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22.1 Introduction

The main object considered in this paper is the multi-parametric family A, of unital
associative complex algebras generated by the element Q and the finite or infinite
set {S i }jE p of elements satisfying the commutation relations

S;0 =0;(0)S;, 22.1)

where o; is a polynomial for all j € J. For J = {1, 2}, with the notation that §; = S,
S, = T,01 = o and 0y = 7, thisreduces to the multi-parametric family A, ; of unital
associative complex algebras generated by three elements S, 7 and Q satisfying the
commutation relations

SQ =0(0)S,

(22.2)
TQ =1(Q)T.

Writing R = (dS — bT)/(ad — bc) and J = (aT — ¢S)/(ad — bc), where a, b, ¢
and d are complex numbers with ad # bc, we obtain and consider also a generaliza-
tion of A, , the multi-parametric family B, , of unital associative complex algebras
generated by three elements R, J and Q satisfying the commutation relations

ado(Q) — bet(Q) o n bdo(Q) — bdt(Q) ,

ko = ad — be ad — bc ’ (22.3)
JO = adt(Q) — bCU(Q)J n act(Q) — aCG(Q)R '
- ad — bc ad — be '

Observe that the relations of the form (22.2) are recovered for b = ¢ = 0.
The importance of commutation relations (22.1) can be best seen from some
well-known examples. Consider the case where J = {1}, that is, the case

S0 = (0)S. (22.4)

If o(x) = x, then S and Q commute, that is, SQ = QS. If 0 (x) = —x, then S and
Q anti-commute, thatis, SQ = —Q0S.If o (x) = gx + ¢ for some complex numbers
q and c, then S and Q satisfy

SQ —qQ0S =cS.
This is a deformed Heisenberg—Lie commutation relation of quantum mechanics.

The famous classical Heisenberg—Lie relation is obtained when g = 1 and ¢ = 1. If
¢ =0, then S and Q are said to g-commute, that is, they satisfy the relation

S0 =q0S,
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which is often called the quantum plane relation in the context of noncommutative
geometry and quantum groups. If o (x) = gx“ for some positive integer d, then S
and Q satisfy the commutation relation

50 =qQ’s.
This reduces to the quantum plane relation for d = 1 and to the relation
SQ = Q'S

for ¢ = 1, having important applications, for instance in wavelet analysis and in
investigation of transfer operators [6, 11, 12], which are fundamental for statistical
physics, dynamical systems and ergodic theory.

The commutation relations of the form (22.4) play a central role in the study of
crossed products and their representations, in the theory of dynamical systems and in
the investigation of covariant systems and systems of imprimitivity and thus in quan-
tum mechanics, statistical physics and quantum field theory [6-8, 11, 12, 16-19, 30,
35, 45, 46]. The commutation relations of the form (22.4) arise in the investigations
of nonlinear Poisson brackets, quantization and noncommutative analysis [13, 28].
Bounded and unbounded operators satisfying relation (22.4) have also been consid-
ered in the context of representations of x-algebras and spectral theory [34, 36, 37,
40, 41].

On the other hand, relations (22.3) generalizes Lie algebra type commutation
relations, typical for usual differential or difference operators, to relations satisfied
by more general twisted difference operators associated to general twisting maps.

This paper is devoted to the reordering of arbitrary elements in the algebras A,
Ay - and B, ;. Reordering of arbitrary elements in noncommutative algebras defined
by commutation relations is important in many research directions, open problems
and applications of the algebras and their operator representations. For a broader
view of this active area of research, see, for example, [1-5, 9, 10, 20-22, 24, 26—
29, 37, 39, 4244, 47] and the references therein. In investigation of the structure,
representations and applications of noncommutative algebras, an important role is
played by the explicit description of suitable normal forms for noncommutative
expressions or functions of generators. These normal forms are particularly important
for computing commutative subalgebras or commuting families of operators which
are a key ingredient in representation theory of many important algebras [15, 31-33,
38, 45].

In Sect.22.2, we give an introduction to commutation relations and reordering. In
Sect.22.3 general reordering formulas for arbitrary elements in the family A,, are
presented, and in Sect.22.4 some reordered expressions for corresponding nested
commutators are described. In Sect.22.5 special cases for different choices of o; are
considered, putting in a new perspective and generalizing some well-known results
in mathematics and physics. A generalization of the family A, in three generators is
constructed in Sect. 22.6, with some reordering formulas presented in Sect.22.7. We
conclude by mentioning some operator representations of our algebras in Sect. 22.8.
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We would also like to point out that some of the results in this paper are published
without proofs in our recent article [27].

22.2 Commutation Relations and Reordering

This paper is about reordering of elements in noncommutative algebras defined by
commutation relations. We follow the nice exposition by Mansour and Schork [20]. A
commutation relation is a relation that describes the discrepancy between different
orders of operation of two operations, say S and Q. To describe it, we use the
commutator

[S.Q1=50 - 0S.

If S and Q commute, then the commutator vanishes. How far a given structure
deviates from the commutative case is described by the right-hand side of the com-
mutation relation. For example, in a complex Lie algebra g one has a set of generators
{S;}jes with the Lie bracket [Sj Sk] = Z,ej cékSl, where the coefficients cljk eC
are called the structure constants of the Lie algebra g. The associated universal en-
veloping algebra U(g) is an associative algebra generated by {S;} <, and the above
bracket becomes

[Sj, Sk] = ZcﬁkSl.

leJ

One of the earliest instances of a noncommutative structure was recognized in the
context of operational calculus. If D = %, the ordinary derivative, then the Leibniz
rule (the product rule) states that

D(xf(x)) = xD(f(x)) + D(x) f (x).

Interpreting the multiplication with the independent variable x as an application of
the multiplication operator Q,, and suppressing the operand f, this equation can be
written as the commutation relation

DQ, - 0D =1,

where 1 is the identity operator: 1 f(x) = f(x).

Let us first introduce the concept of an alphabet, words and letters, and thereafter
explain what we mean by reordering of an element in a noncommutative algebra
defined by commutation relations.

Definition 22.1 (see Mansour and Schork, 2016 [20]) Let a finite or infinite set
A={S; }jE] of objects be given. For all j € J, we call each S; a letter and A the

alphabet. For some positive integer r, an element of A" will be called a word of
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length r in the alphabet A. A word w = (S}, S}, ..., S;,) will be written in the
form w = §;, S}, - - - §j,, that is, as concatenation of its letters. For convenience, we
also introduce the empty word @ € A°. If w is a word, we denote the concatenation
ww - -+ (n times) briefly by »". In the case A consists of n elements, an element
of A" is called n-ary word of length r. The words with letters from the set of two
elements (n = 2) are called binary words, and the words with letters from the set of
three elements are called ternary words.

Example 22.1 If A = {1, 2, 3}, then the 3-ary (ternary) words of length two are 11,
12,13,21,22,23,31,32and 33. If A = {0, 1}, then the binary words of length three
are given by 000, 001, 010, 011, 100, 101, 110 and 111.

Example 22.2 Let A = {S ,T,U, V} be an alphabet with four letters. Then w; =
SSSTT, w, =STUVS, w3 =VTUST and wg = UTUTU are words of length
five which in general are not related. The words w; and w4 can be written briefly as
w; = S*T? and wy = (UT)*U.

Let us turn to the situation where the alphabet is given by the finite or infinite set
A= {S i, Q } icJ of elements in a unital associative algebra satisfying the commuta-
tion relation

S;Q =0;(0)S;.

An arbitrary word w in the alphabet A = {S i 0 }jE , can be written as

.

— kl l] kz lz . kr l, — 1_[ kz l,

w=S8;0"S;0 Sp0r=115;¢
=1

for some k;, [, € Ny (No denotes the set of nonnegative integers). If o; is given by
the polynomial o;(x) = x + 1 for all j € J, then the above commutation relation
becomes the famous classical Heisenberg—Lie commutation relation

S;,0—0S8; =5, (22.5)

and two adjacent letters S; and Q in a word can be interchanged according to this
relation. Each time one uses it in a word w, two new words result. If we write
the original word as @ = w;S; Qw, (where each w, can be the empty word), then
applying (22.5) gives that w = w1 (QS; + S))wr = 01 05w + w1 S;w.

Example 22.3 In the last sentence of the preceding paragraph, if | = w, = &, the
empty words, then w = §; O can be written as w = QS; + §;. Using (22.5) again,
the word S; Q? can be written as
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5;0*= (5,00
=(0S;+S5)0
=0S;0+5;0
= Q(0S; +5)) + (0S; + S))
= 0%S;+ 0S; + 0S; +5;
= 0%S; +20S; + ;.

As demonstrated in this example, one can use commutation relation (22.5) suc-
cessively and transform each word in §; and Q into a sum of words, where each of
these words has all the powers of Q to the left. For our considerations throughout
this paper, we have the following definition.

Definition 22.2 (c¢f. Mansour and Schork, 2016 [20]) A word w in the alpha-
bet A = {Sj, Q}je] is called normal ordered if w = ayy,..q, QkSé‘] cee Si for some
k,Li,...,l, € No, where ay,..;, € C are arbitrary coefficients depending on the ex-
ponents k, [y, ..., [,. An expression consisting of a sum of words is called normal
ordered if each of the summands is normal ordered. The process of bringing a word
(or a sum of words) into its normal ordered form is called normal ordering. Writing
the word w in its normal ordered form,

r

w= Z Agy.t, (@) OF 1_[ S?,’

k...l €Ny t=1

the coefficients Ay, .., (w) are called the normal ordering coefficients of w. In a similar
fashion, the word w = by, ...k'_’]ijl] cee Sj‘ 0! is called antinormal ordered. Writing the
word w in its antinormal ordered form,

= Z By,.k,1 () (H S.];zr) Ql’

k[,...,k,,lENg t=1

the coefficients B,...;(w) are called the antinormal ordering coefficients of w, and
the process of doing this is called antinormal ordering. By reordering, we mean either
normal ordering or antinormal ordering.

This paper is devoted to the normal ordering of arbitrary elements in the alge-
bras .AJ/. , As.r and B, ; introduced in Sect.22.1. The paper also derives reordered
expressions for nested commutators using unimodal permutations.

Definition 22.3 Let n be a positive integer. A function f: {1, e, n} — R is said
to be unimodal if there exists some v such that

f)y == f) <--- = fn).

A permutation of a set is a bijection from the set to itself.
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For example, written as tuples, there are four unimodal permutations of the set
{1, 2, 3}, namely: (3,1, 2), (3,2, 1), (2,1, 3) and (1, 2, 3).

Definition 22.4 The commutator of two elements A and B of an algebra A is given
by

[A, B] = AB — BA.

Using this definition, it is easy to see that forall A, B, C € A and p,q € C,

(@) [A,ql]1=0=[A, A],

(b) [A,A] =0,

(©) [A, B] =—[B, A],

(d) [A, pB +qC] = plA, B] +¢ql[A, C],

(e) [A, BC] = [A, B]IC + B[A, C],

) [A,[B,Cl1+[B,[C, All +[C,[A, B]] =0.

22.3 Reordering Formulas for S;, Q-Elements

In the following an algebra means a unital associative complex algebra, Ny the set
of nonnegative integers, and N the set of positive integers. The basic result is the
following theorem.

Theorem 22.1 Let r be a positive integer. If Q and {Sf}jeJ
algebra satisfying (22.1), then for any nonnegative integer k and any polynomial F,

are elements of an

SEF(Q) = F(o*(0))Sh, (22.6)
(SfF(Q)) = <l_[ F(U}’”‘(Q)))Sj?’, (22.7)
=1
and for any nonnegative integers k; and any polynomials F;, wheret = 1,...,r,
[[siF) = <]_[ F, ((U;k, o o g;lkl)(Q)>) []s:. (22.8)
t=1 t=1 =1

where o denotes composition of functions, o°* the k-fold composition of a function
o with itself, and we adopt the convention that ]_[;z |G = 10203 . . . 4y

Proof We first prove that for all positive integers /, the formula S Q! = (oj(Q))lS I
holds, and we proceed by induction. For/ = 1, the formula follows from (22.1). Now
suppose that the formula holds for some integer / > 1, then
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S;0" = (5,090 = (0;(0))'S,; 0
= (6;(Q)) 0,(Q)S;
= (0;(@)""'s;

proving the assertion. This implies that for a given polynomial F(Q) =Y f;Q',

SiIF@) =) £i5;0'=)" fi(0;(0)'S; = F(o;(Q)S;. (22.9)

We can now prove formula (22.6) by induction on k. For k = 1, formula (22.6)
follows from (22.9). Now suppose that (22.6) holds for some k > 1, then

SKIF(Q) = S, (ijF(Q)) - S‘,»F<oj‘?k(Q))Sf
_ F((a;k ° oj)(Q))S,-ij
— F(U;(k+1)(Q))S§+1 ,
and this proves formula (22.6).

Next we prove formula (22.8) by induction on r. For r = 1, formula (22.8) follows
from (22.6). Now suppose that formula (22.8) holds for some positive integer r, then

r+1 r
[Ts 7@ = (TTsi5@)si R
=1 t=1

r

- (]‘[ F, ((ojf’ﬂ 0 o aj‘j"‘)(Q))> (]‘[ Sj‘) Fri (o;li’l*‘ (Q))Sf.:l‘
t=1

t=1

- (1_[ F, ((q;"' 0.0 gj"]’“)(Q))> Fril ((a_;_]i‘l*‘ o--00h )(Q)) (]_[ S_’;')S_’;:jl‘
=1 t=1
r+l1 r+l
— (l_[ F, ((O’;kt 0:--0 O,jolkl)(Q))) 1_[ Sﬁr’
t=1

t=1

and this proves (22.8), which gives formula (22.7) for j, = --- = j, = j,ky = - --
k,=kand F; =---=F, =F.

O

As a corollary of Theorem 22.1, we obtain the following result for F(x) = xl,a
result which is useful for computing the central elements of our algebras.

Corollary 22.1 Let r be a positive integer. If Q and { S j}je , are elements of an
algebra satisfying (22.1), then for any nonnegative integers k and I,
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!
$80' = (04(@)) b, (22.10)
r " l
(ijQl) _ <]‘[ (o;”‘(Q)) )Sf’, 22.11)
=1
for any nonnegative integers k; and l;, wheret = 1,...,r,

fiso-(flt ol s
t=1

t=1

Theorem 22.1 also can be formulated in terms of monomials by observing that
for all k,, N, € Ny, and any polynomials F;(Q) = le:/’zo i O wheret=1,...,r,

r N] N2

[Tsir© —l_[Zf,SfiQ" —22 STasie

t=11,= =0 = 1,=0 t=1

- > (nﬁ,)nswn

(y,....lHel x...xI,

where I, = {0, ..., N, }.
We thus have the following result, which is useful for computing explicit formulas
when specific polynomials are given.

Theorem 22.2 Let r be a positive integer. If Q and { } ., are elements of an alge-
bra satisfying (22.1), then for any nonnegative integers k and N, and any polynomial

F(Q) =YL, fiQ
N I
P =Y fi(o5 @) s, (22.13)
=0

(SfF(Q)y = <]_[fz)(]—[( °”‘(Q)) )Sf’, (22.14)

and for any nonnegative integers k; and N;, and any polynomials F,(Q) =

Yoo fi Ol wheret =1,...,r,

[[Sir@= > (ﬂﬁ)
t=1

(..l el x...x1,

(22.15)

r

. (1—[ (03 om0 a_;’“xQ))Z') [Ts)
t=1

t=1
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where I; = {0, el N,}.

Example 22.4 Formula (22.6) in Theorem 22.1 implies that
(s @) (skR0)
= ((Fr o o7 (@8 ) ((F2 0 07 (0)SF)
= ((F100)(@) (P20 07 007)(0)) 84154,
as it should be with formula (22.8) for » = 2. For F,(x) = x", this reduces to
s Qs 0" = (o7 (Q))ll si (o (Q))lz s
= (0@)" (03 0 03 (0)) st
as it should be with formula (22.12) for » = 2. For [; = 0, this becomes

I3
ki gk oyl _ ok ok ki ok
I <(sz2 ©9j 1)(Q)) S Sja»
and denoting S;, = S, §;, =T, 0j, = 0 and o, = 1 yields the following instance
of Theorem 22.1 for algebras generated by three generators.

Example 22.5 Let r be a positive integer, o and 7 be polynomials, and let S, T and
O be elements of an associative algebra satisfying the relations

SQ =0(0)S,

(22.16)
TQ =1(Q)T.

Then for any nonnegative integers j, k, [, j;, k, and /,, and any polynomials F' and
F;, wheret =1, ..., r, we have

50" = (0(Q))'S, (22.17)

TQ' = («(Q)'T, (22.18)
SF(Q) = (Foo)(Q)S, (22.19)
TF(Q) = (Fot)(QT, (22.20)
S/F(Q) = (Foo™)(Q)S/, (22.21)
T*F(Q) = (F o T9)(Q)T*, (22.22)
SITEF(Q) = (F ot 0 6% (Q)S/ TF, (22.23)

TESTF(Q) = (F o 0% o t%)(Q)T*S/, (22.24)



22 Reordering in Noncommutative Algebras Associated ... 519

("1 Fi(©) (82 T4 F2(0)) = ((Fi o 7 0 0°)(0))

(B0t 00 o1t 0 0%y (0)) I TH SPTH,

(22.25)
[[s'T%F(0 =<l_[(F, 0ot o0g%o...ot™o a°j‘)(Q)> []sT".
=1 =1 =1
(22.26)
1_[ ShTh QO =( ((T°k’ 00% 0. 0t o aoj‘)(Q))l) 1_[ ShTk
t=1 =1 t=1
(22.27)
(SJT"F(Q))r = (H(F o(t%o a°f')°’)(Q))(Sf'T’<)’, (22.28)
=1
(Sf' T Ql)r - (]‘[ ((zok i )°’(Q))l'>(sz’<)’, (22.29)
=1
So(Q) =0*(Q)S, (22.30)
To(Q) = (0co1)(Q)T, (22.31)
St(Q) = (t00)(0Q)S, (22.32)
T7(Q) = t°*(0)T. (22.33)

Similar examples can be obtained for algebras generated by four generators, five
generators, six generators and so on.

22.4 Commutator Formulas for S;, Q-Elements

Let n be a positive integer. A function f: {1, el n} — R is said to be unimodal
if there exists some v such that f(1) > --- > f(v) <--- < f(n). A permutation of
a set is a bijection from the set to itself. For example, written as tuples, there are
four unimodal permutations of the set {1, 2, 3}, namely: (3, 1,2), 3,2, 1), (2, 1, 3)
and (1, 2, 3). For the permutation p = (3, 1, 2), we have p(2) = 1 and p~'(3) = 1.
Finally, the commutator of two elements x and y is defined by [x, y] = xy — yx.
We now have the following proposition.

Proposition 22.1 For all positive integers n, we have

[xn, [xn_l, o [xa ] H =y (=1 ® [ [0 (22.34)
peU, v=1
where U, denotes the set of all unimodal permutations of the set {1, ...,n }

Proof We proceed by induction. For n = 1, we have x; = x;. For n = 2, we have
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2
[x2, x1] = x0x1 — xyx2 = Z(—l)zfp_](l) pr(v)-

pel, v=1

Now suppose that (22.34) holds for some positive integer n, then

[xn+1, [xn,...,[xg,xl]...]] = | xp+1, Z( 1yn=r l(l)nxp(v)

peU,
1 1
= Xn+1 Z( l)n P )pr(‘)) - < Z( l)n P )pr(v)>xn+l
peU, peU,
n+1 n+1
1-p~'(1 1-p~'
= > )l—[xw) + D (e )l—[xw)
PEVui PEW, 11
n+1
1-p~'(1
= > O xw,
PEU 11 v=1
where V,, and W,, denotes the sets of all unimodal permutations of {1, ol n} with
X, on the left and on the right, respectively. ]

Example 22.6 For n = 3, we have

[x3, [x2, x1]] = x3(x2x1 — x1x2) — (X2X1 — X1 X2)x3

= X3X2X] — X3X1X2 — X2X1X3 + X1X2X3

= (=1 l_[xpw)

peUs

Example 22.7 For n = 4, we have

[XA, [x3. [x2, Xl]]] = X4(X3X2X1 — X3X1X2 — X2X1X3 + X1X2X3)

— (X3X2X1] — X3X1X2 — X2X1X3 + X1X2X3)X4
= FX4X3X2X] — X4X3X1X2 — X4X2X1X3 + X4X1X2X3

— X3X2X1X4 + X3X[X2X4 + X2X[X3X4 — X1 X2X3X4

= (=1t '“)prm

peUy

In the following we use a more convenient notation for nested commutators:

[xn,...,xl] = [x,,, [xn_l,...,[xz,xl]...]].
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Combining Proposition 22.1 with Theorem 22.1, we have the following reordering
result.

Theorem 22.3 Let ry,...,r,,n € N. If Q and { } are elements of an alge-
bra satisfying relations (22.1), then for any ki, .. k € Ng and any polynomials
Fls RN Fn:

S0, ... Si R 0)]

n (22.35)
= S O[T (i o-ooi@) ) T8

= v=1
[(Sf F,,(Q))r”, (st FI(Q))”} =Y =y (Hﬁ
peU, v=1t=1

(22.36)
otkp(v) okpw—1)rpw-1) okp(1)Tp(1) Kp)Tp(w)
. 00, 0---00 | | .

Fow) ((Olpm Tjo-1y Tjoay )(Q) Slpm

Furthermore, if r, > --->ry > 1, then for ky,..., k., € No and polynomials
Fla"'aFr,,y

n r n
k k, n—p-! 1)
[[ siF.... [] Sir@ =) 0 O(]]
t=r,_1+1 t=ro+1 peU, s=1
Tp(s) « . k
OKr ) (5)—1+1 S— o s—1)—1+1
|| F, oc*o. o, PO ooV o.iog, P ) (22.37)
Jt ]rﬂ(x)_ﬁ»l Jp(s—1) ]’p(.;—l)—l+l

t=rp@5)-1+1

. ok Tp(s)

oKp(1) Tp(h—1+1 kr
olo; 0---00;

(o7 o)) 11 s

s=1t=r,-1+1
where p(0) = 0 and ry = 0.
Proof For formula (22.35), we have

[SkF@). . S R@] = (-1 ﬂ‘<'>]‘[s];;;;F<V)(Q)

peU,

n
n—p~'(1) Okpw) L °/<p<1> kp(w
- Z( D <1_[ Fp(")( %o %oy )(Q))> Jp(v) ’

peU, v=1

where the first equality follows from Proposition 22.1, and the last equality follows
from formula (22.8) in Theorem 22.1. For formula (22.36), we have
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[(s;yFn(Q))r”,...,(sjf;FI(Q))r'] S (1 p‘(l)l—[( f::))Fp(u)(Q)) "

peU,

Tp(v)
n—p~1(1) otkpv) OLIO)
= S ([T (o @) )5y

peU,

n Tpw . .
~1
n—p~ (1) Otk p () OKp(w—1)Tp(v—1)
= | | | | e Xes o
Z( 1) Fp(v) (afp(\) Jow=1)

peU, v=1t=1
okp(])rﬂ(l) 1_[ Kow)Tp(v)
Jm) (%) SJp(v) ’

where the first equality follows from Proposition 22.1, the second equality follows
from formula (22.7) in Theorem 22.1, and the last equality is a reordering of all the
Qs to the left. For formula (22.37), we have

m ry Tp(v)
[ [T sirwo..... ] Sift’Ft(Q)i| 3 e 1“)]"[ [T shro

t=rp_1+1 t=ro+1 peUp v=1lt=r,)-1+1
) n Tp(v) . + Tp(v) .
_ =~ L) < oky krow)-1 ) 1
DD 1'[( [T Ao oajr() 0@ [1 s
peUy v=1 ‘1=rp)—1+1 1=rpy)—1+1
Tp(s)
= e O] T a((of o oo 01 (o
Jt er(s),ﬁrl Jp(s—1)
peUn s=lt=rp)—1+1

okr 1141 k +1 o)
oa, POV oo (07D o og, Fo-1 )@ H T s
]’p(s—l)—l'H ]p(l) Jr p(1)— 1+1 Jt’

s=li=rp)—1+1

where the first equality follows from Proposition 22.1, the second equality follows
from formula (22.8) in Theorem 22.1, and the last equality is a reordering of all the
Os to the left. ([l

As a corollary of Theorem 22.3, we obtain the following result for F(x) = x'.

Corollary 22.2 Letry,...,r,,n € N.If Q and {Sj }J.EJ are elements of an algebra
satisfying relations (22.1), then for any ki, ..., k,, i, ..., 1, € Ny, one obtains

kn Al k )
[San ,...,Sj]‘Q‘]

n n
_p! k, ok pw) k
_ _1yr—p (D OKp(v) . p(1) p(v)
- Z( D (l—[ (((ij(v) o oy )(Q)) > Sjmm ’

peU, v=1

(22.38)
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(22.39)
otkp) okpw—1)Tp(v-1) o ke lo) Kpw) 7o)
o, 00, 0---00 | | .
<( Jp() Jpw=1) Jo(h )(Q) SJp(V)

Furthermore, if r, > --- > r; > 1, then for any ki, ..., k., li,.... 1, €Ny, one
obtains

I'n I Tp(s)
[T stom..... T ste"|=> v ”“”(]‘[ I1

t=ry,_1+1 t=ro+1 peU, s=1t=r,-1+1
ok; Ok -1+1 okp(s—1) Ok g1y +1 22.40
o . O:---00: ol|Oo. O:---00: o ( . )
Jt Jrp@s)—1+1 Jos—1) Jrps—1)—1+1

Tp(s)

okp(1) okry )1 +1 kl
o . 0---0 | | | |
(anm 0 Jrpy—1+1 (Q) S

s=1t=rp-1+1
where p(0) =0, rp = 0.

Example 22.8 By direct computation using the definition of the commutator, one
obtains for any ry, r, € Nwithr, > r; > 1l,andforanyky, ..., k., 1, ..., 1, € Ny,
that

2
ok, ok,
1_[ st ok, 1_[ skl | = l_[ ((Gj[k o- ML“)(Q))
t=r1+1 t=r1+1
" r 1
ok, o ok, ok, 1 t
. (l_[<(aj,k 0---0 Uj]kl ° Ujrz 2 5. jrl_:1+l)(Q)) > l—[ S; (l—[ Sﬁ)
=1 t=ri+1 t=1
- (]_2[((0% o...oaf”“')(Q))l')(ﬁ S'f’) 1_[ i
Jt J Jt Jo ]’
=1 =1 t=r14+1

which agrees with formula (22.40) for n = 2.

Example 22.9 Similarly, one can obtain for any ry, ry, r3 € Nwithry > r, > r;>1,
and for any ky, ..., k., l1, ..., 1, € Ny, that
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|: ﬁ S;'Q]f,|: 1—[ Sk,Ql/ HSk,Qz,H

t=ry+1 t=r1+1
r3
_ ok; Okr2+1
=( [T (@ o o0 )
t=ry+1
r
ok; oky 41 okyy Okr2+l
[T (@000 oot 000t 0)'
t=r;+1
r
' 1_[ (c®o...o0h 067 0. 00 567 o
J Ji jrg jr1+1 jr3 T
=1
K] n r
ok
iU TT s )(TTs3
/r2+1 )(Q)) )( 1_[ S/r)( S]r S]z
t=ry+1 t=r1+1 t=1
r3 r
_ ok, Okr2+l l_[ ok; oky
(H (3 0-00790) ) (T3 o+ 00
1=r+1 =1
. k I r3 r 2
[T si)(TTsi)( IT s
TR ><Q>) )(TT ) (TTs)( TT s
t=ry+1 =1 t=r+1
rn
_ ok; 0kr1+]
1_[ ((sz °© jr1+1 )(Q))
t=ri+1
L8|
ok; ok; okp, Okrl +1
(TT(eit e oaitrot o000
=1
r3
ok, okry 41 ok, oky ok, Okr|+l
1_[ ((0’_,-, 0100, °0j, ©00 005 "0° T )(Q)
t=ry+1
r3
k, 1—[ k,
1 s) (1) (11 s
t=r1+1 t=ry+1
r3 Ir r rn r3
[0 oot [Isi) IT si){ IT i
+ (T (w5 oeoto@) )(TT85) ( TT s5) ( T ).
t=1 =1 t=ri+1 t=r)+1

which again agrees with formula (22.40) for n = 3.

Theorem 22.3 can also be presented in terms of monomials, which is useful for
computing explicit formulas when specific polynomials are given. For example, for
formula (22.35) one gets the following reordering result for nested commutators.

Theorem 22.4 Let n € N with n > 1. If Q and {S.,-}jej
algebra satisfying (22.1), then for any k;, N, € Ny, and any polynomials F,(Q) =
ZII,VI:O £, Q% wheret =1,...,n

are elements of an
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[sjf:Fn(Q),..., ij,‘Fl(Q)] = (l—[ flr)

..., el x..x1I, “t=1

n—p~t(1) - k) okp(1) o\ T Kpw)
Z (_1) : (1_[ <(G-ip(v) o /p(l) )(Q)> ) 1_[ Sjp(v) ’

peU, v=1 v=1

(22.41)

where I, = {0, ..., N,}.

Proof For any nonnegative integers k, and NN,, and any polynomials

N;
F(Q) =) £,0"

wheret =1, ..., n, we have
sk R0, ... Sh Q)] = anSf;; , Zﬁlskl
_ fln...Zf,,[sijfn,...,ijl'Q“]

- ¥ <l_[f,>[ ok, sho

(el X X T,

- x )

(is..es el x..xI,

n—p=1(1) okp() okp(1) P ko)
Z (=D"* (1_[ ((afpw) R M )(Q)) ) 1_[ S

peU, v=1

where I, = {0, ..., N;}, and where the last equality follows from Corollary 22.2. [J

22.5 Examples
22.5.1 Whenoj(x)=—x

Let o; be the polynomial ¢ (x) = —x. Then commutation relations (22.1) become

S;0 =—-05;. (22.42)

The following lemma is useful for obtaining the reordering results.
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Lemma 22.1 For any positive integer t and any nonnegative integers k, ki, . . ., k;,
o?*(Q) = (=D Q, (22.43)
(0 0 00 (Q) = (~DZtk Q. (22.44)

Proof We prove (22.43) by induction on k. For k = 1, the formula follows from the
definition of o;. Now suppose that (22.43) holds for some integer k > 1, then

o7 (Q) = 07 (0,(Q)) = (=D'(=0) = (=D,

which proves (22.43). Next we prove (22.44) by induction on ¢. For t = 1, (22.44)
follows from (22.43). Now suppose that (22.44) holds for some integer ¢ > 1, then

Ji+1 Ji+1

(UOk'“ 0---0 o’;’lk')(Q) = g% ((o’;k’ 0---0 (Tjolkl)(Q))
= (=D} (=) Zmb g = () Tmkthi g = (- Xk g,

and this proves the assertion. ]

Theorem 22.5 Let r € N. If Q and {Sj}jej
(22.42), then for any nonnegative integers k and N, and any polynomial F(Q) =

ZlNz() fl Ql’

are elements of an algebra satisfying

N
SEF(Q) =) (DM f,0'sh, (22.45)

=0

rN r
(ssr@) = ¥ (Hﬁf)(—n"ﬂﬂ”fQLSﬁ’, (22.46)

t=1

LAt =L

and for all k,, N, € Ny, and polynomials F,(Q) = Z;,v':o I Ql’, wheret =1,...,r,

r Ni+--+N, - r I ,
l_! STR(Q) =) > ( 1 fh) (—1)Zim St kil gL H s,
1= -

L=0 (,...I,)e x..xI, \t=
li++l.=L

(22.47)

where I, = {0, el N,}for some t.

Proof Substituting (22.43) into (22.13) and (22.14) gives (22.45) and (22.46), re-
spectively, and substituting (22.44) into (22.15) gives (22.47). More precisely,
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N
SEF(Q) =) fi((=D"Q) Z( DA f0'S,
=0 1=0
X ro r r o ) )
(SjF(Q)) = Z (Hfl,) (n (( 5] Q) )Sj
(e, 1,)e{o ,,,,, N}" =1 =1

rN r
- 2. (H ﬁ,) CRESRI

t=1

and for the more general formula,

[[Sir@= > (]‘[ ﬁ,) ( ((—DE«:' & Q)l') []ss
=1 1yl el x..x, t=1 t=1
Ni++N,

= 2 ) <Hﬁ>( 1)Xim Xom b g ]‘[s

L=0 (I},...[.)el, x...xI,
It =L

where I, = {0, ..., N, }. Formula (22.46) can also be obtained from formula (22.47)
by choosing jy =---=j, =jandk; =--- =k, =k. |

For the particular case where F is a monic monomial, that is, F(Q) = Q' for
some nonnegative integer /, Theorem 22.5 yields the following result.

Corollary 22.3 Let r be a positive integer. If Q and {S } o
algebra satisfying (22.42), then for all nonnegative integers k andl,

are elements of an

sio' = (=n"Q'sh, (22.48)
(Sle)r — (—l)klr(r+1)/2erS§r, (2249)
and for all nonnegative k,; and l;, wheret =1, ...,r,
[]sk@" = (—)Zm Tkl gXic b T % (22.50)
t=1 t=1

Example 22.10 For r = 2, we have

Sfll Qll szz le = (— 1)k 14k +ko)l 0 h+h gki Skz (22.51)

J17?
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which for /; = 0 becomes

ki gky by _ (ki+ko)l b gk ok
S8, 0% = (=D)"TR0RSS (22.52)
and denoting S; = S and S;, = T, we have the following case of Corollary 22.3.

Corollary 22.4 Let r be a positive integer. If S, T and Q are elements of an algebra
satisfying the relations

SQ=-0S and TQ=—0QT, (22.53)

then for all nonnegative integers j, k andl,

SITEQ! = (=1)UHPI gl siTk, (22.54)
(Sj Tk Q])r — (_ l)lr(r+1)(j+k)/2 er (Sj Tk)r’ (2255)

and for all nonnegative integers j;, k; and l;, wheret = 1,...,r,
1_[ STk Ql’ — (_1)25:1 St Gkl QZ,’ZI I; 1_[ Shiki (22.56)

=1 =1
For the more general case, we have the following result.

Corollary 22.5 Let r be a positive integer. If S, T and Q are elements of an algebra
satisfying (22.53), then for any nonnegative integers j, k and N, and any polynomial

F(Q) =Y\, fiQ, one obtains

N
SITFF(Q) = Z fil(=UthlglgiTk, (22.57)
=0

rN r
L=0 T \t=1

li++l,=L
(22.58)

and for any nonnegative integers j;, k;, N;, and any polynomials

N,

F(Q) =) £,0"

;=0

wheret =1, ..., r, one obtains
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r Ni+-+N,
[[s'T"F) = ) > (Hﬁ,>

=1 L=0 (i, l)el x.. ><[
i+t = (22.59)

r
. (_1)2::1 Z:l:l(jn+kll)ll QL l_[ sz Tkr .
t=1

where I, = {0, el N,}for some t.

22.5.2 When o;j (x) = ijqj

Let c¢; be complex numbers, g; be positive integers, and let o; be the polynomials
0j(x) = cjx%. Then commutation relations (22.1) become

S;0 =c;Q%S,;. (22.60)

The following lemma is useful for obtaining the reordering results.

Lemma 22.2 For any positive integer t and any nonnegative integers k, ki, . . ., k;,
Ky ok
o (Q) =} " 0%, (22.61)
! 1 k)
kn}g. men m t kn
(0% 0---00t)(Q) = (H gy s ) ol (22.62)
n=1

where {k}, for some complex number q denotes the q-number

-1 1,
Zq’ =1 a7 (22.63)
k., q=1,
and we use the convention that ]_[m —nt1 qj =1fort <n+1.

Proof We prove (22.61) by induction on k. For k = 1, the formula follows from the
definition of ;. Now suppose that (22.61) holds for some integer k > 1, then

+q/

o(k+1)(Q) (O_J(Q)) kg, (c; Qq,)qj o C klq; Qq _ k+1}q/ Qq

proving (22.61). Next we prove (22.62) by induction on ¢. For ¢t = 1, the formula
follows from (22.61). Now suppose that (22.62) holds for some integer ¢ > 1, then

(U?k'+1 0---0 O_j01k1)(Q) = O'?k'ﬂ ((O';k’ o---0 Ujolk])(Q)>

Jit1 Jr+1
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ki1

{k P qu+l
—c 1+1} 9jr41 (1_[ q/n | p— q/m ) an 149,
Jr+1 Jn
n=1

4 41 k
_ C{km}w ( Lol T q,;;;) QHiﬁ‘l o

Jr+1 Jn
n=1

1+1
{kn}q,,, Hm nt1 ‘1,,,1 l‘["“ kn
= a n=1 q/
(1_[ i Q !

n=1

and this proves the assertion. O

Theorem 22.6 Let r € N. If Q and {S. } o
relations (22.60), then for any k, N € Ny and any polynomial F(Q) = Z;V:O fi0

are elements of an algebra satisfying

N
SF0) =Y fie) M oot st, (22.64)

max [,

(SfF@) = ) ) (Hﬁ) matl gsie (22.65)

where as before {k}, for some q € C denotes the q-number of k, and

|
t=1

(11,...,1,)6{0,...,N}’}.

More generally, forallk,, N, € No and all polynomials F,(Q) = Z 0 f1, Q" where
t=1,...,r,

max A » r r o
Msro-> 5 (4)(1
L=min Ag , (1,....[r)el} x...x[;\t=1

k
pa (Hfz:] 95 )lz:L

}117,, p n(nmfu-f—l‘//m ) Q l—[Sk[

(22.66)
where Ay, for I, = {0, e, N,} is the set given by

r t
Ay = { (n q;;f) z,
t=1 n=1

(ll,...,l,)ellx...xlr}.
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Remark 22.1 Observe that for positive integers g, one obtains that min I , = 0,
min Ag, =0, max I, = > ;_ 14} KN, and max Ax, = > /_, (]_[n 14! )Nt We

strongly believe that formulas (22.64), (22.65), (22.66) are probably true also for
negative integers g .

Remark 22.2 Formula (22.65) can be obtained from formula (22.66) by choosing
j1=---=j, = jandk; = --- =k, = k, and observing that for all positive integers
kandr,

r r r t r t—1
2959 SUREIT 9 SALEI T 90 307

n=1 t=n t=1 n=1 t=1 n=0

= Z{k}q,{r} ¢ = Z{rk}q,,,

=1
where the last equality is a well-known identity (see, for example [9, p. 187]).

Proof Substituting (22.61) into (22.13) and (22.14) gives (22.64) and (22.65), re-
spectively, and substituting (22.62) into (22.15) gives (22.66). More precisely,

SEF(0) = Zﬁ CRNE Zﬁ(k”Q%)

(k.1
= Zﬁci " oils,

and for the more general formula,
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[[sir@= > (Hﬁ,)
t=1

(,..., el x...xI,

(((fre=) o) )1

t=1 n=1

- > ()

Lyl el x..x 1,

(16 ) (ol s

t=1 n=1 t=1

- ¥ (m)

(,.nl)el x. .. x,

(l_[l_[ ) qj,, m /x+lqjm) ) QZI (IT= lqju l_[Sk’
]n

n=1t=n

- > ()

(y,...)el x...xI,
r
thadaj, i (Mo )0\ 5 (T o
. t= n= /n
( €j, 0 1_[5
n=1

from which the results follow.

O

For the particular case where F is a monomial, that is, F(Q) = Q' for some

positive integer /, Theorem 22.6 yields the following result.

Corollary 22.6 Let r be a positive integer. If Q and {S j}je , are elements of an

algebra satisfying
S;Q =c;07S;,
then for any nonnegative integers k and [,
kAl _ {"}4-’ gkl ok
SEQ =, " QU'st
(stQ!y = Z’ W QT aftgly,

and for any nonnegative integers k; and l,, wheret = 1,...,r,

[l = ([l 50 H) g
t=1

(22.67)

(22.68)

(22.69)

(22.70)
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Example 22.11 For r = 2, we have

2
ki Al gka Al l_[ knlaj, i ” - q/'") Zz 1 lqlf: b ki gky
Sjl 0 sz Q"= ( € 0 ( ! ) Sjl sz ’

k2 Ky k
= c{.kl} htthie, 45, lzc{kZ}"-fz b Q%‘ll Litd; a5, 12 g1 gho
J1 J2 Ji

which for [; = 0 becomes

ko
kidg; a2 thkalg b F1 ke
SHSEQR =c; e, QIR SS 22.71)

Ji J2
and denoting S; = S, Sj, = T, we have the following case of Corollary 22.6.

Corollary 22.7 Let r be a positive integer, c, and ¢, be complex numbers, and let
qs and q, be positive integers. If S, T and Q are elements of an algebra satisfying
the relations

SO =c¢c, 0”8
Tg _. Sq’ T (22.72)
then for any nonnegative integers j, k and |,
) Nk 7 .
SITFQ! = C({,]}""q’lc{k}’”l Quai! I Tk, (22.73)
(Ska Ql)r — Jae 45 Xone 121_»1(‘/"‘/:)[ ’ll r Klgr Yoz 121_;1(‘/0‘/:)! "l
> ( _ ) ‘ (22.74)
Q =1\4959; (Ska)r’
and for any nonnegative integers j,, k; and l;,, wheret =1, ...,r,
o L Ut X, (l'lm Y q?’")l
1_[ SJert Qlt — l_[ Co
= "= (22.75)

. (IL[C nlar Lo "(H’”_”Jrl 9"t ) ) QZ[ (ITzr 0" qz HSJerx

n=1
For the more general case, we have the following result.

Corollary 22.8 Letr be a positive integer. If S, T and Q are elements of an algebra
satisfying (22.72), then for any nonnegative integers j, k and N, and any polynomial

F(Q) =Y, 10,
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N
SITEF(Q) = Y fiek el guiart si Tk, (22.76)
=0

NYI (qérﬁ)/ ,
(SIT*F(Q)) = > (Hﬁ,)
=0 epefo.n} M= (22.77)
S (adat) 1=t

. C({,—j}"" 45 e i@z Cik}qz DA SN 27 QL(Sj Tk)r.

More generally, for all j;, k;, N, € Ny, and any polynomials F,(Q) = Zi\]‘:o f o,

r Z;‘:I(H;:I at" ‘15”)Nr ’
[[s'T%F(Q) = > > (1‘[ ﬁ,)
=1 L=0 ..., el x...x1I, t=1

pa (l_[’nzl ‘lé"‘lf")ll

_ (1_[ Ui Ei (Mo 02" qu)z,) (1_[ Joer i (e 0" qf’")lr) (22.78)

n=1

-
. QL 1_[ Serkr’
t=1

n=1

wheret:1,...,rand1,={0,...,N[}.

Corollaries 22.7 and 22.8 can also be derived in the following way. Let ¢, ¢; be
complex numbers, ¢, , g, be positive integers, and let o, T be the polynomials

U(X) = Caxqaa

T(x) = cpx?.
Then commutation relations (22.16) become

SQ =c,Q%S, (22.79)
TQ =c,Q"T. (22.80)

Let j and k be nonnegative integers. Lemma 22.2 implies the relations

0% (Q) = M o9 | (22.81)
r°4(Q) = ¥ gt (22.82)

and the relations
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(1% 0 0°7)(Q) = W (Yloot garar (22.83)
@ 0 T%)(Q) = c}, urdts it (22.84)

and the corresponding formulas in Example 22.5 become

. ; k j .
SITYF(Q) = F (ci"}'" o de Q%qf) STk, (22.85)
T*S'F(Q) = F < {lao o Hlaca qu%) TS/, (22.86)
Let us derive an expression for (1% 0 0%/ o --- 0 7% 0 ¢°/1)(Q) for any nonneg-
ative integers ji, ..., j;, ki, ..., k; by induction on ¢. For t = 2, (22.83) implies
that

(%% 0 6% 0 t%%1 0 6°1)(Q) = (°% 0 0°7) ( Ul 47 {kl ” Qq" ’ )

. ky . ky j qrx l]z
_ (Ll el (c({in}qoq, kel )

: ki ja ky 2 ko s
— Ci]l}qg% do qr Cikl}qr‘h qr ci_]Z}qn’Ir k’}qr Qq lqququ 2

In general, one has for all positive integers ¢ the relation
(% 00 0. 01 0 6% (Q)

t .
Unao @5 Topmnsr 42" a5 (kndge TToimns 42" g% n gkn
— (HCO' q l_[ +1 cr qu_[ +1 QH 1‘1" . (2287)
n=1

Substituting relation (22.87) into Example 22.5 yields Corollaries 22.7 and 22.8. In
general, relation (22.87) is useful for directly obtaining reordering results for the
algebra generated by relations (22.79) and (22.80).

22.5.3 Whenoj(x) =cjx

Let aj,b; and c¢; be complex numbers, and let g; be positive integers.
Section 22.5.2 considers the case o;(x) = c;x% while Sect.22.5.4 considers the
case 0j(x) = a;x + b;. The intersection of these two cases is the case 0 (x) = ¢;x,
for which commutation relation (22.1) become the relation

$;0 =c;08;, (22.88)
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often called the quantum plane relation, in the context of noncommutative geometry
and quantum groups. The following result follows from Theorem 22.6 by choosing

qul-

Corollary 22.9 Let r be a positive integer. If Q and { } ., are elements of an
algebra satisfying (22.88), then for any nonnegative lntegers k and N, and any

polynomial F(Q) = Z;vzo fi0
N
SEF(Q) = Z fiek! 0's

SkF(Q) Z Z (1_[ fl,)C];-Z:_l llrQLS_];r,

L=0 r M=1
ltoe =L

andfork,, N, € Ny, and any polynomials F,(Q) = Z 2o 11 Q' wheret =1,

r Ni+---+N, r . r
Msro- > > (IT4)(I14 Z’”l’)QL]_[S’?j,
t=1 =1

L=0  (lh,onlp)el x..x1, n=1
li+-+l,=L

where I, = {0, ... N; }for some t.

For the particular case where F is a monic monomial in Q, Corollary 22.9 yields
the following result.

Corollary 22.10 Let r be a positive integer. If Q and { } ., are elements of an
algebra satisfying (22.88), then for all nonnegative integers k andl,

skl = o'ss, (22.89)
(skQ!)" = bR ghrghr (22.90)
and for all nonnegative integers k, and l;, wheret =1, ...,r,

r r k. :, I . r :
5o = (4= ) e flsr o
=1 n=1 =1

Example 22.12 For r = 2, we have

2
2
k k k, ki gk ki(li+l) kol ki gk
S,I‘Q’lsij’2—< > )QZf ighighe = SRk ghith ghigh,

17 JI J2 J1 )2’
n=1

which for /; = 0 becomes
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SI154 0% = el 01545
Denoting S;, = S and S;, = T, we have the following case of Corollary 22.10.

Corollary 22.11 Let r be a positive integer. Let ¢, and c; be complex numbers. If
S, T and Q are elements of an algebra satisfying the relations

SO =¢,08 and TQ =, 0T, (22.92)

then for all nonnegative integers j, k andl,

SITEQ! = cdl K QI sI T, (22.93)
(Sj Tk Ql)r — Célr(r+l)/2C];lr(r+l)/2 er (Sj Tk)r , (2294)

and for all nonnegative integers j;, k; and l;, wheret = 1,...,r,
[]sir*o" = (l_[ el Tt X ”) QX! [TsrTh. (22.95)

t=1 n=I t=1

Corollary 22.12 Let r € N and c,,c, € C. If S, T and Q are elements of an
algebra satisfying (22.92), then for any j, k, N € Ny, and any polynomial F(Q) =

ZII\LO fl er

N
SITFF(Q) = Z ficllM ol siTk, (22.96)
=0

rN r
SITERQY =)0 ) <1_[ ﬁ,)céz” et Qh(siThY,
L=0 =1

h-tl=L
(22.97)

and for j;, k;, N; € Ny, and polynomials F,(Q) = Z;,Véo 1, Q' wheret =1,...,r,

r Ni+-+N, r
[erro= 3 v ([14)
=1 L=0  (y,..)el}x..xI, “t=1

L4t =L (22.98)

r r
. (1_[ C(j;" ol CI;” )2y l,> QL l_[ Sjt Tkr ,
n=1

t=1

where I, = {0, el N,}.



538 J. Musonda et al.

22.54 Whenoj(x) =ajx +bj

Leta; and b; be complex numbers, and let o; be the polynomials
oj(x) =ajx +b;j. (22.99)
Then commutation relations (22.1) become
S;Q=a;08;+b;S;. (22.100)
These are deformed Heisenberg—Lie commutation relations of quantum mechanics.
The classical Heisenberg—Lie relations S; Q — QS; = §; are obtained whena; =1

and b; = 1. If ¢; = 0, then we get the quantum plane relations S;Q = ¢; 0S;
The following lemma is useful for obtaining the reordering results.

Lemma 22.3 For any positive integer t and any nonnegative integers k, ki, . . ., k;,
o (Q)=dQ + {k}, b, (22.101)
t
@ o 0o (Q) = (]‘[af)Q + Z( ]_[ ) kul, bj  (22.102)
n=1 n=1 “m=n+1

Proof We prove (22.101) by induction on k. For k = 1, the formula follows from
(22.99). Now suppose that (22.101) holds for some integer k > 1, then

o7 “(Q) = 07%(0,(Q) = df(a; @ + b)) + {k}, b;
= a§+1 0+ (af + {k}uj)b‘j
= ai‘,-&-l 0+ {k + 1}“jbj’
which proves (22.101). Next we prove (22.102) by induction on ¢. For t = 1, it

follows from (22.101). Now suppose that (22.102) holds for some integer ¢t > 1,
then

oky41 ok; _ ok ok; oki
(0, 0--007")(Q) =0; ((aj, 0--00; )(Q))

Jr+1

= /;:11 ((Hah>Q+Z< ]_[ a; ) {kn}, b,ﬂ) +{kt+1} b,m
n=1 m=n

n=1

+1
t+1 t t+1
(T o+ S TT e )b + ol
)ik

m=n+1

t+1 t+1 t+1
= (et e+ 2( I o

m=n+1

ay Oins
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and this proves the assertion. (]

Theorem 22.7 Letr € Z.. If Q and {Sj}jej
(22.100), then for all k,1, N € Ny, and any polynomial F(Q) = ZIN=0 f0,

are elements of an algebra satisfying

l
l _
55Q1=Z<v>a§“({k}a,bj)’ 0'st, (22.103)
VﬁO ,
l ,v,
sor=y ¥ (IT(,)w)™)
V=0 o} (22.104)
Vit =V

kz;=1"’r Y 0=v) AV ckr
aj bj oSy,

SSFQ) =YY" (i)afV({ }ajbj)l_vf, 0"st, (22.105)
v=0 I=v L+, r
(SkF(Q) = Z (1"[ ﬁ,> > > (H
..... Lyel” “=1 V=0 (vl,;).l.,+v,)ill‘:1rl_><v M, =1 (22106)

I v\ K v Y (=) r
.(\;)({kt}aj) JaiZeEt g sy,

wherel:{O,...,N}anthz{0,...,lt}.

Proof Substituting (22.101)into (22.10), (22.11),(22.13) and (22.14) gives (22.103),
(22.104), (22.105) and (22.106), respectively. For example for (22.104), we have

(Sllc Ql)r — (1_[ (O-j?lk(Q))l>S;§V — (1_[ (a;le + {kl‘}ajbj)l)S;?V

t=1 t=1

~(II2 (1) e, >>
(20 > s )y

vi=0 =0 1=1

,
< < ) 1 V/) aif P tV"bJer:l(l_V’) QZ;‘:I Vi SI;r
\Z3 N
t=1

Ir r
l —Vt := Vi ;‘= —Vi r
Y n ([, oy,

t=1

Il
N

Formula (22.106) can also be obtained directly from (22.104) using (22.14). ([l



540

J. Musonda et al.

Let a4, a;, b, and b, be complex numbers, and let o and t be the polynomials
o(x) =asx + b, and t(x) = a,x + b;. Then commutation relations (22.16) be-

come

SO =a,0S + b,S,
TQ =a.,QT + b, T.

Let j and k be nonnegative integers. Lemma 22.3 implies the relations

a*(Q) = alQ +{j}, b,
Q) = a; @ + {k}, br,

and the relations

(% 00°)(Q) = aja; Q + a;{j}, bo + [k}, br,

ar

(0% 0 t)(Q) = aja; Q + aj{k}, be +{j}, bo

Ao

and the corresponding formulas in Example 22.5 become

S'TEF(Q) = F (alat @ +at{j}, b + {k, bc) S'TE,

TXSTF(Q) = F (ajatQ +al{k}, be + {j}, bs) TS,

(22.107)
(22.108)

(22.109)
(22.110)

(22.111)
(22.112)

(22.113)

(22.114)

Let us derive an expression for (1% 0 0%/ o --- 0 7% 0 ¢°/1)(Q) for any nonneg-
ative integers ji, ..., ji, ki, ..., k; by induction on ¢. For ¢ = 2, relation (22.111)

implies

(t°%2 6 502 6 oK1 5 50U (Q) = (z9K2 6 o002) (ahak1 Q+a 1{]]}

o + {ki),, br)

—ajzalrCZ (aélarlQ—Fa { } bo‘+{k} bf)—l—a];z{jz}aabg-i—{kz}arbf

= ajlalflaézaer + ar a(, arz{ﬂ} o + a/,zal,(z{kl }arbf +a1§2{j2}aabg + {kz}afbf.

In general, one has for all positive integers ¢ the relation

t

(t% 00 0. 0100 (Q) = (l—[ aé"a’é")Q

n=1

+Z“”( ]_[ alra "’){Jn} by (22.115)

m=n+1

3 (T o)l

m=n+1
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Relation (22.115) is useful for directly obtaining reordering results for the algebra
generated by relations (22.107) and (22.108).

22.6 Linear Transformation of the S;-Generators

Proposition 22.2 Let { Ry } i be a set of elements of an algebra, m and n positive
integers, and a;,x, complex numbers. If

n
S, = E aj,i, Ry,
=1

then the commutator of S;, and S;, is given by

[Si08x]= > det (ajlk, ajlk“) [Ri. Re,]- (22.116)

ruef1..n} Djoks ok

Proof We proceed by induction on n. For n = 1, we have
[Sjl’ sz] = [ajlkl Rkl’ Qjrky Rkl] = Ajik A jrk, [Rkl ’ Rkl] =0,
which agrees with formula (22.116). For n = 2, we have

[Sii: Si.] = [ajik R + @k R @ ok Ry + @ ok, R ]
= (ajlkl Rkl +aj, sz) (ajzkl Rkl + ajk, sz)
- (ajzkl Ry, + Ajrk, sz) (ajlkl Ry, + Ajik, sz)
= Ajik 4 jok, Rkl Rkl + 4k Ajk Rkl sz
+ ajika)k, Ry, Ry, + Ajiky A joky Ry, Ry,
— Ajik Ak, Rk1 Rk, — Qjky A jrk, Rk. sz
= ik A jok, sz Rkl = Ajiky A joky sz sz
= (ajlklajzkz - ajlkZajZkl) Ry, Ry,
+ (ajlkzajzkl - ajlklajzkz) Ry, R,

= (ajlklajzkz - ajlkzajZkl) (Rkl sz - szRkl)

= det <aj‘k' aj‘k2> [Ri,» Rk, |-

Ajrky Ajrk,

Now suppose that (22.116) holds for some integer n > 1, then we have forn + 1 that
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n+1 n+1
(S5, Si] = z ajlk,Rk[aE ajok, R,
=1 t=1

n n
= E :ajlk,Rk, +aj ik, Ri,., E aji R, + aji,, R,

=1 t=1

t=1

n n n
= E:“jlk,Rk,a E aji Ry, |+ E ajik, R Aok R
=1 t=1
+

n
Ajikyyy Rkn+l ’ 2 QAjok, Rk: + I:ajlkrz+l Rkn+l > Ajokniy Rkn+1]

t=1
— Ajik, Ajik,
= Z det (ahk: ahk”) [Rk,, Rk,,]
t.ue{l,...n},

t<u

n

n
+ E Ak er Aok 1 Rku+1 - aj2k71+len+] § QAjk er

=1 =1

n n
+ ik, R,y E a, Ry, — § aj R, | ajik,,, Re,., +0

=1 =1
a; a;
_ Z det Jike @ jiky [er’ Rk,,]
Ajok; A jok,

t.ue{ l,...,n}

t<u

n n
+ E:ajlk,Rk, Ajokyiy Riey — E ajok, Ri, | @ik, sy Riey

t=1 t=1

n n
A jokysy Ric, E aj Re, — @ik, Ri, § ok, Ri,

=1 =1
a; a;
_ 2 : det Jike @ik, [er’ Rku]
Ajok; A jok,
t,ue{l,...,n}

t<u
+ E: ik, A jok, Ri, Ry, — E @ik, A jok, Ri, R,

te{l,...,n} te{l,...,n}

u=n+1 u=n+1

- § @ik, A jok, Ri, Ri, — E ajyk, A jok, Ri, Ry,

re{ln} re{l.n}

u=n+1 u=n+1
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Aijk Aijk
d Jike *J1ky R R
Z . (ajzkz ajZku) [ ko ku]
t,ue{l,m.n}

t<u
+ Z (ajikajr, — aji,aji,) Ri, Ri,

te{l,...,n}

u=n+1
- 2 : (ajik, @jk, — @jix,ajok,) Re, R,

te{l,...,n}

u=n+1

- Y (Z’}liﬁ %) (R, Ri,]

Ajrk,

+ Z (ajik @k, — @jik,apok,) (Re, R, — Ri, Ri,)

— Ajik, Ajik, Ajik 4jik,
ST (i)l ¥ ()

Aok, A jk,
) efia)
Ajike Ajiky
2 (ajzki ajzkl,) (R R, )
l,ue{l,...,n,n-&-l}
t<u

and this proves formula (22.116). (I

Example 22.13 For n = 3, we have

[Sj] s sz] = [ajlkl Rkl +ajik, sz + ajiks Rks s A joky Rkl + aj, sz + ajis Rk}]
= (aj]k] Ry, + Ajika Ry, + Ajiks sz) (ajZkl Ry, + A jrky Ry, + A jrks Rks)
- (ajzkl Ry, + ajyi, Ri, + ajoi, Rk3) (aj,k, Ry, + ajii, R, + i, Rks)
= @k, jok, R, R, + @ik, @ joi, Riy Riy + @ik, @iy Riey Ry
+akajk sz Rkl + 4k sz Rk2 + 4k Ak sz Rk}
+ajka )k, Rk3 Rkl + a4k Aok, Rk3 sz + a4k Aok Rk3 Rk3
— @ik Aok Riy Ry — @ity @josey Riy Ry — @ik @ ok Ry Ry
= ik A jok, Ry, Ry, — Ajiky A joky Ry, Ry, — k3 A jyky Ry, Ry,
= ik A joks Ry, Ry, — Ajiky A joks Ry, Ry, — Ajks A joks Ry, Ry,
= (ajlklajzkz - a.ilkzajzkl) Rkl sz + (ajlkl Ajpky — ajlkSG.izkl) Rkl sz

+ (aj]kZajZkl - ajlklajZkZ) sz Rkl + (ajlk2aj2k3 - aj]k3aj2k2) sz sz
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+ (aj]kza.izkl - ajlklajzks) sz Rkl + (ajlksajzkz

= (ajlklajZkZ - ajlkzajzkl) (Rk1 ng - ngRkl)
+ (@i @joky — @jiks@jok,) (R, Ry — Riy Re)
+ (ajky@joks — @jiky@oky) (Riy Riy — Ry R,)

_det (k “ﬁkz) (R, Re.]

Ajoky Ajrky

+ det (aj‘k‘ aj"“) [Rkl» Rk3]

Ajoky Ajrks

a; a;
+det( ke f"‘*) [Ri,. Ry ].
Ajoky Ajrks

which agrees with the formula. For n = 4, one can similarly obtain

(S 8] = [Z%k,Rkl Z%kﬁk}

a; a;
= det ( hiki Sk ) Rk] s sz]
Ajrky Ajrky

which also agrees with the formula.

Corollary 22.13 Leta,b,c,d € C.
1. In any algebra, if

S=aR+bJ,
T=cR+dJ,

then the commutator of S and T is given by

J. Musonda et al.

- a.ilkza.izks) Rk3 sz
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[S.T] =det<zz> (R, J].

2. Ifdet(‘j. Z) # 0, that is, ad # bc, then ST = T S ifand only if RJ = JR.

Example 22.14 In any algebra, if S = R+ iJ and T = R — i J, then the commu-
tator of S and T is given by

[S,T] = —2i[R, J],

and so, ST = T S if and only if RJ = JR.
Theorem 22.8 Leta, b, c,d € C withad # bc. If

ds —bT
R=——
ad — bc
_aT—cS
" ad —bc

then the elements R, J and Q satisfy the relations

ado(Q) — bet(Q) o n bdo (Q) — bdt(0Q) ,

RO = , (22.117)
ad — bc ad — bc
_adt(Q) — bco (Q) act(Q) —aco (Q)
JO = 7 b J+ T —be R, (22.118)

if and only if the elements S, T and Q satisfy relations (22.16).

Proof Writing S=aR+bJ and T =cR +dJ, we have R = (dS — bT)/(ad —
bc) and J = (aT — ¢S)/(ad — bc). Therefore, if relations (22.16) hold, then

RO — ds —bT
Q_<ad—bc)Q

_dSQ—-DbTQ
"~ ad—bc
_do(Q)S — bt ()T
h ad — bc

do(Q)(aR +bJ) —bt(Q)(cR+dJ)

ad — bc
ado(Q)R + bdo (Q)J — bct(Q)R — bdt(Q)J
ad — bc

_ado(Q) — bet(Q) bdo (Q) — bdt(Q)

R J1
ad — bc + ad — bc

and
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JO = aTl —cS
Q_<ad—bc>Q

_ alT Q —cSQ
" ad —bc
_at(Q)T —co(Q)S
- ad — bc

at(Q)(cR+dJ) —co(Q)(aR +bJ)

ad — bc
_ act(Q)R +adt(Q)J —aco (Q)R — bco (Q)J
N ad — bc
_ adt(Q) — bCU(Q)J n act(Q) —aCG(Q)R‘
ad — bc ad — bc

Conversely, if (22.117) and (22.118) hold, then

SO =(@R+bJ)Q=aRQ +bJQ
(adG(Q) —bet(Q) bdo (Q) — bdt(Q) )
=a R+ J

ad — bc ad — bc
adt(Q) — bco(Q) act(Q) —aco (Q)
+b< ad — bc I ad — bc R)
_ aado (Q) — abcr(Q)R n abdo (Q) — abdr(Q)J
ad — bc ad — bc
abdt(Q) — bbco (Q) abct(Q) — abco (Q)
+ ad — bc I+ ad — bc R
_ aado (Q) — abca(Q)R n abdo (Q) — bbco(Q)J
ad — bc ad — bc
_ ad — bc (O)R + ad —bcb 0)J
_ad—bcaa ad — bc “
=aoc(Q)R +bo(Q)J
=0o(Q)(@R+bJ)
=0(0Q)S,

and

TQO=(R+dJ)Q=cRQO+dJQ
(adU(Q) —bct(Q) bdo (Q) — bdt(Q) )
=c R+ J

ad — bc ad — bc
adt(Q) — bco (Q) act(Q) —aco(Q)
+d( ad — bc I+ ad — bc R)

_ acdo (Q) — beet(Q) R+ bcdo (Q) — bedt(Q) 7
ad — bc ad — bc
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addt(Q) — bedo (Q) acdt(Q) —acdo (Q)
+ ad — bc a ad — bc R
acdt(Q) — beet(Q) n addt(Q) — bcdr(Q)]

ad — bc ad — bc

ad — bc ad — bc
- ad — bccr(Q)R + ad — bch(Q)J
=ct(Q)R+dt(Q)J
=1(Q)(cR+dJ)

=7(Q)T. 0

22.7 Reordering Formulas for R;, Q-Elements

Theorem 22.9 Let a,b,c,d € C with ad # be. If R, J and Q are elements of
an algebra satisfying relations (22.117) and (22.118), then for any nonnegative
integer k,

_ ado (Q)* — bCT(Q)"R n bda (Q)* — de(Q)"J

k
RO ) e Lo , (22.119)
k_ k k_ k
Jok = TN —beo (@ | act(Q) —aco(Q)F (22.120)
ad — be ad —bc

Proof By Theorem 22.8, relations (22.117) and (22.118) hold if relations (22.16)
hold with R = (dS — bT)/(ad — bc) and J = (aT — c¢S)/(ad — bc). Therefore,

ROF = (dS—bT> o

ad — bc

dSQ* — bT OF
- ad — bc
_ do (Q)*S — bt (Q)*T
N ad — bc

do(Q)*(aR +bJ) — bt (Q)*(cR +dJ)
- ad — bc

ado (Q)*R + bdo (Q)*J — bet(Q)R — bdt(Q)*J
- ad — bc
_ ado (Q)" — bCT(Q)kR n bdo (Q)* — bdt(Q)* 7.

ad — bc ad — bc

and
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& aT —cS\
10" = <ad —bc) Q
_ aT QF — ¢S QF
N ad — bc
at(Q)*T — co (Q)*S
- ad — bc
at(Q)*(cR +dJ) — co(Q)(aR +bJ)
- ad — bc
act(Q)*R + adt(Q)*J — aco (Q)*R — bea (Q)*J
- ad — bc
k k k k
_ adt(Q)" — bea (Q) J+aCT(Q) —aco(Q) R

ad — bc

ad — bc
O

Corollary 22.14 If R, J and Q are elements of an algebra satisfying relations
(22.117) and (22.118), then for any polynomial F (-) in one variable,

adF (0(Q)) — beF (1(Q)) 5

n bdF (0(Q)) — bdF (T(Q))J’

RE(Q) = ad — bc ad — bc
(22.121)
JF(Q) = adF(U(%Z:ZF (T(Q))J n acF (G(QO,);:ZEF (T(Q))R.
(22.122)

Proof Theorem 22.9 implies that given a polynomial F(Q) = Y a; Q*, we have

RF(Q) =) aRQ"

bdo (Q)* — bdt(Q)*

k_ k
_ Zak (ado(Q) bet(Q) R+

/)

ad — bc ad — bc
_adF (0(Q)) — bcF (T(Q))R—i— bdF (0(Q)) — bdF (T(Q))J
ad — be ad — be '

Similarly for J F(Q), that is,

JF(Q) =) aJ Q"

act(Q)F —aco (O

ad — bc
_ adF (0(Q)) — bcF (T(Q))J

kK k
=Zak (adT(Q) beo (Q) 7+

ad — bc

%)

n ack (0(Q)) —ackF (x(Q))

ad — bc

ad — bc
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Corollary 22.15 If R, J and Q are elements of an algebra satisfying relations
(22.117) and (22.118), then

ado*(Q) — be(o 0 1)(Q) R+ bdo*(Q) — bd(o o 7)(Q)

Ro(Q) = — — J, (22.123)
Jo(Q) = adGZ(Q)a;r ﬁclifz o f)(Q)J n aCGZ(Q)a; cicl(;’ o f)(Q)R’ (22.124)
Re(0) 94 G;(dQ_) ;cbcrz(Q) gy bAo gzz(dQ_) ;derz(Q) ) 2125
Jeo) - 4o aL)ZEIQ_) ;Cbc#(Q) J 4 ac(ro U;(dQ_) ;Cacrz(Q) R (22126

Proof This result follows directly from Corollary 22.14 by letting F (x) = o (x) for
the first two formulas, and F (x) = t(x) for the last two formulas. U

22.8 Some Operator Representations

We conclude by mentioning that a concrete representation of relations (22.1) is given
by the operators a,, (f)(x) = f(o;(x)) and O,(f)(x) = xf (x) acting on polyno-
mials or other suitable functions. Furthermore, a concrete representation of relations
(22.3) is given by the operators

adf (o (x)) — bef (z(x))

Ry (/)(x) = (22.127)
ad — bc
_acf (1)) — acf (0(x))

Jor (f)(x) = e : (22.128)
Qx(HHx) = xf(x) (22.129)
also acting on polynomials or other suitable functions. For o (x) = x + i, t(x) =

x —i,a=c=1,b=1iandd = —i, these operators reduce to the operators
Ri(f)(x) = AL +i);f(x mlly (22.130)
Ji(f)@) = f(x+i);f(x_i), (22.131)

1

Qx(Hx) =xf(x) (22.132)

acting on complex functions. Three systems of orthogonal polynomials belonging to
the class of Meixner—Pollaczek polynomials that are connected by these operators
were presented in [14, 23, 25]. Boundedness properties of the operators R, Uand
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JiR; "in the function spaces related to the three systems of orthogonal polynomials
were investigated in [15, 25].
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