
Chapter 28
Isomorphism Theorems for Basic
Constructive Algebraic Structures with
Special Emphasize On Constructive
Semigroups with Apartness—An
Overview

Melanija Mitrović and Sergei Silvestrov

“I was just going to say, when I was interrupted, that one of the many ways of

classifying minds is under the heads of arithmetical and algebraical intellects.

All economical and practical wisdom is an extension of the following

arithmetical formula: 2 + 2 = 4. Every philosophical proposition has the more

general character of the expression a + b = c. We are mere operatives,

empirics, and egotists until we learn to think in letters instead of figures .”

Oliver Wendell Holmes: The Autocrat of the Breakfast Table—source [12]

Abstract This overview is an introduction to the basic constructive algebraic struc-
tures with apartness with special emphasises on a set and semigroup with apartness.
The main purpose of this paper, inspired by Bauer [2], is to make some sort of
understanding of constructive algebra in Bishop’s style position for those (classical)
algebraists as well as for the ones who apply algebraic knowledge who might won-
der what is constructive algebra all about. Every effort has been made to produce a
reasonably prepared text with such definite need. In the context of basic constructive
algebraic structures constructive analogous of isomorphism theorems will be given.
Following their development, two points of view on a given subject: classical and
constructive will be considered. This overview is not, of course, a comprehensive
one.
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28.1 Introduction

Throughout this paper constructive mathematics is understood as mathematics done
in the context of intuitionistic logic, that is, without the law of excluded middle
(LEM). There are two main characteristics of constructivist trend. The notion of
truth is not taken as primitive, and existence means constructibility. From the clas-
sical mathematics (CLASS) point of view mathematics consists of a preexisting
mathematical truth. From a constructive viewpoint the judgement “ϕ is true” means
that “there is a proof of ϕ”. In constructive mathematics status of existence statement
is much stronger than in CLASS. Classical interpretation is that an object exists if
its non-existence is contradictory. In constructive mathematics when existence of an
object is proved, the proof also demonstrate how to find it. One of the main features
of constructive mathematics is that concepts that are equivalent in the presence of
LEM, need not be equivalent any more. For example (as we are going to see below in
more details), we distinguish nonempty and inhabited set; several types of inequal-
ities; two complements of a given set. More about differences between a classical
and a constructive mathematician’s view of mathematics can be found in [2, 3, 33].

There is no doubt about deep connections between constructive mathematics and
computer science. Moreover, “if programming is understood not as the writing of
instructions for this or that computing machine but as the design of methods of
computation that is the computer’s duty to execute, then it no longer seems possi-
ble to distinguish the discipline of programming from constructive mathematics”,
[28]. Often recommended as a good introduction to constructive mathematics and
its application to computer science is [7].

Constructive mathematics is not unique notion. Various form of constructivism
have been developed over time. Principle trends include the following varieties:
INT—Brouwer’s intuitionistic mathematics, RUSS—the constructive recursive
mathematics of the Russian school of Markov, BISH—Bishop’s constructive mathe-
matics. Every form has intuitionistic logic at its core; different schools have different
additional principles or axioms given by the particular approach to constructivism.
For example, the notion of algorithm or finite routine is taken as primitive in INT
and BISH, while RUSS operates with fixed programming language and algorithm
is a sequence of symbols in that language.

We have to emphasize that Errett Bishop—style constructive mathematics,BISH,
forms the framework for our work. BISH originated in 1967 with the publication of
the book [4] and with its second, much revised edition in 1985 [5]. There has been a
steady stream of publications contributing to Bishop’s programme since 1967, see [6,
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9, 37]. A ten-year long systematic research of computable topology, using apartness
as the fundamental notion, resulted in the first book [10] on topology within BISH
framework. At heart, Bishop’s constructive mathematics is simplymathematics done
with intuitionistic logic, and may be regarded as “constructive mathematics for the
working mathematician”, [37]. The main activity in the field consists in proving
theorem rather then demonstrating the unprovability of theorems (or making other
metamathematical observations), [3]. Following [4], every effort has been made to
followclassical development as closely as possible; every theoremof CLASSpresent
a challenge: find a constructive versionwith a constructive proof; constructive version
can be obtained by strengthening the conditions or weakening the conclusion of the
theorem. Modern algebra, as is noticed in [7], “contrary to Bishop’s expectations,
also proved amenable to natural, thoroughgoing, constructive treatment”.

Working within classical theory of semigroups over the years [30], one of the
authors of this paper “on the odd” day several years ago has decided to change
classical background with intuitionistic one. This means, among other things, that
perfect safety of classical theory with developed notions, notations and methodolo-
gies was left behind. Instead, an adventure of exploring algebraically new area (even
without clear stated notions and notations) of constructive semigroups with apart-
ness has been started. What we have “in hand” at that moment was experience and
knowledge coming from classical semigroup theory and other constructive mathe-
matics disciplines. Following Bishop wemake every effort to follow classical case as
closely as possible, but our work distinguishes from classical case by two significant
aspects: we use intuitionistic logic rather than classical through, and our work is
based on the notion of apartness (between elements, elements and sets). This means,
that lot of ideas, notions and notations come from other constructive disciplines like,
for example, constructive analysis, and, especially, from constructive topology, as
well as constructive theories of groups and rings with tight apartness. Path that we
have passed from the experience and knowledge of just mentioned classical and
constructive theories to the first results in “our” theory will be given. For a classical
algebraists like, for example us (who “on the odd day” wonder what constructive
algebra is all about, evenmore) whowants to find out what a feeling is doing it, he/she
will understand soon that constructive algebra is more complicated than classical in
various ways: algebraic structure as a rule do not carry a decidable equality relation
(this difficulty is partly met by the introduction of a strong inequality relation, the
so-called apartness relation); there is (sometime) awkward abundance of all kinds of
substructures, and hence of quotient structures, [37]. Among additional troubles for
working algebraist is so-called the Constant domain axiom: folklore type of axiom
in CLASS algebra

ϕ ∨ ∀x ψ(x) ↔ ∀x(ϕ ∨ ψ(x)),

its constructive version

ϕ ∨ ∀x ψ(x) → ∀x (ϕ ∨ ψ(x))
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can be source of troubles at the beginning of his/her constructive experience. Of
course good introductory literature can help a lot in overcoming troubles appearing
when someone switch from classical to constructive algebra. Our personal feeling,
coming from our experience, is that, contrary to the cases with constructive analysis
and topology, there is a lack of such type of texts in the case of constructive algebra.
This overview is an introductory course to the basic constructive algebraic structures
with apartness with special emphasize on a set and semigroup with apartness. The
main purpose of this paper, inspired by [2], is to make some sort of understanding
of constructive algebra in Bishop’s style position for those (classical) algebraists
as well as for the ones who apply algebraic knowledge who might wonder what is
constructive algebra all about.

In the context of semigroups with apartness the basic notions of special subsets
and special relations as well as constructive analogues of classical isomorphism
theorems will be presented. Especially, an overview to the development of so called
isomorphism theorems in certain algebraic settings—fromclassical to constructive—
will be given. It is not, of course, comprehensive one. Importance of isomorphism
theorems in any settings is well-known within mathematical world. Discovery of
their importance within computer science community, [16], is, more or less, recent
phenomena.

Roughly, descriptive definition of a structure with apartness includes two main
parts:

– the notion of certain classical algebraic structure is straightforwardly adopted;
– a structure is equipped with an apartness with standard operations respecting that
apartness.

Definition given above justifies organization of this paper. Classical background of
our work, i.e. elementary set theory, group theory, ring theory and semigroup theory
is given in Sect. 28.2. Isomorphism theorems for all just mentioned structures are
given too. Moreover, contents presented in Sect. 28.2 are, more or less, considered
to be introductional one for almost all (abstract) algebraic books. Main properties
of constructive set, groups, rings and semigroups with (tight) apartness, as well as
adequate apartness isomorphism theorems for all of them are presented in Sect. 28.3.
Some possible applications of basic algebraic structures with apartness as well as
some final remarks are given in Sect. 28.4.

More background on constructive mathematics can be found in [3, 4, 10, 37].
The standard reference for constructive algebra is [29]. For classical case see [24,
25]. Examples of applications of these ideas can be found in [1, 8, 11, 15, 32].

28.2 Algebraic Structures within CLASS

A very short account of the abstract algebra and its development will be given.
Over the course of 19th century, algebra made transition from a subject concerned
entirely with the solution of mostly polynomial equations to a discipline that deals
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with general structures within mathematics. (Loosely speaking, structure may be
understood as a set together with one or more operations which are subject to certain
conditions.) Term abstract algebra as a name of this area appeared in early 20th
century.

An algebraic structure can be described as a set with some (not necessarily, but
often, binary) operations for combining them. Some fundamental concepts in abstract
algebra are:

– set and operation(s) defined on that set;
– certain algebraic lows which all elements of the structure can respect (like, for
example, associativity, commutativity);

– some elements with special behavior in connection with operation(s): idempotent
elements, identity elements, inverse elements, ...

Combining the above concepts gives some of the most important structures in math-
ematics: groups, rings, semigroups, ... Centered around an algebraic structure are
notions of: substructure, homomorphism, isomorphism, congruence, quotient struc-
ture.

In algebra within CLASS the formulation of homomorphic images (together with
substructures and direct products) is one of the principal tools used to manipulate
algebraic structures. In the study of homomorphic images of an algebraic structure
a lot of help comes from the notion of a quotient structure, which captures all homo-
morphic images, at least up to isomorphism. On the other hand, homomorphism is
the concept which goes hand in hand with congruences. Thus concepts of congru-
ence, quotient structure and homomorphism are closely related. Knowing that the
congruence ρ on an algebraic structure S is the kernel of the quotient map from S
onto S/ρ, we can treat congruence relations on S as kernels of homomorphisms with
S as the domain. The relationship between quotients, homomorphisms and congru-
ences is described by the celebrated isomorphism theorems, which are a general and
important foundational part of abstract and universal algebra. The theorems of this
type exists for groups, rings, semigroups, vector spaces, modules, Lie algebras and
various other algebraic structures. Throughout this section we will limited ourselves
to basic algebraic structures: groups, rings and semigroups. But, taking into account
that set theory is the proper framework for abstract mathematical thinking as well
as fact that an algebraic structure can be viewed as a set with specified additional
structure, isomorphism theorems for sets follow first.

28.2.1 Isomorphism Theorems for Sets

The goal of this part is simply to review briefly (some of) the basic concepts of set
theory. Our approach to the theory of sets will be quite informal. We will take the
intuitive approach that a set is some given collection of objects, called elements or
members of the set. Set is considered as a primitive notion which one does not define.
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A few remarks about terminology and notations follow in sequel. The notation
a ∈ S means that a is an element of S, and b /∈ S means that b is not an element of
S. If S and T are sets, T ⊆ S denotes inclusion, i.e. T is a subset of S–all elements
of T are also in S. S and T are equal, S = T , if S ⊆ T and T ⊆ S. The empty set
∅ is the set with no elements. It is a subset of any set S. T is a proper subset of S if
T 	= ∅ and T 	= S. One final, notational remark: a set is frequently formed by taking
its elements the ones which have a specific property denoted, for example, as P

{x : P(x)}.

A subset T of S formed by selecting those elements of S with property Q is written
as

T = {x ∈ S : Q(x)}.

The cartesian product of sets S and T is the set S × T of all ordered pairs (x, y)
with x ∈ S and y ∈ T . We have

(x1, y1) = (x2, y2) ⇔ x1 = x2 ∧ y1 = y2,

for (x1, y1), (x2, y2) ∈ S × T .
A mapping f from S to T , denoted by f : S → T , is a subset of S × T such that

for any element x ∈ S there is precisely one element y ∈ Y for which (x, y) ∈ f ,
i.e.

(∀x, y ∈ S) x = y ⇒ f (x) = f (y).

Instead of (x, y) ∈ f , we usually write y = f (x). Two mappings f, g : S → T are
equal if they are equal as subsets of S × T , that is f = g ⇔ (∀x ∈ S) ( f (x) =
g(x)).

A mapping f is

• surjective or onto: (∀y ∈ T ) (∃x ∈ S) (y = f (x));
• injective or one-one: f (x) = f (y) ⇒ x = y;
• bijection: one-one map from S onto T .

The cartesian product of a set Swith itself, S×S is of special importance. A subset
of S× S, or, equivalently, a property applicable to elements of S× S, is called binary
relation on S. In general, there are many properties (like for example: reflexivity,
symmetry, transitivity) that binary relations may satisfy on a given set. As usual, for
a relation ρ on S, aρ = {x ∈ S : (a, x) ∈ ρ}, and ρa = {x ∈ S : (x, a) ∈ ρ} are
the left and the right ρ-class of the element a ∈ S respectively.

The concept of an equivalence, i.e. reflexive, symmetric and transitive relation,
is an extremely important one and plays a central role in all of mathematics. Any
mapping f : S → T gives rise to an equivalence on its domain:

ker f = {(x, y) ∈ S × S : f (x) = f (y)},
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called kernel of mapping f or the equivalence relation induced by f . On the other
hand, we can define onto (surjective) functions from equivalences.

Lemma 28.2.1 Let ε be an equivalence on S. Mapping π : S → S/ε defined by
π(x) = xε, x ∈ S, is an onto mapping.

The set S/ε = {xε : x ∈ S} is called the quotient set of S by ε, and mapping
π : S → S/ε is the quotient (or natural) mapping.

So, starting from the mapping, we can define an equivalence relation, and start-
ing from that equivalence we can define its quotient mapping. What we can say
about connection(s) between the original mapping and the quotient mapping? The
Isomorphism theorem for sets follows.

Theorem 28.2.2 Let f : S → T be a mapping between sets S and T . Then, the
mapping θ : S/ker f → T defined by θ(x(ker f )) = f (x) is one-one such that
f = θ ◦ π. If f maps S onto T , then θ is a bijection.

Proof Let x(ker f ) = y(ker f ). Then (x, y) ∈ ker f , thus f (x) = f (y) and θ is
well-defined. Let x ∈ S. Using the Lemma 28.2.1, we have

(θ ◦ π)(x) = θ(π(x)) = θ(x(ker f )) = f (x).

If θ(x(ker f )) = θ(y(ker f )) then f (x) = f (y), which, further,means that (x, y) ∈
ker f . Thus x(ker f ) = y(ker f ), and θ is one-one.

If f is onto mapping then for any y ∈ T there is x ∈ S such that y = f (x). But
then y = θ(x(ker f )) and so θ is onto. We have that θ is bijection.

28.2.2 Algebraic Structures—Some Properties

Loosely speaking, algebraic structure (such as a group, ring, or semigroup) may be
understood as a set together with one or more operations (not necessarily, but often
binary) which are subject to certain conditions.

A mapping f : S → T between two algebraic structures S and T of the same
type (that is of the same name), that preserves the operations or is compatible with
the operations of the structures is called homomorphism. This means that if, for
example, ◦ is an binary operation defined on S and T , then

f (x ◦ y) = f (x) ◦ f (y).

When an algebraic structure includes more than one operation, in order to be homo-
morphisms, mappings are required to be compatible with each operation. Homomor-
phisms are essential to the study of any class of algebraic objects.

Several types of homomorphisms have a specific name. A homomorphism f is

• embedding: f is one-one;
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• onto or epimorphism: f (S) = T ;
• isomorphism: f is onto embedding.

A homomorphism f : S → S is called endomorphism. An endomorphism f is
automorphism if f is isomorphism.

An equivalence relation ρ on an algebraic structure S (such as a group, a ring, or a
semigroup) that is compatible with the structure is called a congruence. This means
that, if, for example, ◦ is an binary operation defined on S, a congruence relation ρ
on S is an equivalence satisfying

(x, y), (z,w) ∈ ρ ⇒ (x ◦ z, y ◦ w) ∈ ρ,

for any x, y, z,w ∈ S.When an algebraic structure includesmore than one operation,
congruence relations are required to be compatible with each operation. The quotient
set S/ρ becomes the structure of the same type, in a natural way, by defining the
operation(s) as

(xρ) ◦ (yρ) = (x ◦ y)ρ.

The quotient mapping π : S → S/ρ is an onto homomorphism or an epimorphism.
For any homomorphism f : S → T between algebraic structures of the same

type ker f is a congruence on S. By the (First) Isomorphism theorem, the image of
S under f is a substructure of T isomorphic to the quotient of S by this congruence.

In the particular case of groups or rings, congruence relations can be described in
elementary terms—which will be presented in next two subsections.

28.2.2.1 Isomorphism Theorems for Groups

Group theory is the right place to start the study of abstract algebra. Groups were the
first algebraic structures which are characterized axiomatically and developed sys-
tematically from an abstract point of view. But more important, groups are one of the
fundamental building blocks to the development of more complex abstractions such
as rings and fields. This qualifies them to be considered first. Group structure may
be axiomatically characterized in several ways. The way given below is considered
to be the most direct and convenient.

A group (G, ·) is a nonempty set G with a binary operation · called the product
or multiplication such that:

(G1) (∀x, y, z ∈ G) (xy)z = x(yz) (the associativity axiom)

(G2) (∃e ∈ G)(∀x ∈ G) xe = ex = x (the identity axiom)

(G3) (∀x ∈ G)(∃x−1 ∈ G) xx−1 = x−1x = e (the inverse axiom)

(G1), (G1), (G1) are the axioms of group structure.
Let f : G → H be a homomorphism of groups. The kernel of f is

ker f = {(x, y) ∈ G × G : f (x) = eH }.
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Theorem 28.2.3 If f : G → H is a homomorphism of groups, then f is an embed-
ding if and only if ker f = {eG}.

A nonempty subset H of G is a subgroup of G if it is a group in its own right
under group multiplication inherited from G. Clearly, nonempty subset H of G is a
subgroup if and only if xy−1 ∈ H whenever x, y ∈ H . If H is a subgroup of G and
x ∈ G then

Hx = {hx : h ∈ H} (xH = {xh : h ∈ H})

is a right (left) coset of H in G. In general it is not the case that a right coset is also
a left coset. A subgroup N possessing one of the three equivalent conditions:

(N1) (∀x ∈ G) xN = Nx ,
(N2) (∀x ∈ G) x−1Nx = N ,
(N3) (∀x ∈ G)(∀h ∈ N ) x−1hx ∈ N ,

is called normal subgroup. Normal subgroups, introduced by Galois at the beginning
of the 19th century, play an important role in determining both the structure of a group
G and the nature of homomorphisms with domain G.

Theorem 28.2.4 If N is a normal subgroup of a group G, then the set of all cosets
of N in G denoted by G/N = {xN : x ∈ G} is a group with the multiplication given
by (xN )(yN ) = (xy)N.

The group G/N from the previous theorem is called the quotient group or factor
group of G by N .

Remark 28.2.5 If group G is written additively, then the group operation in G/N
is given by (x + N ) + (y + N ) = (x + y) + N .

In what follows relationships between normal subgroups, quotient groups and
homomorphisms will be given.

Theorem 28.2.6 Let f : G → H be a homomorphism of groups. Then the kernel
of f is a normal subgroup of G. Conversely, if N is a normal subgroup of G, then the
mapping π : G → G/N defined by π(x) = xN, x ∈ G, is an onto homomorphism
or epimorphism with kernel N .

The mapping π : G → G/N from the previous theorem is called the quotient
(canonical) epimorphism. Finally, the (First) Isomorphism theorem for groups fol-
lows.

Theorem 28.2.7 Let N be a normal subgroup of a group G. Then, for every homo-
morphism of groups f : G → H whose kernel contains N there exists unique
homomorphism θ : G/N → H such that f = θ ◦ π. If, in addition, f is onto, then
θ is an isomorphism.

Remark 28.2.8 In the particular case of groups congruence relations can be
described in terms of normal subgroups. In fact, every congruence corresponds
uniquely to some normal subgroup.
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28.2.2.2 Isomorphism Theorems for Rings

Another fundamental concept in the study of algebra is that of a ring. We consider
rings, homomorphisms, ideals and their relationships. Content which is going to be
presented is simply a straightforward generalization to rings of concepts which have
proven useful in group theory.

A ring (R, ·, +) is a nonempty set R with two binary operations · and + called
multiplication and addition respectively, such that:

(R1) (R,+) is an abelian group;
(R2) (∀x, y, z ∈ G) (xy)z = x(yz) (the associativity axiom for multiplication)

(R3) (∀x, y, z ∈ G) x(y + z) = xy + xz and (x + y)z = xy + xz (left and right

distributivity)

The additive identity element of a ring is called the zero element and denoted by 0.
A mapping f : R → S between two rings R and S is a homomorphism of rings if

f (x + y) = f (x) + f (y) ∧ f (xy) = f (x) f (y),

for any x, y ∈ R. The kernel of a homomorphism f of rings R and S is its kernel as
a map of additive groups, that is

ker f = {r ∈ R : f (r) = 0}.

A subring I of a ring R is an ideal of R if xr, r x ∈ I , for any x ∈ I , r ∈ R. Ideals
play approximately the same role in the theory of rings as normal subgroups do in
the theory of groups.

Theorem 28.2.9 Let f : R → S be a homomorphism of rings. Then

ker f = {r ∈ R : f (r) = 0}

is an ideal of R.

The various isomorphism theorems for groups can be “translated” for rings with
normal subgroups and groups replaced by ideals and rings respectively. For example,
let R be a ring and I an ideal of R. (R,+) is abelian group, so I is a normal subgroup,
which, by Theorem 28.2.4 and Remark 28.2.5, means that (R/I,+) is a quotient
group. Moreover, we have

Theorem 28.2.10 Let R be a ring and I an ideal of R. Then the additive quotient
group R/I is a ring with multiplication given by

(x + I )(y + I ) = xy + I.

Once again, from the analogy with groups, can be deduced that ideals and homo-
morphisms of rings are closely related.
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Theorem 28.2.11 If f : R → S is a homomorphism of rings, then ker f is an
ideal in R. Conversely, if I ia an ideal of R, then the quotient mapping π : R → R/I ,
π(r) = r + I , is an onto homomorphism with kernel I .

The Isomorphism theorem for rings follows.

Theorem 28.2.12 Let f : R → S be a homomorphism of rings, and let I be
an ideal of R contained in ker f . Then, there exists unique homomorphism of rings
θ : R/I → S, such that f = θ◦π. If, in addition, f is onto, then θ is an isomorphism
and I = ker f .

To conclude, these two examples—groups and rings—suggest that any congru-
ence on an algebraic structure might be determined by a single congruence class of
that congruence. Following [17], “very often inmathematics the crucial problem is to
recognize and to discover what are the relevant concepts; once this is accomplished
the job may be more than half done.” It is possible to distinguish normal subgroups,
in the case of groups, and ideals, in the case of rings, which are respectively, the
congruence classes containing the unit element of the group and the zero element of
the ring. Unfortunately this is not always the case as we are going to see in the next
subsection.

28.2.2.3 Isomorphism Theorems for Semigroups

A semigroup (S, ·) is a nonempty set S with a binary operation · calledmultiplication
such that:

(x · y) · z = x · (y · z),

for any x, y, z ∈ S. Frequently, xy is written rather than x · y.
In the history ofmathematics, the algebraic theory of semigroups is a relative new-

comer, with the theory proper developing only in the second half of the twentieth
century. Historically, it can be viewed as an algebraic abstraction of the properties
of the composition of transformations on a set. But, there is no doubt about it, the
main sources came from group theory and ring theory. “Of all generalizations of the
group and ring concepts the semigroup is the one that has attracted the most interest
by far”, [23]. (More about the history of semigroups can be found in [22].) However,
semigroups are not a direct generalizations of group theory as well as ring theory.
Semigroups do not much resemble groups and rings. In fact, semigroups do not much
resemble any other algebraic structure.

Let us remember: congruences on groups are uniquely determined by its normal
subgroups, and, on the other hand, there is a bijection between congruences and
the ideals of rings. Study of congruences on semigroups is more complicated—no
such device is available. One must study congruences as such. A congruence ρ on a
semigroup S is an equivalence with compatibility property:

(x, y) ∈ ρ ∧ (u, v) ∈ ρ ⇒ (xu, yv) ∈ ρ,
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for any x, y, u, v ∈ S.

Theorem 28.2.13 Let f : S → T be a homomorphism between semigroups S and
T . Then

ker f = f ◦ f −1 = {(x, y) ∈ S × S : f (x) = f (y)}

is a congruence on S.

Classically, the quotient set S/ρ is then provided with a semigroup structure.

Theorem 28.2.14 Let S be a semigroup and ρ a congruence on it.Then S/ρ is a
semigroup with respect to the operation defined by (xρ)(yρ) = (xy)ρ, and the
mapping π : S → S/ρ, π(x) = xρ, x ∈ S, is an onto homomorphism.

We can now extend Theorem 28.2.2 to semigroups and homomorphisms. The
(First) Isomorphism theorem for semigroups follows.

Theorem 28.2.15 Let f : S → T be a homomorphism between semigroups S and
T . Then, the mapping θ : S/ker f → T defined by θ(x(ker f )) = f (x) is an
embedding such that f = θ ◦ π. If f maps S onto T , then θ is an isomorphism.

Proof Taking into account Theorems 28.2.2 and 28.2.14, to prove the theorem we
have to prove that θ is a homomorphism. Let x(ker f ), y(ker f ) ∈ S/ker f . Then

θ(x(ker f )y(ker f )) = θ(xy(ker f )) = f (xy) = f (x) f (y) = θ(x(ker f ))θ(y(ker f )).

The theorem which follows is concerned with a more general situation.

Theorem 28.2.16 Let ρ be a congruence on a semigroup S, and let f : S → T be a
homomorphism between semigroups S and T such that ρ ⊆ ker f . Then there exists
a homomorphism of semigroups θ : S/ρ → T , such that f = θ ◦ πρ. If, in addition,
f is onto, then θ is an isomorphism.

Proof Define θ : S/ρ → T by θ(xρ) = f (x), x ∈ S. For x, y ∈ S such that
xρ = yρ we have (x, y) ∈ ρ ⊆ ker f which, further, implies f (x) = f (y). Thus θ
is well-defined. It is a routine matter to prove that θ is a homomorphism. The rest of
the proof follows by (similar to) Theorem 28.2.15.

28.3 Algebraic Structures within BISH

“It is important to keep in mind that constructive algebra is algebra;

in fact it is a generalization of algebra in that we do not assume the law of excluded middle.” [29]

One of themain topics in constructive algebra are constructive algebraic structures
with apartness. The principal novelty in treating basic algebraic structures construc-
tively is that apartness becomes a fundamental notion. Beside adopting the classical
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notions of group, ring, ..., one axiomatizes group, ring, ..., with apartness. The study
of algebraic structures in the presence of apartness was started by Heyting, [18].
Heyting had given the theory a firm base in [20].

Inwhat followswewill define the notions of groupwith tight apartness, commuta-
tive ring with tight apartness following [35, 37], and semigroup with (not necessarily
tight) apartness following [13, 14, 31]. Any of these basic algebraic structures with
apartness can be viewed as set with apartness with basic operation(s) defined on it
that respect apartness on a proscribed way.

Quotient structures are not part of BISH. Quotient structure does not, in general,
have a natural apartness relation. So, the Quotient Structure Problem (QSP) is one
of the very first problem which has to be considered for any structure with apartness.
Solution QSP for groups with tight apartness and rings with tight apartness obtained
at the beginning of 80s of last century are presented in [35], see also [37]. Those
results, as well as the similar ones coming from some other constructive theories,
[10, 26], inspired us to give solutions of QSP problems for sets and semigroups with
apartness in 2013, [13]. Till the end of this section those solutions will be presented.

28.3.1 QSP for Set with Apartness

We begin this subsection by introducing the constructive framework within which
our further considerations lie. Foundation stones for BISH include the notion of
positive integers, sets and functions. Some results from [13, 31] will be presented
too.

The set N of positive numbers is regarded as basic set, and it is assumed that the
positive numbers have the usual algebraic and order properties, including mathemat-
ical induction. “Almost equal in importance to number are constructions by which
we ascend from number to higher levels of mathematical existence”, [4]. Restriction
to a bottom-up construction of sets ‘force’ at each level to use only objects already
constructed.

Contrary to classical case a set exists only when it has been defined. In general,
to define a set S we have to give two pieces of information: a property that enables
us to construct members of S and to describe the equality = between elements of
S—which is a meter of convention, except that it must be an equivalence. A set
(S,=) is an inhabited set if we can construct an element of S. Distinction between
notions of nonempty set and inhabited set is a key in constructive set theories.

The notion of equality of elements of different sets is not defined. The only way
to regard elements of different sets equal is by realizing those sets as subset of third
one. That is why the operations of union and intersection are defined only for sets
which are given as subsets of a given set. There is another problem more to be faced
with when we consider families of sets that are closed under a suitable operation of
complementation. Following [5] “we do not wish to define complementation in the
terms of negation; but on the other hand, this seems to be the only method available.
The way out of this awkward position is to have a very flexible notion based on the
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concept of a set with an apartness relation,” whose axiomatization will be presented
later on.

A property P which is applicable to the elements of a set S determines subset of
S denoted by {x ∈ S : P(x)}. Furthermore, we will be interested only in properties
P(x) which are extensional in the sense that for all x1, x2 ∈ S with x1 = x2, P(x1)
and P(x2) are equivalent. “Informally, means that it does not depend on the particular
description by which x is given to us”, [10].

An inhabited subset of S×S, or, equivalently, a property applicable to elements of
S×S, is called a binary relation on S. In general, there aremany properties that binary
relationsmay satisfy on a given set. Some of them are “brand new” (for example: con-
sistency, irreflexivity, cotransitivity), and/or some of them, inherited from classical
mathematics (CLASS) (like: reflexivity, symmetry, transitivity), “play game” under
constructive rules. In CLASS equivalence is the natural generalization of equality. A
theorywith equivalence involves the equivalence and functions and relations respect-
ing this equivalence. In constructive mathematics the same works without difficulty.
Many sets come with binary relation called inequality satisfying certain properties,
and denoted by 	=, # or 	�. In general, more computational information is required to
distinguish elements of a set S, then to show that elements are equal. Comparing with
CLASS, the situation for inequality is more complicated. There are different types
of inequalities (denial inequality, diversity, apartness, tight apartness—to mention
few), some of them completely independent, which only in CLASS are equal to one
standard inequality, [36]. So, in CLASS the study of equivalence relation suffices,
but, in constructive mathematics inequality becomes a “basic notion in intuitionistic
axiomatics”. For example, apartness is a basic ingredient of constructive real num-
bers: two real numbers are apart if it can positively be decided that they are distinct
from each other. Apartness, as a positive version of inequality, “is yet another fun-
damental notion developed in intuitionism which shows up in computer science,”
[27].

Let (S,=) be an inhabited set. By an apartness on S we mean a binary relation
# on S which satisfies the axioms of irreflexivity, symmetry and cotransitivity:

(Ap1) ¬(x#x)
(Ap2) x#y ⇒ y#x ,
(Ap3) x#z ⇒ ∀y (x#y ∨ y#z).

If x#y, then x and y are different, or distinct. Roughly speaking, x = y means that
we have a proof that x equals y while x#y means that we have a proof that x and
y are different. Therefore, the negation of x = y does not necessarily implies that
x#y and vice versa: given x and y, we may have neither a proof that x = y nor a
proof that x#y. Negation of apartness is an equivalence (≈) =de f (¬ #) called weak
equality on S.

Remark 28.3.1 The statement that every equivalence relation is the negation of
some apartness relation is equivalent to excluded middle. The statement that the
negation of an equivalence relation is always an apartness relation is equivalent to
the nonconstructive de Morgan law.
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The apartness on a set S is tight if

(Ap4) ¬(x#y) ⇒ x = y.

Apartness is tight just when ≈ and = are the same, i.e. ¬(x#y) ⇔ x ≈ y. In what
follows we will denote tight apartness by �. Set with tight apartness will be denoted
by (S,≈, �), or, shortly by (S, �). In some books and papers, like [37], the term
“preapartness” is used for an apartness relation, while “apartness” means tight apart-
ness. Tight apartness on the real numbers was introduced by L. Brouwer in the early
1920s. Brouwer introduced the notion of apartness as a positive intuitionistic basic
concept. A formal treatment of apartness relations began with A. Heyting’s formal-
ization of elementary intuitionistic geometry in [19]. Intuitionistic axiomatizations
of apartness is given in [21].

By extensionality we have

(Ap5) x#y ∧ y = z ⇒ x#z,

which equivalent form is

(Ap5’) x#y ∧ x = x ′ ∧ y = y′ ⇒ x ′#y′.

A set with apartness (S,=, #) is the starting point for our further considerations,
and will be simply denoted by S. The existence of an apartness relation on a structure
often gives rise to apartness relation on another structure. For example, given two
sets with apartness (S,=S, #S) and (T,=T , #T ), it is permissable to construct the set
of mappings between these. Let f : S → T be a mapping (function) of sets with
apartness S and T . The well-definedness or weak extensionality of f , i.e.

∀x,y∈S (x =S y ⇒ f (x) =T f (y)),

follows by extensionality. Constructively, as apartness is more fundamental then
equality, the property of strong extensionality is more fundamental then well-
definedness. A mapping f : S → T is strongly extensional mapping, or, for short,
se-mapping, if

∀x,y∈S ( f (x)#T f (y) ⇒ x#S y).

Furthermore, f is

– apartness injective, shortly a-injective: ∀x,y∈S (x#S y ⇒ f (x)#T f (y));
– apartness bijection between S and T if it is a-injective, bijective se-mapping.

Folklore type of result is next

Theorem 28.3.2 ([29]) Let (A,=, #) be a set with apartness. If S = AA is the set
of all se-mappings from A to A, then (S,=, #) with

f = g ⇔ ∀x∈A ( f (x) = g(x)),

and
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f #g ⇔ ∃x∈A ( f (x)#g(x)),

is a set with apartness.

Given two sets with apartness S and T it is permissible to construct the set of
ordered pairs (S × T,=, #) of these sets defining apartness by

(s, t) # (u, v) ⇔de f s #S u ∨ t #T v.

Presence of apartness implies appearance of different types of substructures con-
nected to it. Inspired by constructive topologywith apartness, [10], we define relation
�� between an element x ∈ S and a subset Y of S by

x �� Y ⇔de f ∀y∈Y (x#y).

A subset Y of S has two natural complementary subsets: the logical complement of
Y

¬Y =de f {x ∈ S : x /∈ Y },

and apartness complement, or, shortly, a-complement of Y

∼ Y =de f {x ∈ S : x �� Y }.

The properties of # ensures that, in general, ∼ Y ⊆ ¬Y .
Complements (both of them) are used for classification of subsets of a given set.

A subset Y of S is

– a detachable subset in S, or, in short, is a d-subset in S if

∀x∈S (x ∈ Y ∨ x ∈ ¬Y );

– an strongly extensional subset of S, shortly an se-subset of S, if

∀x∈S (x ∈ Y ∨ x ∈ ∼Y ),

– an SE-subset of S, if
∀x∈S ∀y∈Y (x ∈ Y ∨ x#y).

Proposition 28.3.3 Let Y be a subset of S. Then:

(i) any se-subset is an SE-subset of S;
(ii) any SE-subset Y of S satisfies ∼ Y = ¬Y ;
(iii) any se-subset is a d-subset of S.

Proof (i). Let Y be an se-subset of S. Then, applying definition and certain logical
axiom we have
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∀x∈S (x ∈ Y ∨ x ∈ ∼Y ) ⇔ ∀x∈S (x ∈ Y ∨ ∀y∈Y (x#y))

⇒ ∀x∈S ∀y∈Y (x ∈ Y ∨ x#y).

(ii). Let Y be an SE-subset, and let a ∈ ¬Y . By the assumption we have

∀x∈S ∀y∈Y (x ∈ Y ∨ x#y),

so substituting a for x we get ∀y∈Y (a ∈ Y ∨ a#y), and since, by assumption,
¬(a ∈ Y ), it follows that a#y for all y ∈ Y . Hence a ∈∼Y .

(iii). Follows immediately by (ii) and the definition of d-subsets.

In what follows se-subsets will be one of the main objects of investigation.
Let (S × S,=, #) be a set with apartness. A subset of S × S is called a (binary)

relation on S. If α and β are relations on S, then α is associated with β if

(1) ∀x,y,z∈S ((x, y) ∈ α ∧ (y, z) ∈ β ⇒ (x, z) ∈ α).

If α and β are, respectively, apartness and equality on S, then (1) is, in fact, (A5).
Let α ⊆ S × S be a relation on S. Then
(a, b) �� α ⇔ ∀(x,y)∈α ((a, b) # (x, y)),

for any (a, b) ∈ S × S. Apartness complement of α is a relation on S
∼ α = {(x, y) ∈ S × S : (x, y) �� α}.

Example 28.3.4 Let S = {1, 2, 3} be a set with apartness # = {(1, 3), (3, 1),
(2, 3), (3, 2)}. Let α = {(1, 3), (3, 1)} be a relation on S. Its a-complement

∼ α = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}

is a proper subset of its logical complement ¬α.

Among relations defined on S we consider only those which are related to the
apartness in the following way. A binary relation α defined on a set with apartness
S is

– consistent if α ⊆ #;
– cotransitive if (x, z) ∈ α ⇒ ∀y ((x, y) ∈ α ∨ (y, z) ∈ α).

In the constructive order theory the notion of cotransitivity, i.e. the property that
for every pair of related elements any other element is related to one of the original
elements in the same order as the original pair is a constructive counterpart to classical
transitivity. In what follows some connections between relations of certain kind and
their a-complements will be given.

Lemma 28.3.5 Let α be a relation on S. Then

(i) α is consistent if and only if ∼ α is reflexive;
(ii) if α is reflexive then ∼ α is consistent;
(iii) if α is symmetric then ∼ α is symmetric.
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Proof (i) Let α be a consistent relation on S. Reflexivity of ∼ α is almost obvious.
Let∼ α be reflexive, i.e. (x, x) ∈∼ α, for any x ∈ S. On the other hand, definition

of a-complement implies (x, y)#(x, x) for any (x, y) ∈ α. So, x#x or x#y. Thus, by
the assumption, x#y, i.e. α is consistent.

(ii) Let α be reflexive. Then

(x, y) ∈∼ α ⇔ ∀(a,b)∈α ((x, y)#(a, b))

⇒ x#a ∨ y#b

⇒ x#a ∨ x#y ∨ x#b

⇒ (x, x)#(a, b) ∨ x#y,

which, by the assumption, implies x#y.
(iii) If α is symmetric, then

(x, y) ∈∼ α ⇔ ∀(a,b)∈α ((x, y)#(a, b))

⇒ ∀(b,a)∈α ((x, y)#(b, a))

⇒ ∀(b,a)∈α (x#b ∨ y#a)

⇒ ∀(a,b)∈α ((y, x)#(a, b))

⇔ (y, x) ∈∼ α.

In general, by Example 28.3.4, a-complement of a relation is a proper subset of its
logical complement. Relations for which both complements coincide are considered
below.Consistent and cotransitive relation τ is called a coquasiorder. Their important
property is given below.

Proposition 28.3.6 Let τ be a coquasiorder on S. Then:

(i) τ is an SE-subset of S × S;
(ii) ∼ τ = ¬ τ .

Proof (i) Let (x, y) ∈ S × S. Then, for all (a, b) ∈ τ ,

aτ x ∨ xτb ⇒ aτ x ∨ xτ y ∨ yτb

⇒ a#x ∨ xτ y ∨ y#b

⇒ (a, b)#(x, y) ∨ xτ y,

that is, τ is an SE-subset.
(ii) Follows by (i) and Proposition 28.3.3(ii).

Coquasiorders are one of the main building block for the order theory of semigroups
with apartness we develop.

Quotient structures are not part of BISH. Quotient structure does not have, in
general, a natural apartness relation. For most purposes we overcome this problem
using a coequivalence–symmetric coquasiorder–instead of an equivalence. Existing
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properties of a coequivalence guarantees its a-complement be an equivalence as well
as quotient set of that equivalence will inherit an apartness.

For what follows we will need the following definition. For any two relations α
and β on S we say that α defines apartness on S/β if

(Aq6) xβ # yβ ⇔de f (x, y) ∈ α.

(AP5), i.e. its equivalent form, gives
(Aq6’) ((x, a) ∈ β ∧ (y, b) ∈ β) ⇒ ((x, y) ∈ α ⇔ (a, b) ∈ α).

It is easy to check that condition (A6’) is equivalent with condition (1), i.e. we can
say that α is extensional on S/β. Next theorem is the key for the solution of QSP for
sets with apartness.

Theorem 28.3.7 If κ is a coequivalence on S, then the relation ∼κ(= ¬κ) is an
equivalence on S, and κ defines apartness on S/ ∼ κ.

Proof As the reflexivity and symmetry of ∼ κ follow by Lemma 28.3.5 we prove
only the transitivity. If (x, y) ∈∼ κ and (y, z) ∈∼ κ, then, by the definition of ∼ κ,
we have that (x, y) �� κ and (y, z) �� κ. For an element (a, b) ∈ κ, by cotransitivity
of κ, we have (a, x) ∈ κ or (x, y) ∈ κ or (y, z) ∈ κ or (z, b) ∈ κ. Thus (a, x) ∈ κ
or (z, b) ∈ κ, which implies that a#x or b#z, i.e. (x, z)#(a, b). So (x, z) �� κ and
(x, z) ∈ ∼ κ. Therefore ∼ κ is an equivalence on S.

Let a(∼ κ)#b(∼ κ). Then (a, b) ∈ κ implies that (b, a) ∈ κ, that is b(∼ κ)#a(∼
κ).

Let a(∼ κ)#b(∼ κ) and u(∼ κ) ∈ S/ ∼ κ. Then (a, b) ∈ κ, and, by the
cotransitivity of κ, we have (a, u) ∈ κ or (u, b) ∈ κ. Finally we have that a(∼
κ)# u(∼ κ) or u(∼ κ)#b(∼ κ), so the relation # is cotransitive.

The irreflexivity of # is implied by its definition and by the irreflexivity of κ.
Therefore κ defines apartness on S/ ∼ κ.

Corollary 28.3.8 The quotient mapping π : S → S/ ∼ κ, defined by π(x) = x(∼
κ), is an onto se-mapping.

Proof Let π(x)#π(y), i.e. x(∼ κ)#y(∼ κ), which, by what we have just proved,
means that (x, y) ∈ κ. Then, by the consistency of κ, we have x#y. So π is an
se-mapping.

Let a(∼ κ) ∈ S/ ∼ κ and x ∈ a(∼ κ). Then (a, x) ∈∼ κ, i.e. a(∼ κ) = x(∼ κ),
which implies that a(∼ κ) = x(∼ κ) = π(x). Thus π is an onto mapping.

Now, the Apartness isomorphism theorem for sets with apartness follows.

Theorem 28.3.9 Let f : S → T be an se-mapping between sets with apartness.
Then

(i) the relation
coker f =de f {(x, y) ∈ S × S : f (x)# f (y)}

is a coequivalence on S (which we call the cokernel of f ) which defines apart-
ness on S/ ker f , and

ker f ⊆∼ coker f.
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(ii) the mapping θ : S/ ker f → T , defined by θ(x(ker f )) = f (x), is a one-one,
a-injective se-mapping such that f = θ ◦ π;

(iii) if f maps S onto T , then θ is an apartness bijection.

Proof (i) The consistency of coker f is easy to prove: if (x, y) ∈ coker f , then
f (x)# f (y) and therefore x#y.
If (x, y) ∈ coker f , then, by the symmetry of apartness in T , f (y)# f (x); so

(y, x) ∈ coker f .
If (x, y) ∈ coker f and z ∈ S —i.e. f (x)# f (y) and f (z) ∈ T—then either

f (x)# f (z) or f (z)# f (y); that is, either (x, z) ∈ coker f or (z, y) ∈ coker f . Hence
coker f is a coequivalence on S.

Let (x, y) ∈ coker f and (y, z) ∈ ker f ; then f (x)# f (y) and f (y) = f (z).
Hence f (x)# f (z)—that is, (x, z) ∈ coker f—and coker f defines an apartness on
S/ ker f .

Now let (x, y) ∈ ker f , so f (x) = f (y). If (u, v) ∈ coker f , then, by the
cotransitivity of coker f , it follows that (u, x) ∈ coker f or (x, y) ∈ coker f or
(y, v) ∈ coker f . Thus either (u, x) ∈ coker f or (y, v) ∈ coker f , and, by the
consistency of coker f , either u#x or y#v; whence we have (x, y) 	= (u, v). Thus
(x, y) �� coker f , or, equivalently (x, y) ∈ ∼ coker f .

(ii) Let us first prove that θ is well defined. Let x(ker f ), y(ker f ) ∈ S/ ker f be
such that x(ker f ) = y(ker f ); that is, (x, y) ∈ ker f . Then we have f (x) = f (y),
which, by the definition of θ, means that θ(x(ker f )) = θ(y(ker f )). Now let
θ(x(ker f )) = θ(y(ker f )); then f (x) = f (y). Hence (x, y) ∈ ker f , which
implies that x(ker f ) = y(ker f ). Thus θ is one-one.

Next let θ(x(ker f ))#θ(y(ker f )); then f (x)# f (y). Hence (x, y) ∈ coker f ,
which, by (i), implies that x(ker f )#y(ker f ). Thus θ is an se-mapping.

Let x(ker f )#y(ker f ); that is, by (i), (x, y) ∈ coker f . So we have f (x)# f (y),
which, by the definition of θ means θ(x(ker f ))#θ(y(ker f )). Thus θ is injective.
On the other hand, by the Corollary 28.3.8 and the definition of θ, for each x ∈ S we
have

(θ ◦ π)(x) = θ(π(x)) = θ(x(ker f )) = f (x).

(iii) Taking into account (ii), we have to prove only that θ is onto. Let y ∈ T .
Then, as f is onto, there exists x ∈ S such that y = f (x). On the other hand
π(x) = x(ker f ). By (ii), we now have

y = f (x) = (θ ◦ π)(x) = θ(π(x)) = θ(x(ker f )).

Thus θ is onto.

By Theorem 28.3.7, starting from coequivalence we have that its a-complement
is an equivalence, and, furthermore, this coequivalence defines apartness on a factor
set. Now we are going to look at the problem from a slightly different perspective.
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Proposition 28.3.10 Let κ be any relation on S satisfying the following:

(i) ∼κ is an equivalence;
(ii) κ defines an apartness relation on the factor set S/ ∼κ.

Then κ is a coequivalence.

Proof By (i) and Lemma 28.3.5(i), κ is consistent. Symmetry and cotransitivity of
κ is a consequence of (ii), i.e. follow immediately from the axioms of an apartness
relation.

Proposition 28.3.11 Let ε be an equivalence, and κ an coequivalence on S. Then
κ defines apartness on the factor set S/ε if and only if ε ∩ κ = ∅.
Proof (⇒) Let x, y ∈ S, and assume that (x, y) ∈ ε ∩ κ. Then (x, y) ∈ ε and
(y, y) ∈ ε, which, by extensionality ofκ, i.e. (Ap6’), and (x, y) ∈ κ gives (y, y) ∈ κ,
which is impossible. Thus, ε ∩ κ = ∅.

(⇐) Let xεx ′ and yεy′, and assume that xκy. Since ¬(xκx ′) and ¬(yκy′), we
have

xκy ⇒ xκx ′ ∨ x ′κy ⇒ xκx ′ ∨ x ′κy′ ∨ y′κy ⇒ x ′κy′ ,

which proves extensionality of κ on the factor set S/ε.

The following theorem is a generalised version of Theorem 28.3.9.

Theorem 28.3.12 Let f : S → T be a mapping between sets with aparteness, and
let ζ be a coequivalence on S such that ζ ∩ ker f = ∅. Then:
(i) ζ defines apartness on factor set S/ker f ;
(ii) the projection π : S → S/ker f defined by π(x) = x(ker f ) is an onto

se-mapping;
(iii) the mapping f induces a one-one mapping θ : S/ker f → T given by

θ(x(ker f )) = f (x), and f = θ ◦ π;
(iv) θ is an se-mapping if and only if coker f ⊆ ζ;
(v) θ is a-injective if and only if ζ ⊆ coker f .

Proof (i) This was proven in Proposition 28.3.11.
(ii) The projection π : S → S/ker f is onto by Corollary 28.3.8. Strong exten-

sionality follows from consistency of ζ:

π(x)#π(y) ⇔ xζ y ⇒ x#y.

(iii) This was shown in Theorem 28.3.9.
(iv) Let θ be an se-mapping. Let (x, y) ∈ coker f for some x, y ∈ S. Then, by

definition of coker f and θ, the assumption and (i), we have

f (x)# f (y) ⇔ θ(x(ker f ))#θ(y(ker f ))

⇒ x(ker f )#y(ker f )

⇔ (x, y) ∈ ζ.
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Conversely, let coker f ⊆ ζ. By the assumption, (i), and definitions of θ and
coker f , we have

θ(x(ker f ))#θ(y(ker f )) ⇔ f (x)# f (y)

⇔ (x, y) ∈ coker f

⇒ (x, y) ∈ ζ

⇔ x(ker f )#y(ker f ).

(v). Let θ be a-injective, and let (x, y) ∈ ζ. Then, by (i), we have

x(ker f )#y(ker f ) ⇒ θ(x(ker f ))#θ(y(ker f ))

⇔ f (x)# f (y)

⇔ (x, y) ∈ coker f.

Conversely, let ζ ⊆ coker f . Then

x(ker f )#y(ker f ) ⇔ (x, y) ∈ ζ

⇒ (x, y) ∈ coker f

⇔ f (x)# f (y)

⇔ θ(x(ker f ))#θ(y(ker f )).

Remark 28.3.13 The mapping f in the theorem above is strongly extensional if
and only if coker f is consistent. By (iv), if θ is strongly extensional then coker f ⊆
ζ ⊆ (#) ⊆ S × S, implying that f is strongly extensional as well.

Remark 28.3.14 Let (S, �) be set with tight apartness. Then ∼ Y = ¬ Y for any
subset Y of S.

x ∈∼ Y ⇔ x �� Y ⇔ ∀y∈Y (x�y) ⇒ ∀y∈Y (¬ (x = y)) ⇔ ¬ (x ∈ Y ) ⇔ x ∈ ¬ Y.

28.3.2 Algebraic Structures with Apartness

Principal novelty in treating basic algebraic structures constructively is that apart-
ness becomes a fundamental notion. One axiomatizes group, rings, semigroups with
apartness. Descriptive definition of a structure with apartness includes two main
parts:

– the notion of certain classical algebraic structure is straightforwardly adopted;
– a structure is equipped with an apartness with standard operations which are
strongly extensional.
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Latestmeans that if S is an structurewith apartnesswith ◦ as (one of) binary operation
defined on S, then ◦ is strongly extensional if

∀a,b,x,y∈S (a ◦ x # b ◦ y ⇒ (a # b ∨ x # y)).

If f : S → T is a homomorphism of algebraic structures with apartness, then f
is

– an apartness embedding if it is one-one and a-injective se-homomorphism;
– an apartness isomorphism if it is apartness bijection and se-homomorphism.

28.3.2.1 QSP for Groups with Tight Apartness

A group with tight apartness (G, ·, e, �) is a structure satisfying (G, ·, e) is a group,
(G, �) is a set with tight apartness and

∀a,b,x,y∈S (ax � by ⇒ (a � b ∨ x � y)),

∀x,y∈S (x−1 � y−1 ⇒ x � y)).

Remark 28.3.15 Consider the real numbers R, we cannot assume that x−1 exists
unless we know that x is apart from zero, i.e. that | x |> 0. Constructively, that is
not the same thing as x 	= 0. ([3])

In CLASS (see Sect. 28.2.2.1), it is possible to construct from a group G and a
normal subgroup N a quotient group G/N . This may not work in BISH because we
may loose apartness on the quotient group–quotient group does not in general have
a natural apartness relation. For most purposes we overcome this problem using a
cogroup instead of an subgroup. A subset C of a group G is a cogroup of G if

¬(e ∈ C),
xy ∈ C ⇒ x ∈ C ∨ y ∈ C ,
x−1 ∈ C ⇒ x ∈ C .

C is a normal cogroup if it satisfies one of the following three conditions:
xy ∈ C ⇒ yx ∈ C ,
x ∈ C ⇒ yxy−1 ∈ C ,
yxy−1 ∈ C ⇒ x ∈ C ,

for any x, y ∈ C .
Cogroup C is compatible with apartness if

x ∈ C ⇒ x � e.
Each group with tight apartness satisfy

x � y ⇔ xy−1 � e.

We are going to use this without special announcement.
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Existing properties of a normal cogroup guarantees its logical complement be an
normal subgroup as well as the quotient group of that normal subgroup will inherit
a tight apartness.

Theorem 28.3.16 Let C be a normal cogroup of a group G with tight apartness,
then ¬C is a normal subgroup of G and (G/¬C, �) is a quotient group with tight
apartness defined by

x(¬C) � y(¬C) iff xy−1 ∈ C.

The quotient map π : G → G/(¬C), π(x) = x(¬C) is an onto se-homomorphism.

Proof Let us, first, check the properties of tight apartness.
(Ap1) Let ¬ (x(¬C) � x(¬C)). By the definition of apartness, ¬ (xx−1 ∈ C),

i.e. ¬ e ∈ C . So consistency is proved.
(Ap2) Symmetry is obvious.
(Ap3) Cotransitivity:

x(¬C) � y(¬C) ⇔ xy−1 ∈ C

⇔ (xz−1)(zy−1) ∈ C

⇒ xz−1 ∈ C ∨ zy−1 ∈ C

⇔ x(¬C) � z(¬C) ∨ z(¬C) � y(¬C).

(Ap4) Tightness:

¬ (x(¬C) � y(¬C)) ⇔ ¬ (xy−1 ∈ C)

⇔ xy−1 ∈ (¬C)

⇔ x(¬C) = y(¬C).

Now, we will prove that standard operations are strongly extensional.

xa(¬C) � yb(¬C) ⇔ a−1x−1yb ∈ C

⇒ x−1yba−1 ∈ C

⇒ x−1y ∈ C ∨ ba−1 ∈ C

⇔ x(¬C) � y(¬C) ∨ a(¬C) � b(¬C).

x−1(¬C) � y−1(¬C) ⇔ x−1y ∈ C

⇔ x(¬C) � y(¬C).

Finally, let us show that π is an se-mapping.
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π(x) � π(y) ⇔ x(¬C) � y(¬C)

⇔ xy−1 ∈ C

⇔ xy−1 � e

⇔ x � y.

The Tight apartness isomorphism theorem follows next.

Theorem 28.3.17 Let f : G → H be an se-homomorphism between groups with
tight apartness. Then

(i) C f = {x ∈ G : f (x) � eH } ia a normal cogroup of G.
(ii) Mapping θ : G/(¬C f ) → H, θ(x(¬C f )) = f (x), is an apartness embedding

such that θ ◦ π = f .

Proof (i) We will prove properties of normal cogroup.

– As f (eG) = eH , then eG /∈ G f .
– Let xy ∈ C f . Then

xy ∈ C f ⇔ f (xy) � eH
⇔ f (x) f (y) � eH
⇒ f (x) � eH ∨ f (y) � eH
⇔ x ∈ C f ∨ y ∈ C f .

– Let x−1 ∈ C f . Then

x−1 ∈ C f ⇔ f (x−1) � eH
⇔ ( f (x))−1 � eH
⇔ x ∈ C f .

– If xy ∈ C f , then yx ∈ C f can be proved in a similar manner as above.
(ii) By Theorem 28.3.16, G/(¬C f ) is a factor group with tight apartness with
π : G → G/(¬C f ) onto se-homomorphism.

Let us prove that θ : G/(¬C f ) → H is an se-homomorphism.

θ(x(¬C f )) � θ(y(¬C f )) ⇔ f (x) � f (y)

⇒ x(¬C f )#y(¬C f ).

Finally, in order to prove apartness embeddability, we have to prove a-injectivity
of θ.
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x(¬C f ) � y(¬C f ) ⇔ xy−1 ∈ C f

⇔ f (xy−1) � eH
⇔ f (x)( f (y))−1 � eH
⇔ f (x) � f (y)

⇔ θ(x(¬C f )) � θ(y(¬C f )).

.

Remark 28.3.18 Cogroup is a term used in [3, 35], while in [37] term antisubgroup
is used instead.

28.3.2.2 QSP for Commutative Rings with Tight Apartness

As it is written in [37], for demonstration of the solution of QSP commutative rings
with unity and a tight apartness relation do very well.

Commutative rings with unity and a tight apartness (R, �, +, ·,−, 0, 1) is a
structure satisfying (R,+, ·,−, 0, 1) is a commutative ring with unity, (R, �) is a
set with tight apartness and

a + x � b + y ⇒ (a � b ∨ x � y),
ax � by ⇒ (a � b ∨ x � y),
0 � 1.

Lemma 28.3.19 Let R be a ring with tight apartness and let x, y be any two its
elements. Then the following is true:

(i) x + y � 0 ⇒ x � 0 ∨ y � 0;
(ii) xy � 0 ⇒ x � 0 ∧ y � 0;
(iii) x + z � y + z ⇒ x � y.

Proof (i) Follows immediately from the strong extensionality of +.
(ii) If the strong extensionality of the multiplication is applied to xy � x0 and to

xy � 0y then we have required.
(iii) Follows immediately from the strong extensionality of +.

In what follows the previous lemma will be used without special announcement.
Similarly as in Sect. 28.3.2.1, the Tight apartness isomorphism theorem for groups

can be “translated” for rings with normal cogroups and groups replaced by coideals
and rings respectively. Coideals are the tools for introducing an apartness relation on
quotient ring (see Sect. 28.2.2.2). A subset C of a ring R is a coideal of R if

0 /∈ C ,
x + y ∈ C ⇒ x ∈ C ∨ y ∈ C ,
xy ∈ C ⇒ x ∈ C ∧ y ∈ C .

Remark 28.3.20 The definition of a coideal allows ∅ to be a coideal. Inhabited
coideals are characterized by the fact that 1 belongs to them. If a ∈ C then, by the
definition of coideal, a = a1 implies 1 ∈ C .
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Existing properties of a coideal guarantees its a-complement be an ideal as well
as the quotient ring of that ideal will inherit a tight apartness.

Theorem 28.3.21 Let R be a ring with tight apartness and let C be a subset of R.

(i) If C is a coideal, then ¬C is an ideal, and ¬C is proper if C is inhabited.
(ii) If C an inhabited coideal, then R/(¬C) is a ring with tight apartness given by

a + (¬C) � b + (¬C) iff a − b ∈ C.

(iii) The quotient map π : R → R/(¬C), π(x) = x(¬C) is an onto se-
homomorphism.

Proof (i) Routine.
(ii) and (iii) Proof is similar to those in Theorem 28.3.16.

The solution of QSP for rings, the Tight apartness isomorphism theorem, follows
next.

Theorem 28.3.22 Let f : R → S an se-homomorphismbetween commutative rings
with tight apartness, then

C f = {x ∈ R : f (x) � 0}

is an inhabited coideal. There is a unique apartness embedding θ : R/(¬C f ) → S
such that θ ◦ π = f .

Proof It is obvious that 1 ∈ C f . Let us prove C f ia a coideal of R.
Let x ∈ C f . Then f (x) � 0 and, as f is an se-homomorphism, we have x � 0, i.e.

0 /∈ C f . Let x + y ∈ C f . Then

x + y ∈ C f ⇔ f (x + y) � 0

⇔ f (x) + f (y) � 0

⇒ f (x) � 0 ∨ f (y) � 0

⇔ x ∈ C f ∨ y ∈ C f .

Let xy ∈ C f . Then

xy ∈ C f ⇔ f (xy) � 0

⇔ f (x) f (y) � 0

⇒ f (x) � 0 ∧ f (y) � 0

⇔ x ∈ C f ∧ y ∈ C f .

Thus C f is a coideal of R. Let −a ∈ C f for some a ∈ R. Then f (−a) � 0, i.e.
− f (a) � 0, which implies f (a) � 0. So a ∈ C f .

By Theorem 28.3.21, ¬C f is an ideal of R, and a factor ring R/(¬C f ) is a ring
with tight apartness inherited from R. The rest of the proof is similar to the one of
the Theorem 28.3.17 for the group case.
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Remark 28.3.23 Coideal is a term used in [3, 34, 35], while in [37] term anti-ideal
is used instead.

28.3.2.3 QSP for Semigroups with Apartness

Results of several years of investigation, presented in [13, 14], present a semigroup
facet of some relativelywell established direction of constructivemathematicswhich,
to the best of our knowledge, has not yet been considered within the semigroup
community. Some of them will be listed in the remaining part of this section. In
some sense they are consequence of the ones presented in Sect. 28.3.1.

We define the notion of a semigroup in a constructive way. A tuple (S,=, #, ·) is a
semigroup with apartness with (S,=, #) as a set with apartness, · a binary operation
on S which is associative

(A) ∀a,b,c∈S [(a · b) · c = a · (b · c)],
and strongly extensional

(S) ∀a,b,x,y∈S (a · x# b · y ⇒ (a# b ∨ x# y)).

As usual, we are going to write ab instead of a · b. Hereinafter we will consider only
semigroups with apartness, calling them, in short, semigroups, and denoting them
by S. First thing which has to be done is to give an evidence that such ones—with
apartness which is not tight—do exist.

Theorem 28.3.24 Let (A,=, #) be a set with apartness, and let f : A → A be
an se-mapping. If S is a set of all se-functions from A to A, and ◦ composition of
functions, then (S,=, #, ◦) with

f = g ⇔ ∀x∈A ( f (x) = g(x)),

and
f # g ⇔ ∃x∈A ( f (x)# g(x)),

is a semigroup with apartness.

Proof By Theorem 28.3.2 (S,=, #) is a set with apartness. Let f, g ∈ S and sup-
pose that ( f ◦ g)(x)#( f ◦ g)(y) for some x, y ∈ A. Then, by the definition of the
composition, f (g(x))# f (g(y)), and, as f is an se-mapping, we have g(x)#g(y).
Finally, as g is an se-mapping as well, we have x#y. Thus, f ◦ g is an se-mapping
and f ◦ g ∈ S. As in the classical case, composition of functions is associative, [4],
so (S, ◦) is a semigroup.

Let f, g, h,w ∈ S and f ◦ h#g ◦ w. Then, by the definition of apartness in S,
there is an element x ∈ A such that ( f ◦ h)(x)#(g ◦ w)(x), i.e. f (h(x))#g(w(x)).
Now we have
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f (h(x))# f (w(x)) ∨ f (w(x))# g(w(x)),

which, further, implies h(x)#w(x) (because f is an se-mapping) or f #g (by the
definition of the apartness relation on S). Thus f #g ∨ h#w, that is, composition ◦ is
an se-operation and (S,=, #, ◦) is a semigroup with apartness.

Apartness from the previous theorem does not have to be tight. It is well known
that if the standard apartness on the additive semigroup R is tight, then we can prove
the constructively questionable Markov’s principle:

MP For each binary sequence (an)n≥1, if it is impossible that an = 0 for all n, then there
exists n with an = 1.

The following example shows that we cannot prove constructively that the apartness
on every finite semigroup is tight.

Example 28.3.25 Let A = {0, 1, 2} with the usual equality relation—that is, the
diagonal ΔA of A × A. Let

K = ΔA ∪ {(1, 2), (2, 1)},

and define an apartness # on A by

x# y ⇔ (x, y) /∈ K .

Then, as we observed above (Theorem 28.3.24), S = AA becomes a semigroup with
apartness in a standard way. Define mappings f, g : A → A by

f (0) = 1, f (1) = 1, f (2) = 2,

g(0) = 2, g(1) = 1, g(2) = 2.

In view of our definition of the apartness on A, there is no element x of A with
f (x)# g(x); so, in particular, f and g are se-functions. However, if f = g, then
1 = 2, which, by our definition of the equality on A, is not the case. Hence the
apartness on S is not tight. �
Corollary 28.3.26 Every semigroup with apartness embeds into the semigroup of
all strongly extensional self-maps on a set.

Proof Let (S,=, #, ·) be a semigroup with apartness. The semigroup S embeds into
the monoid with apartness S1 = (S ∪ {1},=1, #1, ·) with equality =1 which consists
of all pairs in = and the pair (1, 1), and with apartness #1 which consists of all pairs
in # and the pairs (a, 1), (1, a) for each a ∈ S.

Let fa be a left translation of S1, i.e. fa(x) = a · x , for all x ∈ S1. Then fa is an
se-function. Indeed, fa(x)#1 fa(y) is equivalent to ax#1ay. The strong extensionality
of multiplication implies x#1y.
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Denote by T the set of all se-functions from S1 to S1. As in CLASS, define a
mapping ϕ : S1 −→ T letting

ϕ(a) = fa,

for each a ∈ S1. It is routine to verify that

ϕ(ab) = fab = fa ◦ fb = ϕ(a)ϕ(b),

as well as
ϕ(a)#Tϕ(b) ⇒ a#1b.

Thus, ϕ is an se-homomorphism. Also, ϕ(a) =T ϕ(b) iff ax =1 bx for all x ∈ S1,
and, for x = 1, we have a =1 b. Therefore, ϕ is an embedding.

Let us remember that in CLASS the compatibility property is an important condi-
tion for providing the semigroup structure on quotient sets. Now we are looking for
the tools for introducing apartness relation on a factor semigroup. Our starting point
are the results from the Sect. 28.3.1, as well as the next definition. A coequivalence
κκκ is cocongruence if it is cocompatible, i.e.

∀a,b,x,y∈S ((ax, by) ∈ κ ⇒ (a, b) ∈ κ ∨ (x, y) ∈ κ)

Theorem 28.3.27 If κ is a cocongruence on S, then the relation ∼κ(= ¬κ) is an
congruence on S, and κ defines apartness on S/ ∼ κ.

Proof By Theorem 28.3.7, ∼ κ is an equivalence on S such that κ defines apartness
on S/ ∼ κ. If (a, b), (x, y) ∈∼ κ then for any (u, v) ∈ κ we have both (a, b)#(u, v)
and (x, y)#(u, v). Now, we also have (u, ax) ∈ κ or (ax, by) ∈ κ or (by, v) ∈ κ.
If (ax, by) ∈ κ, then by the cocompatibility of κ, either (a, b) ∈ κ or (x, y) ∈ κ,
which is impossible. Thus (u, ax) ∈ κ or (by, v) ∈ κ; so either u#ax or by#v, and
therefore (ax, by)#(u, v). Hence (ax, by) �� κ. Thus (ax, by) ∈∼ κ, and ∼ κ is a
congruence on S.

Let a(∼ κ)x(∼ κ) 	= b(∼ κ)y(∼ κ); then (ax)(∼ κ)#(by)(∼ κ). By Theo-
rem 28.3.7, we have that (ax, by) ∈ κ. But κ is a cocongruence, so either (a, b) ∈ κ
or (x, y) ∈ κ. Thus, by the definition of # in S/ ∼ κ, either a(∼ κ)#b(∼ κ) or
x(∼ κ)#y(∼ κ). So (S/ ∼ κ,=, #, · ) is a semigroup with apartness.

Corollary 28.3.28 The quotient mapping π : S → S/ ∼ κ, defined by π(x) = x(∼
κ), is an onto se-homomorphism.

Proof By Corollary 28.3.8 π is an onto se-mapping. By the previous theorem and
the assumption we have

π(xy) = (xy)(∼ κ) = x(∼ κ) y(∼ κ) = π(x)π(y).

Hence π is a homomorphism.
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The Apartness isomorphism theorem for semigroups follows.

Theorem 28.3.29 Let f : S → T be an se-homomorphism between semigroups
with apartness. Then:

(i) coker f is a cocongruence on S which defines apartness on S/ ker f , and

ker f ⊆∼ coker f.

(ii) the mapping θ : S/ ker f → T , defined by θ(x(ker f )) = f (x), is an apart-
ness embedding such that f = θ ◦ π; and

(iii) if f maps S onto T , then θ is an apartness isomorphism.

Proof (i) Taking into account Theorems 28.3.9 and 28.3.27, it is enough to prove
that coker f is cocompatible with multiplication in S. Let (ax, by) ∈ coker f—
i.e. f (ax)# f (by). Since f is a homomorphism, we have f (a) f (x)# f (b) f (y). The
strong extensionality of multiplication implies that either f (a)# f (b) or f (x)# f (y).
Thus either (a, b) ∈ coker f or (x, y) ∈ coker f , and therefore coker f is a cocon-
gruence on S.

(ii) Using Theorem 28.3.27 and the assumption that f is a homomorphism, we
have

θ(x(ker f ) y(ker f )) = θ((xy)(ker f ))

= f (xy)

= f (x) f (y)

= θ(x(ker f )) θ(y(ker f )).

By Theorem 28.3.9, θ is a one-one, a-injective se-homomorphism—that is, an apart-
ness embedding.

(iii) This follows by Theorem 28.3.9 and (ii).

As a consequence of the Theorem 28.3.12 we have the following generalization
of the Theorem 28.3.29.

Theorem 28.3.30 Let f : S → T be a mapping between sets with aparteness,
and let ζ be a coequivalence on S such that ζ ∩ ker f = ∅. If S is semigroup with
apartness and ζ a cocongruence, then S/ker f is a semigroup with apartness, and
π an se-homomorphism. If, in addition, T is a semigroup with apartness and f an
se-homomorphism, then θ is also an se-homomorphism.

28.4 Conclusion Remarks

Although the title of this paper suggest that (certain topics like, for example, iso-
morphism theorems, of) basic constructive algebraic structures are in the center of
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consideration, we brought to speak of two points of view on a given subject: classical
and constructive. The classical point of view presented in the Sect. 28.2 is introduc-
tional part of almost all (classical) abstract algebra books. The contents presented
throughout that section have useful role as intuition guides and to at least link with
the presentations given in the Sect. 28.3 written in the style of classical mathematics.
So far we have considered basic structures—groups, rings, semigroups—in classical
setting; in an intuitionistic one, however, it is appropriate to consider them with an
extra structure—apartness. A groups, rings, semigroups with apartness satisfies a
number of extra conditions. In the first place the well known axioms of apartness. In
the second place the operations have to be strongly extensional.

Following [33], BISH (constructive mathematics in general) is not the study of
constructive things it is a constructive study of things. In constructive proofs of (some)
classical theorems only constructive methods are used. More generally, constructive
theorem is a theorem with a constructive proof. Although it might looks like familiar
one from classical case it is often with more complicated hypothesis and proof. One
of the main aims of this paper is to give a constructive treatment of well-known
classical isomorphism theorems for basic classical algebraic structures. Comparing
Theorems 28.2.2 and 28.3.9 for set and set with apartness; Theorems 28.2.7 and
28.3.17 for group and group with tight apartness; Theorems 28.2.12 and 28.3.22
for ring and ring with tight apartness; Theorems 28.2.15 and 28.3.29 for semigroup
and semigroup with apartness, we can notice that Theorems 28.3.9, 28.3.17, 28.3.22
and 28.3.29 are with more complicated hypothesis. On the other hands comparing
proofs of Theorems 28.2.2 and 28.3.9 as well as of Theorems 28.2.15 and 28.3.29
we can notice that constructive versions Theorems 28.3.9 and 28.3.29 are with more
complicated ones.

The constructive results presented in Sect. 28.3 do not follow their historical
appearance. Results on groups and rings with tight apartness are from 80s of the
last century, [34, 35, 37]; while the ones on set and semigroups of apartness are
newcomers, [13, 14, 31]. As it is pointed in Remark 28.3.14, for algebraic structures
with tight apartness we have only one complement of a given subset. On contrary, for
algebraic structures with apartness complement is a proper subset of a logical one,
Example 28.3.4. Obtained solutions of QSP for groups and rings with tight apartness,
Theorems 28.3.17 and 28.3.22, put a complements of a certain subsets (cogroups or
coideals) in the central position. Getting inspiration from these cases, in solving QSP
for sets and semigroups with apartness the distinguishing subsets for which two com-
plements coincide is first to be done. Of course, appropriate developed order theory
for these structures is needful as well.

Why to study basic constructive algebraic structures with apartness? Instead put
some answer(s) let us give some examples of applications of ideas presented in the
previous section.Wewill startwith constructive analysis. Proof of one of the direction
of constructive version of the Spectral Mapping Theorem is based on some elemen-
tary constructive semigroups with inequality techniques, [8]. Worth to be mentioned
are applications of commutative basic algebraic structures with tight apartness within
automated reasoning area, [11, 15]. For possible applications within computational
linguistic see [32]. Some topics from mathematical economics can be approached
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constructively too (using some order theory for sets with apartness), [1]. The study of
basic constructive algebraic structures with apartness as well as constructive algebra
as a whole can have an effect on development of other areas of constructive math-
ematics. On the other hand, it can make both proof engineering and programming
more flexible.

At the very end we can say that our experience of doing constructive algebra
suggests that we are dealingwith “normal”mathematical objects, andwe areworking
only with intuitionistic logic. Why (we choose to do constructive algebra “on the odd
day”)? Because it is interesting in its own right, and, what is more important, it can
be fun and challenging.
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