
Chapter 15
Noncommutatively Graded Algebras

Patrik Nystedt

Abstract Inspired by the commutator and anticommutator algebras derived from
algebras graded by groups, we introduce noncommutatively graded algebras. We
generalize various classical graded results to the noncommutatively graded situation
concerning identity elements, inverses, existence of limits and colimits and adjoint-
ness of certain functors. In the particular instance of noncommutatively graded Lie
algebras, we establish the existence of universal graded enveloping algebras and we
show a graded version of the Poincaré-Birkhoff-Witt theorem.
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15.1 Introduction

Let R denote a ring which is unital, commutative and associative. Suppose that A is
an R-algebra. By this wemean that A is a left R-module equipped with an R-bilinear
map A× A � (a, b) �→ ab ∈ A. Let G be a group. Recall that A is called G-graded
if there is a family {Ag}g∈G of R-submodules of A such that

A = ⊕g∈G Ag, (15.1)

as R-modules, and for all g, h ∈ G the inclusion

Ag Ah ⊆ Agh (15.2)

holds. The category of G-graded R-algebras, here denoted by G-GA, is obtained by
taking G-graded R-algebras as objects and for the morphisms between such objects
A and B we take the R-algebra homomorphisms f : A → B satisfying f (Ag) ⊆ Bg ,
for g ∈ G.
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Graded algebras include as special cases many other constructions such as poly-
nomial and skew polynomial rings, Ore extensions, matrix rings, Morita contexts,
group rings, twisted group rings, skew group rings and crossed products. Therefore,
the theory of graded algebras not only gives new results for several constructions
simultaneously, but also serves as a unification of known theorems. For more details
concerning graded algebras, see e.g. [4] or [5] and the references therein.

Themotivation for the present article is the observation that there aremany natural
examples of algebras which satisfy (15.1) but only a weaker form of (15.2). Namely,
suppose that A is an associative G-graded algebra. Then the induced Lie algebra
(A, [·, ·]) (see [6, p. 3]) and the induced Jordan algebra (A, {·, ·}) (see [6, p. 4],
where

A × A � (a, b) �→ [a, b] = ab − ba ∈ A (15.3)

is the commutator and

A × A � (a, b) �→ {a, b} = ab + ba ∈ A

is the anticommutator, satisfy

[Ag, Ah] ⊆ Agh + Ahg (15.4)

and
{Ag, Ah} ⊆ Agh + Ahg (15.5)

respectively, for all g, h ∈ G (see also Example 15.1). Inspired by (15.4) and (15.5)
we say that an R-algebra A is noncommutatively G-graded if there is a family
{Ag}g∈G of R-submodules of A satisfying (15.1), as R-modules, and for all g, h ∈ G
the inclusion Ag Ah ⊆ Agh+Ahg holds. The aim of this article is to generalize various
G-graded classical results to the noncommutatively G-graded situation. Here is an
outline of the article.

In Sect. 15.2, we introduce the categoryG-NCGAof noncommutativelyG-graded
algebras (see Definition 15.1) and we show results concerning identity elements,
inverses, existence of limits and colimits and adjointness of certain functors related
toG-NCGA(see Propositions 15.1–15.11). In Sect. 15.3,wefix the notation concern-
ingG-gradedmodules andwe recall the construction of the graded tensor algebra (see
Propositions 15.12–15.14). In Sect. 15.4, we study the particular instance of noncom-
mutativelyG-graded Lie algebras (see Definition 15.4), we establish the existence of
universal graded enveloping algebras (see Proposition 15.15) and we show a graded
version of the Poincaré-Birkhoff-Witt theorem (see Proposition 15.16).
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15.2 Graded Algebras

In this section, we introduce the category of G-NCGA of noncommutatively G-
graded algebras (see Definition 15.1) and we show results concerning identity ele-
ments, inverses, existence of limits and colimits and adjointness of certain functors
related to G-NCGA (see Propositions 15.1–15.8).

For the rest of this article, R denotes a unital, commutative and associative ring,
A denotes an R-algebra and G denotes a multiplicatively written group with identity
element e. If A is unital, then we let 1 denote the multiplicative identity of A.

Definition 15.1 We say that A is noncommutatively G-graded if there is a family
{Ag}g∈G of R-submodules of A such that A = ⊕g∈G Ag , as R-modules, and for all
g, h ∈ G the inclusion Ag Ah ⊆ Agh+Ahg holds. The category of noncommutatively
G-graded algebras, denoted by G-NCGA, is obtained by taking noncommutatively
G-graded algebras as objects and for the morphisms between such objects A and B
we take the R-algebra homomorphisms f : A → B satisfying f (Ag) ⊆ Bg , for
g ∈ G.

Remark 15.1 Clearly, there is an inclusion of G-GA in G-NCGA. If G is abelian,
then G-NCGA coincides with G-GA.

Example 15.1 Let A be a G-graded algebra. From A it is easy to construct many
examples of noncommutatively G-graded algebras. Indeed, for all g, h ∈ G, take
λg,h, μh,g ∈ R. Define a new product • on A by the additive extension of the relations
ag • bh = λg,hagah + μh,gahag, for g, h ∈ G, ag ∈ Ag and bh ∈ Bh . We will denote
this algebra by (A, λ, μ). Note that if we take λ ≡ 1 and μ ≡ −1 (or μ ≡ 1), then
(A, λ, μ) coincides with the commutator (or anticommutator) algebra defined by A.
The category G-NCGAλ,μ is obtained by taking (A, λ, μ), for G-graded algebras
A, as objects, and for morphisms (A, λ, μ) → (B, λ, μ) we take graded R-algebra
morphisms A → B. It is clear that the correspondence A �→ (A, λ, μ), on objects
of G-NCGA, and by the identity, on graded R-algebra morphisms, defines a functor
from G-GA to G-NCGAλ,μ. We will denote this functor by (λ, μ).

Remark 15.2 Suppose that A is a unital G-graded algebra. Then, from [5, Proposi-
tion 1.1.1.1] it follows that 1 ∈ Ae. If for every g ∈ G, the conditions λg,e + μe,g =
1 = λe,g + μg,e hold, then (A, λ, μ) is also unital with multiplicative identity 1. If
2 is invertible in R, then this holds if λ ≡ μ ≡ 2−1.

The next result is a generalization of [5, Proposition 1.1.1.1].

Proposition 15.1 If A is unital and noncommutatively G-graded, then 1 ∈ Ae.

Proof Suppose that 1 = ∑
g∈G ag for some ag ∈ Rg satisfying ag = 0 for all but

finitely many g ∈ G. Take h ∈ G. Then

ah = 1ah =
∑

g∈G
agah = aeah +

∑

g∈G\{e}
agah .
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Thus

Ah � ah − aeah =
∑

g∈G\{e}
agah ∈

∑

g∈G\{e}
(Agh + Ahg) ⊆ ⊕g∈G\{h}Ag.

Hence, in particular, we get that

∑

g∈G\{e}
agah = 0. (15.6)

Also
ah = ah1 =

∑

g∈G
ahag = ahae +

∑

g∈G\{e}
ahag.

Thus

Ah � ah − ahae =
∑

g∈G\{e}
ahag ∈

∑

g∈G\{e}
(Agh + Ahg) ⊆ ⊕g∈G\{h}Ag.

Hence, in particular, we get that
ah = ahae. (15.7)

From (15.6) and (15.7) it follows that 0 = ∑
g∈G\{e} agae = ∑

g∈G\{e} ag . Thus

1 =
∑

g∈G
ag = ae +

∑

g∈G\{e}
ag = ae + 0 = ae ∈ Ae.

�

Definition 15.2 If A is noncommutatively G-graded, then ∪g∈G Ag is called the set
of homogeneous elements of A; if g ∈ G, then a nonzero element a ∈ Ag is said to
be homogeneous of degree g. In that case we write deg(a) = g.

The following result is a generalization of [5, Proposition 1.1.1.2]

Proposition 15.2 Suppose that A is unital and noncommutatively G-graded. If a is
a non-zero homogeneous element of A such that deg(a) = g and a has a right (left)
inverse, then a has a right (left) homogeneous inverse of degree g−1.

Proof First show the “right” part of the proof. Suppose that there is b ∈ A such that
ab = 1. Suppose that b = ∑

h∈G bh for some bh ∈ Ah such that bh = 0 for all but
finitely many h ∈ G. Then

1 = ab =
∑

h∈G
abh = abg−1 +

∑

h∈G\{g−1}
abh .

Thus, from Proposition 15.1, we get that
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Ae � 1 − abg−1 =
∑

h∈G\{g−1}
abh ∈

∑

h∈G\{g−1}
(Agh + Ahg) ⊆ ⊕g∈G\{e}Ag.

Therefore 1 − abg−1 = 0 and thus abg−1 = 1.
Now we show the “left” part of the proof. Suppose that there is c ∈ A such that

ca = 1. Suppose that c = ∑
h∈G ch for some ch ∈ Ah such that ch = 0 for all but

finitely many h ∈ G. Then

1 = ca =
∑

h∈G
cha = cg−1a +

∑

h∈G\{g−1}
cha.

Thus, from Proposition 15.1, we get that

Ae � 1 − cg−1a =
∑

h∈G\{g−1}
cha ∈

∑

h∈G\{g−1}
(Ahg + Agh) ⊆ ⊕g∈G\{e}Ag.

Therefore 1 − cg−1a = 0 and thus cg−1a = 1. �

Proposition 15.3 Inverse limits exist in G-NCGA.

Proof Suppose that we are given a preordered set (I,≤) and a family of non-
commutatively G-graded R-algebras (Aα)α∈I . For all α, β ∈ I with α ≤ β let
fαβ : Aβ → Aα be a morphism in G-NCGA. Suppose that the the morphisms fαβ

form an inverse system, that is, that the following conditions hold:

• the relations α ≤ β ≤ γ imply that fαγ = fαβ ◦ fβγ ;
• for every α ∈ I , the equality fαα = idAα

holds.

Let P denote the product of the sets Aα and let pα : P → Aα denote the
corresponding projection. Let Q denote the subset of all x ∈ P which satisfy
pα(x) = fαβ(pβ(x)) for all α, β ∈ I such that α ≤ β. Take r ∈ R and x, y ∈ Q. Put
r x = (rpα(x))α∈I , x + y = (pα(x) + pα(y))α∈I and xy = (pα(x)pα(y))α∈I . From
general results concerning inverse limits ofmagmaswith operations (see [1, §10]) we
know that this defines a well defined R-algebra structure on Q making it an inverse
limit in the category of R-algebras. Take g, h ∈ G and let Q′

g denote all x ∈ Q
such that for each α ∈ I , the relation pα(x) ∈ (Aα)g holds. Put Q′ = ⊕g∈GQ′

g .
Now we show that Q′ is noncommutatively graded. Take x ∈ Q′

g and y ∈ Q′
h . Take

α ∈ I . Then pα(xy) = pα(x)pα(y) ∈ (Aα)g(Aα)h ⊆ (Aα)gh + (Aα)hg . Therefore
Q′

gQ
′
h ⊆ Q′

gh + Q′
hg . Now we show that Q′ is an inverse limit in the category G-

NCGA. For each α ∈ I , let fα denote the map of noncommutatively graded algebras
Q′ → Aα defined by restriction of pα and suppose that uα : F → Aα is a gradedmap
for some G-noncommutatively graded R-algebra F into Aα such that fαβ ◦ uβ = uα

whenever α ≤ β. Then there exists a unique graded map u : F → Q′ such that
uα = fα ◦ u for all α ∈ I . First we show uniqueness of u. Take y ∈ Fg . From the
relations uα = fα ◦ u, for α ∈ I , it follows that u(y) = (uα(y))α∈I . Next we show
that u is a well defined morphism in G-NCGA. To this end, suppose that g ∈ G,
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y ∈ Fg and α ≤ β. Then ( fαβ ◦ pβ)(u(y)) = ( fαβ ◦ uβ)(y) = uα(y) = pα(u(y)).
Therefore u(y) ∈ Q. Since y ∈ Fg we get that uα(y) ∈ (Aα)g and thus u(y) ∈ Q′

g .
Since each uα is an R-algebra homomorphism, the same holds for u. �

Proposition 15.4 Direct limits exist in G-NCGA.

Proof Suppose that we are given a directed set (I,≤) and a family of noncommuta-
tivelyG-graded R-algebras (Aα)α∈I . For all α, β ∈ I with α ≤ β let fβα : Aα → Aβ

be a morphism in G-NCGA. Suppose that the the morphisms fβα form a direct sys-
tem, that is, that the following conditions hold:

• the relations α ≤ β ≤ γ imply that fγα = fγβ ◦ fβα;
• for every α ∈ I , the equality fαα = idAα

holds.

Take g ∈ G. Let Dg denote the direct sum of the sets ((Aα)g)α∈I . We will identify
each (Aα)g with its image in Dg . For each x ∈ Dg letλg(x) denote the unique element
in I such that x ∈ (Aλg(x))g . Define an equivalence relation ∼g on Dg by saying that
if x, y ∈ Dg , then x ∼g y whenever there is γ ∈ I with λg(x) ≤ γ , λg(y) ≤ γ and
fγ λg(x)(x) = fγ λg(y)(y). Put Cg = Dg/ ∼g . Denote by ( fα)g the restriction to (Aα)g
of the canonical mapping fg of Dg onto Cg . Denote by ( fβα)g the restriction of fβα

to (Aα)g . Then it follows that ( fβ)g ◦ ( fβα)g = ( fα)g for α ≤ β. Then Cg is the
direct limit of the R-modules (Aα)g with a well defined R-module structure defined
as follows. Take r ∈ R and x, y ∈ Cg . There is α ∈ I and xα, yα ∈ Dg such that
x = ( fα)g(xα) and y = ( fα)g(yα). Put r x = ( fα)g(r xα) and x+ y = ( fα)g(xα + yα)

(for details, see [1, Sect. 10]). Put C = ⊕g∈GCg (external direct sum of R-modules).
Now we will define a multiplication on C . By additivity it is enough to define this on
graded components. Take g, h ∈ G, x ∈ Cg and y ∈ Ch . There is α ∈ I , xα ∈ Dg

and yα ∈ Dh such that x = ( fα)g(xα) and y = ( fα)h(yα).
Case 1: gh = hg. Then put xy = ( fα)gh(xα yα).
Case 2: gh �= hg. Then put xy = (( fα)gh ◦ pgh + ( fα)hg ◦ phg)(xα yα). Here

pgh : Dgh ⊕ Dhg → Dgh and phg : Dgh ⊕ Dhg → Dhg denote the corresponding
projections.

From the definition of this multiplication, it follows that it is R-bilinear and that
C is noncommutatively G-graded. Now we show that it is well defined. To this end,
suppose that we take β ∈ I , x ′

β ∈ Dg and y′
β ∈ Dh such that x = ( fβ)g(x ′

β) and
y = ( fβ)h(y′

β). By the definition of the direct limit there existsγ ∈ I such thatα ≤ γ ,
β ≤ γ , xγ := fγα(xα) = x ′

γ := fγβ(x ′
β) and yγ := fγα(yα) = y′

γ := fγβ(y′
β).

Case 1: gh = hg. Then

( fα)gh(xα yα) = ( fγ )gh( fγα(xα yα)) = ( fγ )gh( fγα(xα) fγα(yα))

= ( fγ )gh(xγ yγ ) = ( fγ )gh(x
′
γ y

′
γ ) = ( fγ )gh( fγβ(x ′

β) fγβ(y′
β))

= ( fγ )gh( fγβ(x ′
β y

′
β)) = ( fβ)gh(x

′
β y

′
β).

Case 2: gh �= hg. Then
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(( fα)gh ◦ pgh + ( fα)hg ◦ phg)(xα yα) =

= ( fγ )gh( fγα(pgh(xα yα))) + ( fγ )gh( fγα(phg(xα yα)))

= [ fγα graded] = ( fγ )gh(pgh( fγα(xα yα))) + ( fγ )gh(phg( fγα(xα yα)))

= ( fγ )gh(pgh( fγα(xα) fγα(yα))) + ( fγ )gh(phg( fγα(xα) fγα yα)))

= ( fγ )gh(pgh(x
′
γ y

′
γ )) + ( fγ )hg(phg(x

′
γ y

′
γ ))

= ( fγ )gh(phg( fγβ(x ′
β) fγβ(y′

β))) + ( fγ )hg(phg( fγβ(x ′
β) fγβ(y′

β)))

= ( fγ )gh(phg( fγβ(x ′
β y

′
β))) + ( fγ )hg(phg( fγβ(x ′

β y
′
β)))

= [ fγβ graded] = ( fγ )gh( fγβ(pgh(x
′
β y

′
β))) + ( fγ )hg( fγβ(phg(x

′
β y

′
β)))

= (( fβ)gh ◦ pgh + ( fβ)hg ◦ phg)(x
′
β y

′
β).

Nowweshow thatC is a direct limit of the Aα and themaps fβα . Suppose thatα, β ∈ I
satisfy α ≤ β. Define fα : Aα → C in the following way. Take a ∈ Aα . Then
a = ∑

g∈G ag for some ag ∈ (Aα)g such that ag = 0 for all but finitely many g ∈ G.
Put fα(a) = ∑

g∈G( fα)g(ag). From the fact that (see above) ( fβ)g ◦ ( fβα)g = ( fα)g ,
for g ∈ G, it follows that fβ ◦ fβα = fα . Suppose that F is a noncommutatively
G-graded algebra and that there are graded algebra maps uα : Aα → F , for α ∈ I ,
satisfying uβ ◦ fβα = uα , whenever α ≤ β. Then there is a unique graded algebra
map u : C → F such that u ◦ fα = uα for α ∈ I . In fact, take g ∈ G and cg ∈ Cg .
Then there is aα,g ∈ Ag such that ( fα)g(aα,g) = cg . Put u(cg) = uα(aα,g). Then
u◦ fα = uα and it is clear from these relations that u has to be defined in thisway. Thus
uniqueness of u follows. Now we show that u is well defined. Suppose that α ≤ β

and put aβ,g = fβα(aα,g). Then uβ(aβ,g) = uβ( fβα(aα,g)) = u( fβ( fβα(aα,g))) =
u( fα(aα,g)) = uα(aα,g). �

Definition 15.3 Aop is defined to be the algebra A as a left R-module, but with a
new product ·op defined by a ·op b = ba for a, b ∈ A.

The next result generalizes [5, Remark 1.2.4].

Proposition 15.5 Suppose that A is noncommuatively G-graded. Then Aop is
noncommutatively G-graded with (Aop)g = Ag−1 . Furthermore, the association
A �→ Aop, on objects of G-NCGA, and f op = f , on morphisms of G-NCGA, defines
an automorphism of the category G-NCGA.

Proof Take g, h ∈ G. Then (Aop)g(Aop)h = Ag−1 Ah−1 ⊆ Ag−1h−1 + Ah−1g−1 =
A(hg)−1 + A(gh)−1 = (Aop)hg + (Aop)gh . Suppose that f : A → B is a morphism in
G-NCGA. Then f op((Aop)g) = f (Ag−1) ⊆ Bg−1 = (Bop)g . Since (Aop)op = A, the
last statement follows. �
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Proposition 15.6 Let A be noncommutatively G-graded and suppose that θ : H →
G is amonomorphismof groups.Define the H-gradedadditive group AH by (AH )h =
Aθ(h) for h ∈ H. Then AH = ⊕h∈H (AH )h is a noncommutatively H-graded algebra.
The correspondence A �→ AH , on objects of G-NCGA, and by restriction f |AH , on
morphisms f : A → B of G-NCGA, defines a functor (·)H : G-NCGA→ H-NCGA.

Proof Take h1, h2 ∈ H . Then

(AH )h1(AH )h2 = Aθ(h1)Aθ(h2) ⊆ Aθ(h1)θ(h2) + Aθ(h2)θ(h1)

= Aθ(h1h2) + Aθ(h2h1) = (AH )h1h2 + (AH )h2h1 .

The last statement is immediate. �

Proposition 15.7 Let A be noncommutatively H-graded and suppose that θ :
H → G is a monomorphism of groups. Define the G-graded additive group A
by Ag = Aθ−1(g), if g ∈ θ(H), and Ag = {0}, if g /∈ θ(H). Then A = ⊕g∈G Ag is a
noncommutatively G-graded algebra. Given a morphism f : A → B in H-NCGA,
define the morphism f : A → B in G-NCGA by the additive extension of the rela-
tions f (a) = f (a), for a ∈ Ag such that g ∈ θ(H). The correspondence A �→ A,
on objects of H-NCGA, and f �→ f , on morphisms of H-NCGA, defines a functor
(·) : H-NCGA → G-NCGA.

Proof Take g1, g2 ∈ G. Case 1: g1 /∈ θ(H) or g2 /∈ θ(H). Then Ag1 = {0} or
Ag2 = {0} so that Ag1 Ag2 = {0} ⊆ Ag1g2 + Ag2g1 . Case 2: There are h1, h2 ∈ H
such that θ(h1) = g1 and θ(h2) = g2. Then Ag1 Ag2 = Aθ−1(g1)Aθ−1(g2) = Ah1 Ah2 ⊆
Ah1h2 + Ah2h1 = Aθ−1(g1g2) + Aθ−1(g2g1) = Ag1g2 + Ag2g1 .

Take g ∈ G and h ∈ H such that θ(h) = g. Suppose that f : A → B is a
morphism in H -NCGA. Then f (Ag) = f (Ah) ⊆ Bh = Bg . If f ′ : B → C is
another morphism in H -NCGA, then, clearly, f ′ ◦ f = f ′ ◦ f so that (·) is a functor
H -NCGA → G-NCGA. �

The next result is a generalization of [5, Proposition 1.2.1].

Proposition 15.8 If θ : H → G is a monomorphism of groups, then ((·), (·)H )) is
an adjoint pair of functors.

Proof Suppose that A is a noncommutatively H -graded algebra and that B is a
noncommutatively G-graded algebra. Define a map

ΦA,B : homG−NCGA(A, B) → homH−NCGA(A, BH )

in the following way. Given a morphism f : A → B in G-NCGA, put ΦA,B( f ) =
fH . Then ΦA,B is a bijection. In fact, define

Φ−1
A,B : homH−NCGA(A, BH ) → homG−NCGA(A, B)
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in the followingway. Given amorphism f ′ : A → BH in H -NCGA, putΦ−1
A,B( f ′) =

f ′. Given a morphism p : A′ → A in H -NCGA and a morphism q : B → B ′ in
G-NCGA, then the following diagram is commutative

homG−NCGA(A, B)
ΦA,B−−−−→ homH−NCGA(A, BH )

ε

⏐
⏐
�

⏐
⏐
�δ

homG−NCGA(A′, B ′)
ΦA′ ,B′−−−−→ homH−NCGA(A′, B ′

H )

(15.8)

Here ε and δ are defined by ε( f ) = q ◦ f ◦ p and δ(g) = qH ◦ g ◦ p for f ∈
homG−NCGA(A, B) and g ∈ homH−NCGA(A, BH ). Thus ((·), (·)H )) is an adjoint
pair of functors. �

The next result generalizes the construction preceding [5, Proposition 1.2.2]

Proposition 15.9 Let A be noncommutatively G-graded and suppose that π : G →
H is an epimorphism of groups. Define the H-graded additive group AH by (AH )h =
⊕g∈π−1(h)Ag for h ∈ H. Then AH = ⊕h∈H (AH )h is a noncommutatively H-graded
algebra. The correspondence A �→ AH , on objects of G-NCGA, and by the identity,
on morphisms of G-NCGA, defines a functor (·)H : G-NCGA → H-NCGA.

Proof Take h1, h2 ∈ H . Then

(AH )h1(A
H )h2 = (⊕g1∈π−1(h1)Ag1)(⊕g2∈π−1(h2)Ag2)

=
∑

g1∈π−1(h1), g2∈π−1(h2)

Ag1 Ag2 ⊆
∑

g1∈π−1(h1), g2∈π−1(h2)

Ag1g2 + Ag2g1

⊆
∑

g∈π−1(h1h2)

Ag +
∑

g′∈π−1(h2h1)

Ag′ = (AH )h1h2 + (AH )h2h1 .

Thus AH is noncommutatively H -graded. The last part is clear. �

Proposition 15.10 Suppose that N is a normal subgroup of G and let A be an object
in G/N-NCGAλ,μ. For each g ∈ G, let F(A)g be the subset (⊕n∈N Agn)g of the group
ring A[G]. Put F(A) = (⊕g∈GF(A)g, λ, μ). Then F(A) is a noncommutatively G-
graded algebra. The correspondence A �→ F(A), on objects of G/N-NCGAλ,μ, and
by F( f )(agng) = f (agn)g, for g ∈ G, n ∈ N and agn ∈ Agn, on morphisms f of
G/N-NCGAλ,μ, defines a functor F : G/N-NCGAλ,μ → G-NCGAλ,μ.

Proof From the proof of [5, Proposition 1.2.2] it follows that ⊕g∈GF(A)g is G-
graded. Therefore, from the discussion in Example 15.1 we get that F(A) is noncom-
mutatively G-graded and F defines a functor G/N -NCGAλ,μ → G-NCGAλ,μ. �

Now we will show a generalization of [5, Proposition 1.2.2] making use of the
construction in Example 15.1.
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Proposition 15.11 Suppose that N is a normal subgroup of G and consider the
canonical epimorphism π : G → G/N. Let (·)G/N denote the functor G-NCGAλ,μ

→ H-NCGAλ,μ, obtained from Proposition 15.9 by restriction. Then ((·)G/N , F) is
an adjoint pair of functors.

Proof Suppose that A is an object in G-NCGAλ,μ and that B is an object in G/N -
NCGAλ,μ. Define a map

ΨA,B : homG/N−NCGAλ,μ
(AG/N , B) → homG−NCGAλ,μ

(A, F(B))

in the following way. Given a morphism f : AG/N → B in G-NCGA, put
ΨA,B( f )(ag) = f (ag)g, for ag ∈ Ag , and extended biadditively. Then ΨA,B is
a bijection (see the proof of [5, Proposition 1.2.2]). Now we show that ΨA,B( f )
respects the multiplication •. Take ag ∈ Ag and bh ∈ Ah . Then

ΨA,B( f )(ag • bh) = ΨA,B( f )(λg,hagbh + μh,gbhag)

= f (λg,hagbh)gh + f (μh,gbhag)hg = λg,h f (agbh)gh + μh,g f (bhag)hg

= λg,h f (ag) f (bh)gh + μh,g f (bh) f (ag)hg = f (ag)g • f (bh)h

= ΨA,B( f )(ag) • ΨA,B( f )(bh).

It also follows from the G-graded case (see loc. cit.) that the map ΨA,B is natural in
A and B. Therefore, ((·)G/N , F) is an adjoint pair of functors. �

It is not clear to the author of the present article whether the following question
can be answered in the affirmative.

question 15.1 Does the functor (·)G/N : G-NCGA → H -NCGA, obtained from
Proposition 15.9, have a right adjoint?

15.3 The Graded Tensor Algebra

In this section, we fix the notation concerning G-graded modules and we state some
well known results (see Propositions 15.12–15.14) that will be used in the following
section. Throughout this section, M denotes a left R-module. Recall that M is called
G-graded if there is a family {Mg}g∈G of R-submodules ofM such thatM = ⊕g∈GMg

as R-modules. The next result follows from well-known properties of direct sums of
modules (see e.g. [3, Chap. III]).

Proposition 15.12 If {M (i)}i∈I is a family of G-graded modules, then ⊕i∈I M (i) is
a graded module, where, for each g ∈ G, we put (⊕i∈I M (i))g = ⊕i∈I M (i)

g .
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We will refer to the above grading as the canonical direct sum grading. The
next result follows immediately from well-known properties of tensor products of
modules (see e.g. [3, Chap.XVI]). All tensors are taken over R. Let N denote the set
of non-negative integers. If n ∈ N \ {0} and {M (i)}ni=1 is a family of graded modules,
then we let ⊗n

i=1M
(i) denote M (1) ⊗· · ·⊗M (n). An element in ⊗n

i=1M
(i) of the form

m1 ⊗ · · · ⊗ mn will be referred to as a monomial.

Proposition 15.13 If n is a positive integer and {M (i)}ni=1 is a family of graded
modules, then ⊗n

i=1M
(i) is a graded module, where, for each g ∈ G, (⊗n

i=1M
(i))g

is defined to be the submodule of ⊗n
i=1M

(i) generated by all monomials m1 ⊗ · · · ⊗
mn, where, mi ∈ M (i)

gi , for i = 1, . . . , n, for some gi ∈ G with the property that
g1 · · · gn = g.

Take n ∈ N and suppose that M is a G-graded module. If n = 0, then put
M⊗n = R, where the latter is trivially graded, that is Re = R and Rg = {0}, if
g ∈ G \ {e}. If n ≥ 1, then put M⊗n = M ⊗ · · · ⊗ M (n times) and let M⊗n be
equipped with the grading introduced in Proposition 15.13. We will refer to this as
the canonical tensor grading on M⊗n . Recall that the tensor algebra T (M) is defined
to be the direct sum ⊕n∈N M⊗n = R ⊕ M ⊕ (M ⊗ M) ⊕ (M ⊗ M ⊗ M) ⊕ · · · as a
module. The multiplication in T (M) is indicated by ⊗ and is defined on monomials
in the following way. Take m, n ∈ N . Take monomials x ∈ M⊗m and y ∈ M⊗n . If
m = 0 (or n = 0), then x ∈ R (or y ∈ R) and we put x ⊗ y = xy (or x ⊗ y = yx)
as elements in the module M⊗n (or M⊗m). If m, n ≥ 1, then x = v1 ⊗ · · · ⊗ vm and
y = w1 ⊗ · · · ⊗ wn , for some v1, . . . , vm,w1, . . . ,wn ∈ M , and we put x ⊗ y =
v1 ⊗ · · · vm ⊗ w1 ⊗ · · · ⊗ wn. Define the structure of a G-graded module on T (M)

in the following way. Let T (M) be equipped with the canonical direct sum grading,
defined, in turn, by the canonical tensor gradings on {M⊗n}n∈N . In other words, for
each g ∈ G, put T (M)g = ⊕n∈N (M⊗n)g . From Propositions 15.12 and 15.13 it
follows that T (M) is a graded module. We will refer to this grading as the canonical
grading on T (M).

Proposition 15.14 If M is G-gradedmodule, then T (M) is G-graded as an algebra.

Proof Take g, h ∈ G, x ∈ T (M)g and y ∈ T (M)h . We wish to show that x ⊗ y ∈
T (M)gh . Since this is clear if m = 0 or n = 0, we only need to consider the case
whenm, n ≥ 1.Wemay assume that x and y aremonomials in, respectively, (M⊗m)g
and (M⊗n)h . Therefore there are g1, . . . , gm, h1, . . . , hn ∈ G, vi ∈ Mgi , for i =
1, . . . ,m, and wj ∈ Mh j , for j = 1, . . . , n, such that g = g1 · · · gm , h = h1 · · · hn ,
x = v1 ⊗· · ·⊗ vm and y = w1 ⊗· · ·⊗wn . Then, since g1g2 · · · gmh1h2 · · · hn = gh,
we get that xy = v1 ⊗ · · · ⊗ vm ⊗ w1 ⊗ · · · ⊗ wn ∈ (M⊗(m+n))gh . �

15.4 Noncommutatively Graded Lie Algebras

In this section, we study the particular instance of noncommutatively G-graded Lie
algebras (seeDefinition 15.4), we establish the existence of universal graded envelop-
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ing algebras (see Proposition 15.15) and we show a graded version of the Poincaré-
Birkhoff-Witt theorem (see Proposition 15.16). For the rest of the article, L denotes
a Lie algebra. By this we mean that L is a left R-module which is equipped with
an R-bilinear product [·, ·] : L × L → L such that for all a, b, c ∈ L the relations
[a, a] = 0 and [a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0 hold.

Definition 15.4 We say that L is a noncommutatively G-graded Lie algebra if there
is a family {Lg}g∈G of R-submodules of L such that L = ⊕g∈GLg , as R-modules,
and for all g, h ∈ G the inclusion [Lg, Lh] ⊆ Lgh + Lhg holds. We say that the
category of noncommutatively G-graded Lie algebras, denoted by G-NCGLA, is
obtained by taking noncommutatively G-graded Lie algebras as objects and and for
the morphisms between such objects L and L ′ we take the Lie algebra homomor-
phisms f : L → L ′ satisfying f (Lg) ⊆ L ′

g , for g ∈ G.

Remark 15.3 If we letG-GAA denote the subcategory ofG-GA having associative
G-graded algebras as objects, then the commutator (15.3) defines a functor

Lie : G-GAA → G-NCGLA.

Now we extend the definition of a universal enveloping algebra (see e.g. [2,
Chap.V]) to the noncommutatively graded situation.

Definition 15.5 Let L be a noncommutatively G-graded Lie algebra. A pair (U, i),
whereU is an associative unitalG-graded algebra and i : L → Lie(U ) is amorphism
in G-NCGLA, is called a universal G-graded enveloping algebra if the following
holds: if A is any associative unital G-graded algebra and j : L → Lie(A) is a
morphism inG-NCGLA, then there exists a unique morphism k : Lie(U ) → Lie(A)

in G-NCGLA such that j = k ◦ i .

Proposition 15.15 Every noncommutatively G-graded Lie algebra which is free
with a homogeneous basis has a universal G-graded enveloping algebra.

Proof We proceed exactly as in classical ungraded case (see e.g. [2, Chap.V]). Let
I be the ideal of T (L) generated by all elements of the form

[a, b] − a ⊗ b + b ⊗ a (15.9)

for a, b ∈ L and put U = T (L)/I. Let X denote the set of all elements of the form
(15.9) with a and b homogeneous. Then I = T (L)XT (L), so I is a G-graded ideal.
Therefore U is a unital associative G-graded algebra. Let l : L → T (L) denote the
inclusion and let q : T (L) → U denote the quotient map. Let i : L → U be the
composition of the gradedmaps l : L → T (L) and q : T (L) → U . Let B = {bv}v∈V
be a a homogeneous basis for L . Suppose that A is a unital graded algebra and there
is a graded homomorphism j : L → Lie(A). By ungraded universality of (U, i)
there is a unique homomorphism k : U → A such that j = k ◦ i . The map k is
defined by k(1) = 1 and k(bv1 ⊗ · · · ⊗ bvn ) = j (bv1) ⊗ · · · ⊗ j (bvn ). Since j is
graded, k is also graded. �
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Corollary 15.1 Every noncommutatively G-graded Lie algebra over a field has a
universal graded enveloping algebra.

Proof Suppose that R is a field. For each g ∈ G choose a basis Bg for Lg . It is clear
that B = ∪g∈G Bg is a homogeneous basis for L . The claim now follows directly
from Proposition 15.15. �

The following result is a graded analogue of the Poincaré-Birkhoff-Witt theorem.

Proposition 15.16 Suppose that L is a noncommutatively G-graded Lie algebra
which is free with a homogeneous basis B = {bv}v∈V where the set V is equipped
with a total order≤. Then the cosets 1+ I and bv1⊗· · ·⊗bvn + I,where v1 < · · · < vn,
form a homogeneous basis for U.

Proof This follows from the ungraded Poincaré-Birkhoff-Witt theorem (see e.g. [2,
Chap.V]). �
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