
Chapter 27
On the Exponential and Trigonometric
q, ω-Special Functions

Thomas Ernst

Abstract Thepurpose of this article is to continue the studyofq, ω-special functions
in the spirit of Wolfgang Hahn from the previous papers by Annaby et al. and Varma
et al.By introducing the newvariableω,wedevelop aquite similar calculus consisting
of two dual exponential, hyperbolic and trigonometric functions. The concept even
and odd functions is replaced by x, ω-even and odd, since a change of sign in x is
always accompanied by a change of sign in ω. In the same way, formulas for chain
rule, Leibniz theorem, q, ω-additions for the three above functions are introduced.
Graphs for these functions are shown, which closely resemble the original ones. To
enable trigonometric formulas with half argument and de Moivre theorem, Ward
numbers and q, ω-rational numbers are introduced.
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27.1 Introduction

Our first aim is to generalize the q-difference operator by introducing the variable
ω. Then the ε operator with the same name as before is used to compute Dq,ω of
the second exponential and for the Leibniz theorem. Let ω ∈ R, 0 < ω < 1. Put
ω0 ≡ ω

1−q , 0 < q < 1. The x, ω even and odd functions are used to simplify q, ω

trigonometric formulas, which were proved by generalizations of Euler’s formula.
The two basic sequences are x, ω-even for even exponents and x, ω-odd for odd
exponents, which motivates the definitions of two new exponential functions. The
first exponential function can be given as power series in the first basic sequence with
domain a subset of three variables x, q, ω in R3, bounded in x by two hyperspheres,
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the first one centered atω0, with radius 1
1−q , the second one with radius 1. The second

exponential function can be given as power series in the second basic sequence with
domain |ω| < 1. The corresponding meromorphic continuations are equal to quo-
tients of infiniteq-shifted factorials, similar toq-calculus. Limit formulas for x → ∞
and inequalities valid for x > ω0 can then be proved in a straightforward way. In
the next section we define the q, ω-addition followed by the q, ω-real numbers, the
exposition closely resembles the related q-addition. The two q, ω-additions have
absolute maximum only for ω in a small interval starting at 0. This interval should
be dependent of x and q. Then the q, ω trigonometric and hyperbolic functions are
defined and some of their graphs are shown. In a remarkable way, Euler’s formu-
las appear again, and the differentiation formulas are quite similar. By introducing
q, ω-rational numbers, we are able to prove trigonometric and hyperbolic formulas
corresponding to half arguments.

27.2 Preliminary Definitions and Theorems

We first generalize some definitions and theorems from q-calculus by simply adding
an index ω.

Definition 27.1 The automorphism ε on the vector space of polynomials is defined
by

ε f (x) ≡ f (qx + ω). (27.1)

This automorphism is a generalization of the operator with the same name in q-
calculus [2]. In [1, p. 136] it is proved that

εk f (x) = f (qkx + ω{k}q). (27.2)

Definition 27.2 Let ϕ be a continuous real function of x . Then we define the q, ω-
difference operator Dq,ω as follows:

Dq,ω (ϕ) (x) ≡
{

ϕ(qx+ω)−ϕ(x)
(q−1)x+ω

, if x �= ω0;
dϕ

dx (x) if x = ω0.
(27.3)

We say that a function f (x) is n times q, ω-differentiable if Dn
q,ω f (x) exists. If we

want to point out that this operator operates on the variable x , we write Dq,ω,x for
the operator. Furthermore, Dq,ω(K ) = 0, like for the derivative.

This operator interpolates between two well-known operators, the Nørlund dif-
ference operator

�ω[ f (x)] ≡ f (x + ω) − f (x)

ω
, (27.4)

and the Jackson q-derivative
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(
Dqϕ

)
(x) ≡

{
ϕ(x)−ϕ(qx)

(1−q)x , if q ∈ C\{1}, x �= 0;
dϕ

dx (x) if q = 1; (27.5)

Furthermore, we need the following chain rule:

Definition 27.3

Dq,ω

(
εkϕ

)
(x) ≡ qk εk+1ϕ(x) − εkϕ(x)

(q − 1)x + ω
. (27.6)

The motivation for formula (27.6) is that it is identical with the q-calculus case and
enables smooth proofs of the following formulas, like the Leibniz formula. It also
follows from the chain rule (27.16).

Definition 27.4 A q, ω-analogue of the mathematical object G is a mathematical
function F(q, ω), with the property limω→0 F(q, ω) = Gq , the q-analogue of G.
Both F and G can depend on more, common variables. They can also be operators.

Theorem 27.1 The q, ω-difference operator is linear

Dq,ω

∞∑
k=0

ak fk(x) =
∞∑
k=0

akDq,ω fk(x). (27.7)

Proof This is obvious, since the definition of Dq,ω is linear in the function.

Theorem 27.2 ([1, (16), p. 137]) The q, ω-difference operator for a product of
functions.

Dq,ω( f g)(x) = Dq,ω( f (x))g(x) + f (qx + ω)Dq,ω(g(x)). (27.8)

Theorem 27.3 ([1, (17), p. 137]) The q, ω-difference operator for a quotient of
functions.

Dq,ω

(
f

g

)
(x) = Dq,ω ( f ) (x)g(x) − f (x)Dq,ω (g) (x)

g(x)g(qx + ω)
, (27.9)

where g(x)g(qx + ω) �= 0.

We now introduce two basic sequences, which generalize the Ciglerian polynomials
in [2, (5.5)].

Definition 27.5

(x)kq,ω ≡
k−1∏
m=0

(x − ω{m}q). (see [6, (16)]) (27.10)
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[x]kq,ω ≡
k−1∏
m=0

(qmx + ω{m}q). (see [6, (15)]) (27.11)

Theorem 27.4 We have the following special cases of the basic sequences.

(x)0q,ω = 1, (x)1q,ω = x, (x)kq,x = 0, k ≥ 2. (27.12)

[x]0q,ω = 1, [x]1q,ω = x, [x]kq,ω = 0, k ≥ 2, ω = − qmx

{m}q , 0 < m < k. (27.13)

This will be used in the comments to the four q, ω-additions. The following names
will be used for the ensuing q, ω-trigonometric and hyperbolic functions.

Definition 27.6 A function f of two variables x, ω is called x, ω-even if
f (−x,−ω) = f (x, ω). A function f of two variables x, ω is called x, ω-odd if
f (−x,−ω) = − f (x, ω).

Lemma 27.1 Products and sums of any number of x, ω-even functions are x, ω-
even. The product and quotient of an x, ω-even function and an x, ω-odd function
are x, ω-odd.

Lemma 27.2 The two functions (x)2kq,ω and [x]2kq,ω are x, ω-even. The two functions
(x)2k+1

q,ω and [x]2k+1
q,ω are x, ω-odd.

The two following formulas correspond to the formula Dxn = nxn−1:

Dq,ω(x)nq,ω = {n}q(x)n−1
q,ω . (see [5, 2.5], [6, (17)]) (27.14)

Dq,ω[x]nq,ω = {n}q [qx + ω]n−1
q,ω . (see [6, (18)]) (27.15)

Theorem 27.5 The chain rule for the q, ω-difference operator.

Dq,ω

(
(ax)nq,aω

) = a{n}q(ax)n−1
q,aω. (27.16)

Dq,ω

([ax]nq,aω

) = a{n}q [aqx + aω]n−1
q,aω. (27.17)

Proof We prove (27.16) by induction. The formula (27.16) is true for n = 1, 2.
Assume that it is true for n − 1. Then we have

Dq,ω

[
(ax)n−1

q,aω(ax − {n − 1}qaω)
]

by(27.8)= a(ax)n−1
q,aω + a2

[
qx + ω − {n − 1}q

] {n − 1}q(ax)n−2
q,aω

= a(ax)n−1
q,aω

[
1 + q{n − 1}q

] = RHS.

(27.18)

Formula (27.17) is proved in a similar style.
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We now give an improved proof of the following crucial theorem.

Theorem 27.6 (The Leibniz’ q, ω-theorem [1, (25), p. 138]) Let f (x) and g(x) be
n times q, ω-differentiable functions on I . Then the product f g(x) is also n times
q, ω-differentiable and

Dn
q,ω( f g)(x) =

n∑
k=0

(
n

k

)
q

Dk
q,ω( f )(εn−k x)Dn−k

q,ω (g)(x), x �= ω0. (27.19)

Proof For n = 1 the formula above becomes (27.8). Assume that the formula is
proved for n = m. Then it is also true for n = m + 1, because

Dm+1
q,ω ( f g)(x) = Dq,ω(Dm

q,ω( f g)(x)) =

= Dq,ω

m∑
k=0

(
m

k

)
q

Dk
q,ω( f )(εm−k x)Dm−k

q,ω (g)(x) =

by (27.6),(27.8)=
m∑

k=0

(
m

k

)
q

(
qm−kDk+1

q,ω ( f )(εm−k x)Dm−k
q,ω (g)(x)+

+ Dk
q,ω( f )(εm+1−k x)Dm+1−k

q,ω (g)(x)
) =

=
m∑

k=0

(
m

k

)
q

Dk
q,ω( f )(εm+1−k x)Dm+1−k

q,ω (g)(x)+

+
m+1∑
k=1

(
m

k − 1

)
q

qm+1−kDk
q,ω( f )(εm+1−k x)Dm+1−k

q,ω (g)(x) =

= f (εm+1x)Dm+1
q,ω (g)(x) +

m∑
k=1

((
m

k

)
q

+ qm+1−k

(
m

k − 1

)
q

)
×

× Dq,ω
k( f )(εm+1−k x)Dm+1−k

q,ω (g)(x) + Dm+1
q,ω ( f )(x)g(x) =

by [2, 6.90]=
m+1∑
k=0

(
m + 1

k

)
q

Dk
q,ω( f )(εm+1−k x)Dm+1−k

q,ω (g)(x).

(27.20)

We next introduce two q, ω-analogues of the exponential function:

Definition 27.7 The q, ω-exponential function Eq,ω(z) (see [6, (21)]) is defined by

Eq,ω(z) ≡
∞∑
k=0

(z)kq,ω

{k}q ! , |(1 − q)z − ω| < 1. (27.21)

The complementary q, ω-exponential function E 1
q ,ω(z) (see [6, (26)]) is defined by
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E 1
q ,ω(z) ≡

∞∑
k=0

[z]kq,ω

{k}q ! , |ω| < 1. (27.22)

Theorem 27.7 The q, ω-exponential function is the unique solution of the first order
initial value problem [6, (19)]:

Dq,ω f (z) = f (z), f (0) = 1. (27.23)

The complementary q, ω-exponential function is the unique solution of the first order
initial value problem [6, (24)]:

Dq,ω f (z) = f (qz + ω), f (0) = 1. (27.24)

Theorem 27.8 The meromorphic continuation of the q, ω-exponential function
Eq,ω(z) is given by [6, (21)]:

Eq,ω(z) = (−ω; q)∞
((1 − q)z − ω; q)∞

. (27.25)

The meromorphic continuation of the complementary q, ω-exponential function
E 1

q ,ω(z) is given by [6, (26)]:

E 1
q ,ω(z) = ((q − 1)z + ω; q)∞

(ω; q)∞
. (27.26)

Corollary 27.1 ([6])
Eq,ω(z)E 1

q ,−ω(−z) = 1 (27.27)

Theorem 27.9 We have the following limit:

lim
x→∞E 1

q ,ω(x) = ∞, 0 < q < 1. (27.28)

Proof We put En,q(x) ≡ (−x(1 − q) + ω; q)n .

Then E 1
q ,ω(x) = (ω; q)−1∞ limn→∞ En,q(x). For q fixed, 0 < q < 1, choose x so

big that
|1 + qk[x(1 − q) − ω]| > a > 1, k ∈ N. (27.29)

This means |En,q(x)| > an and

lim
n→∞ |En,q(x)| > lim

n→∞ an = ∞. (27.30)

Theorem 27.10 The function Eq,ω(x) oscillates between ±∞ if
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lim
x→∞, 0 < q < 1.

Proof Consider the function

f (x) ≡ E 1
q ,−ω(−x) = (x(1 − q) − ω; q)∞

(−ω; q)∞
. (27.31)

This function has infinitely many zeros xm = (1 − q)−1(ω + q−m) with accumula-
tion point +∞. Our original function Eq,ω(x) = 1

f (x) then goes → ±∞.

We now prove two inequalities for the two q, ω-exponential functions.

Theorem 27.11 (A generalization of [2, (6.160)]). An inequality for Eq,ω(−x)
holds:

Eq,−ω(−x) > e−x+ω0(ω; q)∞, 0 < q < 1, x > ω0. (27.32)

Proof Denote

PN (x) ≡
N∏

k=0

1

1 + [x(1 − q) − ω]qk
. (27.33)

Then we have

PN (x) > exp

(
−

N∑
k=0

[x(1 − q) − ω]qk

)
= exp

(−(x − ω0)(1 − qN+1)
)

(27.34)

which implies

Eq,−ω(−x) = (ω; q)∞ lim
N→∞ PN (x) > e−x+ω0(ω; q)∞. (27.35)

Corollary 27.2 (A generalization of [2, (6.164)]) An inequality for E 1
q ,ω(x) holds:

E 1
q ,ω(x) < ex−ω0(ω; q)−1

∞ , x > ω0, 0 < q < 1. (27.36)

27.3 On the q, ω-Addition with Applications to
q, ω-Special Functions

In order to use these functions, we need to generalize the q-addition. The ordinary
q-addition is the special case ω = 0. Just like for the q-addition, we use letters in
an alphabet for the q, ω-additions. Equality between letters is denoted by ∼. In the
following, beware of the fact that whenever we multiply the function argument x in
(x)νq,ω or in [x]νq,ω by the constant a, we must also multiply ω by a.
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Definition 27.8 The NWA q, ω-addition is defined as follows:

(x ⊕q,ω y)n ≡
n∑

k=0

(
n

k

)
q

(x)n−k
q,ω (y)kq,ω. (27.37)

The NWA q, ω-subtraction is defined as follows:

(x �q,ω y)n ≡
n∑

k=0

(
n

k

)
q

(x)n−k
q,ω (−y)kq,−ω. (27.38)

The JHC q, ω-addition is defined as follows:

(x �q,ω y)n ≡
n∑

k=0

(
n

k

)
q

(x)n−k
q,ω [y]kq,ω. (27.39)

The JHC q, ω-subtraction is defined as follows:

(x �q,ω y)n ≡
n∑

k=0

(
n

k

)
q

(x)n−k
q,ω [−y]kq,−ω. (27.40)

Theorem 27.12 The NWA q, ω-addition is commutative and associative.

Proof Similar to the proof for NWA q-addition.

Example 27.1 We have the following special cases for x = y = ω:

(x ⊕q,x x)
1 = (x �q,x x)

1 = 2x,

(x ⊕q,x x)
2 = (1 + q)x2, (x �q,x x)

2 = 2(1 + q)x2,

(x ⊕q,x x)
n = 0, n ≥ 3.

(27.41)

Proof Use formulas (27.12) and (27.13).

Definition 27.9 For an arbitrary set M , let 〈M〉 denote the set generated by M
together with the four operations (27.37)–(27.40). For a given letter aq,ω in (27.44),
assume that

1. The sums (27.37)–(27.40) do not change sign as functions of the exponent n.
2. These sums do not first decrease to a minimum and then increase.

Then the set Rq,ω is defined as follows.

Rq,ω ≡ 〈R〉. (27.42)

Like for the q-addition [2, p. 25], it turns out that these two q, ω-additions, as func-
tions of the exponent n, first increase to a maximum value and then decrease to zero.
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Like for the q-real numbers, this happens only in a certain set Jm0,...,m j−1 , defined as
follows.

Definition 27.10 Given an integer k, the formula

m0 + m1 + · · · + m j−1 = k (27.43)

determines a set Jm0,...,m j−1 ∈ N j . If aq,ω is the q, ω-real number with j letters

⊕ j−1
q,ω,l=0al , |al | < 1, ∀l, its k’th power is given by

(⊕ j−1
q,ω,l=0al)

k ≡ (a0 ⊕q,ω a1 ⊕q,ω . . .)k ≡
∑
|m|=k

∏
ml∈Jm0 ,...,m j−1

(al)
ml
q,ω

(
k

m

)
q

, (27.44)

where for each JHC-addition in ai , we change from (al)q,ω to [al ]q,ω.

Conjecture 27.1 For certain values {al} j−1
l=0 , within a convex set inside the hypercube

with length 1 in R j , the q, ω-real number aq,ω, with j letters, and with k’th power
given by (27.44) has an absolute maximum.

If there is no absolute maximum, and the function in (27.44) is infinite for some
exponent k, we say that there is no q, ω-real number aq,ω. As further confirmation
of our hypothesis, we show the following tables, which display n-values for this
maximum.

Example 27.2 Define the following function:

F(n)a,0.88,ω : n → (a ⊕0.88,ω a)n, 0 < a < 1, 0 < ω < 1. (27.45)

The table gives the n-values for the maximum of F

a, ω n a, ω n a, ω n a, ω n
0.54, 0.05 1 0.54, 0.1 3 0.54, 0.15 1 0.54, 0.2 3
0.55, 0.05 2 0.55, 0.1 4 0.55, 0.15 1 0.55, 0.2 4
0.6, 0.05 3 0.6, 0.1 7 0.6, 0.15 2 0.6, 0.2 7
0.65, 0.05 4 0.65, 0.1 11 0.65, 0.15 2 0.65, 0.2 11
0.7, 0.05 6 0.7, 0.1 14 0.7, 0.15 3 0.7, 0.2 14
0.8, 0.05 9 0.8, 0.1 24 0.8, 0.15 4 0.8, 0.2 24

Example 27.3 Define the following function:

G(n)a,0.88,ω : n → (a �0.88,ω a)n, 0 < a < 1, 0 < ω < 1. (27.46)

The table gives the n-values for the maximum of G
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a, ω n a, ω n a, ω n a, ω n
0.54, 0.025 2 0.54, 0.05 2 0.54, 0.075 2 0.54, 0.1 2
0.55, 0.025 2 0.55, 0.05 2 0.55, 0.075 2 0.55, 0.1 2
0.6, 0.025 4 0.6, 0.05 4 0.6, 0.075 4 0.6, 0.1 4
0.65, 0.025 5 0.65, 0.05 5 0.65, 0.075 5 0.65, 0.1 6
0.7, 0.025 7 0.7, 0.05 6 0.7, 0.075 7 0.7, 0.1 8
0.8, 0.025 11 0.8, 0.05 9 0.8, 0.075 11 0.8, 0.1 12

Corollary 27.3 An extension of the formula [2, (4.29)]

Dq,ω,x (x ⊕q,ω y)n={n}q(x ⊕q,ω y)n−1, ⊕q,ω ≡ ⊕q,ω ∨ �q,ω. (27.47)

Proof

Dq,ω,x (x ⊕q,ω y)n
by(27.14)=

n−1∑
k=0

(
n

k

)
q

{n − k}q(x)n−k−1
q,ω (y)kq,ω = RHS. (27.48)

Corollary 27.4 Four q, ω-additions for the q, ω-exponential function.

Eq,ω(x ⊕q,ω y) ≡ Eq,ω(x)Eq,ω(y). (27.49)

Eq,ω(x �q,ω y) ≡ Eq,ω(x)Eq,−ω(−y). (27.50)

Eq,ω(x �q,ω y) ≡ Eq,ω(x)E 1
q ,ω

(y). (27.51)

Eq,ω(x �q,ω y) ≡ Eq,ω(x)E 1
q ,−ω

(−y). (27.52)

Definition 27.11 The corresponding q, ω-trigonometric functions are:

Sinq,ω(x) ≡
∞∑
k=0

(−1)k
(x)2k+1

q,ω

{2k + 1}q ! , |(1 − q)x − ω| < 1. (27.53)

Cosq,ω(x) ≡
∞∑
k=0

(−1)k
(x)2kq,ω

{2k}q ! , |(1 − q)x − ω| < 1. (27.54)

Sin 1
q ,ω

(x) ≡
∞∑
k=0

(−1)k[x]2k+1
q,ω

{2k + 1}q ! , |ω| < 1. (27.55)

Cos 1
q ,ω

(x) ≡
∞∑
k=0

(−1)k[x]2kq,ω

{2k}q ! , |ω| < 1. (27.56)
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Fig. 27.1 Sinq,ω(x), Sin 1
q ,ω

(x)

Fig. 27.2 Cosq,ω(x), Cos 1
q ,ω

(x)

Like in [2, p. 222], assume q = 0.9 and 0 ≤ x ≤ 8. Figure27.1 shows Sinq,ω(x),
Sin 1

q ,ω
(x) and Fig. 27.2 shows Cosq,ω(x), Cos 1

q ,ω
(x) for ω = 0.1.

Definition 27.12 The corresponding q, ω-hyperbolic functions are:

Sinhq,ω(x) ≡
∞∑
k=0

(x)2k+1
q,ω

{2k + 1}q ! , |(1 − q)x − ω| < 1. (27.57)

Coshq,ω(x) ≡
∞∑
k=0

(x)2kq,ω

{2k}q ! , |(1 − q)x − ω| < 1. (27.58)

Sinh 1
q ,ω

(x) ≡
∞∑
k=0

[x]2k+1
q,ω

{2k + 1}q ! , |ω| < 1. (27.59)

Cosh 1
q ,ω

(x) ≡
∞∑
k=0

[x]2kq,ω

{2k}q ! , |ω| < 1. (27.60)
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Fig. 27.3 [Sinhq (x), Coshq (x)]

Tanhq,ω(x) ≡ Sinhq,ω(x)

Coshq,ω(x)
, |(1 − q)x − ω| < 1. (27.61)

Cothq,ω(x) ≡ Coshq,ω(x)

Sinhq,ω(x)
, |(1 − q)x − ω| < 1. (27.62)

Tanh 1
q ,ω

(x) ≡
Sinh 1

q ,ω
(x)

Cosh 1
q ,ω

(x)
, |ω| < 1. (27.63)

Coth 1
q ,ω

(x) ≡
Cosh 1

q ,ω
(x)

Sinh 1
q ,ω

(x)
, |ω| < 1. (27.64)

We have chosen not to use the names for inverse ratios of hyperbolic functions.

Our next aim is to show pictures of q, ω-hyperbolic functions which resemble
the four basic graphs for hyperbolic functions and their inverse ratios. Each of these
pictures contain two functions, just like in the elementary textbooks. We choose
five examples; in order to show the similarity with the q-hyperbolic functions from
[2, p. 229 f.], we begin with five graphs of the latter functions. Everywhere we
have q = 0.9. Figures27.3, 27.4, 27.5, 27.6 and 27.7 show [Sinhq(x), Coshq(x)],
[Sinh 1

q
(x), Cosh 1

q
(x)], [Coshq(x), (Coshq(x))−1], [Sinhq(x), (Sinhq(x))−1] and

[Tanhq(x), Cothq(x)], respectively.
Figures27.8, 27.9, 27.10, 27.11 and 27.12 show [Sinhq,.1(x), Coshq,.1(x)],

[Sinh 1
q ,.1

(x), Cosh 1
q ,.1

(x)], [Coshq,.2(x), (Coshq,.2(x))−1], [Sinhq,.2(x),

(Sinhq,.2(x))−1] and [Tanhq,.1(x), Cothq,.1(x)], respectively.
The above definitions are obviously equivalent to the following formulas:
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Fig. 27.4 [Sinh 1
q
(x), Cosh 1

q
(x)]

Fig. 27.5 [Coshq (x), (Coshq (x))−1]

Fig. 27.6 [Sinhq (x), (Sinhq (x))−1]

Sinq,ω(x) = 1

2i
(Eq,iω(i x) − Eq,−iω(−i x)), (27.65)

Cosq,ω(x) = 1

2
(Eq,iω(i x) + Eq,−iω(−i x)), (27.66)
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Fig. 27.7 [Tanhq (x), Cothq (x)]

Fig. 27.8 [Sinhq,.1(x), Coshq,.1(x)]

Fig. 27.9 [Sinh 1
q ,.1

(x), Cosh 1
q ,.1

(x)]
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Fig. 27.10 [Coshq,.2(x), (Coshq,.2(x))−1]

Fig. 27.11 [Sinhq,.2(x), (Sinhq,.2(x))−1]

Fig. 27.12 [Tanhq,.1(x), Cothq,.1(x)]

Sinhq,ω(x) = 1

2
(Eq,ω(x) − Eq,−ω(−x)), (27.67)

Coshq,ω(x) = 1

2
(Eq,ω(x) + Eq,−ω(−x)), (27.68)
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The following theorem is needed for the correct formulation of the next q, ω-addition
formulas.

Theorem 27.13 The two functions Cosq,ω and Cos 1
q ,ω

are x, ω-even. The six func-

tions Sinq,ω, Sin 1
q ,ω

, Tanq,ω, Cotq,ω, Tan 1
q ,ω

, Cot 1
q ,ω

are x, ω-odd. The same

applies to the corresponding q, ω-hyperbolic functions.

Proof This follows from the corresponding properties of the two functions (x)kq,ω

and [x]kq,ω.

Theorem 27.14 New q, ω Euler formulas:

Eq,iω(i x) = Cosq,ω(x) + iSinq,ω(x), (27.69)

Eq,ω(x) = Coshq,ω(x) + Sinhq,ω(x), (27.70)

Proof Add formulas (27.65), (27.66), and (27.67), (27.68), respectively.

Theorem 27.15 The q, ω-differences for the q, ω-exponential functions are:

Dq,ω Eq,aω(ax) = a Eq,aω(ax), (27.71)

Dq,ω E 1
q ,aω

(ax) = a E1
q ,aω

(aqx + aω), (27.72)

The q, ω-differences for the q, ω-trigonometric functions are:

Dq,ω Cosq,aω(ax) = −a Sinq,aω(ax), (27.73)

Dq,ωSinq,bω(bx) = b Cosq,bω(bx). (27.74)

The q, ω-differences for the q, ω-hyperbolic functions are:

Dq,ω Coshq,aω(ax) = a Sinhq,aω(ax), (27.75)

Dq,ω Sinhq,bω(bx) = b Coshq,bω(bx). (27.76)

The functions Cosq,aω(ax) and Sinq,aω(ax) are solutions to the q, ω-difference equa-
tion

D2
q,ω f (x) = −a2 f (x), (27.77)

with initial values f (0) = 1 and f (0) = 0 respectively.
The functions Coshq,aω(ax) and Sinhq,aω(ax) are solutions to the q, ω-difference

equation
D2

q,ω f (x) = a2 f (x), (27.78)
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with initial values f (0) = 1 and f (0) = 0 respectively.

Again, the following formulas closely resemble the ordinary ones. The following
umbral numbers can only be function arguments in formal power series.

In the book [4] we introduced several new q-deformed number systems, semiring,
biring etc., each with an extra index q. By a miracle, we can extend these number
systems by adding another index ω. The proofs will be very similar, and we just state
the definitions and corresponding theorems.

Definition 27.13 The Ward-ω number nq,ω is defined by

nq,ω ∼ 1 ⊕q,ω 1 ⊕q,ω . . . ⊕q,ω 1, (27.79)

where the number of 1 on the RHS is n.

Definition 27.14 Let (N⊕q,ω
,⊕q,ω,�q,ω) denote the semiring of Ward-ω numbers

kq,ω, k ≥ 0 together with two binary operations: ⊕q,ω is the Ward q, ω-addition.
The multiplication �q,ω is defined as follows:

nq,ω �q,ω mq,ω ∼ nmq,ω, (27.80)

where ∼ denotes the equivalence in the alphabet.

Theorem 27.16 Functional equations for Ward-ω numbers operating on the
q, omega-exponential function. First assume that the letters mq,ω and nq,ω are inde-
pendent, i.e. come from two different functions, when operating with the functional.
Furthermore, mnt < 1+ω

1−q . Then we have

Eq,ω(mq,ωnq,ωt) = Eq,ω(mnq,ωt). (27.81)

Furthermore,

Eq,ω( jmq,ω) = Eq,ω( jq,ω)m = Eq,ω(mq,ω) j = Eq,ω( jq,ω �q,ω mq,ω). (27.82)

We will now extend this semiring to a graded commutative biring.

Definition 27.15 Let the q, ω-integers (Zq,ω,⊕q,ω,�q,ω,�q,ω, 0q,ω) denote ±
the Ward ω numbers, i.e. Zq,ω ≡ N⊕q ,ω ∪ −N⊕q ,ω, where there are two inverse q-
additions ⊕q,ω and �q,ω. 0q,ω denotes the zero θ , and 1q,ω denotes the multiplicative
identity. The dual addition is defined by

nq,ω �q,ω −mq,ω ∼ n − mq,ω, n ≥ m. (27.83)

Furthermore, the multiplication �q,ω is defined by (27.80) and

nq,ω �q,ω −mq,ω ∼ −nmq,ω. (27.84)
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Finally, we define
−mq,ω ≡ −mq,ω. (27.85)

Theorem 27.17 An extension of [2, p. 167]. Assume that Zq,ω is defined by the
previous definition. Then (Zq,ω,⊕q,ω,�q,ω,�q,ω, 0q,ω) is a graded commutative
biring.

Definition 27.16 An extension of [3, p. 4]. Let the q, ω-rational numbers Q⊕q,ω
be

defined as follows:

Q⊕q,ω
≡

{
mq,ω

nq,ω

, m ∈ N ∪ {0}, n ∈ N, m �= n,
0q,ω

nq,ω

∼ θ,
nq,ω

nq,ω

∼ 1

}
, (27.86)

together with a linear functional

v, R[x] × Q⊕q,ω
→ R, (27.87)

called the evaluation. If v(x) = ∑n
k=0 akx

k , then

v

(
mq,ω

nq,ω

)
≡

n∑
k=0

ak
(mq,ω)k

(nq,ω)k
. (27.88)

Definition 27.17 An extension of [2, (4.70)]:

(nq,ω)k ≡
∑

m1+···+mn=k

(
k

m1, . . . ,mn

)
q

n∏
i=1

(1)mi
q,ω, (27.89)

where each partition of k is multiplied with its number of permutations. We have the
following special cases:

(0q,ω)k = δk,0; (nq,ω)0 = 1; (nq,ω)1 = n. (27.90)

All of the following exponential, trigonometric and hyperbolic formulas are only
valid for ω far away from 1.

Theorem 27.18
Eq,ω(nq,ω) = (Eq,ω(1))n. (27.91)

Lemma 27.3 Eight q, ω addition theorems for q, ω trigonometric functions.

Cosq,ω(x)Cosq,−ω(−y) − Sinq,ω(x)Sinq,−ω(−y) = Cosq,ω(x �q,ω y). (27.92)

Cosq,ω(x)Cosq,ω(y) − Sinq,ω(x)Sinq,ω(y) = Cosq,ω(x ⊕q,ω y). (27.93)
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Sinq,ω(x)Cosq,ω(y) + Sinq,ω(y)Cosq,ω(x) = Sinq,ω(x ⊕q,ω y). (27.94)

Sinq,ω(x)Cosq,−ω(−y) + Sinq,−ω(−y)Cosq,ω(x) = Sinq,ω(x �q,ω y). (27.95)

Cosq,ω(x)Cos 1
q ,−ω

(−y) − Sinq,ω(x)Sin 1
q ,−ω

(−y) = Cosq,ω(x �q,ω y). (27.96)

Cosq,ω(x)Cos 1
q ,ω

(y) − Sinq,ω(x)Sin 1
q ,ω

(y) = Cosq,ω(x �q,ω y). (27.97)

Sinq,ω(x)Cos 1
q ,ω

(y) + Sin 1
q ,ω

(y)Cosq,ω(x) = Sinq,ω(x �q,ω y). (27.98)

Sinq,ω(x)Cos 1
q ,−ω

(−y) + Sin 1
q ,−ω

(−y)Cosq,ω(x) = Sinq,ω(x �q,ω y). (27.99)

Proof Use formulas (27.49)–(27.52). We prove (27.96):

Cosq,ω(x �q,ω y)
by(27.66)= 1

2
(Eq,iω(i x �q,iω iy) + Eq,−iω(−i x �q,iω iy))

by(27.52)= 1

2

[
Eq,iω(i x)E 1

q ,−iω
(−iy) + Eq,−iω(−i x)E 1

q ,iω
(iy)

]
by(27.66)= LHS.

(27.100)

These formulas can be simplified by using Theorem 27.13.

Theorem 27.19 Eight q, ω addition theorems for q, ω trigonometric functions with
only positive function arguments on the LHS.

Cosq,ω(x)Cosq,ω(y) + Sinq,ω(x)Sinq,ω(y) = Cosq,ω(x �q,ω y). (27.101)

Cosq,ω(x)Cosq,ω(y) − Sinq,ω(x)Sinq,ω(y) = Cosq,ω(x ⊕q,ω y). (27.102)

Sinq,ω(x)Cosq,ω(y) + Sinq,ω(y)Cosq,ω(x) = Sinq,ω(x ⊕q,ω y). (27.103)

Sinq,ω(x)Cosq,ω(y) − Sinq,ω(y)Cosq,ω(x) = Sinq,ω(x �q,ω y). (27.104)

Cosq,ω(x)Cos 1
q ,ω

(y) + Sinq,ω(x)Sin 1
q ,ω

(y) = Cosq,ω(x �q,ω y). (27.105)

Cosq,ω(x)Cos 1
q ,ω

(y) − Sinq,ω(x)Sin 1
q ,ω

(y) = Cosq,ω(x �q,ω y). (27.106)

Sinq,ω(x)Cos 1
q ,ω

(y) + Sin 1
q ,ω

(y)Cosq,ω(x) = Sinq,ω(x �q,ω y). (27.107)

Sinq,ω(x)Cos 1
q ,ω

(y) − Sin 1
q ,ω

(y)Cosq,ω(x) = Sinq,ω(x �q,ω y). (27.108)
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Corollary 27.5
Cos2q,ω(x) − Sin2q,ω(x) = Cosq,ω(2q,ωx). (27.109)

2Cosq,ω(x)Sinq,ω(x) = Sinq,ω(2q,ωx). (27.110)

Cosq,ω(x)Cos 1
q ,ω

(x) + Sinq,ω(x)Sin 1
q ,ω

(x) = 1. (27.111)

Remark 27.1 If the series expansion is not defined, we can use the corresponding
q, ω-addition formula to define the q, ω-addition for the product expansion.

Definition 27.18 Denote the k:th zero of Sinq,ω(x), x > 0 by ξ(q, k, ω). Denote
the k:th zero of Cosq,ω(x), x > 0 by τ(q, k, ω).

Theorem 27.20 First equality between q, ω-trigonometric zeros.

ξ(q, k, ω) = ξ

(
1

q
, k, ω

)
, k > 0. (27.112)

Theorem 27.21 Second equality between q, ω-trigonometric zeros.

τ(q, k, ω) = τ

(
1

q
, k, ω

)
, k > 0. (27.113)

Proof We prove (27.112). Use

Eq,iω(i x)E 1
q ,−iω

(−i x) = 1, (27.114)

and put x = ξ(q, k, ω). This implies Sin 1
q ,ω(ξ(q, k, ω)) = 0, since the right hand

side is real. The second equation is proved in a similar way.

Theorem 27.22

Sinq,ω(τ (q, k, ω))Sin 1
q ,ω(τ (q, k, ω)) = 1, k > 0. (27.115)

Cosq,ω(ξ(q, k, ω))Cos 1
q ,ω(ξ(q, k, ω)) = 1, k > 0. (27.116)

Proof Put x = ξ(q, k, ω) in (27.114).

Theorem 27.23 The function f (x) : x �→ Sinq,ω(x)Sin 1
q ,ω(x) has extreme values

for x = τ(q, k, ω), k > 0. The function g(x) : x �→ Cosq,ω(x)Cos 1
q ,ω(x)has extreme

values for x = ξ(q, k, ω), k > 0. These extreme values are both 1.

Proof We prove the first statement. Differentiate formula (27.111) with respect to x
and put x = τ(q, k, ω). The second term on the left is zero, as well as the right hand
side. This proves the first part. The second part follows from Theorem 27.22.
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Remark 27.2 Numerical computations show that both functions f (x) and g(x) are
positive, which means that

Sinq,ω(x), Sin 1
q ,ω(x) and Cosq,ω(x), Cos 1

q ,ω(x)

have the same signs for a fixed value of x , respectively. They have the same zeros by
Theorems 27.20 and 27.21. This means that the extreme values in Theorem 27.23
are maxima.

Remark 27.3 Theorem 27.23 does not mean that the maxima and minima of

Sinq,ω(x), Sin 1
q ,ω(x) and Cosq,ω(x), Cos 1

q ,ω(x)

occur for x = τ(q, k, ω) and x = ξ(q, k, ω), respectively.

Compare with the pictures in [2, p. 222]. On the basis of Theorem 27.22 and
numerical computations we make a guess:

Conjecture 27.2 The function f (x) = Sinq,ω(x) ∨ Cosq,ω(x) for fixed q < 1 and
fixed 0 < ω < 1, far away from 1, oscillates between decreasing positive maximum
values and increasing negative minimum values as function of x > 0.

Conjecture 27.3 The function f (x) = Sin 1
q ,ω

(x) ∨ Cos 1
q ,ω

(x) for fixed q < 1 and

fixed 0 < ω < 1, far away from 1, oscillates between increasing positive maximum
values and decreasing negative minimum values as function of x > 0.

Definition 27.19 The q, ω-tangens and cotangens are defined by

Tanq,ω(x) ≡ Sinq,ω(x)

Cosq,ω(x)
, x �= τ(q, k, ω). (27.117)

Cotq,ω(x) ≡ Cosq,ω(x)

Sinq,ω(x)
, x �= ξ(q, k, ω). (27.118)

Theorem 27.24 Formulas for q, ω-Tangens and Cotangens.

Tanq,ω(x ⊕q,ω y) = Tanq,ω(x) + Tanq,ω(y)

1 − Tanq,ω(x)Tanq,ω(y)
. (27.119)

Tanq,ω(x �q,ω y) = Tanq,ω(x) − Tanq,ω(y)

1 + Tanq,ω(x)Tanq,ω(y)
. (27.120)

Cotq,ω(x ⊕q,ω y) = Cotq,ω(x)Cotq,ω(y) − 1

Cotq,ω(x) + Cotq,ω(y)
. (27.121)
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Fig. 27.13 Tanq,ω(x), Cotq,ω(x)

Cotq,ω(x �q,ω y) = Cotq,ω(x)Cotq,ω(y) + 1

Cotq,ω(y) − Cotq,ω(x)
. (27.122)

Tanq,ω(2q,ωx) = 2Tanq,ω(x)

1 − Tan2q,ω(x)
. (27.123)

Cotq,ω(2q,ωx) = Cot2q,ω(x) − 1

2Cotq,ω(x)
. (27.124)

Figure27.13 shows Tanq,ω(x), Cotq,ω(x) for q = 0.9 and ω = 0.1.
The graphs for Tan 1

q ,ω(x), Cot 1
q ,ω(x) closely resemble the previous figure. Again,

the following formulas closely resemble the ordinary ones. They are also valid for
q-analogues.

Theorem 27.25 More q, ω-differences for quotient q, ω-trigonometric functions.

Dq,ωTanq,ω(x) = Cosq,ω(x �q,ω x)

Cosq,ω(x)εCosq,ω(x)
, (27.125)

Dq,ωCotq,ω(x) = − Cosq,ω(x �q,ω x)

Sinq,ω(x)εSinq,ω(x)
, (27.126)

Dq,ω

(
1

Sinq,ω(x)

)
= − Cosq,ω(x)

Sinq,ω(x)εSinq,ω(x)
, (27.127)

Dq,ω

(
1

Cosq,ω(x)

)
= Sinq,ω(x)

Cosq,ω(x)εCosq,ω(x)
. (27.128)

Proof Use formulas (27.9), (27.73), and (27.74).

Remark 27.4 The numerators in (27.125) and (27.126) are q, ω-analogues of 1.
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We now turn to q, ω-hyperbolic functions. All of the following hyperbolic for-
mulas are only valid for ω far away from 1.

Lemma 27.4 Eight q, ω addition theorems for q, ω hyperbolic functions.

Coshq,ω(x)Coshq,−ω(−y) + Sinhq,ω(x)Sinhq,−ω(−y) = Coshq,ω(x �q,ω y).
(27.129)

Coshq,ω(x)Coshq,ω(y) + Sinhq,ω(x)Sinhq,ω(y) = Coshq,ω(x ⊕q,ω y). (27.130)

Sinhq,ω(x)Coshq,ω(y) + Sinhq,ω(y)Coshq,ω(x) = Sinhq,ω(x ⊕q,ω y). (27.131)

Sinhq,ω(x)Coshq,−ω(−y) + Sinhq,−ω(−y)Coshq,ω(x) = Sinhq,ω(x �q,ω y).
(27.132)

Coshq,ω(x)Cosh 1
q ,−ω

(−y) + Sinhq,ω(x)Sinh 1
q ,−ω

(−y) = Coshq,ω(x �q,ω y).

(27.133)
Coshq,ω(x)Cosh 1

q ,ω
(y) + Sinhq,ω(x)Sinh 1

q ,ω
(y) = Coshq,ω(x �q,ω y). (27.134)

Sinhq,ω(x)Cosh 1
q ,ω

(y) + Sinh 1
q ,ω

(y)Coshq,ω(x) = Sinhq,ω(x �q,ω y). (27.135)

Sinhq,ω(x)Cosh 1
q ,−ω

(−y) + Sinh 1
q ,−ω

(−y)Coshq,ω(x) = Sinhq,ω(x �q,ω y).

(27.136)

These formulas can be simplified by using Theorem 27.13.

Theorem 27.26 Eight q, ω-addition theorems for q, ω hyperbolic functions with
only positive function arguments on the LHS.

Coshq,ω(x)Coshq,ω(y) − Sinhq,ω(x)Sinhq,ω(y) = Coshq,ω(x �q,ω y). (27.137)

Coshq,ω(x)Coshq,ω(y) + Sinhq,ω(x)Sinhq,ω(y) = Coshq,ω(x ⊕q,ω y). (27.138)

Sinhq,ω(x)Coshq,ω(y) + Sinhq,ω(y)Coshq,ω(x) = Sinhq,ω(x ⊕q,ω y). (27.139)

Sinhq,ω(x)Coshq,ω(y) − Sinhq,ω(y)Coshq,ω(x) = Sinhq,ω(x �q,ω y). (27.140)

Coshq,ω(x)Cosh 1
q ,ω

(y) − Sinhq,ω(x)Sinh 1
q ,ω

(y) = Coshq,ω(x �q,ω y). (27.141)

Coshq,ω(x)Cosh 1
q ,ω

(y) + Sinhq,ω(x)Sinh 1
q ,ω

(y) = Coshq,ω(x �q,ω y). (27.142)

Sinhq,ω(x)Cosh 1
q ,ω

(y) + Sinh 1
q ,ω

(y)Coshq,ω(x) = Sinhq,ω(x �q,ω y). (27.143)

Sinhq,ω(x)Cosh 1
q ,ω

(y) − Sinh 1
q ,ω

(y)Coshq,ω(x) = Sinhq,ω(x �q,ω y). (27.144)
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Theorem 27.27 The following formulas for q, ω-Tanghyp and Cothyp hold:

Tanhq,ω(x ⊕q,ω y) = Tanhq,ω(x) + Tanhq,ω(y)

1 + Tanhq,ω(x)Tanhq,ω(y)
. (27.145)

Tanhq,ω(x �q,ω y) = Tanhq,ω(x) − Tanhq,ω(y)

1 − Tanhq,ω(x)Tanhq,ω(y)
. (27.146)

Cothq,ω(x ⊕q,ω y) = Cothq,ω(x)Cothq,ω(y) + 1

Cothq,ω(x) + Cothq,ω(y)
. (27.147)

Cothq,ω(x �q,ω y) = 1 − Cothq,ω(x)Cothq,ω(y)

Cothq,ω(x) − Cothq,ω(y)
. (27.148)

Tanhq,ω(2q,ωx) = 2Tanhq,ω(x)

1 + Tanh2q,ω(x)
. (27.149)

Cothq,ω(2q,ωx) = Coth2q,ω(x) + 1

2Cothq,ω(x)
. (27.150)

Corollary 27.6 The following formulas hold:

Cosh2q,ω(x) + Sinh2q,ω(x) = Coshq,ω(2q,ωx). (27.151)

2Coshq,ω(x)Sinhq,ω(x) = Sinhq,ω(2q,ωx). (27.152)

Coshq,ω(x)Cosh 1
q ,ω

(x) − Sinhq,ω(x)Sinh 1
q ,ω

(x) = 1. (27.153)

Theorem 27.28 For q, ω-differences for quotient q, ω-hyperbolic functions

Dq,ωTanhq,ω(x) = Coshq,ω(x �q,ω x)

Coshq,ω(x) εCosq,ω(x)
, (27.154)

Dq,ωCothq,ω(x) = − Coshq,ω(x �q,ω x)

Sinhq,ω(x) ε Sinhq,ω(x)
, (27.155)

Remark 27.5 The numerators in (27.154) and (27.155) are q, ω-analogues of 1.

Theorem 27.29 (q, ω-de Moivre’s theorem)

Cosq,ω(nq,ωx) + iSinq,ω(nq,ωx) = (Cosq,ω(x) + iSinq,ω(x))n, (27.156)
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Proof Use formula (27.91).

We now prove somemore q, ω-analogues of trigonometric formulas. These formulas
are, of course, also valid for q-analogues, i.e. for ω = 0. It seems that these formulas
have not been published before. The q, ω-rational numbers will be used when we
divide the function argument by ‘2’.

Theorem 27.30 The following formulas hold:

Cos2q,ω(x) = 1

2

(
Cosq,ω(x �q,ω x) + Cosq,ω(2q,ωx)

)
, (27.157)

Sin2q,ω(x) = 1

2

(
Cosq,ω

(
x �q,ω x

) − Cosq,ω

(
2q,ωx

))
, (27.158)

Sin2q,ω(x) + Cos2q,ω(x) = Cosq,ω(x �q,ω x). (27.159)

Proof To prove (27.157), use (27.101) twice with y = −x and y = x and add the
results.

Corollary 27.7 The following formulas hold:

Cosq,ω

(
x

2q,ω

)
= ±

√
Cosq,ω(

x�q,ωx

2q,ω
) + Cosq,ω(x)

2
, (27.160)

Sinq,ω

(
x

2q,ω

)
= ±

√
Cosq,ω(

x�q,ωx

2q,ω
) − Cosq,ω(x)

2
, (27.161)

Tanq,ω

(
x

2q,ω

)
= ±

√√√√√Cosq,ω(
x�q,ωx

2q,ω
) − Cosq,ω(x)

Cosq,ω(
x�q,ωx

2q,ω
) + Cosq,ω(x)

, (27.162)

Cotq,ω

(
x

2q,ω

)
= ±

√√√√√Cosq,ω(
x�q,ωx

2q,ω
) + Cosq,ω(x)

Cosq,ω(
x�q,ωx

2q,ω
) − Cosq,ω(x)

. (27.163)

Proof To prove (27.160), take square root of formula (27.157) and replace x by x
2q,ω

.
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27.3.1 New q, ω-Hyperbolic Formulas

Analogues of three well-known formulas.

Theorem 27.31 The following formulas hold:

Cosh2q,ω(x) = 1

2

(
Coshq,ω(x �q,ω x) + Coshq,ω(2q,ωx)

)
, (27.164)

Sinh2q,ω(x) = 1

2

(
Coshq,ω

(
2q,ωx

) − Coshq,ω

(
x �q,ω x

))
, (27.165)

Cosh2q,ω(x) − Sinh2q,ω(x) = Coshq,ω(x �q,ω x). (27.166)

Corollary 27.8 The following formulas hold:

Coshq,ω

(
x

2q,ω

)
= ±

√
Coshq,ω(

x�q,ωx

2q,ω
) + Coshq,ω(x)

2
, (27.167)

Sinhq,ω

(
x

2q,ω

)
=

√
Coshq,ω(x) − Coshq,ω(

x�q,ωx

2q,ω
)

2
, (27.168)

Tanhq,ω

(
x

2q,ω

)
= ±

√√√√√Coshq,ω(x) − Coshq,ω(
x�q,ωx

2q,ω
)

Coshq,ω(
x�q,ωx

2q,ω
) + Coshq,ω(x)

, (27.169)

Cothq,ω

(
x

2q,ω

)
= ±

√√√√√Coshq,ω(
x�q,ωx

2q,ω
) + Coshq,ω(x)

Coshq,ω(x) − Coshq,ω(
x�q,ωx

2q,ω
)
. (27.170)

27.4 Conclusion

We have constructed a solid basis for the further development of finite differences
and the corresponding q, ω-Appell polynomials in the same vein. At the same time
this subject is also very popular among other authors and it will hopefully reach
new heights in the near future. Other attempts have been made to produce new
trigonometric formulas, but our approach clearly shows close resemblance to the
original. This umbral approach in the spirit of Rota assumes a knowledge of the
corresponding alphabets in q-calculus.
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