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22.1 Introduction

The main object considered in this paper is the multi-parametric familyAσ j of unital
associative complex algebras generated by the element Q and the finite or infinite
set
{
Sj
}
j∈J of elements satisfying the commutation relations

Sj Q = σ j (Q)Sj , (22.1)

where σ j is a polynomial for all j ∈ J. For J = {1, 2}, with the notation that S1 = S,
S2 = T ,σ1 = σ andσ2 = τ , this reduces to themulti-parametric familyAσ,τ of unital
associative complex algebras generated by three elements S, T and Q satisfying the
commutation relations

SQ = σ(Q)S,

T Q = τ(Q)T .
(22.2)

Writing R = (dS − bT )/(ad − bc) and J = (aT − cS)/(ad − bc), where a, b, c
and d are complex numbers with ad �= bc, we obtain and consider also a generaliza-
tion ofAσ,τ , the multi-parametric familyBσ,τ of unital associative complex algebras
generated by three elements R, J and Q satisfying the commutation relations

RQ = adσ(Q) − bcτ(Q)

ad − bc
R + bdσ(Q) − bdτ(Q)

ad − bc
J,

J Q = adτ(Q) − bcσ(Q)

ad − bc
J + acτ(Q) − acσ(Q)

ad − bc
R.

(22.3)

Observe that the relations of the form (22.2) are recovered for b = c = 0.
The importance of commutation relations (22.1) can be best seen from some

well-known examples. Consider the case where J = {1}, that is, the case

SQ = σ(Q)S. (22.4)

If σ(x) = x , then S and Q commute, that is, SQ = QS. If σ(x) = −x , then S and
Q anti-commute, that is, SQ = −QS. If σ(x) = qx + c for some complex numbers
q and c, then S and Q satisfy

SQ − qQS = cS.

This is a deformed Heisenberg–Lie commutation relation of quantum mechanics.
The famous classical Heisenberg–Lie relation is obtained when q = 1 and c = 1. If
c = 0, then S and Q are said to q-commute, that is, they satisfy the relation

SQ = qQS,
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which is often called the quantum plane relation in the context of noncommutative
geometry and quantum groups. If σ(x) = qxd for some positive integer d, then S
and Q satisfy the commutation relation

SQ = qQd S.

This reduces to the quantum plane relation for d = 1 and to the relation

SQ = QdS

for q = 1, having important applications, for instance in wavelet analysis and in
investigation of transfer operators [6, 11, 12], which are fundamental for statistical
physics, dynamical systems and ergodic theory.

The commutation relations of the form (22.4) play a central role in the study of
crossed products and their representations, in the theory of dynamical systems and in
the investigation of covariant systems and systems of imprimitivity and thus in quan-
tummechanics, statistical physics and quantum field theory [6–8, 11, 12, 16–19, 30,
35, 45, 46]. The commutation relations of the form (22.4) arise in the investigations
of nonlinear Poisson brackets, quantization and noncommutative analysis [13, 28].
Bounded and unbounded operators satisfying relation (22.4) have also been consid-
ered in the context of representations of ∗-algebras and spectral theory [34, 36, 37,
40, 41].

On the other hand, relations (22.3) generalizes Lie algebra type commutation
relations, typical for usual differential or difference operators, to relations satisfied
by more general twisted difference operators associated to general twisting maps.

This paper is devoted to the reordering of arbitrary elements in the algebras Aσ j ,
Aσ,τ andBσ,τ . Reordering of arbitrary elements in noncommutative algebras defined
by commutation relations is important in many research directions, open problems
and applications of the algebras and their operator representations. For a broader
view of this active area of research, see, for example, [1–5, 9, 10, 20–22, 24, 26–
29, 37, 39, 42–44, 47] and the references therein. In investigation of the structure,
representations and applications of noncommutative algebras, an important role is
played by the explicit description of suitable normal forms for noncommutative
expressions or functions of generators. These normal forms are particularly important
for computing commutative subalgebras or commuting families of operators which
are a key ingredient in representation theory of many important algebras [15, 31–33,
38, 45].

In Sect. 22.2, we give an introduction to commutation relations and reordering. In
Sect. 22.3 general reordering formulas for arbitrary elements in the family Aσ j are
presented, and in Sect. 22.4 some reordered expressions for corresponding nested
commutators are described. In Sect. 22.5 special cases for different choices of σ j are
considered, putting in a new perspective and generalizing some well-known results
in mathematics and physics. A generalization of the familyAσ j in three generators is
constructed in Sect. 22.6, with some reordering formulas presented in Sect. 22.7. We
conclude by mentioning some operator representations of our algebras in Sect. 22.8.
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We would also like to point out that some of the results in this paper are published
without proofs in our recent article [27].

22.2 Commutation Relations and Reordering

This paper is about reordering of elements in noncommutative algebras defined by
commutation relations.We follow the nice exposition byMansour and Schork [20]. A
commutation relation is a relation that describes the discrepancy between different
orders of operation of two operations, say S and Q. To describe it, we use the
commutator

[S, Q] ≡ SQ − QS.

If S and Q commute, then the commutator vanishes. How far a given structure
deviates from the commutative case is described by the right-hand side of the com-
mutation relation. For example, in a complex Lie algebra g one has a set of generators
{Sj } j∈J with the Lie bracket

[
Sj Sk

] =∑l∈J c
l
jk Sl , where the coefficients cljk ∈ C

are called the structure constants of the Lie algebra g. The associated universal en-
veloping algebra U(g) is an associative algebra generated by {Sj } j∈J , and the above
bracket becomes

[
Sj , Sk

] =
∑

l∈J

cljk Sl .

One of the earliest instances of a noncommutative structure was recognized in the
context of operational calculus. If D = d

dx , the ordinary derivative, then the Leibniz
rule (the product rule) states that

D(x f (x)) = xD( f (x)) + D(x) f (x).

Interpreting the multiplication with the independent variable x as an application of
the multiplication operator Qx , and suppressing the operand f , this equation can be
written as the commutation relation

DQx − Qx D = 1,

where 1 is the identity operator: 1 f (x) = f (x).
Let us first introduce the concept of an alphabet, words and letters, and thereafter

explain what we mean by reordering of an element in a noncommutative algebra
defined by commutation relations.

Definition 22.1 (see Mansour and Schork, 2016 [20]) Let a finite or infinite set
A = {Sj

}
j∈J

of objects be given. For all j ∈ J , we call each Sj a letter and A the
alphabet. For some positive integer r , an element of Ar will be called a word of
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length r in the alphabet A. A word ω = (Sj1 , Sj2 , . . . , Sjr

)
will be written in the

form ω = Sj1 Sj2 · · · Sjr , that is, as concatenation of its letters. For convenience, we
also introduce the empty word ∅ ∈ A0. If ω is a word, we denote the concatenation
ωω · · ·ω (n times) briefly by ωn . In the case A consists of n elements, an element
of Ar is called n-ary word of length r . The words with letters from the set of two
elements (n = 2) are called binary words, and the words with letters from the set of
three elements are called ternary words.

Example 22.1 IfA = {1, 2, 3}, then the 3-ary (ternary) words of length two are 11,
12, 13, 21, 22, 23, 31, 32 and 33. IfA = {0, 1}, then the binary words of length three
are given by 000, 001, 010, 011, 100, 101, 110 and 111.

Example 22.2 Let A = {S, T,U, V
}
be an alphabet with four letters. Then ω1 =

SSST T , ω2 = STUV S, ω3 = VTUST and ω4 = UTUTU are words of length
five which in general are not related. The words ω1 and ω4 can be written briefly as
ω1 = S3T 2 and ω4 = (UT )2U .

Let us turn to the situation where the alphabet is given by the finite or infinite set
A = {Sj , Q

}
j∈J of elements in a unital associative algebra satisfying the commuta-

tion relation
Sj Q = σ j (Q)Sj .

An arbitrary word ω in the alphabet A = {Sj , Q
}
j∈J can be written as

ω = Sk1j1 Q
l1 Sk2j2 Q

l2 · · · Skrjr Qlr ≡
r∏

t=1

Sktjt Q
lt

for some kt , lt ∈ N0 (N0 denotes the set of nonnegative integers). If σ j is given by
the polynomial σ j (x) = x + 1 for all j ∈ J , then the above commutation relation
becomes the famous classical Heisenberg–Lie commutation relation

Sj Q − QSj = Sj , (22.5)

and two adjacent letters Sj and Q in a word can be interchanged according to this
relation. Each time one uses it in a word ω, two new words result. If we write
the original word as ω = ω1Sj Qω2 (where each ωr can be the empty word), then
applying (22.5) gives that ω = ω1(QSj + Sj )ω2 = ω1QSjω2 + ω1Sjω2.

Example 22.3 In the last sentence of the preceding paragraph, if ω1 = ω2 = ∅, the
empty words, then ω = Sj Q can be written as ω = QSj + Sj . Using (22.5) again,
the word Sj Q2 can be written as
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Sj Q
2 = (Sj Q)Q

= (QSj + Sj )Q

= QSj Q + Sj Q

= Q(QSj + Sj ) + (QSj + Sj )

= Q2Sj + QSj + QSj + Sj

= Q2Sj + 2QSj + Sj .

As demonstrated in this example, one can use commutation relation (22.5) suc-
cessively and transform each word in Sj and Q into a sum of words, where each of
these words has all the powers of Q to the left. For our considerations throughout
this paper, we have the following definition.

Definition 22.2 (cf. Mansour and Schork, 2016 [20]) A word ω in the alpha-
bet A = {Sj , Q

}
j∈J is called normal ordered if ω = akl1···lr Qk Sl1j1 · · · Slrjr for some

k, l1, . . . , lr ∈ N0, where akl1···lr ∈ C are arbitrary coefficients depending on the ex-
ponents k, l1, . . . , lr . An expression consisting of a sum of words is called normal
ordered if each of the summands is normal ordered. The process of bringing a word
(or a sum of words) into its normal ordered form is called normal ordering. Writing
the word ω in its normal ordered form,

ω =
∑

k,l1,...,lr∈N0

Akl1···lr (ω)Qk
r∏

t=1

Sltjt ,

the coefficients Akl1···lr (ω) are called the normal ordering coefficients ofω. In a similar
fashion, the word ω = bk1···kr ,l S

k1
j1

· · · Skrjr Ql is called antinormal ordered. Writing the
word ω in its antinormal ordered form,

ω =
∑

k1,...,kr ,l∈N0

Bk1···kr l(ω)

( r∏

t=1

Sktjt

)
Ql,

the coefficients Bk1···kr l(ω) are called the antinormal ordering coefficients of ω, and
the process of doing this is called antinormal ordering. By reordering, wemean either
normal ordering or antinormal ordering.

This paper is devoted to the normal ordering of arbitrary elements in the alge-
bras Aσ j , Aσ,τ and Bσ,τ introduced in Sect. 22.1. The paper also derives reordered
expressions for nested commutators using unimodal permutations.

Definition 22.3 Let n be a positive integer. A function f : {1, . . . , n}→ R is said
to be unimodal if there exists some ν such that

f (1) ≥ · · · ≥ f (ν) ≤ · · · ≤ f (n).

A permutation of a set is a bijection from the set to itself.
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For example, written as tuples, there are four unimodal permutations of the set{
1, 2, 3

}
, namely: (3, 1, 2), (3, 2, 1), (2, 1, 3) and (1, 2, 3).

Definition 22.4 The commutator of two elements A and B of an algebraA is given
by

[A, B] = AB − BA.

Using this definition, it is easy to see that for all A, B,C ∈ A and p, q ∈ C,

(a) [A, q1] = 0 = [A, A],
(b) [A, A] = 0,
(c) [A, B] = −[B, A],
(d) [A, pB + qC] = p[A, B] + q[A,C],
(e) [A, BC] = [A, B]C + B[A,C],
(f) [A, [B,C]] + [B, [C, A]] + [C, [A, B]] = 0.

22.3 Reordering Formulas for S j, Q-Elements

In the following an algebra means a unital associative complex algebra, N0 the set
of nonnegative integers, and N the set of positive integers. The basic result is the
following theorem.

Theorem 22.1 Let r be a positive integer. If Q and
{
Sj
}
j∈J are elements of an

algebra satisfying (22.1), then for any nonnegative integer k and any polynomial F,

Skj F(Q) = F
(
σ ◦k
j (Q)

)
Skj , (22.6)

(
Skj F(Q)

)r =
( r∏

t=1

F
(
σ ◦tk
j (Q)

))
Skrj , (22.7)

and for any nonnegative integers kt and any polynomials Ft , where t = 1, . . . , r ,

r∏

t=1

Sktjt Ft (Q) =
( r∏

t=1

Ft

(
(σ

◦kt
jt

◦ · · · ◦ σ
◦k1
j1

)(Q)
)) r∏

t=1

Sktjt , (22.8)

where ◦ denotes composition of functions, σ ◦k the k-fold composition of a function
σ with itself, and we adopt the convention that

∏r
t=1 at = a1a2a3 . . . ar .

Proof We first prove that for all positive integers l, the formula Sj Ql = (σ j (Q)
)l
S j

holds, and we proceed by induction. For l = 1, the formula follows from (22.1). Now
suppose that the formula holds for some integer l ≥ 1, then
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Sj Q
l+1 = (Sj Q

l)Q = (σ j (Q)
)l
S j Q

= (σ j (Q)
)l

σ j (Q)Sj

= (σ j (Q)
)l+1

Sj ,

proving the assertion. This implies that for a given polynomial F(Q) =∑ fl Ql ,

Sj F(Q) =
∑

fl S j Q
l =

∑
fl
(
σ j (Q)

)l
S j = F(σ j (Q))Sj . (22.9)

We can now prove formula (22.6) by induction on k. For k = 1, formula (22.6)
follows from (22.9). Now suppose that (22.6) holds for some k ≥ 1, then

Sk+1
j F(Q) = Sj

(
Skj F(Q)

)
= Sj F

(
σ ◦k
j (Q)

)
Skj

= F
(
(σ ◦k

j ◦ σ j )(Q)
)
Sj S

k
j

= F
(
σ

◦(k+1)
j (Q)

)
Sk+1
j ,

and this proves formula (22.6).
Next we prove formula (22.8) by induction on r . For r = 1, formula (22.8) follows

from (22.6). Now suppose that formula (22.8) holds for some positive integer r , then

r+1∏

t=1

Sktjt Ft (Q) =
( r∏

t=1

Sktjt Ft (Q)

)
Skr+1
jr+1

Fr+1(Q)

=
( r∏

t=1

Ft

(
(σ

◦kt
jt

◦ · · · ◦ σ
◦k1
j1

)(Q)
))( r∏

t=1

Sktjt

)
Fr+1

(
σ

◦kr+1
jr+1

(Q)
)
Skr+1
jr+1

=
( r∏

t=1

Ft

(
(σ

◦kt
jt

◦ · · · ◦ σ
◦k1
j1

)(Q)
))

Fr+1

(
(σ

◦kr+1
jr+1

◦ · · · ◦ σ
◦k1
j1

)(Q)
)( r∏

t=1

Sktjt

)
Skr+1
jr+1

=
(r+1∏

t=1

Ft

(
(σ

◦kt
jt

◦ · · · ◦ σ
◦k1
j1

)(Q)
)) r+1∏

t=1

Sktjt ,

and this proves (22.8), which gives formula (22.7) for j1 = · · · = jr = j , k1 = · · · =
kr = k and F1 = · · · = Fr = F . �

As a corollary of Theorem 22.1, we obtain the following result for F(x) = xl , a
result which is useful for computing the central elements of our algebras.

Corollary 22.1 Let r be a positive integer. If Q and
{
Sj
}
j∈J are elements of an

algebra satisfying (22.1), then for any nonnegative integers k and l,
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Skj Q
l =

(
σ ◦k
j (Q)

)l
Skj , (22.10)

(
Skj Q

l
)r =

( r∏

t=1

(
σ ◦tk
j (Q)

)l)
Skrj , (22.11)

for any nonnegative integers kt and lt , where t = 1, . . . , r ,

r∏

t=1

Sktjt Q
lt =

( r∏

t=1

(
(σ

◦kt
jt

◦ · · · ◦ σ
◦k1
j1

)(Q)
)lt
) r∏

t=1

Sktjt . (22.12)

Theorem 22.1 also can be formulated in terms of monomials by observing that
for all kt , Nt ∈ N0, and any polynomials Ft (Q) =∑Nt

lt=0 flt Q
lt , where t = 1, . . . , r ,

r∏

t=1

Sktjt Ft (Q) =
r∏

t=1

Nt∑

lt=0

flt S
kt
jt
Qlt =

N1∑

l1=0

N2∑

l2=0

. . .

Nr∑

lr=0

r∏

t=1

flt S
kt
jt
Qlt

=
∑

(l1,...,lr )∈I1×...×Ir

( r∏

t=1

flt

) r∏

t=1

Sktjt Q
lt ,

where It = {0, . . . , Nt
}
.

We thus have the following result, which is useful for computing explicit formulas
when specific polynomials are given.

Theorem 22.2 Let r be a positive integer. If Q and
{
Sj
}
j∈J are elements of an alge-

bra satisfying (22.1), then for any nonnegative integers k and N, and any polynomial
F(Q) =∑N

l=0 fl Ql ,

Skj F(Q) =
N∑

l=0

fl
(
σ ◦k
j (Q)

)l
Skj , (22.13)

(
Skj F(Q)

)r =
∑

(l1,...,lr )∈
{
0,...,N

}r

( r∏

t=1

flt

)( r∏

t=1

(
σ ◦tk
j (Q)

)lt
)
Skrj , (22.14)

and for any nonnegative integers kt and Nt , and any polynomials Ft (Q) =∑Nt
lt=0 flt Q

lt , where t = 1, . . . , r ,

r∏

t=1

Sktjt Ft (Q) =
∑

(l1,...,lr )∈I1×...×Ir

( r∏

t=1

flt

)

·
( r∏

t=1

(
(σ

◦kt
jt

◦ · · · ◦ σ
◦k1
j1

)(Q)
)lt
) r∏

t=1

Sktjt ,

(22.15)
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where It = {0, . . . , Nt
}
.

Example 22.4 Formula (22.6) in Theorem 22.1 implies that

(
Sk1j1 F1(Q)

)(
Sk2j2 F2(Q)

)

=
(
(F1 ◦ σ

◦k1
j1

)(Q)Sk1j1

)(
(F2 ◦ σ

◦k2
j2

)(Q)Sk2j2

)

=
(
(F1 ◦ σ

◦k1
j1

)(Q)
)(

(F2 ◦ σ
◦k2
j2

◦ σ
◦k1
j1

)(Q)
)
Sk1j1 S

k2
j2
,

as it should be with formula (22.8) for r = 2. For Ft (x) = xlt , this reduces to

Sk1j1 Q
l1 Sk2j2 Q

l2 =
(
σ

◦k1
j1

(Q)
)l1

Sk1j1

(
σ

◦k2
j2

(Q)
)l2

Sk2j2

=
(
σ

◦k1
j1

(Q)
)l1(

(σ
◦k2
j2

◦ σ
◦k1
j1

)(Q)
)l2

Sk1j1 S
k2
j2
,

as it should be with formula (22.12) for r = 2. For l1 = 0, this becomes

Sk1j1 S
k2
j2
Ql2 =

(
(σ

◦k2
j2

◦ σ
◦k1
j1

)(Q)
)l2

Sk1j1 S
k2
j2
,

and denoting Sj1 = S, Sj2 = T , σ j1 = σ and σ j2 = τ yields the following instance
of Theorem 22.1 for algebras generated by three generators.

Example 22.5 Let r be a positive integer, σ and τ be polynomials, and let S, T and
Q be elements of an associative algebra satisfying the relations

SQ = σ(Q)S,

T Q = τ(Q)T .
(22.16)

Then for any nonnegative integers j, k, l, jt , kt and lt , and any polynomials F and
Ft , where t = 1, . . . , r , we have

SQl = (σ(Q)
)l
S, (22.17)

T Ql = (τ(Q)
)l
T, (22.18)

SF(Q) = (F ◦ σ)(Q)S, (22.19)

T F(Q) = (F ◦ τ)(Q)T, (22.20)

S j F(Q) = (F ◦ σ ◦ j )(Q)S j , (22.21)

T k F(Q) = (F ◦ τ ◦k)(Q)T k, (22.22)

S j T k F(Q) = (F ◦ τ ◦k ◦ σ ◦ j )(Q)S j T k, (22.23)

T k S j F(Q) = (F ◦ σ ◦ j ◦ τ ◦k)(Q)T k S j , (22.24)
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(
S j1T k1F1(Q)

)(
S j2T k2F2(Q)

)
=
(
(F1 ◦ τ ◦k1 ◦ σ ◦ j1)(Q)

)

·
(
(F2 ◦ τ ◦k2 ◦ σ ◦ j2 ◦ τ ◦k1 ◦ σ ◦ j1)(Q)

)
S j1T k1 S j2T k2 ,

(22.25)
r∏

t=1

S jt T kt Ft (Q) =
( r∏

t=1

(Ft ◦ τ ◦kt ◦ σ ◦ jt ◦ · · · ◦ τ ◦k1 ◦ σ ◦ j1)(Q)

) r∏

t=1

S jt T kt ,

(22.26)
r∏

t=1

S jt T kt Qlt =
( r∏

t=1

(
(τ ◦kt ◦ σ ◦ jt ◦ · · · ◦ τ ◦k1 ◦ σ ◦ j1)(Q)

)lt
) r∏

t=1

S jt T kt ,

(22.27)
(
S j T k F(Q)

)r =
( r∏

t=1

(F ◦ (τ ◦k ◦ σ ◦ j )◦t )(Q)

)
(S j T k)r , (22.28)

(
S j T kQl

)r =
( r∏

t=1

(
(τ ◦k ◦ σ ◦ j )◦t (Q)

)lt
)

(S j T k)r , (22.29)

Sσ(Q) = σ ◦2(Q)S, (22.30)

Tσ(Q) = (σ ◦ τ)(Q)T, (22.31)

Sτ(Q) = (τ ◦ σ)(Q)S, (22.32)

T τ(Q) = τ ◦2(Q)T . (22.33)

Similar examples can be obtained for algebras generated by four generators, five
generators, six generators and so on.

22.4 Commutator Formulas for S j, Q-Elements

Let n be a positive integer. A function f : {1, . . . , n}→ R is said to be unimodal
if there exists some ν such that f (1) ≥ · · · ≥ f (ν) ≤ · · · ≤ f (n). A permutation of
a set is a bijection from the set to itself. For example, written as tuples, there are
four unimodal permutations of the set

{
1, 2, 3

}
, namely: (3, 1, 2), (3, 2, 1), (2, 1, 3)

and (1, 2, 3). For the permutation ρ = (3, 1, 2), we have ρ(2) = 1 and ρ−1(3) = 1.
Finally, the commutator of two elements x and y is defined by [x, y] = xy − yx .
We now have the following proposition.

Proposition 22.1 For all positive integers n, we have

[
xn,
[
xn−1, . . . ,

[
x2, x1

]
. . .
]]

=
∑

ρ∈Un

(−1)n−ρ−1(1)
n∏

ν=1

xρ(ν), (22.34)

where Un denotes the set of all unimodal permutations of the set
{
1, . . . , n

}
.

Proof We proceed by induction. For n = 1, we have x1 = x1. For n = 2, we have
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[
x2, x1

] = x2x1 − x1x2 =
∑

ρ∈U2

(−1)2−ρ−1(1)
2∏

ν=1

xρ(ν).

Now suppose that (22.34) holds for some positive integer n, then

[
xn+1,

[
xn, . . . ,

[
x2, x1

]
. . .
]] =

⎡

⎣xn+1,
∑

ρ∈Un

(−1)n−ρ−1(1)
n∏

ν=1

xρ(ν)

⎤

⎦

= xn+1

∑

ρ∈Un

(−1)n−ρ−1(1)
n∏

ν=1

xρ(ν) −
(∑

ρ∈Un

(−1)n−ρ−1(1)
n∏

ν=1

xρ(ν)

)
xn+1

=
∑

ρ∈Vn+1

(−1)n+1−ρ−1(1)
n+1∏

ν=1

xρ(ν) +
∑

ρ∈Wn+1

(−1)n+1−ρ−1(1)
n+1∏

ν=1

xρ(ν)

=
∑

ρ∈Un+1

(−1)n+1−ρ−1(1)
n+1∏

ν=1

xρ(ν),

where Vn and Wn denotes the sets of all unimodal permutations of
{
1, . . . , n

}
with

xn on the left and on the right, respectively. �

Example 22.6 For n = 3, we have

[
x3, [x2, x1]

] = x3(x2x1 − x1x2) − (x2x1 − x1x2)x3
= x3x2x1 − x3x1x2 − x2x1x3 + x1x2x3

=
∑

ρ∈U3

(−1)3−ρ−1(1)
3∏

ν=1

xρ(ν).

Example 22.7 For n = 4, we have

[
x4,
[
x3, [x2, x1]

]] = x4(x3x2x1 − x3x1x2 − x2x1x3 + x1x2x3)

− (x3x2x1 − x3x1x2 − x2x1x3 + x1x2x3)x4
= +x4x3x2x1 − x4x3x1x2 − x4x2x1x3 + x4x1x2x3

− x3x2x1x4 + x3x1x2x4 + x2x1x3x4 − x1x2x3x4

=
∑

ρ∈U4

(−1)4−ρ−1(1)
4∏

ν=1

xρ(ν).

In the following we use a more convenient notation for nested commutators:

[
xn, . . . , x1

] =
[
xn,
[
xn−1, . . . , [x2, x1] . . .

]]
.
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Combining Proposition 22.1 with Theorem 22.1, we have the following reordering
result.

Theorem 22.3 Let r1, . . . , rn, n ∈ N. If Q and
{
Sj
}
j∈J are elements of an alge-

bra satisfying relations (22.1), then for any k1, . . . , kn ∈ N0 and any polynomials
F1, . . . , Fn,

[
Sknjn Fn(Q), . . . , Sk1j1 F1(Q)

]

=
∑

ρ∈Un

(−1)n−ρ−1(1)

( n∏

ν=1

Fρ(ν)

(
(σ

◦kρ(ν)

jρ(ν)
◦ · · · ◦ σ

◦kρ(1)

jρ(1)
)(Q)

)) n∏

ν=1

S
kρ(ν)

jρ(ν)
,

(22.35)

[(
Sknjn Fn(Q)

)rn
, . . . ,

(
Sk1j1 F1(Q)

)r1
]

=
∑

ρ∈Un

(−1)n−ρ−1(1)

( n∏

ν=1

rρ(ν)∏

t=1

Fρ(ν)

(
(σ

◦tkρ(ν)

jρ(ν)
◦ σ

◦kρ(ν−1)rρ(ν−1)

jρ(ν−1)
◦ · · · ◦ σ

◦kρ(1)rρ(1)

jρ(1)
)(Q)

)) n∏

ν=1

S
kρ(ν)rρ(ν)

jρ(ν)
.

(22.36)

Furthermore, if rn > · · · > r1 > 1, then for k1, . . . , krn ∈ N0 and polynomials
F1, . . . , Frn ,

⎡

⎣
rn∏

t=rn−1+1

Sktjt Ft (Q) . . . ,

r1∏

t=r0+1

Sktjt Ft (Q)

⎤

⎦ =
∑

ρ∈Un

(−1)n−ρ−1(1)

( n∏

s=1

rρ(s)∏

t=rρ(s)−1+1

Ft

((
σ

◦kt
jt

◦ · · · ◦ σ
◦krρ(s)−1+1

jrρ(s)−1+1

)
◦
(
σ

◦kρ(s−1)

jρ(s−1)
◦ · · · ◦ σ

◦krρ(s−1)−1+1

jrρ(s−1)−1+1

)
◦

· · · ◦
(
σ

◦kρ(1)

jρ(1)
◦ · · · ◦ σ

◦krρ(1)−1+1

jrρ(1)−1+1

)
(Q)

)) n∏

s=1

rρ(s)∏

t=rρ(s)−1+1

Sktjt ,

(22.37)

where ρ(0) = 0 and r0 = 0.

Proof For formula (22.35), we have

[
Sknjn Fn(Q), . . . , Sk1j1 F1(Q)

]
=
∑

ρ∈Un

(−1)n−ρ−1(1)
n∏

ν=1

S
kρ(ν)

jρ(ν)
Fρ(ν)(Q)

=
∑

ρ∈Un

(−1)n−ρ−1(1)

( n∏

ν=1

Fρ(ν)

(
(σ

◦kρ(ν)

jρ(ν)
◦ · · · ◦ σ

◦kρ(1)

jρ(1)
)(Q)

)) n∏

ν=1

S
kρ(ν)

jρ(ν)
,

where the first equality follows from Proposition 22.1, and the last equality follows
from formula (22.8) in Theorem 22.1. For formula (22.36), we have
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[(
Sknjn Fn(Q)

)rn
, . . . ,

(
Sk1j1 F1(Q)

)r1
]

=
∑

ρ∈Un

(−1)n−ρ−1(1)
n∏

ν=1

(
S
kρ(ν)

jρ(ν)
Fρ(ν)(Q)

)rρ(ν)

=
∑

ρ∈Un

(−1)n−ρ−1(1)
n∏

ν=1

(rρ(ν)∏

t=1

Fρ(ν)

(
σ

◦tkρ(ν)

jρ(ν)
(Q)
))

S
kρ(ν)rρ(ν)

jρ(ν)

=
∑

ρ∈Un

(−1)n−ρ−1(1)

( n∏

ν=1

rρ(ν)∏

t=1

Fρ(ν)

(
(σ

◦tkρ(ν)

jρ(ν)
◦ σ

◦kρ(ν−1)rρ(ν−1)

jρ(ν−1)
◦ · · ·

· · · ◦ σ
◦kρ(1)rρ(1)

jρ(1)
)(Q)

)) n∏

ν=1

S
kρ(ν)rρ(ν)

jρ(ν)
,

where the first equality follows from Proposition 22.1, the second equality follows
from formula (22.7) in Theorem 22.1, and the last equality is a reordering of all the
Qs to the left. For formula (22.37), we have

⎡

⎣
rn∏

t=rn−1+1

Sktjt Ft (Q), . . . ,

r1∏

t=r0+1

Sktjt Ft (Q)

⎤

⎦ =
∑

ρ∈Un

(−1)n−ρ−1(1)
n∏

ν=1

rρ(ν)∏

t=rρ(ν)−1+1

Sktjt Ft (Q)

=
∑

ρ∈Un

(−1)n−ρ−1(1)
n∏

ν=1

( rρ(ν)∏

t=rρ(ν)−1+1

Ft
(
(σ

◦kt
jt

◦ · · · ◦ σ
◦krρ(ν)−1+1

jrρ(ν)−1+1
)(Q)

)) rρ(ν)∏

t=rρ(ν)−1+1

Sktjt

=
∑

ρ∈Un

(−1)n−ρ−1(1)
( n∏

s=1

rρ(s)∏

t=rρ(s)−1+1

Ft

((
σ

◦kt
jt

◦ · · · ◦ σ
◦krρ(s)−1+1

jrρ(s)−1+1

)
◦
(
σ

◦kρ(s−1)
jρ(s−1)

◦ · · ·

· · · ◦ σ
◦krρ(s−1)−1+1

jrρ(s−1)−1+1

)
◦ · · · ◦

(
σ

◦kρ(1)
jρ(1)

◦ · · · ◦ σ
◦krρ(1)−1+1

jrρ(1)−1+1

)
(Q)

)) n∏

s=1

rρ(s)∏

t=rρ(s)−1+1

Sktjt ,

where the first equality follows from Proposition 22.1, the second equality follows
from formula (22.8) in Theorem 22.1, and the last equality is a reordering of all the
Qs to the left. �

As a corollary of Theorem 22.3, we obtain the following result for F(x) = xl .

Corollary 22.2 Let r1, . . . , rn, n ∈ N. If Q and
{
Sj
}
j∈J are elements of an algebra

satisfying relations (22.1), then for any k1, . . . , kn, l1, . . . , ln ∈ N0, one obtains

[
Sknjn Q

ln , . . . , Sk1j1 Q
l1
]

=
∑

ρ∈Un

(−1)n−ρ−1(1)

( n∏

ν=1

(
(σ

◦kρ(ν)

jρ(ν)
◦ · · · ◦ σ

◦kρ(1)

jρ(1)
)(Q)

)lρ(ν)

) n∏

ν=1

S
kρ(ν)

jρ(ν)
,

(22.38)
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[(
Sknjn Q

ln
)rn

, . . . ,
(
Sk1j1 Q

l1
)r1
]

=
∑

ρ∈Un

(−1)n−ρ−1(1)

( n∏

ν=1

rρ(ν)∏

t=1

(
(σ

◦tkρ(ν)

jρ(ν)
◦ σ

◦kρ(ν−1)rρ(ν−1)

jρ(ν−1)
◦ · · · ◦ σ

◦kρ(1)rρ(1)

jρ(1)
)(Q)

)lρ(ν)

) n∏

ν=1

S
kρ(ν)rρ(ν)

jρ(ν)
.

(22.39)

Furthermore, if rn > · · · > r1 > 1, then for any k1, . . . , krn , l1, . . . , lrn ∈ N0, one
obtains
⎡

⎣
rn∏

t=rn−1+1

Sktjt Q
lt , . . . ,

r1∏

t=r0+1

Sktjt Q
lt

⎤

⎦ =
∑

ρ∈Un

(−1)n−ρ−1(1)

( n∏

s=1

rρ(s)∏

t=rρ(s)−1+1
((

σ
◦kt
jt

◦ · · · ◦ σ
◦krρ(s)−1+1

jrρ(s)−1+1

)
◦
(
σ

◦kρ(s−1)

jρ(s−1)
◦ · · · ◦ σ

◦krρ(s−1)−1+1

jrρ(s−1)−1+1

)
◦

· · · ◦
(
σ

◦kρ(1)

jρ(1)
◦ · · · ◦ σ

◦krρ(1)−1+1

jrρ(1)−1+1

)
(Q)

)lt) n∏

s=1

rρ(s)∏

t=rρ(s)−1+1

Sktjt ,

(22.40)

where ρ(0) = 0, r0 = 0.

Example 22.8 By direct computation using the definition of the commutator, one
obtains for any r1, r2 ∈ Nwith r2 > r1 > 1, and for any k1, . . . , kr2 , l1, . . . , lr2 ∈ N0,
that
[

r2∏

t=r1+1

Sktjt Q
lt ,

r1∏

t=1

Sktjt Q
lt

]

=
(

r2∏

t=r1+1

(
(σ

◦kt
jt

◦ · · · ◦ σ
◦kr1+1

jr1+1
)(Q)

)lt
)

·
( r1∏

t=1

(
(σ

◦kt
jt

◦ · · · ◦ σ
◦k1
j1

◦ σ
◦kr2
jr2

◦ · · · ◦ σ
◦kr1+1

jr1+1
)(Q)

)lt
)( r2∏

t=r1+1

Sktjt

)( r1∏

t=1

Sktjt

)

−
( r2∏

t=1

(
(σ

◦kt
jt

◦ · · · ◦ σ
◦k1
j1

)(Q)
)lt
)( r1∏

t=1

Sktjt

)( r2∏

t=r1+1

Sktjt

)

,

which agrees with formula (22.40) for n = 2.

Example 22.9 Similarly, one can obtain for any r1, r2, r3 ∈ Nwith r3 > r2 > r1>1,
and for any k1, . . . , kr3 , l1, . . . , lr3 ∈ N0, that
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[
r3∏

t=r2+1

Sktjt Q
lt ,

[ r2∏

t=r1+1

Sktjt Q
lt ,

r1∏

t=1

Sktjt Q
lt

]]

=
(

r3∏

t=r2+1

(
(σ

◦kt
jt

◦ · · · ◦ σ
◦kr2+1

jr2+1
)(Q)

)lt
)

·
(

r2∏

t=r1+1

(
(σ

◦kt
jt

◦ · · · ◦ σ
◦kr1+1

jr1+1
◦ σ

◦kr3
jr3

◦ · · · ◦ σ
◦kr2+1

jr2+1
)(Q)

)lt
)

·
( r1∏

t=1

(
(σ

◦kt
jt

◦ · · · ◦ σ
◦k1
j1

◦ σ
◦kr2
jr2

◦ · · · ◦ σ
◦kr1+1

jr1+1
◦ σ

◦kr3
jr3

◦ . . .

◦ σ
◦kr2+1

jr2+1
)(Q)

)lt)( r3∏

t=r2+1

Sktjt

)( r2∏

t=r1+1

Sktjt

)( r1∏

t=1

Sktjt

)

−
( r3∏

t=r2+1

(
(σ

◦kt
jt

◦ · · · ◦ σ
◦kr2+1

jr2+1
)(Q)

)lt
)( r2∏

t=1

(
(σ

◦kt
jt

◦ · · · ◦ σ
◦k1
j1

◦ σ
◦kr3
jr3

◦ · · · ◦ σ
◦kr2+1

jr2+1
)(Q)

)lt)( r3∏

t=r2+1

Sktjt

)( r1∏

t=1

Sktjt

)( r2∏

t=r1+1

Sktjt

)

−
(

r2∏

t=r1+1

(
(σ

◦kt
jt

◦ · · · ◦ σ
◦kr1+1

jr1+1
)(Q)

)lt
)

·
( r1∏

t=1

(
(σ

◦kt
jt

◦ · · · ◦ σ
◦k1
j1

◦ σ
◦kr2
jr2

◦ · · · ◦ σ
◦kr1+1

jr1+1
)(Q)

)lt
)

·
( r3∏

t=r2+1

(
(σ

◦kt
jt

◦ · · · ◦ σ
◦kr2+1

jr2+1
◦ σ

◦kr1
jr1

◦ · · · ◦ σ
◦k1
j1

◦ σ
◦kr2
jr2

◦ · · · ◦ σ
◦kr1+1

jr1+1
)(Q)

)lt
)

·
(

r2∏

t=r1+1

Sktjt

)( r1∏

t=1

Sktjt

)( r3∏

t=r2+1

Sktjt

)

+
( r3∏

t=1

(
(σ

◦kt
jt

◦ · · · ◦ σ
◦k1
j1

)(Q)
)lt
)( r1∏

t=1

Sktjt

)( r2∏

t=r1+1

Sktjt

)(
r3∏

t=r2+1

Sktjt

)

,

which again agrees with formula (22.40) for n = 3.
Theorem 22.3 can also be presented in terms of monomials, which is useful for

computing explicit formulas when specific polynomials are given. For example, for
formula (22.35) one gets the following reordering result for nested commutators.

Theorem 22.4 Let n ∈ N with n > 1. If Q and
{
Sj
}
j∈J

are elements of an
algebra satisfying (22.1), then for any kt , Nt ∈ N0, and any polynomials Ft (Q) =∑Nt

lt=0 flt Q
lt , where t = 1, . . . , n,
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[
Sknjn Fn(Q), . . . , Sk1j1 F1(Q)

]
=

∑

(l1,...,ln)∈I1×...×In

( n∏

t=1

flt

)

∑

ρ∈Un

(−1)n−ρ−1(1)

( n∏

ν=1

(
(σ

◦kρ(ν)

jρ(ν)
◦ · · · ◦ σ

◦kρ(1)

jρ(1)
)(Q)

)lρ(ν)

) n∏

ν=1

S
kρ(ν)

jρ(ν)
,

(22.41)

where It = {0, . . . , Nt }.
Proof For any nonnegative integers kt and Nt , and any polynomials

Ft (Q) =
Nt∑

lt=0

flt Q
lt ,

where t = 1, . . . , n, we have

[
Sknjn Fn(Q), . . . , Sk1j1 F1(Q)

]
=
⎡

⎣
Nn∑

ln=0

fln S
kn
jn
Qln , . . . ,

N1∑

l1=0

fl1 S
k1
j1
Ql1

⎤

⎦

=
Nn∑

ln=0

fln . . .

N1∑

l1=0

fl1
[
Sknjn Q

ln , . . . , Sk1j1 Q
l1
]

=
∑

(l1,...,ln)∈I1×...×In

( n∏

t=1

flt

)[
Sknjn Q

ln , . . . , Sk1j1 Q
l1
]

=
∑

(l1,...,ln)∈I1×...×In

( n∏

t=1

flt

)

∑

ρ∈Un

(−1)n−ρ−1(1)

( n∏

ν=1

(
(σ

◦kρ(ν)

jρ(ν)
◦ · · · ◦ σ

◦kρ(1)

jρ(1)
)(Q)

)lρ(ν)

) n∏

ν=1

S
kρ(ν)

jρ(ν)
,

where It = {0, . . . , Nt
}
, and where the last equality follows from Corollary 22.2. �

22.5 Examples

22.5.1 When σ j (x) = −x

Let σ j be the polynomial σ j (x) = −x . Then commutation relations (22.1) become

Sj Q = −QSj . (22.42)

The following lemma is useful for obtaining the reordering results.
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Lemma 22.1 For any positive integer t and any nonnegative integers k, k1, . . . , kt ,

σ ◦k
j (Q) = (−1)k Q, (22.43)

(σ
◦kt
jt

◦ · · · ◦ σ
◦k1
j1

)(Q) = (−1)
∑t

n=1 kn Q. (22.44)

Proof We prove (22.43) by induction on k. For k = 1, the formula follows from the
definition of σ j . Now suppose that (22.43) holds for some integer k ≥ 1, then

σ
◦(k+1)
j (Q) = σ ◦k

j

(
σ j (Q)

) = (−1)k(−Q) = (−1)k+1Q,

which proves (22.43). Next we prove (22.44) by induction on t . For t = 1, (22.44)
follows from (22.43). Now suppose that (22.44) holds for some integer t ≥ 1, then

(σ
◦kt+1
jt+1

◦ · · · ◦ σ
◦k1
j1

)(Q) = σ
◦kt+1
jt+1

(
(σ

◦kt
jt

◦ · · · ◦ σ
◦k1
j1

)(Q)
)

= (−1)kt+1(−1)
∑t

n=1 kn Q = (−1)
∑t

n=1 kn+kt+1Q = (−1)
∑t+1

n=1 kn Q,

and this proves the assertion. �

Theorem 22.5 Let r ∈ N. If Q and
{
Sj
}
j∈J are elements of an algebra satisfying

(22.42), then for any nonnegative integers k and N, and any polynomial F(Q) =∑N
l=0 fl Ql ,

Skj F(Q) =
N∑

l=0

(−1)kl fl Q
l Skj , (22.45)

(
Skj F(Q)

)r =
r N∑

L=0

∑

(l1,...,lr )∈
{
0,...,N

}r

l1+···+lr=L

(
r∏

t=1

flt

)

(−1)k
∑r

t=1 tlt QL Skrj , (22.46)

and for all kt , Nt ∈ N0, and polynomials Ft (Q) =∑Nt
lt=0 flt Q

lt , where t = 1, . . . , r ,

r∏

t=1

Sktjt Ft (Q) =
N1+···+Nr∑

L=0

∑

(l1,...,lr )∈I1×...×Ir
l1+···+lr=L

(
r∏

t=1

flt

)

(−1)
∑r

t=1

∑t
n=1 knlt QL

r∏

t=1

Sktjt ,

(22.47)

where It = {0, . . . , Nt
}
for some t.

Proof Substituting (22.43) into (22.13) and (22.14) gives (22.45) and (22.46), re-
spectively, and substituting (22.44) into (22.15) gives (22.47). More precisely,
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Skj F(Q) =
N∑

l=0

fl
(
(−1)k Q

)l
Skj =

N∑

l=0

(−1)kl fl Q
l Skj ,

(
Skj F(Q)

)r =
∑

(l1,...,lr )∈
{
0,...,N

}r

(
r∏

t=1

flt

)(
r∏

t=1

(
(−1)kt Q

)lt
)

Skrj

=
r N∑

L=0

∑

(l1,...,lr )∈
{
0,...,N

}r

l1+···+lr=L

(
r∏

t=1

flt

)

(−1)k
∑r

t=1 tlt QL Skrj ,

and for the more general formula,

r∏

t=1

Sktjt Ft (Q) =
∑

(l1,...,lr )∈I1×...×Ir

(
r∏

t=1

flt

)(
r∏

t=1

(
(−1)

∑t
n=1 kn Q

)lt
)

r∏

t=1

Sktjt

=
N1+···+Nr∑

L=0

∑

(l1,...,lr )∈I1×...×Ir
l1+···+lr=L

(
r∏

t=1

flt

)

(−1)
∑r

t=1

∑t
n=1 knlt QL

r∏

t=1

Sktjt ,

where It = {0, . . . , Nt
}
. Formula (22.46) can also be obtained from formula (22.47)

by choosing j1 = · · · = jr = j and k1 = · · · = kr = k. �

For the particular case where F is a monic monomial, that is, F(Q) = Ql for
some nonnegative integer l, Theorem 22.5 yields the following result.

Corollary 22.3 Let r be a positive integer. If Q and
{
Sj
}
j∈J are elements of an

algebra satisfying (22.42), then for all nonnegative integers k and l,

Skj Q
l = (−1)kl Ql Skj , (22.48)

(Skj Q
l)r = (−1)klr(r+1)/2Qlr Skrj , (22.49)

and for all nonnegative kt and lt , where t = 1, . . . , r ,

r∏

t=1

Sktjt Q
lt = (−1)

∑r
t=1

∑t
n=1 knlt Q

∑r
t=1 lt

r∏

t=1

Sktjt . (22.50)

Example 22.10 For r = 2, we have

Sk1j1 Q
l1 Sk2j2 Q

l2 = (−1)k1l1+(k1+k2)l2Ql1+l2 Sk1j1 S
k2
j2
, (22.51)
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which for l1 = 0 becomes

Sk1j1 S
k2
j2
Ql2 = (−1)(k1+k2)l2Ql2 Sk1j1 S

k2
j2
, (22.52)

and denoting Sj1 = S and Sj2 = T , we have the following case of Corollary 22.3.

Corollary 22.4 Let r be a positive integer. If S, T and Q are elements of an algebra
satisfying the relations

SQ = −QS and T Q = −QT, (22.53)

then for all nonnegative integers j, k and l,

S j T kQl = (−1)( j+k)l Ql S j T k, (22.54)

(S j T kQl)r = (−1)lr(r+1)( j+k)/2Qlr (S j T k)r , (22.55)

and for all nonnegative integers jt , kt and lt , where t = 1, . . . , r ,

r∏

t=1

S jt T kt Qlt = (−1)
∑r

t=1

∑t
n=1( jn+kn)lt Q

∑r
t=1 lt

r∏

t=1

S jt T kt . (22.56)

For the more general case, we have the following result.

Corollary 22.5 Let r be a positive integer. If S, T and Q are elements of an algebra
satisfying (22.53), then for any nonnegative integers j, k and N, and any polynomial
F(Q) =∑N

l=0 fl Ql , one obtains

S j T k F(Q) =
N∑

l=0

fl(−1)( j+k)l Ql S j T k, (22.57)

(S j T k F(Q))r =
r N∑

L=0

∑

(l1,...,lr )∈
{
0,...,N

}r

l1+···+lr=L

(
r∏

t=1

flt

)

(−1)( j+k)
∑r

t=1 tlt QL(S j T k)r ,

(22.58)

and for any nonnegative integers jt , kt , Nt , and any polynomials

Ft (Q) =
Nt∑

lt=0

flt Q
lt ,

where t = 1, . . . , r , one obtains
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r∏

t=1

S jt T kt Ft (Q) =
N1+···+Nr∑

L=0

∑

(l1,...,lr )∈I1×...×Ir
l1+···+lr=L

(
r∏

t=1

flt

)

· (−1)
∑r

t=1

∑t
n=1( jn+kn)lt QL

r∏

t=1

S jt T kt .

(22.59)

where It = {0, . . . , Nt
}
for some t.

22.5.2 When σ j (x) = c j xq j

Let c j be complex numbers, q j be positive integers, and let σ j be the polynomials
σ j (x) = c j xq j . Then commutation relations (22.1) become

Sj Q = c j Q
qj S j . (22.60)

The following lemma is useful for obtaining the reordering results.

Lemma 22.2 For any positive integer t and any nonnegative integers k, k1, . . . , kt ,

σ ◦k
j (Q) = c

{k}q j
j Qqk

j , (22.61)

(σ
◦kt
jt

◦ · · · ◦ σ
◦k1
j1

)(Q) =
(

t∏

n=1

c
{kn}q jn

∏t
m=n+1 q

km
jm

jn

)

Q
∏t

n=1 q
kn
jn , (22.62)

where {k}q for some complex number q denotes the q-number

{
k
}
q =

k−1∑

j=0

q j =
{

qk−1
q−1 , q �= 1,

k, q = 1,
(22.63)

and we use the convention that
∏t

m=n+1 q
km
jm

= 1 for t < n + 1.

Proof We prove (22.61) by induction on k. For k = 1, the formula follows from the
definition of σ j . Now suppose that (22.61) holds for some integer k ≥ 1, then

σ
◦(k+1)
j (Q) = σ ◦k

j

(
σ j (Q)

) = c
{k}q j
j (c j Q

qj )q
k
j = c

{k}q j +qk
j

j Qqk+1
j = c

{k+1}q j
j Qqk+1

j ,

proving (22.61). Next we prove (22.62) by induction on t . For t = 1, the formula
follows from (22.61). Now suppose that (22.62) holds for some integer t ≥ 1, then

(σ
◦kt+1
jt+1

◦ · · · ◦ σ
◦k1
j1

)(Q) = σ
◦kt+1
jt+1

(
(σ

◦kt
jt

◦ · · · ◦ σ
◦k1
j1

)(Q)
)
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= c
{kt+1}q jt+1
jt+1

(( t∏

n=1

c
{kn}q jn

∏t
m=n+1 q

km
jm

jn

)
Q
∏t

n=1 q
kn
jn

)q
kt+1
jt+1

= c
{kt+1}q jt+1
jt+1

( t∏

n=1

c
{kn}q jn

∏t+1
m=n+1 q

km
jm

jn

)
Q
∏t+1

n=1 q
kn
jn

=
( t+1∏

n=1

c
{kn}q jn

∏t+1
m=n+1 q

km
jm

jn

)
Q
∏t+1

n=1 q
kn
jn ,

and this proves the assertion. �

Theorem 22.6 Let r ∈ N. If Q and
{
Sj
}
j∈J

are elements of an algebra satisfying

relations (22.60), then for any k, N ∈ N0 and any polynomial F(Q) =∑N
l=0 fl Ql ,

Skj F(Q) =
N∑

l=0

flc
{k}q j l
j Qqk

j l Skj , (22.64)

(
Skj F(Q)

)r =
maxΓk,r∑

L=minΓk,r

∑

(l1,...,lr )∈
{
0,...,N

}r
∑r

t=1 q
kt
j lt=L

(
r∏

t=1

flt

)

c
∑r

t=1{tk}q j lt
j QL Skrj , (22.65)

where as before {k}q for some q ∈ C denotes the q-number of k, and

Γk,r =
{

r∑

t=1

qkt
j lt

∣∣∣∣(l1, . . . , lr ) ∈ {0, . . . , N}r
}

.

More generally, for all kt , Nt ∈ N0 and all polynomials Ft (Q) =∑Nt
lt=0 flt Q

lt , where
t = 1, . . . , r ,

r∏

t=1

Sktjt Ft (Q) =
maxΔk,r∑

L=minΔk,r

∑

(l1,...,lr )∈I1×...×Ir∑r
t=1

(∏t
n=1 q

kn
jn

)
lt=L

(
r∏

t=1

flt

)(
r∏

n=1

c
{kn }q jn

∑r
t=n

(∏t
m=n+1 q

km
jm

)
lt

jn

)

QL
r∏

t=1

Sktjt ,

(22.66)
where Δk,r for It = {0, . . . , Nt

}
is the set given by

Δk,r =
{

r∑

t=1

(
t∏

n=1

qkn
jn

)

lt

∣∣∣∣(l1, . . . , lr ) ∈ I1× . . . ×Ir

}

.
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Remark 22.1 Observe that for positive integers q j , one obtains that minΓk,r = 0,

minΔk,r = 0, maxΓk,r =∑r
t=1 q

kt
j N , and maxΔk,r =∑r

t=1

(∏t
n=1 q

kn
jn

)
Nt . We

strongly believe that formulas (22.64), (22.65), (22.66) are probably true also for
negative integers q j .

Remark 22.2 Formula (22.65) can be obtained from formula (22.66) by choosing
j1 = · · · = jr = j and k1 = · · · = kr = k, and observing that for all positive integers
k and r ,

{k}q j

r∑

n=1

r∑

t=n

q(t−n)k
j = {k}q j

r∑

t=1

t∑

n=1

q(t−n)k
j = {k}q j

r∑

t=1

t−1∑

n=0

qnk
j

=
r∑

t=1

{k}q j {t}qk
j
=

r∑

t=1

{tk}q j ,

where the last equality is a well-known identity (see, for example [9, p. 187]).

Proof Substituting (22.61) into (22.13) and (22.14) gives (22.64) and (22.65), re-
spectively, and substituting (22.62) into (22.15) gives (22.66). More precisely,

Skj F(Q) =
N∑

l=0

fl
(
σ ◦k
j (Q)

)l
Skj =

N∑

l=0

fl
(
c
{k}q j
j Qqk

j

)l
Skj

=
N∑

l=0

flc
{k}q j l
j Qqk

j l Skj ,

(
Skj F(Q)

)r =
∑

(l1,...,lr )∈
{
0,...,N

}r

( r∏

t=1

flt

)( r∏

t=1

(
c
{tk}q j
j Qqkt

j

)lt)
Skrj

=
∑

(l1,...,lr )∈
{
0,...,N

}r

( r∏

t=1

flt

)
c
∑r

t=1{tk}q j lt
j Q

∑r
t=1 q

kt
j lt Skrj ,

and for the more general formula,
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r∏

t=1

Sktjt Ft (Q) =
∑

(l1,...,lr )∈I1×...×Ir

( r∏

t=1

flt

)

·
⎛

⎝
r∏

t=1

((
t∏

n=1

c
{kn}q jn

∏t
m=n+1 q

km
jm

jn

)

Q
∏t

n=1 q
kn
jn

)lt
⎞

⎠
r∏

t=1

Sktjt

=
∑

(l1,...,lr )∈I1×...×Ir

(
r∏

t=1

flt

)

·
(

r∏

t=1

t∏

n=1

c
{kn}q jn

(∏t
m=n+1 q

km
jm

)
lt

jn

)(
r∏

t=1

Q
(∏t

n=1 q
kn
jn

)
lt

)
r∏

t=1

Sktjt

=
∑

(l1,...,lr )∈I1×...×Ir

(
r∏

t=1

flt

)

·
(

r∏

n=1

r∏

t=n

c
{kn}q jn

(∏t
m=n+1 q

km
jm

)
lt

jn

)

Q
∑r

t=1

(∏t
n=1 q

kn
jn

)
lt

r∏

t=1

Sktjt

=
∑

(l1,...,lr )∈I1×...×Ir

(
r∏

t=1

flt

)

·
(

r∏

n=1

c
{kn}q jn

∑r
t=n

(∏t
m=n+1 q

km
jm

)
lt

jn

)

Q
∑r

t=1

(∏t
n=1 q

kn
jn

)
lt

r∏

t=1

Sktjt ,

from which the results follow. �

For the particular case where F is a monomial, that is, F(Q) = Ql for some
positive integer l, Theorem 22.6 yields the following result.

Corollary 22.6 Let r be a positive integer. If Q and
{
Sj
}
j∈J are elements of an

algebra satisfying

Sj Q = c j Q
qj S j , (22.67)

then for any nonnegative integers k and l,

Skj Q
l = c

{k}q j l
j Qqk

j l Skj (22.68)

(Skj Q
l)r = c

∑r
t=1{tk}q j l

j Q
∑r

t=1 q
kt
j l Skrj , (22.69)

and for any nonnegative integers kt and lt , where t = 1, . . . , r ,

r∏

t=1

Sktjt Q
lt =

(
r∏

n=1

c
{kn}q jn

∑r
t=n

(∏t
m=n+1 q

km
jm

)
lt

jn

)

Q
∑r

t=1

(∏t
n=1 q

kn
jn

)
lt

r∏

t=1

Sktjt . (22.70)
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Example 22.11 For r = 2, we have

Sk1j1 Q
l1 Sk2j2 Q

l2 =
(

2∏

n=1

c
{kn}q jn

∑2
t=n

(∏t
m=n+1 q

km
jm

)
lt

jn

)

Q
∑2

t=1

(∏t
n=1 q

kn
jn

)
lt Sk1j1 S

k2
j2
,

= c
{k1}q j1 l1+{k1}q j1 q

k2
j2
l2

j1
c
{k2}q j2 l2
j2

Qq
k1
j1
l1+q

k1
j1
q
k2
j2
l2 Sk1j1 S

k2
j2
,

which for l1 = 0 becomes

Sk1j1 S
k2
j2
Ql2 = c

{k1}q j1 q
k2
j2
l2

j1
c
{k2}q j2 l2
j2

Qq
k1
j1
q
k2
j2
l2 Sk1j1 S

k2
j2
. (22.71)

and denoting Sj1 = S, Sj2 = T , we have the following case of Corollary 22.6.

Corollary 22.7 Let r be a positive integer, cσ and cτ be complex numbers, and let
qσ and qτ be positive integers. If S, T and Q are elements of an algebra satisfying
the relations

SQ = cσ Q
qσ S,

T Q = cτ Q
qτ T,

(22.72)

then for any nonnegative integers j, k and l,

S j T kQl = c
{ j}qσ qk

τ l
σ c

{k}qτ l
τ Qq j

σ qk
τ l S j T k, (22.73)

(S j T kQl)r = c
{ j}qσ qk

τ

∑r
n=1

∑r
t=n(q

j
σ qk

τ )t−nl
σ c

{k}qτ
∑r

n=1

∑r
t=n(q

j
σ qk

τ )t−nl
τ

·Q
∑r

t=1

(
q j

σ qk
τ

)t
l
(S j T k)r ,

(22.74)

and for any nonnegative integers jt , kt and lt , where t = 1, . . . , r ,

r∏

t=1

S jt T kt Qlt =
(

r∏

n=1

c
{ jn}qσ qkn

τ

∑r
t=n

(∏t
m=n+1 q

jm
σ qkm

τ

)
lt

σ

)

·
(

r∏

n=1

c
{kn}qτ

∑r
t=n

(∏t
m=n+1 q

jm
σ qkm

τ

)
lt

τ

)

Q
∑r

t=1

(∏t
n=1 q

jn
σ qkn

τ

)
lt

r∏

t=1

S jt T kt .

(22.75)

For the more general case, we have the following result.

Corollary 22.8 Let r be a positive integer. If S, T and Q are elements of an algebra
satisfying (22.72), then for any nonnegative integers j, k and N, and any polynomial
F(Q) =∑N

l=0 fl Ql ,
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S j T k F(Q) =
N∑

l=0

flc
{ j}qσ qk

τ l
σ c

{k}qτ l
τ Qq j

σ qk
τ l S j T k, (22.76)

(S j T k F(Q))r =
N
∑r

t=1

(
q j

σ qk
τ

)t

∑

L=0

∑

(l1,...,lr )∈
{
0,...,N

}r
∑r

t=1

(
q j

σ qk
τ

)t
lt=L

(
r∏

t=1

flt

)

· c{ j}qσ qk
τ

∑r
n=1

∑r
t=n(q

j
σ qk

τ )t−nlt
σ c

{k}qτ
∑r

n=1

∑r
t=n(q

j
σ qk

τ )t−nlt
τ QL(S j T k)r .

(22.77)

More generally, for all jt , kt , Nt ∈ N0, and any polynomials Ft (Q) =∑Nt
lt=0 flt Q

lt ,

r∏

t=1

S jt T kt Ft (Q) =
∑r

t=1

(∏t
n=1 q

jn
σ qkn

τ

)
Nt∑

L=0

∑

(l1,...,lr )∈I1×...×Ir∑r
t=1

(∏t
n=1 q

jn
σ qkn

τ

)
lt

( r∏

t=1

flt

)

·
( r∏

n=1

c
{ jn}qσ qkn

τ

∑r
t=n

(∏t
m=n+1 q

jm
σ qkm

τ

)
lt

σ

)( r∏

n=1

c
{kn}qτ

∑r
t=n

(∏t
m=n+1 q

jm
σ qkm

τ

)
lt

τ

)

· QL
r∏

t=1

S jt T kt ,

(22.78)

where t = 1, . . . , r and It = {0, . . . , Nt
}
.

Corollaries 22.7 and 22.8 can also be derived in the following way. Let cσ , cτ be
complex numbers, qσ , qτ be positive integers, and let σ , τ be the polynomials

σ(x) = cσ x
qσ ,

τ (x) = cτ x
qτ .

Then commutation relations (22.16) become

SQ = cσ Q
qσ S, (22.79)

T Q = cτ Q
qτ T . (22.80)

Let j and k be nonnegative integers. Lemma 22.2 implies the relations

σ ◦ j (Q) = c
{ j}qσ
σ Qq j

σ , (22.81)

τ ◦k(Q) = c
{k}qτ
τ Qqk

τ , (22.82)

and the relations
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(τ ◦k ◦ σ ◦ j )(Q) = c
{k}qτ
τ c

{ j}qσ qk
τ

σ Qq j
σ qk

τ , (22.83)

(σ ◦ j ◦ τ ◦k)(Q) = c
{ j}qσ
σ c

{k}qτ q j
σ

τ Qqk
τ q

j
σ , (22.84)

and the corresponding formulas in Example 22.5 become

S j T k F(Q) = F
(
c
{k}qτ
τ c

{ j}qσ qk
τ

σ Qq j
σ qk

τ

)
S j T k, (22.85)

T k S j F(Q) = F

(
c
{ j}qσ
σ c

{k}qτ q j
σ

τ Qqk
τ q

j
σ

)
T k S j . (22.86)

Let us derive an expression for (τ ◦kt ◦ σ ◦ jt ◦ · · · ◦ τ ◦k1 ◦ σ ◦ j1)(Q) for any nonneg-
ative integers j1, . . . , jt , k1, . . . , kt by induction on t . For t = 2, (22.83) implies
that

(τ ◦k2 ◦ σ ◦ j2 ◦ τ ◦k1 ◦ σ ◦ j1)(Q) = (τ ◦k2 ◦ σ ◦ j2)
(
c
{ j1}qσ qk1

τ

σ c
{k1}qτ
τ Qq

j1
σ q

k1
τ

)

= c
{ j2}qσ qk2

τ

σ c
{k2}qτ
τ

(
c
{ j1}qσ qk1

τ

σ c
{k1}qτ
τ Qq

j1
σ q

k1
τ

)q
j2
σ q

k2
τ

= c
{ j1}qσ qk1

τ q
j2
σ q

k2
τ

σ c
{k1}qτ q j2

σ q
k2
τ

τ c
{ j2}qσ qk2

τ

σ c
{k2}qτ
τ Qq

j1
σ q

k1
τ q

j2
σ q

k2
τ

In general, one has for all positive integers t the relation

(τ ◦kt ◦ σ ◦ jt ◦ · · · ◦ τ ◦k1 ◦ σ ◦ j1)(Q)

=
(

t∏

n=1

c
{ jn}qσ qkn

τ

∏t
m=n+1 q

jm
σ qkm

τ
σ c

{kn}qτ
∏t

m=n+1 q
jm
σ qkm

τ
τ

)

Q
∏t

n=1 q
jn
σ qkn

τ . (22.87)

Substituting relation (22.87) into Example 22.5 yields Corollaries 22.7 and 22.8. In
general, relation (22.87) is useful for directly obtaining reordering results for the
algebra generated by relations (22.79) and (22.80).

22.5.3 When σ j (x) = c j x

Let a j , b j and c j be complex numbers, and let q j be positive integers.
Section 22.5.2 considers the case σ j (x) = c j xq j while Sect. 22.5.4 considers the
case σ j (x) = a j x + b j . The intersection of these two cases is the case σ j (x) = c j x ,
for which commutation relation (22.1) become the relation

Sj Q = c j QSj , (22.88)
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often called the quantum plane relation, in the context of noncommutative geometry
and quantum groups. The following result follows from Theorem 22.6 by choosing
q j = 1.

Corollary 22.9 Let r be a positive integer. If Q and
{
Sj
}
j∈J are elements of an

algebra satisfying (22.88), then for any nonnegative integers k and N, and any
polynomial F(Q) =∑N

l=0 fl Ql ,

Skj F(Q) =
N∑

l=0

flc
kl
j Q

l Skj ,

(
Skj F(Q)

)r =
r N∑

L=0

∑

(l1,...,lr )∈
{
0,...,N

}r

l1+···+lr=L

( r∏

t=1

flt

)
c
k
∑r

t=1 tlt
j QL Skrj ,

and for kt , Nt ∈ N0, and any polynomials Ft (Q) =∑Nt
lt=0 flt Q

lt , where t = 1, . . . , r ,

r∏

t=1

Sktjt Ft (Q) =
N1+···+Nr∑

L=0

∑

(l1,...,lr )∈I1×...×Ir
l1+···+lr=L

( r∏

t=1

flt

)( r∏

n=1

c
kn
∑r

t=n lt
jn

)
QL

r∏

t=1

Sktjt ,

where It = {0, . . . , Nt
}
for some t.

For the particular case where F is a monic monomial in Q, Corollary 22.9 yields
the following result.

Corollary 22.10 Let r be a positive integer. If Q and
{
Sj
}
j∈J are elements of an

algebra satisfying (22.88), then for all nonnegative integers k and l,

Skj Q
l = cklj Q

l Skj , (22.89)
(
Skj Q

l
)r = cklr(r+1)/2

j Qlr Skrj , (22.90)

and for all nonnegative integers kt and lt , where t = 1, . . . , r ,

r∏

t=1

Sktjt Q
lt =

(
r∏

n=1

c
kn
∑r

t=n lt
jn

)

Q
∑r

t=1 lt
r∏

t=1

Sktjt . (22.91)

Example 22.12 For r = 2, we have

Sk1j1 Q
l1 Sk2j2 Q

l2 =
( 2∏

n=1

c
kn
∑2

t=n lt
jn

)
Q
∑2

t=1 lt Sk1j1 S
k2
j2
,= ck1(l1+l2)

j1
ck2l2j2

Ql1+l2 Sk1j1 S
k2
j2
,

which for l1 = 0 becomes
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Sk1j1 S
k2
j2
Ql2 = ck1l2j1

ck2l2j2
Ql2 Sk1j1 S

k2
j2
.

Denoting Sj1 = S and Sj2 = T , we have the following case of Corollary 22.10.

Corollary 22.11 Let r be a positive integer. Let cσ and cτ be complex numbers. If
S, T and Q are elements of an algebra satisfying the relations

SQ = cσ QS and T Q = cτ QT, (22.92)

then for all nonnegative integers j, k and l,

S j T kQl = c jl
σ c

kl
τ Ql S j T k, (22.93)

(S j T kQl)r = c jlr(r+1)/2
σ cklr(r+1)/2

τ Qlr (S j T k)r , (22.94)

and for all nonnegative integers jt , kt and lt , where t = 1, . . . , r ,

r∏

t=1

S jt T kt Qlt =
( r∏

n=1

c
jn
∑r

t=n lt
σ c

kn
∑r

t=n lt
τ

)
Q
∑r

t=1 lt
r∏

t=1

S jt T kt . (22.95)

Corollary 22.12 Let r ∈ N and cσ , cτ ∈ C. If S, T and Q are elements of an
algebra satisfying (22.92), then for any j, k, N ∈ N0, and any polynomial F(Q) =∑N

l=0 fl Ql ,

S j T k F(Q) =
N∑

l=0

flc
jl
σ c

kl
τ Ql S j T k, (22.96)

(S j T k F(Q))r =
r N∑

L=0

∑

(l1,...,lr )∈
{
0,...,N

}r

l1+···+lr=L

( r∏

t=1

flt

)
c
j
∑r

t=1 tlt
σ c

k
∑r

t=1 tlt
τ QL(S j T k)r ,

(22.97)

and for jt , kt , Nt ∈ N0, and polynomials Ft (Q) =∑Nt
lt=0 flt Q

lt , where t = 1, . . . , r ,

r∏

t=1

S jt T kt Ft (Q) =
N1+···+Nr∑

L=0

∑

(l1,...,lr )∈I1×...×Ir
l1+···+lr=L

( r∏

t=1

flt

)

·
( r∏

n=1

c
jn
∑r

t=n lt
σ c

kn
∑r

t=n lt
τ

)
QL

r∏

t=1

S jt T kt ,

(22.98)

where It = {0, . . . , Nt
}
.
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22.5.4 When σ j (x) = a j x + b j

Let a j and b j be complex numbers, and let σ j be the polynomials

σ j (x) = a j x + b j . (22.99)

Then commutation relations (22.1) become

Sj Q = a j QSj + b j S j . (22.100)

These are deformed Heisenberg–Lie commutation relations of quantum mechanics.
The classical Heisenberg–Lie relations Sj Q − QSj = Sj are obtained when a j = 1
and b j = 1. If c j = 0, then we get the quantum plane relations Sj Q = q j QSj

The following lemma is useful for obtaining the reordering results.

Lemma 22.3 For any positive integer t and any nonnegative integers k, k1, . . . , kt ,

σ ◦k
j (Q) = akj Q + {k}a j

b j , (22.101)

(σ
◦kt
jt

◦ · · · ◦ σ
◦k1
j1

)(Q) =
( t∏

n=1

aknjn

)
Q +

t∑

n=1

( t∏

m=n+1

akmjm

){
kn
}
a jn
b jn , (22.102)

Proof We prove (22.101) by induction on k. For k = 1, the formula follows from
(22.99). Now suppose that (22.101) holds for some integer k ≥ 1, then

σ
◦(k+1)
j (Q) = σ ◦k

j (σ j (Q)) = akj (a j Q + b j ) + {k}
a j
b j

= ak+1
j Q + (akj + {k}a j

)b j

= ak+1
j Q + {k + 1

}
a j
b j ,

which proves (22.101). Next we prove (22.102) by induction on t . For t = 1, it
follows from (22.101). Now suppose that (22.102) holds for some integer t ≥ 1,
then

(σ
◦kt+1
jt+1

◦ · · · ◦ σ
◦k1
j1

)(Q) = σ
◦kt+1
jt+1

(
(σ

◦kt
jt

◦ · · · ◦ σ
◦k1
j1

)(Q)
)

= akt+1
jt+1

(( t∏

n=1

aknjn

)
Q +

t∑

n=1

( t∏

m=n+1

akmjm

){
kn
}
a jn
b jn

)

+ {kt+1
}
a jt+1

b jt+1

=
( t+1∏

n=1

aknjn

)
Q +

t∑

n=1

( t+1∏

m=n+1

akmjm

){
kn
}
a jn
b jn + {kt+1

}
a jt+1

b jt+1

=
( t+1∏

n=1

aknjn

)
Q +

t+1∑

n=1

( t+1∏

m=n+1

akmjm

){
kn
}
a jn
b jn ,



22 Reordering in Noncommutative Algebras Associated … 539

and this proves the assertion. �

Theorem 22.7 Let r ∈ Z+. If Q and
{
Sj
}
j∈J are elements of an algebra satisfying

(22.100), then for all k, l, N ∈ N0, and any polynomial F(Q) =∑N
l=0 fl Ql ,

Skj Q
l =

l∑

v=0

(
l

v

)
akvj
({
k
}
a j
b j
)l−v

QvSkj , (22.103)

(Skj Q
l)r =

lr∑

V=0

∑

(v1,...,vr )∈
{
0,...,l

}r

v1+···+vr=V

( r∏

t=1

(
l

vt

)({
kt
}
a j

)l−vt
)

· ak
∑r

t=1 tvt
j b

∑r
t=1(l−vt )

j QV Skrj ,

(22.104)

Skj F(Q) =
N∑

v=0

N∑

l=v

(
l

v

)
akvj
({
k
}
a j
b j
)l−v

fl Q
vSkj , (22.105)

(Skj F(Q))r =
∑

(l1,...,lr )∈I r

( r∏

t=1

flt

) l1+···+lt∑

V=0

∑

(v1,...,vr )∈M1×...Mr
v1+···+vr=V

( r∏

t=1

·
(
lt
vt

)({
kt
}
a j

)lt−vt
)
a
k
∑r

t=1 tvt
j b

∑r
t=1(lt−vt )

j QV Skrj ,

(22.106)

where I = {0, . . . , N} and Mt = {0, . . . , lt
}
.

Proof Substituting (22.101) into (22.10), (22.11), (22.13) and (22.14) gives (22.103),
(22.104), (22.105) and (22.106), respectively. For example for (22.104), we have

(Skj Q
l)r =

( r∏

t=1

(
σ ◦tk
j (Q)

)l
)
Skrj =

( r∏

t=1

(
aktj Q + {kt}a j

b j

)l)
Skrj

=
( r∏

t=1

l∑

vt=0

(
l

vt

)
aktvtj

({
kt
}
a j
b j
)l−vt Qvt

)
Skrj

=
( l∑

v1=0

. . .

l∑

vr=0

r∏

t=1

(
l

vt

)
aktvtj

({
kt
}
a j
b j
)l−vt Qvt

)
Skrj

=
∑

(v1,...,vr )∈
{
0,...,l

}r

(
r∏

t=1

(
l

vt

)({
kt
}
a j

)l−vt

)

a
k
∑r

t=1 tvt
j b

∑r
t=1(l−vt )

j Q
∑r

t=1 vt Skrj

=
lr∑

V=0

∑

(v1,...,vr )∈
{
0,...,l

}r

v1+···+vr=V

(
r∏

t=1

(
l

vt

)({
kt
}
a j

)l−vt

)

a
k
∑r

t=1 tvt
j b

∑r
t=1(l−vt )

j QV Skrj .

Formula (22.106) can also be obtained directly from (22.104) using (22.14). �
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Let aσ , aτ , bσ and bτ be complex numbers, and let σ and τ be the polynomials
σ(x) = aσ x + bσ and τ(x) = aτ x + bτ . Then commutation relations (22.16) be-
come

SQ = aσ QS + bσ S, (22.107)

T Q = aτ QT + bτT . (22.108)

Let j and k be nonnegative integers. Lemma 22.3 implies the relations

σ ◦ j (Q) = a j
σ Q + { j}

aσ
bσ , (22.109)

τ ◦k(Q) = akτ Q + {k}aτ
bτ , (22.110)

and the relations

(τ ◦k ◦ σ ◦ j )(Q) = a j
σa

k
τ Q + akτ

{
j
}
aσ
bσ + {k}

aτ
bτ , (22.111)

(σ ◦ j ◦ τ ◦k)(Q) = a j
σa

k
τ Q + a j

σ

{
k
}
aτ
bτ + { j}

aσ
bσ , (22.112)

and the corresponding formulas in Example 22.5 become

S j T k F(Q) = F
(
a j

σa
k
τ Q + akτ

{
j
}
aσ
bσ + {k}

aτ
bτ

)
S j T k, (22.113)

T k S j F(Q) = F
(
a j

σa
k
τ Q + a j

σ

{
k
}
aτ
bτ + { j}aσ

bσ

)
T k S j . (22.114)

Let us derive an expression for (τ ◦kt ◦ σ ◦ jt ◦ · · · ◦ τ ◦k1 ◦ σ ◦ j1)(Q) for any nonneg-
ative integers j1, . . . , jt , k1, . . . , kt by induction on t . For t = 2, relation (22.111)
implies

(τ◦k2 ◦ σ ◦ j2 ◦ τ◦k1 ◦ σ ◦ j1)(Q) = (τ◦k2 ◦ σ ◦ j2 )
(
a j1
σ ak1τ Q + ak1τ

{
j1
}
aσ
bσ + {k1

}
aτ
bτ

)

= a j2
σ ak2τ

(
a j1
σ ak1τ Q + ak1τ

{
j1
}
aσ
bσ + {k1

}
aτ
bτ

)
+ ak2τ

{
j2
}
aσ
bσ + {k2

}
aτ
bτ

= a j1
σ ak1τ a j2

σ ak2τ Q + ak1τ a j2
σ ak2τ

{
j1
}
aσ
bσ + a j2

σ ak2τ

{
k1
}
aτ
bτ + ak2τ

{
j2
}
aσ
bσ + {k2

}
aτ
bτ .

In general, one has for all positive integers t the relation

(τ ◦kt ◦ σ ◦ jt ◦ · · · ◦ τ ◦k1 ◦ σ ◦ j1)(Q) =
( t∏

n=1

a jn
σ aknτ

)
Q

+
t∑

n=1

aknτ

( t∏

m=n+1

a jm
σ akmτ

){
jn
}
aσ
bσ

+
t∑

n=1

( t∏

m=n+1

a jm
σ akmτ

){
kn
}
aτ
bτ .

(22.115)
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Relation (22.115) is useful for directly obtaining reordering results for the algebra
generated by relations (22.107) and (22.108).

22.6 Linear Transformation of the S j -Generators

Proposition 22.2 Let
{
Rk
}
k∈K be a set of elements of an algebra, m and n positive

integers, and a jmkn complex numbers. If

S jm =
n∑

t=1

a jmkt Rkt ,

then the commutator of S j1 and Sj2 is given by

[
Sj1 , Sj2

] =
∑

t,u∈
{
1,...,n

}

t≤u

det

(
a j1kt a j1ku
a j2kt a j2ku

) [
Rkt , Rku

]
. (22.116)

Proof We proceed by induction on n. For n = 1, we have

[
Sj1 , Sj2

] = [a j1k1Rk1 , a j2k1Rk1

] = a j1k1a j2k1

[
Rk1 , Rk1

] = 0,

which agrees with formula (22.116). For n = 2, we have

[
Sj1 , Sj2

] = [a j1k1Rk1 + a j1k2 Rk2 , a j2k1Rk1 + a j2k2 Rk2

]

= (a j1k1Rk1 + a j1k2 Rk2

) (
a j2k1Rk1 + a j2k2Rk2

)

− (a j2k1Rk1 + a j2k2 Rk2

) (
a j1k1Rk1 + a j1k2 Rk2

)

= a j1k1a j2k1Rk1Rk1 + a j1k1a j2k2 Rk1Rk2

+ a j1k2a j2k1Rk2 Rk1 + a j1k2a j2k2 Rk2 Rk2

− a j1k1a j2k1Rk1Rk1 − a j1k2a j2k1Rk1Rk2

− a j1k1a j2k2 Rk2 Rk1 − a j1k2a j2k2 Rk2 Rk2

= (a j1k1a j2k2 − a j1k2a j2k1

)
Rk1Rk2

+ (a j1k2a j2k1 − a j1k1a j2k2

)
Rk2 Rk1

= (a j1k1a j2k2 − a j1k2a j2k1

) (
Rk1Rk2 − Rk2 Rk1

)

= det

(
a j1k1 a j1k2
a j2k1 a j2k2

) [
Rk1, Rk2

]
.

Now suppose that (22.116) holds for some integer n ≥ 1, then we have for n + 1 that
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[
Sj1 , Sj2

] =
[
n+1∑

t=1

a j1kt Rkt ,

n+1∑

t=1

a j2kt Rkt

]

=
[

n∑

t=1

a j1kt Rkt + a j1kn+1Rkn+1,

n∑

t=1

a j2kt Rkt + a j2kn+1Rkn+1

]

=
[

n∑

t=1

a j1kt Rkt ,

n∑

t=1

a j2kt Rkt

]

+
[

n∑

t=1

a j1kt Rkt , a j2kn+1Rkn+1

]

+
[

a j1kn+1Rkn+1 ,

n∑

t=1

a j2kt Rkt

]

+
[
a j1kn+1Rkn+1, a j2kn+1Rkn+1

]

=
∑

t,u∈
{
1,...n
}

,

t≤u

det

(
a j1kt a j1ku
a j2kt a j2ku

) [
Rkt , Rku

]

+
(

n∑

t=1

a j1kt Rkt

)

a j2kn+1Rkn+1 − a j2kn+1Rkn+1

n∑

t=1

a j1kt Rkt

+ a j1kn+1Rkn+1

n∑

t=1

a j2kt Rkt −
(

n∑

t=1

a j2kt Rkt

)

a j1kn+1Rkn+1 + 0

=
∑

t,u∈
{
1,...,n

}

t≤u

det

(
a j1kt a j1ku
a j2kt a j2ku

) [
Rkt , Rku

]

+
(

n∑

t=1

a j1kt Rkt

)

a j2kn+1Rkn+1 −
(

n∑

t=1

a j2kt Rkt

)

a j1kn+1Rkn+1

−
(

a j2kn+1Rkn+1

n∑

t=1

a j1kt Rkt − a j1kn+1Rkn+1

n∑

t=1

a j2kt Rkt

)

=
∑

t,u∈
{
1,...,n

}

t≤u

det

(
a j1kt a j1ku
a j2kt a j2ku

) [
Rkt , Rku

]

+
∑

t∈
{
1,...,n

}

u=n+1

a j1kt a j2ku Rkt Rku −
∑

t∈
{
1,...,n

}

u=n+1

a j1ku a j2kt Rkt Rku

−

⎛

⎜⎜⎜
⎝

∑

t∈
{
1,...,n

}

u=n+1

a j1kt a j2ku Rku Rkt −
∑

t∈
{
1,...,n

}

u=n+1

a j1ku a j2kt Rku Rkt

⎞

⎟⎟⎟
⎠
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=
∑

t,u∈
{
1,...,n

}

t≤u

det

(
a j1kt a j1ku
a j2kt a j2ku

) [
Rkt , Rku

]

+
∑

t∈
{
1,...,n

}

u=n+1

(
a j1kt a j2ku − a j1ku a j2kt

)
Rkt Rku

−
∑

t∈
{
1,...,n

}

u=n+1

(
a j1kt a j2ku − a j1ku a j2kt

)
Rku Rkt

=
∑

t,u∈
{
1,...,n

}

t≤u

det

(
a j1kt a j1ku
a j2kt a j2ku

) [
Rkt , Rku

]

+
∑

t∈
{
1,...,n

}

u=n+1

(
a j1kt a j2ku − a j1ku a j2kt

) (
Rkt Rku − Rku Rkt

)

=
∑

t,u∈
{
1,...,n

}

t≤u

det

(
a j1kt a j1ku
a j2kt a j2ku

) [
Rkt , Rku

]+
∑

t∈
{
1,...,n

}

u=n+1

det

(
a j1kt a j1ku
a j2kt a j2ku

) [
Rkt , Rku

]

=
∑

t,u∈
{
1,...,n,n+1

}

t≤u

det

(
a j1kt a j1ku
a j2kt a j2ku

) [
Rkt , Rku

]
,

and this proves formula (22.116). �

Example 22.13 For n = 3, we have

[
Sj1 , Sj2

] = [a j1k1Rk1 + a j1k2Rk2 + a j1k3Rk3 , a j2k1Rk1 + a j2k2Rk2 + a j2k3Rk3

]

= (a j1k1Rk1 + a j1k2Rk2 + a j1k3Rk3

) (
a j2k1Rk1 + a j2k2 Rk2 + a j2k3Rk3

)

− (a j2k1Rk1 + a j2k2 Rk2 + a j2k3Rk3

) (
a j1k1Rk1 + a j1k2 Rk2 + a j1k3Rk3

)

= a j1k1a j2k1Rk1Rk1 + a j1k1a j2k2Rk1Rk2 + a j1k1a j2k3Rk1Rk3

+ a j1k2a j2k1Rk2 Rk1 + a j1k2a j2k2Rk2 Rk2 + a j1k2a j2k3Rk2 Rk3

+ a j1k3a j2k1Rk3Rk1 + a j1k3a j2k2 Rk3Rk2 + a j1k3a j2k3Rk3Rk3

− a j1k1a j2k1Rk1Rk1 − a j1k2a j2k1Rk1Rk2 − a j1k3a j2k1Rk1Rk3

− a j1k1a j2k2Rk2 Rk1 − a j1k2a j2k2Rk2 Rk2 − a j1k3a j2k2 Rk2 Rk3

− a j1k1a j2k3Rk3Rk1 − a j1k2a j2k3Rk3Rk2 − a j1k3a j2k3Rk3Rk3

= (a j1k1a j2k2 − a j1k2a j2k1

)
Rk1Rk2 + (a j1k1a j2k3 − a j1k3a j2k1

)
Rk1Rk3

+ (a j1k2a j2k1 − a j1k1a j2k2

)
Rk2Rk1 + (a j1k2a j2k3 − a j1k3a j2k2

)
Rk2Rk3
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+ (a j1k3a j2k1 − a j1k1a j2k3

)
Rk3Rk1 + (a j1k3a j2k2 − a j1k2a j2k3

)
Rk3Rk2

= (a j1k1a j2k2 − a j1k2a j2k1

)
(Rk1Rk2 − Rk2Rk1)

+ (a j1k1a j2k3 − a j1k3a j2k1

)
(Rk1Rk3 − Rk3Rk1)

+ (a j1k2a j2k3 − a j1k3a j2k2

)
(Rk2Rk3 − Rk3Rk2)

= det

(
a j1k1 a j1k2
a j2k1 a j2k2

) [
Rk1 , Rk2

]

+ det

(
a j1k1 a j1k3
a j2k1 a j2k3

) [
Rk1 , Rk3

]

+ det

(
a j1k2 a j1k3
a j2k2 a j2k3

) [
Rk2 , Rk3

]
,

which agrees with the formula. For n = 4, one can similarly obtain

[
Sj1 , Sj2

] =
[

4∑

t=1

a j1kt Rkt ,

4∑

t=1

a j2kt Rkt

]

= det

(
a j1k1 a j1k2
a j2k1 a j2k2

) [
Rk1 , Rk2

]

+ det

(
a j1k1 a j1k3
a j2k1 a j2k3

) [
Rk1 , Rk3

]

+ det

(
a j1k1 a j1k4
a j2k1 a j2k4

) [
Rk1 , Rk4

]

+ det

(
a j1k2 a j1k3
a j2k2 a j2k3

) [
Rk2 , Rk3

]

+ det

(
a j1k2 a j1k4
a j2k2 a j2k4

) [
Rk2 , Rk4

]

+ det

(
a j1k3 a j1k4
a j2k3 a j2k4

) [
Rk3 , Rk4

]
,

which also agrees with the formula.

Corollary 22.13 Let a, b, c, d ∈ C.

1. In any algebra, if

S = aR + bJ,

T = cR + d J,

then the commutator of S and T is given by
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[S, T ] = det

(
a b
c d

)
[R, J ].

2. If det
(
a b
c d

) �= 0, that is, ad �= bc, then ST = T S if and only if R J = J R.

Example 22.14 In any algebra, if S = R + i J and T = R − i J , then the commu-
tator of S and T is given by

[S, T ] = −2i[R, J ],

and so, ST = T S if and only if RJ = J R.

Theorem 22.8 Let a, b, c, d ∈ C with ad �= bc. If

R = dS − bT

ad − bc

J = aT − cS

ad − bc

then the elements R, J and Q satisfy the relations

RQ = adσ(Q) − bcτ(Q)

ad − bc
R + bdσ(Q) − bdτ(Q)

ad − bc
J, (22.117)

J Q = adτ(Q) − bcσ(Q)

ad − bc
J + acτ(Q) − acσ(Q)

ad − bc
R, (22.118)

if and only if the elements S, T and Q satisfy relations (22.16).

Proof Writing S = aR + bJ and T = cR + d J , we have R = (dS − bT )/(ad −
bc) and J = (aT − cS)/(ad − bc). Therefore, if relations (22.16) hold, then

RQ =
(
dS − bT

ad − bc

)
Q

= dSQ − bT Q

ad − bc

= dσ(Q)S − bτ(Q)T

ad − bc

= dσ(Q)(aR + bJ ) − bτ(Q)(cR + d J )

ad − bc

= adσ(Q)R + bdσ(Q)J − bcτ(Q)R − bdτ(Q)J

ad − bc

= adσ(Q) − bcτ(Q)

ad − bc
R + bdσ(Q) − bdτ(Q)

ad − bc
J,

and
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J Q =
(
aT − cS

ad − bc

)
Q

= aT Q − cSQ

ad − bc

= aτ(Q)T − cσ(Q)S

ad − bc

= aτ(Q)(cR + d J ) − cσ(Q)(aR + bJ )

ad − bc

= acτ(Q)R + adτ(Q)J − acσ(Q)R − bcσ(Q)J

ad − bc

= adτ(Q) − bcσ(Q)

ad − bc
J + acτ(Q) − acσ(Q)

ad − bc
R.

Conversely, if (22.117) and (22.118) hold, then

SQ = (aR + bJ )Q = aRQ + bJ Q

= a

(
adσ(Q) − bcτ(Q)

ad − bc
R + bdσ(Q) − bdτ(Q)

ad − bc
J

)

+ b

(
adτ(Q) − bcσ(Q)

ad − bc
J + acτ(Q) − acσ(Q)

ad − bc
R

)

= aadσ(Q) − abcτ(Q)

ad − bc
R + abdσ(Q) − abdτ(Q)

ad − bc
J

+ abdτ(Q) − bbcσ(Q)

ad − bc
J + abcτ(Q) − abcσ(Q)

ad − bc
R

= aadσ(Q) − abcσ(Q)

ad − bc
R + abdσ(Q) − bbcσ(Q)

ad − bc
J

= ad − bc

ad − bc
aσ(Q)R + ad − bc

ad − bc
bσ(Q)J

= aσ(Q)R + bσ(Q)J

= σ(Q)(aR + bJ )

= σ(Q)S,

and

T Q = (cR + d J )Q = cRQ + d J Q

= c

(
adσ(Q) − bcτ(Q)

ad − bc
R + bdσ(Q) − bdτ(Q)

ad − bc
J

)

+ d

(
adτ(Q) − bcσ(Q)

ad − bc
J + acτ(Q) − acσ(Q)

ad − bc
R

)

= acdσ(Q) − bccτ(Q)

ad − bc
R + bcdσ(Q) − bcdτ(Q)

ad − bc
J
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+ addτ(Q) − bcdσ(Q)

ad − bc
J + acdτ(Q) − acdσ(Q)

ad − bc
R

= acdτ(Q) − bccτ(Q)

ad − bc
R + addτ(Q) − bcdτ(Q)

ad − bc
J

= ad − bc

ad − bc
cτ(Q)R + ad − bc

ad − bc
dτ(Q)J

= cτ(Q)R + dτ(Q)J

= τ(Q)(cR + d J )

= τ(Q)T . �

22.7 Reordering Formulas for R j, Q-Elements

Theorem 22.9 Let a, b, c, d ∈ C with ad �= bc. If R, J and Q are elements of
an algebra satisfying relations (22.117) and (22.118), then for any nonnegative
integer k,

RQk = adσ(Q)k − bcτ(Q)k

ad − bc
R + bdσ(Q)k − bdτ(Q)k

ad − bc
J, (22.119)

J Qk = adτ(Q)k − bcσ(Q)k

ad − bc
J + acτ(Q)k − acσ(Q)k

ad − bc
R. (22.120)

Proof By Theorem 22.8, relations (22.117) and (22.118) hold if relations (22.16)
hold with R = (dS − bT )/(ad − bc) and J = (aT − cS)/(ad − bc). Therefore,

RQk =
(
dS − bT

ad − bc

)
Qk

= dSQk − bT Qk

ad − bc

= dσ(Q)k S − bτ(Q)kT

ad − bc

= dσ(Q)k(aR + bJ ) − bτ(Q)k(cR + d J )

ad − bc

= adσ(Q)k R + bdσ(Q)k J − bcτ(Q)R − bdτ(Q)k J

ad − bc

= adσ(Q)k − bcτ(Q)k

ad − bc
R + bdσ(Q)k − bdτ(Q)k

ad − bc
J,

and
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J Qk =
(
aT − cS

ad − bc

)
Qk

= aT Qk − cSQk

ad − bc

= aτ(Q)kT − cσ(Q)k S

ad − bc

= aτ(Q)k(cR + d J ) − cσ(Q)k(aR + bJ )

ad − bc

= acτ(Q)k R + adτ(Q)k J − acσ(Q)k R − bcσ(Q)k J

ad − bc

= adτ(Q)k − bcσ(Q)k

ad − bc
J + acτ(Q)k − acσ(Q)k

ad − bc
R.

�

Corollary 22.14 If R, J and Q are elements of an algebra satisfying relations
(22.117) and (22.118), then for any polynomial F(·) in one variable,

RF(Q) = adF (σ (Q)) − bcF (τ (Q))

ad − bc
R + bdF (σ (Q)) − bdF (τ (Q))

ad − bc
J,

(22.121)

J F(Q) = adF (σ (Q)) − bcF (τ (Q))

ad − bc
J + acF (σ (Q)) − acF (τ (Q))

ad − bc
R.

(22.122)

Proof Theorem 22.9 implies that given a polynomial F(Q) =∑ akQk , we have

RF(Q) =
∑

ak RQ
k

=
∑

ak

(
adσ(Q)k − bcτ(Q)k

ad − bc
R + bdσ(Q)k − bdτ(Q)k

ad − bc
J

)

= adF (σ (Q)) − bcF (τ (Q))

ad − bc
R + bdF (σ (Q)) − bdF (τ (Q))

ad − bc
J.

Similarly for J F(Q), that is,

J F(Q) =
∑

ak J Q
k

=
∑

ak

(
adτ(Q)k − bcσ(Q)k

ad − bc
J + acτ(Q)k − acσ(Q)k

ad − bc
R

)

= adF (σ (Q)) − bcF (τ (Q))

ad − bc
J + acF (σ (Q)) − acF (τ (Q))

ad − bc
R.

�
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Corollary 22.15 If R, J and Q are elements of an algebra satisfying relations
(22.117) and (22.118), then

Rσ(Q) = adσ 2(Q) − bc(σ ◦ τ)(Q)

ad − bc
R + bdσ 2(Q) − bd(σ ◦ τ)(Q)

ad − bc
J, (22.123)

Jσ(Q) = adσ 2(Q) + bc(σ ◦ τ)(Q)

ad − bc
J + acσ 2(Q) − ac(σ ◦ τ)(Q)

ad − bc
R, (22.124)

Rτ(Q) = ad(τ ◦ σ)(Q) − bcτ 2(Q)

ad − bc
R + bd(τ ◦ σ)(Q) − bdτ 2(Q)

ad − bc
J, (22.125)

Jτ(Q) = ad(τ ◦ σ)(Q) − bcτ 2(Q)

ad − bc
J + ac(τ ◦ σ)(Q) − acτ 2(Q)

ad − bc
R. (22.126)

Proof This result follows directly from Corollary 22.14 by letting F(x) = σ(x) for
the first two formulas, and F(x) = τ(x) for the last two formulas. �

22.8 Some Operator Representations

We conclude by mentioning that a concrete representation of relations (22.1) is given
by the operators ασ j ( f )(x) = f (σ j (x)) and Qx ( f )(x) = x f (x) acting on polyno-
mials or other suitable functions. Furthermore, a concrete representation of relations
(22.3) is given by the operators

Rσ,τ ( f )(x) = ad f (σ (x)) − bc f (τ (x))

ad − bc
, (22.127)

Jσ,τ ( f )(x) = ac f (τ (x)) − ac f (σ (x))

ad − bc
, (22.128)

Qx ( f )(x) = x f (x) (22.129)

also acting on polynomials or other suitable functions. For σ(x) = x + i , τ(x) =
x − i , a = c = 1, b = i and d = −i , these operators reduce to the operators

Ri ( f )(x) = f (x + i) + f (x − i)

2
, (22.130)

Ji ( f )(x) = f (x + i) − f (x − i)

2i
, (22.131)

Qx ( f )(x) = x f (x) (22.132)

acting on complex functions. Three systems of orthogonal polynomials belonging to
the class of Meixner–Pollaczek polynomials that are connected by these operators
were presented in [14, 23, 25]. Boundedness properties of the operators R−1

i and
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Ji R
−1
i in the function spaces related to the three systems of orthogonal polynomials

were investigated in [15, 25].
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