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Extreme Points of the Vandermonde
Determinant on Surfaces Implicitly
Determined by a Univariate Polynomial
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Abstract The problem of optimising the Vandermonde determinant on a few dif-
ferent surfaces defined by univariate polynomials is discussed. The coordinates of
the extreme points are given as roots of polynomials. Applications in curve fitting
and electrostatics are also briefly discussed.
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33.1 Introduction

A Vandermonde matrix is a well-known type of matrix that appears in many differ-
ent applications, most famously curve-fitting using polynomials. Here we will only
consider square Vandermonde matrices of size n × n.
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Definition 33.1 The Vandermonde matrices are determined by n values x =
(x1, . . . , xn) and is defined by [14, 15]:

Vn(x) =
[
xi−1
j

]
mn

=

⎡
⎢⎢⎢⎣

1 1 · · · 1
x1 x2 · · · xn
...

...
. . .

...

xn−1
1 xn−1

2 · · · xn−1
n

⎤
⎥⎥⎥⎦ . (33.1)

The determinant of the Vandermonde matrix is well known, for example, see [1, 22]
for detail.

Theorem 33.1 The determinant of square Vandermonde matrices has the form

det Vn(x) ≡ vn(x) =
∏

1≤i< j≤n

(x j − xi ). (33.2)

This determinant is also referred to as theVandermonde determinant orVandermonde
polynomial or Vandermondian [24].

In this paper we will consider the extreme points of the Vandermonde determinant
on surfaces that are implicitly defined by a univariate polynomial in a particular way.
The examination is primarily motivated bymathematical curiosity but the techniques
used here are likely to be extensible to some problems related to optimal experiment
design for polynomial regression, and electrostatics.

This paper collects in a slightly generalized form some previous results, for
detailed discussion see [14, 15], and expands upon them.

Themain problem in this paper is to find the extreme points on a surface implicitly
defined by

gR(x) =
n∑

i=1

R(xi ) = 0, where R(x) =
m∑
i=0

ri x
i , ri ∈ R. (33.3)

It is previously known where the extreme points are found for the sphere

R(x) = x21 + x22 + · · · + x2n ,

for detailed description of the same, see [22]. In this paper we will examine a few
other surfaces.
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33.2 Some Applications of the Vandermonde Determinant
and Its Extreme Points

The Vandermonde determinant appears in many circumstances, some well known
examples are for proving the Lagrange interpolation gives a unique solution and in
the classical formula for divided differences interpolation by sampling a function f
at n + 1 points [18],

[x1, x2, . . . , xn+1] f (x) = vn(x1, x2, . . . , xn−1, f (x))

vn(x1, x2, . . . , xn−1, xn)
.

Another example is in the Harish-Chandra–Itzykson-Zuber integral formula [11, 12,
23] which states that if A and B are Hermitian matrices with eigenvalues λ1(A) ≤
· · · ≤ λn(A) and λ1(B) ≤ · · · ≤ λn(B) then

∫

U (n)

et tr(AUBU ∗) dU = det
([exp(tλ j (A)λk(B))]nnj,k

)

t
n(n−1)

2 vn(λ(A))vn(λ(B))

n−1∏
i=1

i ! (33.4)

where vn is the determinant of the Vandermonde matrix.
For the remainder of this section we will list some applications where finding the

extreme points of the Vandermonde determinant or a closely related expression is
important.

33.2.1 Application to D-Optimal Experiment Designs for
Polynomial Curve-Fitting with a Cost-Function

Optimal experiment design is a class ofmethods for choosing how to collect data used
for curve-fitting to get the best possible result in some sense. There are various ways
to measure the optimality of the design and one simple way is called D-optimality.

Suppose n data points xi , i = 1, 2, . . . , n are collected from some compact inter-
val,X ⊂ R, and the the interpolating polynomial of atmost degree n − 1 is computed.

A vector containing the data points, xm = (x1, x2, . . . , xm) ∈ Xm , is called a
design and a design is said to be D-optimal if

det(Mn(xm)) ≥ det(Mn(ym))

for all y ∈ Xm , where
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Mn(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n
n∑

i=1

xi . . .

m∑
i=1

xn−1
i

n∑
i=1

xi

n∑
i=1

x2i . . .

n∑
i=1

xni

...
...

. . .
...

n∑
i=1

xn−1
i

n∑
i=1

xni . . .

n∑
i=1

x2n−2
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is the Fischer information matrix. This optimality measure is also equivalent (by the
Kiefer-Wolfowitz equivalence theorem) to minimizing the generalized variance of
the coefficients of the interpolating polynomial, so called G-optimalty, see [10, 13]
for detailed discussion.

Noting that the Fischer information matrix is

Mn(x) = Vn(x)�Vn(x)

and, Vn(x) is an n × n matrix,

det(Mn(x)) = det(Vn(x)�) det(Vn(x)) = det(Vn(x))2.

Thus the maximization of the determinant of the Fischer information matrix is
equivalent to finding the extreme points of the determinant of a square Vandermonde
matrix in somevolumegiven by the set of possible designs, for further details see [10].
Usually the set of possible designs can be interpreted to belong in the n-dimensional
cube x ∈ [−1, 1]n , and for this volume there are many known results, see [6] for an
overview.

The problem considered in this paper could be applicable to the situation where
a cost-function associated with the data such that the total cost of the experiment
being below some threshold value, g(x) ≤ 1, defines some compact set,

G = {x ∈ R
m |g(x) ≤ 1}, such that G ⊂ Xm .

If the cost function for each collected data point is a polynomial R(x) then the volume
of possible designs is given by

n∑
i=1

R(xi ) = 1.
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33.2.2 Application in Electrostatics

A classical problem in electrostatics is to find the equilibrium configurations on a
surface with some fixed and some movable charges each with charge potential ν j .
This is done by minimizing the energy of the configuration that is given by the
expression

L(x1, . . . , xn) =
n∑

k=1

p∑
j=0

ν j log
1

|a j − xk | +
∑

1≤i<k≤n

log
1

|xk − xi |

where a j denote the fixed charges and xk denote the movable charges.
It can be shown that certain special cases of this problem are equivalent to finding

the extreme points of the Vandermonde determinant, for a recent discussion on this,
see [7].

33.2.3 Application in Systems with Coulomb Interactions

The Vandermonde determinant also appears regularly when discussing systems with
Coloumb interactions, that is systems described by an energy given by

HN (x1, . . . , xN ) = 1

2

∑
i 	= j

g(xi − x j ) + N
N∑
i=1

V (xi ) (33.5)

where the interaction kernel, g(x), can take a few different forms, for a recent
overview on the same, see [19] for detailed discussion. We will mention a few exam-
ples of interesting systems of this connected to the Vandermonde determinant.

Fekete points: When a function is approximated by a polynomial using interpo-
lation the approximation error depends on the chosen interpolation points. The
Fekete points is a set of points that provide an almost optimal choice of interpola-
tion points [8] and they are given by maximizing the Vandermonde determinant,
this can also be interpreted as minimizing the potential energy of a system with
Coulomb interactions. The type of energy given by (33.5) appears when dis-
cussing various forms of weighted Fekete points. Finding the Fekete points is
also of interest in complexity theory and would help with finding an appropriate
starting polynomial for a homotopy algorithm for realizing the Fundamental The-
orem of Algebra [20, 21].

Sphere packing: Closely related to the problem of identifying the Fekete points is
the optimal sphere packing problem that can be solved by minimizing the “Riesz
s-energies”,
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∑
i 	= j

1

|xi − x j |s

in the asymptotic case s → ∞. For more information about this see [5] for an
overview of the theory and [4, 25] for some recent results.

The ‘Coulomb gas analogy’: In random matrix theory it can be very useful to
compute the limiting value of the so called Stieltjes transform. One method for
doing this is to use the ‘Coulomb gas analogy’ [17]. This is also closely related
to many problems in quantum mechanics and statistical mechanics.

33.3 Extreme Points of the Vandermonde Determinant on
Surfaces Defined a Low Degree Univariate Polynomial

We are interested in finding the extreme points of the Vandermonde determinant
vn(x) on the surface defined by gR(x) = 0 with gR defined in (33.3).

Lemma 33.1 Theproblemof finding the extremepoints of theVandermondedetermi-
nant on the surface defined by gR(x) = 0 can be rewritten as an ordinary differential
equation of the form

f ′′(x) − 2ρR′(x) f ′(x) − P(x) f (x) = 0 (33.6)

that has a unique (up to a multiplicative constant) polynomial solution, f , and any
permutation of the roots of f will give the coordinates of a critical point of the
Vandermonde determinant.

Proof Using the method of Lagrange multipliers we get

∂vn
∂x j

= λ
∂gR
∂x j

⇔
n∑

i=1
i 	= j

vn(x)

x j − xi
= λR′(x j )

for some λ ∈ R.
If we only consider this expression in a single point we can consider vn(x) as a

constant value and then the expression can be rewritten as

n∑
i=1
i 	= j

1

x j − xi
= ρR′(x j ) (33.7)

where ρ is some unknown constant.
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Consider the polynomial

f (x) =
n∏

i=1

(x − xi )

and note that
1

2

f ′′(x j )

f ′(x j )
=

n∑
i=1
i 	= j

1

x j − xi
. (33.8)

In each critical point we can combine (33.7) and (33.8) thus in each of the extreme
points we will have the relation

f ′′(x j ) − 2ρR′(x j ) f
′(x j ) = 0, j = 1, 2, . . . , n

for some ρ ∈ R. Since each x j is a root of f (x) we see that the left hand side in the
differential equation must be a polynomial with the same roots as f (x), thus we can
conclude that for any x ∈ R

f ′′(x) − 2ρR′(x) f ′(x) − P(x) f (x) = 0 (33.9)

where P(x) is a polynomial of degree m − 2.

Using this technique it is also easy to find the coordinates on a sphere translated
in the (1, . . . , 1) direction.

Corollary 33.1 If x = (x1, x2, . . . , xn) is a critical point of the Vandermonde deter-
minant on a surface S ⊂ C

n then (x1 + a, x2 + a, . . . , xn + a) is a critical point of
the Vandermonde determinant on the surface {x + a1 ∈ C

n|x ∈ S}.
Proof Follows immediately from

vn (x1 + a, x2 + a, . . . , xn + a) =
∏

1≤i< j≤n

(
x j + a − xi − a

)

=
∏

1≤i< j≤n

(x j − xi ) = vn(x1, . . . , xn).

In several cases it is possible to find the extreme points by identifying the unknown
parameters, ρ and the coefficients of P(x), by comparing the terms in (33.6) with
different degrees and solving the resulting equation system.Wewill discuss the cases
in the upcoming sections.
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33.3.1 Critical Points on Surfaces Given by a First Degree
Univariate Polynomial

When R(x) = r1x + r0 the surface defined by

n∑
i=1

R(xi ) = 0

will always be a plane with normal (1, 1, . . . , 1) through the point
(
r0
r1

, r0
r1

, . . . , r0
r1

)
.

Since,

vn

(
x1 + r0

r1
, x2 + r0

r1
, . . . , xn + r0

r1

)
=

∏
1≤i< j≤n

(
x j + r0

r1
− xi − r0

r1

)

=
∏

1≤i< j≤n

(x j − xi ) = vn(x1, . . . , xn).

So the Vandermonde determinant will have no extreme point unless a further
constraint is added.

33.3.2 Critical Points on Surfaces Given by a Second Degree
Univariate Polynomial

Surfaces defined by letting

R(x) = 1

2
x2 + r1x + r0 = 1

2

(
(x + r1)

2 − r21 + 2r0
)

will all be spheres around (−r1,−r1, . . . ,−r1) with radius

√
n

(
r21
2

− r0

)
.

Thus the critical points can be found by a small modification of the technique
used on the unit sphere described in [22].

Theorem 33.2 On the surface defined by

g(x) =
n∑

i=1

1

2
x2i + r1xi + r0
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the coordinates of the critical points of the Vandermonde determinant are given by
the roots of

f (x) = Hn

((
n − 1

2(r21 − 2r0)

) 1
2 (x + r1)

2

)

= n!
� n

2�∑
i=0

(−1)i

i !
(

n − 1

2(r21 − 2r0)

) n−2i
2 (x + r1)n−2i

(n − 2i)!

where Hn denotes the nth (physicist) Hermite polynomial.

Proof Since

R(x) = 1

2
x2 + r1x + r0

the differential equation (33.6) will be of the form

f ′′(x) − 2ρ(x + r1) f
′(x) − p0 f (x) = 0

By considering the terms with degree n it is easy to see that p0 = −2ρn and thus we
get

f ′′(x) − 2ρ(x + r1) f
′(x) + 2ρn f (x) = 0.

Setting y = ρ
1
2 (x + r1) gives x = y

ρ
1
2

− r1 and by considering the function

g(y) = f

(
y

ρ
1
2

− r1

)

we can rewrite the differential equation as follows

d2g

dx2
− 2ρ

(√
y

ρ
− r1 + r1

)
dg

dx
+ 2 ρ n g(y) = 0

⇔ ρ g′′(y) − 2 ρ
y

ρ
1
2

ρ
1
2 g′(x) + 2 ρ n g(y) = 0

⇔ g′′(y) − 2 y g′(x) + 2 n g(y) = 0. (33.10)

Equation (33.10) defines a class of orthogonal polynomials called the Hermite poly-
nomials [1], Hn(y). Thus,

f (x) = cHn(ρ
1
2 (x + r1))

for some arbitrary constant c. To find the value of ρ we can exploit some properties
of the roots of the Hermite polynomials.
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If we let yi , i = 1, . . . , n be the roots of Hn(y). These roots will then have the
following two properties.

n∑
i=1

yi = 0 (33.11)

n∑
i=1

y2i = n(n − 1)

2
(33.12)

We can see this by letting ek(y1, . . . yn) denote the elementary symmetric polyno-
mials and then Hn(y) can be written as

Hn(y) = an(y − y1) · · · (y − yn)

= an(y
n − e1(y1, . . . , yn)y

n−1 + e2(y1, . . . , yn)y
n−2 + q(y))

where q(y) is a polynomial of degree n − 3. The explicit expression for Hn(x) is
[22]

Hn(y) = n!
� n

2�∑
i=0

(−1)i

i !
(2y)n−2i

(n − 2i)!

= 2n yn − 2n−2n(n − 1)yn−2 + n!
� n

2�∑
i=3

(−1)i

i !
(2y)n−2i

(n − 2i)! . (33.13)

Comparing the coefficients in the two expressions for Hn(y) gives

an = 2n, (33.14)

ane1(y1, . . . , yn) = 0, (33.15)

ane2(y1, . . . , yn) = −n(n − 1)2n−2. (33.16)

Since

e1(y1, . . . , yn) =
n∑

i=1

yi

Eq. (33.15) implies (33.11) and since

n∑
i=1

y2i = (y1 + · · · + yn)
2 − 2

∑
1≤i< j≤n

yi y j

= e1(y1, . . . , yn)
2 − 2e2(y1, . . . , yn)

Equation (33.14) together with (33.16) implies (33.12).
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We now take the change of variables x = y

ρ
1
2

− r1 into consideration and get

n∑
i=1

xi =
n∑

i=1

(
yi

ρ
1
2

− r1

)2

= 1

ρ
1
2

(
n∑

i=1

yi

)
− nr1,

n∑
i=1

x2i =
n∑

i=1

(
yi

ρ
1
2

− r1

)2

=
n∑

i=1

1

ρ

(
n∑

i=1

y2i

)
− 2r1

ρ
1
2

(
n∑

i=1

yi

)
+ nr21 .

Using (33.11) and (33.12) we can simplify these expression

n∑
i=1

xi = −nr1,

n∑
i=1

x2i = n(n − 1)

2ρ
+ nr21 .

This allow us to rephrase the constraint g(x) = 0 as follows

g(x) =
n∑

i=1

1

2
x2i + r1xi + r0 = n(n − 1)

4ρ
− nr21

2
+ nr0 = 0

and from this it is easy to find an expression for ρ

ρ = n − 1

8(r21 − 2r0)
.

Thus the coordinates of the extreme points are the roots of the polynomial given in
Theorem33.2.

Remark 33.1 Note that if xn = (x1, x2, . . . xn) is an extreme point of the Vander-
monde determinant then any other point whose coordinates are a permutation of the
coordinates of xn is also an extreme point. This follows from the determinant func-
tion being, by definition, alternating with respect to the columns of the matrix and
the xi s defines the columns of the Vandermonde matrix. Thus any permutation of the
xi s will give the same value for |vn(xn)|. Since there are n! permutations there will
be at least n! extreme points. The roots of the polynomial in Theorem33.2 defines
the set of xi s fully and thus there are exactly n! extreme points, n!/2 positive and
n!/2 negative.

Remark 33.2 All terms in Hn(y) are of even order if n is even and of odd order
when n is odd. This means that the roots of Hn(y) will be symmetrical in the sense
that if yi is a root then −yi is also a root. From this it follows that if a point is a
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critical point on the here considered type of surface the points that is opposite of the
circles centre will also be a critical point.

For more details and demonstrations of how to visualize the result see [14].

33.4 Critical Points on the Sphere Defined by a p-norm

Definition 33.2 The p-norm of x ∈ R
n , where

Snp = {(x1, . . . , xn) ∈ R
2 : x p

1 + . . . + x p
n = r p},

also denoted by ‖x‖p is defined as

‖x‖p =
(

n∑
i=1

|xi |p
) 1

p

, for p > 0. (33.17)

Definition 33.3 The infinity norm of x ∈ R
n denoted ‖x‖∞ is is defined as

‖x‖∞ = sup{|xi | : 1 ≤ i ≤ n}. (33.18)

Definition 33.4 The sphere defined by the p-norm, denoted Sn−1
p (r), for positive

integer p, is the set of all x ∈ R
n such that

n∑
i=1

|xi |p = ‖x‖np = r p. (33.19)

When r = 1 this is the unit sphere defined by the p-norm, denoted simply Sn−1
p .

When p increases the points on Sn−1
p approaches the points on the cube so for

convenience we define Sn−1∞ as the cube defined by the boundary of [−1, 1]n .
Sphere defined by a p-norms include many well-known geometric shapes. For
instance when n = 2, p = 2, then

S12(r) = {(x1, x2) ∈ R
2 : x21 + x22 = r2}

is a circle and when n = 3, p = 2, then

S13(r) = {(x1, x2, x3) ∈ R
2 : x21 + x22 + x23 = r2}

is the standard 2-sphere with radius r .
In the previous section we discussed how the extreme points of the Vandermonde

determinant are distributed for the case p = 2 and n ≥ 2. In this section we will
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Fig. 33.1 Illustration of
Sn−1
p for p = 2, p = 4,

p = 6, p = 8, and p = ∞
with a section cut out. The
outer cube corresponds to
p = 0 and p = 2
corresponds to the sphere in
the middle

examine how the extreme points of the Vandermonde determinant are distributed on
the sphere defined by the p-norm for the cases p ∈ {4, 6, 8} for a few different values
of n.

In Fig. 33.1, we illustrate the surfaces generated under Sn−1
p for the cases p = 2,

p = 4, p = 6, p = 8, and p = ∞ with a section cut out for internal cross-sectional
view.

Similarly to the previous section we will construct a polynomial whose roots give
the coordinates of the extreme points of the Vandermonde determinant. First we will
consider the case p = 4, n = 4.

33.4.1 The Case p = 4 and n = 4

We will illustrate the construction of a polynomial that has the coordinates of the
points as roots with the case p = 4, n = 4. If we denote the polynomial whose roots
give the coordinates with P4

4 (x) and use the same type of argument that was used to
get Eq. (33.6). Taking P(x) to be of the form:

P(x) = xn + cn−2x
n−2 + cn−4x

n−4 + · · · (33.20)

with every other coefficient zero, when n is even of we have even powers and when
n is odd we have odd powers. By identifying the powers in the differential equation
(33.6) for the case p = 4:

P
′′
(x) + ρnx

3P
′
(x) + (σnx

2 + τnx + νn)P(x) = 0, (33.21)
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we obtain that τnx P(x) does not share any powers with any other part of the equation
and thus τn = 0. Similarly, identifying the coefficients we obtain pρn + σn = 0. This
leads us to the differential equation

P
′′
(x) + ρnx

3P
′
(x) + (−pρnx

2 + νn)P(x) = 0. (33.22)

Basing on (33.20) and (33.22), and setting n = 4, p = 4 we get to generate the
system of

Sn−1
p =

n∑
i=1

x p
i = 1,

P4
4 (x) = xn + cn−2x

n−2 + cn−4x
n−4 + · · · ,

P4
4

′′
(x) + ρnx

3P4
4

′
(x) + (−pρnx

2 + νn)P
4
4 (x) = 0.

It follows that;

S44 =
4∑

i=1

x4i = x41 + x42 + x43 + x44 = 1,

P4
4 (x) = x4 + c2 p

2 + c0 ⇒ P4
4

′
(x) = 4x3 + 2c2x ⇒ P4

4

′′
(x) = 12x2 + 2c2,

thus substituting into the differential equation

(12x2 + 2c2) + ρnx
3(4x3 + 2c2x) + (−pρnx

2 + νn)(x
4 + c2x

2 + c0) = 0

(ν − 2ρc2)x
4 + (νc2 − 4ρc0 + 12)x2 + (2c2 + c0ν) = 0.

Equating corresponding coefficients as in P(x) we get:

ν − 2ρc2 = 1

νc2 − 4ρc0 + 12 = c2
2c2 + c0ν = c0.

Setting t = x2 we can express S43 and P(x) as follows:

S43 = 2t21 + 2t22 = 2
4∑

i=1

t2i = 1

P4
4 (x) = x4 + c2 p

2 + c0 = t2 − (t0 + t1)t + t0t1 = 0

Also equating coefficient in P4
4 (x) gives
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t0 + t1 = c2, t0t1 = c0

⇒t0t1 + t21 = c2t1 ⇒ c0 + t21 = c2t1 ⇒ t21 = c2t1 − c0

⇒t20 + t0t1 = c2t0 ⇒ t20 + c0+ = c2t0 ⇒ t20 = c2t0 − c0

⇒t20 + t21 = c2(t0 + t1) − 2c0 = c22 − 2c0 ⇒ 2
4∑

i=1

t2i = 2(c22 − 2c0) = 1

This now gives a fourth equation so as to solve the system:

ν − 2ρc2 = 1 (33.23)

νc2 − 4ρc0 + 12 = c2 (33.24)

2c2 + c0ν = c0 (33.25)

2(c22 − 2c0) = 1 (33.26)

From we obtain ν = 1 + 2ρc2 and substituting this into (33.24) gives

c2(1 + 2ρc2) − 4ρc0 + 12 = c2 ⇒ ρ
(
2(c22 − 2c0)

) = −12 ⇒ ρ = −12.

To get the last equality use (33.26) and the fact that c2 	= 0.
Using this value in the expression for ν we obtain ν = −24c2 and substituting

this value into (33.24) gives

2c2 + c0(1 − 24c2) = c0 ⇒ 2c2(1 − 12c0) = 0 ⇒ 1 − 12c0 = 0 ⇒ c0 = 1

12
,

where the last equality follows from c2 	= 0.
Now with ρ = −12, c0 = 1/12, using (33.26) we obtain

2(c22 − 2c0) = 1 ⇒ c2 = 1

2
+ 2

12
= 8

12
⇒ c2 = 2√

6

Therefore we obtain P4
4 (x) = x4 − 2√

6
x2 + 1

12 .
In Sect. 33.4.2 we will generalise this technique somewhat.

33.4.2 Some Results for Even n and p

In this section we will discuss the case when n and p are positive and even integers,
and n > p. We will discuss a method that can give the coordinates extreme points
of the Vandermonde determinant constrained to Sn−1

p , as defined in (33.19), as the
roots of a polynomial.
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First we will examine how this optimisation problem can be rewritten as a differ-
ential equation similar to (33.21).

Lemma 33.2 Let n and p be even positive integers. Consider the unit sphere given
by the p-norm, in other words the surface given by

S p
n =

{
(x1, . . . , xn) ∈ R

n

∣∣∣∣
n∑

i=1

x p
i = 1

}
.

There exists a second order differential equation

P p
n

′′
(x) − ap−2

n
x p−1P p

n
′
(x) + Qp

n (x)P
p
n (x) = 0, (33.27)

where P p
n (x) and Qp

n (x) are polynomials of the forms,

P p
n (x) = x2n +

1
2 n−1∑
i=0

c2i x
2i

and

Qp
n (x) = −ap−2x

p−2 +
1
2 p−2∑
i=0

(−1)i a2i x
2i .

There is also a relation between the coefficients of P p
n and Qp

n given by

2 j (2 j − 1)c2 j +
(

j−1∑
k=0

a2k c2( j−k−1)

)
+ n + p − 2 j

n
ap−2 c2 j−p = 0 (33.28)

for 1 ≤ j ≤ n+p−2
2 where cn = 1, ck = 0 for k /∈ {0, 2, 4, . . . , n} and ak = 0 for

k /∈ {0, 2, 4, . . . , p − 2}.
Proof This result is proved analogously to how (33.6) is found. Define

P p
n (x) =

n∏
i=1

(x − xi )

and note that
1

2

P p
n

′′
(x)

P p
n

′
(x)

=
n∑

i=1

1

x − xi
.

Now apply the method of Lagrange multipliers and see that in the critical points
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n∑
i=1
i 	= j

1

x j − xi
= ρR′(x j )

where ρ is some unknown constant.
In each critical point we can combine the two expressions and conclude that

P p
n

′′
(x j ) − 2ρR′(x j )P

p
n

′
(x j ) = 0, j = 1, 2, . . . , n

for some ρ ∈ R. Since each x j is a root of f (x) we see that the left hand side in the
differential equation must be a polynomial with the same roots as P p

n (x), thus we
can conclude that for any x ∈ R

P p
n

′′
(x) − 2ρR′(x)P p

n
′
(x) − Q(x) f (x) = 0

where Q(x) is a polynomial of degree p − 2.
By applying the principles of polynomial solutions to linear second order dif-

ferential equation [2, 3], expanding the expression accordingly and matching the
coefficients of the terms with different powers of x you can see that the coefficients
of P(x) and Q(x) must obey the relation given in (33.28).

Noting that the relations between the two sets of coefficients are linear we will
consider the equations given by (33.28) corresponding to

j ∈
{
n − 2

2
,
n

2
, . . . ,

n + p − 2

2

}
,

the corresponding system of equations in matrix form becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cn−2 cn−4 cn−6 · · · c4
p
n cn−p−2

1 cn−2 cn−4 · · · c6
p−2
n cn−p

0 1 cn−2 · · · c8
p−4
n cn−p+2

...
...

...
. . .

...
...

0 0 0 · · · cn−2
4
n cn−4

0 0 0 · · · 1 2
n cn−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a0
a2
a4
...

ap−4

ap−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−n(n − 1)
0
0
...

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (33.29)

By solving this system we can reduce the n+p−2
2 equations given by matching

the terms to n−2
2 equations that together with the condition given by (33.19) gives

a system of polynomial equations that determines all the unknown coefficients of
P(x).

To describe how we can express the solution to (33.29) we will use a few well-
known relations between elementary symmetric polynomials and power sums often
referred to as the Newton–Girard formulae, and Vieta’s formula that describes the
relation between the coefficients of a polynomial and its roots.



808 A. K. Muhumuza et al.

Here we will give some useful properties of elementary symmetric polynomials
and power sums and relations between them.

Definition 33.5 The elementary symmetric polynomials are defined by

e1(x1, . . . , xn) =
n∑

i=1

xi ,

e2(x1, . . . , xn) =
∑

1≤i1<i2<n

xi1xi2 ,

e3(x1, . . . , xn) =
∑

1≤i1<i2<i3<n

xi1xi2xi3 ,

...

em(x1, . . . , xn) =
∑

1≤i1<...<im<n

xi1xi2xi3xi3 ,

...

en(x1, . . . , xn) =x1x2 · · · xn.

The elementary symmetric polynomials can be used to describe a well known
relation between the roots of a polynomial and its coefficients often referred to as
Vieta’s formula.

Theorem 33.3 (Vieta’s formula)
Suppose x1, . . . , xn are the n roots of a polynomial

xn + c1x
n−1 + . . . + cn.

Then ck = (−1)kek(x1, . . . , xn).

Definition 33.6 A power sum is an expression of the form pk(x1, . . . , xn) =
n∑

i=1

xki .

Theorem 33.4 (Newton–Girard formulae) The Newton–Girard formulae can be
expressed in many ways. For us the most useful version is the determinantal expres-
sions. Let ek = ek(x1, . . . , xn) and pk = pk(x1, . . . , xn) denote the elementary sym-
metric polynomials and the power sums as in Definitions33.5 and 33.6. Then the
power sum can be expressed in terms of elementary symmetric polynomials in this
way

pk =

∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 1 0 · · · 0 0
2e2 e1 1 · · · 0 0
3e3 e2 e1 · · · 0 0
...

...
...

. . .
...

...

(p − 1)en−1 en−2 en−3 · · · e1 1
pen en−1 en−2 · · · e2 e1

∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Proof See for example [16].

Lemma 33.3 Using the following notation

tn(c1, c2, . . . , cm) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

cm cm−1 cm−2 · · · c2 2m
n c1

1 cm cm−1 · · · c3 2m−2
n c2

0 1 cm · · · c4 2m−4
n c3

...
...

...
. . .

...
...

0 0 0 · · · cm 4
n cm−1

0 0 0 · · · 1 2
n cm

∣∣∣∣∣∣∣∣∣∣∣∣∣

(33.30)

and tn(c) = 2
n c.

Proof Comparing the expression for tn with the relations given in Theorem33.4 it
is clear that these relations are equivalent to the Newton-Girard formulae with some
minor modifications.

Lemma 33.4 For even n and p the condition (33.19) can be rewritten as

−n tn(cn−p−2, cn−p, . . . , cn−2) = 1

where tn is defined by (33.30).

Proof Note that the expression gp(x1, . . . , xn) =
n∑
1

x p
i = 1 is a power sum. By

Theorem33.4 the following relation holds:

gp(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 1 0 · · · 0 0
2e2 e1 1 · · · 0 0
3e3 e2 e1 · · · 0 0
...

...
...

. . .
...

...

(p − 1)en−1 en−2 en−3 · · · e1 1
pen en−1 en−2 · · · e2 e1

∣∣∣∣∣∣∣∣∣∣∣∣∣

where ek is the k:th elementary symmetric polynomial of x1, . . ., xn . Using Vieta’s
formula we can relate the elementary symmetric polynomials to the coefficients of
P(x) by noting that

P(x) = x2n +
n
2 −1∑
j=1

c2 j x
2 j =

n∑
k=1

(−1)kek x
n−k

or more compactly e2k = cn−2k .



810 A. K. Muhumuza et al.

With e2k = cn−2k and e2k+1 = 0 we get

gp(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 · · · 0 0
2cn−2 0 1 · · · 0 0
0 cn−2 0 · · · 0 0

4cn−4 0 cn−2 · · · 0 0
...

...
...

. . .
...

...

0 cn−p−2 0 · · · 0 1
pcn−p 0 cn−p−2 · · · cn−2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Using Laplace expansion on every other row gives

gp(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 · · · 0 0
2cn−2 0 1 0 · · · 0 0
0 cn−2 0 1 · · · 0 0

4cn−4 0 cn−2 0 · · · 0 0
...

...
...

...
. . .

...
...

0 c2 0 c4 · · · 0 1
pcn−p 0 c2 0 · · · cn−2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −

∣∣∣∣∣∣∣∣∣∣∣∣∣

2cn−2 1 0 · · · 0 0
0 0 1 · · · 0 0

4cn−4 cn−2 0 · · · 0 0
...

...
...

. . .
...

...

0 0 c4 · · · 0 1
pc0 c2 0 · · · cn−2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

2cn−2 1 0 0 · · · 0 0
4cn−4 cn−2 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1
pc0 c2 c4 c6 · · · cn−2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

= −

∣∣∣∣∣∣∣∣∣∣∣∣∣

2cn−2 1 0 · · · 0 0
4cn−4 cn−2 1 · · · 0 0
6cn−6 cn−4 cn−2 · · · 0 0

...
...

...
. . .

...
...

(p − 2)c2 c4 c6 · · · cn−2 1
pc0 c2 c4 · · · en−4 cn−2

∣∣∣∣∣∣∣∣∣∣∣∣∣

= −n

∣∣∣∣∣∣∣∣∣∣∣∣∣

cp cp−1 cp−2 · · · c2 p
n c1

1 cp cp−1 · · · c3 p−2
n c2

0 1 cp · · · c4 p−4
n c3

...
...

...
. . .

...
...

0 0 0 · · · cp 4
n cp−1

0 0 0 · · · 1 2
n cp

∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)
p
2 n tn(c2, c4, . . . , cp)

Thus gp(x1, . . . , xn) = 1 is equivalent to −ntn(c2, c4, . . . , cp) = 1.

Lemma 33.5 The coefficients of the polynomial Q(x) in (33.27) can be expressed
using the coefficients of P(x) as follows

a2k−2 = (−1)k+1n2(n − 1)tn(cn−p+2k+2, . . . , cn−2), k = 1, 2, . . . ,
p

2
. (33.31)
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Proof By (33.29) we can write

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a0
a2
a4
...

ap−4

ap−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cn−2 cn−4 cn−6 · · · cn−p−4
p
n cn−p−2

1 cn−2 cn−4 · · · cn−p−6
p−2
n cn−p

0 1 cn−2 · · · cn−p−8
p−4
n cn−p+2

...
...

...
. . .

...
...

0 0 0 · · · cn−2
4
n cn−4

0 0 0 · · · 1 2
n cn−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−1⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−n(n − 1)
0
0
...

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

and using Cramer’s rule we get

ap−2k = det(Tn,p,k)

tn(cn−p−2, . . . , cn−2)

where

Tn,p,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cn−2 cn−4 · · · cn−2k+2 −n(n − 1) cn−2k−2 · · · p
n cn−p−2

1 cn−2 · · · cn−2k 0 cn−2k−4 · · · p−2
n cn−p

0 1 · · · cn−2k−2 0 cn−2k−6 · · · p−4
n cn−p+2

...
...

. . .
...

...
... · · · ...

0 0 · · · 0 0 0 · · · 4
n cn−4

0 0 · · · 0 0 0 · · · 2
n cn−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cn−2 cn−4 · · · cn−2k+2 −n(n − 1)
1 cn−2 · · · cn−2k 0
0 1 · · · cn−2k−2 0
...

...
. . .

...
... M

0 0 · · · 0 0
0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

By moving the k:th column to the first column and using Laplace expansion det(Tk)
can be rewritten on the form
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det(Tn,p,k) =(−1)kn(n − 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 cn−2 · · · cn−2k

0 1 · · · cn−2k−2
...

...
. . .

...

0 0 · · · 1
0 0 · · · 0 M
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0
0 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −n(n − 1)|M |

= − n(n − 1)

∣∣∣∣∣∣∣∣∣∣∣

cn−2 · · · cn−p+2k
p−2k
n cn−p+2k+2

1 · · · cn−p+2k+2
p−2k−2

n cn−p+2k+4
...

. . .
...

...

0 · · · cn−2
4
n cn−4

0 · · · 1 2
n cn−2

∣∣∣∣∣∣∣∣∣∣∣
=(−1)kn(n − 1)tn(cn−p+2k+2, . . . , cn−2)

We can also use Lemma33.4 to note that tn(cn−p−2, . . . , cn−2) = −1
n and thus

ap−2k = det(Tn,p,k)

tn(cn−p−2, . . . , cn−2)
= (−1)k+1n2(n − 1)tn(cn−p+2k+2, . . . , cn−2)

Theorem 33.5 The non-zero coefficients, c2k , in P p
n that solves (33.27) can be found

by solving the polynomial equation system given by

2 j (2 j − 1)c2 j +
(

j−1∑
k=0

(−1)p−2k+1n2(n − 1)tn(cn−2k+2, . . . , cn−2)

)

+ n(n − 1)(n + p − 2 j)tn(cn−p+4, . . . , cn−2) = 0,

for j = 0, . . . , n
2 − 1.

Proof The equation system is the result of using (33.31) to substitute the ak coeffi-
cients in (33.28).

Using Lagrange multipliers directly gives a polynomial equation system with n
equations while Theorem33.5 gives n

2 equations.
As an example we can consider the case n = 8, p = 4. Matching the coefficients

for (33.27) gives the system
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0c0 + 2c0 = 0,

a0c2 + a2c0 + 12c4 = 0,

30c6 + a0c4 + 3

4
a2c2 = 0,

56 + a0c6 + 1

2
a2c4 = 0,

a0 + 1

4
a2c6 = 0,

and rewriting the constraint that the points lie on S74 gives 2c
2
6 − 4c4 = 0.

In this case the expressions for a0 and a2 becomes quite simple

Table 33.1 Polynomials, Pn
p , whose roots give the extreme points of the Vandermonde determinant

on the sphere defined by the p-norm in n dimensions

n = 2

P2
2 (x) = x2 − 1

2 , P
2
4 (x) = x2 − 1

2

√
2, P2

6 (x) = x2 − 2
2
3

2 , P2
8 (x) = x2 − 2

3
4

2

n = 3

P3
2 (x) = x3 − 1

2 x , P
3
4 (x) = x3 − 1

2

√
2x , P3

6 (x) = x3 − 2
2
3

2 x , P3
8 (x) = x2 − 2

3
4

2

n = 4

P4
2 (x) = x4 − 1

2 x
2 + 1

48 , P
4
4 (x) = x4 −

√
6
3 x2 + 1

12 ,

P4
6 (x) = x4 − 1

4 (
√
33 + 1)

1
3 x2 + 1

96

(
9 − √

33
)

(
√
33 + 1)

2
3

P4
8 (x) = x4 −

√
6
6 (30

√
5 − 30)

1
4 x2 + 1

120

(√
5 − 5

)√
30

√
5 − 30

n = 5

P5
2 (x) = x5 − 1

4 x , P
5
4 (x) = x5 − 2

√
5

5 x3 + 3
20 x , P

5
6 (x) = x5 − 10

1
3

2 x3 + 10
2
3

20 x

P5
8 (x) = x5 −

√
10
10 (50

√
13 + 10)

1
4 x3 + 1

1800

(
5
√
13 − 55

)√
50

√
13 + 10

n = 6

P6
2 (x) = x6 − 1

2 x
4 + 1

20 x
2 − 1

1800

P6
4 (x) = x6 −

√
50+20

√
5

10 x4 +
√
5

10 x
2 − (−4+2

√
5)
√

50+20
√
5

600

n = 7

P7
2 (x) = x7 − 1

2 x
5 + 5

84 x
3 − 5

3528

P7
4 (x) = x7 −

√
1050+84

√
109

42 x5 +
(

1
21 +

√
109
42

)
x3 − (−16+2

√
109)

√
1050+84

√
109

10584

n = 8

P8
2 (x) = x8 − 1

2 x
6 + 15

224 x
4 − 15

6272 x
2 + 15

1404928 ,

P8
4 (x) = x8 −

√
140+42

√
6

14 x6 +
(

3
28 + 3

√
6

28

)
x4

−
(

−(140+42
√
6)

3
2

16464 + 29
√

140+42
√
6

2352

)
x2 − 3

3136 +
√
6

1568
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{
a0 = −112c6,

a2 = 448.

By resubstituting the expressions into the system, or using Theorem33.5 directly
an equation systems for the c0, c2, c4 and c6 is given by

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

112c0c6 + 2c0 = 0,

−112c2c6 + 448c0 + 12c4 = 0,

−112c4c6 + 332c2 + 30c6 = 0,

−2c26 + 4c4 + 1 = 0.

The authors are not aware of any method that can be used to easily and reliably solve
the system given by Theorem33.5. In Table33.1 results for a number of systems,
both with even and odd n and various values for p are given. These were found by
manually experimentation combined with computer aided symbolic computations.

33.5 Some Results for Cubes and Intersections of Planes

It can be noted that when p → ∞ then Sn−1
p as defined in the previous section will

converge towards the cube.
A similar technique to the described technique for surfaces implicitly defined by

a univariate polynomial can be employed on the cube. The maximum value for the
Vandermonde determinant on the cube [−1, 1]n has been known for a long time (at
least since [9]). Here we will show a short derivation.

Theorem 33.6 The coordinates of the critical points of vn(x) on the cube xn ∈
[−1, 1]n are given by x1 = −1, xn = 1 and xi equal to the i th root of Pn−2(x) where
Pn are the Legendre polynomials

Pn(x) = 2n
n∑

k=0

xk
(
n

k

)( n+k−1
2

n

)

or some permutation of them.

Proof It is easy to show that the coordinates −1 and +1 must be present in the
maxima points, if they were not then we could rescale the point so that the value of
vn(x) is increased, which is not allowed. We may thus assume the ordered sequence
of coordinates

−1 = x1 < · · · < xn = +1.

The Vandermonde determinant then becomes
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vn(x) = 2
n−1∏
i=2

(1 + xi )(1 − xi )
∏

1<i< j<n

(x j − xi ).

and the partial derivatives become

∂vn
xk

= vn(x)

⎛
⎜⎝ 1

xk + 1
+ 1

xk − 1
+

n−1∑
i=2
i 	=k

1

xk − xi

⎞
⎟⎠ , 1 < k < n.

Using Lagrange multipliers the resulting equations system becomes

∂vn
xk

= 0, k = 2, . . . , n − 1

and choosing f (x) =
n−1∏
k=2

(x − xk) gives that in each coordinate of a critical point

1

xk + 1
+ 1

xk − 1
+ 1

2

f ′′(xk)
f ′(xk)

= 0, 1 < k < n,

⇔ (1 − x2) f ′′(xk) + 2xk f
′(xk) = 0, 1 < k < n

and thus the left hand side of the expression must form a polynomial that can be
expressed as some multiple of f (x)

(1 − x2) f ′′(x) − 2x f ′(x) − σ f (x) = 0. (33.32)

The constant σ is found by considering the coefficient for xn−2:

(n − 2)(n − 3) + 2(n − 2) − σ = 0 ⇔ σ = (n − 2)(n − 1).

This gives us the differential equation that defines the Legendre polynomial Pn−2(x)
[1].

The technique above can also easily be used to find critical points on the intersec-
tion of two planes given by x1 = a and xn = b, b > a.

Theorem 33.7 The coordinates of the critical points of vn(x) on the intersection of
two planes given by x1 = a and xn = b are given by xn−1 = a, xn = b and xi is the
i th root of Pn−2

(
x−a
b−a

)
where Pn are the Legendre polynomials

Pn(x) = 2n
n∑

k=0

xk
(
n

k

)( n+k−1
2

n

)
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or some permutation of them.

Proof We assume the ordered sequence of coordinates

−1 = x1 < · · · < xn = +1.

The Vandermonde determinant then becomes

vn(x) = (b − a)

n−1∏
i=2

(a − xi )(b − xi )
∏

1<i< j<n

(x j − xi ).

and the partial derivatives become

∂vn
xk

= vn(x)

⎛
⎜⎝ 1

xk − a
+ 1

xk − b
+

n−1∑
i=2
i 	=k

1

xk − xi

⎞
⎟⎠ , 1 < k < n.

Using Lagrange multipliers the resulting equations system becomes

∂vn
xk

= 0, k = 2, . . . , n − 1

and choosing f (x) =
n−1∏
k=2

(x − xk) gives that in each coordinate of a critical point

1

xk − a
+ 1

xk − b
+ 1

2

f ′′(xk)
f ′(xk)

= 0, 1 < k < n,

⇔ (1 − x2) f ′′(xk) + 2xk f
′(xk) = 0, 1 < k < n,

and thus the left hand side of the expression must form a polynomial that can be
expressed as some multiple of f (x)

(x − a)(x − b) f ′′(x) + (2x − a − b) f ′(x) − σ f (x) = 0.

The constant σ is found by considering the coefficient for xn−2:

(n − 2)(n − 3) + 2(n − 2) − σ = 0 ⇔ σ = (n − 2)(n − 1).

The resulting differential equation is

(x − a)(x − b) f ′′(x) + (2x − a − b) f ′(x) − (n − 2)(n − 1) f (x) = 0.



33 Extreme Points of the Vandermonde Determinant on Surfaces … 817

If we change variables according to y = x−a
b−a and let g(y) = f (y(b − a) + a) then

the differential equation becomes

y(y − 1)g′′(y) + (2y − 1)g′(y) − (n − 1)(n − 2)g(y) = 0

which we can recognize as a special case of Euler’s hypergeometric differential
equation whose solution can be expressed as

g(y) = c ·2F1(1 − n, n + 2; 1; y), for some arbitrary c ∈ R,

where 2F1 is the hypergeometric function [1]. In this case the hypergeometric function
is a polynomial and relates to the Legendre polynomials as follows

2F1(1 − n, n + 2; 1; y) = n!Pn−2(y)

thus it is sufficient to consider the roots of Pn−2
(
x−a
b−a

)
.

33.6 Conclusion

In this paper we discussed the extreme points of the Vandermonde matrix on surfaces
defined implicitly by (33.3).

We can find polynomial expressions that has the coordinates of the extreme points
as roots when the surface is a sphere or cube. We also examine how to construct
similar polynomials when the surface is a sphere defined by a p-norm. A technique
for rewriting the problem as a smaller number of equations is demonstrated but the
resulting systems are still challenging to solve in most cases.
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