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Abstract The aim of the paper is to describe some ideas, approaches, comments,
etc. regarding the Dixmier Conjecture, its generalizations and analogues.
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17.1 The Jacobian Conjecture2n implies the Dixmier
Problemn

Using the inversion formula for automorphisms of theWeyl algebraswith polynomial
coefficients and the bound on its degree [4] (see also Sect. 17.2) a short algebraic
proof is given of the result of Tsuchimoto [28], A. Belov-Kanel and M. Kontsevich
[15] that JC2n implies DPn . The first part of Sect. 17.1 (i.e. before the short historical
comment) is identical to [3]. The second part of Sect. 17.1 is about recent progress
on the Dixmier Conjecture.

The Weyl algebra An = An(Z) is a Z-algebra generated by 2n generators
x1, . . . , x2n subject to the defining relations:

[xn+i , x j ] = δi j , [xi , x j ] = [xn+i , xn+ j ] = 0 for all i, j = 1, . . . , n,

where δi j is the Kronecker delta, [a, b] := ab − ba = (ada)(b). For a ring R,
An(R) := R ⊗Z An is the Weyl algebra over R.

• The Jacobian Conjecture (JCn): Given σ ∈ EndC−alg(C[x1, . . . , xn]) such that
det( ∂σ(xi )

∂x j
) ∈ C∗ := C\{0} then σ ∈ AutC(C[x1, . . . , xn]).
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• The Dixmier Problem (DPn), [18]: Is a C-algebra endomorphism of the Weyl
algebra An(C) an algebra automorphism?

Theorem 17.1.1 ([4] (The Inversion Formula)) Let K be a field of characteristic
zero. Then for each σ ∈ AutK (An(K )) and a ∈ An(K ),

σ−1(a) =
∑

α∈N2n

φσ

(
(∂ ′)α

α! a

)
xα,

where xα := (x ′
1)

α1 · · · (x ′
2n)

α2n , (∂ ′)α := (∂ ′
1)

α1 · · · (∂ ′
2n)

α2n , ∂ ′
i := ad(σ (xn+i )) and

∂ ′
n+i := −ad(σ (xi )) for i = 1, . . . , n, φσ := φ2nφ2n−1 · · ·φ1 where

φi :=
∑

k≥0

(−1)i
(σ (xi ))k

k! (∂ ′
i )
k .

Remark 17.1.2 This result was proved when K is a field of characteristic zero, but
by the Lefschetz principle it also holds for any commutative reduced Q-algebra.

Theorem 17.1.3 ([4]) Given σ ∈ AutK (An(K [x2n+1, . . . , x2n+m])) where K is a
commutative reduced Q-algebra. Then the degree

deg σ−1 ≤ (deg σ)2n+m−1

where deg(σ ) := max{deg(σ (xi )) | i = 1, . . . , 2n + m} and deg means the total
degree with respect to the canonical generators xi .

Theorem 17.1.4 ([15, 28]) JC2n ⇒ DPn.

Proof Let σ ∈ EndC−alg(An(C)).

Step 1. Let R be a finitely generated (over Z) Z-subalgebra of C generated by
the coefficients of the elements x ′

i := σ(xi ), i = 1, . . . , 2n. Localizing at finitely
many primes q ∈ Z one can assume that the ring Rp := R/(p) is a domain for all
primes p 	 0. Then σ ∈ EndR−alg(An(R)), x ′

i ∈ An(R) = R⊗Z An , and the centre
Z(An(R)) = R.

Step 2. From this moment on p ∈ Z is any (all) sufficiently large prime number
and Zp := Z/(p).

A(p) := An(R)/(p) 
 Rp ⊗Zp An(Zp) 
 Rp ⊗Zp Mpn (Zp[x p
1 , . . . , x p

2n])

 Mpn (Rp[x p

1 , . . . , x p
2n]) = Mpn (Cp)

where x p
i stands for x p

i + (p), and Mpn (Cp) is a matrix algebra (of size pn) with
coefficients from a polynomial algebra Cp := Rp[x p

1 , . . . , x p
2n] over Rp. The σ in-

duces an Rp-algebra endomorphism σp : A(p) → A(p), a + (p) �→ σ(a) + (p).
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Step 3. It follows from the inversion formula (Theorem17.1.1) andTheorem17.1.3
that

σ ∈ AutR(An(R)) ⇔ σp ∈ AutRp (A(p)) for all p 	 0.

Step 4. σp(Cp) ⊆ Cp (see [27]).

Step 5. Since A(p) 
 Mpn (Cp), Z(A(p)) = Cp, and σp(Cp) ⊆ Cp, it is obvious
that

σp ∈ AutRp (A(p)) ⇔ σp|Cp ∈ AutRp (Cp).

Step 6. Claim: σp(Cp) ⊆ Cp and JC2n imply σp|Cp ∈ AutRp (Cp).

Proof of the Claim. (i) (Cp, {·, ·}) is a Poisson algebra where

{a + (p), b + (p)} := [a, b]
p

(mod p)

is the canonical Poisson bracket on a polynomial algebra in 2n variables (a direct
computation, see [15, Lemma 4]) which is obviously σp-invariant.

(i i)

{±1} � σp(det({x p
i , x p

j })1≤i, j≤n) = det(σp({x p
i , x p

j }))
= det({σp(x

p
i ), σp(x

p
j )}) = det(J T ({x p

i , x p
j })J )

= det(J )2det({x p
i , x p

j })) = det(J )2 · (±1).

where J := (
∂σ(x p

i )

∂(x p
j )

)1≤i, j≤n . Hence, det(J ) ∈ {±1}. Only nowwe use the assumption

that JC2n holds: which implies σp|Cp ∈ AutRp (Cp). �

Historical comment. In Spring 2000, I mentioned the conjecture JC2n ⇒ DPn
in my talk ‘A question of Rentschler and the Dixmier problem’ at the Jussieu Math-
ematics Institute (Paris) based on [2]. We also discussed it during the lunch (K.
Adjamagbo and R. Rentschler). At the time (before 2000), I had an incomplete proof
of the conjecture JC2n ⇒ DPn , [13], based on completely different ideas (a gap
was found in the proof).

The Problem-Conjecture of Dixmier: recent progress. In 1982, it was proved
that a positive answer to the Problem-Conjecture of Dixmier for the Weyl algebra
An implies the Jacobian Conjecture for the polynomial algebra Pn in n variables, see
Bass, Connel and Wright [1]. In 2005, it was proved independently by Tsuchimoto
[28] and Belov-Kanel and Kontsevich [15], see also [3] for a short proof, that these
two problems are equivalent. The Problem-Conjecture of Dixmier can be formulated
as a question of whether certain modules M over the Weyl algebras are simple [2]
(recall that due to Inequality of Bernstein [16] each simple module over the Weyl
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algebra An has the Gelfand–Kirillov dimension which is one of the natural numbers
n, n+1, . . . , 2n−1; Bernstein and Lunts [17, 22] showed that ‘generically’ a simple
An-module has the Gelfand–Kirillov dimension 2n − 1). It is not obvious from the
outset that the modules M are even finitely generated. In 2001, giving a positive
answer to the Question of Rentschler about the Weyl algebra it was proved that the
modules M are finitely generated and have the smallest possible Gelfand–Kirillov
dimension, i.e. n (i.e. they are holonomic) and as the result they have finite length,
[2]. This means that the next step, as far as the Jacobian Conjecture and the Dixmier
Conjecture are concerned, is either to prove the conjectures or to give a counter-
example.

The set M and holonomic modules, [2]. A finitely generated An-module M is
called holonomic if GK (M) = n where GK is the Gelfand–Kirillov dimension.
Holonomic modules have many nice properties, one of them is that every holonomic
module has finite length.

Theorem 17.1.5 ([2, Theorem 1.3]) Let ϕ : An → An be an endomorphism of the
n’th Weyl algebra An and let M be a holonomic An-module. Then the An-module
ϕM is also holonomic, hence it has finite length.

By the algebra isomorphism

An → Aop
n , xi → xi , ∂i → −∂i , i = 1, . . . , n,

we can identify the Weyl algebra An with its opposite algebra Aop
n . Recall that

Aop
n = An , as vector spaces, but themultiplication in Aop

n is given by the rulea·b = ba
for all elements a, b ∈ An . An An-bimodule is a left module over the enveloping
algebra Ae

n := An ⊗ Aop
n and, in fact, is a left A2n-module since Ae

n 
 A2n (by the
isomorphism above). TheWeyl algebra An is a simple holonomic An-bimodule since

GK Ae
n
(An) = GK (An) = 2n = 4n

2
= GK (A2n)

2
= GK (Ae

n)

2
.

Let ϕ : An → An be an endomorphism of the n’thWeyl algebra An . By restriction of
scalars, we have the twisted An-bimodule ϕ An

ϕ . As a vector space, ϕ An
ϕ coincides

with An but the bimodule action is defined as follows:

a · x · b := ϕ(a)xϕ(b) for all a, x, b ∈ An.

The setM above is equal to {ϕ An
ϕ | ϕ is an endomorphism of the Weyl algebra An}.

The An-bimodule ϕ An
ϕ contains a simple An-bimodule ϕ(An), the image of the

endomorphism ϕ. So,

• The Dixmier Problem has a Positive Answer if and only if the An-Bimodule ϕ An
ϕ

is Simple for Each ϕ.

The next corollary shows that it has finite length (a good argument in favour of the
positive answer to the Dixmier Problem and the Jacobian Conjecture).
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Corollary 17.1.6 ([2, Corollary 1.4]) Let ϕ : An → An be an endomorphism of the
n’th Weyl algebra An. Then the An-bimodule ϕ An

ϕ is holonomic, that is

GK An⊗Aop
n
(ϕ An

ϕ) = 2n,

and it has finite length as An-bimodule.

Proof This follows immediately from Theorem17.1.5 applied to the Weyl algebra
A2n since ϕ An

ϕ is a holonomic An-bimodule which is obtained from the holonomic
An-bimodule An by restriction of scalars. �

Somewhat commutative algebras, the holonomicity is preserved under re-
striction of scalars.

Definition 17.1.7 A K -algebra R is called a somewhat commutative algebra if it has
a finite-dimensional filtration R = ∪i≥0 Ri such that the associated graded algebra

gr(R) :=
⊕

i≥0

Ri/Ri−1

is a commutative affine K -algebra where R−1 = 0 and R0 = K .

The somewhat commutative algebra R is a Noetherian affine algebra since gr(R)

is so. A finitely generated module over a somewhat commutative algebra has the
Gelfand–Kirillov dimension which is a natural number. The interested reader is
referred to the books [21, 24] for the properties of somewhat commutative algebras.

Definition 17.1.8 ([2]) For a somewhat commutative algebra R we define the holo-
nomic number,

h(R) := min{GK (M) | M �= 0 is a finitely generated R − module}.

Definition 17.1.9 ([2]) A finitely generated R-module M is called a holonomic
module if

GK (M) = h(R).

In other words, a nonzero finitely generated R-module is holonomic iff it has
minimal possible Gelfand–Kirillov dimension. If h(R) = 0 then every holonomic
R-module is finite-dimensional and vice versa.

Example 17.1.10 The holonomic number of the Weyl algebra An is n. The poly-
nomial algebra Pn := K [x1, . . . , xn] is equipped with the natural action of the ring
of differential operators An = K [x1, . . . , xn, ∂

∂x1
, . . . , ∂

∂xn
]. The polynomial algebra

Pn is a simple holonomic An-module and Pn 
 An/
∑n

i=1 An∂i where ∂i = ∂
∂xi

.
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Example 17.1.11 Let X be a smooth irreducible algebraic affine variety of dimen-
sion n. The ring of differential operators D(X) is a simple somewhat commutative
algebra of Gelfand–Kirillov dimension 2n with holonomic number h(D(X)) = n.
The algebraO(X) of regular functions of the variety X is a simple holonomicD(X)-
module with respect to the natural action of the algebraD(X). In more detail,

O(X) 
 D(X)/D(X)DerK (O(X))

where DerK (O(X)) is the O(X)-module of derivations of the algebra O(X).

The following theorem is one the main results of the paper [2]. The results above
can be easily obtained from this one.

Theorem 17.1.12 ((Holonomicity is Preserved under Restriction of Scalars) [2,
Theorem 1.5])
Let R and T be somewhat commutative algebras such that h(R) = h(T ) and let
ϕ : R → T be an algebra homomorphism. Then every holonomic T -module M, by
restriction of scalars, is a holonomic R-module and has finite length as R-module.

A counterexample to the Dixmier Conjecture for a localization of the Weyl
Algebra. Let k be the first Weyl skew field, that is the full quotient ring of the first
Weyl algebra A1 = 〈x, ∂, | ∂x − x∂ = 1〉. The K -subalgebra A1 of k generated by
x , ∂ and h−1, where h := ∂x , is isomorphic to the skew Laurent polynomial ring,

A1 = K [h, h−1, (h ± 1)−1, (h ± 2)−1, . . .][x, x−1; σ ], σ (h) = h − 1,

with coefficients from K [h, h−1, (h ± 1)−1, (h ± 2)−1, . . .], the localization of the
polynomial algebra K [h] at the multiplicatively closed subset S generated by {h +
i, i ∈ Z}. The algebra A1 is a simple affine Noetherian domain of Gelfand–Kirillov
dimension 3 (not 2 = GK (A1)). The algebra A1 is isomorphic to the localization
S−1A1 of the first Weyl algebra at S, and contains the algebra A1.

Theorem 17.1.13 ([2, Theorem 1.6]) EndK (A1) �= AutK (A1), since, for every nat-
ural number n ≥ 2, the endomorphism

τn : A1 → A1, x±1 → x±n, h → h

n
,

is not an automorphism, since

im(τn) = K [h, h−1, (h ± n)−1, (h ± 2n)−1, . . .][xn, x−n; σ n] �= A1.

The Dixmier Conjecture holds for elements that are sums of no more than
two homogeneous elements of A1. Recall that the Dixmier Conjecture says that
every endomorphism of the (first) Weyl algebra A1 (over a field of characteristic
zero) is an automorphism, i.e. if
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PQ − QP = 1

for some P, Q ∈ A1 then A1 = K 〈P, Q〉. The Weyl algebra

A1 =
⊕

i∈Z
A1,i

is a Z-graded algebra (A1,i A1, j ⊆ A1,i+ j for all i, j ∈ Z) where A1,0 = K [H ],
H = Y X and, for i ≥ 1, A1,i = K [H ]Xi and A1,−i = K [H ]Y i . For a nonzero
element a of A1, the number of nonzero homogeneous components is called the
mass of a, denoted by m(a). For example, m(αXi ) = 1 for all α ∈ K [H ] \ {0} and
i ≥ 1. Theorem17.1.14 shows that the Dixmier Conjecture holds if the elements P
and Q are sums of no more than two homogeneous elements of A1 and there is no
restriction on the total degrees of P and Q with respect to the canonical generators
x and ∂ of the Weyl algebra A1.

Theorem 17.1.14 ([14, Theorem1.1])Let P, Q be elements of the firstWeyl algebra
A1 with m(P) ≤ 2 and m(Q) ≤ 2. If [P, Q] = 1 then P = τ(Y ) and Q = τ(X)

for some automorphism τ ∈ AutK (A1).

Meaningof theProblem-Conjecture ofDixmier and theJacobianConjecture,
the groups of automorphisms. The groups of automorphisms of the polynomial
algebra Pn = P⊗n

1 , the Weyl algebra An = A⊗n
1 and the algebra

In := I⊗n
1 = K 〈x1, . . . , xn, ∂

∂x1
, . . . ,

∂

∂xn
,

∫

1
, . . . ,

∫

n
〉

of polynomial integro-differential operators (see [9] for details) are huge infinite-
dimensional algebraic groups. The groups of automorphisms are known only for
the polynomial algebras when n = 1 (trivial) and n = 2 (Jung (1942) [20] and
Van der Kulk (1953) [29]); and for the Weyl algebra A1 (Dixmier (1968) [18]) (in
characteristic p > 0, the group AutK−alg(A1) was found by Makar-Limanov (1984)
[23], see also [8] for further developments and another proof). In 2009, the group
Gn := AutK−alg(In) of automorphisms of the algebra In was found for all n ≥ 1, [10,
Theorem 5.5(1)]:

Gn = Sn � Tn
� Inn(In) ⊇ Sn � Tn

� GL∞(K ) � · · · � GL∞(K )︸ ︷︷ ︸
2n−1 times

,

G1 
 T1
� GL∞(K ),

where Sn is the symmetric group, Tn is the n-dimensional algebraic torus, Inn(In) is
the group of inner automorphisms of In (which is huge). The ideas and approach in
finding the groups Gn are completely different from that of Jung, Van der Kulk and
Dixmier: the Fredholm operators, K1-theory, indices. On the other hand, when we
look at the groups of automorphisms of the algebras P2, A1 and I1 (the only cases
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where we know explicit generators) we see that they have the ‘same nature’: they
are generated by affine automorphisms and ‘transvections.’

The Jacobian Conjecture and the Problem-Conjecture of Dixmier (if true) would
give the ‘defining relations’ for the infinite-dimensional algebraic groups of automor-
phisms as infinite-dimensional varieties in the same way as the condition det = 1
defines the special linear (finite-dimensional) algebraic group SLn(K ). If true the
conjectures would tell us nothing about generators of the groups of automorphisms
(i.e. about the solutions of the defining relations, in the same way and the defining
relation det = 1 tells nothing about generators for the group SLn(K )).

More obvious meaning of the Problem-Conjecture of Dixmier is that the Weyl al-
gebras An , which are simple infinite-dimensional algebras, behave like simple finite-
dimensional algebras (each algebra endomorphism of a simple finite-dimensional
algebra is, by a trivial reason, an automorphism). For a polynomial algebra Pn there
are plenty algebra endomorphisms that are not automorphisms. Recall that the Jaco-
bian Conjecture states that each algebra endomorphism σ of the polynomial algebra
Pn with the Jacobian Jac(σ ) := det( ∂σ(xi )

∂x j
) ∈ K ∗ := K\{0} is necessarily an auto-

morphism. The Jacobian condition is obviously holds for all automorphisms of Pn
and the Jacobian condition implies that σ is a monomorphism but not all monomor-
phisms satisfy the Jacobian condition. So, the Jacobian Conjecture (if true) means
that each algebra monomorphism of Pn which is as close as possible to be an auto-
morphism is, in fact, an automorphism.

The (JD) Conjecture. One can amalgamate the Jacobian Conjecture and the
Dixmier Conjecture into a single question, [4],

(JD): Is a K -algebra endomorphism σ : An ⊗ Pm → An ⊗ Pm an alge-

bra automorphism provided σ(Pm) ⊆ Pm and det
(

∂σ (xi )
∂x j

)
∈ K ∗ := K\{0}?

(Pm = K [x1, . . . , xm]).

The Theorem17.1.15 follows from the inversion formula.

Theorem 17.1.15 ([4,Corollary 2.5])The (JD)Conjecture, the JacobianConjecture
and the Dixmier Conjecture are equivalent.

Note that an algebra endomorphism σ of the algebra An ⊗ Pm satisfying σ(Pm) ⊆
Pm and det

(
∂σ (xi )
∂x j

)
∈ K ∗ is automatically an algebra monomorphism: σ |Pm is an

algebra monomorphism, it induces an algebra monomorphism, say σ , on the field
of fractions Qm of Pm , hence σ can be extended to an algebra endomorphism of the
simple algebra An ⊗ Qm , hence σ is an algebra monomorphism.
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17.2 The Inversion Formula for the Weyl Algebras, the
Polynomial Algebras and Their Tensor Products

In this section the following notationwill remain fixed (if it is not stated otherwise): K
is a field of characteristic zero (not necessarily algebraically closed), module means
a left module, An = ⊕

α∈N2n K xα is the n’th Weyl algebra over K (the commutator
[xn+i , x j ] = δi j , 1 ≤ i, j ≤ n, where δi j is the Kronecker delta), Pm = ⊕

α∈Nm K xα

is a polynomial algebra over K (in m variables x2n+1, . . . , x2n+m),

A := An ⊗ Pm =
⊕

α∈Ns

K xα, xα := xα1
1 · · · xαs

s , s := 2n + m,

is the Weyl algebra with polynomial coefficients where x1, . . . , xs are the canonical
generators of the algebra A.

Any K -algebra automorphism σ ∈ AutK (A) is uniquely determined by the ele-
ments

x ′
i := σ(xi ) =

∑

α∈Ns

λi,αx
α, λα, ∈ K , i = 1, . . . , s,

and so does its inverse,

σ−1(xi ) =
∑

α∈Ns

λ′
i,αx

α, i = 1, . . . , s.

Let A be an algebra over a field K and let δ be a K -derivation of the algebra A.
For any elements a, b ∈ A and a natural number n, an easy induction argument gives

δn(ab) =
n∑

i=0

(
n

i

)
δi (a)δn−i (b).

It follows that the kernel Aδ := ker δ of δ is a subalgebra (of constants for δ) of A
and the union of the vector spaces

N := N (δ, A) =
⋃

i≥0

Ni , Ni := ker(δi+1),

is a positively filtered algebra (Ni N j ⊆ Ni+ j for all i, j ≥ 0). Clearly, N0 = Aδ and
N = {a ∈ A | δn(a) = 0 for some natural n}.

A K -derivation δ of the algebra A is a locally nilpotent derivation if for each
element a ∈ A there exists a natural number n such that δn(a) = 0. A K -derivation
δ is locally nilpotent iff A = N (δ, A).

Given a ring R and its derivation d. The Ore extension R[x; d] of R is a ring
freely generated over R by x subject to the defining relations: xr = r x + d(r) for
all r ∈ R.
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R[x; d] =
⊕

i≥0

Rxi =
⊕

i≥0

xi R

is a left and right free R-module. Given r ∈ R, a derivation (ad r)(s) := [r, s] =
rs − sr of R is called an inner derivation of R.

Theorem 17.2.1 ([4, Theorem 2.2]) Let A be an algebra over a field K of character-
istic zero, δ be a locally nilpotent K -derivation of the algebra A such that δ(x) = 1
for some x ∈ A. Then the K -linear map φ := ∑

i≥0(−1)i x
i

i ! δ
i : A → A satisfies the

following properties:

1. φ is a homomorphism of right Aδ-modules.
2. φ is a projection onto the algebra Aδ:

φ : A = Aδ ⊕ x A → Aδ ⊕ x A, a + xb �→ a, where a ∈ Aδ, b ∈ A.

In particular, im(φ) = Aδ and φ(y) = y for all y ∈ Aδ .
3. φ(xi ) = 0, i ≥ 1.
4. φ is an algebra homomorphism provided x ∈ Z(A), the centre of the algebra A.

Recall that An ⊗ Pm = ⊕
α∈Ns K xα where s = 2n + m, xα := xα1

1 · · · xαs
s , the

order of the x’s is fixed. The centre of the algebra An⊗Pm is Pm . The algebra An⊗Pm
admits the finite set of commuting locally nilpotent derivations, namely, the ‘partial
derivatives’:

∂1 := ∂

∂x1
, . . . , ∂s := ∂

∂xs
.

Clearly,
∂i = ad(xn+i ) and ∂n+i = −ad(xi ) for i = 1, . . . , n

where ad(a) : A → A, b �→ [a, b], is the inner derivation of the algebra A associated
with a ∈ A.

For each i = 1, . . . , s, consider the maps from Theorem17.2.1,

φi :=
∑

k≥0

(−1)k
xki
k! ∂

k
i : An ⊗ Pm → An ⊗ Pm .

For each i = 2n + 1, . . . , s, the map φi commutes with all the maps φ j . For each
i = 1, . . . , n, the map φi commutes with all the maps φ j but φn+i , and the map φn+i

commutes with all the maps φ j but φi . Note that An ⊗ Pm = K ⊕ V where V :=⊕
0 �=α∈Ns K xα . Using Theorem17.2.1, we see that the map (the order is important)

φ := φsφs−1 · · · φ1 : An ⊗ Pm → An ⊗ Pm, a =
∑

α∈Ns

λαx
α �→ φ(a) = λ0, (17.1)

is a projection onto K .
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The next result is a kind of aTaylor formula (note though that even for polynomials
this is not the Taylor formula. The both formulae are essentially a formula for the
identity map and they give a presentation of an element as a series but the formula
below has one obvious advantage—it is ‘more economical’, i.e. there is no evaluation
at x = 0 as in the Taylor formula).

Theorem 17.2.2 ([4, Theorem 2.3]) For any a ∈ An ⊗ Pm,

a =
∑

α∈Ns

φ

(
∂α

α! a
)
xα

where s = 2n + m, ∂α = ∂
α1
1 · · · ∂αs

s and α! := α1! · · · αs !.
Proof If a = ∑

λαxα , λα ∈ K , then, by (17.1), φ( ∂α

α! a) = λα . �

By Theorem17.2.2, the identity map id : An ⊗ Pm → An ⊗ Pm can be written as
follows:

id(·) =
∑

α∈Ns

φ

(
∂α

α! (·)
)
xα. (17.2)

Let AutK (An ⊗ Pm) be the group of K -algebra automorphisms of the algebra
An ⊗ Pm . Given an automorphism σ ∈ AutK (An ⊗ Pm). It is uniquely determined
by the elements

x ′
1 := σ(x1), . . . , x

′
s := σ(xs) (17.3)

of the algebra An⊗Pm . The centre Z := Z(An⊗Pm)of the algebra An⊗Pm is equal to
Pm . Therefore, the restriction of the automorphismσ to the centre,σ |Pm ∈ AutK (Pm),
is an automorphism of the polynomial algebra Pm . Hence,

d := det

(
∂x ′

2n+i

∂x2n+ j

)
∈ K ∗

where i, j = 1, . . . , n. The corresponding (to the elements x ′
1, . . . , x

′
s) ‘partial deriva-

tives’ (the set of commuting locally nilpotent derivations of the algebra An ⊗ Pm)

∂ ′
1 := ∂

∂x ′
1

, . . . , ∂ ′
s := ∂

∂x ′
s

(17.4)

are equal to

∂ ′
i := ad(σ (xn+i )), ∂ ′

n+i := −ad(σ (xi )), i = 1, . . . , n, (17.5)
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∂ ′
2n+ j := d−1 det

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

∂σ (x2n+1)

∂x2n+1
· · · ∂σ (x2n+1)

∂x2n+m

...
...

...
∂

∂x2n+1
· · · ∂

∂x2n+m

...
...

...
∂σ (x2n+m)

∂x2n+1
· · · ∂σ (x2n+m)

∂x2n+m

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, j = 1, . . . ,m, (17.6)

where we ‘drop’ σ(x2n+ j ) in the determinant det
(

∂σ (x2n+k )

∂x2n+l
).

For each i = 1, . . . , s, let

φ′
i :=

∑

k≥0

(−1)k
(x ′

i )
k

k! (∂ ′
i )
k : An ⊗ Pm → An ⊗ Pm (17.7)

and (the order is important)

φσ := φ′
sφ

′
s−1 · · · φ′

1. (17.8)

Theorem 17.2.3 ((The Inversion Formula) [4, Theorem 2.4]) For each σ ∈
AutK (An ⊗ Pm) and a ∈ An ⊗ Pm,

σ−1(a) =
∑

α∈Ns

φσ

(
(∂ ′)α

α! a

)
xα

where (∂ ′)α := (∂ ′
1)

α1 · · · (∂ ′
s)

αs and s = 2n + m.

Proof By Theorem17.2.2, a = ∑
α∈Ns φσ

(
(∂ ′)α
α! a

)
(x ′)α . Applying σ−1 we have the

result

σ−1(a) =
∑

α∈Ns

φσ

(
(∂ ′)α

α! a

)
σ−1((x ′)α) =

∑

α∈Ns

φσ

(
(∂ ′)α

α! a

)
xα. �

Gurjar’s Inversion Formula and Abhyankar’s Inversion Formula for poly-
nomial automorphisms. Let σ : Pn → Pn , xi �→ yi := σ(xi ) be a polynomial
automorphism. Let us cite Moh, [26, page 109]: “There are two inversion formulae
due to Gurjar and Abhyankar based on a formula of Goursat”:

Gurjar’s formula

xi =
∑ 1∏

r j ! ∏ s j !
∂r+s

(∂x1)
r1 · · · (∂xn )rn (∂y1)s1 · · · (∂yn )yn

(
xi J

∏
(xi−yi )

ri
∏

y
s j
j

)
.

Abhyankar’s formula
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xi =
∑ 1∏

r j !
∂r

(∂x1)
r1 · · · (∂xn )rn

(
xi J

∏
(xi − yi )

ri

)

where J is the Jacobian of σ .

17.3 Every Endomorphism of the Algebra I1 Is an
Automorphism

In this section, main steps of the statement in the title of this section are explained
(Theorem17.3.1).

Recall that A1 := K 〈x, ∂〉 is theWeyl algebra and I1 := K 〈x, ∂,
∫ 〉 is the algebra

of polynomial integro-differential operators over a field K of characteristic zero
where ∂ = d

dx and

∫
: K [x] → K [x], xn �→ (n + 1)−1xn+1 for all n ≥ 0.

Six Problems of Dixmier, [18], for the Weyl algebra A1: In 1968, Dixmier [18]
posed six problems for the Weyl algebra A1.

The First Problem-Conjecture of Dixmier, [18]: is an algebra endomorphism
of the Weyl algebra A1 an automorphism?

Dixmier writes in his paper [18], p. 242: “A. A. Kirillov informed me that the
Moscow school also considered this problem”.

In 1975, the Third Problem of Dixmier was solved by Joseph [19] (using results
of Stein [19], and McConnel and Robson [25]); and using his (difficult) polarization
theorem for the Weyl algebra A1 Joseph [19] solved the Sixth Problem of Dixmier
(a short proof to this problem is given in [6]). An analogue of the Sixth Problem
of Dixmier is true for the ring of differential operators on an arbitrary smooth ir-
reducible algebraic curve [7]. In 2005, the Fifth Problem of Dixmier was solved in
[5]. Problems 1, 2, and 4 are still open. The Fourth Problem of Dixmier has posi-
tive solution for all homogeneous elements of theWeyl algebra A1, [5, Theorem 2.3].

Conjecture ([11]) Each algebra endomorphism of In is an automorphism.

For n = 1, the Conjecture above is Theorem17.3.1.

Below, we explain the main steps and ideas of the proof of Theorem17.3.1. The
proof consists of nine steps. The proof is not straightforward and several key results
of the papers [9, 10, 12] are used.

Theorem 17.3.1 ([11, Theorem 1.1]) Each algebra endomorphism of I1 is an auto-
morphism.
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Structure of the proof, [11]. Let σ be an algebra endomorphism of I1. Since
I1 = K 〈H,

∫
, ∂〉 where H := ∂x (notice that x = ∫

H ), the endomorphism σ is
uniquely determined by the elements

H ′ := σ(H),

∫ ′
:= σ(

∫
), ∂ ′ := σ(∂).

Step 1. σ is a monomorphism.

Step 2. σ(F) ⊆ F , where F is the only proper ideal of the algebra I1. Therefore,
there is a commutative diagram of algebra homomorphisms:

I1

π

σ I1

π

B1
σ B1

where B1 := I1/F 
 K [H ][∂, ∂−1; τ ], τ(H) = H + 1, is a simple algebra, and so
σ is an algebra monomorphism.

Step 3. H ′ = λH+μ+h for some elementsλ ∈ K ∗ := K\{0},μ ∈ K and h ∈ F .

Step 4. H ′ = 1
n H +μ+ h,

∫ ′ = ν
∫ n + f and ∂ ′ = ν−1∂n + g for some elements

ν ∈ K ∗, n ≥ 1 and h, f, g ∈ F .

Step 5. σ K [x] 
 K [x]n , an isomorphism of I1-modules where n is as in Step 4
and I1K [x] := I1/I1∂ , σ K [x] is the twisted I1-module K [x] by the algebra endomor-
phism σ .

Step 6. n = 1, i.e. σ K [x] 
 K [x].

Step 7. Up to the algebraic torus action T1 (⊆ AutK−alg(I1)), ν = 1, i.e.

H ′ = H + μ + h,

∫ ′
=

∫
+ f, ∂ ′ = ∂ + g.

Step 8. μ = 0.

Step 9. σ is an inner automorphismωu of the algebra I1 for some unit u ∈ (1+F)∗
of the algebra I1. �

Ideas behind the proof of Theorem17.3.1. This is a combination of old ideas of
approach due to Dixmier [18] of using the eigenvalues of certain inner derivations
(this was a key moment in finding the group AutK−alg(A1) in [18] modulo many
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technicalities) and new ideas/approach of using (i) the Fredholm operators and their
indices based on the fact that for the algebra I1 the (Strong) Compact-FredholmAlter-
native holds [12] (which says that the action of each polynomial integro-differential
operator of I1 on each simple I1-module is either compact or Fredholm) and (ii) the
structure of the centralizers of elements of I1 [12].

Remark 17.3.2 The algebra B1 (see Step 2) is the left and right localization of the
Weyl algebra A1 at the powers of the element ∂ , i.e. the algebra B1 is obtained from
A1 by adding the two-sided inverse ∂−1 of the element ∂ (the algebra B1 is also a left
(but not right) localization of the algebra I1 at the powers of the element ∂ , [9], but
in contrast to the Weyl algebra A1 the element ∂ is not regular in I1). The algebra
B1 = K [H ][∂, ∂−1; τ ] is a skew Laurent polynomial algebra where τ(H) = H +1.

An analogue of the Dixmier Conjecture fails for the algebra B1: for each natural
number n ≥ 2, the algebra monomorphism

σn : B1 → B1, H �→ 1

n
H, ∂ �→ ∂n,

is obviously not an automorphism (use the Z-grading of the algebra

B1 =
⊕

i∈Z
K [H ]∂ i , ∂ iα = τ i (α)∂ i

for all α ∈ K [H ] and i ∈ Z). In view of existence of this counterexample for the
algebra B1 it looks surprising that Theorem17.3.1 is true as the algebra I1 is obtained
from theWeyl algebra A1 by adding a right, but not two-sided, inverse of the element
∂: ∂

∫ = 1 but
∫

∂ �= 1. Theorem17.3.1 can be seen as a sign that the of Dixmier
Conjecture is true.
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