
Chapter 13
On Hom-Yetter-Drinfeld Category

Tianshui Ma, Sergei Silvestrov and Huihui Zheng

Abstract Let (H, β) be a Hom-Hopf algebra. Recently we introduced the Hom-
Yetter-Drinfeld category H

HYD via Radford biproduct Hom-Hopf algebra, and proved
that H

HYD is a braided tensor category. Let (H, β,R(or σ)) be a quasitriangular (or
cobraided) Hom-Hopf algebra. In this paper, we prove that the category HM (or HM)
of left (H, β)-Hom-modules comodules) is a braided tensor subcategory of H

HYD.
As a generalization of Radford biproduct Hom-Hopf algebra, we derive necessary
and sufficient conditions for R-smash product Hom-algebra (A�RH, α ⊗ β) and T -
smash coproduct Hom-coalgebra (A �T H, α ⊗ β) to be a Hom-Hopf algebra. At
last, two nontrivial examples are given.

Keywords Hom-Hopf algebra · Hom-coalgebra · Hom-modules comodule ·
Smash product · Braided tensor category

MSC 2010 Classification: 18D10 · 16T15 · 16T10 · 16S40 · 17A30

13.1 Introduction

Hom-structures (Lie algebras, algebras, coalgebras, Hopf algebras) have been inten-
sively investigated in the literature recently. Hom-algebras are generalizations of
algebras obtained by a twisting map, which have been introduced for the first time in
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[6] by Makhlouf and Silvestrov. The associativity is replaced by Hom-associativity,
Hom-coassociativity for a Hom-coalgebra can be considered in a similar way.

In [9, 12], Yau introduced and characterized the concept of module Hom-algebras
as a twisted version of usual module algebras and the dual version (i.e. comodule
Hom-coalgebras) was studied by Zhang in [13]. Based on Yau’s definition of module
Hom-algebras, Ma, Li and Yang in [3] constructed smash product Hom-Hopf alge-
bra (A�H, α ⊗ β) generalizing the Molnar’s smash product (see [4]), and gave the
cobraided structure (in the sense of Yau’s definition in [11]) on (A�H, α ⊗ β), and
also considered the case of twist tensor product Hom-Hopf algebra. Makhlouf and
Panaite defined and studied a class of Yetter-Drinfeld modules over Hom-bialgebras
in [5] via the “twisting principle” introduced byYau for Hom-algebras and since then
extended to various Hom-type algebras. In [2], the authors introduced the notion of
Hom-Yetter-Drinfeld category H

HYD via Radford biproduct Hom-Hopf algebra, and
proved that the Hom-Yetter-Drinfeld modules can provide solutions of the Hom-
Yang-Baxter equation (in the sense of Yau’s definition in [10–12]) and H

HYD is a
braided tensor category.

It is well-known that the category HM (or HM) of left H -modules (or comodules)
is a braided tensor subcategory of H

HYD, where (H,R (or σ)) is a quasitriangular
(or cobraided) Hopf algebra. Radford biproduct plays an important role in the lifting
method for the classification of finite dimensional pointed Hopf algebras. In [4], Ma
and Wang generalized the Radford biproduct to the twist tensor biproduct.

Themain purpose of this article is to consider the above results in theHom-setting.
This article is organized as follows. In Sect. 13.2, we recall some definitions and

results which will be used later. In Sect. 13.3, we construct a subcategory of the Hom-
Yetter-Drinfeld category via quasitriangular Hom-Hopf algebra (see Theorem 13.1).
On the other hand, we give a second braided tensor structure on H

HYD (see Theorem
13.3). Yau’s results in [10, 11] can be obtained as a corollary (see Corollaries 13.1
and 13.2). In [2], we defined the Hom-Yetter-Drinfeld module by Radford biproduct
Hom-Hopf algebra. In Sect. 13.4, we consider a generalized version of Radford’s
biproduct Hom-Hopf algebra, named twisted tensor biproduct Hom-Hopf algebra
(see Theorems 13.6 and 13.7). And two nontrivial examples are given (see Examples
13.1 and 13.2).

13.2 Preliminaries

Throughout this paper, we follow the definitions and terminologies in [1–3, 10, 11,
13], with all algebraic systems supposed to be over the field K . Given a K -space M ,
we write idM for the identity map on M .

We now recall some useful definitions throughout this paper. We point out that
we will be using in the special contexts we consider a simplified terminology for
involved Hom-algebra structures just for convenience of exposition in this article.
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Definition 13.1 AHom-algebraHom-algebra, or more exactly, a unital multiplica-
tive Hom-associative algebra, is a quadruple (A, μ, 1A, α) (abbr. (A, α)), where A
is a K -linear space, μ : A ⊗ A −→ A is a K -linear map, 1A ∈ A and α is an auto-
morphism of A, such that

(H A1) α(aa′) = α(a)α(a′); α(1A) = 1A,

(H A2) α(a)(a′a′′) = (aa′)α(a′′); a1A = 1Aa = α(a)

are satisfied for a, a′, a′′ ∈ A. Here we use the notation μ(a ⊗ a′) = aa′.
Let (A, α) and (B, β) be two Hom-algebras. Then (A ⊗ B, α ⊗ β) is a Hom-

algebra (called tensor product Hom-algebra) with the multiplication (a ⊗ b)(a′ ⊗
b′) = aa′ ⊗ bb′ and unit 1A ⊗ 1B .

Definition 13.2 A Hom-coalgebra is a quadruple (C,Δ, εC , β) (abbr. (C, β)),
where C is a K -linear space, Δ : C −→ C ⊗ C , εC : C −→ K are K -linear maps,
and β is an automorphism of C , such that

(HC1) β(c)1 ⊗ β(c)2 = β(c1) ⊗ β(c2); εC ◦ β = εC

(HC2) β(c1) ⊗ c21 ⊗ c22 = c11 ⊗ c12 ⊗ β(c2); εC(c1)c2 = c1εC(c2) = β(c)

are satisfied for c ∈ A. Here we use the notationΔ(c) = c1 ⊗ c2 (summation implic-
itly understood).

Let (C, α) and (D, β) be two Hom-coalgebras. Then (C ⊗ D, α ⊗ β) is a Hom-
coalgebra (called tensor product Hom-coalgebra) with the comultiplicationΔ(c ⊗
d) = c1 ⊗ d1 ⊗ c2 ⊗ d2 and counit εC ⊗ εD .

Definition 13.3 AHom-bialgebra is a sextuple (H, μ, 1H ,Δ, ε, γ ) (abbr. (H, γ )),
where (H, μ, 1H , γ ) is a Hom-algebra and (H,Δ, ε, γ ) is a Hom-coalgebra, such
that Δ and ε are morphisms of Hom-algebras, i.e.

Δ(hh′) = Δ(h)Δ(h′); Δ(1H ) = 1H ⊗ 1H ,

ε(hh′) = ε(h)ε(h′); ε(1H ) = 1.

Furthermore, if there exists a linear map S : H −→ H such that

S(h1)h2 = h1S(h2) = ε(h)1H and S(γ (h)) = γ (S(h)),

then we call (H, μ, 1H ,Δ, ε, γ, S)(abbr. (H, γ, S)) a Hom-Hopf algebra.
Let (H, γ ) and (H ′, γ ′) be two Hom-bialgebras. The linear map f : H −→ H ′ is

called aHom-bialgebramap if f ◦ γ = γ ′ ◦ f and at the same time f is a bialgebra
map in the usual sense.

Definition 13.4 Let (A, β) be aHom-algebra. A left (A, β)-Hom-module is a triple
(M, �, α), where M is a linear space, � : A ⊗ M −→ M is a linear map, and α is an
automorphism of M , such that
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(HM1) α(a � m) = β(a) � α(m),

(HM2) β(a) � (a′ � m) = (aa′) � α(m); 1A � m = α(m)

are satisfied for a, a′ ∈ A and m ∈ M .
Let (M, �M , αM) and (N , �N , αN ) be two left (A, β)-Hom-modules. Then a lin-

ear morphism f : M −→ N is called a morphism of left (A, β)-Hom-modules if
f (h �M m) = h �N f (m) and αM ◦ f = f ◦ αN .

Definition 13.5 Let (H, β) be a Hom-bialgebra and (A, α) a Hom-algebra. If
(A, �, α) is a left (H, β)-Hom-module and for all h ∈ H and a, a′ ∈ A,

(HMA1) β2(h) � (aa′) = (h1 � a)(h2 � a′),
(HMA2) h � 1A = εH (h)1A,

then (A, �, α) is called an (H, β) -module Hom-algebra.

Definition 13.6 Let (C, β) be a Hom-coalgebra. A left (C, β)-Hom-comodule is
a triple (M, ρ, α), where M is a linear space, ρ : M −→ C ⊗ M (write ρ(m) =
m−1 ⊗ m0, ∀m ∈ M) is a linear map, and α is an automorphism of M , such that

(HCM1) α(m)−1 ⊗ α(m)0 = β(m−1) ⊗ α(m0),

(HCM2) β(m−1) ⊗ m0−1 ⊗ m00=m−11 ⊗ m−12 ⊗ α(m0); εC(m−1)m0 = α(m)

are satisfied for all m ∈ M .
Let (M, ρM , αM) and (N , ρN , αN ) be two left (C, β)-Hom-comodules. Then a

linear map f : M −→ N is called a morphism of left (C, β)-Hom-comodules if
f (m)−1 ⊗ f (m)0 = m−1 ⊗ f (m0) and αM ◦ f = f ◦ αN .

Definition 13.7 Let (H, β) be a Hom-bialgebra and (C, α) a Hom-coalgebra. If
(C, ρ, α) is a left (H, β)-Hom-comodule and for all c ∈ C ,

(HCMC1) β2(c−1) ⊗ c01 ⊗ c02 = c1−1c2−1 ⊗ c10 ⊗ c20,

(HCMC2) c−1εC(c0) = 1HεC(c),

then (C, ρ, α) is called an (H, β)-comodule Hom-coalgebra.

Definition 13.8 Let (H, β) be a Hom-bialgebra and (C, α) a Hom-coalgebra. If
(C, �, α) is a left (H, β)-Hom-module and for all h ∈ H and c ∈ A,

(HMC1) m(h � c)1 ⊗ (h � c)2 = (h1 � c1) ⊗ (h2 � c2),

(HMC2) εC(h � c) = εH (h)εC(c),

then (C, �, α) is called an (H, β)-module Hom-coalgebra.
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Definition 13.9 Let (H, β) be a Hom-bialgebra and (A, α) a Hom-algebra. If
(A, ρ, α) is a left (H, β)-Hom-comodule and for all a, a′ ∈ A,

(HCMA1) ρ(aa′) = a−1a
′
−1 ⊗ a0a

′
0,

(HCMA2) ρ(1A) = 1H ⊗ 1A,

then (A, ρ, α) is called an (H, β)-comodule Hom-algebra.

Definition 13.10 Let (H, β) be a Hom-bialgebra and (A, �, α) an (H, β)-module
Hom-algebra. Then (A�H, α ⊗ β) (A�H = A ⊗ H as a linear space) with the mul-
tiplication

(a ⊗ h)(a′ ⊗ h′) = a(h1 � α−1(a′)) ⊗ β−1(h2)h
′,

where a, a′ ∈ A, h, h′ ∈ H , and unit 1A ⊗ 1H is a Hom-algebra, we call it smash
product Hom-algebra denoted by (A�H, α ⊗ β).

Definition 13.11 Let (H, β) be a Hom-bialgebra, (M, �M , αM) a left (H, β)-
module with action �M : H ⊗ M −→ M, h ⊗ m 
→ h �M m and (M, ρM , αM) a
left (H, β)-comodule with coaction ρM : M −→ H ⊗ M,m 
→ m−1 ⊗ m0. Then
we call (M, �M , ρM , αM) a (left-left) Hom-Yetter-Drinfeld module over (H, β) if
the following condition holds:

(HY D) h1β(m−1) ⊗ (β3(h2) �M m0) = (β2(h1) �M m)−1h2 ⊗ (β2(h1) �M m)0,

where h ∈ H and m ∈ M .

Definition 13.12 Let (A, μA, 1A, α) and (H, μH , 1H , β) be two Hom-algebras, R :
H ⊗ A −→ A ⊗ H a linear map such that for all a ∈ A, h ∈ H ,

(R) α(a)R ⊗ β(h)R = α(aR) ⊗ β(hR).

Then (A�RH, α ⊗ β) (A�RH = A ⊗ H as a linear space) with the multiplication

(a ⊗ h)(b ⊗ g) = aα−1(b)R ⊗ β−1(hR)g,

where a, b ∈ A, h, g ∈ H , and unit 1A ⊗ 1H becomes a Hom-algebra if and only if
the following conditions hold:

(RS1) aR ⊗ 1BR = α(a) ⊗ 1H ; 1AR ⊗ hR = 1A ⊗ β(h),

(RS2) α(a)R ⊗ (hg)R = aRr ⊗ β−1(β(h)r )gR,

(RS3) α((ab)R) ⊗ β(h)R = α(aR)α(b)r ⊗ hRr ,

where a, b ∈ A, h, g ∈ H . We call this Hom-algebra R-smash product Hom-
algebra and denote it by (A�RH, α ⊗ β).
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Definition 13.13 Let (C,ΔC , εC , α) and (H,ΔH , εH , β) be two Hom-coalgebras,
T : C ⊗ H −→ H ⊗ C (write T (c ⊗ h) = hT ⊗ cT ,∀c ∈ C, h ∈ H ) a linear map
such that for all c ∈ C, h ∈ H ,

(T ) α(c)T ⊗ β(h)T = α(cT ) ⊗ β(hT ).

Then (C �T H, α ⊗ β) (C �T H = C ⊗ H as a linear space) with the comultiplica-
tion

ΔC�T H (c ⊗ h) = c1 ⊗ β−1(h1)T ⊗ α−1(c2T ) ⊗ h2,

and counit εC ⊗ εH becomes aHom-coalgebra if and only if the following conditions
hold:

(T S1) εH (hT )cT = εH (h)α(c); hT εC(cT ) = β(h)εC(c),

(T S2) hT1 ⊗ hT2 ⊗ α(cT ) = β(β−1(h1)T ) ⊗ h2t ⊗ cT t ,

(T S3) β(hT ) ⊗ α(c)T 1 ⊗ α(c)T 2 = hT t ⊗ α(c1)t ⊗ α(c2T ),

where c ∈ C, h ∈ H and t is a copy of T . We call this Hom-coalgebra T -smash
coproduct Hom-coalgebra and denote it by (C �T H, α ⊗ β).

Definition 13.14 AquasitriangularHom-Hopfalgebra is a octuple (H, μ, 1H ,Δ,

ε, S, β,R) (abbr.(H, β,R)) in which (H, μ, 1H ,Δ, ε, S, β) is a Hom-Hopf algebra
and R = R1 ⊗ R2 ∈ H ⊗ H , satisfying the following axioms (for all h ∈ H and
R = r):

(QH A1) ε(R1)R2 = R1ε(R2) = 1,

(QH A2) R1
1 ⊗ R1

2 ⊗ β(R2) = β(R1) ⊗ β(r1) ⊗ R2r2,

(QH A3) β(R1) ⊗ R2
1 ⊗ R2

2 = R1r1 ⊗ β(r2) ⊗ β(R2),

(QH A4) h2R
1 ⊗ h1R

2 = R1h1 ⊗ R2h2,

(QH A5) β(R1) ⊗ β(R2) = R1 ⊗ R2.

Definition 13.15 A cobraided Hom-Hopf algebra is a octuple (H, μ, 1H ,Δ,

ε, S, β, σ ) (abbr.(H, β, σ )) in which (H, μ, 1H ,Δ, ε, S, β) is a Hom-Hopf algebra
and σ is a bilinear form on H (i.e., σ ∈ Hom(H ⊗ H, K )), satisfying the following
axioms (for all h, g, l ∈ H ):

(CH A1) σ (h, 1H ) = σ(1H , h) = ε(h),

(CH A2) σ (hg, β(l)) = σ(β(h), l1)σ (β(g), l2),

(CH A3) σ (β(h), gl) = σ(h1, β(l))σ (h2, β(g)),

(CH A4) σ (h1, g1)h2g2 = g1h1σ(h2, g2),

(CH A5) σ (β(h), β(g)) = σ(h, g).
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13.3 A Class of Braided Tensor Category

In this section, we construct a subcategory of the Hom-Yetter-Drinfeld category. On
the other hand, we give a second braided tensor structure on H

HYD. Yau’s results in
[10, 11] can be obtained as a corollary.

First we recall the structure of Hom-Yetter-Drinfeld category in [2].

Proposition 13.1 ([2]) Let (H, β) be a Hom-bialgebra. Then the Hom-Yetter-
Drinfeld category H

HYD is a braided tensor category, with tensor product defined
by

�M⊗N : H ⊗ M ⊗ N −→ M ⊗ N , h ⊗ m ⊗ n 
→ (h1 �M m) ⊗ (h2 �N n),

and

ρM⊗N : M ⊗ N −→ H ⊗ M ⊗ N ,m ⊗ n 
→ β−2(m−1n−1) ⊗ m0 ⊗ n0,

where h ∈ H, m ∈ M and n ∈ N, associativity constraints defined by

aM,N ,P : (M ⊗ N ) ⊗ P −→ M ⊗ (N ⊗ P), (m ⊗ n) ⊗ p 
→ α−1
M (m) ⊗ (n ⊗ αP (p)),

where m ∈ M, n ∈ N and p ∈ P, the braiding defined by

cM,N : M ⊗ N −→ N ⊗ M, m ⊗ n 
→ (β2(m−1) �N α−1
N (n)) ⊗ α−1

M (m0),

where m ∈ M and n ∈ N and the unit (K , idK ).

Proposition 13.2 Let (H, β,R) be a quasitriangular Hom-Hopf algebra and
(M, αM) a left (H, β)-Hom-module with action �̄M : H ⊗ M −→ M, h ⊗ m 
→
h�̄Mm. Define the linear map

ρ̄M : M −→ H ⊗ M,m 
→ β−3(R2) ⊗ (R1�̄Mm),

Then (M, �̄M , ρ̄M , αM) is a Hom-Yetter-Drinfeld module over (H, β).

Proof The condition (HCM1) is easy to be proved by (QH A5) and (H AM1). We
check (HCM2) as follows.

LHS = β−2(R2) ⊗ β−3(r2) ⊗ r1�̄M(R1�̄Mm)
(QH A5)= β−2(R2) ⊗ β−2(r2) ⊗ β(r1)�̄M(R1�̄Mm)
(HM2)= β−2(R2) ⊗ β−2(r2) ⊗ (r1R1)�̄Mm)
(QH A3)= β−3(R2

1) ⊗ β−3(R2
2) ⊗ (β(R1)�̄MαM(m))

(HC1)(HM1)= β−3(R2)1 ⊗ β−3(R2)2 ⊗ αM(R1�̄Mm) = RHS,
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and it is obvious that εH (m−1)m0 = αM(m) by (QH A1), (HC1) and (HM1). Thus
(M, ρ̄M , αM) is a (H, β)-Hom-comodule.

Next we check that the condition (HY D) holds.

LHS = h1β−2(R2) ⊗ (β3(h2)�̄M(R1�̄Mm))
(HM2)= h1β−2(R2) ⊗ ((β2(h2)R1)�̄MαM(m))

(H A1)(HC1)= β−2(β2(h)1R2) ⊗ ((β2(h)2R1)�̄MαM(m))
(QH A4)= β−2(R2β2(h)2) ⊗ ((R1β2(h)1)�̄MαM(m))

(H A1)(HC1)= β−2(R2)h2 ⊗ ((R1β2(h1))�̄MαM(m))
(QH A5)= β−3(R2)h2 ⊗ ((β(R1)β2(h1))�̄MαM(m))
(HM2)= β−3(R2)h2 ⊗ (R1�̄M(β2(h1)�̄Mm)) = RHS,

finishing the proof. �

Proposition 13.3 Let (H, β,R) be a quasitriangular Hom-Hopf algebra, (M, �̄M ,

ρ̄M , αM) and (N , �̄N , ρ̄N , αN ) two Hom-Yetter-Drinfeld module over (H, β) with
the structure defined in Proposition 13.2. We regard (M ⊗ N , �̄M⊗N , αM ⊗ αN ) as
a left (H, β)-Hom-module via the standard action

h�̄M⊗N (m ⊗ n) = (h1�̄Mm) ⊗ (h2�̄Nn)

and we regard (M ⊗ N , �̄M⊗N , ρ̄M⊗N , αM ⊗ αN ) as a Hom-Yetter-Drinfeld module
over (H, β) with the structure defined in Proposition 13.2. Then this Hom-Yetter-
Drinfeld (M ⊗ N , �̄M⊗N , ρ̄M⊗N , αM ⊗ αN ) coincides with the Hom-Yetter-Drinfeld
module defined in Proposition 13.1.

Proof We only need to check that the two comodule structures on M ⊗ N coincide,
i.e., for all m ∈ M and n ∈ N ,

β−2(m−1n−1) ⊗ (m0 ⊗ n0) = β−3(R2) ⊗ (R1�̄M⊗N (m ⊗ n)).

While

LHS = β−2(β−3(R2)β−3(r2)) ⊗ ((R1�̄Mm) ⊗ (r1�̄Nn))
(H A1)(QH A5)= β−4(R2r2) ⊗ ((β(R1)�̄Mm) ⊗ (β(r1)�̄Nn))

(QH A2)= β−3(R2) ⊗ ((R1
1�̄Mm) ⊗ (R1

2�̄Nn)) = RHS,

finishing the proof. �

Proposition 13.4 ([12]) Let (H, β) be a Hom-bialgebra. If (M, �̄M , αM) and
(N , �̄N , αN ) are two (H, β)-Hom-modules, then (M ⊗ N , �̄M⊗N , αM ⊗ αN ) is a
(H, β)-Hom-module with the action defined by

�̄M⊗N : H ⊗ (M ⊗ N ) −→ M ⊗ N , h�̄M⊗N (m ⊗ n) = (h1�̄Mm) ⊗ (h2�̄Nn).
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By Propositions 13.1–13.4, we have

Theorem 13.1 Let (H, β,R) be a quasitriangular Hom-Hopf algebra. Denote by
HM the categorywhose objects are left (H, β)-Hom-modules (M, �̄M , αM) andmor-
phisms are morphisms of left-(H, β)-Hom-modules. Then HM is a braided tensor
subcategory of H

HYD, with tensor product defined as in Proposition 13.4, associa-
tivity constraints defined by the formula aM,N ,P : (M ⊗ N ) ⊗ P −→ M ⊗ (N ⊗
P), (m ⊗ n) ⊗ p 
→ α−1

M (m) ⊗ (n ⊗ αP(p)), where m ∈ M, n ∈ N and p ∈ P,
the braiding defined by cM,N : M ⊗ N −→ N ⊗ M, m ⊗ n 
→ α−1

N (R2�̄Nn) ⊗
α−1
M (R1�̄Mn), where m ∈ M and n ∈ N and the unit (K , idK ).

Remark 13.1 Let m−1 ⊗ m0 = β−3(R2) ⊗ (R1�̄Mm) in Proposition 13.1, we can
get the the braiding in Theorem 13.1.

Proposition 13.5 ([2]) Let (H, β) be a Hom-bialgebra and (M, �M , ρM , αM),
(N , �N , ρN , αN ) ∈H

H YD. Define the linear map

τM,N : M ⊗ N −→ N ⊗ M, m ⊗ n 
→ β3(m−1) �N n ⊗ m0,

where m ∈ M and n ∈ N. Then, we have τM,N ◦ (αM ⊗ αN ) = (αN ⊗ αM) ◦ τM,N

and, if (P, �P , ρP , αP) ∈H
H YD, the maps τ , satisfy the Hom-Yang-Baxter equa-

tion:

(αP ⊗ τM,N ) ◦ (τM,P ⊗ αN ) ◦ (αM ⊗ τN ,P ) = (τN ,P ⊗ αM ) ◦ (αN ⊗ τM,P ) ◦ (τM,N ⊗ αP ).

Corollary 13.1 ([10]) Let (H, β,R) be a quasitriangular Hom-Hopf algebra and
(M, �̄M , αM) a left (H, β)-Hom-module. Then the linear map

B : M ⊗ M −→ M ⊗ M, B(m ⊗ m ′) = (R2�̄Mm
′) ⊗ (R1�̄Mm)

is a solution of the Hom-Yang-Baxter equation for (M, �̄M , αM).

Proof By Theorem 13.1, and let m−1 ⊗ m0 = β−3(R2) ⊗ (R1�̄Mm) in Proposition
13.5, we can obtain the result. �

Wehave seen thatHom-modules over quasitriangularHom-Hopf algebras become
Hom-Yetter-Drinfeld modules. Similarly, Hom-comodules over cobraided Hom-
Hopf algebras becomeHom-Yetter-Drinfeldmodules. In the following, we introduce
another braided tensor category structure on Hom-Yetter-Drinfeld category.

Similar to [2, Lemma 4.4], we have

Proposition 13.6 With notations as above. Let (H, β) be a Hom-bialgebra and
(M, •M , ψM , αM), (N , •N , ψN , αN ) ∈H

H YD. Define the linear maps

•M⊗N : H ⊗ M ⊗ N −→ M ⊗ N , h ⊗ (m ⊗ n) 
→ (β−2(h1) •M m) ⊗ (β−2(h2) •N n),

and
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ψM⊗N : M ⊗ N −→ H ⊗ M ⊗ N ,m ⊗ n 
→ m−1n−1 ⊗ m0 ⊗ n0,

where h ∈ H, m ∈ M and n ∈ N. Then (M ⊗ N , •M⊗N , ψM⊗N , αM ⊗ αN ) is a
Hom-Yetter-Drinfeld module.

Theorem 13.2 Let (H, β) be a Hom-bialgebra. Then the Hom-Yetter-Drinfeld cate-
gory H

HYD is a braided tensor category, with tensor product defined as in Proposition
13.6, associativity constraints defined by

aM,N ,P : (M ⊗ N ) ⊗ P −→ M ⊗ (N ⊗ P), (m ⊗ n) ⊗ p 
→ αM (m) ⊗ (n ⊗ α−1
P (p)),

where m ∈ M, n ∈ N and p ∈ P, the braiding defined by

cM,N : M ⊗ N −→ N ⊗ M, m ⊗ n 
→ (β2(m−1) •N α−1
N (n)) ⊗ α−1

M (m0),

where m ∈ M and n ∈ N and the unit (K , idK ).

Proof Same to [2, Theorem 4.7]. �

Similar to Propositions 13.2, 13.3, we have

Proposition 13.7 Let (H, β, σ ) be a cobraided Hom-Hopf algebra.
(1) Let (M, αM) a left (H, β)-Hom-comodule with coaction ψ̄M : M −→ H ⊗

M,m 
→ m−1 ⊗ m0. Define the linear map

•̄M : H ⊗ M −→ M, h•̄Mm = σ(m−1, β
−3(h))m0

Then (M, •̄M , ψ̄M , αM) is a Hom-Yetter-Drinfeld module over (H, β).
(2) Let (N , ψ̄N , αN ) be another left (H, β)-Hom-comodule with coaction ψ̄N :

M −→ H ⊗ N , n 
→ n−1 ⊗ n0, regarded as a Hom-Yetter-Drinfeld module over
(H, β) with the structure defined as above, via the map •̄N : H ⊗ N −→ N , h ⊗
n 
→ h•̄Nn = σ(n−1, β

−3(h))n0. We regard (M ⊗ N , ψ̄M⊗N , αM ⊗ αN ) as a left
(H, β)-Hom-comodule via the standard coaction M ⊗ N −→ H ⊗ (M ⊗ N ), m ⊗
n 
→ m−1n−1 ⊗ (m0 ⊗ n0) and then we get (M ⊗ N , •̄M⊗N , ψ̄M⊗N , αM ⊗ αN ) as
a Hom-Yetter-Drinfeld module defined as above, then this Yetter-Drinfeld module
coincides with the Hom-Yetter-Drinfeld module defined in Theorem 13.2.

Proposition 13.8 ([12]) Let (H, β) be a Hom-bialgebra. If (M, ψ̄M , αM) and
(N , ψ̄N , αN ) are two (H, β)-Hom-comodules, then (M ⊗ N , ψ̄M⊗N , αM ⊗ αN ) is
a (H, β)-Hom-comodule with the coaction defined by

ψ̄M⊗N : M ⊗ N −→ H ⊗ (M ⊗ N ), m ⊗ n 
→ m−1n−1 ⊗ (m0 ⊗ n0).

By Propositions 13.6, 13.7, 13.8 and Theorem 13.2, we have
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Theorem 13.3 Let (H, β, σ ) be a cobraided Hom-Hopf algebra. Denote by HM

the category whose objects are left (H, β)-Hom-comodules (M, ψ̄M , αM) and mor-
phisms are morphisms of left-(H, β)-Hom-comodules. Then HM is a braided tensor
subcategory of H

HYD, with tensor product defined as in Proposition 13.8, associa-
tivity constraints defined by the formula āM,N ,P : (M ⊗ N ) ⊗ P −→ M ⊗ (N ⊗
P), (m ⊗ n) ⊗ p 
→ αM(m) ⊗ (n ⊗ α−1

P (p)), where m ∈ M, n ∈ N and p ∈ P,
the braiding defined by c̄M,N : M ⊗ N −→ N ⊗ M, m ⊗ n 
→ σ(n−1,m−1)α

−1
N

(n0) ⊗ α−1
M (m0), where m ∈ M and n ∈ N and the unit (K , idK ).

Corollary 13.2 ([11]) Let (H, β, σ ) be a cobraided Hom-Hopf algebra. If
(M, ψ̄M , αM) and (N , ψ̄N , αN ) are two (H, β)-Hom-comodules, we define the lin-
ear map

BM,N : M ⊗ N −→ N ⊗ M, m ⊗ n 
→ σ(n−1,m−1)(n0 ⊗ m0).

Then, we have BM,N ◦ (αM ⊗ αN ) = (αN ⊗ αM) ◦ BM,N and, if (P, ψ̄ P , αP) is
another (H, β)-Hom-comodule, the maps B , satisfy the Hom-Yang-Baxter equa-
tion:

(αP ⊗ BM,N ) ◦ (BM,P ⊗ αN ) ◦ (αM ⊗ BN ,P ) = (BN ,P ⊗ αM ) ◦ (αN ⊗ BM,P ) ◦ (BM,N ⊗ αP ).

Proof By Theorem 13.3 and let h •N n = σ(n−1, β
−3(h))n0 in Proposition 13.5, we

can obtain the result. �

Theorem 13.4 Let (H, β, σ ) be a cobraided Hom-Hopf algebra. Assume that
(A, ρ A, α) is a Hom-Hopf algebra in the category HM. Define �A : H ⊗ A −→ A
by

h �A a = σ(a−1, β
−3(h))a0,

where h ∈ H, a ∈ A and ρ A(a) = a−1 ⊗ a0. Then (A�
�H, α ⊗ β) is a Radford

biproduct Hom-Hopf algebra.

Proof By Theorem 13.3, we only need to prove that the conditions (HM1), (HM2),
(HMA1), (HMA2) and (HY D) hold. And (HM1) and (HMA2) are easy. While

β(h) �A (g �A a) = σ(a−1, β
−3(g))σ (a0−1, β

−2(h))a00
(HCM2)= σ(β−1(a−11), β

−3(g))σ (a−12, β
−2(h))α(a0)

(CH A5)= σ(a−11, β
−2(g))σ (a−12, β

−2(h))α(a0)
(CH A3)= σ(β(a−1), β

−3(h)β−3(g))α(a0)
(HCM1)(H A1)= σ(α(a)−1), β

−3(hg))α(a)0
= hg �A α(a),
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β2(h) �A (ab) = σ((ab)−1, β
−1(h))(ab)0

(HCMA1)= σ(a−1b−1, β
−1(h))a0b0

(CH A2)(HC1)= σ(β(a−1), β
−2(h1))σ (β(b−1), β

−2(h2))a0b0
(CH A5)= σ(a−1, β

−3(h1))σ (b−1, β
−3(h2))a0b0

= (h1 �A a)(h2 �A b),

and

(β2(h1) �A a)−1h2 ⊗ (β2(h1) �A a)0 = σ(a−1, β
−1(h1))a0−1h2 ⊗ a00

(HCM2)= σ(β−1(a−11), β
−1(h1))a−12h2 ⊗ α(a0)

(CH A5)= σ(a−11, h1)a−12h2 ⊗ α(a0)
(CH A4)= h1a−11σ(a−12, h2) ⊗ α(a0)
(HCM2)= h1β(a−1) ⊗ σ(a0−1, h2)a00

= h1β(a−1) ⊗ (β3(h2) �A a0),

finishing the proof. �

Dually, we have

Theorem 13.5 Let (H, β,R) be a quasitriangular Hom-Hopf algebra. Assume that
(A, �A, α) is a Hom-Hopf algebra in the category HM. Define ρ A : A −→ H ⊗ A
by

ρ A(a) = β−3(R2) ⊗ (R1 �A a),

where a ∈ A. Then (A�
�H, α ⊗ β) is a Radford biproduct Hom-Hopf algebra.

13.4 Twisted Tensor Biproduct Hom-Hopf Algebra

In this section, we consider the twisted tensor biproduct Hom-Hopf algebra general-
izing the Radford’s biproduct Hom-Hopf algebra. And two nontrivial examples are
given.

Theorem 13.6 Let (H, β) be a Hom-bialgebra, (A, α) a Hom-algebra and a Hom-
coalgebra. Let R : H ⊗ A −→ A ⊗ H and T : A ⊗ H −→ H ⊗ A be two linear
maps such that the conditions (R) and (T ) hold. Assume that (A�RH, α ⊗ β) is a
R-smash product Hom-algebra and (A �T H, α ⊗ β) is a T -smash coproduct Hom-
coalgebra. Then the following are equivalent:

• (A�R�T H, μ�R H , 1A ⊗ 1H ,ΔA�T H , εA ⊗ εH , α ⊗ β) is a Hom-bialgebra.
• The following conditions hold (∀ a, b ∈ A and h, g ∈ H):

(B1) 1AT ⊗ 1HT = 1A ⊗ 1H and ΔA(1A) = 1A ⊗ 1A,
(B2) (ab)1 ⊗ 1HT ⊗ (ab)2T = a1α−1(b1)R ⊗ β−1(1HT R)1Ht ⊗ a2T b2t ,
(B3) hT ⊗ aT = 1HTβ−1(h)t ⊗ α−1(a)T 1At ,
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(B4) (h1g1)T ⊗ 1AT ⊗ β(h2)β(g2)
= h1T g1t ⊗ 1ATα(α−2(1At )R) ⊗ β−1(β(h2)R)β(g2),

(B5) α−1(a)R1 ⊗ β−1(hR1)T ⊗ α(α−1(a)R2)T ⊗ hR2

= α−1(a1)R ⊗ β−1(β−1(h1)T R)1Ht ⊗ 1ATα(α−2(a2t )r ) ⊗ h2r . (B6)
εA(aR)εH (hR) = εA(a)εH (h) and εA is a Hom-algebra map.

In this case, we call this Hom-bialgebra twisted tensor biproduct Hom-bialgebra
and denote it by (A�R�T H, α ⊗ β).

Proof (⇐=) It is easy to prove that εA
�R�T H = εA ⊗ εH is a morphism of Hom-

algebras.Nextwe checkΔA
�R�T H = ΔA�T H is amorphismofHom-algebras as follows.

For all a, b ∈ A and h, g ∈ H , we have

Δ
A

�R�T H
((a ⊗ h)(b ⊗ g))

= (aα−1(b)R)1 ⊗ β−1((β−1(hR)g)1)T ⊗ α−1((aα−1(b)R)2T ) ⊗ (β−1(hR)g)2
(B3)= (aα−1(b)R)1 ⊗ 1HT β−2((β−1(hR)g)1)t ⊗ α−1(α−1((aα−1(b)R)2)T 1At )

⊗ (β−1(hR)g)2
(T )= (aα−1(b)R)1 ⊗ β−1(1HT )β−2((β−1(hR)g)1)t ⊗ α−1(α−1((aα−1(b)R)2T )1At )

⊗ (β−1(hR)g)2
(B2)= a1α

−1(α−1(b)R1)r ⊗ β−1(β−1(1HT̄r )1Ht̄ )β
−2((β−1(hR)g)1)t

⊗ α−1((α−1(a2T̄ )α−1(α−1(b)R2t̄ ))1At ) ⊗ (β−1(hR)g)2
(H A1)= a1α

−1(α−1(b)R1)r ⊗ β−1(β−1(1HT̄r )1Ht̄ )(β
−3(hR)1β

−2(g)1)t

⊗ α−1((α−1(a2T̄ )α−1(α−1(b)R2t̄ ))1At ) ⊗ β(β(β−3(hR)2)β(β−2(g)2))

(B4)= a1α
−1(α−1(b)R1)r ⊗ β−1(β−1(1HT̄r )1Ht̄ )(β

−3(hR)1T β−2(g)1t )

⊗ α−1((α−1(a2T̄ )α−1(α−1(b)R2t̄ ))(1AT α(α−2(1At )R̄)))

⊗ β(β−1(β(β−3(hR)2)R̄)β(β−2(g)2))

(H A1)= a1α
−1(α−1(b)R1)r ⊗ (β−2(1HT̄r )β

−1(1Ht̄ ))(β
−3(hR)1T β−2(g)1t )

⊗ α−1((α−1(a2T̄ )α−1(α−1(b)R2t̄ ))(1AT α(α−2(1At )R̄)))

⊗ β(β−1(β(β−3(hR)2)R̄)β(β−2(g)2))

(H A2)= a1α
−1(α−1(b)R1)r ⊗ (β−2(1HT̄r )β

−1(β−1(1Ht̄ )β
−3(hR)1T ))β(β−2(g)1t )

⊗ α−1((α−1(a2T̄ )α−1(α−1(α−1(b)R2t̄ )1AT ))α2(α−2(1At )R̄)))

⊗ β(β−1(β(β−3(hR)2)R̄)β(β−2(g)2))

(H A1)= a1α
−1(α−1(b)R1)r ⊗ (β−2(1HT̄r )(β

−2(1Ht̄ )β
−1(β−3(hR)1T )))β(β−2(g)1t )

⊗ (α−2(a2T̄ )α−1(α−2(α−1(b)R2t̄ )α
−1(1AT )))α(α−2(1At )R̄)

⊗ β(β−1(β(β−3(hR)2)R̄)β(β−2(g)2))

(T )= a1α
−1(α−1(b)R1)r ⊗ (β−2(1HT̄r )(1Ht̄β

−1(β−3(hR)1)T ))β(β−2(g)1t )

⊗ (α−2(a2T̄ )α−1(α−2(α−1(b)R2)t̄1AT ))α(α−2(1At )R̄)

⊗ β(β−1(β(β−3(hR)2)R̄)β(β−2(g)2))

(B3)= a1α
−1(α−1(b)R1)r ⊗ (β−2(1HT̄r )β

−3(hR)1T )β(β−2(g)1t )
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⊗ (α−2(a2T̄ )α−1(α−1(α−1(b)R2)T ))α(α−2(1At )R̄)

⊗ β(β−1(β(β−3(hR)2)R̄)β(β−2(g)2))

(HC1)= a1α
−1(α−1(b)R1)r ⊗ (β−2(1HT̄r )β

−3(hR1)T )β(β−2(g1)t )

⊗ (α−2(a2T̄ )α−1(α−1(α−1(b)R2)T ))α(α−2(1At )R̄) ⊗ β(β−1(β−2(hR2)R̄)β−1(g2))

(T )= a1α
−1(α−1(b)R1)r ⊗ (β−2(1HT̄r )β

−2(β−1(hR1)T ))β(β−2(g1)t )

⊗ (α−2(a2T̄ )α−3(α(α−1(b)R2)T ))α(α−2(1At )R̄) ⊗ β(β−1(β−2(hR2)R̄)β−1(g2))

(B5)(H A1)= a1α
−1(α−1(b1)R)r ⊗ (β−2(1HT̄r )β

−2(β−1(β−1(h1)T R)1Ht̄ ))β(β−2(g1)t )

⊗ (α−2(a2T̄ )α−3(1AT α(α−2(b2t̄ )r̄ )))α(α−2(1At )R̄) ⊗ β−2(h2r̄ )R̄ g2
(H A2)(H A1)= a1α

−1(α−1(b1)R)r ⊗ β−2(1HT̄rβ
−1(h1)T R)(β−1(1Ht̄ )β

−2(g1)t )

⊗ α−2(a2T̄ 1AT )(α−1(α−2(b2t̄ )r̄ )α
−2(1At )R̄) ⊗ β−2(h2r̄ )R̄ g2

(R)= a1α
−1(α−1(b1)Rr ) ⊗ β−2(β−1(β(1HT̄ )r )β

−1(h1)T R)(β−1(1Ht̄ )β
−2(g1)t )

⊗ α−2(a2T̄ 1AT )(α−1(α−2(b2t̄ )r̄ )α
−2(1At )R̄) ⊗ β−2(h2r̄ )R̄ g2

(RS2)= a1α
−1(b1R) ⊗ β−2((1HT̄ β−1(h1)T )R)(β−1(1Ht̄ )β

−2(g1)t )

⊗ α−2(α−1(α(a2))T̄ 1AT )(α−1(α−2(b2t̄ )r̄ )α
−2(1At )R̄) ⊗ β−2(h2r̄ )R̄ g2

(B3)= a1α
−1(b1R) ⊗ β−2(h1T R)β−1(1Ht̄β(β−2(g1)t ))

⊗ α−2(α(a2)T )(α−1(α−2(b2t̄ )r̄ )α
−2(1At )R̄) ⊗ β−2(h2r̄ )R̄ g2

(H A1)= a1α
−1(b1R) ⊗ β−2(h1T R)(β−1(1Ht̄ )β

−2(g1)t )

⊗ α−2(α(a2)T )(α−1(α−2(b2t̄ )r̄ )α
−2(1At )R̄) ⊗ β−2(h2r̄ )R̄ g2

(T )= a1α
−1(b1R) ⊗ β−2(h1T R)(1Ht̄β

−2(g1)t )

⊗ α−2(α(a2)T )(α−1(α−1(α−1(b2)t̄ )r̄ )α
−2(1At )R̄) ⊗ β−2(h2r̄ )R̄ g2

(R)= a1α
−1(b1R) ⊗ β−2(h1T R)(1Ht̄β

−2(g1)t )

⊗ α−2(α(a2)T )(α−2(α−1(b2)t̄ )r̄α
−1(α−1(1At )R̄)) ⊗ β−1(β−1(h2)r̄ R̄)g2

(R)= a1α
−1(b1)R ⊗ β−1(β−1(h1)T R)(1Ht̄β

−2(g1)t )

⊗ α−1(a2T )(α−2(α−1(b2)t̄ )r̄α
−1(α−1(1At )R̄)) ⊗ β−1(β−1(h2)r̄ R̄)g2

(H A1)= a1α
−1(b1)R ⊗ β−1(β−1(h1)T R)(1Ht̄β

−2(g1)t )

⊗ α−1(a2T )α−1(α(α−2(α−1(b2)t̄ )r̄ )α(α−2(1At ))R̄) ⊗ β−1(β−1(h2)r̄ R̄)g2
(RS3)= a1α

−1(b1)R ⊗ β−1(β−1(h1)T R)(1Ht̄β
−2(g1)t )

⊗ α−1(a2T )(α−2(α−1(b2)t̄ )α
−2(1At ))r ) ⊗ β−1(h2r )g2

(H A1)= a1α
−1(b1)R ⊗ β−1(β−1(h1)T R)(1Ht̄β

−2(g1)t )

⊗ α−1(a2T )α−2(α−1(b2)t̄1At )r ⊗ β−1(h2r )g2
(B3)= a1α

−1(b1)R ⊗ β−1(β−1(h1)T R)β−1(g1)t ⊗ α−1(a2T )α−2(b2t )r ⊗ β−1(h2r )g2

= Δ
A

�R�T H
(a ⊗ h)Δ

A
�R�T H

(b ⊗ g),

and ΔA
�R�T H (1A ⊗ 1H ) = 1A ⊗ 1H ⊗ 1A ⊗ 1H can be proved directly.
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(=⇒) It is easy to prove that the conditions (B1) and (B6) hold. Next we check
the conditions (B2)–(B5) are satisfied as follows.

For all a, b ∈ A and h, g ∈ H , since ΔA
�R�T H ((a ⊗ h)(b ⊗ g)) = ΔA

�R�T H (a ⊗
h)ΔA

�R�T H (b ⊗ g), we have

(∗) (aα−1(b)R)1 ⊗ β−1((β−1(hR)g)1)T ⊗ α−1((aα−1(b)R)2T ) ⊗ (β−1(hR)g)2

= a1α
−1(b1)R ⊗ β−1(β−1(h1)T R)β−1(g1)t ⊗ α−1(a2T )α−2(b2t )r ⊗ β−1(h2r )g2

Apply idA ⊗ idH ⊗ idA ⊗ εH to Eq.(∗) and then set h = g = 1H , we get (B2).
(B3) can be obtained by using εA ⊗ idH ⊗ idA ⊗ εH to Eq.(∗) and setting b =

1A, h = 1H .
Similarly, we apply εA ⊗ idH ⊗ idA ⊗ idH to Eq.(∗) and set a = b = 1A, then

(B4) holds.
(B5) can be derived by letting a = 1A and g = 1H in Eq.(∗). �

Remark 13.2 If α = idA and β = idH , then we can get the twisted tensor biproduct
bialgebra in [4].

Corollary 13.3 ([2]) Let (C, α), (H, β) be two Hom-bialgebras, and T : C ⊗
H −→ H ⊗ C a linear map such that the condition (T ) holds. Then the T -smash
coproduct Hom-coalgebra (C �T H, α ⊗ β) endowed with the tensor product Hom-
algebra structure becomes a Hom-bialgebra if and only if T is a map of Hom-
algebras.

Proof Let R(h ⊗ c) = α(c) ⊗ β(h) in Theorem13.6. Then, by (B2)–(B5), we have

(C1) 1HT ⊗ (ab)T = 1HT 1Ht ⊗ aT bt ,

(C2) hT ⊗ aT = 1hTβ−1(h)t ⊗ α−1(a)T 1At = β−1(h)t1hT ⊗ 1Atα
−1(a)T ,

(C3) (hg)T ⊗ 1AT = hT gt ⊗ 1AT 1At .

Next we only prove that (hg)T ⊗ (ab)T = hT gt ⊗ aT bt as follows. And the rest are
easy.

(hg)T ⊗ (ab)T
(C2)= 1HT β−1(hg)t ⊗ α−1(ab)T 1At
(H A1)= 1HT (β−1(h)β−1(g))t ⊗ (α−1(a)α−1(b))T 1At
(C1)(C3)= (1

H ¯̄T 1HT (β−1(h)T̄ β−1(g)t ) ⊗ (α−1(a) ¯̄T α−1(b)T )(1AT̄ 1At )

(H A2)= (1
H ¯̄T β−1(1HT β−1(h)T̄ ))β(β−1(g)t ) ⊗ (α−1(a) ¯̄T α−1(α−1(b)T 1AT̄ ))α(1At )

(C2)= (1
H ¯̄T β−1(β−1(h)T̄ 1HT ))β(β−1(g)t ) ⊗ (α−1(a) ¯̄T α−1(1AT̄ α−1(b)T ))α(1At )

(H A2)= (1
H ¯̄T β−1(h)T̄ )(1HT β−1(g)t ) ⊗ (α−1(a) ¯̄T 1AT̄ )(α−1(b)T 1At )

(C2)= hT gt ⊗ aT bt ,

finishing the proof. �
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Corollary 13.4 ([3]) Let (A, α), (H, β) be two Hom-bialgebras, and R : H ⊗
A −→ A ⊗ H a linear map such that the condition (R) holds. Then the R-
smash product Hom-algebra (A�RH, α ⊗ β) endowed with the tensor product
Hom-coalgebra structure becomes a Hom-bialgebra if and only if R is a map of
Hom-coalgebras.

Proof Let T (a ⊗ h) = β(h) ⊗ α(a) in Theorem 13.6. �

Corollary 13.5 ([2]) Let (H, β) be a Hom-bialgebra, (A, α) a left (H, β)-module
Hom-algebra with module structure � : H ⊗ A −→ A and a left (H, β)-comodule
Hom-coalgebra with comodule structure ρ : A −→ H ⊗ A. Then the following are
equivalent:

• (A�
�H, μA�H , 1A ⊗ 1H ,ΔA�H , εA ⊗ εH , α ⊗ β) is a Hom-bialgebra, where

(A�H, α ⊗ β) is a smash product Hom-algebra and (A � H, α ⊗ β) is a smash
coproduct Hom-coalgebra.

• The following conditions hold (∀ a, b ∈ A and h ∈ H):
(R1) (A, ρ, α) is an (H, β)-comodule Hom-algebra,
(R2) (A, �, α) is an (H, β)-module Hom-coalgebra,
(R3) εA is a Hom-algebra map and ΔA(1A) = 1A ⊗ 1A,
(R4) ΔA(ab) = a1(β2(a2−1) � α−1(b1)) ⊗ α−1(a20)b2,
(R5) h1β(a−1) ⊗ (β3(h2) � a0) = (β2(h1) � a)−1h2 ⊗ (β2(h1) � a)0.

In this case, we call (A�
�H, α ⊗ β) Radford biproduct bialgebra.

Proof Let R(h ⊗ a) = (h1 � a) ⊗ h2 and T (a ⊗ h) = a−1h ⊗ a0 in Theorem 13.6.
�

Theorem 13.7 Let (H, β, SH ) be a Hom-Hopf algebra, and (A, α) be a Hom-
algebra and a Hom-coalgebra. Let R : H ⊗ A −→ A ⊗ H and T : A ⊗ H −→
H ⊗ A be two linear maps such that the conditions (R) and (T ) hold. Assume
that (A�R�T H, α ⊗ β) is a twisted tensor biproduct Hom-bialgebra defined as above,
and SA : A −→ A is a linear map such that SA(a1)a2 = a1SA(a2) = εA(a)1A and
α ◦ SA = SA ◦ α hold. Then (A�R�T H, α ⊗ β, SA�R�T H ) is a Hom-Hopf algebra, where

SA�R�T H (a ⊗ h) = SA(α
−2(aT ))R ⊗ β−1(SH (β−1(h)T )R).

Proof We can compute that (A�
�H, α ⊗ β, SA�

�H ) is a Hom-Hopf algebra as follows.
For all a ∈ A and h ∈ H , we have
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(SA�R�T H ∗ idA
�R�T H )(a ⊗ h)

= SA(α
−2(a1t ))Rα−2(a2T )r ⊗ β−1(β−1(SH (β−1(β−1(h1)T )t )R)r )h2

(T )= SA(α
−2(a1t ))Rα−3(α(a2)T )r ⊗ β−1(β−1(SH (β−2(h1T )t )R)r )h2

(T )= SA(α
−4(α2(a1)t ))Rα−3(α(a2)T )r ⊗ β−1(β−1(SH (β−2(h1T t ))R)r )h2

(T )= SA(α
−4(α(α(a)1)t ))Rα−4(α(α(a)2T ))r ⊗ β−1(β−1(SH (β−2(h1T t ))R)r )h2

(T S3)= SA(α
−4(α2(a)T 1))Rα−4(α2(a)T2)r ⊗ β−1(β−1(SH (β−1(h1T ))R)r )h2

= α(SA(α
−5(α2(a)T 1))R)α(α−5(α2(a)T 2))r ⊗ β−1(SH (β−2(h1T ))Rr )h2

(RS3)= α((SA(α
−5(α2(a)T 1))α

−5(α2(a)T2))R) ⊗ β−1(SH (β−1(h1T ))R)h2
(H A1)= α(α−5(SA(α

2(a)T 1)α
2(a)T 2)R) ⊗ β−1(SH (β−1(h1T ))R)h2

(H A1)= (α(1AR) ⊗ β−1(SH (β−1(h1T ))R)h2)εA(α
2(a)T )

(T S1)= (α(1AR) ⊗ β−1(SH (h1)R)h2)εA(a)

(RS1)(H A1)= (1A ⊗ SH (h1)h2)εA(a)

= (1A ⊗ 1H )εA(a)εH (h).

Similarly, we have (idA
�R�T H ∗ SA�R�T H )(a ⊗ h) = (1A ⊗ 1H )εA(a)εH (h).

Finally,

(α ⊗ β) ◦ SA�R�T H (a ⊗ h) = α(SA(α−2(aT ))R) ⊗ SH (β−1(h)T )R
(R)= α(SA(α−2(aT )))R ⊗ β−1(β(SH (β−1(h)T ))R)

= SA(α−1(aT ))R ⊗ β−1(SH (β(β−1(h)T ))R)
(T )= SA(α−2(α(a)T ))R ⊗ β−1(SH (hT )R)
(T )= SA�R�T H ◦ (α(a) ⊗ β(h)),

finishing the proof. �
Corollary 13.6 ([2]) Let (H, β, SH ) be a Hom-Hopf algebra, and (A, α) be a Hom-
algebra and a Hom-coalgebra. Assume that (A�

�H, α ⊗ β) is a Radford biproduct
Hom-bialgebra defined in Corollary 13.5, and SA : A −→ A is a linear map such
that SA(a1)a2 = a1SA(a2) = εA(a)1A and α ◦ SA = SA ◦ α hold. Then (A�

�H, α ⊗
β, SA�

�H ) is a Hom-Hopf algebra, where

SA�
�H (a ⊗ h) = (SH (a−1β

−1(h))1 � SA(α
−2(a0))) ⊗ β−1(SH (a−1β

−1(h))2).

Proof Let R(h ⊗ a)=(h1 � a) ⊗ h2 and T (a ⊗ h)=a−1h ⊗ a0 in Theorem 13.7. �
Example 13.1 Let KZ2 = K {1, a} be Hopf group algebra (see [8]). Then
(KZ2, idKZ2) is a Hom-Hopf algebra.

Let T2,−1 = K {1, g, x, gx |g2 = 1, x2 = 0} be Taft’s Hopf algebra (see [4]), its
coalgebra structure and antipode are given by
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Δ(g) = g ⊗ g, Δ(x) = x ⊗ g + 1 ⊗ x, Δ(gx) = gx ⊗ 1 + g ⊗ gx;

ε(g) = 1, ε(x) = 0, ε(gx) = 0;

and
S(g) = g, S(x) = gx, S(gx) = −x .

Define a linear map α: T2,−1 −→ T2,−1 by

α(1) = 1, α(g) = g, α(x) = kx, α(gx) = kgx

where 0 �= k ∈ K . Then α is an automorphism of Hopf algebras.
So we can get a Hom-Hopf algebra Hα = (T2,−1, α ◦ μT2,−1 , 1T2,−1 ,ΔT2,−1 ◦ α,

εT2,−1 , α) (see [7]).
With notations above. Define two linear maps as follows:

R : KZ2 ⊗ Hα −→ Hα ⊗ KZ2

1KZ2 ⊗ 1Hα

→ 1Hα

⊗ 1KZ2

1KZ2 ⊗ g 
→ g ⊗ 1KZ2

1KZ2 ⊗ x 
→ kx ⊗ 1KZ2

1KZ2 ⊗ gx 
→ kgx ⊗ 1KZ2

a ⊗ 1Hα

→ 1Hα

⊗ a

a ⊗ g 
→ g ⊗ a

a ⊗ x 
→ kx ⊗ a

a ⊗ gx 
→ kgx ⊗ a

and

T : Hα ⊗ KZ2 −→ KZ2 ⊗ Hα

1Hα
⊗ 1KZ2 
→ 1KZ2 ⊗ 1Hα

g ⊗ 1KZ2 
→ 1KZ2 ⊗ g

x ⊗ 1KZ2 
→ ka ⊗ x

gx ⊗ 1KZ2 
→ ka ⊗ gx

1Hα
⊗ a 
→ a ⊗ 1Hα

g ⊗ a 
→ a ⊗ g

x ⊗ a 
→ k1KZ2 ⊗ x

gx ⊗ a 
→ k1KZ2 ⊗ gx .

By a direct computation, we have (Hα
�R�T
KZ2, μHα�R KZ2 , 1Hα

⊗ 1KZ2 ,ΔHα�T KZ2 ,

εHα
⊗ εKZ2 , α ⊗ idKZ2) is a twisted tensor biproduct Hom-bialgebra. Furthermore,



13 On Hom-Yetter-Drinfeld Category 357

(Hα
�R�T
KZ2, α ⊗ idKZ2 , SHα

�R�T KZ2
) is a Hom-Hopf algebra, where SHα

�
�KZ2

is defined

by

SHα
�R�T KZ2

(1Hα
⊗ 1KZ2) = 1Hα

⊗ 1KZ2; SHα
�R�T KZ2

(1Hα
⊗ a) = 1Hα

⊗ a

SHα
�R�T KZ2

(g ⊗ 1KZ2) = g ⊗ 1KZ2; SHα
�R�T KZ2

(g ⊗ a) = g ⊗ a

SHα
�R�T KZ2

(x ⊗ 1KZ2) = y ⊗ a; SHα
�R�T KZ2

(x ⊗ a) = y ⊗ 1KZ2

SHα
�R�T KZ2

(y ⊗ 1KZ2) = −x ⊗ a; SHα
�R�T KZ2

(y ⊗ a) = −x ⊗ 1KZ2 .

Example 13.2 Let KZ2 = K {1, a} be Hopf group algebra (see [8]). Then
(KZ2, idKZ2) is a Hom-Hopf algebra. Let A = K {1, x} be a vector space. Define
the multiplication μA by

1x = x1 = lx, x2 = 0

and the automorphism β : A −→ A by

β(1) = 1, β(x) = lx

where 0 �= l ∈ K . Then (A, β) is a Hom-algebra.
Define the comultiplication ΔA by

ΔA(1) = 1 ⊗ 1, ΔA(x) = lx ⊗ 1 + l1 ⊗ x, and εA(1) = 1, εA(x) = 0.

Then (A, β) is a Hom-coalgebra.
With notations above. Define two linear maps as follows:

R : KZ2 ⊗ A −→ A ⊗ KZ2

1KZ2 ⊗ 1A 
→ 1A ⊗ 1KZ2

1KZ2 ⊗ x 
→ lx ⊗ 1KZ2

a ⊗ 1A 
→ 1A ⊗ a

a ⊗ x 
→ −lx ⊗ a

and

T : A ⊗ KZ2 −→ KZ2 ⊗ A

1A ⊗ 1KZ2 
→ 1KZ2 ⊗ 1A

x ⊗ 1KZ2 
→ la ⊗ x

1A ⊗ a 
→ a ⊗ 1A

x ⊗ a 
→ l1KZ2 ⊗ x .

By a direct computation, we have (A�R�T KZ2, μA�R KZ2 , 1A ⊗ 1KZ2 ,ΔA�T KZ2 , εA ⊗
εKZ2 , α ⊗ idKZ2) is a twisted tensor biproduct Hom-bialgebra. Furthermore,
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(A�R�T KZ2, α ⊗ idKZ2 , SA�R�T KZ2
) is a Hom-Hopf algebra, where SA�

�KZ2
is defined

by

SA�
�KZ2

(1A ⊗ 1KZ2) = 1A ⊗ 1KZ2; SA�
�KZ2

(1A ⊗ a) = 1A ⊗ a

SA�
�KZ2

(x ⊗ 1KZ2) = x ⊗ a; SA�
�KZ2

(x ⊗ a) = −x ⊗ 1KZ2 .
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