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Commutants in Crossed Product
Algebras for Piecewise Constant
Functions on the Real Line

Alex Behakanira Tumwesigye, Johan Richter and Sergei Silvestrov

Abstract In this paper we consider commutants in crossed product algebras, for
algebras of piece-wise constant functions on the real line acted on by the group of
integers Z. The algebra of piece-wise constant functions does not separate points of
the real line, and interplay of the action with separation properties of the points or
subsets of the real line by the function algebra become essential for many proper-
ties of the crossed product algebras and their subalgebras. In this article, we deepen
investigation of properties of this class of crossed product algebras and interplay with
dynamics of the actions.We describe the commutants and changes in the commutants
in the crossed products for the canonical generating commutative function subalge-
bras of the algebra of piece-wise constant functions with common jump points when
arbitrary number of jump points are added or removed in general positions, that is
when corresponding constant value set partitions of the real line change, and we give
complete characterization of the set difference between commutants for the increas-
ing sequence of subalgebras in crossed product algebras for algebras of functions
that are constant on sets of a partition when partition is refined.
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18.1 Introduction

An important direction of investigation for any class of non-commutative algebras
and rings, is the description of commutative subalgebras and commutative subrings.
This is because such a description allows one to relate representation theory, non-
commutative properties, graded structures, ideals and subalgebras, homological and
other properties of non-commutative algebras to spectral theory, duality, algebraic
geometry and topology naturally associated with commutative algebras. In represen-
tation theory, for example, semi-direct products or crossed products play a central
role in the construction and classification of representations using the method of
induced representations. When a non-commutative algebra is given, one looks for
a subalgebra such that its representations can be studied and classified more easily
and such that the whole algebra can be decomposed as a crossed product of this
subalgebra by a suitable action.

When one has found a way to present a non-commutative algebra as a crossed
product of a commutative subalgebra by some action on it, then it is important to
know whether the subalgebra is maximal commutative, or if not, to find a maximal
commutative subalgebra containing the given subalgebra. This maximality of a com-
mutative subalgebra and related properties of the action are intimately related to the
description and classification of representations of the non-commutative algebra.

Some work has been done in this direction [1–3] where the interplay between
topological dynamics of the action on one hand and the algebraic property of the
commutative subalgebra in theC∗–crossed product algebraC(X)�Z beingmaximal
commutative on the other hand are considered. In [1], an explicit description of
the (unique) maximal commutative subalgebra containing a subalgebra A of CX is
given. In [4], properties of commutative subrings and ideals in non-commutative
algebraic crossed products by arbitrary groups are investigated and a description of
the commutant of the base coefficient subring in the crossed product ring is given.
More results on commutants in crossed products and dynamical systems can be found
in [5, 6] and the references therein.

In this article, we consider commutants in crossed product algebras for algebras
of piece-wise constant functions on the real line. In [7], a description of the maximal
commutative subalgebra (commutant) of the crossed product algebra of the said
algebra with Z was given for the case where we have N fixed jumps and in [8],
a comparison of commutants for an increasing sequence of algebras with a finite
number of jumps added into one of the partition intervals was done. Here, we treat
a more general case, whereby starting with an algebra A of piecewise constant
functionswith N fixed jump points, we add a finite number of jumps, saym arbitrarily
and consider the algebra AS of piecewise constant functions with N + m jumps.
We derive a condition for the algebras A and AS to be invariant under a bijection
σ : R → R and compare the commutants A′ and A′

S.
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18.2 Definitions and a Preliminary Result

Let A be any commutative algebra. Using the notation in [1], let φ : A → A be any
algebra automorphism on A and define

A �φ Z := { f : Z → A : f (n) = 0 except for a finite number of n}.

Then [1] A �φ Z is an associative C–algebra with respect to point-wise addition,
scalar multiplication andmultiplication defined by twisted convolution, ∗ as follows;

( f ∗ g)(n) =
∑

k∈Z
f (k)φk(g(n − k)),

where φk denotes the k–fold composition of φ with itself for positive k and we use
the obvious definition for k ≤ 0.

Definition 18.1 A�φ Z as described above is called the crossed product algebra of
A and Z under φ.

A useful and convenient way of working with A �φ Z, is to write elements
f, g ∈ A �φ Z in the form f = ∑

n∈Z fnδn and g = ∑
n∈Z gmδm where

fn = f (n), gm = g(m) and

δn(k) =
{
1, if k = n

0, if k �= n.

In the sum
∑

n∈Z fnδn , we implicitly assume that fn = 0 except for a finite number of
n. Addition and scalar multiplication are canonically defined by the usual pointwise
operations and multiplication is determined by the relation

( fnδ
n) ∗ (gmδm) = fnφ

n(gm)δn+m (18.1)

where m, n ∈ Z and fn, gm ∈ A.

Definition 18.2 By the commutant A′ of A in B �φ Z, we mean

A′ := { f ∈ B �φ Z : f g = g f for every g ∈ A}.

Frequently the algebra B in the previous definition will be clear from context.
It has been proven [1] that the commutantA′ inA�φ Z is commutative and thus,

is the unique maximal commutative subalgebra containing A.
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18.2.1 Automorphisms Induced by Bijections

Now let X be any set and A an algebra of complex valued functions on X . Let
σ : X → X be any bijection such that A is invariant under σ and σ−1, that is for
every h ∈ A, h ◦ σ ∈ A and h ◦ σ−1 ∈ A. Then (X, σ ) is a discrete dynamical
system and σ induces an automorphism σ̃ : A → A defined by,

σ̃ ( f ) = f ◦ σ−1. (18.2)

Observe that since σ̃ = f ◦ σ−1, then σ̃ 2( f ) = σ̃ ( f ◦ σ−1) = ( f ◦ σ−1) ◦ σ−1 =
f ◦ σ−2 and in general σ̃ n( f ) = f ◦ σ−n for all n ∈ Z.

In [7], a description of the commutant ofA′ in the crossed product algebraA�σ̃ Z
for the case where A is the algebra of functions that are constant on the sets of a
partition was given. Below are some definitions and results that will be important in
our study. The proofs of the theorems can be found in [7] and the references in there.

Definition 18.3 For any nonzero n ∈ Z, let

SepnA(X) := {x ∈ X | ∃ h ∈ A : h(x) �= σ̃ n(h)(x)}, (18.3)

The following theorem has been proven in [1].

Theorem 18.1 The unique maximal commutative subalgebra of A �σ̃ Z that con-
tains A is precisely the set of elements

A′ =
{

∑

n∈Z
fnδ

n | for all n ∈ Z : fn|SepnA(X) ≡ 0

}
(18.4)

18.3 Commutants in Crossed Product Algebras for
Piecewise Constant Functions on the Real Line

Our aim is to compare commutants for algebras of piecewise constant functions
defined on a real line when jump points are added arbitrarily. First let’s state some
results already known.

Let A be the algebra of piece-wise constant functions f : R → R with N fixed
jumps at points t1, t2, . . . , tN . Partition R into N + 1 intervals I0, I1, . . . , IN where
Iα = (tα, tα+1) with t0 = −∞ and tN+1 = ∞. By looking at jump points as
intervals of zero length, we can write R = ⋃2N

α=0 Iα where Iα is as described above
for α = 0, 1, . . . N and IN+α = {tα} for α = 1, 2, . . . , N . Then every h ∈ A can be
written as

h(x) =
2N∑

α=0

aαχIα (x), (18.5)
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where χIα is the characteristic function of Iα and aα are some constants.
Let σ : R → R be any bijection on R such that A is invariant under σ . The

following lemma gives the necessary and sufficient conditions for (R, σ ) to be a
discrete dynamical system.

Lemma 18.1 The algebra A is invariant under both σ and σ−1 if and only if the
following conditions hold.

1. σ (and σ−1) maps each jump point tk, k = 1, . . . , N onto another jump point.
2. σ maps every interval Iα, α = 0, 1, . . . N bijectively onto any of the other

intervals I0, I1, . . . IN .

Remark 18.1 It is important to note that our algebras are isomorphic to certain
function algebras on finite sets, ie certain finite dimensional algerbras. Because of
the connection with other types of function algebras on the real line, explained in the
introduction, we prefer to phrase things in terms of the algebra of piecewise constant
functions. For more details of this isomorphism see [7, Remark 3.2].

Let σ : R → R be any bijection on R such thatA is invariant under σ , σ̃ : A → A

be the automorphism onA induced by σ , as given by (18.2) and consider the crossed
product algebraA�σ̃ Z. The following proposition gives the description of SepnA(R)

for any n ∈ Z.

Proposition 18.1 Let A be the algebra of piecewise constant functions on the real
line with N fixed jumps as described above and let σ : R → R be any bijection on
R such that A is invariant under σ (and σ−1). Let σ̃ : A → A be the automorphism
on A induced by σ . Then for every n ∈ Z,

SepnA(R) =
⋃

k�n

Ck, (18.6)

where

Ck :=
{
x ∈ R | k is the smallest positive integer such that ∃ Iα, such that x, σ k(x) ∈ Iα

for some α = 0, 1, . . . , 2N } . (18.7)

Theorem 18.2 Let A be the algebra of piece-wise constant functions f : R → R
with N fixed jumps at points t1, . . . , tN as described above, σ : R → R be any
bijection on R such that A is invariant under both σ and σ−1 and let σ̃ : A → A

be the automorphism on A induced by σ . Then the unique maximal commutative
subalgebra of A �σ̃ Z that contains A is given by,

A′ =
{

∑

n∈Z
fnδ

n | fn ≡ 0 on Ck for all n such that k � n

}
,

where Ck is as defined in (18.7).
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Proof It has been proven that the unique maximal commutative subalgebra A′, of
A �σ̃ Z that contains A is given by

A′ =
{

∑

n∈Z
fnδ

n | for all n ∈ Z : fn|SepnA(X) ≡ 0

}
. (18.8)

Therefore, comparing (18.6) and (18.8), we have;

A′ =
{

∑

n∈Z
fnδ

n | fn ≡ 0 on Ck for all n such that k � n

}
. (18.9)

Remark 18.2 The crossed product algebra A �σ̃ Z is a strongly Z–graded algebra
but the commutant A′ is Z–graded but not strongly Z–graded as can be seen from
the following observation.

Observe that we can write A′ as

A′ =
⊕

n∈Z
A′

n

where
A′

n = { fnδn : fn = 0 on SepnA(R)}.

Therefore, if fnδn ∈ A′
n and fmδm ∈ A′

m, then

fnδ
n ∗ fmδm = fn σ̃

n( fm)δn+m

will be zero on SepnA(R). Since Sepn+m
A � SepnA(R), we conclude that A′ is not

strongly Z–graded.

18.4 Jump Points Added Arbitrarily

Let A be the algebra of piece-wise constant functions f : R → R with N fixed
jumps at points t1, t2, . . . , tN . Partition R into N + 1 intervals I0, I1, . . . , IN where
Iα = (tα, tα+1) with t0 = −∞ and tN+1 = ∞. By looking at jump points as
intervals of zero length, we can write R = ∪Iα where Iα is as described above for
α = 0, 1, . . . N and IN+α = {tα} for α = 1, 2, . . . , N . Suppose S = {s1, . . . , sm} is
a set of points in R and letAS = At1,t2,...,tN ,s1,...,sm be an algebra of piecewise constant
functions on R with at most N + m fixed jumps at points t1, . . . , tN , s1, . . . , sm . We
want to do the following.

1. Derive conditions under which A and AS are both invariant under a bijection
σ : R → R.



18 Commutants in Crossed Product Algebras … 433

2. Derive an expression for SepnAS
(R) for any n ∈ Z, comparing it with SepnA(R)

and find the commutant A′
S.

18.4.1 A Condition for Invariance

Since A is a subalgebra of AS, invariance of both algebras under σ ensures that the
crossed product algebraA�σ̃Z is a subalgebra of the crossed product algebraAS�σ̃Z
and therefore we can compare the respective commutants A′ and A′

S, provided that
we understand A′ to mean the commutant of A in AS �σ̃ Z. The following Lemma
gives a condition under which the algebras A and AS are both invariant under a
bijection σ : R → R.

Lemma 18.2 Suppose that the jump points s1, . . . , sm are added into the intervals
Iα1 , . . . , Iαm respectively, that is, si ∈ Iαi for i = 1, . . . ,m. Let σ : R → R be a
bijection such that A and AS are both invariant under σ (and σ−1). Then

σ

(
m∪
i=1

Iαi

)
= m∪

i=1
Iαi (18.10)

Proof Suppose σ(Iαi ) = Iβ for some β /∈ {α1, . . . , αm}. Since si ∈ Iαi is a jump
point andAS is invariant under σ , then σ(si )must be a jump point. Therefore σ(si ) ∈
{t1, t2, . . . , tN }. Since A is invariant under σ, then σ({t1, . . . , tN }) = {t1, . . . , tN }.
Therefore, we have that σ({t1, . . . , tN , si }) = {t1, . . . , tN }, which contradicts bijec-
tivity of σ.

18.5 Finitely Many Jump Points Added

Suppose a finite number of jump points, s1, s2, . . . , sm are added into intervals, say
Iα1 , Iα2 , . . . , Iαr with r � m. Then either these jump points are added into the same
interval, say Iα0 or into different intervals.Asmentioned before, a detailed description
of the commutant for the case when jump points are added into the same interval
was done in [8]. Therefore we concentrate on the case when jump points are added
into different intervals.

18.5.1 Jumps Added into Different Intervals

Suppose that the jump points s1, s2, . . . , sm are added into distinct intervals, say,
Iα1 , Iα2 , . . . , Iαr , with r � m. As before, let A be the algebra of piecewise constant
functions with N fixed jumps at t1, . . . , tN and let AS denote the algebra of piece-
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wise constant functions with N + m fixed jumps at points t1, t2, . . . , tN , s1, . . . , sm .

Suppose σ : R → R is a bijection on R such the algebras A and AS are both invari-
ant under σ. Then by Lemma18.2, σ

(∪r
i=1 Iαi

) = ∪r
i=1 Iαi . However, we have the

following Lemma that gives the connection between the number of jump points that
can be added into intervals that belong to one cycle.

Lemma 18.3 Suppose p jump points are added into an interval Iα and q jump
points are added into an interval Iβ. If σ : R → R is a bijection on R such that AS

is invariant under σ and σ(Iα) = Iβ, then p = q.

Proof If there are p jump points in Iα and q jump points in Iβ and σ : R → R is a
bijection on R such that AS is invariant under σ, then by Lemma18.1, σ maps jump
points in Iα to jump points in Iβ. Since σ is a bijection, then the number of jump
points in Iα must be equal to the number of jump points in Iβ. Therefore, p = q.

18.5.2 A Comparison of the Commutants

Let

Ck :=
{
x ∈ R | k is the smallest positive integer such that ∃ Iα, such that x, σ k(x) ∈ Iα

for some α = 0, 1, . . . , 2N } .

Observe that such Ck consist of intervals, say Iα1 , . . . , Iαk that are mapped cyclically
onto each other. Lemma18.3 says that if we add p jump points into one of these
intervals, then we should add p jump points into each of these intervals. Also, note
that since we are adding p jump points, each of the intervals Iαi , i = 1, . . . , k will be
subdivided into 2p+1 new subintervals of the form I j

αi ,where I
j

αi = (sij−1, s
i
j ), j =

1, . . . , p + 1 with si0 = tαi , sip+1 = tαi+1, i = 1, . . . , k and I p+ j
αi = {sij }, j =

1 . . . , p. Also, let

C̃k :=
{
x ∈ Iαi | k is the smallest positive integer such that ∃ I jαi , such that x, σ k(x) ∈ I jαi

for some i = 0, . . . , 2p, j = 1, . . . , p} .

Lemma 18.4 Let x ∈ Iαi where Iαi ⊂ Ck. Suppose we add p jump points as
described above. Then x ∈ I j

αi ⊂ C̃kl for some l ∈ {1, 2, . . . , p + 1}.
Proof By invariance of A under σ, we have that σ maps the intervals Iαi , i =
1, . . . , k bijectively onto each other and since we are adding p jump points into each
interval Iαi , then each of these intervals is subdivided into 2p + 1 subintervals as
described before. By invariance ofAS under σ,we have that σ maps each of the jump
points sij ∈ Iαi onto another jump point. Since σ k(Iαi ) = Iαi for each i = 1, . . . , k,

then each jump point belongs to C̃kl for some l ∈ {1, 2, . . . , p}.
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Now consider the subintervals I j
αi = (sij−1, s

i
j ), i = 1, 2, . . . , p + 1. We know

that each Iαi is divided into p + 1 intervals of this form. Furthermore, invariance of
AS under σ implies that σ maps each of these intervals bijectively onto each other.
Since σ k(Iαi ) = Iαi , then each I j

αi ⊂ C̃kl for some l ∈ {1, 2, . . . , p + 1}.
From Lemma18.4, it can be seen that for those Ck which contain intervals where we
add p jump points,

Ck =
⋃

1�l�p+1

C̃kl . (18.11)

Using this and the fact that for any integers k, l, n with k �= 0, kl | n if and only
if l | n

k , we give the description of SepnAS
(R) and the commutant in the following

theorem, whose proof is a direct consequence of Lemma18.4 and Eqs. (18.6) and
(18.9).

Theorem 18.3 Suppose we add p jump points into each of the intervals in Ck . Then

SepnAS
(R) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

SepnA(R) if k � n

SepnA(R)
⋃

⎛

⎜⎝
p+1⋃
l=1
l� nk

C̃kl

⎞

⎟⎠ if k | n (18.12)

and the set difference of the commutants is given by

A′
S = A′ \

{
∑

n∈Z
fnδ

n : fn �= 0 on C̃kl for some l such that l �

n

k

}
. (18.13)

From (18.11), it can be seen that thoseCk which contain intervals can be decomposed
as a union of C̃kl . In the next Theorem, we state a necessary condition for subintervals
of a given interval Iαi ⊂ Ck to belong to C̃kl .

Theorem 18.4 For each l ∈ {1, 2, . . . , p + 1} let π(l) denote the number of subin-
tervals (of an interval Iαi ⊂ Ck) that belong to C̃kl . Then

1. l divides π(l) for all l and
2.

∑p+1
l=1 π(l) = p + 1.

If the two above conditions are satisfied then π counts the number of subintervals in
C̃kl for some σ and some choice of p jump points.

Proof Recall that, since we are adding p jump points into each of the intervals
Iαi , i = 1, . . . , k, each of these intervals is subdivided into p + 1 subintervals
(excluding the jump points). Therefore, from the definition of π(l),

p+1∑

l=1

π(l) = p + 1.
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Observe that an interval I j
αi ⊂ C̃kl if and only if σ kl(I j

αi ) = I j
αi . This means that there

are kl − 1 other intervals which, together with I j
αi , are permuted by σ. That is, C̃kl

contains cycles of subintervals (can be more than one cycle), of length kl that are
equally distributed into the intervals Iαi , i = 1, . . . , k. Therefore, l | π(l).

18.6 An Example with Two Jump Points Added

Suppose two jumppoints are added. Then these are either added into the same interval
Iα0 , say, or they are added into two different intervals, say, Iα1 and Iα2 . We treat the
two cases below.

18.6.1 Jump Points Added into the Same Interval

Suppose the two jump points are added into the same interval, say, Iα0 . Then this
interval will be partitioned into three new subintervals which, together with the
jump points, yields a new partition as follows. I 1α0

= (tα0 , s1), I 2α0
= (s1, s2), I 3α0

=
(s2, tα0+1), I 4α0

= {s1} and I 5α0
= {s2}.FromLemma18.2, we have thatAS is invariant

under a bijection σ : R → R if σ(Iα0) = Iα0 . Therefore Iα0 �⊂ SepnA(R) for any
n ∈ Z. Let

Ck :=
{
x ∈ R | k is the smallest positive integer such that ∃ Iα, such that x, σ k(x) ∈ Iα

for some α = 0, 1, . . . , 2N } . (18.14)

and let

C̃k :=
{
x ∈ Iα0 | k is the smallest positive integer such that ∃ I jα0 , such that x, σ k(x) ∈ I jα0

for some j = 1, . . . , 5} . (18.15)

Then it is easily seen that, for every n ∈ Z,

SepnAS
(R) = SepnA(R)

⋃ (
∪k�nC̃k

)
.

We treat the different cases below.

18.6.1.1 σ(I j
α0) = I j

α0 for all j = 1, 2, . . . , 5

In this case, I j
α0 ⊂ C̃1 for all j = 1, 2, . . . , 5 and hence I j

α0 �⊂ SepnAS
(R) for any

n ∈ Z. Therefore, for any n ∈ Z,
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SepnAS
(R) = SepnA(R)

and hence,
A′

S = A′

18.6.1.2 σ(I1α0
) = I2α0

, σ (I2α0
) = I1α0

and σ(I j
α0) = I j

α0, j = 3, 4, 5

In this case; I 1α0
, I 2α0

⊂ C̃2 and I 3α0
, I 4α0

, I 5α0
⊂ C̃1. Therefore I 1α0

, I 2α0
⊂ SepnAS

(R) for
every odd n ∈ Z. It should be noted that σ(Iα0) = Iα0 , therefore Iα0 �⊂ SepnA(R) for
every n ∈ Z. We deduce that, for every n ∈ Z,

SepnAS
(R) =

{
SepnA(R) if n is even

SepnA(R)
⋃ (

I 1α0
∪ I 2α0

)
if n is odd.

Therefore, the commutant A′
S is given by;

A′
S = A′ \

{
∑

n∈Z
fnδ

n | f2n+1 �= 0 on I 1α0
∪ I 2α0

}
.

The following cases produce similar results.

1. σ(I 1α0
) = I 3α0

, σ (I 3α0
) = I 1α0

and σ(I j
α0) = I j

α0 for j = 2, 4, 5.

2. σ(I 2α0
) = I 3α0

, σ (I 3α0
) = I 2α0

and σ(I j
α0) = I j

α0 for j = 1, 4, 5.

3. σ(I 4α0
) = I 5α0

, σ (I 5α0
) = I 4α0

and σ(I j
α0) = I j

α0 for j = 1, 2, 3.

18.6.1.3 σ(I1α0
) = I2α0

, σ (I2α0
) = I3α0

, σ (I3α0
) = I1α0

and σ(I j
α0) = I j

α0 for
j = 4, 5

In this case, I 4α0
, I 5α0

⊂ C̃1 and I 1α0
, I 2α0

, I 3α0
⊂ C̃3. Therefore I 1α0

, I 2α0
, I 3α0

⊂ SepnAS
(R)

for any n ∈ Z such that 3 � n. Therefore for every n ∈ Z,

SepnAS
(R) =

{
SepnA(R) if 3 | n
SepnA(R)

⋃ (
I 1α0

∪ I 2α0
∪ I 3α0

)
if 3 � n

and hence,

A′
S = A′ \

{
∑

n∈Z
fnδ

n | fn �= 0 on I 1α0
∪ I 2α0

∪ I 3α0
for all n such that 3 � n

}
.
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18.6.1.4 σ(I1α0
) = I2α0

, σ (I2α0
) = I3α0

, σ (I3α0
) = I1α0

, σ (I4α0
) = I5α0

and
σ(I5α0

) = I4α0

In this case, subintervals together with jump points are mapped cyclically by σ.

Therefore I 4α0
, I 5α0

⊂ C̃2 and I 1α0
, I 2α0

, I 3α0
⊂ C̃3. It follows that I 1α0

, I 2α0
, I 3α0

⊂
SepnAS

(R) for any n ∈ Z such that 3 � n and I 4α0
, I 5α0

⊂ SepnAS
(R) for every odd

n ∈ Z. Therefore for every n ∈ Z,

SepnAS
(R) =

⎧
⎪⎨

⎪⎩

SepnA(R) ∪ (
I 4α0

∪ I 5α0

)
if n is odd and 3 | n

SepnA(R)
⋃ (

I 1α0
∪ I 2α0

∪ I 3α0

)
if 3 � n

SepnA(R) otherwise

and hence,

A′
S = A′ \

({
∑

n∈Z
fnδ

n | fn �= 0 on I 1α0
∪ I 2α0

∪ I 3α0
for some n such that 3 � n

}
⋃

{
∑

n∈Z
fnδ

n | f2n+1 �= 0 on I 4α0
∪ I 5α0

})
.

18.6.2 Jump Points Added into Different Intervals

Suppose the jump points are added into two different intervals, says Iα1 = (tα1 , tα1+1)

and Iα2 = (tα2 , tα2+1), that is tα1 < s1 < tα1+1 and tα2 < s2 < tα2+1. By Lemma18.2,
σ

(
Iα1 ∪ Iα2

) = Iα1 ∪ Iα2 . Suppose each of the intervals Iαi is subdivided into subin-

tervals I j
αi , j = 1, 2, 3,where I 1αi

= (tαi , si ), I 2αi
= (si , tαi+1) and I 3αi

= {si }.Again,
let

Ck :=
{
x ∈ R | k is the smallest positive integer such that ∃ Iα, such that x, σ k(x) ∈ Iα

for some α = 0, 1, . . . , 2N } (18.16)

and let

C̃k :=
{
x ∈ Iαi | k is the smallest positive integer such that ∃ I jαi , such that x, σ k(x) ∈ I jαi

for some j = 1, . . . , 3} . (18.17)

Then, again it can easily be seen that, for every n ∈ Z,

SepnAS
(R) = SepnA(R)

⋃ (
∪k�nC̃k

)
.

In this case we have two important scenarios:
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1. σ(si ) = si for all i = 1, 2 or
2. σ(s1) = s2 and σ(s2) = s1.

These can be further subdivided into other cases and we treat these in the following
subsections.

18.6.2.1 σ(si ) = si, i = 1, 2 and σ(I j
αi ) = I j

αi for all j = 1, 2, 3

If σ(s1) = s1 and σ(s2) = s2, then σ(Iα1) = Iα1 and σ(Iα2) = Iα2 . If in addition
σ(I j

αi ) = I j
αi for all i = 1, 2 and j = 1, 2, 3, then all the new subintervals belong to

C̃1 and nothing changes in SepnA(R). That is SepnAS
(R) = SepnA(R) and hence

A′
S = A′.

18.6.2.2 σ(si ) = si for all i = 1, 2, σ(I1α1
) = I2α1

, σ (I1α2
) = I1α2

It can easily be seen that in this case, σ(I 2α1
) = I 1α1

and σ(I 2α2
) = I 2α2

. Therefore,

I 1α2
, I 2α2

, I 3α1
, I 3α2

⊂ C̃1 and I 1α1
, I 2α1

⊂ C̃2, and hence

SepnAS
(R) =

{
SepnA(R)

⋃ (
I 1α1

∪ I 2α1

)
if n is odd

SepnA(R) if n is even

and the commutant is given by

A′
S = A′ \

{
∑

n∈Z
fnδ

n | f2n+1 �= 0 on I 1α1
∪ I 2α1

}

Similar results can be obtained for the following cases.

1. σ(si ) = si for all i = 1, 2, σ(I 1α1
) = I 1α1

(⇒ σ(I 2α1
) = I 2α1

) and σ(I 1α2
) = I 2α2

(⇒
σ(I 2α2

) = I 1α2
).

2. σ(si ) = si for all i = 1, 2, σ(I 1α1
) = I 2α1

(⇒ σ(I 2α1
) = I 1α1

) and σ(I 1α2
) = I 2α2

(⇒
σ(I 2α2

) = I 1α2
).

18.6.2.3 σ(s1) = s2 (⇒ σ(s2) = s1)

This is only true if σ(Iα1) = Iα2 (and hence σ(Iα2) = Iα1 ). This implies that Iα1 , Iα2 ⊂
C2 and all the new subintervals belong either to C̃2 or to C̃4 as can be seen in the two
cases below.

1. σ(I 1α1
) = I 1α2

and σ(I 1α2
) = I 1α1

.

This implies that σ(I 2α1
) = I 2α2

and σ(I 2α2
) = I 2α1

. Therefore all the new subinter-
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vals belong to C̃2. Therefore I j
αi ⊂ SepnAS

(R) for any odd n and for all i = 1, 2
and all j = 1, 2, 3. Since Iα1 , Iα2 ⊂ SepnA(R) for any odd n ∈ Z, then, for any
n ∈ Z

SepnAS
(R) = SepnA(R)

and the commutants are the same in this case.
2. σ(I 1α1

) = I 1α2
, σ(I 2α2

) = I 2α1
, σ (I 2α1

) = I 2α2
and σ(I 2α2

) = I 1α1
. This implies that

the new subintervals are mapped cyclically onto each other and hence all of them
belong to C̃4. Therefore

SepnAS
(R) =

{
SepnA(R)

⋃ (
∪i, j I

j
αi

)
if 4 � n

SepnA(R) if 4 | n

and the commutant is given by

A′
S = A′ \

{
∑

n∈Z
fnδ

n | fn �= 0 on ∪i, j I
j

αi
for some n such that 4 � n

}

Remark 18.3 From the example of adding two jump points above, it can be seen
that quitemany cases to consider arise even by adding a small number of jump points.
Taking a close look at the example reveals that there are 6 distinct cases when two
jump points are added (cases 18.6.1.1 and18.6.2.1 are the same).

If we let p(n) denote the number of partitions of a positive integer n, then the
number of ways of distributing n jump points among intervals is p(n) (assuming
sufficiently many intervals). The case when we add k jump points into a C1 interval
in turn gives rise to p(k)p(k + 1) sub cases to consider. Clearly, these are too many
cases to write down, even for a small number of jump points added.

18.7 Comparison of Commutants for General Sets

Let X be any set, J a countable set and P = {Xi : i ∈ J } a partition of X, that is
X = ⋃

r∈J Xr where Xr �= ∅ for all r ∈ J and Xr ∩ Xr ′ = ∅ for r �= r ′. LetA be the
algebra of piecewise constant complex-valued functions on X and let σ : X → X
be a bijection. The following lemma, whose proof can be found in [7], gives the
conditions under which A is invariant under σ (and σ−1).

Lemma 18.5 The following properties are equivalent.

1. The algebra A is invariant under σ and σ−1.

2. For every i ∈ J there exists j ∈ J such that σ(Xi ) = X j .

Let A be invariant under a bijection σ : X → X , σ̃ : A → A the automorphism
induced by σ and consider the crossed product algebra A �σ̃ Z. It has been proven
[7] that the commutantA′ of the algebraA in the crossed product algebraA�σ̃ Z is
given precisely by
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A′ =
{

∑

n∈Z
fnδ

n : fn = 0 on Ck for all n, k such that k � n

}
, (18.18)

where

Ck :=
{
x ∈ X | k is the smallest positive integer such that ∃ Xi , such that x, σ k(x) ∈ Xi

for some i ∈ J } . (18.19)

Now, suppose each of the partition sets Xi is sub-partitioned into a finite disjoint
union of its subsets, that is, Xi = ⋃si

r=1 Xir where ∅ �= Xir ⊂ Xi for each Xir and
Xir ∩ Xir ′ = ∅ if r �= r ′. Let AS denote the algebra of piecewise constant functions
on the new partitions. It can easily be seen that A is a subalgebra of AS. We would
like to compare the commutants A′ and A′

S in the crossed product algebras A �σ̃ Z
and AS �σ̃ Z respectively, for a bijection σ : X → X. To do this, we must have
that both A and AS are invariant under σ. We give the conditions in the following
Lemma.

Lemma 18.6 Let A and AS be as described above and let σ : X → X be a
bijection on X such that both A and AS are invariant under σ. If Xi , X j ∈ P such
that Xi = ⋃si

k=1 Xik and Xi = ⋃s j
l=1 X jl , and σ(Xi ) = X j , then si = s j .

Proof Since σ(Xi ) = X j andAS is invariant under σ , then each set Xik in a partition
of Xi is mapped bijectively to a set, say X jk in the partition of X j . Since σ maps Xi

bijectively to X j , the the number of sets in the partition for Xi must be the same as
the number of sets in the partition for X j .

In what follows we make a comparison of the commutants of the algebrasA andAS.

We shall consider the following cases.

1. Only one of the partition sets, say Xi , is sub-partitioned into a union of, say, s
subsets, that is,

Xi =
s⋃

j=1

Xi j

which corresponds to adding a finite number of jump points in one partitioning
interval of the real line.

2. A finite number of partition sets X1, X2, . . . , Xk ⊂ Ck are each partitioned into
a union of, say, s subsets, that is

Xi =
s⋃

j=1

Xi j for each i = 1, 2, . . . , k.

This corresponds to adding jump points into different intervals on the real line.
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18.7.1 Partitioning One Set

Suppose a set, say X0, is partitioned into a finite union of, say s subsets, that is

X0 =
s⋃

j=1

X0 j

where X0 j �= ∅ for all j = 1, . . . , s and X0 j ∩ X0 j ′ = ∅ if j �= j ′. Then by
Lemma18.6, σ(X0) = X0, that is X0 ⊂ C1 where Ck is defined by (18.19).

Now, let

C̃k := {
x ∈ X0 | k is the smallest positive integer such that ∃ X0 j , such that

x, σ k(x) ∈ X0 j for some j ∈ {1, . . . , s}} . (18.20)

Then each X0 j ⊂ C̃k for some k ∈ {1, . . . , s}. Therefore, for every n ∈ Z,

SepnAS
(X) = SepnA(X)

⋃ (
∪k�nC̃k

)

and the comparison of the commutants is given by;

A′
S = A′ \

{
∑

n∈Z
fnδ

n : fn �= 0 on C̃k for some n, k such that k � n

}
.

18.7.2 Partitioning More Than One Set

Take sets X1, . . . , Xk ⊂ Ck , that is σ k(Xi ) = Xi for each i = 1, . . . , k. Since these
sets are mapped bijectively onto each other by σ, Lemma18.6 implies that each of
these sets must be partitioned as a union of the same number of subsets, that is

Xi =
s⋃

j=1

Xi j for each i = 1, . . . , s.

In the following Theorem, we give the comparison of the commutants.

Theorem 18.5 Suppose the sets X1, . . . , Xk ⊂ Ck are each partitioned into a finite
union of subsets as described above and σ : X → X is a bijection such that both A
and AS are invariant under σ. Then

A′
S = A′ \

{
∑

n∈Z
fnδ

n : fn �= 0 on C̃kl for some n, k, l such that l �

n

k

}
.
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where

C̃k := {
x ∈ Xi | k is the smallest positive integer such that ∃ Xi j , such that

x, σ k(x) ∈ Xi j for some j ∈ {1, . . . , s}} . (18.21)

Proof Recall that the commutant A′
S is given by

A′
S =

{
∑

n∈Z
fnδ

n : fn = 0 on SepnAS
(R)

}
.

By invariance of AS under σ, σ maps the sets Xi j bijectively onto each other. Since
each Xi ⊂ Ck for each i = 1, . . . , k, then each Xi j ⊂ C̃kl for some l ∈ {1, . . . , s},
where C̃k is given by (18.21).

Observe that SepnAS
(X) = SepnA(X) for all n such that k � n and for those n such

that k | n, we have

SepnAS
(X) = SepnA(X)

⋃
⎛

⎜⎜⎝
s⋃

l=1
l� nk

C̃kl

⎞

⎟⎟⎠ .

Therefore, the comparison of the commutants is given by

A′
S = A′ \

{
∑

n∈Z
fnδ

n : fn �= 0 on C̃kl for some n, k, l such that l �

n

k

}
.

Remark 18.4 1. For piecewise constant functions on the real line, adding s jump
points into one or more intervals corresponds to partitioning the interval/intervals
into 2s + 1 sub-intervals (recall that we consider jump points to be intervals of
zero length). Since we demand that jump points are mapped to jump points, each
of the new sub-intervals belongs to C̃kl for some l ∈ {1, . . . , s+1}. For example,
we do not have any new sub-intervals in say, C̃k(2s+1). However, if we partition
each of the sets X1, . . . , Xk ⊂ Ck into a union of 2s + 1 subsets it’s possible to
have some of the new subsets in C̃k(2s+1) (if σ maps the new subsets cyclically).

2. Also, in the general sets case, there is a possibility of having intervals in C∞,

where by C∞ we mean

C∞ := {x ∈ X : � j ∈ J such that x, σ k(x) ∈ X j for all k � 1}.

However, if two sets, say Xi , Xr ⊂ C∞ are each partitioned into a union of say
s subsets, that is

Xi =
s⋃

j=1

Xi j and Xr =
s⋃

j=1

Xr j ,



444 A. B. Tumwesigye et al.

then each of the new subsets Xi j , Xr j belong to C∞ and hence do not contribute
anything new to the commutant.
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