
Chapter 32
Extreme Points of the Vandermonde
Determinant on the Sphere and Some
Limits Involving the Generalized
Vandermonde Determinant

Karl Lundengård, Jonas Österberg and Sergei Silvestrov

Abstract The values of the determinant of Vandermonde matrices with real ele-
ments are analyzed both visually and analytically over the unit sphere in various
dimensions. For three dimensions some generalized Vandermonde matrices are ana-
lyzed visually. The extreme points of the ordinary Vandermonde determinant on
finite-dimensional unit spheres are given as the roots of rescaled Hermite polynomi-
als and a recursion relation is provided for the polynomial coefficients. Analytical
expressions for these roots are also given for dimension three to seven. A transforma-
tion of the optimization problem is provided and some relations between the ordinary
and generalized Vandermonde matrices involving limits are discussed.
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32.1 Introduction

Extreme points and values of Vandermonde determinant and its generalizations con-
strained on surfaces have been considered in the work of the authors, including also
applications to approximation and interpolation of functions and data, curve fitting
and applications in electromagnetism, lightningmodelling, electromagnetic compat-
ibility, probability theory and financial engineering [1–5]. Algebraic varieties defined
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using Vandermonde determinant functions have also interesting algebraic and geo-
metric properties and structure from the point of view of algebraic geometry and
commutative algebra [6–8].

The ordinary Vandermonde matrices

Vmn(xn) = Gmn(xn, (0, 1, . . . ,m − 1)) =
[
xi−1
j

]
mn

=

⎡
⎢⎢⎢⎣

1 1 · · · 1
x1 x2 · · · xn
...

...
. . .

...

xm−1
1 xm−1

2 · · · xm−1
n

⎤
⎥⎥⎥⎦ .

Note that some authors use the transpose as the definition and possibly also let indices
run from 0. All entries in the first row of Vandermonde matrices are ones and by
considering 00 = 1 this is true even when some x j is zero.

In this article the following notation will sometimes be used:

xI = (xi1 , xi2 , . . . , xin ), I = {i1, i2, . . . , in}.

For the sake of convenience we will use xn to mean xIn where In = {1, 2, . . . , n}.
We have the following well known theorem.

Theorem 32.1 The determinant of (square) Vandermonde matrices has the well
known form

vn ≡ vn(xn) ≡ det Vn(xn) =
∏

1≤i< j≤n

(x j − xi ).

This determinant is also simply referred to as the Vandermonde determinant.
The Vandermonde determinant is a special case of a generalized Vandermonde

determinant (32.1). A generalized Vandermondematrix is determined by two vectors
xn = (x1, . . . , xn) ∈ Kn and am = (a1, . . . , am) ∈ Km , where K is usually the real
or complex field, and is defined as

Gmn(xn, am) =
[
xaij

]
mn

. (32.1)

For square matrices only one index is given, Gn ≡ Gnn .
Note that the term generalized Vandermonde matrix has been used for several

kinds of matrices that are not equivalent to or a special cases of (32.1), see [9] for
instance.

The determinant of generalized Vandermonde matrices

gn ≡ gn(xn, an) ≡ det Gn(xn, an)
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and its connections to difference equations, symmetric polynomials and representa-
tion theory have been considered for example in [10, 11].

Vandermonde matrices can be used in polynomial interpolation. The coefficients
of the unique polynomial c0 + c1x + · · · + cn−1xn−1 that passes through n points
(xi , yi ) ∈ C2 with distinct xi are

[
c0 c1 · · · cn−1

] = [y1 y2 · · · yn
]
⎡
⎢⎢⎢⎣

1 1 · · · 1
x1 x2 · · · xn
...

...
. . .

...

xn−1
1 xn−1

2 · · · xn−1
n

⎤
⎥⎥⎥⎦

−1

.

In this context the xi are called nodes. There are also many applications of Van-
dermonde and generalized Vandermonde determinants, for example in differential
equations [9], difference equations and representation theory [10], and time series
analysis [12].

In Sect. 32.1.1 we introduce the reader to the behavior of the Vandermonde deter-
minant v3(x3) = (x3 − x2)(x3 − x1)(x2 − x1) by some introductory visualizations.
We also consider g3(x3, a3) for some choices of exponents a3.

In Sect. 32.2 we optimize the Vandermonde determinant vn over the unit sphere
Sn−1 in Rn finding a rescaled Hermite polynomial whose roots give the extreme
points. In Sect. 32.2.2 we arrive at the results for the special case v3 in a slightly
different way. In Sect. 32.2.3 we present a transformation of the optimization prob-
lem into an equivalent form with known optimum value. In Sect. 32.2.4 we extend
the range of visualizations to v4, . . . , v7 by exploiting some analytical results. In
Sect. 32.3 we prove some limits involving the generalized Vandermonde matrix and
determinant.

32.1.1 Visual Exploration in 3D

In this section we plot the values of the determinant

v3(x3) = (x3 − x2)(x3 − x1)(x2 − x1),

and also the generalized Vandermonde determinant g3(x3, a3) for three different
choices of a3 over the unit sphere x21 + x22 + x23 = 1 in R3. Our plots are over the unit
sphere but the determinant exhibits the same general behavior over centered spheres
of any radius. This follows directly from (32.1) and that exactly one element from
each row appear in the determinant. For any scalar c we get

gn(cxn, an) =
[

n∏
i=1

cai

]
gn(xn, an),
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(a) Plot with respect to
the regular x-basis.

(b) Plot with respect to
the t-basis, see (32.3).

(c) Plot with respect to
parametrization (32.4).

Fig. 32.1 Plot of v3(x3) over the unit sphere

which for vn becomes

vn(cxn) = c

n(n − 1)

2 vn(xn), (32.2)

and so the values over different radii differ only by a constant factor.
In Fig. 32.1 value of v3(x3) has been plotted over the unit sphere and the curves

where the determinant vanishes are traced as black lines. The coordinates inFig. 32.1b
are related to x3 by

x3 =
⎡
⎣

2 0 1
−1 1 1
−1 −1 1

⎤
⎦
⎡
⎣
1/

√
6 0 0

0 1/
√
2 0

0 0 1/
√
3

⎤
⎦ t, (32.3)

where the columns in the product of the two matrices are the basis vectors in R3. The
unit sphere in R3 can also be described using spherical coordinates. In Fig. 32.1c the
following parametrization was used.

t(θ, φ) =
⎡
⎣
cos(φ) sin(θ)

sin(φ)

cos(φ) cos(θ)

⎤
⎦ . (32.4)

We will use this t-basis and spherical parametrization throughout this section.
From the plots in Fig. 32.1 it can be seen that the number of extreme points for v3

over the unit sphere seem to be 6 = 3!. It can also been seen that all extreme points
seem to lie in the plane through the origin that is orthogonal to an apparent symmetry
axis in the direction (1, 1, 1), the direction of t3. We will see later that the extreme
points for vn indeed lie in the hyperplane

∑n
i=1 xi = 0 for all n, see Theorem 32.3,

and the number of extreme points for vn count n!, see Remark 32.1.
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The black lines where v3(x3) vanishes are actually the intersections between the
sphere and the three planes x3 − x1 = 0, x3 − x2 = 0 and x2 − x1 = 0, as these
differences appear as factors in v3(x3).

We will see later on that the extreme points are the six points acquired from
permuting the coordinates in

x3 = 1√
2

(−1, 0, 1) .

For reasons that will become clear in Sect. 32.2.1 it is also useful to think about these
coordinates as the roots of the polynomial

P3(x) = x3 − 1

2
x .

So far we have only considered the behavior of v3(x3), that is g3(x3, a3) with
a3 = (0, 1, 2). We now consider three generalized Vandermonde determinants,
namely g3 with a3 = (0, 1, 3), a3 = (0, 2, 3) and a3 = (1, 2, 3). These three
determinants show increasingly more structure and they all have a neat formula in
terms of v3 and the elementary symmetric polynomials

ekn = ek(x1, . . . , xn) =
∑

1≤i1<i2<···<ik≤n

xi1xi2 · · · xik ,

where we will simply use ek whenever n is clear from the context.
In Fig. 32.2 we see the determinant

g3(x3, (0, 1, 3)) =
∣∣∣∣∣∣
1 1 1
x1 x2 x3
x31 x32 x33

∣∣∣∣∣∣
= v3(x3)e1,

(a) Plot with respect to the
regular x-basis.

(b) Plot with respect to the
t-basis, see (32.3).

(c) Plot with respect to
angles given in (32.4).

Fig. 32.2 Plot of g3(x3, (0, 1, 3)) over the unit sphere
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Table 32.1 Table of some determinants of generalized Vandermonde matrices

a3 g3(x3, a3)

(0, 1, 2) v3(x3)e0 = (x3 − x2)(x3 − x1)(x2 − x1)

(0, 1, 3) v3(x3)e1 = (x3 − x2)(x3 − x1)(x2 − x1)(x1 + x2 + x3)

(0, 2, 3) v3(x3)e2 = (x3−x2)(x3−x1)(x2−x1)(x1x2+x1x3+x2x3)

(1, 2, 3) v3(x3)e3 = (x3 − x2)(x3 − x1)(x2 − x1)x1x2x3

plotted over the unit sphere. The expression v3(x3)e1 is easy to derive, the v3(x3)
is there since the determinant must vanish whenever any two columns are equal,
which is exactly what the Vandermonde determinant expresses. The e1 follows by a
simple polynomial division. As can be seen in the plots we have an extra black circle
where the determinant vanishes compared to Fig. 32.1. This circle lies in the plane
e1 = x1 + x2 + x3 = 0 where we previously found the extreme points of v3(x3) and
thus doubles the number of extreme points to 2 · 3!.

A similar treatment can be made of the remaining two generalized determinants
that we are interested in, plotted in the following two figures.

The four determinants treated so far are collected in Table32.1. Derivation of
these determinants is straight forward. We note that all but one of them vanish on a
set of planes through the origin. For a = (0, 2, 3) we have the usual Vandermonde
planes but the intersection of e2 = 0 and the unit sphere occur at two circles.

x1x2 + x1x3 + x2x3 = 1

2

(
(x1 + x2 + x3)

2 − (x21 + x22 + x23 )
)

= 1

2

(
(x1 + x2 + x3)

2 − 1
) = 1

2
(x1 + x2 + x3 + 1) (x1 + x2 + x3 − 1) ,

and so g3(x3, (0, 2, 3)) vanish on the sphere on two circles lying on the planes
x1 + x2 + x3 + 1 = 0 and x1 + x2 + x3 − 1 = 0. These can be seen in Fig. 32.3 as
the two black circles perpendicular to the direction (1, 1, 1).

(a) Plot with respect to
the regular x-basis.

(b) Plot with respect to
the t-basis, see (32.3).

(c) Plot with respect to
parametrization (32.4).

Fig. 32.3 Plot of g3(x3, (0, 2, 3)) over the unit sphere
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(a) Plot with respect to
the regular x-basis.

(b) Plot with respect to
the t-basis, see (32.3).

(c) Plot with respect to
parametrization (32.4).

Fig. 32.4 Plot of g3(x3, (1, 2, 3)) over the unit sphere

Note also that while v3 and g3(x3, (0, 1, 3)) have the same absolute value on all
their respective local extremepoints (by symmetry)wehave that both g3(x3, (0, 2, 3))
and g3(x3, (1, 2, 3)) have different absolute values for some of their respective
extreme points, this can be seen in Figs. 32.2, 32.3 and 32.4.

32.2 Optimizing the Vandermonde Determinant over the
Unit Sphere

In this section we will consider the extreme points of the Vandermonde determinant
on the n-dimensional unit sphere in Rn . We want both to find an analytical solution
and to identify some properties of the determinant that can help us to visualize it in
some area around the extreme points in dimensions n > 3.

32.2.1 The Extreme Points Given by Roots of a Polynomial

The extreme points of the Vandermonde determinant on the unit sphere in Rn are
known and given by Theorem 32.4 where we present a special case of Theorem 6.7.3
in ‘Orthogonal polynomials’ by Gábor Szegő [13]. We will also provide a proof that
is more explicit than the one in [13] and that exposes more of the rich symmetric
properties of the Vandermonde determinant. For the sake of convenience some prop-
erties related to the extreme points of the Vandermonde determinant defined by real
vectors xn will be presented before Theorem 32.4.
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Theorem 32.2 For any 1 ≤ k ≤ n

∂vn
∂xk

=
n∑

i=1
i �=k

vn(xn)
xk − xi

(32.5)

This theorem will be proven after the introduction of the following useful lemma:

Lemma 32.1 For any 1 ≤ k ≤ n − 1

∂vn
∂xk

= − vn(xn)
xn − xk

+
[
n−1∏
i=1

(xn − xi )

]
∂vn−1

∂xk
(32.6)

and
∂vn
∂xn

=
n−1∑
i=1

vn(xn)
xn − xi

. (32.7)

Proof Note that the determinant can be described recursively

vn(xn) =
[
n−1∏
i=1

(xn − xi )

] ∏
1≤i< j≤n−1

(x j − xi )

=
[
n−1∏
i=1

(xn − xi )

]
vn−1(xn−1). (32.8)

Formula (32.6) follows immediately from applying the differentiation formula for
products on (32.8). Formula (32.7) follows from (32.8), the differentiation rule for
products and that vn−1(xn−1) is independent of xn .

∂vn
∂xn

=vn−1(xn−1)

xn − x1

n−1∏
i=1

(xn − xi )

+ (xn − x1)
∂

∂xn

(
vn−1(xn−1)

xn − x1

n−1∏
i=1

(xn − xi )

)

= vn(xn)
xn − x1

+ vn(xn)
xn − x2

+ (xn − x1)(xn − x2)
∂

∂xn

(
vn(xn)

(xn − x1)(xn − x2)

)

=
n−1∑
i=1

vn(xn)
xn − xi

+
[
n−1∏
i=1

(xn − xi )

]
∂vn−1

∂xn
=

n−1∑
i=1

vn(xn)
xn − xi

.
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Proof (Proof of Theorem 32.2)UsingLemma32.1we can see that for k = n, formula
(32.5) follows immediately from (32.7). The case 1 ≤ k < n will be proved using
induction. Using (32.6) gives

∂vn
∂xk

= − vn(xn)
xn − xk

+
[
n−1∏
i=1

(xn − xi )

]
∂vn−1

∂xk
.

Supposing that formula (32.5) is true for n − 1 results in

∂vn
∂xk

= − vn(xn)
xn − xk

+
[
n−1∏
i=1

(xn − xi )

]
n−1∑
i=1
i �=k

vn−1(xn−1)

xk − xi

= vn(xn)
xk − xn

+
n−1∑
i=1
i �=k

vn(xn)
xk − xi

=
n∑

i=1
i �=k

vn(xn)
xk − xi

.

Showing that (32.5) is true for n = 2 completes the proof

∂v2
∂x1

= ∂

∂x1
(x2 − x1) = −1 = x2 − x1

x1 − x2
=

2∑
i=1
i �=1

v2(x2)
x1 − xi

∂v2
∂x2

= ∂

∂x2
(x2 − x1) = 1 = x2 − x1

x2 − x1
=

2∑
i=1
i �=2

v2(x2)
x2 − xi

.

Theorem 32.3 The extreme points of vn(xn) on the unit sphere can all be found in
the hyperplane defined by

n∑
i=1

xi = 0. (32.9)

This theorem will be proved after the introduction of the following useful lemma:

Lemma 32.2 For any n ≥ 2 the sum of the partial derivatives of vn(xn)will be zero.

n∑
k=1

∂vn
∂xk

= 0. (32.10)

Proof This lemma is easily proven using Lemma 32.1 and induction:
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n∑
k=1

∂vn
∂xk

=
n−1∑
k=1

(
− vn(xn)
xn − xk

+
[
n−1∏
i=1

(xn − xi )

]
∂vn−1

∂xk

)
+

n−1∑
i=1

vn(xn)
xn − xi

=
[
n−1∏
i=1

(xn − xi )

]
n−1∑
k=1

∂vn−1

∂xk
.

Thus if (32.10) is true for n − 1, then it is also true for n. Showing that the equation
holds for n = 2 is very simple

∂v2
∂x1

+ ∂v2
∂x2

= −1 + 1 = 0.

Proof (Proof of Theorem 32.3) Using the method of Lagrange multipliers it follows
that any xn on the unit sphere that is an extremepoint of theVandermonde determinant
will also be a stationary point for the Lagrange function

Λn(xn, λ) = v(xn) − λ

(
n∑

i=1

x2i − 1

)

for some λ. Explicitly this requirement becomes

∂Λn

∂xk
= 0 for all 1 ≤ k ≤ n, (32.11)

∂Λn

∂λ
= 0. (32.12)

Equation (32.12) corresponds to the restriction to the unit sphere and is therefore
immediately fulfilled. Since all the partial derivatives of the Lagrange function should
be equal to zero it is obvious that the sum of the partial derivatives will also be equal
to zero. Combining this with Lemma 32.2 gives

n∑
k=1

∂Λn

∂xk
=

n∑
k=1

(
∂vn
∂xk

− 2λxk

)
= −2λ

n∑
k=1

xk = 0. (32.13)

There are two ways to fulfill condition (32.13) either λ = 0 or
∑n

k=1 xk = 0. When
λ = 0, equations (32.11) reduce to

∂vn
∂xk

= 0 for all 1 ≤ k ≤ n,

and by (32.2) this can only be true if vn(xn) = 0, which is of no interest to us, and
so all extreme points must lie in the hyperplane

∑n
k=1 xk = 0.
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Theorem 32.4 A point on the unit sphere in Rn, xn = (x1, x2, . . . xn), is an extreme
point of the Vandermonde determinant if and only if all xi , i ∈ {1, 2, . . . n}, are
distinct roots of the rescaled Hermite polynomial

Pn(x) = (2n(n − 1))−
n
2 Hn

(√
n(n − 1)

2
x

)
. (32.14)

Remark 32.1 Note that if xn = (x1, x2, . . . xn) is an extreme point of the Vander-
monde determinant then any other point whose coordinates are a permutation of
the coordinates of xn is also an extreme point. This follows from the determinant
function being, by definition, alternating with respect to the columns of the matrix
and the xi s defines the columns of the Vandermonde matrix. Thus any permutation
of the xi s will give the same value for |vn(xn)|. Since there are n! permutations there
will be at least n! extreme points. The roots of the polynomial (32.14) defines the
set of xi s fully and thus there are exactly n! extreme points, n!/2 positive and n!/2
negative.

Remark 32.2 All terms in Pn(x) are of even order if n is even and of odd order
when n is odd. This means that the roots of Pn(x) will be symmetrical in the sense
that if xi is a root then −xi is also a root.

Proof (Proof of Theorem 32.4) By the method of Lagrange multipliers condition
(32.11) must be fulfilled for any extreme point. If xn is a fixed extreme point so that

vn(xn) = vmax ,

then (32.11) can be written explicitly, using (32.5), as

∂Λn

∂xk
=

n∑
i=1
i �=k

vmax

xk − xi
− 2λxk = 0 for all 1 ≤ k ≤ n,

or alternatively by introducing a new multiplier ρ as

n∑
i=1
i �=k

1

xk − xi
= 2λ

vmax
xk = ρ

n
xk for all 1 ≤ k ≤ n. (32.15)

By forming the polynomial f (x) = (x − x1)(x − x2) · · · (x − xn) and noting that
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f ′(xk) =
n∑
j=1

n∏
i=1
i �= j

(x − xi )

∣∣∣∣
x=xk

=
n∏

i=1
i �=k

(xk − xi ),

f ′′(xk) =
n∑

l=1

n∑
j=1
j �=l

n∏
i=1
i �= j
i �=l

(x − xi )

∣∣∣∣
x=xk

=
n∑
j=1
j �=k

n∏
i=1
i �= j
i �=k

(xk − xi ) +
n∑

l=1
l �=k

n∏
i=1
i �=l
i �=k

(xk − xi )

= 2
n∑
j=1
j �=k

n∏
i=1
i �= j
i �=k

(xk − xi ),

we can rewrite (32.15) as

1

2

f ′′(xk)
f ′(xk)

= ρ

n
xk,

or

f ′′(xk) − 2ρ

n
xk f

′(xk) = 0.

Since the last equation must vanish for all k we must have

f ′′(x) − 2ρ

n
x f ′(x) = c f (x), (32.16)

for some constant c. To find c the xn-terms of the right and left part of (32.16) are
compared to each other,

c · cnxn = −2ρ

n
xncnx

n−1 = −2ρ · cnxn ⇒ c = −2ρ.

Thus the following differential equation for f (x) must be satisfied

f ′′(x) − 2ρ

n
x f ′(x) + 2ρ f (x) = 0. (32.17)

Choosing x = az gives

f ′′(az) − 2ρ

(n − 1)
a2z f ′(az) + 2ρ f (az)

= 1

a2
d2 f

dz2
(az) − 2ρ

n
az

1

a

d f

dz
(az) + 2ρ f (az) = 0.
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By setting g(z) = f (az) and choosing a =
√

n
ρ
a differential equation that matches

the definition for the Hermite polynomials is found:

g′′(z) − 2zg′(z) + 2ng(z) = 0. (32.18)

By definition the solution to (32.18) is g(z) = bHn(z) where b is a constant. An
exact expression for the constant a can be found using Lemma 32.3 (for the sake of
convenience the lemma is stated and proved after this theorem). We get

n∑
i=1

x2i =
n∑

i=1

a2z2i = 1 ⇒ a2
n(n − 1)

2
= 1,

and so

a =
√

2

n(n − 1)
.

Thus condition (32.11) is fulfilled when xi are the roots of

Pn(x) = bHn (z) = bHn

(√
n(n − 1)

2
x

)
.

Choosing b = (2n(n − 1))−
n
2 gives Pn(x) with leading coefficient 1. This can be

confirmed by calculating the leading coefficient of P(x) using the explicit expression
for the Hermite polynomial (32.20). This completes the proof.

Lemma 32.3 Let xi , i = 1, 2, . . . , n be roots of the Hermite polynomial Hn(x).
Then

n∑
i=1

x2i = n(n − 1)

2
.

Proof By letting ek(x1, . . . xn) denote the elementary symmetric polynomials,
Hn(x) can be written as

Hn(x) = An(x − x1) · · · (x − xn)

= An(x
n − e1(x1, . . . , xn)x

n−1 + e2(x1, . . . , xn)x
n−2 + q(x))

where q(x) is a polynomial of degree n − 3. Noting that

n∑
i=1

x2i = (x1 + · · · + xn)
2 − 2

∑
1≤i< j≤n

xi x j

= e1(x1, . . . , xn)
2 − 2e2(x1, . . . , xn), (32.19)
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it is clear the sum of the square of the roots can be described using the coefficients
for xn , xn−1 and xn−2. The explicit expression for Hn(x) is [13]

Hn(x) = n!

 n

2�∑
i=0

(−1)i

i !
(2x)n−2i

(n − 2i)!

= 2nxn − 2n−2n(n − 1)xn−2 + n!

 n

2�∑
i=3

(−1)i

i !
(2x)n−2i

(n − 2i)! . (32.20)

Comparing the coefficients in the two expressions for Hn(x) gives

An = 2n,

Ane1(x1, . . . , xn) = 0,

Ane2(x1, . . . , xn) = −n(n − 1)2n−2.

Thus by (32.19)
n∑

i=1

x2i = n(n − 1)

2
.

Theorem 32.5 The coefficients, ak , for the terms of xk in Pn(x) given by (32.14),
are given by the following relations

an = 1, an−1 = 0, an−2 = 1

2
,

ak = − (k + 1)(k + 2)

n(n − 1)(n − k)
ak+2, 1 ≤ k ≤ n − 3. (32.21)

Proof Equation (32.17) tells us that

Pn(x) = 1

2ρ
P ′′
n (x) − 1

n
x P ′

n(x). (32.22)

That an = 1 follows from the definition of Pn and an−1 = 0 follows from theHermite
polynomials only having terms of odd powers when n is odd and even powers when
n is even. That an−2 = 1

2 can be easily shown using the definition of Pn and the
explicit formula for the Hermite polynomials (32.20).

The value of the ρ can be found by comparing the xn−2 terms in (32.22)

an−2 = 1

2ρ
n(n − 1)an + 1

n
(n − 2)an−2.
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From this follows
1

2ρ
= −1

n2(n − 1)
.

Comparing the xn−l terms in (32.22) gives the following relation

an−l = 1

2ρ
(n − l + 2)(n − l)an−l+2 + (n − l)an−l

1

n

which is equivalent to

an−l = an−l+2
−(n − l + 2)(n − l + 1)

ln2(n − 1)
.

Letting k = n − l gives (32.21).

32.2.2 Extreme Points of the Vandermonde Determinant on
the Three Dimensional Unit Sphere

It is fairly simple to describe v3(x3) on the circle that is formed by the intersection of
the unit sphere and the plane x1 + x2 + x3 = 0. Using Rodrigues’ rotation formula
to rotate a point, x, around the axis 1√

3
(1, 1, 1) with the angle θ will give the rotation

matrix

Rθ = 1

3

⎡
⎣

2 cos(θ) + 1 1 − cos(θ) − √
3 sin(θ) 1 − cos(θ) + √

3 sin(θ)

1 − cos(θ) + √
3 sin(θ) 2 cos(θ) + 1 1 − cos(θ) − √

3 sin(θ)

1 − cos(θ) − √
3 sin(θ) 1 − cos(θ) + √

3 sin(θ) 2 cos(θ) + 1

⎤
⎦.

A point which already lies on S2 can then be rotated to any other point on S2

by letting Rθ act on the point. Choosing the point x = 1√
2
(−1, 0, 1) gives the

Vandermonde determinant a convenient form on the circle since:

Rθx = 1√
6

⎡
⎣

−√
3 cos(θ) − sin(θ)

−2 sin(θ)√
3 cos(θ) + sin(θ)

⎤
⎦ ,

which gives
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2v3(Rθx) = 2
(√

3 cos(θ) + sin(θ)
)

(√
3 cos(θ) + sin(θ) + 2 sin(θ)

)
(
−2 sin(θ) + √

3 cos(θ) + sin(θ)
)

= 1√
2

(
4 cos(θ)3 − 3 cos(θ)

)

= 1√
2
cos(3θ).

Note that the final equality follows from cos(nθ) = Tn(cos(θ)) where Tn is the
nth Chebyshev polynomial of the first kind. From formula (32.14) if follows that
P3(x) = T3(x) but for higher dimensions the relationship between the Chebyshev
polynomials and Pn is not as simple.

Finding the maximum points for v3(x3) on this form is simple. The Vandermonde
determinant will be maximal when 3θ = 2nπ where n is some integer. This gives
three local maxima corresponding to θ1 = 0, θ2 = 2π

3 and θ3 = 4π
3 . These points

correspond to cyclic permutation of the coordinates of x = 1√
2
(−1, 0, 1). Analo-

gously the minimas for v3(x3) can be shown to be a transposition followed by cyclic
permutation of the coordinates of x. Thus any permutation of the coordinates of x
correspond to a local extreme point just like it was stated on Sect. 32.1.1.

32.2.3 A Transformation of the Optimization Problem

In this section we provide a transformation of the problem of optimizing the Van-
dermonde determinant over the unit sphere to a related equation system with two
equations.

Lemma 32.4 For any n ≥ 2 the dot product between the gradient of vn(xn) and xn
is proportional to vn(xn). More precisely,

∇vTn xn =
n∑

k=1

xk
∂vn
∂xk

= n(n − 1)

2
vn(xn). (32.23)

Proof Using Theorem 32.2 we have

n∑
k=1

xk
∂vn
∂xk

=
n∑

k=1

xk
∑
i �=k

vn(xn)
xk − xi

= vn(xn)
n∑

k=1

∑
i �=k

xk
xk − xi

.
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Now, for each distinct pair of indices k = a, i = b in the last double sum we have
that the indices k = b, i = a also appear. And so we continue

n∑
k=1

xk
∂vn
∂xk

= vn(xn)
n∑

1≤k<i≤n

(
xk

xk − xi
+ xi

xi − xk

)

= vn(xn)
n∑

1≤k<i≤n

1 = n(n − 1)

2
vn(xn),

which proves the lemma.

Consider the premise that an objective function f (x) is optimized on the points
satisfying an equality constraint g(x) = 0 when its gradient is linearly dependent
with the gradient of the constraint function. In Lagrange multipliers this is expressed
as

∇ f (x) = λ∇g(x),

where λ is some scalar constant. We can also express this using a dot product

∇ f (x) · ∇g(x) = |∇ f (x)||∇g(x)| cos θ.

We are interested in the case where both ∇ f and ∇g are non-zero and so for linear
dependence we require cos θ = ±1. By squaring we then have

(∇ f (x) · ∇g(x))2 = (∇ f (x) · ∇ f (x)) (∇g(x) · ∇g(x)) ,

which can also be expressed

(
n∑

i=1

∂ f

∂xi

∂g

∂xi

)2

=
(

n∑
i=1

(
∂ f

∂xi

)2
)(

n∑
i=1

(
∂g

∂xi

)2
)

. (32.24)

Theorem 32.6 The problem of finding the vectors xn that maximize the absolute
value of the Vandermonde determinant over the unit sphere:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
xn

∏
i< j

|x j − xi |,

s.t.
n∑

i=1

x2i = 1,
, (32.25)

has exactly the same solution set as the related problem
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⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
i< j

1

(x j − xi )2
= 1

2

(
n(n − 1)

2

)2

,

n∑
i=1

x2i = 1.

(32.26)

Proof By applying (32.24) to the problem of optimizing the Vandermonde determi-
nant vn(xn) over the unit sphere we get.

(
n∑

i=1

∂vn
∂xi

∂
∑

x2i
∂xi

)2

=
(

n∑
i=1

(
∂vn
∂xi

)2
)(

n∑
i=1

(
∂
∑

x2i
∂xi

)2
)

,

(
n∑

i=1

2xi
∂vn
∂xi

)2

=
(

n∑
i=1

(
∂vn
∂xi

)2
)(

n∑
i=1

(2xi )
2

)
,

(
n∑

i=1

xi
∂vn
∂xi

)2

=
n∑

i=1

(
∂vn
∂xi

)2

. (32.27)

By applying Lemma 32.4 the left part of (32.27) can be written as

vn(xn)2
(
n(n − 1)

2

)2

.

The right part of (32.27) can be rewritten as

n∑
i=1

(
∂vn
∂xi

)2

=
n∑

i=1

⎛
⎜⎝

n∑
k=1
k �=i

vn(xn)
xi − xk

⎞
⎟⎠

2

= vn(xn)2
n∑

i=1

⎛
⎜⎝

n∑
k=1
k �=i

1

xi − xk

⎞
⎟⎠

2

,

and by expanding the square we continue

n∑
i=1

(
∂vn
∂xi

)2

= vn(xn)2
n∑

i=1

⎛
⎜⎜⎜⎜⎝

n∑
k=1
k �=i

1

(xi − xk)2
+

n∑
k=1
k �=i

n∑
j=1
j �=i
j �=k

1

(xi − xk)

1

(xi − x j )

⎞
⎟⎟⎟⎟⎠

= vn(xn)2
∑
k �=i

1

(xi − xk)2
+ vn(xn)2

n∑
i=1

n∑
k=1
k �=i

n∑
j=1
j �=i
j �=k

1

(xi − xk)

1

(xi − x j )
.

We recognize that the triple sum runs over all distinct i, k, j and so we can write
them as one sum by expanding permutations:
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n∑
i=1

(
∂vn
∂xi

)2
= vn(xn)2

∑
k �=i

1

(xi − xk)2

+ vn(xn)2
∑

i< j<k

(
1

(xi − xk)(xi − x j )
+ 1

(xi − x j )(xi − xk)

+ 1

(x j − xk)(x j − xi )
+ 1

(x j − xi )(x j − xk)

+ 1

(xk − xi )(xk − x j )
+ 1

(xk − x j )(xk − xi )

)

= vn(xn)2
∑
k �=i

1

(xi − xk)2
+ 2vn(xn)2

∑
i< j<k

(xk − x j ) + (xi − xk) + (x j − xi )

(xi − x j )(x j − xk)(xk − xi )

= vn(xn)2
∑
k �=i

1

(xi − xk)2
= 2vn(xn)2

∑
i< j

1

(x j − xi )2
.

We continue by joining the simplified left and right part of (32.27):

vn(xn)2
(
n(n − 1)

2

)2

= 2vn(xn)2
∑
i< j

1

(x j − xi )2
,

and the result follows as

∑
i< j

1

(x j − xi )2
= 1

2

(
n(n − 1)

2

)2

. (32.28)

This captures the linear dependence requirement of the problem, what remains is to
require the solutions to lie on the unit sphere.

n∑
i=1

x2i = 1.

32.2.4 Further Visual Exploration

Visualization of the determinant v3(x3) on the unit sphere is straightforward, as
well as visualizations for g3(x3, a) for different a. All points on the sphere can be
viewed directly by a contour map. In higher dimensions we need to reduce the set of
visualized points somehow. In this section we provide visualizations for v4, . . . , v7
by using symmetry properties of the Vandermonde determinant.
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32.2.4.1 Four Dimensions

By Theorem 32.3 we know that the extreme points of v4(x4) on the sphere all lie in
the hyperplane x1 + x2 + x3 + x4 = 0. The intersection of this hyperplane with the
unit sphere in R4 can be described as a unit sphere in R3, under a suitable basis, and
can then be easily visualized.

This can be realized using the transformation

x =

⎡
⎢⎢⎣

−1 −1 0
−1 1 0
1 0 −1
1 0 1

⎤
⎥⎥⎦

⎡
⎣
1/

√
4 0 0

0 1/
√
2 0

0 0 1/
√
2

⎤
⎦ t. (32.29)

The results of plotting the v4(x4) after performing this transformation can be seen
in Fig. 32.5. All 24 = 4! extreme points are clearly visible.

From Fig. 32.5 we see that whenever we have a local maxima we have a local
maxima at the opposite side of the sphere as well, and the same for minima. This it
due to the occurrence of the exponents in the rows of Vn . From (32.2) we have

vn((−1)xn) = (−1)

n(n − 1)

2 vn(xn),

and so opposite points are both maxima or both minima if n = 4k or n = 4k + 1 for
some k ∈ Z+ and opposite points are of different types if n = 4k − 2 or n = 4k − 1
for some k ∈ Z+.

By Theorem 32.4 the extreme points on the unit sphere for v4(x4) is described by
the roots of this polynomial

P4(x) = x4 − 1

2
x2 + 1

48
.

Fig. 32.5 Plot of v4(x4)
over points on the unit sphere

(a) Plot with t-basis
given by (32.29).

(b) Plot with     and 
given by (32.4).
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Fig. 32.6 Plot of v5(x5)
over points on the unit sphere

(a) Plot with t-basis
given by (32.30).

(b) Plot with     and 
given by (32.4).

The roots of P4(x) are:

x41 = −1

2

√
1 +

√
2

3
, x42 = −1

2

√
1 −

√
2

3
,

x43 = 1

2

√
1 −

√
2

3
, x44 = 1

2

√
1 +

√
2

3
.

By Theorem 32.4 or 32.5 we see that the polynomials providing the coordinates
of the extreme points have all even or all odd powers. From this it is easy to see that
all coordinates of the extreme points must come in pairs xi ,−xi . Furthermore, by
Theorem 32.3 we know that the extreme points of v5(x5) on the sphere all lie in the
hyperplane x1 + x2 + x3 + x4 + x5 = 0.

We use this to visualize v5(x5) by selecting a subspace of R5 that contains
all points that have coordinates which are symmetrically placed on the real line,
(x1, x2, 0,−x2,−x1).

The coordinates in Fig. 32.6a are related to x5 by

x5 =

⎡
⎢⎢⎢⎢⎣

−1 0 1
0 −1 1
0 0 1
0 1 1
1 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎣
1/

√
2 0 0

0 1/
√
2 0

0 0 1/
√
5

⎤
⎦ t. (32.30)

The result, see Fig. 32.6, is a visualization of a subspace containing 8 of the 120
extreme points. Note that to satisfy the condition that the coordinates should be sym-
metrically distributed pairs can be fulfilled in two other subspaceswith points that can
be described in the following ways: (x1, x2, 0,−x1,−x2) and (x2,−x2, 0, x1,−x1).
This means that a transformation similar to (32.30) can be used to describe 3 ·8 = 24
different extreme points.

The transformation (32.30) corresponds to choosing x3 = 0. Choosing another
coordinate to be zero will give a different subspace of R5 which behaves identically
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to the visualized one. This multiplies the number of extreme points by five to the
expected 5 · 4! = 120.

By Theorem 32.4, the extreme points on the unit sphere for v5(x5) are described
by the roots of this polynomial

P5(x) = x5 − 1

2
x3 + 3

80
x .

The roots of P5(x) are:

x51 = −x55, x52 = −x54, x53 = 0,

x54 = 1

2

√
1 −

√
2

5
, x55 = 1

2

√
1 +

√
2

5
.

As for v5(x5) we use symmetry to visualize v6(x6). We select a subspace of R6

that contains all symmetrical points (x1, x2, x3,−x3,−x2,−x1) on the sphere.
The coordinates in Fig. 32.7a are related to x6 by

x6 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 0
0 −1 0
0 0 −1
0 0 1
0 1 0
1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣
1/

√
2 0 0

0 1/
√
2 0

0 0 1/
√
2

⎤
⎦ t. (32.31)

In Fig. 32.7 there are 48 visible extreme points. The remaining extreme points can
be found using arguments analogous the five-dimensional case.

By Theorem 32.4 the extreme points on the unit sphere for v6(x6) is described by
the roots of this polynomial

Fig. 32.7 Plot of v6(x6)
over points on the unit sphere

(a) Plot with t-basis
given by (32.31).

(b) Plot with     and 
given by (32.4).
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P6(x) = x6 − 1

2
x4 + 1

20
x2 − 1

1800
.

The roots of P6(x) are:

x61 = − x66, x62 = −x65, x63 = −x64,

x64 = (−1)
3
4

2
√
15

(
10i − 3

√
10
(
z6w

1
3
6 + z6w

1
3
6

)) 1
2

= 1

2
√
15

√
10 − 2

√
10
(√

3l6 − k6
)
, (32.32)

x65 = (−1)
1
4

2
√
15

(
−10i − 3

√
10
(
z6w

1
3
6 + z6w

1
3
6

)) 1
2

= 1

2
√
15

√
10 − 2

√
10
(√

3l6 + k6
)
, (32.33)

x66 =
(

1

30

(
3
√
10
(
w

1
3
6 + w

1
3
6

)
+ 5
)) 1

2

=
√

1

30

(
2
√
10 · k6 + 5

)
, (32.34)

z6 = √
3 + i, w6 = 2 + i

√
6

k6 = cos

(
1

3
arctan

(√
3

2

))
, l6 = sin

(
1

3
arctan

(√
3

2

))
.

As for v6(x6) we use symmetry to visualize v7(x7). We select a subspace of R7

that contains all symmetrical points (x1, x2, x3, 0,−x3,−x2,−x1) on the sphere.
The coordinates in Fig. 32.8a are related to x7 by

x7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0
0 −1 0
0 0 −1
0 0 0
0 0 1
0 1 0
1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣
1/

√
2 0 0

0 1/
√
2 0

0 0 1/
√
2

⎤
⎦ t. (32.35)

In Fig. 32.8, there are 48 extreme points that are visible just like it was for the six-
dimensional case. This is expected since the transformation corresponds to choosing
x4 = 0 which restricts us to a six-dimensional subspace of R7 which can then be
visualized in the sameway as the six-dimensional case. The remaining extreme points
can be found using arguments analogous the five-dimensional case.

By Theorem 32.4 the extreme points on the unit sphere for v4 is described by the
roots of this polynomial
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Fig. 32.8 Plot of v7(x7)
over points on the unit sphere

(a) Plot with t-basis
given by (32.35).

(b) Plot with and
given by (32.4).

P7(x) = x7 − 1

2
x5 + 5

84
x3 − 5

3528
x .

The roots of P7(x) are:

x71 = − x77, x72 = −x76, x73 = −x75, x74 = 0,

x75 = (−1)
3
4

2
√
21

(
14i − 3

√
14
(
z6w

1
3
6 + z6w

1
3
6

)) 1
2

= 1

2
√
21

√
14 − 2

√
14
(√

3l6 − k6
)
, (32.36)

x76 = (−1)
1
4

2
√
21

(
−14i − 3

√
14
(
z6w

1
3
6 + z6w

1
3
6

)) 1
2

= 1

2
√
21

√
14 − 2

√
14
(√

3l7 + k7
)
, (32.37)

x77 =
√

1

42

(
3
√
14
(
w

1
3
6 + w

1
3
6

)
+ 5
) 1

2

=
√

1

42

(
2
√
14k7 + 5

)
, (32.38)

z6 = √
3 + i, w6 = 2 + i

√
10

k7 = cos

(
1

3
arctan

(√
5

2

))
,

l7 = sin

(
1

3
arctan

(√
5

2

))
.
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32.3 Some Limit Theorems Involving the Generalized
Vandermonde Matrix

Let Dk be the diagonal matrix

Dk = diag

(
1

0! ,
1

1! , . . . ,
1

(k − 1)!
)

.

Theorem 32.7 For any x ∈ Cn and a ∈ Cm with x j �= 0 for all j we have

Gmn(x, a) = lim
k→∞ Vkm(a)T DkVkn(log x), (32.39)

where the convergence is entry-wise, log x = (log x1, . . . , log xn) and the branch of
the complex logarithm log(· · · ) is fixed and defines the expression xaij by

xaij := eai log x j .

Wewill prove this theorem after presenting some results for a larger class ofmatrices.
Generalized Vandermonde matrices is a special case of matrices on the form

Amn(x, a) = [ f (x j , ai )
]
mn ,

where f is a function. Suppose that x is fixed, then each entry will be a function of
one variable

Amn(x, a) = [ f j (ai )
]
mn

. (32.40)

If all these functions f j are analytic in a neighborhood of some common a0 then
the functions have power series expansions around a0. If we denote the power series
coefficients for function f j as c j∗ then we may write

Amn(x, a) =
[ ∞∑

k=0

c jk(ai − a0)
k

]

mn

= lim
k→∞

[
(ai − a0)

j−1
]
mk

[
c j (i−1)

]
kn

= lim
k→∞ Vkm(a − a0)

T
[
c j (i−1)

]
kn , (32.41)

where convergence holds for each entry of Amn and

a − a0 = (a1 − a0, . . . , am − a0).

Proof (Proof of Theorem 32.7) With the complex logarithmic function, log(· · · ),
defined to lie in a fixed branch we may write generalized Vandermonde matrices as
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Gmn(x, a) = [ f j (ai )
]
mn ,

where
f j (ai ) = xaij = eai log x j , 1 ≤ j ≤ n.

These functions f j are analytic everywhere whenever x j �= 0. By the power series
of the exponential function we have

f j (ai ) = eai log x j =
∞∑
k=0

(ai log x j )
k

k! =
∞∑
k=0

(log x j )
k

k! aki ,

and by (32.41) we get

Gmn(x, a) = lim
k→∞ Vkm(a)T

[
(log x j )

i−1

(i − 1)!
]

kn

= lim
k→∞ Vkm(a)T diag

(
1

0! , . . . ,
1

(k − 1)!
)
Vkn(log x),

which concludes the proof.

Theorem 32.8 If n ≥ 2, x, a ∈ Cn, x j �= 0 for all j and vn(a) �= 0 then

lim
t→0

gn(x, at)
vn(at)

=
(

n∏
k=1

1

(k − 1)!

)⎛
⎝ ∏

1≤i< j≤n

(log x j − log xi )

⎞
⎠ .

We will prove this theorem after some intermediate results.
Let in = (1, 2, . . . , n), Pkn be the set of all vectors p ∈ Nn such that

1 ≤ p1 < p2 < · · · < pn ≤ k

and Qkn = {p ∈ Pkn : pn = k}. An N ×N minor of a matrix A ∈ Mmn is determined
by two vectors k ∈ PmN and l ∈ PnN and is defined as

A

(
k
l

)
:= det

[
Aki l j

]
NN

.

Using this notation the determinant of the product of two matrices A ∈ Mnk and
B ∈ Mkn can be written using the Cauchy–Binet formula [14, p. 18] as

det(AB) =
∑

p∈Pkn

A

(
in
p

)
· B
(

p
in

)
. (32.42)
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Lemma 32.5 If x, a ∈ Cn and x j �= 0 for all j then we can write the determinant
of generalized Vandermonde matrices as

gn(x, a) =
∞∑
k=n

∑
q∈Qkn

Vkn(a)T
(

in
q

)
· Dk

(
q
q

)
· Vkn(log x)

(
q
in

)
.

Proof By (32.39), the continuity of the determinant function, the associativity of
matrix multiplication, and (32.42), we get

gn(x, a) = det

(
lim
k→∞ Vkn(a)T DkVkn(log x)

)

= lim
k→∞ det

(
Vkn(a)T DkVkn(log x)

)

= lim
k→∞ det

((
Vkn(a)T Dk

)
Vkn(log x)

)

= lim
k→∞

∑
p∈Pkn

(
Vkn(a)T Dk

) ( in
p

)
· Vkn(log x)

(
p
in

)
.

We recognizing that Dk is a diagonal matrix that scales the columns of Vkn(a)T :

(
Vkn(a)T Dk

)
(i, j) = (Vkn(a)T

)
(i, j)Dk( j, j),

and so

(
Vkn(a)T Dk

) ( in
p

)
= (Vkn(a)T

) ( in
p

) n∏
l=1

Dk(pl, pl)

= (Vkn(a)T
) ( in

p

)
· Dk

(
p
p

)
,

that is

gn(x, a) = lim
k→∞

∑
p∈Pkn

Vkn(a)T
(

in
p

)
· Dk

(
p
p

)
· Vkn(log x)

(
p
in

)
,

and the result follows by recognizing that as k is increased to k + 1 in the limit, the
sum will contain all the previous terms (corresponding to p ∈ Pkn) with the addition
of new terms corresponding to p ∈ Q(k+1)n .

Proof (Proof of Theorem 32.8) When the summation in Lemma 32.5 is applied to
gn(x, at) the resulting expression will contain factors

Vkn(at)T
(

in
q

)
= t E(q)Vkn(a)T

(
in
q

)
.
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where

E(q) =
n∑
j=1

(q j − 1).

The lowest exponent for t will occur exactly once, for k = n, when q = in , and it is

M = E(in) =
n∑
j=1

( j − 1) = n(n − 1)

2
,

and by splitting the sum we get

gn(x, at) = t MVn(a)T
(

in
in

)
· Dn

(
in
in

)
· Vn(log x)

(
in
in

)
+ O(t M+1)

= t Mvn(a)

(
n∏

k=1

1

(k − 1)!

)
vn(log x) + O(t M+1).

The final result can now be proven by rewriting the denominator in the theorem as
vn(at) = t Mvn(a), taking the limit, and finally expanding vn(log x) by Theorem 32.1.

32.4 Conclusions

From the visualizations in Sect. 32.1.1 it was concluded that the extreme points
for the ordinary Vandermonde determinant on the unit sphere in R3 seems to have
some interesting symmetry properties and in Sect. 32.2 it was proven that extreme
points could only appear given certain symmetry conditions, see Remark 32.2 and
Theorem 32.5. This also allowed visualization of the extreme points of the ordinary
Vandermonde determinant on the unit sphere in some higher dimensional spaces,
Rn , more specifically for n = 4, 5, 6, 7.

The exact location of the extreme points for any finite dimension could also be
determined as roots of the polynomial given in Theorem 32.4. Exact solutions for
these roots were also given for the dimensions that were visualized, see Sects. 32.2.2
and 32.2.4.

Some visual investigation of the generalized Vandermonde matrix was also done
in Sect. 32.1.1 but no clear way to find or illustrate where the extreme points was
given. The authors intend to explore this problem further.

In Sect. 32.3 some limit theorems that involve factorization of a generalized Van-
dermonde matrix using an ordinary Vandermonde matrix and the ratio between the
determinant of a generalized Vandermonde matrix and the determinant of a related
ordinary Vandermonde matrix.
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