
Chapter 21
Reordering, Centralizers and Centers
in an Algebra with Three Generators
and Lie Type Relations

John Musonda, Sten Kaijser and Sergei Silvestrov

Abstract Simple and explicit formulas for reordering elements in an algebra with
three generators and Lie type relations are derived. Centralizers and centers are
computed as an example of an application of the formulas.
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21.1 Introduction

This paper is about reordering of elements in noncommutative algebras defined by
commutation relations. We follow the nice exposition byMansour and Schork [8]. A
commutation relation is a relation that describes the discrepancy between different
orders of operation of two operations, say A and B . To describe it, we use the
commutator [A, B] ≡ AB−BA. If A and B commute, then the commutator vanishes.
How far a given structure deviates from the commutative case is described by the
right-hand side of the commutation relation. For example, in a complex Lie algebra
g one has a set of generators {Aw}w∈W with the Lie bracket

[
A j Ak

] = ∑
l∈W cljk Al ,

where the coefficients cljk ∈ C are called the structure constants of the Lie algebra g.
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The associated universal enveloping algebraU(g) is an associative algebra generated
by {Aw}w∈W , and the above bracket becomes

[
A j , Ak

] =
∑

l∈W
cljk Al .

One of the earliest instances of a noncommutative structure was recognized in the
context of operational calculus. If D = d

dx , the ordinary derivative, then the Leibniz
rule (the product rule) states that

D(x f (x)) = xD( f (x)) + D(x) f (x).

Interpreting the multiplication with the independent variable x as an application of
the multiplication operator Mx , and suppressing the operand f , this equation can be
written as the commutation relation

DMx − MxD = 1,

where 1 is the identity operator: 1 f (x) = f (x).
Themain object studied in this paper is the associativeC-algebraAR,J,Q generated

by three elements R, J and Q satisfying the commutation relations

QR − RQ = J, QJ − J Q = −R, RJ − J R = 0. (21.1)

In the sequel, we consider the effect of adding the constraint J 2 + R2 = 1, where 1
is the identity element. A concrete representation is given by the operators

Ri ( f )(x) = f (x + i) + f (x − i)

2
,

Ji ( f )(x) = f (x + i) − f (x − i)

2i
,

Qx ( f )(x) = x f (x)

acting on complex functions (see [11, p. 61], [10, p. 14], or [14, pp. 468–469]). The
main goal of this paper is to compute the centralizers of elements and thus the center
in these algebras using some simple and explicit reordering formulas.

In this paper, reordering an element in R, J and Q means to bring it, using the
commutation relations, into a form where all elements Q stand to the right. For
example,

Q2R = RQ2 + 2J Q − R.

Similarly, one can use commutation relations (21.1) successively and transform for
any positive integer n the element QnR into a form where all elements Q stand to
the right. The coefficients which appear upon reordering in this case are the binomial
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coefficients. In general, as demonstrated in this example, one can use commutation
relations (21.1) successively and transform each element ω in R, J and Q into its
normal ordered form

ω =
∑

j,k,l∈N0

A jkl(ω)R j J k Ql,

where the coefficients A jkl(ω), depending on the exponents j, k and l, are called the
normal ordering coefficients of ω. Since R and J commute, this can be written as

ω =
n∑

k=0

pk(R, J )Qk, (21.2)

where the coefficients pk(R, J ) are polynomials in R and J . Writing S = R + i J
and T = R − i J , we have R = (S + T )/2, J = (S − T )/2i and ST = R2 + J 2.
Therefore, denoting f (S, T ) = p((S+ T )/2, (S− T )/2i), we see that polynomials
in R and J can also be written as polynomials in S and T , and in this case an arbitrary
element α in S, T and Q can be transformed into its normal ordered form

α =
n∑

k=0

pk(S, T )Qk . (21.3)

Reordering of arbitrary elements in noncommutative algebras defined by commu-
tation relations is important in many research directions, open problems and appli-
cations of the algebras and their operator representations. For a broader view of this
active area of research, see, for example, [1–9, 13, 15–18, 22, 24–27, 29] and the
references therein.

In investigation of the structure, representations and applications of noncommu-
tative algebras, an important role is played by the explicit description of suitable
normal forms for noncommutative expressions or functions of generators. These
normal forms are particularly important for computing commutative subalgebras or
commuting families of operators which are a key ingredient in representation theory
of many important algebras [12, 19–21, 23, 28]. In this paper the norm forms (21.2)
and (21.3) are used to compute the centralizers of elements and thus the center.

Definition 21.1 LetA be any algebra. The centralizer of g ∈ A, denoted by Cen(g),
is the set of all elements of A that commute with g. That is,

Cen(g) = {
h ∈ A : gh − hg = 0

}
.

The center ofA, denoted by Z(A), is the set of all elements ofA that commute with
every element of A. That is,

Z(A) = {
g ∈ A : gh − hg = 0 for all h ∈ A}.
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It follows that the center of an algebra is the intersection of the centralizers of
every element in the algebra. Note that it suffices to find the centralizers for a set
of generators. In the case of the algebra AR,J,Q , we first compute the centralizers
of R, J , and Q, and then obtain the center of the algebra AR,J,Q as the intersection
of these centralizers. Since every element in the algebra AR,J,Q can be transformed
into its normal ordered form, it suffices to find the elements ω = ∑n

k=0 pk(R, J )Qk

for which the commutators [Q, ω], [ω, R], and [ω, J ] vanish. And in order to do
this, we need to compute reordered expressions for the commutators [Q, p(R, J )],
[Qn, R] and [Qn, J ]. This is done in Sect. 21.2, and it turns out that the commutator
of the element Q and the polynomials p(R, J ) in R and J is the partial differential
operator

[Q, p(R, J )] = J
∂p(R, J )

∂R
− R

∂p(R, J )

∂ J
.

For example, for any nonnegative integer n, one obtains

[Q, Rn] = nRn−1 J and [Q, J n] = −nRJn−1.

For the monomials in Q, we have that for any nonnegative integer k,

[Qk, R] =
k∑

j=1

(−1) j ( j−1)/2

(
k
j

)
I j Q

k− j ,

[Qk, J ] =
k∑

j=1

(−1) j ( j+1)/2

(
k
j

)
I j+1Q

k− j ,

where Im = R for m even, and Im = J for m odd. These formulas are used in
Sect. 21.3 to compute the centralizers of R, J and Q, and thus the center of AR,J,Q .
One can also compute the center of the associative algebraAR,J,Q by first making the
transformations S = R+ i J and T = R− i J . This is done is Sect. 21.4. The central-
izers of Q, S, and T are then computed as the elements α = ∑n

k=0 pk(S, T )Qk for
which the commutators [Q, α], [α, S], and [α, T ] vanish. The reordered expressions
for the commutators [Q, p(S, T )], [Qn, S] and [Qn, T ] are derived and proved in
Sect. 21.5. It turns out that for all nonnegative integers k, m and n,

QkSmT n = SmT n (Q + (n − m)i1)k .

For k = 1, this reduces to the commutator formula

[Q, SmT n] = (n − m)i SmT n,

which shows that SmT n is an eigenvector of [Q, ·] with eigenvalue (n −m)i , some-
thing which, perhaps, is interesting in its own right. The centralizers of Q, S, and T ,
and thus the center, are then computed in Sect. 21.6.
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21.2 Some Commutator Formulas in AR,J,Q

The commutator of two elements A and B of an algebra A is defined by

[A, B] = AB − BA.

WhenA is unital,1 denotes the unit element. It is easy to see that for all A, B,C ∈ A,
p, q ∈ C.

(a) [A, q1] = 0,
(b) [A, A] = 0,
(c) [A, B] = −[B, A],
(d) [A, pB + qC] = p[A, B] + q[A,C],
(e) [A, BC] = [A, B]C + B[A,C],
(f) [A, [B,C]] + [B, [C, A]] + [C, [A, B]] = 0.

Commutation relations (21.1) can also be written in terms of the commutator:

[Q, R] = J, [Q, J ] = −R, [R, J ] = 0.

We now derive and prove reordered expressions for [Q, p(R, J )], [Qn, R] and
[Qn, J ].

21.2.1 An Expression for [Q, p(R, J)]

We first derive expressions for the commutators [Q, Rm] and [Q, J n] for all positive
integers m and n. For [Q, Rm], we start by looking at the effect of increasing the
power of R. For m = 1, 2, 3, we have

[Q, R1] = J = 1J R0, (21.4)

[Q, R2] = [Q, RR] = [Q, R]R + R[Q, R] = J R + RJ = 2RJ,

[Q, R3] = [Q, R2R] = [Q, R2]R + R2[Q, R] = (2RJ )R + R2 J = 3R2 J.

Observing the pattern, we deduce the following result:

Lemma 21.1 For all positive integers n,

[Q, Rm] = mRm−1 J.

Proof For m = 1, the formula follows from (21.4). Now suppose that the formula
holds for some integer m ≥ 1, then



496 J. Musonda et al.

[Q, Rm+1] = [Q, RmR] = [Q, Rm]R + Rm[Q, R]
= (mRm−1 J )R + Rm J = (m + 1)Rm J,

and this proves the assertion. �

For [Q, J n] and n = 1, 2, 3, we have

[Q, J 1] = −R = −1RJ 0, (21.5)

[Q, J 2] = [Q, J ]J + J [Q, J ] = (−R)J + J (−R) = −2RJ,

[Q, J 3] = [Q, J J 2] = [Q, J ]J 2 + J [Q, J 2] = (−R)J 2 + J (−2RJ ) = −3RJ 2.

Observing the pattern, we deduce the following result:

Lemma 21.2 For all positive integers n,

[Q, J n] = −nRJn−1.

Proof For n = 1, the formula follows from (21.5). Now suppose that the formula
holds for some integer n ≥ 1, then

[Q, J n+1] = [Q, J J n]
= [Q, J ]J n + J [Q, J n]
= (−R)J n + J (−nJn−1R)

= −(n + 1)RJn,

and this proves the assertion. �

Proposition 21.1 For all polynomials p(R, J ) in R and J ,

[Q, p(R, J )] = J
∂p(R, J )

∂R
− R

∂p(R, J )

∂ J
. (21.6)

Proof Combining Lemmas 21.1 and 21.2, we have

[Q, Rm Jn] = [Q, Rm]J n + Rm[Q, J n]
= (mRm−1 J )J n + Rm(−nRJn−1)

= J (mRm−1 J n) − R(nRm Jn−1)

= J
∂(Rm Jn)

∂R
− R

∂(Rm Jn)

∂ J

for all nonnegative integers m and n. By linearity of commutator and linearity of
partial derivative operator, this implies (21.6). The general solution to the partial
differential equation
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J
∂p(R, J )

∂R
− R

∂p(R, J )

∂ J
= 0

is given by p(R, J ) = f (R2 + J 2) for some polynomial f . �

21.2.2 An Expression for [Qn, J]

We start by looking at the effect of increasing the power of Q . For n = 1, 2, 3, 4, 5,

QJ = J Q − R,

Q2 J = Q(QJ ) = Q(J Q − R)

= (J Q − R)Q − (RQ + J )

= J Q2 − 2RQ − J,

Q3 J = Q(Q2 J ) = Q(J Q2 − 2RQ − J )

= (J Q − R)Q2 − 2(RQ + J )Q − (J Q − R)

= J Q3 − 3RQ2 − 3J Q + R

Q4 J = Q(Q3 J ) = Q(J Q3 − 3RQ2 − 3J Q + R)

= (J Q − R)Q3 − 3(RQ + J )Q2 − 3(J Q − R)Q + (RQ + J )

= J Q4 − 4RQ3 − 6J Q2 + 4RQ + J

Q5 J = Q(Q4 J ) = Q(J Q4 − 4RQ3 − 6J Q2 + 4RQ + J )

= (J Q − R)Q4 − 4(RQ + J )Q3 − 6(J Q − R)Q2 + 4(RQ + J )Q + (J Q − R)

= J Q5 − 5RQ4 − 10J Q3 + 10RQ2 + 5J Q − R

Following the pattern, we deduce that for all positive integers n,

Qn J − J Qn = −
(
n
1

)
RQn−1 −

(
n
2

)
J Qn−2 +

(
n
3

)
RQn−3

+
(
n
4

)
J Qn−4 −

(
n
5

)
RQn−5 −

(
n
6

)
J Qn−6 + · · · .

Observe that the signs of the terms alternate between negative and positive every
two terms. Now the triangular numbers 1, 3, 6, 10, 15, . . . , given by the formula
Tn = n(n + 1)/2, have the property that T4k+1 and T4k+2 are odd and that T4k+3

and T4k+4 are even. So the expression (−1)Tn alternates in sign in the same way.
Therefore, observing also that the terms’ leading elements alternate between R and
J , we have
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Qn J − J Qn =
n∑

k=1

(−1)k(k+1)/2

(
n
k

)
Ik+1Q

n−k,

where Im = R for m even, and Im = J for m odd.

Proposition 21.2 For all positive integers n,

[Qn, J ] =
n∑

k=1

(−1)k(k+1)/2

(
n
k

)
Ik+1Q

n−k (21.7)

=
n−1∑

k=0

(−1)(n−k)(n−k+1)/2

(
n
k

)
In−k+1Q

k, (21.8)

where Im = R for m even, and Im = J for m odd.

Proof For formula (21.7), we prove the formula

Qn J =
n∑

k=0

(−1)k(k+1)/2

(
n

k

)
Ik+1Q

n−k (21.9)

by induction on n; formula (21.8) follows by reindexing the sum. For n = 1, formula
(21.9) becomes QJ = J Q − R, which is one of the defining relations of AR,J,Q in
(21.1). Now assume that (21.9) holds for some integer n ≥ 1, then

Qn+1 J = Q(Qn J ) = Q

(
n∑

k=0

(−1)k(k+1)/2

(
n
k

)
Ik+1Q

n−k

)

=
(

n∑

k=0

(−1)k(k+1)/2

(
n
k

)
Ik+1Q

n−k

)

Q

+
n∑

k=0

(−1)k(k+1)/2

(
n
k

)
[Q, Ik+1]Qn−k

=
n∑

k=0

(−1)k(k+1)/2

(
n

k

)
Ik+1Q

n+1−k

+
n+1∑

k=1

(−1)k(k+1)/2

(
n

k − 1

)
Ik+1Q

n+1−k

=
n+1∑

k=0

(−1)k(k+1)/2

((
n
k

)
+

(
n

k − 1

))
Ik+1Q

n+1−k

=
n+1∑

k=0

(−1)k(k+1)/2

(
n + 1
k

)
Ik+1Q

n+1−k,
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where the fourth equality follows by reindexing the second sum and observing that

(−1)k(k−1)/2[Q, Ik] = (−1)k(k+1)/2 Ik+1,

and the last equality follows from Pascal’s identity. �

21.2.3 An Expression for [Qn, R]

We start by looking at the effect of increasing the power of Q . For n = 1, 2, 3, 4, 5,

QR = RQ + J,

Q2R = Q(QR) = Q(RQ + J )

= (RQ + J )Q + (J Q − R)

= RQ2 + 2J Q − R,

Q3R = Q(Q2R) = Q(RQ2 + 2J Q − R)

= (RQ + J )Q2 + 2(J Q − R)Q − (RQ + J )

= RQ3 + 3J Q2 − 3RQ − J,

Q4R = Q(Q3R) = Q(RQ3 + 3J Q2 − 3RQ − J )

= (RQ + J )Q3 + 3(J Q − R)Q2 − 3(RQ + J )Q − (J Q − R)

= RQ4 + 4J Q3 − 6RQ2 − 4J Q + R,

Q5R = Q(Q4R) = Q(RQ4 + 4J Q3 − 6RQ2 − 4J Q + R)

= (RQ + J )Q4 + 4(J Q − R)Q3 − 6(RQ + J )Q2 − 4(J Q − R)Q + (RQ + J )

= RQ5 + 5J Q4 − 10RQ3 − 10J Q2 + 5RQ + J,

Following the pattern, we deduce that for all positive integers n,

QnR − RQn =
(
n

1

)
J Qn−1 −

(
n

2

)
RQn−2 −

(
n

3

)
J Qn−3 +

(
n

4

)
RQn−4

+
(
n

5

)
J Qn−5 −

(
n

6

)
RQn−6 −

(
n

7

)
J Qn−7 + · · · .

Observe that the sign is positive on the first term and then alternates between negative
and positive every two terms. Using the property of the triangular numbers Tn =
n(n + 1)/2, we see that the expression (−1)n(−1)Tn = (−1)n(n+3)/2 alternates in
sign in the sameway. Therefore, observing also that the leading elements of the terms
alternate between R and J , we can write
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[Qn, R] =
n∑

k=1

(−1)k(k+3)/2

(
n
k

)
Ik Q

n−k =
n−1∑

k=0

(−1)(n−k)(n−k+3)/2

(
n
k

)
In−k Q

k,

where Im = R for m even, and Im = J for m odd.

Proposition 21.3 For all positive integers n,

Qn R − RQn =
n∑

k=1

(−1)k(k+3)/2

(
n
k

)
Ik Q

n−k (21.10)

=
n−1∑

k=0

(−1)(n−k)(n−k+3)/2

(
n
k

)
In−k Q

k, (21.11)

where Im = R for m even, and Im = J for m odd.

Proof For formula (21.10), we prove the formula

QnR =
n∑

k=0

(−1)k(k+3)/2

(
n
k

)
Ik Q

n−k (21.12)

by induction on n; formula (21.11) follows by reindexing the sum. For n = 1, (21.12)
becomes QR = RQ + J , which is one of the defining relations of AR,J,Q in (21.1).
Now assume that (21.12) holds for some integer n ≥ 1, then

Qn+1R = Q(QnR)) = Q

(
n∑

k=0

(−1)k(k+3)/2

(
n
k

)
Ik Q

n−k

)

=
(

n∑

k=0

(−1)k(k+3)/2

(
n
k

)
Ik Q

n−k

)

Q

+
n∑

k=0

(−1)k(k+3)/2

(
n
k

)
[Q, Ik]Qn−k

=
n∑

k=0

(−1)k(k+3)/2

(
n
k

)
Ik Q

n+1−k

+
n+1∑

k=1

(−1)k(k+3)/2

(
n

k − 1

)
Ik Q

n+1−k

=
n+1∑

k=0

(−1)k(k+3)/2

((
n
k

)
+

(
n

k − 1

))
Ik Q

n+1−k

=
n+1∑

k=0

(−1)k(k+3)/2

(
n + 1
k

)
Ik Q

n+1−k,
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where the fourth equality follows by reindexing the second sum and observing that

(−1)(k−1)(k+2)/2[Q, Ik−1] = (−1)k(k+3)/2 Ik,

and the last equality follows from Pascal’s identity. �

21.3 Centralizers and the Center in AR,J,Q

Proposition 21.4 For all nonnegative integers n,

Q

( n∑

k=0

pk(R, J )Qk

)
−

( n∑

k=0

pk(R, J )Qk

)
Q = 0

if and only if pk(R, J ) = pk(R2 + J 2) for all k.

Proof Writing a = ∑
pk(R, J )Qk , we have

[Q, a] =
∑ ([Q, pk(R, J )]Qk + pk(R, J )[Q, Qk]) .

Since [Q, Qk] = 0, this implies that [Q, a] = 0 if and only if

0 = [Q, pk(R, J )] = −R
∂pk(R, J )

∂ J
+ J

∂pk(R, J )

∂R
,

which holds if and only if pk(R, J ) = pk(R2 + J 2) for all k. �

It follows from this result that the centralizer of Q is given by

Cen(Q) =
{

a ∈ AR,J,Q : a =
n∑

k=0

pk(R
2 + J 2)Qk

}

. (21.13)

Proposition 21.5 For all positive integers n,

( n∑

k=0

pk(R, J )Qk

)
R − R

( n∑

k=0

pk(R, J )Qk

)
�= 0.

Proof Since R and J commute,

( n∑

k=0

pk(R, J )Qk

)
R − R

( n∑

k=0

pk(R, J )Qk

)
=

n∑

k=1

pk(R, J )
(
Qk R − RQk

)

=
n∑

k=1

pk(R, J )

k−1∑

j=0

(−1)(k− j)(k− j+3)/2

(
k
j

)
In− j Q

j
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=
n−1∑

j=1

n∑

k= j+1

(−1)(k− j)(k− j+3)/2

(
k
j

)
pk(R, J )Ik− j Q

j

=
n−1∑

j=0

f j (R, J )Q j ,

where the second equality follows from Proposition 21.3, the third equality follows
after interchanging the order of summation, and the last equality after writing

f j (R, J ) =
n∑

k= j+1

(−1)(k− j)(k− j+3)/2

(
k
j

)
pk(R, J )Ik− j ,

and where as in the preceding section Im = R for m even, and Im = J for m odd. It
follows that

fn−1(R, J ) = npn(R, J )J,

which is nonzero by assumption. �

It follows that no normal ordered element containing Q belongs to the centralizer of
R. And since R and J commute,

Cen(R) = {a ∈ AR,J,Q : a = p(R, J )}. (21.14)

Proposition 21.6 For all positive integers n,

(
n∑

k=0

pk(R, J )Qk

)

J − J

(
n∑

k=0

pk(R, J )Qk

)

�= 0.

Proof Since R and J commute,

(
n∑

k=0

pk(R, J )Qk

)

J − J

(
n∑

k=0

pk(R, J )Qk

)

=
n∑

k=1

pk(R, J )
(
Qk J − J Qk

)

=
n∑

k=1

pk(R, J )

k−1∑

j=0

(−1)(k− j)(k− j+1)/2

(
k
j

)
Ik− j+1Q

j

=
n−1∑

j=1

n∑

k= j+1

(−1)(k− j)(k− j+1)/2

(
k
j

)
pk(R, J )Ik− j+1Q

j =
n−1∑

j=0

f j (R, J )Q j ,
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where the second equality follows from Proposition 21.2, the third equality follows
after interchanging the order of summation, and the last equality after writing

f j (R, J ) =
n∑

k= j+1

(−1)(k− j)(k− j+1)/2

(
k

j

)
pk(R, J )Ik− j+1,

and as before, Im = R for m even, and Im = J for m odd. It follows that

fn−1(R, J ) = −npn(R, J )R,

which is nonzero by assumption. �

It follows that no normal ordered element containing Q belongs to the centralizer of
J . And since R and J commute,

Cen(J ) = {
a ∈ AR,J,Q : a = p(R, J )

}
. (21.15)

Therefore, following (21.13), (21.14) and (21.15), we conclude that the center of
the algebra generated by the elements R, J and Q satisfying (21.1) is given by

Z(AR,J,Q) = {
a ∈ AR,J,Q : a = p(R2 + J 2)

}
.

We summarize these results in the following theorem.

Theorem 21.1 The following hold in the unital associative C-algebra AR,J,Q gen-
erated by three elements R, J and Q satisfying the commutation relations

QR − RQ = J,

QJ − J Q = −R,

RJ − J R = 0.

(a) The centralizer of Q is given by Cen(Q) =
{ ∑n

k=0 pk(R
2 + J 2)Qk

}
.

(b) The centralizer of R is given by Cen(R) = {
p(R, J )

}
.

(c) The centralizer of J is given by Cen(J ) = {
p(R, J )

}

(d) The center of the algebra AR,J,Q is given by Z
(
AR,J,Q

) =
{
p(R2 + J 2)

}
.

Corollary 21.1 The following hold in the unital associative C-algebraA′
R,J,Q gen-

erated by three elements R, J and Q satisfying the commutation relations

QR − RQ = J,

QJ − J Q = −R,

J R − RJ = 0,

R2 + J 2 = 1,
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where 1 is the identity element.

(a) The centralizer of Q is given by Cen(Q) =
{ ∑n

k=0 ckQ
k
}
.

(b) The centralizer of R is given by Cen(R) = {
p(R, J )

}
.

(c) The centralizer of J is given by Cen(J ) = {
p(R, J )

}
.

(d) The center of A′
R,J,Q is given by Z(A′

R,J,Q) = {c1 : c ∈ C}.
Proof This follows directly from Theorem 21.1 by subjecting the centralizers and
the center to the constraint R2 + J 2 = 1. �

21.4 Linear Transformation of Generators

Writing S = R + i J and T = R − i J , we have R = (S + T )/2, J = (S − T )/2i
and ST = R2 + J 2. Therefore, denoting f (S, T ) = p((S + T )/2, (S − T )/2i), we
see that polynomials in R and J can also be written as polynomials in S and T .

Proposition 21.7 Let a, b, c, d ∈ C.

(i) In any algebra, if S = aR + bJ and T = cR + d J , then the commutator of S
and T is given by

[S, T ] = det

(
a b
c d

)
[R, J ].

(ii) If det

(
a b
c d

)
�= 0, that is, ad �= bc, then ST = T S if and only if R J = J R.

Example 21.1 In any algebra, if S = R+ i J and T = R− i J , then the commutator
of S and T is given by

[S, T ] = −2i[R, J ],

and so, ST = T S if and only if RJ = J R.

Proposition 21.8 In any associative algebra, if S = R + i J and T = R − i J , then
the elements S, T and Q satisfy the commutation relations

[Q, S] = −i S, [Q, T ] = iT, [S, T ] = 0, (21.16)

if and only if the elements R, J and Q satisfy the commutation relations

[Q, R] = J, [Q, J ] = −R, [R, J ] = 0. (21.17)

Proof Writing S = R+i J and T = R−i J , we have R = (S+T )/2, J = (S−T )/2i
and ST = R2 + J 2. Now if commutation relations (21.17) hold, then
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[Q, S] = [Q, R + i J ] = [Q, R] + i[Q, J ] = J − i R = −i(R + i J ) = −i S,

[Q, T ] = [Q, R − i J ] = [Q, R] − i[Q, J ] = J + i R = i(R − i J ) = iT,

and combining with Proposition 21.7 proves the first assertion. Conversely, if com-
mutation relations (21.16) hold, then

[Q, 2R] = [Q, S + T ] = −i S + iT = −i(R + i J ) + i(R − i J ) = 2J,

[Q, 2i J ] = [Q, S − T ] = −i S − iT = −i(R + i J ) − i(R − i J ) = −2i R,

and combining with Proposition 21.7 proves the second assertion. �

21.5 An Expression for [Qk, SmTn]

Proposition 21.9 If S, T and Q are elements of an algebra satisfying commutation
relations (21.16), then for all nonnegative integers m and n.

[Q, Sm] = −miSm (21.18)

[Q, T n] = niT n (21.19)

[Q, SmT n] = (n − m)i SmT n. (21.20)

Remark 21.1 Formula (21.20) implies that SmT n is an eigenvector of [Q, ·] with
eigenvalue (n − m)i .

Proof We prove formula (21.18) by induction on m. For m = 1, formula (21.18)
becomes [Q, S] = −i S, which is in the commutation relations (21.16). Now suppose
that the formula holds for some integer m ≥ 1, then

[Q, Sm+1] = [Q, S]Sm + S[Q, Sm] = (−i S)Sm + S(−miSm) = −(m + 1)i Sm+1,

and this proves the assertion. Next we prove (21.19) by induction on n. For n =
1, formula (21.19) becomes [Q, T ] = iT , which is in the commutation relations
(21.16). Now suppose that the formula holds for some integer n ≥ 1, then

[Q, T n+1] = [Q, T ]T n + T [Q, T n] = (iT )T n + T (niT n) = (n + 1)iT n+1,

and this proves the assertion. Formulas (21.18) and (21.19) can now be combined:

[Q, SmT n] = [Q, Sm ]T n + Sm [Q, T n] = (−miSm)T n + Sm(niT n) = (n − m)i SmT n,

and this proves formula (21.20). �



506 J. Musonda et al.

Proposition 21.10 If S, T and Q are elements of an algebra satisfying commutation
relations (21.16), then for all nonnegative integers k, m and n,

Qk SmT n = SmT n (Q + (n − m)i1)k .

Proof We proceed by induction on k. For k = 1, the formula follows from (21.20).
Now suppose that the formula holds for some integer k ≥ 1, then

Qk+1SmT n = QQkSmT n = QSmT n (Q + (n − m)i1)k

= SmT n (Q + (n − m)i1) (Q + (n − m)i1)k = SmT n (Q + (n − m)i1)k+1 ,

and this proves the assertion. �

Corollary 21.2 If S, T and Q are elements of an algebra satisfying commutation
relations (21.16), then for all nonnegative integers k,

Qk S = S(Q − i1)k and QkT = T (Q + i1)k .

21.6 Centralizers of S, T and Q, and the Center

Proposition 21.11 For all positive integers n,

( n∑

k=0

pk(S, T )Qk

)
S − S

( n∑

k=0

pk(S, T )Qk

)
�= 0.

Proof For all positive integers n,

( n∑

k=0

pk(S, T )Qk

)
S − S

( n∑

k=0

pk(S, T )Qk

)
=

n∑

k=1

pk(S, T )
(
QkS − SQk

)

=
n∑

k=1

pk(S, T )S
(
(Q − i1)k − Qk

)
=

n∑

k=1

pk(S, T )S
k−1∑

j=0

(
k
j

)
(−i)k− j Q j

=
n−1∑

j=0

n∑

k= j+1

(−i)k− j

(
k
j

)
pk(S, T )SQ j =

n−1∑

m=0

fm(S, T )Qm,

where the second equality follows from Corollary 21.2, the fourth equality follows
after interchanging the order of summation, and the last equality follows after writ-

ing fm(S, T ) = ∑n
k=m+1

(
k
m

)
(−i)k−m pk(S, T )S. It follows that fn−1(S, T ) =

nipn(S, T )S, which is nonzero by assumption. �
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It follows that no normal ordered element in AR,J,Q containing Q belongs to the
centralizer of S. And since S and T commute,

Cen(S) = {a ∈ AR,J,Q : a = p(S, T )}.

Similarly, one can show that no normal ordered element in AR,J,Q containing Q
belongs to the centralizer of T . And since S and T commute,

Cen(T ) = {a ∈ AR,J,Q : a = p(S, T )}.

And formula (21.20) implies that given a polynomial p(S, T ) = ∑
amnSmT n ,

we have [Q, p(S, T )] = ∑
(n − m)icmnSmT n . It follows that [Q, p(S, T )] = 0 if

and only if for all m, n, either n − m = 0 or cmn = 0. Therefore, if p belongs to the
center of AR,J,Q then p(S, T ) = ∑

ck(ST )k . It also follows that

Cen(Q) =
{
a ∈ AR,J,Q : a =

∑
pk(ST )Qk

}
.

The conclusion is that

Z(AR,J,Q) = {a ∈ AR,J,Q : a = p(ST )}
=

{
a ∈ AR,J,Q : a = p(R2 + J 2)

}
.
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