
Chapter 19
Ore Extensions of Function Algebras

Alex Behakanira Tumwesigye, Johan Richter and Sergei Silvestrov

Abstract In this article we consider the Ore extension algebra for the algebra A of
functions with finite support on a countable set. We derive explicit formulas for
twisted derivations on A, give a description for the centralizer of A, and the center
of the Ore extension algebra under specific conditions.
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19.1 Introduction

A topic of interest in the field of operator algebras is the connection between proper-
ties of dynamical systems and algebraic properties of crossed products associated to
them. More specifically the question when a certain canonical subalgebra is maxi-
mal commutative and has the ideal intersection property, that is, each non-zero ideal
of the algebra intersects the subalgebra non-trivially. For a topological dynamical
systems (X, σ ), one may define a crossed product C*-algebra C(X) �σ̃ Z where σ̃

is an automorphism of C(X) induced by σ . It turns out that the property known as
topological freeness of the dynamical system is equivalent to C(X) being a maximal
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commutative subalgebra of C(X) �σ̃ Z and also equivalent to the condition that
every non-trivial closed ideal has a non-zero intersection with C(X). An excellent
reference for this correspondence is [22]. For analogues, extensions and applications
of this theory in the study of dynamical systems, harmonic analysis, quantum field
theory, string theory, integrable systems, fractals and wavelets, see [1, 2, 4–6, 10,
11, 22].

For any class of graded rings, including gradings given by semigroups or even
filtered rings (e.g.Ore extensions), itmakes sense to askwhether the ideal intersection
property is related to maximal commutativity of the degree zero component. For
crossed product-like structures, where one has a natural action, it further makes
sense to ask how the above mentioned properties of the degree zero component are
related to properties of the action. These questions have been considered recently
for algebraic crossed products and Banach algebra crossed products, both in the
traditional context of crossed products by groups aswell as generalizations to crossed
products by groupoids and general categories [3, 8, 9, 12, 13, 15, 16, 20, 21].

Ore extensions constitute an important class of rings, appearing in extensions of
differential calculus, in non-commutative geometry, in quantum groups and algebras
and as a uniting framework for many algebras appearing in physics and engineering
models. An Ore extension of a ring R is an overring with a generator x satisfying
xr = σ(r)x + Δ(r), r ∈ R, for some endomorphism σ and a σ -derivation Δ.

This article aims at giving a description of the centralizer and the center of the
coefficient subalgebra A in the Ore extension algebra A[x, σ̃ ,Δ], where A is the
algebra of functions with finite support on a countable set X and σ̃ : A → A is an
automorphism of A that is induced by a bijection σ : X → X . A number of studies
on centralizers in Ore extensions have been carried out before in [14, 17, 18], but in
completely different settings to the one here.

In Sect. 19.2, we recall some notation and basic facts about Ore extensions used
through out the rest of the article. In Sect. 19.3, we give a description of twisted
derivations on the algebra of functions on a finite set from which it is observed that
there are no non trivial derivations on Rn. In Sect. 19.4, we give the description of the
centralizer of the coefficient algebraA and the center of theOre extensionA[x, σ̃ , 0].
In Sect. 19.5, we turn to the case when A is the algebra of functions on a countable
set with finite support, give a description for the centralizer and the center of the Ore
extension A[x, σ̃ , 0]. Sections19.6 and 19.7 are devoted to the special case of the
skew power series and the skew Laurent rings respectively.

19.2 Ore Extensions. Basic Preliminaries

For general references on Ore extensions, see for example, [7, 19]. For the conve-
nience of the reader, we recall the definition.

Let R be a ring, σ : R → R a ring endomorphism (not necessarily injective) and
Δ : R → R a σ -derivation, that is,



19 Ore Extensions of Function Algebras 447

Δ(a + b) = Δ(a) + Δ(b) and Δ(ab) = σ(a)Δ(b) + Δ(a)b

for all a, b ∈ R.

Definition 19.1 The Ore extension R[x, σ,Δ] is defined as the ring generated by
R and an element x /∈ R such that 1, x, x2, . . . form a basis for R[x, σ,Δ] as a left
R-module and all r ∈ R satisfy

xr = σ(r)x + Δ(r). (19.1)

Such a ring always exists and is unique up to isomorphism [7].
FromΔ(1 ·1) = σ(1) ·Δ(1)+Δ(1) ·1 we get thatΔ(1) = 0, and since σ(1) = 1

we see that 1R will be the multiplicative identity for R[x, σ,Δ] as well.
If σ = idR , then we say that R[x, idR,Δ] is a differential polynomial ring. If

instead Δ ≡ 0, then we say that R[x, σ, 0] is a skew polynomial ring. The reader
should be aware that some authors use the term skew polynomial ring to mean Ore
extensions.

An arbitrary non-zero element P ∈ R[x, σ,Δ] can be written uniquely as P =∑n
i=0 ai x

i for some n ∈ Z≥0, with ai ∈ R for i ∈ {0, 1, . . . , n} and an �= 0. The
degree of P is defined as deg(P) := n. We set deg(0) := −∞.

Definition 19.2 A σ -derivation Δ is said to be inner if there exists some a ∈ R
such that Δ(r) = ar − σ(r)a for all r ∈ R. A σ -derivation that is not inner is called
outer.

Given a ring S we denote its center by Z(S). The centralizer C(T ), of a subset
T ⊆ S is defined as the set of elements of S that commute with every element of T .
If T is a commutative subring of S and the centralizer of T in S coincides with T ,
then T is said to be a maximal commutative subring of S.

19.3 Derivations on Algebras of Functions on a Finite Set

Let X = [n](= {1, 2, . . . , n}) be a finite set and let A = { f : X → R} denote the
algebra of real-valued functions on X with respect to the usual pointwise operations,
that is, pointwise addition, scalar multiplication and pointwise multiplication. By
writing fn := f (n), then we can identify A with Rn. Here, Rn is equipped with
the usual operations of pointwise addition, scalar multiplication and multiplication
defined by

xy = (x1y1, x2y2, . . . , xn yn)

for every x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).
Now, let σ : X → X be a bijection such that A is invariant under σ , (that is σ is

a permutation on X ) and let σ̃ : A → A be the automorphism induced by σ, that is
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σ̃ ( f ) = f ◦ σ−1 (19.2)

for every f ∈ A. We would like to consider the Ore extension A[x; σ̃ , Δ] where Δ

is a σ̃ -derivation on A and x is an indeterminate.
Recall that Δ is a σ̃ derivation on A if it is R−linear and for every f, g ∈ A,

Δ( f g) = σ̃ ( f )Δ(g) + Δ( f )g.

Since A can be identified with Rn , then Δ is an operator on Rn which can be repre-
sented by a matrix,

[Δ] = [Δ(e1)|Δ(e2)| · · · |Δ(en)], Δ(ei ) =

⎡

⎢
⎢
⎢
⎣

k1i
k2i
...

kni

⎤

⎥
⎥
⎥
⎦

(19.3)

where {e1, e2, . . . , en} is the standard basis of Rn. In the following Theorem we give
the description of the matrix [Δ] in (19.3) above.

Theorem 19.1 Let σ : X → X be a bijection and let Δ be a σ̃ -derivation whose
standard matrix

[
Δ
]
is as given by (19.3). Then

1. kli = 0 if l /∈ {i, σ (i)},
2. kii = 0 if i = σ(i),
3. k ji = −k j j for all i �= j = σ(i).

Proof 1. If σ(i) = j , then σ̃ (ei ) = e j , where σ̃ is as defined by (19.2) and
{ei , i = 1, 2, . . . , n} is the standard basis for Rn. Therefore from the definition
of Δ,

Δ(e2i ) = σ̃ (ei )Δ(ei ) + Δ(ei )ei
= e jΔ(ei ) + Δ(ei )ei
= Δ(ei )(e j + ei ).

Now e2i = ei and hence

Δ(ei ) = Δ(ei )(ei + e j ) = ei kii + e j k ji .

Therefore, kli = 0 whenever l �= i, j.
2. If i = σ(i), then

ei kii = 2ei kii ,

and hence kii = 0.
3. For i �= j = σ(i), Δ(ei e j ) = Δ(0) = 0 and hence
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0 = Δ(ei e j )

= σ̃ (ei )Δ(e j ) + Δ(ei )e j
= e jΔ(e j ) + Δ(ei )e j

= e j
(
Δ(e j ) + Δ(ei )

)
.

Looking at the j th component we get

k j j + k ji = 0 or k ji = −k j j . �

Corollary 19.3.1 There are no non zero derivations on A.

Proof If σ̃ = id, that is, σ̃ (ei ) = ei and i = σ(i), i = 1, 2, . . . , n, then from
Theorem19.1, it follows that ki j = 0 for all i �= j , and kii = 0 for all i = 1, 2, . . . , n.
Therefore, Δ = 0. �

Example 19.3.1 Let n = 3 and let σ : [3] → [3] be a permutation such that
σ(1) = 2, σ (2) = 3 and σ(3) = 1. Then

σ̃ ( f )(1) = f
(
σ−1(1)

)
= f (3)

σ̃ ( f )(2) = f
(
σ−1(2)

)
= f (1)

σ̃ ( f )(3) = f
(
σ−1(3)

)
= f (2)

Therefore σ̃ (x1, x2, x3) = (x3, x1, x2). Let

[Δ] =
⎡

⎣
k11 k12 k13
k21 k22 k23
k31 k32 k33

⎤

⎦

be the standard matrix forΔ and let x = (x1, x2, x3) and y = (y1, y2, y3) be arbitrary
vectors in R3. Then

σ̃ (x)Δ(y) =
⎡

⎣
x3
x1
x2

⎤

⎦

⎡

⎣
k11y1 + k12y2 + k13y3
k21y1 + k22y2 + k23y3
k31y1 + k32y2 + k33y3

⎤

⎦

=
⎡

⎣
k11x3y1 + k12x3y2 + k13x3y3
k21x1y1 + k22x1y2 + k23x1y3
k31x2y1 + k32x2y2 + k33x2y3

⎤

⎦
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Δ(x)y =
⎡

⎣
k11x1 + k12x2 + k13x3
k21x1 + k22x2 + k23x3
k31x1 + k32x2 + k33x3

⎤

⎦

⎡

⎣
y1
y2
y3

⎤

⎦

=
⎡

⎣
k11x1y1 + k12x2y1 + k13x3y1
k21x1y2 + k22x2y2 + k23x3y2
k31x1y3 + k32xx y3 + k33x3y3

⎤

⎦

σ̃ (x)Δ(y)+Δ(x)y =
⎡

⎣
k11(x1y1 + x3y1) + k12(x2y1 + x3y2) + k13(x3y1 + x3y3)
k21(x1y2 + x1y1) + k22(x1y2 + x2y2) + k23(x1y3 + x3y2)
k31(x2y1 + x1y3) + k32(x2y2 + x2y3) + k33(x2y3 + x3y3)

⎤

⎦ .

Also,

Δ(xy) =
⎡

⎣
k11 k12 k13
k21 k22 k23
k31 k32 k33

⎤

⎦

⎡

⎣
x1y1
x2y2
x3y3

⎤

⎦

=
⎡

⎣
k11x1y1 + k12x2y2 + k13x3y3
k21x1y1 + k22x2y2 + k23x3y3
k31x1y1 + k32x2y2 + k33x3y3

⎤

⎦ .

Therefore, from
Δ(xy) = σ̃ (x)Δ(y) + Δ(x)y

we get
k11x3y1 + k12(x2y1 + x3y2 − x2y2) + k13x3y1 = 0,

from which we obtain, k13 = −k11 and k12 = 0.
Similarly, we obtain k21 = −k22, k23 = 0, and k31 = 0, k32 = −k33 which is

agreement with the assertions of Theorem19.1.
Setting k11 = s, k22 = t and k33 = u we obtain the matrix of Δ as;

[Δ] =
⎡

⎣
s 0 −s

−t t 0
0 −u u

⎤

⎦ .

In the next Theorem, we prove that if σ̃ : Rn → Rn is an automorphism of Rn

and Δ : Rn → Rn is an operator on Rn that satisfies the conditions of Theorem19.1,
then Δ is a σ̃ -derivation.

Theorem 19.2 Let σ : X → X be a bijection on X and let σ̃ : Rn → Rn be the
automorphism induced by σ. Let Δ : Rn → Rn be linear operator whose standard
matrix

[
Δ
]
has the following properties

1. kli = 0 if l /∈ {i, σ (i)},
2. k ji = −k j j , for i �= j = σ(i),
3. kii = 0 if i = σ(i).
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Then Δ is a σ̃ -derivation.

Proof We first do the proof for the standard basis {e1, e2, . . . , en} of Rn. Recall that
if σ(i) = j then σ̃ (ei ) = e j . From the definition of Δ,

Δ(ei ) =

⎡

⎢
⎢
⎢
⎣

k1i
k2i
...

kni

⎤

⎥
⎥
⎥
⎦

where kli = 0 for all l �= i, j and k ji = −k j j .

Now, for i �= j, Δ(ei e j ) = Δ(0) = 0. And

σ̃ (ei )Δ(e j ) + Δ(ei )e j = e jΔ(e j ) + Δ(ei )e j

= e j
(
Δ(e j ) + Δ(ei )

)
.

All the components in the above vector are zero except the j th component which is
given by

k j j + k ji = k j j − k j j = 0.

Also, Δ(e2i ) = Δ(ei ), (since e2i = ei ), and

σ̃ (ei )Δ(ei ) + Δ(ei )ei = e jΔ(ei ) + Δ(ei )ei
= Δ(ei )(ei + e j ),

where all the components in the above vector are zero except the i th and j th com-
ponent. That is (assuming i < j)

σ̃ (ei )Δ(ei ) + Δ(ei )ei =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
...

kii
0
...

k ji

0
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Δ(ei ).

Therefore, Δ is a σ̃ -derivation on the standard basis vectors.
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Now let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be arbitrary vectors in Rn.

Then

x =
n∑

i=1

xi ei and y =
n∑

j=1

y j e j

and

xy =
n∑

i, j=1

xi y j ei e j .

Using the fact that both σ̃ and Δ are R−linear we have;

Δ(xy) = Δ

⎛

⎝
n∑

i, j=1

xi y j ei e j

⎞

⎠

=
n∑

i, j=1

Δ
(
xi y j ei e j

)

=
n∑

i, j=1

xi y jΔ
(
ei e j

)

=
n∑

i, j=1

xi y j
(
σ̃ (ei )Δ(e j ) + Δ(ei )e j

)

=
n∑

i, j=1

xi y j σ̃ (ei )Δ(e j ) +
n∑

i, j=1

xi y jΔ(ei )e j

=
(

n∑

i=1

xi σ̃ (ei )

)⎛

⎝
n∑

j=1

y jΔ(e j )

⎞

⎠ +
(

n∑

i=1

xiΔ(ei )

)⎛

⎝
n∑

j=1

y j e j

⎞

⎠

=
(

σ̃

(
n∑

i=1

xi ei

))⎛

⎝Δ

⎛

⎝
n∑

j=1

y j e j

⎞

⎠

⎞

⎠ +
(

Δ

(
n∑

i=1

xi ei

))⎛

⎝
n∑

j=1

y j e j

⎞

⎠

= σ̃ (x)Δ(y) + Δ(x)y.

Therefore Δ is a σ̃ -derivation on Rn. �

19.4 Centralizers in Ore Extensions for Functional
Algebras

Consider the Ore extension A[x, σ̃ ,Δ], that is, the algebra
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A
[
x, σ̃ ,Δ

] :=
{

m∑

k=0

fk x
k, : fk ∈ A

}

with the operations of pointwise addition, scalar multiplication, and multiplication
given by the relation

x f = σ̃ ( f )x + Δ( f )

for every f ∈ A.

Our interest is to give a description of the centralizer C(A), of A in the Ore
extension A[x, σ̃ ,Δ] where σ̃ and Δ are as described before. Using the notation
introduced in [14], we define functions π l

k : A → A, for k, l ∈ Z as follows;
π0
0 = id. If m, n are nonzero integers such that m > n or atleast one of the integers

is negative, then πn
m = 0. For the other remaining cases,

πn
m = σ̃ ◦ πn−1

m−1 + Δ ◦ πn−1
m .

It has been proven in [14] that an element
∑m

k=0 fk xk ∈ A[x, σ̃ ,Δ] belongs to the
centralizer of A if and only if

g fk =
m∑

j=k

f jπ
j
k (g) (19.4)

holds for all k ∈ {0, 1, . . . ,m} and all g ∈ A.

Observe that since A is commutative, then the centralizer C(A) of A is also
commutative and hence a maximal commutative subalgebra of A[x, σ̃ ,Δ].

19.4.1 Centralizer for the Case Δ = 0

In this section we treat the simplest case when Δ = 0. Recall that σ̃ acts like a
permutation of the elements ofA and since [n] is a finite set, then σ̃ is of finite order.
Before we give the description, we need the following definition.

Definition 19.3 For any nonzero n ∈ Z, set

Sepn(X) = {x ∈ X | x �= σ n(x)},
Pern(X) = {x ∈ X | x = σ n(x)}.

Observe that σ̃ n(h)(x) �= h(x) if and only if σ n(x) �= x for every x ∈ X and every
h ∈ A. We give the description of the centralizer in the following theorem.

Theorem 19.3 The centralizer C(A), ofA in the Ore extensionA
[
x, σ̃ ,Δ

]
is given

by
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C(A) =
{

m∑

k=0

fk x
k such that fk = 0 on Sepk(X)

}

.

Proof From Eq. (19.4) and the fact thatΔ = 0,we see that an element
∑m

k=0 fk xk ∈
A[x, σ̃ ,Δ] belongs to the centralizer of A if and only if

g fk = fk σ̃
k(g)

for every k = 0, 1, . . . ,m and every g ∈ A. That is,

g(x) fk(x) = fk(x)σ̃
k(g)(x) (19.5)

for every x ∈ X. Since A is commutative, then Eq. (19.5) will hold if and only if
x ∈ Perk(X) or fk = 0. Therefore, the centralizer C(A), of A will be given by

C(A) =
{

m∑

k=0

fk x
k : fk ∈ A where fk = 0 on Sepk(X)

}

.

�

19.4.2 Centralizer for the Case Δ �= 0

Now, suppose σ̃ �= id is of order j ∈ Z>0, that is σ̃ j = id but σ̃ k �= id for all
k < j . In the next Theorem, we state a necessary condition for an element in the Ore
extension to belong to the centralizer.

Theorem 19.4 If an element of degree m,
∑m

k=0 fk xk ∈ A[x, σ̃ ,Δ] belongs to the
centralizer of A, then fm = 0 on Sepm(X).

Proof As already stated an element
∑m

k=0 fk xk ∈ A[x, σ̃ ,Δ] belongs to the cen-
tralizer of A if and only if for every g ∈ A

g fk =
m∑

j=k

f jπ
j
k (g)

for k = 0, 1, . . . ,m. Looking at the leading coefficient we have

g fm = fmπm
m (g) = fm σ̃m(g) (19.6)

Since A is commutative, then Eq. (19.6) holds on Perm(X) and on Sepm(X),

Eq. (19.6) holds if and only if fm = 0. �
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The above condition is not sufficient to describe all the elements that belong to
the centralizer of A. In the next example we show that conditions satisfied by all
elements in the centralizer of A are actually quite complicated even for the case
when n = 2.

Example 19.4.1 Let n = 2 and let σ : [n] → [n] be a bijection on [n]. We already
know that if σ = id, then Δ = 0 so we will consider the case σ �= id, that is
σ̃ (e1) = e2 and σ̃ (e2) = e1. In this case, Δ has a standard matrix given by

[Δ] =
[
s −s

−t t

]

for some s, t ∈ R with s, t �= 0.
A direct calculation shows that an element f x ∈ A[x, σ̃ ,Δ] belongs to the

centralizer of A if and only if f = 0. So we consider a monomial of degree 2.

Let f =
(
f1
f2

)

x2 ∈ A[x, σ̃ ,Δ] be an element in the centralizer of A. Then, if

g =
(
g1
g2

)

∈ A, we have,

g f =
(
g1
g2

)(
f1
f2

)

x2 =
(
g1 f1
g2 f2

)

x2.

On the other hand, using the fact that for every g ∈ A,

x2g = σ̃ 2(g)x2 +
[
Δ(σ̃ (g)) + σ̃

(
Δ(g)

)]
x + Δ2(g)

and since σ̃ 2 = id we have,

f g =
(
f1
f2

)(
g1
g2

)

x2 +
(
f1
f2

)[(
s −s

−t t

)(
g2
g1

)

+ σ̃

((
s −s

−t t

)(
g1
g2

))]

x

+
(
f1
f2

)(
s2 + st −(s2 + st)

−(st + t2) st + t2

)(
g1
g2

)

.

=
(
f1g1
f2g2

)

x2 +
[(− f1(s + t)(g1 − g2)

f2(s + t)(g1 − g2)

)]

x +
[

f1(s2 + st)(g1 − g2)
− f2(st + t2)(g1 − g2)

]

Solving f g = g f and looking at the coefficient of x2, we get that f1, f2 are free
variables and hence the centralizer C(A) is non trivial. In the more general case, we
have the following.

As already seen, an element
∑m

k=0 fk xk ∈ A[x, σ̃ ,Δ] belongs to the centralizer
of A if and only if for every g ∈ A

g fk =
m∑

j=k

f jπ
j
k (g)
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for k = 0, 1, . . . ,m.

Looking at the constant term and using the fact that π j
0 (g) = Δ j (g) we have;

g f0 =
m∑

j=0

f jπ
j
0 (g)

= f0g +
m∑

j=1

f jΔ
j (g)

from which we obtain that
m∑

j=1

f jΔ
j (g) = 0. (19.7)

Now, for any g ∈ A, g =
(
g1
g2

)

, we have

Δ j (g) = Δ j

(
g1
g2

)

=

⎡

⎢
⎢
⎣

(g1 − g2)
∑ j

k=0

(
j − 1
k

)

s j−k tk

−(g1 − g2)
∑ j

k=0

(
j − 1
k

)

skt j−k

⎤

⎥
⎥
⎦ .

Therefore, from Eq. (19.7), we have

⎡

⎢
⎢
⎣

(g1 − g2)
∑m

j=1 f j1
∑ j

k=0

(
j − 1
k

)

s j−k tk

−(g1 − g2)
∑m

j=0 f j2
∑ j

k=0

(
j − 1
k

)

skt j−k

⎤

⎥
⎥
⎦ =

[
0
0

]

.

Since Eq. (19.7) should hold for every g ∈ A, then we have

⎡

⎢
⎢
⎣

∑m
j=1 f j1

∑ j
k=0

(
j − 1
k

)

s j−k tk

∑m
j=0 f j2

∑ j
k=0

(
j − 1
k

)

skt j−k

⎤

⎥
⎥
⎦ =

[
0
0

]

. (19.8)

Since s, t �= 0, then from Eq. (19.8), we have

⎡

⎢
⎢
⎣

∑m
j=1 f j1

∑ j−1
k=0

(
j − 1
k

)

s j−k−1t k

∑m
j=0 f j2

∑ j−1
k=0

(
j − 1
k

)

skt j−k−1

⎤

⎥
⎥
⎦ =

[
0
0

]

.

Observe that
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j∑

k=0

(
j − 1
k

)

s j−k−1t k =
j∑

k=0

(
j − 1
k

)

skt j−k−1.

Therefore we get a matrix equation of the form

[
f11 f21 f31 · · · fm1

f12 f22 f32 · · · fm2

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
s + t

s2 + 2st + t2

...
∑m−1

k=0

(
m − 1

k

)

sm−k−1t t

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
[
0
0

]

(19.9)

which always has nontrivial solutions if m � 2.

19.4.3 Center of the Ore Extension Algebra

In the following section, we give a description of the center of our Ore extension
algebra. We will give the description for the case Δ = 0.

Theorem 19.5 The center of the Ore extension algebra A[x, σ̃ , 0] is given by

Z
(
A[x, σ̃ , 0]) =

{
m∑

k=0

fk x
k : where fk = 0 on Sepk(X) and σ̃ ( fk) = fk

}

.

Proof Let f = ∑m
k=0 fk xk be an element in Z

(
A[x, σ̃ , 0]), then f ∈ C(A), that is

fk(x) = 0 for every x ∈ Sepk(x). Since the Ore extension A[x, σ̃ , 0] is associative,
it is enough to derive conditions under which x f = f x . Now

f x =
(

m∑

k=0

fk x
k

)

x =
m∑

k=0

fk x
k+1.

On the other hand,

x f = x
m∑

k=0

fk x
k

=
m∑

k=0

x fk x
k

=
m∑

k=0

σ̃ ( fk)x
k+1.
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From which we obtain that x f = f x if and only if σ̃ ( fk) = fk . Therefore,

Z
(
A[x, σ̃ , 0]) =

{
m∑

k=0

fk x
k : where fk = 0 on Sepk(x) and σ̃ ( fk) = fk

}

.

�

19.5 Infinite Dimensional Case

Let J be a countable subset of R and let A be the set of functions f : J → J
such that f (i) = 0 for all except finitely many i ∈ J. Then A is a commutative
non-unital algebra with respect to the usual pointwise operations of addition, scalar
multiplication and multiplication. For i ∈ J, let ei ∈ A denote the characteristic
function of i, that is

ei ( j) = χ{i}( j) =
{
1 if i = j

0 if i �= j.

Then every f ∈ A can be written in the form

f =
∑

i∈J

fi ei (19.10)

where fi = 0 for all except finitely many i ∈ J.
Let σ : J → J be a bijection and let σ̃ : A → A be the automorphism of A

induced by σ, that is,
σ̃ ( f ) = f ◦ σ−1

for every f ∈ A. We can still construct the non-unital Ore extension A[x, σ̃ ,Δ] as
follows

A[x, σ̃ ,Δ] :=
{

m∑

k=0

fk x
k where fk ∈ A

}

with addition and scalar multiplication given by the usual pointwise operations and
multiplication determined by the relation

( f x)g = σ̃ (g) f x + Δ(g)

where Δ is a σ̃ -derivation on A.

In the following Theorem, we state the necessary and sufficient conditions for
Δ : A → A to be a σ̃ -derivation on A.
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Theorem 19.6 Let σ : J → J be a bijection and let σ̃ : A → A be the automor-
phism induced by σ. A linear map Δ : A → A is a σ̃ -derivation on A, if and only
if, for every i ∈ J

1. Δ(ei ) = −Δ
(
eσ(i)

)
and

2. Δ(ei )(k) = 0 if k /∈ {
i, σ (i)

}

Proof SupposeΔ is a σ̃ -derivation onA and let σ(i) = j, then σ̃ (ei ) = e j . If i �= j,
then,

Δ(ei e j ) = Δ(0) = 0.

On the other hand,

Δ(ei e j ) = σ̃ (ei )Δ(e j ) + Δ(ei )e j

= e j
(
Δ(e j ) + Δ(ei )

)
.

That is, for every k ∈ J,

Δ(ei e j )(k) =
[
e j
(
Δ(ei ) + Δ(e j )

)]
(k)

=
{

Δ(ei ) + Δ(e j ) if k = j

0 if k �= j.

Therefore, since Δ(ei e j ) = 0, then Δ(ei ) = −Δ(e j ).
Also, for any k ∈ J

Δ(e2i )(k) = (
σ̃ (ei )Δ(ei ) + Δ(ei )ei

)
(k)

= Δ(ei )(e j + ei )(k)

= 0 if k /∈ {i, j}.

Conversely, suppose Δ : A → A is a R−linear map which satisfies conditions (1)
and (2) for some bijection σ : J → J of J . We prove that Δ is σ̃ -derivation on A.

Suppose σ(i) = j and consider the characteristic functions ei , e j for i �= j. Since
Δ is a linear map,

Δ(ei e j ) = Δ(0) = 0.

On the other hand,

σ̃ (ei )Δ(e j ) + Δ(ei )e j = e jΔ(e j ) + Δ(ei )e j

= e j
(
Δ(e j ) + Δ(ei )

)

= 0.

Therefore
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Δ(ei e j ) = σ̃ (ei )Δ(e j ) + Δ(ei )e j (19.11)

for i �= j and the same holds for i = j . The fact that Eq. (19.11) holds for every
f, g ∈ A follows from linearity of both σ̃ and Δ and Eq. (19.10). Therefore Δ is a
σ̃ -derivation. �

Remark 19.5.1 It can be seen from Theorem19.6 above that, if σ(i) = i for all
i ∈ J, then Δ = 0.

19.5.1 Centralizer forA

In this section,we give a description of the centralizerC(A) ofA, in theOre extension
A[x, σ̃ ,Δ] and the center of the Ore extension. SinceA is commutative, then by [14,
Proposition 3.3], if σ̃ is of infinite order, then A is maximal commutative, that is,
C(A) = A. Therefore we will focus on the case when σ̃ is of finite order. We do this
for two cases.

19.5.1.1 The Case Δ = 0

The following Theorem gives the description of the centralizer of A in the skew-
polynomial ring A[x, σ̃ , 0].
Theorem 19.7 The centralizer C(A), of A in the Ore extension A[x, σ̃ , 0] is given
by

C(A) =
{

m∑

k=0

fk x
k such that fk = 0 on Sepk(X)

}

where Sepk(X) is as defined in Definition19.3.

Proof Let f = ∑m
k=0 fk xk ∈ A[x, σ̃ , 0] be an element of degree m which belongs

to C(A). Then f g = g f should hold for every g ∈ A.

Now,

g f = g
m∑

k=0

fk x
k =

m∑

k=0

g fkx
k .

On the other hand,

f g =
(

m∑

k=0

fk x
k

)

g =
m∑

k=0

fk
(
xkg

)
=

m∑

k=0

fk σ̃
k(g)xk .

Therefore, g f = f g if and only if
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g fk = fk σ̃
k(g)

for all k = 0, 1, . . . ,m. Since A is commutative, then the above equation holds on
Perk(X). Therefore,

C(A) =
{

m∑

k=0

fk x
k such that fk = 0 on Sepk(X)

}

.

�

19.5.1.2 The Case Δ �= 0

Now, suppose σ̃ �= id is of order j ∈ Z>0, that is σ̃ j = id but σ̃ k �= id for all k < j .
In the next Theorem, whose proof is similar to Theorem19.4, we state a necessary
condition for an element in the Ore extension to belong to the centralizer.

Theorem 19.8 Let σ̃ : A → A be an automorphism onA. If an element of order m,∑m
k=0 fk xk ∈ A[x, σ̃ ,Δ] belongs to the centralizer ofA, then fm = 0 on Sepm(X).

19.5.2 Center ofA[x, σ̃ ,Δ] When Δ = 0

In the following section, we give a description of the center of our Ore extension
algebra. We will give the description for the case Δ = 0.

Theorem 19.9 Then the center of the Ore extension algebra A[x, σ̃ , 0] is given by

Z
(
A[x, σ̃ , 0]) =

{
m∑

k=0

fk x
k : where fk = 0 on Sepk(X) and σ̃ ( fk) = fk

}

.

Proof Observe that sinceA is not unital, the proof of Theorem19.5 does not work for
Theorem19.9, since the element x /∈ A[x, σ̃ , 0]. Therefore, we adopt the following
proof.

Denote A[x, σ̃ ,Δ] by R and let f = ∑m
k=0 fk xk ∈ Z(R). Then f ∈ C(A), that

is fk = 0 on Sepk(X). Now let g = ∑n
l=0 gl x

l be an arbitrary element in R. Then

f g =
(

m∑

k=0

fk x
k

)(
n∑

l=0

gl x
l

)

=
(
∑

k,l

fk(x
kgl)x

l

)

=
(
∑

k,l

fk σ̃
k(gl)x

k+l

)
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In the same way, it can be shown that

g f =
(

n∑

l=0

gl x
l

)(
m∑

k=0

fk x
k

)

=
∑

k,l

gl σ̃
l( fk)x

k+l .

It follows that f g = g f if and only if

fk σ̃
k(gl) = gl σ̃

l( fk). (19.12)

for all k = 0, 1, . . . ,m and all l = 0, 1, . . . , n. Now, fk = 0 on Sepk(X) and on
Perk(X), we have σ k = id. Therefore, Eq. (19.12) holds if and only if

fkgl = gl σ̃
l( fk)

for all l = 0, 1, . . . , n. Since A is commutative, we conclude that (19.12) holds iff
σ̃ ( fk) = fk . Therefore

Z
(
A
[
x, σ̃ , 0

]) =
{

m∑

k=0

fk x
k : where fk = 0 on Sepk(X) and σ̃ ( fk) = fk

}

.

�

19.6 The Skew Power Series Ring

As before, we let X = [n](= {1, 2, . . . , n}) be a finite set and letA = { f : X → R}
denote the unital algebra of real-valued functions on X with respect to the usual
pointwise operations. Let σ : X → X be a bijection such thatA is invariant under σ ,
(that is σ is a permutation on X ) and let σ̃ : A → A be the automorphism induced
by σ, that is

σ̃ ( f ) = f ◦ σ−1 (19.13)

for every f ∈ A.

Consider the skew ring of formal power series over A, A[x; σ̃ ]; that is the set
{ ∞∑

n=0

fnx
n such that fn ∈ A

}

with pointwise addition and multiplication determined by the relations

x f = σ̃ ( f )x .

That is, if f = ∑∞
n=0 fnxn and g = ∑∞

n=0 gnx
n are elements of A[x; σ̃ ], then
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f + g =
∞∑

n=0

(
fn + gn

)
xn

and

f g =
( ∞∑

n=0

fnx
n

)( ∞∑

n=0

gnx
n

)

=
∞∑

n=0

(
n∑

k=0

fk σ̃
k
(
gn−k

)
)

xn.

19.6.1 Centralizer ofA in the Skew Power Series Ring
A

[
x; σ̃

]

In the next Theorem, we give the description of the centralizer of A in the skew
power series ring A

[
x; σ̃

]
.

Theorem 19.10 The centralizer C(A), of A in the skew power series ring A[x; σ̃ ]
is given by

C(A) =
{
∑

n∈Z
fnx

n such that fn = 0 on Sepn(X)

}

where Sepk(X) is as given in Definition19.3.

Proof Let f = ∑∞
n=0 fnxn ∈ A[x; σ̃ ] be an element which belongs to C(A). Then

f g = g f should hold for every g ∈ A. Now,

g f = g
∞∑

n=0

fnx
n =

∞∑

n=0

g fnx
n .

On the other hand,

f g =
( ∞∑

n=0

fnx
n

)

g =
∞∑

n=0

fn
(
xng

) =
∞∑

n=0

fn σ̃
n(g)xn.

Therefore, g f = f g if and only if

g fn = fn σ̃
n(g)

for all n ∈ N. Since A is commutative, then the above equation holds on Pern(X).

Therefore,

C(A) =
{
∑

n∈Z
fnx

n such that fn = 0 on Sepn(X)

}

.

�
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19.6.2 The Center of the Skew Power Series Ring

The next Theorem gives the description of the center for the skew power series ring
A[x; σ̃ ].
Theorem 19.11 The center of the skew power series ring A[x; σ̃ ] is given by

Z
(
A[x; σ̃ ]) =

{ ∞∑

k=0

fnx
n : where fn = 0 on Sepn(X) and σ̃ ( fn) = fn

}

.

Proof Let f = ∑∞
n=0 fnxn be an element in Z

(
A
[
x; σ̃

])
. Then f ∈ C(A), that is

fn(x) = 0 for every x ∈ Sepn(x). SinceA[x; σ̃ ] is associative, it is enough to derive
conditions under which x f = f x . Now

f x =
( ∞∑

n=0

fnx
n

)

x =
∞∑

n=0

fnx
n+1.

On the other hand,

x f = x
∞∑

n=0

fnx
n

=
∞∑

n=0

x fnx
n

=
∞∑

n=0

σ̃ ( fn)x
n+1.

From which we obtain that x f = f x if and only if σ̃ ( fn) = fn. Therefore,

Z
(
A[x; σ̃ ]) =

{ ∞∑

n=0

fnx
n : where fn = 0 on Sepn(x) and σ̃ ( fn) = fn

}

.

�

19.7 The Skew-Laurent Ring A[x, x−1; σ̃ ]

The fact that σ̃ is an automorphism of A naturally leads us to the consideration of
the skew-Laurent ring A[x, x−1; σ̃ ].
Definition 19.4 Let R be a ring and σ an automorphism of R. By a skew-Laurent
ring R[x, x−1; σ ] we mean that
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1. R[x, x−1; σ ] is a ring, containing R as a subring,
2. x is an invertible element of R[x, x−1; σ ],
3. R[x, x−1; σ ] is a free left R−module with basis

{
1, x, x−1, x2, x−2, . . .

}
,

4. xr = σ(r)x,
(
and x−1r = σ−1(r)x−1

)
for all r ∈ R.

As before, we let X = [n](= {1, 2, . . . , n}) and let A = { f : X → R} denote
the unital algebra of real-valued functions on X with respect to the usual pointwise
operations. Let σ : X → X be a bijection such that A is invariant under σ , (that is
σ is a permutation on X ) and let σ̃ : A → A be the automorphism induced by σ, as
defined by Eq. (19.13).

Consider the skew-Laurent ring A[x, x−1; σ̃ ], that is the set
{
∑

n∈Z
fnx

n : fn ∈ A and fn = 0 for all except finitely many n

}

with pointwise addition and multiplication determined by the relations

x f = σ̃ ( f )x and x−1 f = σ̃−1x−1.

In the next Theorem, we give the description of the centralizer of A in the skew-
Laurent ring A[x, x−1; σ̃ ].
Theorem 19.12 The centralizer of A in the skew-Laurent extension A[x, x−1; σ̃ ]
is given by

C(A) =
{
∑

n∈Z
fnx

n : fn = 0 on Sepn(X)

}

where Sepk(X) is as given in Definition19.3.

Proof Let f = ∑
n∈Z fnxn ∈ A[x, x−1; σ̃ ] be an element which belongs to C(A).

Then f g = g f should hold for every g ∈ A. Now,

g f = g
∑

n∈Z
fnx

n =
∑

n∈Z
g fnx

n .

On the other hand,

f g =
(
∑

n∈Z
fnx

n

)

g =
∑

n∈Z
fn
(
xng

) =
∑

n∈Z
fn σ̃

n(g)xn.

Therefore, g f = f g if and only if

g fn = fn σ̃
n(g)
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for all n ∈ Z. Since A is commutative, then the above equation holds on Pern(X).

Therefore,

C(A) =
{
∑

n∈Z
fnx

n : fn = 0 on Sepn(X)

}

.

�
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