the normalizing constant for
the joint eigenvalue density for β-ensembles as given in (34.17). Thus, the same
normalizing coefficient can be introduced in the expression (34.20) to lead to the
same result as in (34.17).

Basing on the above close link between the Vandermonde determinant, then it
is plausible enough to consider the general optimization of Vandermonde determi-

nant over the polynomial constraint defined by trace factor
N∑
i=1

x2i in the bounded

exponential term. We will apply the method of Lagrange multipliers to optimize
the density (34.12) to optimize the Vandermonde determinant on the unit sphere
and other surfaces, which in turn optimize the joint eigenvalue density as will be
demonstrated in the next section.

34.5 Optimising the Joint Eigenvalue Probability Density
Function

Lemma 34.5 For any symmetric n × n matrix A with eigenvalues {λi , i = 1, . . . , n}
that are all distinct, and any polynomial P:

n∑
k=1

P(λk) = Tr (P(A)) .

Proof By definition, for any eigenvalue λ and eigenvector v we must have Av = λv
and thus

P(A)v =
(

m∑
k=0

ckAk

)
v =

m∑
k=0

ck(A
kv) =

m∑
k=0

ckλ
kv

and thus P(λ) is an eigenvalue of P(A). For any matrix, A, the sum of eigenvalues
is equal to the trace of the matrix

n∑
k=1

λk = Tr(A)
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when multiplicities are taken into account. For the matrices considered in the
Lemma 34.5 all eigenvalues are distinct. Thus applying this property to the matrix
P(A) gives the desired statement.

Lemma 34.6 A Wishart distributed matrix W as defined in Definition 34.2 will be
a symmetric n × n matrix.

Proof From the definition W is a p × p matrix such that W = XX�. Then

W� = (XX�)� = (X�)�X� = XX� = W

and thus W is symmetric.

Lemma 34.7 Suppose we have a Wishart distributed matrix W with the probability
density function of its eigenvalues given by

P(λ) = Cnvn(λ)m exp

(
−β

2

n∑
k=1

P(λk)

)
(34.23)

where Cn is a normalising constant, m is a positive integer, β > 1 and P is a poly-
nomial with real coefficients. Then the vector of eigenvalues of W will lie on the
surface defined by

n∑
k=1

P(λk) = Tr(P(W)). (34.24)

Proof Since W is symmetric by Lemma 34.6 then it will also have real eigenvalues.
By Lemma 34.5

n∑
k=1

P(λk) = Tr(P(W))

and thus the point given by λ = (λ1, λ2, . . . , λn) will be on the surface defined by

n∑
k=1

P(λk) = Tr(P(W)).

To find the maximum values we can use the method of Lagrange multipliers and
find eigenvectors such that

∂P

∂λk
= η

∂

∂λk

(
Tr(P(W)) −

n∑
k=1

P(λk)

)
= −η

dP(λk)

dλk
, k = 1, . . . , n,
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where η is some real-valued constant. Computing the left-hand side gives

∂P(β)

∂λk
= P(λ)

⎛
⎜⎝−β

2

dP(λk)

dλk
+

n∑
i=1
i �=k

m

λk − λi

⎞
⎟⎠ .

Thus the stationary points of (34.23) on the surface given by (34.24) are the solution
to the equation system

P(λ)

⎛
⎜⎝−β

2

dP(λk)

dλk
+

n∑
i=1
i �=k

m

λk − λi

⎞
⎟⎠ = −η

dP(λk)

dλk
, k = 1, . . . , n.

If we denote the value of P in a stationary point with Ps then the system above can
be rewritten as

n∑
i=1
i �=k

1

λk − λi
= 1

m

(
β

2
− η

Ps

)
dP(λk)

dλk
= ρ

dP(λk)

dλk
, k = 1, . . . , n. (34.25)

The equation system described by (34.25) appears when one tries to optimize
the Vandermonde determinant on a surface defined by a univariate polynomial. This
problem also appears in other settings, such as finding the Fekete points on a surface
[34], certain electrostatics problems [17] and D-optimal design [35]. This equation
system can be rewritten as an ordinary differential equation.

Consider the polynomial

f (λ) =
n∏

i=1

(λ − λi )

and note that
1

2

f ′′(λ j )

f ′(λ j )
=

n∑
i=1
i �= j

1

λ j − λi
.

Thus in each of the extreme points we will have the relation

d2 f

dλ2

∣∣∣∣
λ=λ j

− 2ρ
dP

dλ

∣∣∣∣
λ=λ j

d f

dλ

∣∣∣∣
λ=λ j

= 0, j = 1, 2, . . . , n

for some ρ ∈ R. Since each λ j is a root of f (λ) we see that the left hand side in the
differential equation must be a polynomial with the same roots as f (λ), thus we can
conclude that for any λ ∈ R
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d2 f

dλ
− 2ρ

dP

dλ

d f

dλ
− Q(λ) f (λ) = 0 (34.26)

where Q is a polynomial of degree (deg(p) − 2).
Consider the β ensemble described by (34.17). For this ensemble the polyno-

mial that defines the surface that the eigenvalues will be on is p(λ) = λ2. Thus by
Lemma 34.7 the surface becomes a sphere with radius

√
Tr(W2).

The solution to the equation system given by (34.25) on the unit sphere has been
known for a long time, see [46] or [31, 35] for a more explicit description. The
solution is given as the roots of a polynomial, in this case the solution can be written
as the roots of the rescaled Hermite polynomials, the explicit expression for the
polynomial whose roots give the maximum points is

f (x) = Hn

((
n − 1

2(r21 − 2r0)

) 1
2 (x + r1)

2

)

= n!
� n

2�∑
i=0

(−1)i

i !
(

n − 1

2(r21 − 2r0)

) n−2i
2 (x + r1)n−2i

(n − 2i)! (34.27)

where Hn denotes the nth (physicist) Hermite polynomial [2].
The solution on the unit sphere can then be used to find the vector of eigenvalues

that maximizes the probability density function P(λ) given by (34.17). Since rescal-
ing the vector of eigenvalues affects the probability density depending on the length
of the original vector in the following way

P(cλ) = c
n(n−1)m

2 exp

(
β

2
(1 − c2)|λ|2

)
P(λ)

the unit sphere solution can be rescaled so that it ends up on the appropriate sphere.
For other polynomials that define the surface that the eigenvalues lie on similar

techniques, for instance for some polynomials of the form P(λ) = λk where k is an
even positive integer techniques like the ones demonstrated in [35] or [34] can be
employed.

For a β ensemble the extreme points of P share the properties of the extreme
points of the Vandermonde determinant, for example all the extreme points will lie

on the intersection of the sphere and the plane
n∑

k=1

λk = 0. What this can look like

for n = 3 is shown in Fig. 34.1 and for n = 4 in Fig. 34.2.
To visualize the location of the extreme points we use a technique described in

detail in [31].
It can be shown that the extreme points of v4(x) on the sphere all lie in the

hyperplane x1 + x2 + x3 + x4 = 0. The intersection of this hyperplane with the unit
sphere in R4 can be described as a unit sphere in R3, under a suitable basis, and can
then be easily visualized.
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Fig. 34.1 Illustration of the expression given by (34.23) on the unit sphere in three dimensions, with
parameters n = 3, m = 2, β = 2 and Cn = 1. Note that this expression is not correctly normalized
and therefore not the exact value of the probability density distribution. On the right the value of
the expression on the sphere is drawn and on the left the sphere has been parametrized in such a

way that the point of the sphere given by
(

1√
3
, 1√

3
, 1√

3

)
corresponds to the point (0, 0)

Fig. 34.2 Illustration of the expression given by (34.23) on the unit sphere in four dimensions, with
parameters n = 4, m = 2, β = 2 and Cn = 1. Note that this expression is not correctly normal-
ized and therefore not the exact value of the probability density distribution. In order to visualize
the locations of the extreme points in four dimensions using only a two-dimensional surface the
transformation given in (34.28) is used

This can be realized using the transformation

x =

⎛
⎜⎜⎝

−1 −1 0
−1 1 0
1 0 −1
1 0 1

⎞
⎟⎟⎠
⎛
⎝1/

√
4 0 0

0 1/
√
2 0

0 0 1/
√
2

⎞
⎠ t (34.28)

where x is the coordinate vector in R4 and t is the corresponding coordinate vector
in R3. This will give a new sphere that can be parametrised using angles as normal.

Similar visualizations of the locations of extreme points on the unit sphere can be
constructed up to n = 7, see [31] for further discussion.
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34.6 Summary

In our study we establish that finding the extreme points for the probability distri-
bution of the eigenvalues of a Wishart matrix can be done by finding the extreme
points on a sphere with a radius related to the trace of the Wishart matrix. This
close link between the Vandermonde determinant and the joint eigenvalue probabil-
ity density function for β-ensembles helps to study more properties and applications
of the probability density functions that occur in random matrices. As illustrated in
Fig. 34.1, such results can be used to explain the distribution of charges over a unit
sphere which agrees with Coloumb’s theory for electrostatic charge distribution. In
this case the extreme points of the probability density function of the eigenvalues
happen to be the zeros of deformed Hermite polynomials given by (34.27).
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