
Chapter 2
Algebras with Ternary Composition Law
Combining Z2 and Z3 Gradings

Viktor Abramov, Richard Kerner and Olga Liivapuu

Abstract We investigate the possibility of combining the usual Grassmann algebras
with their ternary Z3-graded counterparts, thus creating a more general algebra with
quadratic and cubic constitutive relations coexisting together. We recall the classifi-
cation of ternary and cubic algebras according to the symmetry properties of ternary
products under the action of the S3 permutation group. Instead of only two kinds of
binary algebras, symmetric or antisymmetric, here we get four different generaliza-
tions of each of those cases. Then we study a particular case of algebras generated
by two types of variables, ξα and θA, satisfying quadratic and cubic relations respec-
tively, ξαξβ = −ξβξα and θAθBθC = jθBθCθA, j = e

2πi
3 . Differential calculus of the

first order is defined on these algebras, and its fundamental properties investigated.
The invariance properties of the generalized algebras are also considered.

Keywords Grassmann algebra · Clifford algebra · Ternary algebra · Cubic
algebra · Minkowskian space-time metric · Lorentz group · Cubic matrices

2.1 Classification of Ternary and Cubic Algebras

In [1, 9, 10, 13] certain types of Z3-graded ternary and cubic algebras have been
introduced and investigated. In [19] a general classification of n-ary algebras was
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given. Ternary generalizations of Banach algebras and their derivations have been
studied in [2, 7, 14, 15, 17]. Our aim in this section is to find relations between triple
products of generators of an associative unital algebra, which can be considered as
analogs of (binary) commutativity or anti-commutativity. Since we consider triple
products of generators these analogs of commutativity and anti-commutativity will
be referred to as ternary analogs.

2.1.1 Algebras and Superalgebras with Binary Law of
Composition

The usual definition of an algebra involves a linear space A (over real or complex
numbers) endowed with a binary constitutive relations

A × A → A. (2.1)

In a finite-dimensional case, dim A =N, in a chosen basis e1, e2, . . . , eN , the con-
stitutive relations (2.1) can be encoded in structure constants f ki j as follows:

eie j = f ki j ek . (2.2)

With the help of these structure constants all essential properties of a given algebra
can be expressed, e.g. they will define a Lie algebra if they are antisymmetric and
satisfy the Jacobi identity:

f ki j = − f kji , f kim f mjl + f kjm f mli + f klm f mi j = 0, (2.3)

whereas an abelian algebra will have its structure constants symmetric, f ki j = f kji .
Usually, when we speak of algebras, we mean binary algebras, understanding

that they are defined via quadratic constitutive relations (2.2). On such algebras the
notion ofZ2-grading can be naturally introduced. TheZ2-graded algebraic structures
were abundantly exploited in physics, both in the supersymmetric field theories as
well as in models based on the non-commutative geometry [5, 20]. We recall that
an algebra A is called a Z2-graded algebra if it is a direct sum of two parts, with
symmetric (abelian) and anti-symmetric product respectively,

A = A0 ⊕ A1, (2.4)

with grade of an element being 0 if it belongs to A0, and 1 if it belongs to A1.
Under the multiplication in a Z2-graded algebra the grades add up reproducing the
composition law of the Z2 permutation group: if the grade of an element A is a, and
that of the element B is b, then the grade of their product will be a + b modulo 2:

grade(AB) = grade(A) + grade(B). (2.5)
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A Z2-graded algebra is called a Z2-graded commutative if for any two homogeneous
elements A, B we have

AB = (−1)abBA. (2.6)

It is worthwhile to notice at this point that the above relationship can be written in
an alternative form, with all the expressions on the left side as follows:

AB − (−1)a bBA = 0, or AB + (−1)(a b+1)BA = 0 (2.7)

The equivalence between these two alternative definitions of commutation (anticom-
mutation) relations inside a Z2-graded algebra is no more possible if by analogy we
want to impose cubic relations on algebras with Z3-symmetry properties, in which
the non-trivial cubic root of unity, j = e

2πi
3 plays the role similar to that of −1 in the

binary relations displaying a Z2-symmetry.

2.1.2 Ternary Analog of Commutativity

TheZ3 cyclic group is an abelian subgroup of the S3 symmetry group of permutations
of three objects. The S3 group contains six elements, including the group unit e (the
identity permutation, leaving all objects in place: (abc) → (abc)), the two cyclic
permutations

(abc) → (bca) and (abc) → (cab),

and three odd permutations,

(abc) → (cba), (abc) → (bac) and (abc) → (acb).

The group Z2 has the representation Z2 → {1,−1}. Just like the group Z2, the
group of cyclic permutations Z3 also has the faithful representationZ3 → {1, j, j2}
by cubic roots of unity and this representation is an important tool that we use to find
ternary analogs of commutativity and anti-commutativity.

Let an algebra be generated by the finite set of commutative variables xμ,μ =
1, 2, . . . , n. The quadratic relations of commutativity of generators given in two
equivalent forms,

xμyν + (−1)yνxμ = 0 or xμyν = yνxμ. (2.8)

lead in the case of algebras with cubic relations [19] to the following four general-
izations of the notion of commutativity:
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(a) Generalizing the first form of the commutativity relation (2.8), which amounts
to replacing the −1 generator of Z2 by j-generator of Z3 and binary products
by products of three elements, we get

S : xμxνxλ + j xνxλxμ + j2 xλxμxν = 0, (2.9)

where j = e
2πi
3 is a primitive third root of unity.

(b) Another primitive third root, j2 = e
4πi
3 can be used in place of the former one; this

will define the conjugate algebra S̄, satisfying the following cubic constitutive
relations:

S̄ : xμxνxλ + j2 xνxλxμ + j xλxμxν = 0. (2.10)

Clearly enough, both algebras are infinitely-dimensional andhave the same struc-
ture. Each of them is a possible generalization of infinitely-dimensional algebra
of usual commuting variables with a finite number of generators. In the usual
Z2-graded case such algebras are just polynomials in variables x1, x2, . . . xN ;
the algebras S and S̄ defined above are also spanned by polynomials, but with
different symmetry properties, and as a consequence, with different dimensions
corresponding to a given power.

(c) Then we can impose the following “weak” commutation, valid only for cyclic
permutations of factors:

S1 : xμxνxλ = xνxλxμ �= xνxμxλ, (2.11)

(d) Finally, we can impose the following “strong” commutation, valid for arbitrary
(even or odd) permutations of three factors:

S0 : xμxνxλ = xνxλxμ = xνxμxλ (2.12)

The four different associative algebras with cubic commutation relations can be
represented in the following diagram, in which all arrows correspond to surjective
homomorphisms. The commuting generators can be given the common grade 0.

S S̄

S1

S0

2.1.3 Ternary Analogs of Anti-commutativity

Let us now turn to a cubic generalization of the notion of anti-commutativity. We
recall that an algebra generated by anti-commuting variables ξα,α = 1, 2, . . . , n,
which obey the following quadratic relations
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ξαξβ + ξβξα = 0 or ξαξβ = −ξβξα, (2.13)

is referred to as a Grassmann algebra. Here, too, we have four different choices.
Indeed let θA, A = 1, 2, . . . , N be generators of an associative unital algebra over
C. We get four different cubic analogs of the relations (2.13) as follows:

(a) Generalizing the first relation in (2.13), we get the following “strong” cubic
analog of anti-commutativity relation

Λ0 : �π∈S3 θπ(A)θπ(B)θπ(C) = 0, (2.14)

i.e. the sum of all permutations of three factors, even and odd ones, must vanish.
(b) We can get another cubic analog of the first relation in (2.13) if we take the sub-

group of cyclic permutations Z3. In this case we get somewhat weaker “cyclic”
cubic analog of anti-commutation relation

Λ1 : θAθBθC + θBθCθA + θCθAθB = 0, (2.15)

i.e. the sum of cyclic permutations of three elements must vanish. The same
independent relation for the odd combination θCθBθA holds separately.

(c) Generalizing the second relation in (2.13) by means of the representationZ3 →
{1, j, j2}, we get the following cubic analog of anti-commutativity relation:

Λ : θAθBθC = j θBθCθA. (2.16)

and its conjugate algebra Λ̄, isomorphic withΛ, which we distinguish by putting
a bar on the generators and using dotted indices:

(d) The conjugate relations Λ̄, which we distinguish by putting a bar on the gener-
ators and using dotted indices, are the following ones:

Λ̄ : θ̄ Ȧθ̄ Ḃ θ̄Ċ = j2θ̄ Ḃ θ̄Ċ θ̄ Ȧ (2.17)

Both these algebras are finite-dimensional. For j or j2-skew-symmetric algebras
with N generators the dimensions of their subspaces of given polynomial order
are given by the following generating function:

H(t) = 1 + Nt + N 2t2 + N (N − 1)(N + 1)

3
t3, (2.18)

where we include pure numbers (dimension 1), the N generators θA (or θ̄ Ḃ), the
N 2 independent quadratic combinations θAθB and N (N − 1)(N + 1)/3 prod-
ucts of three generators θAθBθC .
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The above four cubic generalizations of Grassmann algebra are represented in the
following diagram, in which all the arrows are surjective homomorphisms.

2.2 Examples of Z3-Graded Ternary Algebras

2.2.1 The Z3-Graded Analogue of Grassman Algebra

Let us introduce N generators spanning a linear space over complex numbers, satis-
fying the following cubic relations [9, 10]:

θAθBθC = j θBθCθA = j2 θCθAθB, (2.19)

with j = e2iπ/3, the primitive root of 1. We have 1 + j + j2 = 0 and j̄ = j2.
Let us denote the algebra spanned by the θA generators by A [9, 10].
We shall also introduce a similar set of conjugate generators, θ̄ Ȧ, Ȧ, Ḃ, . . . =

1, 2, . . . , N , satisfying similar condition with j2 replacing j :

θ̄ Ȧθ̄ Ḃ θ̄Ċ = j2 θ̄ Ḃ θ̄Ċ θ̄ Ȧ = j θ̄Ċ θ̄ Ȧθ̄ Ḃ, (2.20)

Let us denote this algebra by Ā.
We shall endow the algebra A ⊕ Ā with a natural Z3 grading, considering the

generators θA as grade 1 elements, their conjugates θ̄ Ȧ being of grade 2.
The grades add up modulo 3, so that the products θAθB span a linear subspace

of grade 2, and the cubic products θAθBθC being of grade 0. Similarly, all quadratic
expressions in conjugate generators, θ̄ Ȧθ̄ Ḃ are of grade 2 + 2 = 4mod 3 = 1, whereas
their cubic products are again of grade 0, like the cubic products of θA’s [12].

Combined with the associativity, these cubic relations impose finite dimension on
the algebra generated by the Z3 graded generators. As a matter of fact, cubic expres-
sions are the highest order that does not vanish identically. The proof is immediate:

θAθBθCθD = j θBθCθAθD = j2 θBθAθDθC = j3 θAθDθBθC = j4 θAθBθCθD,

(2.21)
and because j4 = j �= 1, the only solution is θAθBθCθD = 0.
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2.2.2 Ternary Clifford Algebra

Let us consider the algebra M3(C) of complex 3rd order square matrices. In accor-
dancewith our approach to ternary analog of anti-commutativitywedefine the ternary
j- and j2-commutator of three matrices as follows

[A, B,C] j = ABC + j BC A + j2 CAB, [A, B,C] j2 = ABC + j2 BCA + j C AB, A, B,C ∈ M3(C).

(2.22)
It is easy to see that the ternary j-commutator is j-skew symmetric and the ternary
j2-commutator is j2-skew-symmetric, i.e.

[A, B,C] j = j [B,C, A] j , [A, B,C] j2 = j2 [B,C, A] j2 ,

and from these symmetries it follows that both ternary commutators satisfy the rela-
tion Λ1 (sum of cyclic permutations is zero) as well as more general relation Λ0

(sum of all permutations is zero).
It is useful to stress a difference between the commutators (2.22) and a ternary Lie

bracket used in a theory of 3-Lie algebras initiated by Filippov [6] and Nambu [16].
A ternary Lie bracket of a theory of 3-Lie algebras is totally skew-symmetric, i.e. the
permutation of any two elements in a ternary Lie bracket implies the change of sign
from plus to minus. Obviously a ternary Lie bracket satisfies the relation Λ0, but it
does not satisfy the relation Λ1. Hence if there are at least two equal elements in a
ternary Lie bracket of a theory of 3-Lie algebras then ternary Lie bracket identically
vanishes while the ternary j-commutator (or j2-commutator) may not be zero. The
ternary j-commutator (or j2-commutator) (2.22) vanishes identically only when all
three elements are equal.

The matrix algebra M3(C) has the natural structure of Z3-graded algebra which
can be defined by attaching the degrees 0, 1, 2 to the following matrices respectively

⎛
⎝
x 0 0
0 y 0
0 0 z

⎞
⎠ ,

⎛
⎝
0 x 0
0 0 y
z 0 0

⎞
⎠ ,

⎛
⎝
0 0 x
y 0 0
0 z 0

⎞
⎠ .

Let us introduce the following three 3 × 3 matrices:

Q1 =
⎛
⎝

0 1 0
0 0 j
j2 0 0

⎞
⎠ , Q2 =

⎛
⎝

0 j 0
0 0 1
j2 0 0

⎞
⎠ , Q3 =

⎛
⎝
0 1 0
0 0 1
1 0 0

⎞
⎠ , (2.23)

and their hermitian conjugates

Q†
1 =

⎛
⎝
0 0 j
1 0 0
0 j2 0

⎞
⎠ , Q†

2 =
⎛
⎝

0 0 j
j2 0 0
0 1 0

⎞
⎠ , Q†

3 =
⎛
⎝
0 0 1
1 0 0
0 1 0

⎞
⎠ . (2.24)
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We have
degree(Qk) = 1, degree(Q†

k) = 2, (2.25)

The above matrices span a very interesting ternary algebra. Out of three independent
Z3-graded ternary combinations, only one leads to a non-vanishing result. One can
check without much effort that both ternary j- and j2-commutators do vanish:

[Q1, Q2, Q3] j = Q1Q2Q3 + j Q2Q3Q1 + j2Q3Q1Q2 = 0,

[Q1, Q2, Q3] j2 = Q1Q2Q3 + j2Q2Q3Q1 + j Q3Q1Q2 = 0,

and similarly for the odd permutation, Q2Q1Q3. On the contrary, the totally
symmetric combination does not vanish; it is proportional to the 3 × 3 identity
matrix 1:

QaQbQc + QbQcQa + QcQaQb = 3 ηabc 1, a, b, . . . = 1, 2, 3. (2.26)

with ηabc given by the following non-zero components:

η111 = η222 = η333 = 1,

η123 = η231 = η312 = 1, (2.27)

η213 = η321 = η132 = j2.

all other components vanishing. The relation (2.26) may serve as the definition of
ternary Clifford algebra.

Let us denote Qȧ = Q†
a . Then analogously to (2.26) the matrices Qȧ satisfy the

conjugate identities

QȧQḃQċ + QḃQċQȧ + QċQȧQḃ = 3 ηȧḃċ 1, ȧ, ḃ, . . . = 1, 2, 3. (2.28)

with ηȧḃċ = η̄abc.
It is obvious that any similarity transformation of the generators Qa will keep

the ternary anti-commutator (2.26) invariant. As a matter of fact, if we define Q̃b =
P−1QbP , with P a non-singular 3 × 3 matrix, the new set of generators will satisfy
the same ternary relations, because

Q̃a Q̃b Q̃c = P−1QaPP−1QbPP−1QcP = P−1(QaQbQc)P,

and on the right-hand side we have the unit matrix which commutes with all other
matrices, so that P−1 1 P = 1.

It is also worthwhile to note that the six matrices displayed in (2.23), (2.24)
together with two traceless diagonal matrices
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B =
⎛
⎝
1 0 0
0 j 0
0 0 j2

⎞
⎠ , B† =

⎛
⎝
1 0 0
0 j2 0
0 0 j

⎞
⎠

form the basis for certain representation of the SU(3), which was shown in the
nineties by Kac [8].

2.3 Generalized Z2 × Z3-Graded Ternary Algebra

Let us suppose that we have binary and ternary skew-symmetric products defined by
corresponding structure constants:

ξαξβ = −ξβξα (2.29)

θAθBθC = j θBθCθA (2.30)

The unifying ternary relation is of the type Λ0, i.e.

Xi X j Xk + X j Xk Xi + Xk Xi X j + Xk X j Xi + X j Xi Xk + Xi Xk X j = 0. (2.31)

It is obviously satisfied by both types of variables; the θA’s by definition of the
product, for which at this stage the associativity property can be not decided yet; the
product of grassmannian ξα variables (2.29) on the contrary, should be associative
in order to make the formula (2.31) applicable.

It can be added that the cubic constitutive relation (2.30) satisfies a simpler con-
dition with cyclic permutations only,

θAθBθC + θBθCθA + θCθAθB = 0,

but the cubic products of grassmannian variables are invariant under even (cyclic)
permutations, so that only the combination of all six permutations of ξαξβξγ , like in
(2.31) will vanish.

Now, if we want to merge the two algebras into a common one, we must impose
the general condition (2.31) to the mixed cubic products. These are of two types:
θAξαθB and ξαθBξβ , with two θ’s and one ξ, or with two ξ’s and one θ. These
identities, all like (2.31) should follow from binary constitutive relations imposed
on the associative products between one θ and one ξ variable.

Let us suppose that one has

ξαθB = ω θBξα and consequently θAξβ = ω−1 ξβθA. (2.32)

A simple exercise leads to the conclusion that in order to satisfy the general con-
dition (2.31), the unknown factor ω must verify the equation ω + ω−1 + 1 = 0, or
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equivalently, ω + ω2 + ω3 = 0. Indeed, we have, assuming the associativity:

θAξαθB = ω−1 ξαθAθB = ω θAθBξα,

θBξαθA = ω−1 ξαθBθA = ω θBθAξα.

From this we get, by transforming all the six products so that ξα should appear always
in front of the monomials:

θAξαθB = ω−1 ξαθAθB, θAθBξα = ω−2 ξαθAθB,

θBξαθA = ω−1 ξαθBθA, θBθAξα = ω−2 ξαθBθA.

Adding up all permutations, even (cyclic) and odd alike, we get the following result:

θAξαθB + ξαθBθA + θBθAξα + θBξαθA + ξαθAθB + θAθBξα =

(1 + ω + ω−1) ξαθAθB + (1 + ω + ω−1) ξαθBθA. (2.33)

The expression in (2.33)will identically vanish ifω = j = e
2πi
3 (or j2, which satisfies

the same relation j + j2 + 1 = 0).
The second type of cubic monomials, ξαθBξβ , satisfies the identity

ξαθBξδ + θBξδξα + ξδξαθB + ξδθBξα + θBξαξδ + ξαξδθB = 0 (2.34)

no matter what the value of ω is chosen in the constitutive relation (2.32), the anti-
symmetry of the product of two ξ’s suffices. As a matter of fact, because we have
ξαξδ = −ξδξα, in the formula (2.34) the second term cancels the fifth term, and the
third term is canceled by the sixth one. What remains is the sum of the first and the
fourth terms:

ξαθBξδ + ξδθBξα.

Now we can transform both terms so as to put the factor θ in front; this will give

ξαθBξδ + ξδθBξα = ωθBξαξδ + ωθBξδξα = 0 (2.35)

because of the anti-symmetry of the product between the two ξ’s.
This completes the construction of the Z3 × Z2-graded extension of Grassman

algebra.
The existence of two cubic roots of unity, j and j2, suggests that one can extend the

above algebraic construction by introducing a set of conjugate generators, denoted
for convenience with a bar and with dotted indices, satisfying conjugate ternary
constitutive relation (2.20). The unifying condition of vanishing of the sum of all
permutations (algebra of Λ0-type) will be automatically satisfied.
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But nowwe have to extend this condition to the triple products of the type θAθ̄ ḂθC

and θ̄ ȦθB θ̄Ċ . This will be achieved if we impose the obvious condition, similar to
the one proposed already for binary combinations ξθ:

θAθ̄ Ḃ = j θ̄ ḂθA, θ̄ ḂθA = j2 θAθ̄ Ḃ (2.36)

The proof of the validity of the condition (2.31) for the above combinations is exactly
the same as for the triple products ξαθBξγ and θAξδθB .

We have also to impose commutation relations on the mixed products of the type

ξαθ̄ Ḃξβ and θ̄ Ḃξβθ̄Ċ .

It is easy to see that like in the former case, it is enough to impose the commutation
rule similar to the former one with θ’s, namely

ξαθ̄ Ḃ = j2 θ̄ Ḃξα (2.37)

Although we could stop at this point the extension of our algebra, for the sake of
symmetry it seems useful to introduce the new set of conjugate variables ξ̄α̇ of the
Z2-graded type. We shall suppose that they anti-commute, like the ξβ’s, and not only
between themselves, but also with their conjugates, which means that we assume

ξ̄α̇ξ̄β̇ = −ξ̄β̇ ξ̄α̇, ξαξ̄β̇ = −ξ̄β̇ξα. (2.38)

This ensures that the condition (2.31) will be satisfied by any ternary combination
of the Z2-graded generators, including the mixed ones like

ξ̄α̇ξβξ̄δ̇ or ξβξ̄α̇ξγ .

The dimensions of classical Grassmann algebras with n generators are well known:
they are equal to 2n , with subspaces spanned by the products of k generators having
the dimension Cn

k = n!/(n − k)!k!. With 2n anticommuting generators, ξα and ξ̄β̇

we shall have the dimension of the corresponding Grassmann algebra equal to 22n .
It is also quite easy to determine the dimension of the Z3-graded generalizations

of Grassmann algebras constructed above (see, e.g. in [1, 10, 11]). The Z3-graded
algebra with N generators θA has the total dimension N + N 2 + (N 3 − N )/3 =
(N 3 + N 2 + 2N )/3. The conjugate algebra, with the same number of generators, has
the identical dimension. However, the dimension of the extended algebra unifying
both these algebras is not equal to the square of the dimension of one of them
because of the extra conditions on the mixed products between the generators and
their conjugates, θAθ̄ Ḃ = θ̄ ḂθA.
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2.4 Two Distinct Gradings: Z3 × Z2 Versus Z6

In the previous section we combined a Grassmann algebra and a ternary Grassmann
algebra into a single algebra called the ternary extension of Grassmann algebra. But
a ternary Grassmann algebra can be endowed with the Z3 grading and a Grassmann
algebra with the Z2 grading. In this section we show that these gradings can be
combined into a single Z6 grading of ternary extension of Grassmann algebra.

The Z2-grading of ordinary (binary) algebras is well known and widely studied
and applied (e.g. in the super-symmetric field theories in Physics). The Grassmann
algebra is perhaps the oldest and the best known example of a Z2-graded structure.
Other gradings are much less popular. The Z3-grading was introduced and studied in
the paper [9]; the ZN grading was discussed in [4]. An approach to ternary Clifford
algebra based on ternary triples and a successive process of ternary Galois extensions
is proposed in [18].

In the case of ternary algebras of type Λ1 or Λ2, the grade 1 is attributed to the
generators θA and the grade 2 to the conjugate generators θ̄ Ḃ . Consequently, their
products acquire the grade which is the sum of grades of the factors modulo 3.
When we consider an algebra including a ternary Z3-graded subalgebra and a binary
Z2-graded one, we can quite naturally introduce a combination of the two gradings
considered as a pair of two numbers, say (a,λ), with a = 0, 1, 2 representing the
Z3-grade, and λ = 0, 1 representing the Z2 grade, λ = 0, 1. The first grades add up
modulo 3, the second grades add up modulo 2. The six possible combined grades
are then

(0, 0), (1, 0), (2, 0), (0, 1), (1, 1) and (2, 1). (2.39)

To add up two of the combined grades amounts to adding up their first entries modulo
3, and their second entries modulo 2. Thus, we have

(2, 1) + (1, 1) = (3, 2) � (0, 0), or ((2, 1) + (1, 0) = (3, 1) � (0, 1), and so forth.

It is well known that the cartesian product of two cyclic groups ZN × Zn , N and
n being two prime numbers, is the cyclic group ZNn corresponding to the prod-
uct of those prime numbers. This means that there is an isomorphism between the
cyclic group Z6, generated by the sixth primitive root of unity, q6 = 1, satisfying the
equation

q + q2 + q3 + q4 + q5 + q6 = 0.

This group can be represented on the complex plane, with q = e
2πi
6 , as shown on the

diagram (Fig. 2.1):
The elements of the group Z6 represented by complex numbers multiply modulo

6, e. g. q4 · q5 = q9 � q3, etc. The six elements of Z6 can be put in the one-to-one
correspondence with the pairs defining six elements of Z3 × Z2 according to the
following scheme:
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Fig. 2.1 Representation of the cyclic group Z6 in the complex plane with three colors and three
“anti-colors” attributed to even and odd powers of q, accordingly with colors attributed in quantum
chromodynamics to quarks and to anti-quarks

(0, 0) � q0 = 1, (2, 1) � q, (1, 0) � q2, (0, 1) � q3, (2, 0) � q4, (1, 1) � q5. (2.40)

The same result can be obtained directly using the representations of Z3 and Z2 in
the complex plane. Taken separately, each of these cyclic groups is generated by one
non-trivial element, the third root of unity j = e

2πi
3 for Z3 and −1 = eπi for Z2. It is

enough to multiply these complex numbers and take their different powers in order
to get all the six elements of the cyclic group Z6. One easily identifies then

− j2 = q, j = q2, −1 = q3, j2 = q4, − j = q5, 1 = q6.

The colors attributed to the powers of the complex generatorq canbe used tomodelize
the exclusion principle used in Quantum Chromodynamics, where exclusively the
“white” combinations of three quarks and three anti-quarks, as well as the “white”
quark-anti-quark pairs are declared observable. Replacing the word “white” by 0,
we see that there are two vanishing linear combinations of three powers of q, and
three pairs of powers of q that are also equal to zero. Indeed, we have:

q2 + q4 + q6 = j + j2 + 1 = 0, and q + q3 + q5 = − j2 − 1 − j = 0, (2.41)

as well as
q + q4 = 0, q2 + q5 = 0, q3 + q6 = 0. (2.42)

The Z6-grading should unite both Z2 and Z3 gradings, reproducing their essential
properties. Obviously, theZ3 subgroup is formed by the elements 1, q2 and q4, while
the Z2 subgroup is formed by the elements 1 and q3 = −1. In what follows, we shall
see that the associativity imposes many restrictions which can be postponed in the
case of non-associative ternary structures.
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The natural choice for the Z3-graded algebra with cubic relations was to attribute
the grade 1 to the generators θA, and grade 2 to their conjugates θ̄ Ḃ . All other expres-
sions formed by products and powers of those got the well defined grade, the sum
of the grades of factors modulo 3. In a simple Cartesian product of two algebras, a
Z3-graded with a Z2-graded one, the generators of the latter will be given grade 1,
and their products will get automatically the grade which is the sum of the grades
of factors modulo 2, which means that the all products and powers of generators ξα

will acquire grade 1 or 0 according to the number and character of factors involved.
The mixed products of the type θAξβ, ξβθBθC , etc. can be given the double Z3 × Z2

grade according to (2.39). According to the isomorphism defined by (2.40), this is
equivalent to a Z6-grading of the product algebra.

As long as the algebra is supposed to be homogeneous in the sense that all the
constitutive relations contain exclusively terms of one and the same type, like in the
extension of Grassmann algebra discussed above, the supposed associativity does
not impose any particular restrictions. However, this is not the case if we consider
the possibility of non-homogeneous constitutive equations, including terms of dif-
ferent nature, but with the same Z6-grade. The grading defined by (2.40) suggests
a possibility of extending the constitutive relations by comparing terms of the type
θAθBθC , whose Z6-grade is 3, to the generators ξα having the same Z6-grade. This
will lead to the following constitutive relations:

θAθBθC = ρABC
α ξα and θ̄ Ȧθ̄ Ḃ θ̄Ċ = ρ̄ Ȧ ḂĊ

α̇ ξ̄α̇ (2.43)

with the coefficients (structure constants) ρABC
α and ρ̄ Ȧ ḂĊ

α̇ displaying obvious sym-
metry properties mimicking the properties of ternary products of θ-generators with
respect to cyclic permutations:

ρABC
α = j ρBCA

α = j2 ρCAB
α and ρ̄ Ȧ ḂĊ

α̇ = j2 ρ̄ḂĊ Ȧ
α̇ = j ρ̄Ċ Ȧ Ḃ

α̇. (2.44)

If all products are supposed to be associative, then we see immediately that the
products between θ and ξ generators, as well as those between θ̄ and ξ̄ generators
must vanish identically, because of the vanishing of quadric products θθθθ = 0 and
θ̄θ̄θ̄θ̄ = 0. This means that we must set

θA ξβ = 0, ξβθA = 0, as well as θ̄ Ḃ ξ̄α̇ = 0, ξ̄α̇θ̄ Ḃ = 0. (2.45)

But now we want to unite the two gradings into a unique common one. Let us
start by defining a ternary product of generators, not necessarily derived from an
ordinary associative algebra. We shall just suppose the existence of ternary product
of generators, displaying the j-skew symmetry property:

{θA, θB, θC } = j{θB, θC , θA} = j2{θC , θA, θB}. (2.46)

and similarly, for the conjugate generators,
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{θ̄ Ȧ, θ̄ Ḃ, θ̄Ċ } = j2 {θ̄ Ḃ, θ̄Ċ , θ̄ Ȧ} = j {θ̄Ċ , θ̄ Ȧ, θ̄ Ḃ}. (2.47)

Let us attribute the Z6-grade 1 to the generators θA. Then it is logical to attribute the
Z6 grade 5 to the conjugate generators θ̄ Ḃ , so that mixed products θAθ̄ Ḃ would be of
Z6 grade 0. Ternary products (2.46) are of grade 3, and ternary products of conjugate
generators (2.47) are also of grade 3, because 5 + 5 + 5 = 15, and 15 modulo 6 = 3.
But we have also q3 = −1, which is the generator of the Z2-subalgebra of Z6.
Therefore we should attribute the Z6-grade 3 to both kinds of the anti-commuting
variables, ξα and ξ̄β̇ , because we can write their constitutive relations using the root
q as follows:

ξαξβ = −ξβξα = q3 ξβξα, ξ̄α̇ξ̄β̇ = −ξ̄β̇ ξ̄α̇ = q3 ξ̄β̇ ξ̄α̇, ξαξ̄β̇ = −ξ̄β̇ξα = q3 ξ̄β̇ξα,

(2.48)
On the other hand, the expressions containing products of θ with ξ̄ and θ̄ with ξ:

θAξ̄α̇ and θ̄ Ḃξβ .

The first expression has the Z6-grade 1 + 3 = 4, and the second product has the
Z6-grade 5 + 3 = 8 modulo 6 = 2. Other products endowed with the same grade in
our associative Z6-grade algebra are θ̄ Ȧ θ̄ Ḃ (grade 4, because 5 + 5 = 10 modulo, 6
= 4, and θAθB of grade 2, because 1 + 1 = 2).

This suggests that the following non-homogeneous constitutive relations can be
proposed:

θAξ̄α̇ = f Aα̇
Ċ Ḋ θ̄Ċ θ̄ Ḋ, and θ̄ Ȧξα = f̄ Ȧα

CD θCθD, (2.49)

where the coefficients should display the symmetry properties contravariant to those
of the generators themselves, which means that we should have

f Aα̇
Ċ Ḋ = j2 f α̇A

Ċ Ḋ and f̄ Ȧα
CD = j f̄ α Ȧ

CD (2.50)

2.5 First Order Differential Calculus Over Z2 and Z3
Skew-Symmetric Algebras

Given an algebra generated by a finite number of generators, which are subjected
to relations, one can develop a first order differential calculus over this algebra. Our
aim in this section is to develop a first order differential calculus over Z2 and Z3

skew-symmetric algebras. We will use a coordinate first order differential calculus
proposed in [3].

Let us briefly remind a notion of a coordinate first order differential calculus over
an algebra. A first order differential calculus over an algebraA is a triple (A ,M , d),
where A is a unital associative algebra, M is A -bimodule and d : A → M is
a differential, i.e. linear mapping satisfying Leibniz rule. Let us denote by MR
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the right A -module of M . If algebra A is generated by a finite set of variables
x1, x2, . . . , xn which obey relations f α(x1, x2, . . . , xn) = 0, α = 1, 2, . . .m and
MR is freely generated by dx1, dx2, . . . , dxn , then a first order differential calculus
(A ,M , d) is called a coordinate first order differential calculus overA . In this case
one can introduce partial derivatives with respect to generators x1, x2, . . . , xn by
means of d f = dxk ∂ f

∂xk and prove that partial derivatives satisfy the twisted Leibniz
rule

∂

∂xk
( f g) = ∂ f

∂xk
g + Am

k ( f )
∂g

∂xk
, f, g ∈ A (2.51)

where a homomorphism A : A → Matn(A ) from an algebra A to the algebra of
square matrices of order n over A is defined by f dxk = dxm Ak

m( f ).
Assume that we have a first order differential calculus over an algebra generated

by variables x1, x2, . . . , xn which are subjected to relations f α(x1, x2, . . . , xn) =
0, where α = 1, 2, . . .m and f α(x1, x2, . . . , xn) are homogeneous polynomials of
variables x1, x2, . . . , xn . Then differentiating the both sides of relations with the help
of a differential d, we get a consistency conditions of algebra relations with a first
order differential calculus. Hence d f α = 0, and applying the definition of partial
derivatives we can write the consistency condition as follows

∂ f α

∂xk
= 0, k = 1, 2, . . . , n, α = 1, 2, . . . ,m. (2.52)

Let A be a unital associative algebra over C generated by x1, x2, . . . , xn . For
any triple of integers i, j, k, where 1 ≤ i ≤ j ≤ k ≤ n, we denote the symmetric
polynomial of the third degree by

f (i jk)(x) =
∑
S3

xi x j xk, (2.53)

where at the right-hand side of the above formula we mean the sum of products
generated by all permutations of i, j, k in xi x j xk , i.e

∑
S3

xi x j xk = xi x j xk + x j xk xi + xkxi x j + xkx j xi + x j xi xk + xi xk x j .

By analogy with the binary anti-commutator {a, b} = a · b + b · a it is useful in
ternary case to introduce a notion of ternary anti-commutator, but in this case for a
structure of ternary anti-commutator we have a choice between the whole group S3
of all permutations and its subgroup Z3 of cyclic permutations. Hence it is useful to
introduce two ternary anti-commutators
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{xi , x j , xk}S3 =
∑
S3

xi x j xk, (2.54)

{xi , x j , xk}Z3 =
∑
Z3

xi x j xk = xi x j xk + x j xk xi + xkxi x j . (2.55)

Making use of these notations we can write

f (i jk)(x) = {xi , x j , xk}S3 .

Obviously the polynomial f (i jk)(x) is invariant under any permutation of integers
i, j, k. An algebra A , whose generators x1, x2, . . . , xn obey the relations

f (i jk)(x) =
∑
S3

xi x j xk = xi x j xk + x j xk xi + xk xi x j + xk x j xi + x j xi xk + xi xk x j = 0,

(2.56)
will be referred to as a 3-Grassmann algebra. Nowour aim is to construct a coordinate
first order differential calculus (A ,M , d) over 3-Grassmann algebraA . To this end,
we assume that a differential d maps each generator xi to its differential dxi , the
right A -module MR is freely generated by the differentials dx1, dx2, . . . , dxn and
for any element f ∈ A we have f dxi = dx j Ai

j ( f ), where Ai
j are the entries of

a matrix of homomorphism of algebras A : A → Matn(A ). Making use of twisted
Leibniz rule for partial derivatives we compute

∂ f (i jk)

∂xl
=

∑
S3

δil x
j xk +

∑
S3

Ai
l (x

j ) xk +
∑
S3

Ai
l (x

j xk). (2.57)

It is worth to mention that A : A → Matn(A ) is a homomorphism of algebras and
the last term of the right-hand side of the above formula can be written as

Ai
l (x

j xk) = Am
l (x j ) Ai

m(xk),

where at the right-hand side we take a sum over m. Hence the entries of matrix of a
homomorphism A of first order differential calculus over 3-Grassmann algebra must
satisfy the condition

∑
S3

δil x
j xk +

∑
S3

Ai
l (x

j ) xk +
∑
S3

Ai
l (x

j xk) = 0. (2.58)

In this section we will consider first order noncommutative differential calculuses
over algebras, which are particular cases of 3-Grassmann algebra. Firstly we will
assume that for any pair of integers i, j there is a homogeneous polynomial g(i j)(x)
of second degree of generators x1, x2, . . . , xn such that

f (i jk)(x) = λ
i jk
lrs g

(lr)(x) a(s)(x) + μ
i jk
lrs b

(l)(x) g(rs)(x), (2.59)
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where a(s)(x), b(l)(x) are linear polynomials of generators and λ
i jk
lrs ,μ

i jk
lrs are complex

numbers. If for any pair of integers i, j we impose the condition g(i j)(x) = 0 on
generators of algebra, we get a particular case of 3-Grassmann algebra because from
(2.59) it follows directly that f (i jk)(x) = 0. Obviously in this case we get an algebra
with quadratic relations because polynomials g(i j)(x) are of second degree. A first
order differential calculus over an algebra with quadratic relations g(i j)(x) = 0 must
satisfy the conditions

∂g(i j)(x)

∂xk
= 0, (2.60)

which give the equations for the entries Ai
j of a matrix of homomorphism A, when

we know an exact form of polynomials g(i j)(x). Differentiating (2.59) we get

∂ f (i jk)(x)

∂xm
= λ

i jk
lrs

(∂g(lr)(x)

∂xm
a(s)(x) + Ap

m(g(lr)(x))
∂a(s)(x)

∂x p

)

+μ
i jk
lrs

(∂b(l)(x)

∂xm
g(i j)(x) + Ap

m(b(l)(x))
∂g(rs)(x)

∂x p

)
.

The quadratic relations of algebra g(i j)(x) = 0 implies A(g(i j)(x)) = 0, and together
with (2.60) it shows that the right-hand side of the above formula vanishes, which
means that calculus of partial derivatives over an algebra with quadratic relations
g(i j)(x) = 0 is consistent with a calculus of partial derivatives over a 3-Grassmann
algebra.

Secondly we will consider a particular case of 3-Grassmann algebra, where for
any triple of integers i, j, k there is a homogeneous polynomial g(i jk)(x) of third
degree of generators x1, x2, . . . , xn such that the basic polynomial of 3-Grassmann
algebra f (i jk)(x) can be represented as

f (i jk)(x) =
∑
S3

g(i jk)(x). (2.61)

Then requiring g(i jk)(x) = 0 (and assuming no quadratic relations between genera-
tors) we get a particular case of 3-Grassmann algebra whose generators are subjected
to cubic relations. Then

∂g(i jk)(x)

∂xl
= 0, (2.62)

will yield equations for the entries Ai
j of a homomorphism A, and, similarly to the

case of quadratic relations, guarantee a consistency of calculus of partial derivatives
over an algebra with cubic relations with a calculus of partial derivatives over a
3-Grassmann algebra.

Now we consider three particular cases of 3-Grassmann algebra and develop a
first order differential calculus over these algebras. We begin with a case of quadratic
relations. Let us denote the generators of algebra in the first case by ξ1, ξ2, . . . , ξn .
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For any pair of integers i, j let

g(i j)(ξ) = ξiξ j + ξ jξi .

Obviously each polynomial is homogeneous second degree polynomial symmetric
with respect to permutations of superscripts g(i j)(ξ) = g( j i)(ξ). Next it is easy to see
that this is particular case of (2.59) because

f (i jk)(ξ) =
∑
Z3

ξi g( jk)(ξ).

Consequently if we require g(i j)(ξ) = ξiξ j + ξ jξi = 0 then we get a particular case
of 3-Grassmann algebra, which is well known under the name of Grassmann algebra.
The Eq. (2.60), where unknowns are the entries Ai

j of matrix of a homomorphism A,
takes on the form

A j
k (ξ

i ) + Ai
k(ξ

j ) = −δik ξ j − δ
j
k ξi . (2.63)

It should be mentioned that (2.63) together with g(i j)(ξ) = 0 implies (2.58). Indeed
the first sum can be written as

∑
S3

δil ξ j ξk =
∑
Z3

δil g
( jk)(ξ) = 0,

the second by means of (2.63) can be put into the form

∑
S3

Ai
l (ξ

j ) ξk = −
∑
Z3

δil g( jk)(ξ) = 0,

and finally the third sum is

∑
S3

Ai
l (ξ

j ξk) =
∑
Z3

Ai
l (g

( jk)(ξ)) = 0.

It is natural for first order noncommutative differential calculus to seek a solution of
this equation in the form Ai

k(ξ
j ) = p δik ξ j , where p is a complex number. Substitut-

ing this into the above equation we get immediately p = −1. This solution induces a
well known calculus of partial derivatives over a Grassmann algebra, where a deriva-
tive of a monomial ξi1ξi2 . . . ξik (1 ≤ i1 < i2 < · · · < ik ≤ n) can be calculated by
means of the formula

∂

∂ξ j
(ξi1ξi2 . . . ξik ) =

∑
m

(−1)m−1δimj ξi1ξi2 . . . ξ̂im . . . ξik ,

and hat over a generator ξim means that this generator is omitted.
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In order to describe a next particular case of 3-Grassmann algebra with quadratic
relations we denote generators of algebra by η1, η2, . . . , ηn . Let j be a primitive 3rd
order root of unity. We define homogeneous second degree polynomials by

g(i j)(η) = ηiη j − j η jηi , i < j, (2.64)

g(i j)(η) = ηiη j − j−1 η jηi , i > j. (2.65)

Then for any triple of integers 1 ≤ i < j < k ≤ n we have

f (i jk)(η) = {ηi , η j , ηk}S3 = g(i j)(η) ηk + ηk g( j i)(η) + g(ik)(η) η j + η j g(ki)(η),

(2.66)
i.e. this is a particular case of (2.59), where

λ
i jk
lrs = δil δ j

r δks + δil δkr δ j
s , μ

i jk
lrs = δkl δ j

r δis + δ
j
l δkr δis .

Let us mention that the polynomials (2.64), (2.65) do not solve the basic relation of
3-Grassmann algebra (2.56) in the particular case of i = j = k (if two of them are
equal, for instant i = j < k, then the group of all permutations S3 reduces to the
group of cyclic permutations Z3 and the basic relation (2.56) is satisfied). Hence for
every generator ηi we have to add an additional relation (ηi )3 = 0 which guaran-
tees that (2.56) holds for any combination of generators. An algebra generated by
η1, η2, . . . , ηn with the relations

g(i j)(η) = 0, ⇒ ηiη j = j η jηi , (i < j), (ηi )3 = 0, (2.67)

is a generalized Grassmann algebra at cubic root of unity. Our aim is to show that
applying previously developed method of differential calculus over an algebra with
relations we can construct a differential calculus over a generalized Grassmann alge-
bra. We will do this in a most general form considering a generalized Grassmann
algebra generated by η1, η2, . . . , ηn , which obey the relations

ηiη j = q η jηi , (i < j), (ηi )N = 0, (2.68)

where q is a primitive N th root of unity. First the entries of the matrix of a homo-
morphism of first order differential calculus over a generalized Grassmann algebra
are given by

A j
k (x

i ) = 0 ( j �= k), A j
j (x

i ) = q xi (i < j), A j
j (x

i ) = q−1 xi (i > j). (2.69)

Differentiating the left-hand side of the relation (ηi )N = 0, applying the Leibniz rule
and the definition of a homomorphism A we get

d (ηi )N =
N−1∑
k=0

(ηi )k dηi (ηi )N−k−1 =
N−1∑
k=0

dηm Ai
m((ηi )k) (ηi )N−k−1.
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Substituting this into d(ηi )N = 0 we get for any integer m the equation

N−1∑
k=0

Ai
m((ηi )k) (ηi )N−k−1 = 0, (2.70)

which becomes an identity

(1 + q + q2 + · · · + qn−1) δik(η
i )n−1 ≡ 0,

if we extend the solution for first order differential calculus (2.69) to equal values of
superscripts by

Ai
k(η

i ) = q δikη
i . (2.71)

2.6 Graded Partial Derivatives

Analogously to the case of Grassmann algebra the solution (2.69) yields the calculus
of partial derivatives over a generalized Grassmann algebra, where a partial deriva-
tive of any monomial (ηi1)k1(ηi2)k2 . . . (ηim )km , 1 ≤ i1 < i2 < · · · < im ≤ n can by
calculated with the help of the formula

∂

∂η j

(
(ηi1 )k1 (ηi2 )k2 . . . (ηim )km

) =
m∑

r=1

q |kr |[kr ]q δirj (ηi1 )k1 (ηi2 )k2 . . . (ηir )kr−1 . . . (ηim )km ,

where [kr ]q = (1 + q + · · · + qkr−1), |kr | = k1 + k2 + · · · + kr−1.
Next we consider an algebra with cubic commutation relations. The generators of

this algebra we will denote by θ1, θ2, . . . , θN and for a superscript of a generator we
will use capital letters A, B,C, . . .. For any triple of integers A, B,C let us introduce
the polynomials

g(ABC)(θ) = θAθBθC − j θBθCθA, (2.72)

where j is a primitive cubic root of unity. These polynomials have the property

∑
Z3

g(ABC)(θ) = (1 − j)
∑
Z3

θAθBθC . (2.73)

From this we directly get

f (ABC)(θ) =
∑
S3

θAθBθC = 1

1 − j

(∑
Z3

g(ABC)(θ) +
∑
Z3

g(CBA)(θ)
)
.

If for any triple of integers A, B,C we impose the cubic relations g(ABC)(θ) = 0
then the previous relation implies f (ABC)(θ) = 0, and we conclude that our algebra
is a particular case of 3-Grassmann algebra. This algebra will be denoted by G , and
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it will be referred to as a 3-Grassmann algebra with cyclic commutation relations.
The explicit form of commutation relations of this algebra is

θAθBθC = j θBθCθA. (2.74)

We remind that it can be proved by means of cyclic commutation relations of alge-
bra that any product of four (or more than four) generators vanishes. Hence a 3-
Grassmann algebra with cyclic commutation relations is spanned by the monomials

1, θA, θAθB, (2.75)

θA(θB)2, (θA)2θB (A < B), (2.76)

θAθBθC , θCθBθA (A < B < C). (2.77)

Now our aim is to construct a first order differential calculus over this algebra.
To this end, we introduce the differentials of generators dθA, A = 1, 2, . . . , N and
a bimodule M over a 3-Grassmann algebra with cyclic commutation relations. We
defineM as a vector space spanned by all products f (θ) dθC h(θ), where f (θ), h(θ)
are two monomials from the set of linear independent monomials (2.75)–(2.77).
ObviouslyM can be considered as the bimodule overG . Next we define a differential
d : G → M by d(1) = 0, d(θA) = dθA and extend it to any monomial with the help
of Leibniz rule.

A differential calculus (G ,M, d)must be consistent with the cyclic commutation
relations (2.74). Differentiating these relations we get the consistency conditions

dθA(θBθC) + θAdθBθC + (θAθB)dθC

= j dθB(θCθA) + j θBdθCθA + j (θBθC) dθA. (2.78)

Assume that we wish to solve it by analogy with a differential calculus over an
algebra with quadratic relations supposing relations between generators and their
differentials

θA dθB = dθC φB
C(θA),

where φB
C(θA) are unknown entries of a matrix of homomorphism. Then the consis-

tency condition (2.78) takes on the form

δAEθBθC − j φA
E (θBθC ) + φB

E (θA)θC − j δBE θCθA + φCE (θAθB) − j φCE (θB)θA = 0.

A structure of differential calculus suggests that a general form for solution of this
equation should beφA

E (θB) = λAB
CDθD , whereλAB

CD are complex numbers. Substituting
this into consistency condition we get the equation for unknowns λAB

CD

δAEθBθC − j λDB
EL λAC

DK θLθK + λBA
EDθDθC − j δBE θCθA + λDA

EL λCB
DK θLθK − j λCB

EDθDθA = 0.

If we could solve this equation, this would mean that there are quadratic relations
between generators of 3-Grassmann algebra with cyclic relations, but it is worth
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to remind that in order to construct a 3-Grassmann algebra with cyclic relations we
proceed from the assumption that there are no quadratic relations between generators
θA. Thus in a case of differential calculus over 3-Grassmann algebra with cyclic
relations we have to use an approach different from the one used in a case of algebra
with quadratic relations.

The consistency condition (2.78) suggests thatwe have to assume ternary relations
between generators and their differentials analogous to the cyclic relations of algebra.
Indeed we can solve the consistency condition (2.78) by assuming the following
relations between the generators and their differentials

(θAθB) dθC = j2 dθC (θAθB), (2.79)

θA dθB θC = j dθB (θCθA). (2.80)

We see that these relations are very similar to the cyclic relations of generators.
Shortly for any ternary product of two generators and one differential of generator
any cyclic permutation of the factors in this product is accompanied by appearance of
the coefficient j . From this it immediately follows that any product of three generators
and one differential of generator vanishes. This can be proved in the same way as in
the case of generators. This is consistent with the structure of 3-Grassmann algebra
with cyclic relations because the only way to get a product of three generators and
one differential of generator by means of d is to apply a differential d to a product
of four generators, but any such product is zero.

Taking all this into account we conclude that the vector space of bimodule M is
spanned by the products

dθA,

dθA θB, θA dθB,

dθA θB θC , θA dθB θC , θAθB dθC ,

where there are no relations between binary products dθA θB, θA dθB , and ternary
products obey cyclic type relations (2.79), (2.80), which allow to choose a basis
for the vector space spanned by ternary products. It is important here that unlike a
coordinate differential calculus over an algebra with quadratic relations, in the case
of 3-Grassmann algebra with cyclic relations the right G -module of bimodule M
is not freely generated by differentials of generators. Hence the approach, which is
based on the assumption of freely generated right G -module, is not applicable in
the case of a 3-Grassmann algebra with cyclic commutation relations. But we can
slightly modify it in order to have partial derivatives over a 3-Grassmann algebra
with cyclic relations. Let f be an element of an algebra G . We say that the right (left)
partial derivatives of this element are defined if there exists an element g ∈ G such
that

d f · g = dθK · RK ( f, g)
(
g · d f = RK ( f, g) · dθK

)
, (2.81)
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where RK ( f, g) ∈ G . Then a right (left) partial derivative of an element f is defined
by

d f = dθK

−→
∂

∂θK
( f )

(
d f =

←−
∂

∂θK
( f ) dθK

)

and it is given by the implicit equation

−→
∂

∂θK
( f ) · g = RK ( f, g)

(
g ·

←−
∂

∂θK
( f ) = RK ( f, g)

)
. (2.82)

Particularly if g is invertible then one can solve the above equation by multiplying
both sides by g(−1) and get a derivative in an explicit form. Now we apply this
definition to the monomials (2.75)–(2.77) which form the basis for the vector space
of G . Obviously −→

∂

∂θK
(1) = 0,

−→
∂

∂θK
(θA) = δA

K ,

and the same for left partial derivatives. Next we consider a binary product θAθB .
According to a peculiar property of 3-Grassmann algebra with cyclic relations, there
are no relations between generators and their differentials, thus one can not write the
differential of a binary product of two generators d(θAθB) = dθA · θB + θA · dθB

in the form dθK · gK , gK ∈ G . But we can apply the above definition for partial
derivatives taking g = θC , and, making use of cyclic relations (2.79), (2.80), we
obtain

d(θAθB) · θC = dθA · θBθC + θA · dθB · θC = dθA · θBθC + j dθB · θCθA

= dθK · (δA
K θBθC + j δB

K θCθA).

From (2.81) it follows that RK ( f, g) = δA
K θBθC + j δB

K θCθA. Consequently the
right partial derivatives of any binary product of generators θAθB are defined, and
they are given by the implicit equation

−→
∂

∂θK
(θAθB) θC = δA

K θBθC + j δB
K θCθA. (2.83)

Analogously we find the left partial derivatives for binary products of generators

θC
←−
∂

∂θK
(θAθB) = δB

K θCθA + j2 δA
K θBθC . (2.84)

Thus

θC
←−
∂

∂θK
(θAθB) = j2

−→
∂

∂θK
(θAθB) θC . (2.85)
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Next we consider ternary products of generators. In this case we can take g ≡ 1, and
this means that we will obtain the partial derivatives (right and left) in an explicit
form. Indeed

d(θAθBθC) = dθA · θBθC + θA · dθB · θC + θAθB · dθC

= dθA · θBθC + j dθB · θCθA + j2 dθC · θAθB

= dθK ·(δA
K θBθC + j δB

K θCθA + j2 δCK θAθB
)
. (2.86)

Hence −→
∂

∂θK
(θAθBθC) = δA

K θBθC + j δB
K θCθA + j2 δCK θAθB, (2.87)

and analogously

←−
∂

∂θK
(θAθBθC) = δCK θAθB + j2 δB

K θCθA + j δA
K θBθC . (2.88)

Similarly to (2.85) in this case we have

←−
∂

∂θK
(θAθBθC) = j

−→
∂

∂θK
(θAθBθC). (2.89)

As in the case of Grassmann algebra and generalized Grassmann algebra, we see that
our calculus of partial derivatives is consistent with cyclic commutation relations of
a 3-Grassmann algebra. Indeed (2.87) and (2.88) show that in order to compute a
partial derivative of a triple product we put each generator of this product by means
of cyclic relations to the first position and then replace it with the corresponding
Kronecker symbol.

The relation (2.83) can be interpreted as an analog of j-twisted Leibniz rule for
right partial derivatives of binary product of generators. Indeed we can write it as
follows −→

∂

∂θK
(θAθB) θC =

−→
∂

∂θK
(θA)θB θC + j θC θA

−→
∂

∂θK
(θB), (2.90)

We would like to point out an essential and active role of a generator θC in differ-
entiation with respect to θK . Clearly θC can not be removed from this analog of
j-twisted Leibniz rule because the second term in (2.90) is obtained not only by car-
rying a partial derivative (with respect to θK ) through a generator θA (accompanied
by appearance of j) but also by moving a generator θC from the last position to the
first. In order to stress this peculiar property of j-twisted Leibniz rule (2.90) we write
it in the form

−→
∂

∂θK
(θAθB) θC =

−→
∂

∂θK
(θA)θBθC + j θA

−→
∂

∂θK
(θB) θC + j δB

K [θC , θA], (2.91)
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where [θC , θA] = θC θA − θA θC . The formula (2.91) clearly shows that an origin of
the peculiar form of Leibniz rule (which is not only j-twisted, but also involves in
non-trivial way in the orbit of its action a generator θC ) lies in our assumption about
absence of relations between binary products of generators.

Now making use of (2.83) we can write the formula for right partial derivative of
triple product (2.87) in a form of j2-twisted Leibniz rule

−→
∂

∂θK
(θAθBθC) =

−→
∂

∂θK
(θAθB) θC + j2 θAθB

−→
∂

∂θK
(θC).

It is worth tomention that there is no analog of Leibniz rule for right partial derivative
of a triple product θAθBθC if we split it into two parts as θA and θBθC . In this case
we have to use left partial derivatives. Indeed (2.84) and (2.88) give

←−
∂

∂θK
(θAθBθC) = θA

←−
∂

∂θK
(θBθC) + j

←−
∂

∂θK
(θA)θBθC .

2.7 Invariance Groups of Z2 and Z3 Skew-Symmetric
Algebras

Before discussing the merger of a Z2-graded algebra with a Z3-graded algebra, let
us explore the invariance properties of each type separately. First, let us ask what
kind of linear transformations preserves the ordinary Grassmann algebra spanned by
anti-commuting generators ξα (α = 1, 2, . . . n). Any linearly independent n com-
binations of anti-commuting variables ξα will span another anti-commuting basis:
indeed, if ηα′ = Sα′

β ξβ , and take on purely numerical values, i.e. do commute with
all other generators, then we can write

ηα′
ηδ′ = Sα′

α ξα Sδ′
δ ξδ = Sα′

α Sδ′
δ ξαξδ = −Sα′

α Sδ′
δ ξδξα = −Sδ′

δ ξδSα′
α ξα = −ηδ′

ηα′
(2.92)

Let us consider the simplest case of a Z2-graded algebra spanned by two generators
ξα,α,β = 1, 2. The anti-commutation property can be encoded in the invariant 2-
form εαβ . We can obviously write

εαβξαξβ = εβαξβξα = −εβαξαξβ,

from which we conclude that εαβ = −εβα. We can choose the basis in which

ε11 = 0, ε22 = 0, ε12 = −ε21 = 1.

After a change of basis, ξβ → Sα′
β ξβ = ηα′

the 2-form εαβ , as any tensor, also under-
goes the inverse transformation:

Sα
α′ S

β
β′ εαβ,
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with Sα
β′ the inverse matrix of the matrix Sβ′

β . Whatever non-singular linear trans-

formation Sβ
β′ is chosen, the new components εα′β′ remain anti-symmetric, but they

have not necessarily the same values as those of εαβ However, if we require that also
in new basis

ε1′1′ = 0, ε2′2′ = 0, ε1′2′ = −ε2′1′ = 1,

then it is easy to show that this imposes extra condition on the 2 × 2 matrix Sα′
β ,

namely that det S = 1. This defines the SL(2,C) group as the group of invariance
of the subalgebra spanned by two anti-commuting generators ξα, α,β, . . . = 1, 2.

Now let us turn to the invariance properties of the ternary subalgebra spanned by
two generators θ1, θ2, satisfying homogeneous cubic j-anticommutation relations
θAθBθC = j θBθCθA, and their conjugate counterparts θ̄1̇, θ̄2̇ satisfying homoge-
neous cubic j2 anti-commutation relations θ̄ Ȧθ̄ Ḃ θ̄Ċ = j2 θ̄ Ḃ θ̄Ċ θ̄ Ȧ.

We shall also impose binary constitutive relations between the generators θA and
their conjugate counterparts θ̄ Ḃ , making the choice consistent with the introduced
Z6-grading

θAθ̄ Ḃ = − j θ̄ ḂθA, θ̄ ḂθA = − j2 θAθ̄ Ḃ .

Consider a tri-linear form ρα
ABC . We shall call this form Z3-invariant if we can

write:

ρα
ABC θAθBθC = 1

3

[
ρα
ABC θAθBθC + ρα

BCA θBθCθA + ρα
CAB θCθAθB

]
=

= 1

3

[
ρα
ABC θAθBθC + ρα

BCA ( j2 θAθBθC) + ρα
CAB j (θAθBθC)

]
, (2.93)

by virtue of the commutation relations (2.19).
From this it follows that we should have

ρα
ABC θAθBθC = 1

3

[
ρα
ABC + j2 ρα

BCA + j ρα
CAB

]
θAθBθC , (2.94)

from which we get the following properties of the ρ-cubic matrices:

ρα
ABC = j2 ρα

BCA = j ρα
CAB . (2.95)

Even in this minimal and discrete case, there are covariant and contravariant
indices: the lower and the upper indices display the inverse transformation property.
If a given cyclic permutation is represented by a multiplication by j for the upper
indices, the same permutation performed on the lower indices is represented by
multiplication by the inverse, i.e. j2, so that they compensate each other.

Similar reasoning leads to the definition of the conjugate forms ρ̄α̇
Ċ Ḃ Ȧ

satisfying
the relations similar to (2.95) with j replaced be its conjugate, j2:
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ρ̄α̇
Ȧ ḂĊ = j ρ̄α̇

ḂĊ Ȧ = j2 ρ̄α̇
Ċ Ȧ Ḃ (2.96)

In the simplest case of two generators, the j-skew-invariant forms have only two
independent components:

ρ1121 = j ρ1211 = j2 ρ1112,

ρ2212 = j ρ2122 = j2 ρ2221,

and we can set
ρ1121 = 1, ρ1211 = j2, ρ1112 = j,

ρ2212 = 1, ρ2122 = j2, ρ2221 = j.

The constitutive cubic relations between the generators of the Z3 graded algebra
can be considered as intrinsic if they are conserved after linear transformations with
commuting (pure number) coefficients, i.e. if they are independent of the choice of
the basis.

Let U A′
A denote a non-singular N × N matrix, transforming the generators θA

into another set of generators, θB ′ = UB ′
B θB . In principle, the generators of the Z2-

graded subalgebra ξα may or may not undergo a change of basis. Uniting the two
subalgebras in one Z6-graded algebra suggests that a change of basis should concern
all generators at once, both ξα and θA, Thismeans that under the simultaneous change
of basis,

ξα → ξ̃β′ = Sβ′
α ξα, θA → θ̃B ′ = UB ′

A θA, (2.97)

It seems natural to identify the upper indices α,β appearing in the ρ-tensors with
the indices appearing in the generators ξα of the Z2-graded subalgebra. Therefore,
we are looking for the solution of the simultaneous invariance condition for the εαβ

and ρα
ABC tensors:

εα′β′ = Sα
α′ S

β
β′ εαβ, Sα′

β ρ
β
ABC = U A′

A U B ′
B UC ′

C ρα′
A′B ′C ′ , (2.98)

so that in new basis the numerical values of both tensors remain the same as before,
just like the components of the Minkowskian space-time metric tensor gμν remain
unchanged under the Lorentz transformations. Notice that in the last formula above,
(2.98), the matrix Sα′

α is the inverse matrix for Sα
α′ appearing in the transformation of

the basis ξβ .
Now, ρ1121 = 1, and we have two equations corresponding to the choice of values

of the index α′ equal to 1 or 2. For α′ = 1′ the ρ-matrix on the right-hand side is
ρ1

′
A′B ′C ′ , which has only three components,

ρ1
′
1′2′1′ = 1, ρ1

′
2′1′1′ = j2, ρ1

′
1′1′2′ = j,
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which leads to the following equation:

S1
′

1 = U1′
1 U2′

2 U1′
1 + j2U2′

1 U1′
2 U1′

1 + j U1′
1 U1′

2 U2′
1 = U1′

1 (U2′
2 U1′

1 −U2′
1 U1′

2 ), (2.99)

because j2 + j = −1. For the alternative choice α′ = 2′ the ρ-matrix on the right-
hand side is ρ2

′
A′B ′C ′ , whose three non-vanishing components are

ρ2
′

2′1′2′ = 1, ρ2
′

1′2′2′ = j2, ρ2
′

2′2′1′ = j.

The corresponding equation becomes now:

S2
′

1 = U2′
1 U1′

2 U2′
1 + j2U1′

1 U2′
2 U2′

1 + j U2′
1 U2′

2 U1′
1 = U2′

1 (U1′
2 U2′

1 −U1′
1 U2′

2 ), (2.100)

The two remaining equations are obtained in a similar manner. We choose now the
three lower indices on the left-hand side equal to another independent combination,
(212). Then the ρ-matrix on the left hand side must be ρ2 whose component ρ2212 is
equal to 1. This leads to the following equation when α′ = 1′:

S1
′

2 = U1′
2 U2′

1 U1′
2 + j2U2′

2 U1′
1 U1′

2 + j U1′
2 U1′

1 U2′
2 = U1′

2 (U1′
2 U2′

1 −U1′
1 U2′

2 ), (2.101)

and the fourth equation corresponding to α′ = 2′ is:

S2
′

2 = U2′
2 U1′

1 U2′
2 + j2U1′

2 U2′
1 U2′

2 + j U2′
2 U2′

1 U1′
2 = U2′

2 (U1′
1 U2′

2 −U2′
1 U1′

2 ). (2.102)

The determinant of the 2 × 2 complex matrix U A′
B appears everywhere on the right-

hand side
S2

′
1 = −U 2′

1 [det(U )]. (2.103)

The remaining two equations are obtained in a similar manner, resulting in the fol-
lowing:

S1
′

2 = −U 1′
2 [det(U )], S2

′
2 = U 2′

2 [det(U )]. (2.104)

The determinant of the 2 × 2 complex matrix U A′
B appears everywhere on the right-

hand side. Taking the determinant of the matrix Sα′
β one gets immediately

det (S) = [det (U )]3. (2.105)

However, the U -matrices on the right-hand side are defined only up to the phase,
which due to the cubic character of the covariance relations (2.99)–(2.104), and they
can take on three different values: 1, j or j2, i.e. the matrices j U A′

B or j2U A′
B satisfy

the same relations as the matricesU A′
B defined above. The determinant ofU can take

on the values 1, j or j2 if det (S) = 1.
Another reason to impose the unitarity condition is as follows. It can be derived

if we require the same behavior for the duals, ρDEF
β . This extra condition amounts

to the invariance of the anti-symmetric tensor εAB , and this is possible only if the
determinant ofU -matrices is 1 (or j or j2), because only cubic combinations of these
matrices appear in the transformation law for ρ-forms.
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We have determined the invariance group for the simultaneous change of the basis
in our Z6-graded algebra. However, these transformations based on the SL(2,C)

groups combined with complex representation of the Z3 cyclic group keep invariant
the binary constitutive relations between theZ2-graded generators ξα and the ternary
constitutive relations between the Z3-graded generators alone, without mentioning
their conjugates ξ̄α̇ and θ̄ Ḃ .

Let us put aside for the moment the conjugate Z2-graded variables, and concen-
trate our attention on the conjugate Z3-graded generators θ̄ Ȧ and their commutation
relations with θB generators, which we shall modify as:

θA θ̄ Ḃ = − j θ̄ Ḃ θA, θ̄ Ḃ θA = − j2 θA θ̄ Ḃ . (2.106)

A similar covariance requirement can be formulated with respect to the set of
2-forms mapping the quadratic θA θ̄ Ḃ combinations into a four-dimensional linear
real space.

It is easy to see, by counting the independent combinations of dotted and undot-
ted indices, that the symmetry (2.106) imposed on these expressions reduces their
number to four: (11̇), (1, 2̇), (2 1̇), (2, 2̇), the conjugate combinations of the type
( Ȧ B) being dependent on the first four because of the imposed symmetry properties.

Let us define two quadratic forms, πμ

AḂ
and its conjugate π̄

μ

Ḃ A

π
μ

AḂ
θAθ̄ Ḃ and π̄

μ

Ḃ A
θ̄ ḂθA. (2.107)

The Greek indices μ, ν . . . take on four values, and we shall label them 0, 1, 2, 3.
The four tensors π

μ

AḂ
and their hermitian conjugates π̄

μ

Ḃ A
define a bi-linear map-

ping from the product of quark and anti-quark cubic algebras into a linear four-
dimensional vector space, whose structure is not yet defined.

Let us impose the following invariance condition:

π
μ

AḂ
θAθ̄ Ḃ = π̄

μ

Ḃ A
θ̄ ḂθA. (2.108)

It follows immediately from (2.106) that

π
μ

AḂ
= − j2 π̄

μ

Ḃ A
. (2.109)

Such matrices are non-hermitian, and they can be realized by the following substi-
tution:

π
μ

AḂ
= j2 i σ

μ

AḂ
, π̄

μ

Ḃ A
= − j i σ

μ

Ḃ A
(2.110)

where σ
μ

AḂ
are the unit 2 matrix for μ = 0, and the three hermitian Pauli matrices

for μ = 1, 2, 3.
Again, we want to get the same form of these four matrices in another basis.

Knowing that the lower indices A and Ḃ undergo the transformation with matrices
U A′

B and Ū Ȧ′
Ḃ
, we demand that there exist some 4 × 4 matrices Λμ′

ν representing the
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transformation of lower indices by the matrices U and Ū :

Λμ′
ν πν

AḂ = U A′
A Ū Ḃ ′

Ḃ π
μ′

A′ Ḃ ′ , (2.111)

It is clear that we can replace the matrices πν
AḂ

by the corresponding matrices σν
AḂ

,
and this defines the vector (4 × 4) representation of the Lorentz group.

Thefirst four equations relating the 4 × 4 realmatricesΛμ′
ν with the 2 × 2 complex

matrices U A′
B and Ū Ȧ′

Ḃ
are as follows:

Λ0′
0 − Λ0′

3 = U 1′
2 Ū 1̇′

2̇ +U 2′
2 Ū 2̇′

2̇

Λ0′
0 + Λ0′

3 = U 1′
1 Ū 1̇′

1̇ +U 2′
1 Ū 2̇′

1̇

Λ0′
0 − iΛ0′

2 = U 1′
1 Ū 1̇′

2̇ +U 2′
1 Ū 2̇′

2̇

Λ0′
0 + iΛ0′

2 = U 1′
2 Ū 1̇′

1̇ +U 2′
2 Ū 2̇′

1̇

The next four equations relating the 4 × 4 real matrices Λμ′
ν with the 2 × 2 com-

plex matrices U A′
B and Ū Ȧ′

Ḃ
are as follows:

Λ1′
0 − Λ1′

3 = U 1′
2 Ū 2̇′

2̇ +U 2′
2 Ū 1̇′

2̇

Λ1′
0 + Λ1′

3 = U 1′
1 Ū 2̇′

1̇ +U 2′
1 Ū 1̇′

1̇

Λ1′
1 − iΛ1′

2 = U 1′
1 Ū 2̇′

2̇ +U 2′
1 Ū 1̇′

2̇

Λ1′
1 + iΛ1′

2 = U 1′
2 Ū 2̇′

1̇ +U 2′
2 Ū 1̇′

1̇

We skip the next two groups of four equations corresponding to the “spatial” indices
2 and 3, reproducing the same scheme as the last four equations with the space index
equal to 1.

It can be checked that now det (Λ) = [detU ]2
[
detŪ

]2
.

The group of transformations thus defined is SL(2,C), which is the covering
group of the Lorentz group.

With the invariant “spinorial metric” in two complex dimensions, εAB and ε Ȧ Ḃ

such that ε12 = −ε21 = 1 and ε1̇2̇ = −ε2̇1̇, we can define the contravariant compo-
nents πν AḂ . It is easy to show that the Minkowskian space-time metric, invariant
under the Lorentz transformations, can be defined as

gμν = 1

2

[
π

μ

AḂ
πν AḂ

]
= diag(+,−,−,−) (2.112)
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Together with the anti-commuting spinors ψα the four real coefficients defining a
Lorentz vector, xμ π

μ

AḂ
, can generate now the supersymmetry via standard definitions

of super-derivations. Let us then choose the matrices Λα′
β to be the usual spinor

representation of the SL(2,C) group, while the matrices U A′
B will be defined as

follows:

U 1′
1 = jΛ1′

1 , U 1′
2 = − jΛ1′

2 , U 2′
1 = − jΛ2′

1 , U 2′
2 = jΛ2′

2 , (2.113)

the determinant of U being equal to j2. Obviously, the same reasoning leads to
the conjugate cubic representation of SL(2,C) if we require the covariance of the
conjugate tensor

ρ̄
β̇

Ḋ Ė Ḟ
= j ρ̄

β̇

Ė Ḟ Ḋ
= j2 ρ̄

β̇

Ḟ Ḋ Ė
,

by imposing the equation similar to (2.98)

Λα̇′
β̇

ρ̄
β̇

Ȧ ḂĊ
= ρ̄α̇′

Ȧ′ Ḃ ′Ċ ′Ū
Ȧ′
Ȧ Ū Ḃ ′

Ḃ Ū Ċ ′
Ċ

. (2.114)

The matrix Ū is the complex conjugate of the matrixU , with determinant equal to j .
In conclusion, we have found the way to derive the covering group of the Lorentz

group acting on spinors via the usual spinorial representation, and on vectors via
the 4 × 4 real matrices. Spinors are obtained as a homomorphic image of tri-linear
combinations of three Z3-graded generators θA (or their conjugates θ̄ Ḃ). The Z3-
graded generators transform with matrices U (or Ū for the conjugates), but these
matrices are not unitary: their determinants are equal to j2 or j , respectively.

In our forthcoming paper we shall investigate similar Z6-graded generalization
extended to the differential forms dξα and dθB .
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