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Ternary Lie Superalgebras
and Nambu-Hamilton Equation
in Superspace
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Abstract In the present paper we give a survey of methods for constructing ternary
Lie algebras and ternary Lie superalgebras. We also propose a generalization of
Nambu-Hamilton equation to a superspace and show that this generalization induces
a family of ternaryNambu-Poisson brackets of evendegree functions on a superspace.
Then we show that the construction of ternary quantum Nambu-Poisson bracket,
based on the trace of a matrix, can be extended to matrix Lie superalgebra gl(m, n)

by means of the supertrace of a matrix. We propose a generalization of Nambu-
Hamilton equation in superspace. We show that this generalization induces a family
of ternary Nambu-Poisson brackets, which is defined with the help of Berezinian.
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3.1 Introduction

In this paper, we consider n-Lie algebras, n-Lie superalgebras and their applications
in Hamiltonian mechanics. The concept of n-Lie algebra was introduced by Filippov
in [15] and then studied in a number of papers. The simplest example of an n-Lie
algebra is the vector product of n vectors in (n + 1)-dimensional vector space [19].
The basic component of the structure of a Lie algebra is the Jacobi identity. This
identity can be written either in the form of equality to zero of the sum of the double
brackets of cyclic permutations of three elements, or in the form of a derivation of
a Lie bracket. The latter can be extended to a bracket with an arbitrary number of
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arguments, which leads to a basic component of a concept of n-Lie algebra, which
is now called the Filippov-Jacobi identity or the Fundamental Identity.

Independently from Filippov, Nambu proposed a generalization of Hamiltonian
mechanics to phase spaces of odd dimensions [18], and in this generalization the
Nambu-Hamilton equation induces a ternary operation on functions, which can be
considered as a ternary (more generally, as n-ary) analog of the Poisson bracket.
Later it turned out that the ternary bracket, which appeared in a generalization of
Hamiltonian mechanics proposed by Nambu, satisfies the Filippov-Jacobi identity. It
is interesting to note the fact that the structure of a Lie algebra plays an important role
in Hamiltonian mechanics, where it enters through the Poisson bracket. Similarly,
a generalization of the concept of Lie algebra to n-ary operations, proposed by
Filippov, plays an important role in the generalized Nambu-Hamilton mechanics,
where it enters by means of the n-ary Nambu-Poisson bracket.

Another area of theoretical physics, where the n-Lie algebras are applied, is a
field theory. Particularly the authors of the paper [13] proposed a generalization of
the Nahm’s equation by means of quantum Nambu 4-bracket and showed that their
generalization of the Nahm’s equation describes M2 branes ending on M5 branes.

A quantization of Nambu-Hamiltonian mechanics is a problem that already
Nambu mentioned and he also outlined possible solutions for this problem in his
pioneering work. However, this problem is still unresolved. In [9] the authors set
the task to find a quantum version of the ternary Nambu-Poisson bracket using a
matrix algebra, where the matrices can be both ordinary (i.e. plane) square matri-
ces and cubic (spatial) matrices. The motivation for this was the possible use of a
Nambu-Poisson quantum bracket in M-theory. The authors of [9] proposed several
realizations of a quantum Nambu-Poisson bracket using matrices and these realiza-
tions are based on a combination of the trace of a matrix and the commutator of two
matrices. This construction was generalized and its various aspects were investigated
in a number of papers [6–8, 16].

In the present paper we give a survey of methods for constructing ternary Lie
algebras and ternary Lie superalgebras. We also propose a generalization of Nambu-
Hamilton equation to a superspace and show that this generalization induces a family
of ternary Nambu-Poisson brackets of even degree functions on a superspace. The
present paper is organized as follows: First of all, in Sect. 3.2 we give the definition
of n-Lie algebra, its particular case of ternary Lie algebra and few important well
known examples of n-Lie algebras such as vector product and Jacobian n-Lie alge-
bras. Then we describe the construction of ternary quantum Nambu-Poisson bracket
(only in the case of (plane) square matrices), proposed in [9], and show that this con-
struction can be generalized bymeans of 1-cochain of Lie algebra, which satisfies the
condition written with the help of differential and wedge product of cochains. Then
we describe the method of constructing ternary Lie algebras by means of involution
and a derivation of a commutative, associative algebra, proposed in [12]. It should
be mentioned that we slightly generalize the approach of [12] by using our approach
based on a cochains, their wedge products and differential. Section3.3 is devoted to
3-Lie superalgebras. At the beginning of this section we give the definition of n-Lie
superalgebra and its particular case of ternary Lie superalgebra. We show that the
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system of two identities, which are equivalent to ternary Filippov-Jacobi identity
[10], can be extended to ternary Lie superalgebras by means of a graded version of
these identities. By other words, we prove that the graded version of the two iden-
tities, proposed in [10], is equivalent to graded Filippov-Jacobi identity, which is
a basic component of the concept of ternary Lie superalgebra. Then we show that
the construction of ternary quantum Nambu-Poisson bracket [9], based on the trace
of a matrix, can be extended to matrix Lie superalgebra gl(m, n) by means of the
supertrace of a matrix. By other words, we show that if we have a matrix Lie super-
algebra gl(m, n), then we can construct a ternary graded bracket by means of the
graded commutator of two supermatrices and the supertrace of a matrix and prove
that this ternary graded bracket is graded skew-symmetric and satisfies the graded
Filippov-Jacobi identity. In the last subsection of Sect. 3.3 we extend the method
of constructing ternary Lie algebras with the help of a derivation and an involution
of commutative, associative algebra to commutative superalgebra with superinvo-
lution and even degree derivation. As an example of applications of this method,
we construct the ternary Lie superalgebra of functions on a superspace, where the
ternary graded Lie bracket is defined by means of superinvolution and even degree
vector field. Finally, in Sect. 3.4 we propose a generalization of Nambu-Hamilton
equation in superspace. We show that this generalization induces a family of ternary
Nambu-Poisson brackets, which is defined with the help of Berezinian.

3.2 n-Lie Algebras

The notion of n-Lie algebra is an extension of the notion of Lie algebra to algebraic
structures based on an n-ary law of multiplication. It is well known that Lie algebra
is a vector space endowed with a binary multiplication law, which is bilinear, skew-
symmetric and satisfies the Jacobi identity. If we wish to extend this structure onto n-
ary law of multiplication, where n ≥ 2, then we must formulate the above conditions
in terms of an n-ary operation. It is clear that bilinearity and skew-symmetry are
easily transferred to the case of an n-ary multiplication law by replacing them with
multilinearity and skew-symmetry of a mapping with n arguments respectively. It is
well known that the Jacobi identity can be written in the form of derivation of a Lie
bracket. This makes it possible to extend the Jacobi identity to the case of an n-ary
multiplication law. This approachwas proposed by Filippov in [15] and the extension
of the Jacobi identity to an n-ary multiplication law in the form of derivation, as it
is mentioned above, is now called the Filippov-Jacobi identity. In this section we
will give the definition of n-Lie algebra, and several examples of n-Lie algebras. We
will also show how to construct 3-Lie algebra using the Lie bracket of a binary Lie
algebra and an analog of the trace of a matrix.

Definition 3.1 Vector space g endowedwith amapping [·, . . . , ·] : gn → g is said to
be a n-Lie algebra, if [·, . . . , ·] is n-linear, skew-symmetric and satisfies the identity

[x1, . . . , xn−1, [y1, . . . , yn]] =
n∑

i=1

[y1, . . . , [x1, . . . , xn−1, yi ], . . . , yn], (3.1)
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where x1, . . . , xn−1, y1, . . . , yn ∈ g.

In the definition of n-Lie algebra the identity (3.1) is called the Filippov-Jacobi
identity. It should be noted that in the papers, where n-Lie algebras are used for
applications in field theories and Nambu’s generalization of Hamiltonian mechanics,
the identity (3.1) is also called Fundamental Identity. Particularly, if we take n = 2
in the above definition, then we have a vector space g with a binary bracket [·, ·] :
g × g → g, which is skew-symmetric and satisfies the Jacobi identity

[x, [y1, y2]] = [[x, y1], y2] + [y1, [x, y2]],

which can be also written in a more recognizable form as follows

[x, [y1, y2]] + [y1, [y2, x]] + [y2, [x, y1]] = 0.

Hence, in this case Definition 3.1 gives the definition of Lie algebra.
If we now take the first integer, which follows 2, i.e. if in Definition 3.1 we take

n = 3, then we get the generalization of Lie algebra, which is called 3-Lie algebra or
ternary Lie algebra. In this paper, we will pay special attention to these algebras and
therefore, it is worthwhile to consider the general definition of n-Lie algebra in this
particular case. A 3-Lie algebra is a vector space g equipped with a ternary bracket
[·, ·, ·] : g × g × g → g, which is skew-symmetric, i.e. it does not change under a
cyclic permutation and change a sign under non-cyclic permutation of its arguments,
and satisfies the ternary Filippov-Jacobi identity

[x1, x2,[y1, y2, y3]] =
[[x1, x2, y1], y2, y3]] + [y1, [x1, x2, y2], y3]] + [y1, y2, [x1, x2, y3]]. (3.2)

The following proposition gives the system of two identities, which is equivalent
to the ternary Filippov-Jacobi identity.

Proposition 3.1 Let g be a vector space equipped with a skew-symmetric trilinear
mapping [·, ·, ·] : g × g × g → g. Then g is a 3-Lie algebra if and only if a trilinear
mapping satisfies the following identities:

[[x1, x2, x3], u, v] = [[x1, x2, u], x3, v] + [[x1, u, x3], x2, v] + [[u, x2, x3], x1, v],

and

[[x1, x2, u], y1, y2] + [[y1, y2, u], x1, x2] = [[y1, x2, u], x1, y2] + [[x1, y1, u], x2, y2]
+[[y2, x2, u], y1, x1] + [[x1, y2, u], y1, x2].

The proof can be found in [10].
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Definition 3.2 Let g be an n-Lie algebra and I be a subspace of vector space g. Then
I is said to be an ideal of n-Lie algebra g if for any y ∈ I and x1, x2, . . . , xn−1 ∈ g it
holds [x1, x2, . . . , xn−1, y] ∈ I . An n-Lie algebra g is called simple if [g, g, . . . , g] �=
{0} and g has no non-trivial ideals, i.e. n-Lie algebra g has no ideals different from
{0} and g.

3.2.1 Vector Product and Jacobian n-Lie Algebras

As it is mentioned in Introduction, the concept of n-Lie algebra was introduced by
Filippov in [15]. An example of such a structure is given by the vector product of
vectors. Let n ≥ 3 and consider an n-dimensional Euclidean vector space En with a
metric g. Let e1, e2, . . . , en be a basis for En and gμν = g(eμ, eν) be themetric tensor
in this basis. One can define the vector product of n − 1 vectors v1, v2, . . . , vn−1 as
follows

[v1, v2, . . . , vn−1] = gμτ εμ1,μ2,...,μn−1,τ v
μ1
1 v

μ2
2 . . . v

μn−1
n−1 eμ, (3.3)

where vi = vμ eμ, (gμτ ) is the reciprocal matrix of (gμτ ) and εμ1,μ2,...,μn−1,τ is a
totally antisymmetric tensor in n-dimensional Euclidean space [19]. Euclidean space
En endowed with the vector product (3.3) is an (n − 1)-Lie algebra, i.e. the vector
product (3.3) satisfies the Filippov-Jacobi identity. This algebra is called the vector
product (n − 1)-Lie algebra. It can be proved that the vector product (n − 1)-Lie
algebra is simple. Moreover, this (n − 1)-Lie algebra is the only one simple finite-
dimensional (n − 1)-Lie algebra for n > 3 [17].

Another example of n-Lie algebra is related to the generalization of Hamilto-
nian mechanics proposed by Nambu in [18]. As previously, En is an n-dimensional
Euclidean space, whose Cartesian coordinates will be denoted xμ, μ = 1, 2, . . . , n.
Let F1, F2, . . . , Fn be smooth functions on Euclidean space En . Define the n-ary
bracket as follows

{F1, F2, . . . , Fn} = ∂(F1, F2, . . . , Fn)

∂(x1, x2, . . . , xn)
= Det

⎛

⎜⎜⎝

∂x1F1 ∂x2F1 . . . ∂xn F1

∂x1F2 ∂x2F2 . . . ∂xn F2

. . . . . . . . . . . .

∂x1Fn ∂x2Fn . . . ∂xn Fn

⎞

⎟⎟⎠ . (3.4)

This n-ary bracket of smooth functions is called the n-ary Nambu-Poisson bracket.
Evidently, the n-ary Nambu-Poisson bracket is skew-symmetric and it can be proved
that it satisfies the Filippov-Jacobi identity and, thus, determines the n-Lie algebra
structure on the infinite dimensional space of smooth functions of Euclidean space
En . Moreover, it is easily verified that the n-ary Nambu-Poisson bracket has the
derivation property with respect to product of functions. If the algebra of smooth
functions on a finite-dimensional smoothmanifold is endowedwith an n-ary bracket,
which is skew-symmetric, has the derivation property with respect to product of
functions and it satisfies the Filippov-Jacobi identity, then this manifold is called the
Nambu-Poisson manifold [20].
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It should be noted that the n-ary Nambu-Poisson bracket retains all its alge-
braic properties (skew-symmetry, derivation property, Filippov-Jacobi identity), ifwe
replace in (3.4) the partial derivatives with commuting vector fields i.e. ∂xμ → Xμ,
where Xμ = X ν

μ ∂xν . This suggests an even more general structure. Assume A is
a unital commutative associative algebra and δ1, δ2, . . . , δn are derivations of this
algebra, which commute δi δ j = δ j δi . Then the n-ary bracket

{u1, u2, . . . , un} = Det

⎛

⎜⎜⎝

δ1(u1) δ2(u1) . . . δn(u1)
δ1(u2) δ2(u2) . . . δn(u2)

. . . . . . . . . . . .

δ1(un) δ2(un) . . . δn(un)

⎞

⎟⎟⎠ , (3.5)

is an n-ary Nambu-Poisson bracket. Hence, a unital commutative associative algebra
A endowed with the n-ary Nambu-Poisson bracket (3.5) is an n-Lie algebra, which
is called a Jacobian algebra defined by δ1, δ2, . . . , δn [12].

3.2.2 Construction of 3-Lie Algebras Based on Trace

As it was mentioned before, Nambu proposed a generalization of Poisson bracket
and Hamiltonian mechanics to spaces of odd dimensions and after that he tried to
construct a quantum approach to this generalization of Poisson bracket. However,
a problem of quantization of Nambu’s generalization of Hamiltonian mechanics
has proved difficult and is still considered to be unresolved. The problem can be
formulated so that one has to construct an explicit quantum Nambu-Poisson bracket
on an algebra of square or cubic matrices. In [9] the authors proposed several non-
trivial examples of the quantum version of Nambu-Poisson bracket, constructed on
an algebra of square and cubic matrices.

Let gl(N ) be the Lie algebra of N th order square complex matrices. The commu-
tator of two matrices will be denoted by [A, B] = A B − B A. The ternary bracket,
proposed in [9], has the form

[A, B,C] = (Tr A) [B,C] + (Tr B) [C, A] + (TrC) [A, B], (3.6)

where A, B,C ∈ gl(N ). It is easy to verify that the ternary bracket (3.6) is totally
skew-symmetric. Then, in [9] the authors prove that this ternary bracket satisfies the
ternary Filippov-Jacobi identity. Hence, (3.6) is a ternary Lie bracket and the vector
space gl(N ), endowed with this ternary Lie bracket, is a 3-Lie algebra. The matrix
3-Lie algebra constructed by means of the ternary Lie bracket (3.6) will be referred
to as a ternary matrix 3-Lie algebra induced by the matrix Lie algebra gl(N ) with
the help of the trace.

One can extend the above construction of the ternary Lie bracket from matrix Lie
algebras to a more general class of n-Lie algebras by means of a linear function,
which has a property of generalized trace [7, 11]. Indeed, assume that we have a
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n-Lie algebra g with an n-ary Lie bracket

(x1, x2, . . . , xn) ∈ g × . . . g → [x1, x2, . . . , xn] ∈ g, (3.7)

g∗ is the dual space of the vector space of g andω ∈ g∗ is an element of the dual space,
which, in analogy with the trace of a matrix, for any x, y ∈ g satisfies ω([x, y]) = 0.
Then, it can be proved [7] that the (n + 1)-ary bracket

[x1, x2, . . . , xn+1] =
n+1∑

k=1

(−1)k−1ω(xk) [x1, x2, . . . , x̂k, . . . , xn+1], (3.8)

where hat over an element xk means that this element is omitted, is an (n + 1)-Lie
bracket, i.e. totally skew-symmetric and satisfies the Filippov-Jacobi identity, and the
vector space of g, endowed with (3.8), is an (n + 1)-Lie algebra. This (n + 1)-Lie
algebra is referred to as an (n + 1)-Lie algebra induced by an n-Lie algebra g with
the help of a generalized trace ω. Particularly, a Lie algebra g induces the ternary Lie
algebra if we endow the vector space of a Lie algebra g with the following ternary
Lie bracket

[x, y, z] = ω(x) [y, z] + ω(y) [z, x] + ω(z) [x, y], (3.9)

where ω ∈ g∗ has the property of a generalized trace, i.e. ω([x, y]) = 0 for any
x, y ∈ g.

Thus, to construct an (n + 1)-Lie algebra, we can use an n-Lie algebra and an
element of its dual space, which has the property of a generalized trace. However, a
more thorough analysis of the Filippov-Jacobi identity in the case of the ternary Lie
bracket (3.9) shows that the totally skew-symmetric ternary bracket (3.9) satisfies
the ternary Filippov-Jacobi identity if ω satisfies a more general equation than the
property of generalized trace. In order to find this equation, we expand double ternary
Lie brackets at the left and right hand side of the ternary Filippov-Jacobi identity

[x, y, [u, v, t]] = [[x, y, u], v, t] + [u, [x, y, v], t] + [u, v, [x, y, t]].

Part of the terms in the resulting expression vanish due to the skew symmetry and
the Jacobi identity for the Lie bracket of a Lie algebra g. The remaining terms can
be collected into expression by means of binary Lie brackets. For instance, all terms
containing the binary Lie bracket [x, y] can be collected into expression

(ω(u) ω([v, t]) + ω(v) ω([t, u]) + ω(t) ω([u, v])) [x, y]. (3.10)

We get three more expressions of the same type if we collect all the terms containing
one of the following Lie brackets: [u, v], [u, t], [v, t]. Hence the ternary bracket (3.9)
will satisfy the ternary Filippov-Jacobi identity if for any u, v, t ∈ g an element ω of
the dual space g∗ satisfies the equation
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ω(u) ω([v, t]) + ω(v) ω([t, u]) + ω(t) ω([u, v]) = 0. (3.11)

Now, we can considerω as aC-valued 1-cochain of cochain complex of a Lie algebra
g. Making use of the antiderivation d : ∧kg∗ → ∧k+1g∗, which corresponds to the
Lie bracket of a Lie algebra g, we obtain the 2-cochain dω, where

dω(x, y) = −ω([x, y]).

Finally, the wedge product ω ∧ dω is the 3-cochain, where

ω ∧ dω(u, v, t) = ω(u) dω(v, t) + ω(v) dω(t, u) + ω(t) dω(u, v)

= −
(
ω(u) ω([v, t]) + ω(v) ω([t, u]) + ω(t) ω([u, v])

)
.

Now, the Eq. (3.11) can be written in the form

ω ∧ dω = 0. (3.12)

Theorem 3.1 Let g be a finite dimensional Lie algebra, g∗ be its dual space and
ω ∈ g∗. Define the ternary bracket by

[x, y, z] = ω(x) [y, z] + ω(y) [z, x] + ω(z) [x, y], x, y, z ∈ g. (3.13)

If ω satisfies the equation ω ∧ dω = 0, then the ternary bracket (3.13) is a ternary
Lie bracket, i.e. it satisfies the ternary Filippov-Jacobi identity, and the vector space
of a Lie algebra g equipped with the ternary Lie bracket (3.13) is the ternary Lie
algebra.

Particularly, if ω is a 1-cocycle of Chevalley-Eilenberg complex, i.e. dω = 0, then
(3.13) is a ternary Lie bracket. This is the case, when we construct ternary bracket for
N th order matrices by means of the trace of a matrix (3.6). Indeed, in this particular
case ω is the trace of a matrix, i.e. we can consider the trace of a matric as an
element of the dual space Tr : gl(N ) → C, and d Tr(x, y) = Tr([x, y]) = 0, i.e. Tr
is a 1-cocycle.

3.2.3 Construction of 3-Lie Algebras Based on Derivation
and Involution

In this section,we continue the description ofmethods for constructing 3-Lie algebras
bymeans of the (binary) Lie bracket of a Lie algebra and additional structures defined
on this algebra. The structure of the ternary Lie brackets, described in this section, is
similar to the structure of the ternary Lie brackets constructed in the previous section
with the help of the trace of a matrix and its analogues. As an initial Lie algebra
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for the construction of 3-Lie algebra, we take various Lie algebras constructed with
the help of derivations and involutions of a commutative associative algebra. This
section is based on the constructions of 3-Lie algebras proposed in [12], but in the
present paper we propose a more general condition for the elements of the dual space
of Lie algebra formulated ny means of the cochain complex of the Lie algebra and
the antiderivation operator of this complex.

Let A be a commutative associative algebra over the field of complex numbers.
A derivation δ of A is a linear mapping δ : A → A, which satisfies the Leibniz
rule δ(xy) = δ(x) y + x δ(y), where x, y ∈ A. An involution of an algebra A is a a
mapping x ∈ A �→ x∗ ∈ A, which satisfies the following conditions:

1. (a x + y)∗ = ā x∗ + y∗, where a, b ∈ C, x, y ∈ A (antilinearity),
2. (x∗)∗ = x , where x ∈ A,
3. (xy)∗ = x∗ y∗.

Making use of a derivation δ and an involution x �→ x∗, one can construct the fol-
lowing (binary) Lie brackets on an algebra A:

(a) [x, y]δ = x δ(y) − y δ(x),
(b) [x, y]∗ = x∗ y − y∗ x ,
(c) [x, y]∗,δ = (x − x∗) δ(y) − (y − y∗) δ(x), where an involution and derivation

satisfy the condition (δ(x))∗ = −δ(x∗) for any x ∈ A.

An algebra A equipped with one of the Lie brackets (a), (b), (c) becomes the Lie
algebra, which will be denoted by Aδ,A∗,A∗,δ respectively. Every Lie algebra
Aδ,A∗,A∗,δ has its own cochain complex with operator of antiderivation, which
will be denoted by dδ, d∗, d∗,δ respectively. In analogy with Theorem (3.1), we can
prove the following theorem:

Theorem 3.2 Let ξ, η, ζ ∈ A∗. If elements ξ, η of the dual space satisfy the equation

ξ ∧ dδ(ξ) = 0, η ∧ d∗(η) = 0,

then ternary brackets

[x, y, z]ξ = ξ(x)[y, z]δ + ξ(y)[z, x]δ + ξ(z)[x, y]δ,
[x, y, z]η = η(x)[y, z]∗ + η(y)[z, x]∗ + η(z)[x, y]∗,

are ternary Lie brackets, i.e. they satisfy the Filippov-Jacobi identity, and an algebra
A endowed with one of these ternary Lie brackets becomes 3-Lie algebra. If an
element ζ ∈ g∗ satisfies the equation

ζ ∧ d∗,δ(ζ ) = 0,

a derivation and an involution satisfy the relation (δ(x))∗ = −δ(x∗), then the ternary
bracket

[x, y, z]ζ = ζ(x)[y, z]∗,δ + ζ(y)[z, x]∗,δ + ζ(z)[x, y]∗,δ,
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is a ternary Lie bracket and an algebra A equipped with this ternary Lie bracket is
a 3-Lie algebra.

Another 3-Lie algebra that can be constructed with the help of the involution and the
Lie bracket [ , ]δ , is defined by the following ternary bracket

[x, y, z]∗,δ = x∗ [y, z]δ + y∗ [z, x]δ + z∗ [x, y]δ. (3.14)

Theorem 3.3 If derivation δ and an involution x �→ x∗ of a commutative associative
algebra A satisfy the relation

(δ(x))∗ = −δ(x∗),

then the ternary bracket (3.14) is ternary Lie bracket and an algebra A endowed
with this ternary Lie bracket is a 3-Lie algebra.

3.3 n-Lie Superalgebras

As was shown in the previous section, the concept of a Lie algebra can be extended
to n-ary laws of multiplication by means of a generalization of the Jacobi identity
if it is written in the form of a derivation of a Lie bracket. A similar approach can
be used to extend the notion of a Lie superalgebra to structures with n-ary laws
of multiplication. Indeed, a definition of a Lie superalgebra is based on the graded
Jacobi identity and, analogously to the ordinary Jacobi identity, the graded Jacobi
identity can be written as a derivation of the graded Lie bracket. In this section,
we consider the n-Lie superalgebras and various ways of constructing them. First
of all, we propose two identities and prove that the graded ternary Filippov-Jacobi
identity is equivalent to the system of these identities. Then, we propose a method for
constructing ternary Lie superalgebras, which is based on the use of the supertrace
and its analogues [1–3]. This method is similar to the method of constructing ternary
Lie algebras using the trace and its analogs, described in the previous section. Next,
we extend themethod of constructing ternary Lie algebras with the help of involution
and derivation of a commutative associative algebra to ternary Lie superalgebras and
construct several ternary Lie superalgebras with the help of involution and even
degree derivation of a commutative superalgebra. We apply this construction to the
commutative superalgebra of functions on a superspace and construct by means of
an involution and an even vector field the ternary Lie superalgebra of functions on a
superspace.

Let g = g0 ⊕ g1 be a super vector space. As usual, the elements of the subspace
g0 will be called even elements of g and the elements of the subspace g1 will be called
odd elements of g. The degree of a homogeneous element x ∈ g will be denoted by
|x |. Thus, the value of a degree is a residue class modulo 2, i.e. |x | ∈ Z2.
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Definition 3.3 Ann-Lie superalgebrag is a super vector spaceg = g0 ⊕ g1 endowed
with a n-ary bracket (x1, x2, . . . , xn) ∈ g × g × . . . × g �→ [x1, x2, . . . , xn] gr ∈ g,
which satisfies the following conditions:

1. An n-ary bracket is linear in every argument of this bracket.
2. The degree of a bracket of n elements is equal to the sum of degrees of factors,

|[x1, x2, . . . , xn] gr| =
n∑

i=1

|xi |

3. [xi1 , xi2 , . . . , xin ] gr = −(−1)σ [x1, x2, . . . , xn] gr, where i1, i2, . . . , in is a permu-
tation of integers 1, 2, . . . , n and σ is its parity. This property is called a graded
skew-symmetry of n-ary bracket.

4.
[x1, . . . , xn−1,[y1, . . . , yn] gr] gr =

n∑

i=1

(−1)μi [y1, . . . , [x1, . . . , xn−1, yi ] gr, . . . , yn] gr,
(3.15)

where μ1 = 0 and μi = ∑n−1
k=1 |xk | ∑i−1

l=1 |yl | for i > 1.

An n-ary bracket, which satisfies the conditions 1 - 4, will be referred to as an n-ary
graded Lie bracket and the identity (3.15) will be referred to as the n-ary graded
Filippov-Jacobi identity.

This definition gives the definition of a Lie superalgebra, if we take n = 2. Indeed,
according to Definition 3.3, in this case we will have binary bracket

(x, y) ∈ g × g �→ [x, y] gr ∈ g,

which is graded skew-symmetric, i.e. [x, y] gr = −(−1)|x | |y|[y, x] gr, and satisfies the
graded Jacobi identity

[x, [y, z] gr] gr = [[x, y] gr, z] gr + (−1)|x | |y|[y, [x, z] gr] gr.

The next value of integer n is 3. In this case an n-Lie superalgebra gwill be called
a ternary Lie superalgebra or 3-Lie superalgebra. Since ternary Lie superalgebras
play an important role in the present paper, we give a complete definition of such an
algebra, which, of course, is a special case of Definition 3.3.

Definition 3.4 A ternary Lie superalgebra or 3-Lie superalgebra is a super vector
space g = g0 ⊕ g1 endowed with a ternary brackets,

(x, y, z) ∈ g × g × g �→ [x, y, z] gr ∈ g,

which is trilinear, graded skew-symmetric, i.e.
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[x, y, z] gr = −(−1)|x | |y|[y, x, z] gr, [x, y, z] gr = −(−1)|y| |z|[x, z, y] gr,

satisfies the condition |[x, y, z] gr| = |x | + |y| + |z| and the ternary graded Filippov-
Jacobi identity

[x, y, [u, v, w] gr] gr = [[x, y, u] gr, v, w] gr + (−1)(|x |+|y|) |u| [u, [x, y, v] gr, w] gr

+(−1)(|x |+|y|)(|u|+|v|) [u, v, [x, y, w] gr] gr.

(3.16)

Proposition 3.2 Let g = g0 ⊕ q1 be a super vector space endowed with a ternary
bracket

(x, y, z) ∈ g × g × g �→ [x, y, z] gr ∈ g, (3.17)

which is a trilinear, graded skew-symmetric and satisfies |[x, y, z] gr| = |x | + |y| +
|z|. Then the ternary bracket (3.17) is a ternary graded Lie bracket, and a super
vector space g endowed with this ternary bracket is a ternary Lie superalgebra if
and only if the ternary bracket (3.17) satisfies two identities

[[x, y, z] gr, u, v] gr = (−1)α[[u, y, z] gr, x, v] gr + (−1)β[[x, u, z] gr, y, v] gr

+(−1)γ [[x, y, u] gr, z, v] gr, (3.18)

whereα=|u|(|x | + |y| + |z|) + |x |(|y| + |z|), β=|u|(|y| + |z|) + |y||z|, γ = |u||z|,
and

[[x, y, z], u, v] + (−1)μ[[u, v, z], x, y] − (−1)ν[[x, u, z], y, v]
−(−1)λ[[v, y, z], u, x] − (−1)ρ[[x, v, z], u, y] − (−1)κ [[u, y, z], x, v] = 0,

(3.19)

where

μ = (|x | + |y|)(|u| + |v|),
ν = |y||u| + |y||z| + |z||u|,
λ = |v|(|y| + |z| + |u|) + |x |(|y| + |z| + |u|) + |x ||v|,
ρ = (|v| + |y|)(|z| + |u|) + |v||y|,
κ = (|x | + |u|)(|y| + |z|) + |x ||u|.

Proof Let us assume that (3.17) is a graded ternary Lie bracket, i.e. it satisfies the
graded Filippov-Jacobi identity. Thus, we have

[x, y, [z, u, v]] = [[x, y, z], u, v] + (−1)(|x |+|y|) |z|[z, [x, y, u], v]
+(−1)(|x |+|y|)(|z|+|u|)[z, u, [x, y, v]]. (3.20)
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Now, applying the graded Filippov-Jacobi identity to the last term at the right hand
side of the above relation, we can write it as follows

�����[x, y, [z, u, v]] = [[x, y, z], u, v] + (−1)(|x |+|y|) |z|[z, [x, y, u], v]
+(−1)(|x |+|y|)(|z|+|u|)([[z, u, x], y, v] + (−1)|x |(|z|+|u|)[x, [z, u, y], v]

+(−1)(|z|+|u|)(|x |+|y|)[x, y, [z, u, v]]
)

= [[x, y, z], u, v] + (−1)(|x |+|y|) |z|[z, [x, y, u], v]
+(−1)(|x |+|y|)(|z|+|u|)[[z, u, x], y, v] + (−1)|y|(|z|+|u|)[x, [z, u, y], v]

+�����[x, y, [z, u, v]] . (3.21)

Now, we interchange z and [x, y, v] in the second term at the right hand side of the
above expression. When performing this operation, we must multiply this term by
(−1)|z|(|x |+|y|+|u|). As a result, this term will have a factor (−1) to power

|z|(|x | + |y| + |u|) + |z|(|x | + |y|) = |z||u|.

Thus

(−1)(|x |+|y|) |z|[z, [x, y, u], v] = −(−1)|z||u|[[x, y, u], z, v]. (3.22)

Rearranging similarly the factors inside the brackets of the third and fourth terms at
the right hand side of (3.21), we obtain

(−1)(|x |+|y|)(|z|+|u|)[[z, u, x], y, v] = −(−1)|y||u|+|z||u|+|y||z|[[x, u, z], y, v],
(−1)|y|(|z|+|u|)[x, [z, u, y], v] = −(−1)|u|(|x |+|y|+|z|)+|x |(|y|+|z|)[[u, y, z], x, v].

Now, the relation (3.21) can be written in the form

[[x, y, z], u, v] = (−1)|u|(|x |+|y|+|z|)+|x |(|y|+|z|)[[u, y, z], x, v]
+(−1)|y||u|+|z||u|+|y||z|[[x, u, z], y, v] + (−1)|z||u|[[x, y, u], z, v],

and this is the first identity (3.18). Analogously, the second identity (3.19) can be
proved if we apply the graded Filippov-Jacobi identity (3.20) to the first and the
second terms at the right hand side of (3.20).

3.3.1 Matrix 3-Lie Superalgebras Constructed
by Means of Supertrace

In this sectionwe show that themethod of constructing 3-Lie algebras bymeans of the
trace proposed in [9] and developed in the series of papers can be extended to 3-Lie
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superalgebras if we use the supertrace of a matrix [1–3]. It will be shown that given a
matrix Lie superalgebra gl(m, n) we can construct a ternary graded skew-symmetric
bracket with the help of graded commutator of two matrices X,Y ∈ gl(m, n) and
the supertrace and prove that this ternary graded skew-symmetric bracket satisfies
the graded ternary Filippov-Jacobi identity (3.16) and, hence, this ternary graded
skew-symmetric bracket is a ternary graded Lie bracket.

An element of a matrix Lie superalgebra gl(m, n) is a (m + n) order square block
matrix

X =
(
X11 X12

X21 X22

)
, (3.23)

where X11 is a mth order square matrix, X12 is an m × n-dimensional matrix, X21

is a n × m-dimensional matrix and X22 is a nth order square matrix. The vector
space of these block matrices becomes a super vector space if the matrices with
X12 = X21 = 0 will be given the degree zero and called even degree matrices and
the matrices with X11 = X22 = 0 will be given the degree one and called odd degree
matrices. If a matrix has certain degree, then, as usual in the supermathematics, it will
be referred to as a homogeneous matrix. The degree of a matrix X will be denoted
by |X |. In order to simplify notations, in this subsection we will also denote the
degree of a matrix by the same, but small letter. For instance, the degree of a matrix
X will be denoted by x . We will also denote the sum of two degrees x, y by xy, i.e.
xy = x + y. The Lie superalgebra structure of gl(m, n) is determined by the graded
commutator of two matrices

[X,Y ] gr = X · Y − (−1)xy Y · X, (3.24)

which satisfies the graded Jacobi identity

[X, [Y, Z ] gr] gr = [[X,Y ] gr, Z ] gr + (−1)xy[Y, [X, Z ] gr] gr.

If one ofmatrices (or both) is of even degreematrix, then the graded commutator is the
usual commutator of twomatrices,whichwill be denotedby [X,Y ] = X · Y − Y · X .
If X,Y are odd degree matrices, then the graded commutator becomes the anti-
commutator which will be denoted by {X,Y } = X · Y + Y · X . We will denote the
subspace of even degree matrices by gl0(m, n), and the subspace of odd degree
matrices by gl1(m, n). Then g = gl0(m, n) ⊕ gl1(m, n). The supertrace of a matrix
(3.23) is given by the formula

Str X = Tr X11 − Tr X22. (3.25)

The supertrace vanishes in the case of the graded commutator of two matrices

Str ([X,Y ] gr) = 0. (3.26)
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From the formula for the supertrace it follows immediately that the supertrace of an
odd degree matrix is zero, i.e. Str X = 0 for any X ∈ gl1(m, n).

We define the ternary bracket of threematrices X,Y, Z ∈ gl(m, n) by the formula

[X, Y, Z ] gr = (Str X) [Y, Z ] gr + (−1)yz x (StrY ) [Z , X ] gr + (−1)z xy(Str Z) [X, Y ] gr.

(3.27)

First, wewill show that in this way defined ternary bracket is a graded ternary bracket,
i.e. for homogeneous matrices (of certain degree) it satisfies

∣∣∣[X,Y, Z ] gr

∣∣∣ = x + y + z, (3.28)

where x, y, z are degrees of matrices X,Y, Z respectively. If all three matrices
X,Y, Z are even degree matrices, then

[X,Y, Z ] gr = (Str X) [Y, Z ] + (Str Y ) [Z , X ] + (Str Z) [X,Y ], (3.29)

and, in this case, as it is easy to see, [X,Y, Z ] gr is the even degree matrix and the
formula (3.28) is true. It is worth to note that in the case of even degree matrices the
ternary bracket (3.29) is similar to the ternary Lie bracket (3.6) proposed in the paper
[9], but it is not exactly the same if the block X22 in a matrix (3.23) is non trivial.

For other possible combinations of parities of matrices X,Y, Z , the formula (3.6)
gives the following expressions for ternary bracket:

1. X is an odd degree and Y, Z are even degree matrices

[X,Y, Z ] gr = (Str Y ) [Z , X ] − (Str Z) [Y, X ]. (3.30)

From the above formula, it follows that [X,Y, Z ] gr is the odd degree matrix,
because the right hand side is the linear combination of two odd degree matrices
[Z , X ] and [Y, X ]. This is consistent with formula (3.28), which also gives the
odd degree for [X,Y, Z ] gr (x + y + z = 1 + 0 + 0 = 1). It is interesting to note
that the even degree term (Str X) [Y, Z ], which would violate the consistency of
the degrees of left and right hand sides in (3.6), vanishes due to the fact that the
supertrace of an odd degree matrix X is 0.

2. X,Y are odd and Z is even degree matrix

[X,Y, Z ] gr = Str Z {X,Y }. (3.31)

The degree of the matrix at the right hand side is even (anti-commutator of two
odd degree matrices has even degree) and this is consistent with the formula
(3.28), which gives for the left hand side of (3.31) 1 + 1 + 0 = 0.

3. X,Y, Z are odd degree matrices

[X,Y, Z ] gr = 0.
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In this case the formula (3.28) is also true, because zero matrix can be given either
even degree or odd degree.

Hence, (3.27) is a graded ternary bracket.

Next, we will show that (3.27) is a ternary graded skew-symmetric bracket. Indeed,
interchanging matrices X,Y in the ternary graded bracket (3.27), we get

[Y, X, Z ] gr = (Str Y ) [X, Z ] gr + (−1)xz y(Str X) [Z , Y ] gr + (−1)z xy(Str Z) [Y, X ] gr.

(3.32)

Making use of the graded skew-symmetry of graded (binary) commutator, every term
at the right-hand side of (3.32) can be written as follows:

(−1)xz y(Str X) [Z ,Y ] gr = −(−1)xy (Str X) [Y, Z ] gr,

(Str Y ) [X, Z ] gr = −(−1)xy
(
(−1)x yz(Str Y ) [Z , X ] gr

)
,

(−1)z xy(Str Z) [Y, X ] gr = −(−1)xy
(
(−1)z xy(Str Z) [X,Y ] gr

)
.

Substituting the right-hand sides of these relations into (3.32) we obtain

[X,Y, Z ] gr = −(−1)xy[Y, X, Z ] gr,

and this proves the graded skew-symmetry of (3.27) for X,Y . Analogously we can
verify the graded skew-symmetry for Y, Z .

Theorem 3.4 A matrix Lie superalgebra gl(m, n) endowed with the ternary graded
bracket (3.27) is a 3-Lie superalgebra, i.e. the ternary graded bracket (3.27) satisfies
the ternary graded Filippov-Jacobi identity

[X,Y, [Z , V,W ] gr] gr = [[X,Y, Z ] gr, V,W ] gr + (−1)xy z[Z , [X,Y, V ] gr,W ] gr

+(−1)xy zv[Z , V, [X,Y,W ] gr] gr. (3.33)

Thus, (3.27) is a ternary graded Lie bracket.

Proof In order to prove this theorem let us denote

A = [Z , V,W ] gr, B = [X,Y, Z ] gr,C = [X,Y, V ] gr, D = [X,Y,W ] gr.

Then, making use of these notations, we can write the ternary graded Filippov-Jacobi
identity (3.33) in the form

[X,Y, A] gr = [B, V,W ] gr + (−1)xy z[Z ,C,W ] gr + (−1)xy zv[Z , V, D] gr. (3.34)

We begin with the left hand side of ternary graded Filippov-Jacobi identity. The
ternary graded bracket A is the linear combination of graded binary commutators
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A = (Str Z) [V,W ] gr + (−1)z vw(Str V ) [W, Z ] gr + (−1)w zv(StrW ) [Z , V ] gr.

Because the supertrace vanishes on graded commutators, we have Str A = 0. Thus
the left hand side of the ternary graded Filippov-Jacobi identity (3.34) takes the form

[X,Y, A] gr = (Str X) [Y, A] gr + (−1)x ya(Str Y ) [A, X ] gr =
= (Str X) (Str Z) [Y, [Z ,W ] gr] gr + g.c.p.(Z , V,W )

+(−1)x ya
(
(Str Y ) (Str Z) [[Z ,W ] gr, X ] gr

+g.c.p.(Z , V,W )
)
, (3.35)

where a is the degree of the matrix A, and “g.c.p.(Z , V,W )” (graded cyclic permu-
tations) means that the term (Str X) (Str Z) [Y, [Z ,W ] gr] gr is followed by two more
terms of the same kind, in which the arguments Z , V,W are cyclically permuted, i.e.
(Z , V,W ) → (V,W, Z) and (Z , V,W ) → (W, Z , V ) and multiplied by (−1)z vw

and (−1)w zv respectively. Thus there are six terms at the left-hand side of the graded
Filippov-Jacobi identity (3.34).

Analogously Str B = StrC = Str D = 0, and the terms at the right hand side of
the ternary graded Filippov-Jacobi identity (3.34) can be written as

[B, V,W ] gr = (−1)b vw
(
(Str V ) (Str X) [W, [Y, Z ] gr] gr + g.c.p.(X,Y, Z)

)

+ (−1)w bv
(
(StrW ) (Str X) [[Y, Z ] gr, V ] gr + g.c.p.(X,Y, Z)

)
,

[Z ,C,W ] gr = (Str Z) (Str X) [[Y, V ] gr,W ] gr + g.c.p.(X,Y, V )

+ (−1)w cz
(
(StrW ) (Str X) [Z , [Y, V ] gr] gr + g.c.p.(X,Y, V )

)
,

[Z ,C,W ] gr = (Str Z) (Str X) [V, [Y,W ] gr] gr + g.c.p.(X,Y,W )

+ (−1)z vd
(
(Str V ) (Str X) [[Y,W ] gr, Z ] gr + g.c.p.(X,Y,W )

)
.

Thus there are totally 18 terms at the right-hand side of the ternary graded Filippov-
Jacobi identity.

Now, let us consider the first term in (3.35)

Str X Str Z [Y, [Z ,W ]], (3.36)

which is the first term of the left hand side of the ternary graded Filippov-Jacobi
identity. There are two similar terms at the right hand side of the ternary graded
Filippov-Jacobi identity, and they are the first terms in the expressions for [B, V,W ]
and [Z ,C,W ] multiplied by corresponding coefficients shown in (3.34))

(Str Z) (Str X)
(
(−1)z xy[[Y, V ] gr,W ] gr + (−1)zv xy[V, [Y,W ] gr] gr

)
. (3.37)

The terms (3.36), (3.37) vanish if at least one of the matrices X, Z is odd degree
matrix, because the supertrace of a matrix of odd degree is zero. Hence, what is
remained is the case, when both matrices X, Z are matrices of even degree, that is
x = z = 0. But in this case the expression (3.37) takes the form
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(Str Z) (Str X)
([[Y, V ] gr,W ] gr + (−1)vy[V, [Y,W ] gr] gr

)
. (3.38)

We see that the term (3.36) at the left hand side of the ternary Filippov=Jacobi
identity is canceled by two terms (3.38) of the right hand side of the identity, because
all together they form the usual graded Jacobi identity. Analogously, it can be shown
that all the rest five terms at the left hand side of the identity (3.35) are canceled by
the corresponding terms of the right hand side of the identity.

Now, after these cancellations there are no more non-trivial terms at the left-hand
side of the identity, and at the right-hand side there are 18 − 12 = 6 terms. These
terms can be split into pairs such that they cancel each other. For instance, in the first
half of the expression [B, V,W ] there is the term

(−1)b vw+z xy
(
(Str V ) (Str Z) [W, [X,Y ] gr] gr, (3.39)

where b = x + y + z, determined by the permutation (X,Y, Z) → (Z , X,Y ). This
term is non-trivial only when v = z = 0, i. e.

(−1)w xy
(
(Str V ) (Str Z) [W, [X,Y ] gr] gr. (3.40)

The expression [Z ,C,W ] gr, accordingly to (3.34) multiplied by (−1)z xy , has the
similar term

(−1)vz xy(Str V ) (Str Z) [[X,Y ] gr,W ] gr,

which is determined by the cyclic permutation (X,Y, V ) → (V, X,Y ) in the first
half of the expression [Z ,C,W ] gr. Because this term is non-trivial only in the case
v = z = 0, we can write it as follows

(Str V ) (Str Z) [[X,Y ] gr,W ] gr = −(−1)w xy(Str V ) (Str Z) [W, [X,Y ] gr] gr. (3.41)

Now, it is evident that the sum of two terms (3.40), (3.41) is zero, and this ends the
proof.

This theorem can be formulated in a more general form if we use a notion of a gen-
eralized supertrace. Let g = g0 ⊕ g1 be a Lie superalgebra with graded Lie bracket
denoted by (x, y) ∈ g × g �→ [x, y] gr ∈ g. Letω ∈ g∗ is an element of the dual space.
Define the trilinear function Sω by

Sω(x, y, z) = ω(x)ω([y, z] gr) + (−1)|x |(|y|+|z|)ω(y)ω([z, x] gr)

+(−1)|z|(|x |+|y|)ω(z)ω([x, y] gr). (3.42)

An element ω ∈ g∗ is said to be a generalized supertrace of a Lie superalgebra g if
it satisfies the conditions:

1. Sω(x, y, z) = 0, for any x, y, z ∈ g,
2. ω(x) = 0, for any odd degree element x , i.e. x ∈ g1.
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Evidently, the supertrace of a matrix satisfies the conditions of a generalized super-
trace.

Theorem 3.5 Let g = g0 ⊕ g1 be a Lie superalgebra andω be its generalized super-
trace. Then the ternary graded bracket

[x, y, z]ω = ω(x) [y, z] gr + (−1)|x |(|y|+|z|)ω(y) [z, x] gr + (−1)|z|(|x |+|y|)ω(z) [x, y] gr,

(3.43)
is a ternary graded Lie bracket, and a Lie superalgebra g endowed with the ternary
graded Lie bracket (3.43) is a ternary Lie superalgebra.

3.3.2 Construction of 3-Lie Superalgebras Based on
Derivation and Involution

Let A = A0 ⊕ A1 be a superalgebra. As before, the degree of a homogeneous
element u ∈ A will be denoted by |u|. A superalgebra A is said to be commu-
tative superalgebra if for any two homogeneous elements u, v ∈ A it holds uv =
(−1)|u||v|vu. A degree m derivation of a superalgebra A, where m is either 0 (even
degree derivation) or 1 (odd degree derivation), is a linear mapping δ : A → A such
that |δ(u)| = |u| + m and it satisfies the graded Leibniz rule

δ(uv) = δ(u) v + (−1)m|u|u δ(v). (3.44)

The degree of a derivation δwill be denoted by |δ|. Hence if δ is an even degree deriva-
tion of a superalgebraA, then |δ(u)|=|u|, i.e. δ does not change the degree of a homo-
geneous element u, and for any two elements u, v ∈ A it satisfies the Leibniz rule

δ(uv) = δ(u) v + u δ(v). (3.45)

A mapping ∗ : u ∈ A �→ u∗ ∈ A is said to be a superinvolution of a superalgebra A
if it satisfies the following conditions:

1. a mapping ∗ : u ∈ A �→ u∗ ∈ A is even degree mapping of a superalgebraA, i.e.
∗ : u ∈ A0 �→ u∗ ∈ A0, ∗ : u ∈ A1 �→ u∗ ∈ A1 or |u∗| = |u|,

2. (λ u + v)∗ = λ̄ u∗ + v∗, λ ∈ C, u, v ∈ A, superinvolution is anti-linear,
3. (u∗)∗ = u,
4. (uv)∗ = (−1)|u||v|v∗u∗.
In the case of a commutative superalgebrawith superinvolution ∗ the fourth condition
takes the form (uv)∗ = u∗v∗. Any element x of superalgebraAwith superinvolution
A can be written in the form x = x1 + x−1, where x∗

1 = x1, x∗−1 = −x−1 and

x1 = 1

2
(x + x∗), x−1 = 1

2
(x − x∗). (3.46)

It is worth to mention that the components x1, x−1 have the same degree as x , i.e.
|x1| = |x−1| = |x |.
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A superinvolution and odd degree derivation can be used to construct binary
graded Lie brackets on a superalgebra A. Let us define

[u, v]∗ = u∗v − (−1)|u||v|v∗u, (3.47)

[u, v]δ = u δ(v) − (−1)|u||v|v δ(u), (3.48)

[u, v]∗,δ = (u − u∗) δ(v) − (−1)|u||v|(v − v∗)δ(u). (3.49)

We remind that a binary graded bracket is called a graded Lie bracket if it satisfies
the graded Jacobi identity.

Lemma 3.1 The binary graded brackets (3.47), (3.48) are graded Lie brackets. The
third graded bracket (3.49) is a graded Lie bracket if a superinvolution and an even
degree derivation satisfy the condition (δ(u))∗ = −δ(u∗).

Hence, every binary graded Lie bracket (3.47), (3.48), (3.49) determines the Lie
superalgebra structure on a superalgebraA. These Lie superalgebras will be denoted
A∗, Aδ , A∗,δ respectively. It is should be mentioned that in the case of the latter Lie
superalgebra we assume the condition (δ(u))∗ = −δ(u∗) for a superinvolution and
even degree derivation to be satisfied.

Now, making use of the binary graded Lie brackets (3.47), (3.48), (3.49) and of
a generalized supertrace for corresponding graded Lie brackets, we can construct
ternary graded Lie brackets.

Theorem 3.6 Let A = A0 ⊕ A1 be a commutative superalgebra, ∗ be its
superinvolution and δ be its even degree derivation. If ξ, η, χ are generalized super-
traces for Lie superalgebras A∗, Aδ , A∗,δ respectively, then the following ternary
graded brackets

[x, y, z]∗ = ξ(x) [y, z]∗ + (−1)|x |(|y|+|z|)ξ(y) [z, x]∗
+(−1)|z|(|x |+|y|)ξ(z) [x, y]∗, (3.50)

[x, y, z]δ = η(x) [y, z]δ + (−1)|x |(|y|+|z|)η(y) [z, x]δ
+(−1)|z|(|x |+|y|)η(z) [x, y]δ, (3.51)

[x, y, z]∗,δ = χ(x) [y, z]∗,δ + (−1)|x |(|y|+|z|)χ(y) [z, x]∗,δ

+(−1)|z|(|x |+|y|)χ(z) [x, y]∗,δ. (3.52)

are ternary graded Lie brackets, i.e. they satisfy the ternary graded Filippov-Jacobi
identity. Hence, the Lie superalgebrasA∗,Aδ ,A∗,δ equipped with the ternary graded
Lie brackets (3.50), (3.51), (3.52) are ternary Lie superalgebras.

It is easy to see that all three ternary graded brackets (3.50), (3.51), (3.52) have the
same structure as the ternary gradedLie bracket described in Theorem3.5. Therefore,
this theorem easily follows from Theorem 3.5.

Theorem 3.7 Let A = A0 ⊕ A1 be a commutative superalgebra with super-
involution ∗ : A → A and δ be an even degree derivation of A. If for any u ∈ A a
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superinvolution and even degree derivation satisfy the condition (δ(u))∗ = −δ(u∗),
then the ternary graded bracket

[u, v, w] gr = u∗ [v,w]δ + (−1)|u|(|v|+|w|)v∗ [w, u]δ + (−1)|w|(|u|+|v|)w∗ [u, v]δ,
(3.53)

is a ternary graded Lie bracket and a superalgebra A endowed with this ternary
graded Lie bracket is a ternary Lie superalgebra.

First of all, it should be noted that the proof of this theorem cannot be based on the
statement of Theorem 3.5, because there is a significant difference in the structure
of ternary brackets used in these theorems. Indeed, the ternary graded Lie bracket
in Theorem 3.5 is constructed by means of a generalized supertrace ω, while the
ternary graded bracket (3.53) is constructed by means of superinvolution. The proof
of this theorem in the case of commutative algebra, proposed in [12], cannot also be
automatically transferred to the case of a superalgebra, since in this case the order of
the factors in a product plays a significant role due to the appearance of the factor−1,
depending on the degrees of the elements. We checked the ternary graded Filippov-
Jacobi identity for the ternary graded bracket (3.53) with the help of a computer
program using noncommutative symbolic calculus. For this computer program we
derived the formulae, which do not contain the factor −1, depending on the degrees
of elements, but in this case the ordering of elements is essential. For instance, the
ternary graded bracket (3.53) can be written in the form

[u, v, w] gr = u∗ v δ(w) − u∗ δ(v)w + δ(u) v∗ w − u v∗ δ(w) + u δ(v) w∗ − δ(u) v w∗,

and our computer program expanded ternary graded brackets by means of this for-
mula. One more useful formula, which we used in computer program, is

([u, v]δ)∗ = [v∗, w∗]δ.

We can apply Theorem 3.7 to construct a ternary infinite dimensional Lie superal-
gebra of functions on a superspace. Let Rn,2 be a superspace with n even degree
coordinates xμ, μ = 1, 2, . . . , n and two odd degree coordinates θ, θ̄ . We denote
by C∞(Rn,2) the superalgebra of smooth complex-valued functions on a superspace
Rn,2. This superalgebra is commutative superalgebra. A function F(x, θ, θ̄ ) can be
expanded in odd degree coordinates

F(x, θ, θ̄ ) = F0(x) + F10(x) θ + F01(x) θ̄ + F11(x) θ θ̄ .

The degree of a homogeneous function F will be denoted by |F |. We endow this
commutative superalgebra with superinvolution F �→ F∗, which is defined as fol-
lows:

F∗(x, θ, θ̄ ) = F̄0(x) + F̄10(x) θ̄ + F̄01(x) θ + F̄11(x) θ̄θ,
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where bar over F0, F10, F01, F11 stands for complex conjugation. Let X be an even
degree vector field

X = Xμ ∂

∂xμ
+ φ

∂

∂θ
+ ψ

∂

∂θ̄
,

where every Xμ is an even degree function and φ,ψ are odd degree functions. Define
the ternary graded bracket of three functions by

[F,G, H ] gr = F∗ [G, H ]X + (−1)G∗ [H, F]X + (−1)H∗ [F,G]X , (3.54)

where [F,G]X = F X (G) − (−1)|F ||G|G X (F).

Proposition 3.3 The ternary graded bracket (3.54) for functions on a superspace
Rn,2 is a ternary graded Lie bracket if a vector field X has the form

X = Xμ ∂

∂xμ
+ φ

∂

∂θ
− φ∗ ∂

∂θ̄
,

where every function Xμ satisfies the condition Xμ
1 = 0 (see the formula (3.46)) or,

equivalently, (Xμ)∗ = −Xμ.

Hence, the superalgebra of functions C∞(Rn,2), endowed with the ternary graded
Lie bracket (3.54), where an even degree vector field X satisfies the condition of
Proposition 3.3, is an infinite dimensional ternary Lie superalgebra.

3.3.3 Classification of Low Dimensional 3-Lie Superalgebras

In this section we discuss a method that can be used to classify 3-Lie superalgebras,
and afterwards the very same method is applied to give a classification of 3-Lie
superalgebras of dimension m|n, where m + n < 5.

Definition 3.5 Let g = g0 ⊕ g1 be a n-Lie superalgebra, such that {e1, e2, . . . , em}
and { f1, f2, . . . , fn} span g0 and g1 respectively. Denote

B = {e1, e2, . . . , em, f1, f2, . . . , fn} .

Elements K B
i1...in

defined by

[
bi1 , . . . , bin

] = K j
i1...in

b j ,

where bi1 , . . . , bin , b j ∈ B, are called structure constants of gwith respect toB, and
we say that the super vector space dimension of g is m|n.

Assume (g, [·, ·, ·]) is a 3-Lie superalgebra and dimension of g is m|n, that is, the
dimensions of g0 and g1 are respectively m an d n. Denote
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B = {e1, e2, . . . , em, f1, f2, . . . , fn}

and assume that eα spans the even part of g and fi spans the odd part of g, where 1 ≤
α ≤ m and 1 ≤ i ≤ m. Moreover, let bi = ei , when 1 ≤ i ≤ m, and let bi = fi−m if
m < i ≤ m + n. As the bracket preserves gradings, then naturally

|[b1, b2, b3]| = |b1| + |b2| + |b3|,

which yields that we could use the structure constants to write down the values of
brackets applied to generators of the algebra as follows

[
eα, eβ, eγ

] = K λ
αβγ eλ,

[
eα, eβ, fi

] = K j
αβi f j ,

[
eα, fi , f j

] = K β

αi j eβ,
[
fi , f j , fk

] = Kl
i jk fl ,

(3.55)

where α ≤ β ≤ γ and i ≤ j ≤ k. As we can transform all other combinations of
generators to one of these four variations listed above by applying the skew symmetric
property of the bracket, then there is no need to take those other combinations into
account.

By observing the left hand sides of relations (3.55) we can identify those combi-
nations on which the bracket results as 0, or in other words, the combinations that
are trivial in terms of the given 3-Lie superalgebra. To find those combinations of
basis elements that give such result we need to check whether any permutation of
the initial ordering yields the same bracket without preserving the sign. If this is the
case, then naturally the bracket has to be equal to zero. Evidently

[eα, eα, eα] = − (−1)|eα ||eα | [eα, eα, eα] = − [eα, eα, eα] ,[
eα, eα, eβ

] = − (−1)|eα ||eα | [eα, eα, eβ

] = − [
eα, eα, eβ

]
,

[eα, eα, fi ] = − (−1)|eα ||eα | [eα, eα, fi ] = − [eα, eα, fi ] ,

meaning that triplets, regardless of the ordering, which always result in trivial bracket
are

{eα, eα, eα} ,
{
eα, eα, eβ

}
, {eα, eα, fi } ,

where α �= β, i �= j , α, β ∈ {1, 2, . . .m} and i, j ∈ {m + 1,m + 2, . . . ,m + n}.
Our aim now is to put the graded Filippov-Jacobi identify into use. For that fix

1 ≤ i ≤ j ≤ k ≤ m + n, r, s ∈ {1, 2, . . . ,m + n} and observe [
bi , b j , bk

] = Kl
i jkbl .

Then nested bracket

[
br , bs,

[
bi , b j , bk

]]
(3.56)
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can be calculated in two different ways. One way to do it is by direct computation
using the information we already know, that is by plugging in the structure constants
using the linearity of the bracket. This yields

[
br , bs,

[
bi , b j , bk

]] = Kl
i jk [br , bs, bl ] .

Now the remaining brackets on right hand side are to be reordered so that the indices
of the triplets inside the brackets are nondecreasing. That is, transform [br , bs, bl ]

to (−1)�rsl
[
br̂ , bŝ, bl̂

]
, where {r, s, l} =

{
r̂ , ŝ, l̂

}
, r̂ ≤ ŝ ≤ l̂, and (−1)�rsl denotes

the sign that comes from reordering elements in the bracket due to skew-symmetric
properties. At this pointwe can express

[
br̂ , bŝ, bl̂

]
yet again using structure constants

as in
[
br̂ , bŝ, bl̂

] = K t
r̂ ŝl̂
bt .

Combining everything together we can see that

[
br , bs,

[
bi , b j , bk

]] = (−1)�rsl K l
i jk K

t
r̂ ŝl̂
bt .

Of course we can also apply Filippov-Jacobi identify to Eq. (3.56) to calculate the
value. This gives us on the other hand

[
br , bs,

[
bi , b j , bk

]] = [
[br , bs, bi ] , b j , bk

]+
(−1)|bi ||br |+|bi ||bs | [bi ,

[
br , bs, b j

]
, bk

] +
(−1)|bi ||br |+|bi ||bs |+|b j ||br |+|b j ||bs | [bi , b j , [br , bs, bk]

]
.

(3.57)
In Eq. (3.57) we can once again apply the algorithm described above to replace

brackets in each summand with structure constants.

[
br , bs,

[
bi , b j , bk

]] =
K t

rsi K
u
jkt bu + (−1)|bi br |+|bi bs | K t

rs j K
u
ikt bu + (−1)|bi br |+|bi bs |+|b j br |+|b j bs| K t

rsk K
u
i j t bu

Now let us use only such structure constants whose lower indices are in increasing
order for consistency:

(−1)�lrs K l
i jk Kl̂r̂ ŝu bu = (−1)�rsi+� jkt K t

r̂ ŝî
K u

ĵ k̂t̂
bu+

(−1)�rs j+�ikt+|bi br |+|bi bs | K t
r̂ ŝ ĵ

K u
î k̂t̂
bu+

(−1)�rsk+�i j t+|bi br |+|bi bs |+|b j br |+|b j bs| K t
r̂ ŝk̂

K u
î ĵ t̂
bu

Sincebu are known structure constants,we are leftwith a set of quadratic equations
for each u ∈ {1, 2, . . . ,m + n}
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(−1)�lrs K l
i jk Kl̂r̂ ŝu = (−1)�rsi+� jkt K t

r̂ ŝî
K u

ĵ k̂t̂
+

(−1)�rs j+�ikt+|bi br |+|bi bs | K t
r̂ ŝ ĵ

K u
î k̂t̂

+
(−1)�rsk+�i j t+|bi br |+|bi bs |+|b j br |+|b j bs| K t

r̂ ŝk̂
K u

î ĵ t̂
,

where Kl
i jk are unknowns.

Altogether we are left with a system of quadratic equations whose solutions are
structure constants of a m|n-dimensional 3-Lie superalgebra. However, as the struc-
ture constants are dependent of the choice of the basis of the underlying super vector
space, these solutions are not unique up to isomorphism and duplicates need to be
removed case-by-case.

In what follows, assume that super vector space g is taken over filed C. Now, if
we put the above described algorithm in practice, following results emerge.

Theorem 3.8 Let g be a super vector space of dimension 0|1 or 1|1. Then 3-Lie
superalgebra (g, [·, ·, ·]) is Abelian.
Theorem 3.9 Let g be a super vector space of dimension 0|2 or 1|2. Then 3-Lie
superalgebra (g, [·, ·, ·]) is either Abelian or it is isomorphic to 3-Lie superalgebra
(h, [·, ·, ·]�) whose non trivial brackets are either

⎧
⎪⎪⎨

⎪⎪⎩

[ f1, f1, f1] = − f1 + f2,
[ f1, f1, f2] = − f1 + f2,
[ f1, f2, f2] = − f1 + f2,
[ f2, f2, f2] = − f1 + f2,

or [ f1, f1, f1] = f2,

where f1, f2 are odd generators of h.

Theorem 3.10 Let g be a super vector space of dimension 2|1. Then 3-Lie super-
algebra (g, [·, ·, ·]) is either Abelian or it is isomorphic to 3-Lie superalgebra
(h, [·, ·, ·]�) whose non trivial brackets are either

{
[e1, f1, f1] = −e1 + e2,
[e2, f1, f1] = −e1 − e2

or [e1, e1, f1] = f1 or [ f1, f1, f1] = f1,

where elements e1, e2 and f1 are respectively even and odd generators or h.

3.4 Extension of Nambu Approach to Superspace

In this section, we show how to extend the Nambu approach to superspace. As is
known, the generalization of Hamiltonian mechanics proposed by Nambu leads to
the ternary bracket for functions on the phase space of odd dimension. This ternary
bracket satisfies the Filippov – Jacobi identity, i.e. it defines the structure of a ternary
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Lie algebra on a space of functions. Our extension of the Nambu approach to super-
space leads to a family of ternary brackets on the algebra of even degree functions,
parametrized by two odd degree functions.

We start with the superspace R3|2 with three real coordinates x, y, z and two
Grassmann coordinates θ, θ̄ . In order to have compact notation for coordinates, we
denote by r the collection of real coordinates x, y, z and by ξ the collection of
Grassmann coordinates θ, θ̄ . The algebra of smooth functions on three dimensional
space R3 will be denoted by C.

A smooth curve in the superspace R3|2 is given by α(t) = (r(t), ξ(t)), where
ξ(t) = (θ(t), θ̄ (t)), and

(
θ(t)
θ̄(t)

)
= g(t)

(
θ

θ̄

)
, (3.58)

where

g(t) =
(
g11(t) g12(t)
g21(t) g22(t)

)
. (3.59)

Then θ(t)θ̄(t) = Det(g(t)) θ θ̄ . Odd degree functions functions φ,ψ can be expand
in Grassmann coordinates of superspace as follows

φ(r, ξ) = φ1(r) θ + φ2(r) θ̄ ,

ψ(r, ξ) = ψ1(r) θ + ψ2(r) θ̄ .

The determinant of the second order matrix

Ψ (r) = ∂(φ,ψ)

∂(θ, θ̄ )
=

(
φ′

θ φ′
θ̄

ψ ′
θ ψ ′

θ̄

)
=

(
φ1(r) φ2(r)
ψ1(r) ψ2(r)

)
, (3.60)

will be denoted byΔ. We will use ∂(φ,ψ)

∂(θ,θ̄)
to denote the matrix of partial derivatives of

corresponding functions. The determinant of this matrix will be denoted by vertical
lines. Hence

Δ =
∣∣∣
∂(φ,ψ)

∂(θ, θ̄)

∣∣∣ =
∣∣∣∣
φ′

θ φ′
θ̄

ψ ′
θ ψ ′

θ̄

∣∣∣∣ = φ′
θ ψ ′

θ̄
− φ′

θ̄
ψ ′

θ .

and we will assume that the functional matrix (3.60) is regular at any point r of
R3, i.e. Δ �= 0. It is useful to denote the algebra of second order matrices, whose
entries are smooth functions on the three dimensional space R3, by Mat2(C). Then
the infinite dimensional matrices will be denoted by G2(C), i.e.

G2(C) = {Ψ (r) ∈ Mat2(C) : |Ψ (r)| �= 0 at any point r ∈ R3}. (3.61)

In [18] Nambu proposed a generalization of Hamilton mechanics for odd
dimensional spaces. Particularly, he proposed the following system of equations
in three dimensional space R3 (“Hamilton equations”)
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dx

dt
=

∣∣∣
∂(H,G)

∂(x, y)

∣∣∣,

dy

dt
=

∣∣∣
∂(H,G)

∂(y, z)

∣∣∣, (3.62)

dz

dt
=

∣∣∣
∂(H,G)

∂(z, x)

∣∣∣,

where H,G are two functions, which can be considered as Hamiltonians of a dynam-
ical system. Then for any function F we have

dF

dt
=

∣∣∣
∂(F, H,G)

∂(x, y, z)

∣∣∣, (3.63)

and the right hand side of this formula determines an analog of Poisson bracket in
three dimensional space, which is now called Nambu-Poisson bracket.

We propose to extend this approach to the superspace R3|2 as follows: Consider
a parametrized curve α(t) = (r(t), ξ(t)) in the superspace R3|2, whose even degree
part r(t) is a solution of the system of equations

dx

dt
= Ber

(H,G, φ, ψ)

(y, z, θ, θ̄ )
,

dy

dt
= Ber

(H,G, φ, ψ)

(z, x, θ, θ̄ )
, (3.64)

dz

dt
= Ber

(H,G, φ, ψ)

(x, y, θ, θ̄ )
,

where H,G are even degree functions, φ,ψ are odd degree functions and the right
hand sides of the above equations are Berezinians. Comparing this extension of
Nambu-Hamilton equations with the Nambu-Hamilton equations (3.62), we see that
the structures of the right hand sides of the both systems of equations are very similar
and thefirst difference is theBerezinian at the right hand side of (3.64),which replaces
the determinant at the right hand sides of Nambu-Hamilton equations, i.e. when
passing from space to superspace, we replace the determinant with its super analog,
that is, the superdeterminant. Another difference is the appearance of odd degree
functions φ,ψ . This is a peculiarity of the structure of superspace and we interpret
these functions as additional parameters of the analogs of the Nambu-Hamilton
equations that appear in superspace.

For instance

Ber
(H,G, φ, ψ)

(y, z, θ, θ̄ )
= Sdet

∂(H,G, φ, ψ)

∂(y, z, θ, θ̄ )
= Sdet

⎛

⎜⎜⎜⎜⎝

H ′
y H ′

z | H ′
θ H ′

θ̄

G ′
y G ′

z | G ′
θ G ′

θ̄− − − − −
φ′
y φ′

z | φ′
θ φ′

θ̄

ψ ′
y ψ ′

z | ψ ′
θ ψ ′

θ̄

⎞

⎟⎟⎟⎟⎠
, (3.65)
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where Sdet stands for the superdeterminant of supermatrix and dotted lines show
the structure of the supermatrix, i.e. they split the matrix into even degree and odd
degree blocks. The elements of the upper-right block of this supermatrix are the right
derivatives of functions H,G with respect to Grassmann variables θ, θ̄ , i.e.

H ′
θ = H

←−
∂

∂θ
, H ′

θ̄
= H

←−
∂

∂θ̄
, G ′

θ = G
←−
∂

∂θ
, G ′

θ̄
= G

←−
∂

∂θ̄
.

Thus according to the definition of superdeterminant [14] we have

Ber
(H,G, φ, ψ)

(y, z, θ, θ̄ )
= Δ−1

∣∣∣
∂(H,G)

∂(y, z)
− ∂(H,G)

∂(θ, θ̄ )

(∂(φ,ψ)

∂(θ, θ̄)

)−1 ∂(φ,ψ)

∂(y, z)

∣∣∣ (3.66)

The odd degree part ξ(t) of a curve α is a solution of the system of equations

dθ

dt
= Δ−1

(∣∣∣
∂(H,G)

∂(x, y)

∣∣∣
∣∣∣
∂(φ,ψ)

∂(z, θ̄ )

∣∣∣ +
∣∣∣
∂(H,G)

∂(y, z)

∣∣∣
∣∣∣
∂(φ,ψ)

∂(x, θ̄ )

∣∣∣

+
∣∣∣
∂(H,G)

∂(z, x)

∣∣∣
∣∣∣
∂(φ,ψ)

∂(y, θ̄ )

∣∣∣
)
, (3.67)

d θ̄

dt
= Δ−1

(∣∣∣
∂(H,G)

∂(x, y)

∣∣∣
∣∣∣
∂(φ,ψ)

∂(z, θ)

∣∣∣ +
∣∣∣
∂(H,G)

∂(y, z)

∣∣∣
∣∣∣
∂(φ,ψ)

∂(x, θ)

∣∣∣

+
∣∣∣
∂(H,G)

∂(z, x)

∣∣∣
∣∣∣
∂(φ,ψ)

∂(y, θ)

∣∣∣
)
, (3.68)

The expression at the right-hand side of the Eq. (3.67) contains the determinants of
matrices

∂(φ,ψ)

∂(z, θ̄ )
=

(
φ′
z φ′

θ̄

ψ ′
z ψ ′

θ̄

)
,

∂(φ,ψ)

∂(y, θ̄ )
=

(
φ′
y φ′

θ̄

ψ ′
y ψ ′

θ̄

)
,

∂(φ,ψ)

∂(x, θ̄ )
=

(
φ′
x φ′

θ̄

ψ ′
x ψ ′

θ̄

)
.

(3.69)
These matrices have no structure of supermatrices because their first columns consist
of the odd degree elements while the second columns consist of the even degree ele-
ments. But determinants of these matrices are correctly defined because the elements
of the main diagonal, as well as the elements of the secondary diagonal, commute.
It is worth to mention that the values of these determinants are odd degree functions
and this is consistent with the left hand side of (3.67), which is also the odd degree
function. This also holds for the right hand side of the Eq. (3.68).

As it was mentioned before, we interpret odd degree functions φ,ψ in the
Eqs. (3.64), (3.67), (3.68) as parameters of the system. It would be natural to expect
that under certain conditions imposed on these parameters, we could obtain, as a
special case of a system of Eqs. (3.64), (3.67), (3.68), the Nambu-Hamilton equa-
tions (3.62). It turns out that this is the case. In order to see this, we have to com-
pletely separate the system of functions H,G, φ, ψ according to the coordinates of
superspace. To this end, we assume that two even degree functions (Hamiltonians)
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H,G do not depend on Grassmann coordinates θ, θ̄ and two odd degree functions
φ(r, ξ), ψ(r, ξ) do not depend on real coordinates x, y, z of the superspace R3|2, i.e.
we have

φ(r, ξ) = λ11θ + λ12θ̄ ,

ψ(r, ξ) = λ21θ + λ22θ̄ ,

where λi j are real numbers. Then the matrix (3.60) takes the form

Ψ =
(

λ11 λ12

λ21 λ22

)
,

i.e. it does not depend on a point r ∈ R3 and its determinant Δ is the non-zero real
number. In this case the matrices (3.69) have zero column and their determinants
vanish. Hence the right hand sides of Eqs. (3.67), (3.68) turn into zeros and we get
θ ′
t = θ̄ ′

t = 0. Hence if α(t) is a solution of the system of Eqs. (3.64)–(3.68) in the
casewhen odd degree functionsφ(r, ξ), ψ(r, ξ) are constant functions in coordinates
x, y, z, then Grassmann coordinates of solution α(t) do not depend on t and this
solution can be considered as a parametrized curve r(t) in the three dimensional
space R3. Moreover, in this case the upper-right block of the supermatrix (3.65) is
zeromatrix and it follows immediately from the definition of superdeterminant (3.66)
that the right-hand side of the first Eq. in (3.64) turns into ordinary determinant of
the matrix ∂(H,G)

∂(y,z) with irrelevant numerical factor Δ−1. The similar results hold in
the case of the right hand sides of the second and third equations in (3.64). Thus the
Eqs. (3.64) take on the form

dx

dt
= Δ−1

∣∣∣
∂(H,G)

∂(y, z)

∣∣∣,
dy

dt
= Δ−1

∣∣∣
∂(H,G)

∂(z, x)

∣∣∣,
dz

dt
= Δ−1

∣∣∣
∂(H,G)

∂(x, y)

∣∣∣, (3.70)

and we see that in this particular case the system of Eqs. (3.64), (3.67), (3.68) reduces
to the Nambu-Hamilton equations in three dimensional space (3.62). This gives us
grounds to call the system of Eqs. (3.64), (3.67), (3.68) the generalization of Nambu-
Hamilton equation in the superspace R3|2.

In order to write the generalization of Nambu-Hamilton equation in a more com-
pact form we introduce the functions K,L,M,R,S, where K,L,M are the func-
tions at the right hand sides of the equations in (3.64) (from left to the right respec-
tively), and R,S are the right-hand sides of the Eqs. (3.67), (3.68) respectively.
Thus
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K = Ber
(H,G, φ, ψ)

(y, z, θ, θ̄ )
, L = Ber

(H,G, φ, ψ)

(z, x, θ, θ̄ )
, M = Ber

(H,G, φ, ψ)

(x, y, θ, θ̄ )
,

R = 1

Δ2

(∣∣∣
∂(H,G)

∂(x, y)

∣∣∣
∣∣∣
∂(φ,ψ)

∂(z, θ̄ )

∣∣∣ +
∣∣∣
∂(H,G)

∂(y, z)

∣∣∣
∣∣∣
∂(φ,ψ)

∂(x, θ̄ )

∣∣∣ +
∣∣∣
∂(H,G)

∂(z, x)

∣∣∣
∣∣∣
∂(φ,ψ)

∂(y, θ̄ )

∣∣∣

S = 1

Δ2

(∣∣∣
∂(H,G)

∂(x, y)

∣∣∣
∣∣∣
∂(φ,ψ)

∂(z, θ)

∣∣∣ +
∣∣∣
∂(H,G)

∂(y, z)

∣∣∣
∣∣∣
∂(φ,ψ)

∂(x, θ)

∣∣∣ +
∣∣∣
∂(H,G)

∂(z, x)

∣∣∣
∣∣∣
∂(φ,ψ)

∂(y, θ)

∣∣∣.

The right hand sides of the generalization of Nambu-Hamilton equation induce the
even degree vector field on the superspace R3|2

X = K
∂

∂x
+ L

∂

∂y
+ M

∂

∂z
+

←−
∂

∂θ
R +

←−
∂

∂θ̄
S. (3.71)

It is worth to remind that the vector field induced by the right hand sides of Nambu-
Hamilton equation is divergenceless [18] and this motivated Nambu to develop his
approach, because the divergenceless of corresponding vector field is sufficient and
necessary condition for Liouville theorem, which states that the volume of the flow
generated by Hamiltonian vector field is constant in time. In analogy with Nambu-
Hamilton equation (3.62) it can be shown by straightforward computations that the
vector field of the generalization of Nambu-Hamilton equation (3.71) is also diver-
genceless in the superspace R3|2. Thus we have

∂K

∂x
+ ∂L

∂y
+ ∂M

∂z
+ R

←−
∂

∂θ
+ S

←−
∂

∂θ̄
= 0.

3.4.1 Extension of Nambu-Poisson Ternary Bracket to
Superspace

The Nambu-Hamilton equations in three dimensional space R3 induce the ternary
Nambu-Poisson bracket of smooth functions. This bracket is defined by means of
the determinant of the matrix of partial derivatives of functions with respect to coor-
dinates of R3. The Nambu-Poisson bracket is totally skew-symmetric, satisfies the
Leibniz rule and the Filippov-Jacobi identity (Fundamental Identity) [20]. The aim of
this section is to show that the generalization of Nambu-Hamilton equations (3.64),
(3.67), (3.68) introduced in the previous section leads to ternary bracket of even
degree functions, this ternary bracket depends on a pair of odd degree functions and
can be defined by means of superdeterminant.

Let F(r, ξ) be an even degree function, i.e. F(r, ξ) = F0(r) + F1(r) θ θ̄ . This
function restricted to a curve α(t) = (x(t), y(t), z(t), θ(t), θ̄ (t)), where

θ(t) = f11(t) θ + f12(t) θ̄ , θ̄ (t) = f21(t) θ + f22(t) θ̄ ,
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can be written in the form F(t) = F0(r(t)) + F1(r(t)) | f (t)| θ θ̄ , where | f (t)| is the
determinant of the matrix (3.59). The derivative of this function can be written in the
form

dF

dt
= ∂F

∂x

dx

dt
+ ∂F

∂y

dy

dt
+ ∂F

∂z

dz

dt
+ F

←−
∂

∂θ

dθ

dt
+ F

←−
∂

∂θ̄

d θ̄

dt
.

Indeed we have

dF

dt
=dF0

dt
+ dF1

dt
| f (t)| θ θ̄ + F1

d

dt

(
| f (t)|

)
θ θ̄

=∂F

∂x

dx

dt
+ ∂F

∂y

dy

dt
+ ∂F

∂z

dz

dt
− (F1 θ̄ (t))

dθ

dt
+ (F1 θ(t))

d θ̄

dt

=∂F

∂x

dx

dt
+ ∂F

∂y

dy

dt
+ ∂F

∂z

dz

dt
+ F

←−
∂

∂θ

dθ

dt
+ F

←−
∂

∂θ̄

d θ̄

dt
. (3.72)

Nextwe assert that ifα(t) is a solution of generalization ofNambu-Hamilton equation
(3.64), (3.67), (3.68) in superspace then the derivative of any even degree function
F can be expressed by means of Berezinian as follows

dF

dt
= Ber

(F, H,G, φ, ψ)

(x, y, z, θ, θ̄ )
= Sdet

⎛

⎜⎜⎜⎜⎜⎜⎝

F ′
x F ′

y F ′
z | F ′

θ F ′
θ̄

H ′
x H ′

y H ′
z | H ′

θ H ′
θ̄

G ′
x G ′

y G ′
z | G ′

θ G ′
θ̄− − − − − −

φ′
x φ′

y φ′
z | φ′

θ φ′
θ̄

ψ ′
x ψ ′

y ψ ′
z | ψ ′

θ ψ ′
θ̄

⎞

⎟⎟⎟⎟⎟⎟⎠
. (3.73)

This formula suggests that it is natural to introduce a new bracket, which can be
considered as an analogue of the Nambu-Poisson ternary bracket [18, 20] in the
superspace R3|2. We consider even degree functions F, H,G in (3.73) as arguments
and two odd degree functions φ,ψ as parameters of this new ternary bracket. Evi-
dently these two functions can be identified with the matrix Ψ (r) (3.60). We denote
this new ternary bracket by bold curly brackets and define it by

{F, H,G}Ψ = Ber
(F, H,G, φ, ψ)

(x, y, z, θ, θ̄ )
, (3.74)

where F, H,G are even degree functions on the superspaceR3|2 andΨ shows depen-
dence of ternary bracket on matrix Ψ ∈ G2(C) associated to odd degree functions
φ,ψ . Thus we have associated to each element Ψ of the infinite dimensional group
of invertible matrices G2(C) the ternary bracket (3.74) of even degree functions on
the superspace R3|2, that is

Ψ ∈ G2(C) �→ { , , }Ψ .
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Now our aim is to prove the formula (3.73). In order to simplify the form of
formulae we introduce the following notations

εH,G
x,y =

∣∣∣
∂(H,G)

∂(x, y)

∣∣∣, εH,G
y,z =

∣∣∣
∂(H,G)

∂(y, z)

∣∣∣, εH,G
z,x =

∣∣∣
∂(H,G)

∂(z, x)

∣∣∣

δx,θ =
∣∣∣
∂(φ,ψ)

∂(x, θ)

∣∣∣, δy,θ =
∣∣∣
∂(φ,ψ)

∂(y, θ)

∣∣∣, δz,θ =
∣∣∣
∂(φ,ψ)

∂(z, θ)

∣∣∣,

δx,θ̄ =
∣∣∣
∂(φ,ψ)

∂(x, θ̄ )

∣∣∣, δy,θ̄ =
∣∣∣
∂(φ,ψ)

∂(y, θ̄ )

∣∣∣, δz,θ̄ =
∣∣∣
∂(φ,ψ)

∂(z, θ̄ )

∣∣∣.

Then the Berezinian of the supermatrix at the left-hand side of (3.73) can be written
in the form of ordinary determinant

Δ−1

∣∣∣∣∣∣∣

F ′
x − F ′

θ

δx,θ̄
Δ

+ F ′
θ̄

δx,θ
Δ

F ′
y − F ′

θ

δy,θ̄
Δ

+ F ′
θ̄

δy,θ
Δ

F ′
z − F ′

θ

δz,θ̄
Δ

+ F ′
θ̄

δz,θ
Δ

H ′
x − H ′

θ

δx,θ̄
Δ

+ H ′
θ̄

δx,θ
Δ

H ′
y − H ′

θ

δy,θ̄
Δ

+ H ′
θ̄

δy,θ
Δ

H ′
z − H ′

θ

δz,θ̄
Δ

+ H ′
θ̄

δz,θ
Δ

G ′
x − G ′

θ

δx,θ̄
Δ

+ G ′
θ̄

δx,θ
Δ

G ′
y − G ′

θ

δy,θ̄
Δ

+ G ′
θ̄

δy,θ
Δ

G ′
z − G ′

θ

δz,θ̄
Δ

+ G ′
θ̄

δz,θ
Δ

∣∣∣∣∣∣∣
,

(3.75)
where H ′

θ , H
′
θ̄
,G ′

θ ,G
′
θ̄
are right derivatives. If we expand this determinant along the

first row we get

F ′
x Ber

(H,G, φ, ψ)

(y, z, θ, θ̄ )
+ F ′

y Ber
(H,G, φ, ψ)

(z, x, θ, θ̄ )
+ F ′

z Ber
(H,G, φ, ψ)

(x, y, θ, θ̄ )

+F ′
θ

1

Δ2
(εH,G

y,z δx,θ̄ + εH,G
z,x δy,θ̄ + εH,G

z,x δy,θ̄ ) + F ′
θ̄

1

Δ2
(εH,G

y,z δx,θ

+εH,G
z,x δy,θ + εH,G

z,x δy,θ ). (3.76)

Now making use of the system of Eqs. (3.64), (3.67), (3.68) and the Eq. (3.72), we
get the Eq. (3.73).

Every column of the determinant (3.75) is the linear combination of five columns

Rx =
⎛

⎝
F ′
x

H ′
x

G ′
x

⎞

⎠ , Ry =
⎛

⎝
F ′
y

H ′
y

G ′
y

⎞

⎠ , Rz =
⎛

⎝
F ′
z

H ′
z

G ′
z

⎞

⎠ ,

Rθ =
⎛

⎝
F ′

θ

H ′
θ

G ′
θ

⎞

⎠ , Rθ̄ =
⎛

⎝
F ′

θ̄

H ′
θ̄

G ′
θ̄

⎞

⎠ , (3.77)

with corresponding coefficients. Hence we can write the determinant (3.75) in the
form

Δ−1
∣∣∣Rx − Rθ

δx,θ̄

Δ
+ Rθ̄

δx,θ

Δ
Ry − Rθ

δy,θ̄

Δ
+ Rθ̄

δy,θ

Δ
Rz − Rθ

δz,θ̄

Δ
+ Rθ̄

δz,θ

Δ

∣∣∣.
(3.78)
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Now using the properties of ordinary determinant and taking all possible combina-
tions of columns, we can write the determinant (3.78) as the sum of determinants,
where every determinant is determined by a corresponding combination of columns
(3.77). It follows from the property θ2 = θ̄2 = 0 ofGrassmann coordinates that deter-
minant of a combination of columns, which includes at least two columns Rθ ,Rθ̄ ,
vanishes. Altogether we have seven non-trivial combinations of columns (i.e. the
determinant of this combination of columns does not vanish), which give the follow-
ing expression for the ternary bracket (3.74)

{F, H,G, }Ψ = 1

Δ
|Rx Ry Rz|

− 1

Δ2

(
|Rx Ry Rθ | δz,θ̄ + |Rx Rθ Rz| δy,θ̄ + |Rθ Ry Rz| δx,θ̄

−|Rx Ry Rθ̄ | δz,θ − |Rx Rθ̄ Rz| δy,θ − |Rθ̄ Ry Rz| δx,θ
)
.

(3.79)

The first term at the right-hand side of the above relation is the usual Nambu-Poisson
ternary bracket of even degree functions F, H,G

{F, H,G} = |Rx Ry Rz| =
∣∣∣∣∣∣

F ′
x F ′

y F ′
z

H ′
x H ′

y H ′
z

G ′
x G ′

y G ′
z

∣∣∣∣∣∣
. (3.80)

In addition to the usual Nambu-Poisson ternary bracket, the expression at the right-
hand side of relation (3.79) also includes terms enclosed in parentheses. These terms
depend on the derivatives of odd degree functions φ,ψ . This suggests us to introduce
one more ternary bracket as follows

{F, H,G}Ψ =
∣∣∣
∂(F, H,G)

∂(x, y, θ)

∣∣∣
∣∣∣
∂(φ,ψ)

∂(z, θ̄ )

∣∣∣ +
∣∣∣
∂(F, H,G)

∂(x, θ, z)

∣∣∣
∣∣∣
∂(φ,ψ)

∂(y, θ̄ )

∣∣∣

+
∣∣∣
∂(F, H,G)

∂(θ, y, z)

∣∣∣
∣∣∣
∂(φ,ψ)

∂(x, θ̄ )

∣∣∣ −
∣∣∣
∂(F, H,G)

∂(x, y, θ̄ )

∣∣∣
∣∣∣
∂(φ,ψ)

∂(z, θ)

∣∣∣

−
∣∣∣
∂(F, H,G)

∂(x, θ̄ , z)

∣∣∣
∣∣∣
∂(φ,ψ)

∂(y, θ)

∣∣∣ −
∣∣∣
∂(F, H,G)

∂(θ̄ , y, z)

∣∣∣
∣∣∣
∂(φ,ψ)

∂(x, θ)

∣∣∣. (3.81)

It should be noted that the order of cofactors in every product at the right-hand side
of (3.81) is important, because cofactors are odd degree functions.

Now we can express the ternary bracket (3.74) as the sum of the usual Nambu-
Poisson bracket (3.80) and the ternary bracket (3.81). Hence

{F, H,G}Ψ = 1

Δ
{F, H,G} − 1

Δ2
{F, H,G}Ψ . (3.82)
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The formula (3.82) gives grounds to consider the ternary bracket (3.74) introduced
by means of superdeterminant as an extension of usual Nambu-Poisson bracket to
the superspace R3|2. It can be proved that this extension preserves all the algebraic
properties of the Nambu-Poisson bracket such as skew-symmetry, the Leibniz rule
and the Filippov-Jacobi identity (Fundamental Identity) [4, 5].
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