
Chapter 12
Strong Hom-Associativity

Lars Hellström

Abstract The concept of an algebra being hom-associative is examined, and
found to allow some awkward complications. A modified concept of strong hom-
associativity is introduced to eliminate those quirks. It is proved that the basic “Yau
twist” construction of a hom-associative algebra from an associative algebra does
in fact produce strongly hom-associative algebras. It is proved that the axioms for
a strongly hom-associative algebra yields a confluent rewrite system, and a basis
for the free strongly hom-associative algebra is given a finite presentation through a
parsing expression grammar.

Keywords Hom-associative algebra · Strongly hom-associative algebra · Rewrite
system

MSC 2010 Classification: 17A30 · 16S15 · 68Q42

12.1 Introduction

A hom-algebra is an algebrawhich in addition to the bilinearmultiplication operation
μ has a unary linear operation α, known as the “hom” because in some seminal
applications it was a homomorphism. Imposing some condition along the line of
making α a homomorphism is common in studies of hom-algebras, but that is not a
specialisation taken in this paper; α is only required to be linear.

The first class of hom-algebras to be definedwere the hom-Lie algebras [4], where
the Jacobi identity is deformed by applying α to the factor that only goes through
the bracket once. Later [9] the class of hom-associative algebras were defined to
establish a hom-analogue of the relation between ordinary associative and Lie alge-
bras: the commutator of a (hom-)associative algebra is automatically the bracket of a

L. Hellström (B)
Division of Applied Mathematics, School of Education, Culture and Communication,
Mälardalen University, Box 883, 72123 Västerås, Sweden
e-mail: lars.hellstrom@mdh.se

© Springer Nature Switzerland AG 2020
S. Silvestrov et al. (eds.), Algebraic Structures and Applications,
Springer Proceedings in Mathematics & Statistics 317,
https://doi.org/10.1007/978-3-030-41850-2_12

317

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41850-2_12&domain=pdf
mailto:lars.hellstrom@mdh.se
https://doi.org/10.1007/978-3-030-41850-2_12

318 L. Hellström

(hom-)Lie algebra. However to date this correspondence remains incomplete, in that
it is not known whether every hom-Lie algebra arises as the commutator algebra of
a hom-associative algebra; it is straightforward to hom-ify the construction of the
enveloping algebra of a Lie algebra [12], but so far we lack a hom-counterpart of
the Poincaré–Birkhoff–Witt (PBW) theorem to tell us what that enveloping algebra
looks like, and therefore cannot be sure that applying the commutator construction to
the enveloping hom-associative algebra will give us (a superalgebra of) the original
hom-Lie algebra.

Part of the problem here is that we lack a combinatorial description of the free
hom-associative algebra. In the classical case, associative products can be modelled
as words, where the enveloping algebra relations then allow us to swap letters, result-
ing in the PBWconclusion that the enveloping algebra as a vector space is isomorphic
to the commutative algebra on the same number of variables. Likewise the Lyndon
words [8, 10] provide a combinatorial model for the free Lie algebra, which is essen-
tial for the Shirshov [11] analogue of Gröbner basis theory for Lie algebras. The free
hom-associative algebra is trickier, and although there are results for special cases [3,
13], the general case remains open; we know that the structure of parenthetisation
matters quite a lot, so a basis for the free hom-associative algebra does not consist
of flat words as in the associative case, but on the other hand it is not the arbitrary
binary trees of a free magma either.

The reason to not assume anything except linearity of the hom α in what follows
is twofold. The first is generality: whereas making α an algebra homomorphism is
a very elegant way of defining it in the context of enveloping algebras of hom-Lie
algebras—the hom-Lie algebra providing a definition of α on the generators, and the
homomorphism property then extending α to the whole hom-associative algebra—it
is not necessarily the appropriate way of defining it. It could happen that α, which
arguably is a kind of deformation, requires corrections to multiplicativity at higher
degrees for everything to fit together; at present we do not know. The second reason
is the combinatorial side of the matter: the distinct pattern (demonstrated in the
next section) that appears in the rules derivable from hom-associativity alone, is lost
when additionally imposing multiplicativity of α. It therefore makes sense to first
explore the combinatorial structure without imposing multiplicativity, and only later
(if needed) consider the effects of multiplicativity.

Section12.2 of this chapter defines a strengthening of hom-associativity—the
titular strong hom-associativity—and explains why this strengthening is probably
rather mild, even if it is voluminous on the axiomatic side. Section12.3 proves that
strong hom-associativity gives rise to a confluent rewrite system (the general concept
whose specialisation to commutative polynomials is classical Gröbner basis theory).
Finally Sect. 12.4 gives a combinatorial model, in the form of a parsing expression
grammar, for the free hom-associative algebra.

12 Strong Hom-Associativity 319

12.2 Canyons and Identities

A systematic way of seeking a combinatorial model for the free algebramodulo some
set of axioms is to raise the level of abstraction one notch, and do rewriting in the
free operad, taking (an orientation of) those axioms as one’s initial rewrite system.
Using traditional function notation for elements of the free operad is somewhat
cumbersome, since even such a familiar rule as associativity ends up as as a relation

(
λx,y, z : μ(x, μ(y, z))

) → (
λx,y, z : μ(μ(x, y), z)

)

of two lambda-terms. Far more transparent is to use the graphical (diagrammatic,
string diagram) network notation, where the operations in an expression are vertices
in an (open) graph, edges show how operations are composed, inputs are edges from
the top boundary of the network, and the output (result) is the edge to the bottom
boundary. Since these expressions are operadic, the graphs will all be trees. In this
notation, the rewrite rule for hom-associativity becomes

⎡

⎣

⎤

⎦ →
⎡

⎣

⎤

⎦ (12.1)

where round vertices denote themultiplicationμ and square vertices denote the hom-
operation α. This rule then states that every occurrence of the left hand side (some
μ with an α as left operand and another μ as right operand) as a subexpression may
be replaced by the right hand side, with the understanding that doing so produces an
equivalent expression, since we wish to explore the equational theory where these
left and right hand sides in fact are equal.

The way that one does this is to complete the rewrite system generated by one’s
axioms, by adding new rules whenever an ambiguity fails to resolve. The main theo-
rem in commutative Gröbner basis theory is that this process always ends (although
it may have to run for a very large number of steps), but beyond commutative alge-
bra we may run into problems. Two operatic cases where everything still works out
are those of ordinary associativity and the Leibniz identity—see [5] for a precise
statement—but hom-associativity turns out to be more complicated. Indeed, it is
apparent from the calculations in [5] that the completion of (12.1) is going to be infi-
nite. This means we cannot arrive at a description of free hom-associative algebras
simply by performing mechanical calculations, but we may still be able to find one
by analysing (and then predicting) the rules that the completion procedure produces.
The rules all turn out to have a number of features in common.

The most apparent thing about the rules computed in [5] is that only two vertices
differ between left and right hand side: an α and a μ have switched places. These
two vertices always sit next to each other, but on opposite sides of a “canyon” whose
height is not bounded. For example, there are rules

320 L. Hellström

⎡

⎢⎢⎢
⎣

⎤

⎥⎥⎥
⎦

→

⎡

⎢⎢⎢
⎣

⎤

⎥⎥⎥
⎦

(12.2)

⎡

⎢⎢⎢⎢⎢
⎣

⎤

⎥⎥⎥⎥⎥
⎦

→

⎡

⎢⎢⎢⎢⎢
⎣

⎤

⎥⎥⎥⎥⎥
⎦

(12.3)

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

→

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

(12.4)

and this family continues with ever deeper canyons; to derive the next rule in this
sequence, one only need to consider overlapping the bottom multiplication in the
canyon by the top multiplication in the axiom rule (12.1) (or vice versa overlapping
the bottom multiplication in the hom-associativity axiom with the multiplication
on top of the right canyon wall—both yield the same result). Though infinite, this
μ ⊗ α family (left wall always μ, right wall always α) of canyon identities is easily
comprehensible, so if this had been all there was then a combinatorial model of the
free hom-associative algebra would not have been too hard to construct. However,
the hom-associative axiom admits self-interactions that are far more intricate than
those shown so far.

For one, (12.1) has an overlap with the left wall of (12.3), leading to the rewrites

⎡

⎢
⎢⎢⎢⎢
⎣

⎤

⎥
⎥⎥⎥⎥
⎦

(12.1)←

⎡

⎢
⎢⎢⎢⎢
⎣

⎤

⎥
⎥⎥⎥⎥
⎦

(12.3)→

⎡

⎢
⎢⎢⎢⎢
⎣

⎤

⎥
⎥⎥⎥⎥
⎦

(12.1)→

⎡

⎢
⎢⎢⎢⎢
⎣

⎤

⎥
⎥⎥⎥⎥
⎦
; (12.5)

the canyon in the rule constructed from this failed resolution has height 2, andwhereas
the bottom layer is again μ ⊗ α, the top layer is here α ⊗ α: both walls sport α as
operation. It is equally possible to get μ in both walls: rule (12.2) has a nontrivial
overlap with itself, leading to the failed resolution

12 Strong Hom-Associativity 321

⎡

⎢⎢⎢⎢⎢
⎣

⎤

⎥⎥⎥⎥⎥
⎦

(12.2)←

⎡

⎢⎢⎢⎢⎢
⎣

⎤

⎥⎥⎥⎥⎥
⎦

(12.2)→

⎡

⎢⎢⎢⎢⎢
⎣

⎤

⎥⎥⎥⎥⎥
⎦

(12.2)→

⎡

⎢⎢⎢⎢⎢
⎣

⎤

⎥⎥⎥⎥⎥
⎦
.

(12.6)
Further calculations suggest that all canyon compositions arise: any height (number
of layers between the μ at the bottom and the α–μ pair being exchanged at the top)
is possible, and each layer may independently consist of two μs, two αs, or one of
each. This is still comprehensible, but not as easy as having just one rule for each
height.

What really makes things complicated is however that the expressions in
rules (12.5) and (12.6) contain a bitmore than just the canyon cores; there is also some
surrounding padding, and not the same padding in (12.5) as in (12.6). Because of
the way rewrite system completion works, and thanks to the rewrite rules in question
all preserving the number of operations in the expressions, this padding is provably
necessary for the α–μ exchange across the canyon to be a logical consequence of
the hom-associativity axiom (12.1); without it, the left and right hand sides can be
distinct.

Example 12.1 Let (F, μ, α) be the free hom-associative Q-algebra generated by
one element x . Then

δ = μ
(
μ

(
x, α(x)

)
, μ

(
μ(x, x), x

)) − μ
(
μ

(
x, μ(x, x)

)
, μ

(
α(x), x

))
(12.7)

is nonzero, because even though the two terms in δ are structured like the left and
right hand side canyons of (12.6), they are missing the padding which would make
equality a consequence of hom-associativity. On the other hand

μ
(
δ, α(α(y))

) = 0 for all y ∈ F, (12.8)

so at the very least this δ is a zero-divisor in the free hom-associative algebra.
The conclusion (12.8) continues to hold if generalising δ to δ(x1, x2, x3, x4, x5)

where the five x factors in δ are allowed to be independent variables (although
the same five in both terms), but then there might potentially be choices of
x1, x2, x3, x4, x5 ∈ Fwhichmake δ(x1, x2, x3, x4, x5) = 0.The freeness ofF ensures
δ �= 0 when one picks all of them to be the algebra generator.

Though the expressions involved are more complicated, this situation has simi-
larities to one that arises with the definition of anti-commutativity. Recall that the
naive definition of this for a bracket operation [·, ·] is that [x, y] = −[y, x] for all x
and y, but for squaring this only implies 2[x, x] = 0, which in even positive char-
acteristic is noticeably weaker than [x, x] = 0. Where the distinction is relevant,
[x, x] = 0 is therefore called strong anticommutativity, whereas [x, y] = −[y, x] is

322 L. Hellström

designated weak anticommutativity. Example 12.1 suggests something similar may
be appropriate for hom-associativity.

Definition 12.1 Let (A, μ, α) be a hom-algebra. Taking the lift of composition ◦ to
sets to have greater binding strength than union ∪, one may inductively define the
family {Ck,l,n}k,l∈Z,n∈N of maps A⊗(k+2+l) −→ A (canyons graded by side-arities
and height) by

Ck,l,0 =
{

{μ} if k = l = 0,

∅ otherwise,

Ck,l,n+1 = Ck,l,n ◦ {id⊗k ⊗ α ⊗ α ⊗ id⊗l}
∪ Ck−1,l,n ◦ {id⊗(k−1) ⊗ μ ⊗ α ⊗ id⊗l}
∪ Ck,l−1,n ◦ {id⊗k ⊗ α ⊗ μ ⊗ id⊗(l−1)}
∪ Ck−1,l−1,n ◦ {id⊗(k−1) ⊗ μ ⊗ μ ⊗ id⊗(l−1)}

for all k, l ∈ Z and n ∈ N. Now the algebra (A, μ, α) is said to be strongly hom-
associative if

c ◦ (id⊗k ⊗ α ⊗ μ ⊗ id⊗l) = c ◦ (id⊗k ⊗ μ ⊗ α ⊗ id⊗l)

for all c ∈ Ck,l,n and k, l, n ∈ N. (12.9)

An algebra is said to be (weakly) hom-associative if it satisfies the k = l = n = 0
case of (12.9).

The analogy with weak and strong anticommutativity does not extend to the point
that it is all-or-nothing depending on the characteristic (weak anticommutativity
being anull condition in characteristic 2, but equivalent to strong anticommutativity in
odd or zero characteristic); it is more like anticommutativity in (say) characteristic 8,
where the weak form says an expression like [x, x] or δ respectively is pretty special,
even if it does not have to be 0. In the free strongly hom-associative algebra, the δ

of (12.7) is zero by the k = l = n = 1 case of (12.9).

Theorem 12.1 Let (A, ·) be an associative algebra, let α : A −→ A be a homomor-
phism of that algebra, and let μ : A × A −→ A be defined by μ(x, y) = α(x · y)
for all x, y ∈ A. Then (A, μ, α) (the “Yau twist” of (A, ·) by α) is a strongly hom-
associative algebra.

Proof Since α(x · y) = α(x) · α(y) for all x, y ∈ A, any canyon identity

c ◦ id⊗k ⊗ α ⊗ μ ⊗ id⊗l = c ◦ id⊗k ⊗ μ ⊗ α ⊗ id⊗l

can be rewritten to the form M1 ◦ A1 = M2 ◦ A2, where the Mi parts are compo-
sitions of the associative multiplication · and the Ai parts are (tensor products of)
compositions of α. Since the left–right order of factors are preserved during this, M1

12 Strong Hom-Associativity 323

and M2 end up as the same associative product of k + 3 + l factors. Likewise A1 and
A2 both have the form

⊗k+3+l
i=1 α◦mi , where each power mi is the number of vertices

on the path from the i th input to the output; since these are the same on both sides
of the equality, A1 = A2 as well.

Here it is notable that this result hinges upon both sides of the canyon having the
same height, because there is one path that goes along the right wall in the left hand
side of the equality but along the left wall in the right hand side; if those walls are of
unequal height, values passed along this path will be subject to an unequal number
of operations. One could more generally speak about a “rift” if there are two walls
of unequal height being joined by a μ multiplication at the bottom, and define “rift
identities” as having the form

f ◦ (id⊗k ⊗ α ⊗ μ ⊗ id⊗l) = f ◦ (id⊗k ⊗ μ ⊗ α ⊗ id⊗l)

for some rift f . Taking A = Q〈X〉 where X = {xn}n∈N and letting the homomor-
phism α be defined by α(xn) = xn+1, we will however through the same twist con-
struction arrive at a hom-algebra in which all non-canyon “rift identities” are false.
Having walls of equal height is thus a key feature of the hom-associativity canyons.

The further exploration of the realm between weak and strong hom-associativity
is the subject of a research collaboration between the author, Abdenacer Makhlouf,
Sergei Silvestrov, and possibly others. Preliminary studies there include tabulating
the canyon cores of rewrite rules in the completion of the (weak) hom-associativity
axiom, andwhat paddings enable those canyons. Another problem is to find examples
other than the free one of (weakly) hom-associative algebras which are not strongly
hom-associative.

Open Problem 1 Find a finite-dimensional weakly hom-associative algebra which
is not strongly hom-associative.

Any hom-algebra which is not strongly hom-associative must fail some finitely
large canyon identity, so this will be an example of an algebra satisfying one equa-
tional theory with finitely many axioms but not another. Then there should also be a
finite(-dimensional) example.

Open Problem 2 What is the minimal dimension of an algebra which is weakly
hom-associative but not strongly hom-associative?

12.3 Applying the Diamond Lemma

For the calculations (ambiguity resolutions) required for a proof by diamond lemma,
it is convenient to have a more compact encoding of operad terms than the diagram-
matic and product category ones. Apart from the basic nested parentheses notation,
the most classical notation for general tree expressions is the Polish notation, where

324 L. Hellström

each symbol has a known arity and each term consists of a function symbol followed
by the subterms that are the operands of that function with no intervening punctua-
tion. If (as is appropriate for a hom-algebra) m has arity 2, a has arity 1, and x has
arity 0 (is a constant), thenmaaxmaxx is Polish notation for what with parentheses
and commas would be written m(a(a(x)),m(a(x), x)). The use of m and a rather
than μ and α here is because we now deal with formal terms rather than expressions
in some generic algebra.

To deal with operadic terms, which may have inputs, a natural extension of clas-
sical Polish notation is to let an integer i denote the i th input; this was done in [5],
and makes the action of permutations on the terms particularly easy to specify. The
terms needed for (strong) hom-associativity are however all such that the inputs
are used in order—first input 1, then input 2, and so on—which means the nota-
tion can be simplified: one may use a single symbol for all inputs, and let it
depend on which occurrence of this symbol in the term that it is to determine which
input it denotes. With that simplification, ordinary associativity of m is the equiva-
lence m m ≡ mm (with numbered inputs m1m23 ≡ mm123), whereas hom-
associativity is ma m ≡ mm a (with numbered inputs ma1m23 ≡ mm12a3).
This simplification is convenient when stating the canyon identities defining strong
hom-associativity, because even though the left and right hand sides of the canyon
identities only differ in how three sequential inputs are used, the exact numbers of
these inputs are of little relevance; what should be emphasised is their positions
relative to the canyon.

Definition 12.2 Recursively define the family {Lk}∞k=0 of words by

L0 = {1} (the length 0 word),

Lk+1 = { la, lm l ∈ Lk } for k ∈ N.

Analogously define the family {Rk}∞k=0 of pairs of words by

R0 = {
(1,1)

}
,

Rk+1 = {
(ra, p), (rm, p) (r, p) ∈ Rk

}
for k ∈ N.

Then the rewrite system for strong hom-associativity is

S =
⋃

k∈N

{
mla rm p → mlm ra p l ∈ Lk, (r, p) ∈ Rk

}
.

What happens here is that k is the height of the canyon, Lk is the set of all height
k left walls of a canyon, whereas Rk is the set of all height k right walls of a canyon.
Rightwalls are a bitmore complicated to encode than leftwalls, because the operation
at the top of the wall will in Polish notation come between thems in the wall and their
corresponding s that are outside the canyon; therefore a right wall has one word r
with the as and ms building up the wall, and another word p with the s needed to

12 Strong Hom-Associativity 325

complete the m subterms. The left wall words in Lk instead always continue along
the last operand of a symbol, so there it is not necessary to separate s from the other
symbols.

12.3.1 Ambiguity Resolutions

The ambiguities of S all consist of two canyons with some overlap. Without loss of
generality we can always denote by s1 the rule that has the lowest m as its canyon
bottom. This means there are four possibilities for the position of the m that is the
bottom of the other rule s2: it may sit in the left wall of the s1 canyon, it may coincide
with the bottom of the s1 canyon, it may sit in the right wall of the s1 canyon, or it
may coincide with the m being moved by s1 (sitting on top of the s1 right canyon
wall). These cases will now be treated in order.

As a general observation, if some subexpression is both part of a left canyon wall
and a right canyon wall, then it must be a tower of as, which in Polish notation
appears as a subword ak for k being the height of the shared wall segment. In rewrite
steps below, the redex (the operadic subexpression to be replaced) is outlined by
placing parentheses between it and neighbouring non-redex subexpressions; if the
parentheses are nested, then the redex is inside the outer parenthesis and outside the
inner parenthesis. Note that subexpressions may appear disconnected in the Polish
notation encoding, even though they are all connected in the term tree.

12.3.1.1 s2 to the left of s1

If s2 has its bottom in the s1 left canyon wall, then the s2 canyon is to the left of the
s1 canyon, and there is some overlap between the right side of the s2 canyon and the
left side of the s1 canyon. Depending on the extent of this overlap, there are three
subcases: the m on top of the s2 right canyon wall may be part of the s1 left canyon
wall, the a on top of the s1 left cayon wall may be part of the s2 right canyon wall,
or it may be that neither is part of the other’s canyon wall; in the last case, there
is a third canyon between the two considered, whose bottom is at an even higher
elevation than either of the two.

In the first subcase, the site of the ambiguity has the form

ml1ml2a akm l3a r1r4r2r5r3m p3 p5 p2 p4 p1

where k ∈ N is the height of the s2 canyon, l2 ∈ Lk is in s2 matched to (ak,1) ∈
Rk whereas ak in s1 is matched to (r2, p2) ∈ Rk , (r4, p4), (r5, p5) ∈ R1 are for the
bottom and top respectively m in s2, there is some i ∈ N such that l1 ∈ Li and
(r1, p1) ∈ Ri , and there is some j ∈ N such that l3 ∈ L j and (r3, p3) ∈ R j ; the height
of the s1 canyon is then i + 1 + k + 1 + j . These ambiguities are resolved using a
modification s ′

1 of s1 that has left canyon wall l1m akal3 instead of l1m akm l3:

326 L. Hellström

(ml1m(l2a)akm l3a r1r4r2r5r3m p3 p5 p2 p4 p1)
s1→

ml1(ml2a akm (l3m))r1r4r2r5r3a p3 p5 p2 p4 p1
s2→

ml1ml2m akal3m r1r4r2r5r3a p3 p5 p2 p4 p1

ml1(ml2a akm (l3a))r1r4r2r5r3m p3 p5 p2 p4 p1
s2→

(ml1m(l2m)akal3a r1r4r2r5r3m p3 p5 p2 p4 p1)
s ′
1→

ml1ml2m akal3m r1r4r2r5r3a p3 p5 p2 p4 p1

In the second subcase, the site of the ambiguity has the form

ml1ml2l3l4a akar4m p4r1r5r2m p2 p5 p1

for some i, j, k ∈ N such that the s1 canyon has height i + 1 + k and the s2
canyon has height k + 1 + j ; here l1 ∈ Li , l2 ∈ Lk , l3 ∈ L1, l4 ∈ L j , (r4, p4) ∈ R j ,
(r1, p1) ∈ Ri , (r5, p5) ∈ R1, and (r2, p2) ∈ Rk . These ambiguities are resolved using
a modification s ′

2 of s2 that has right canyon wall akmr4 instead of akar4:

(ml1m(l2l3l4a)aka(r4m p4)r1r5r2m p2 p5 p1)
s1→

ml1(ml2l3l4a akmr4m p4)r1r5r2a p2 p5 p1
s ′
2→

ml1ml2l3l4m akmr4a p4 r1r5r2a p2 p5 p1

ml1(ml2l3l4a akar4m p4)r1r5r2m p2 p5 p1
s2→

(ml1m(l2l3l4m)aka(r4a p4)r1r5r2m p2 p5 p1)
s1→

ml1ml2l3l4m akmr4a p4 r1r5r2a p2 p5 p1

In the final subcase, the site of the ambiguity has the form

ml1ml2l3l4a akmr4m p4l5a r1r6r2r3r5m p5 p3 p2 p6 p1

for some i, j, k,m ∈ N such that the s1 canyon has height i + 1 + k + 1 + m and
the s2 canyon has height k + 1 + j ; here l1 ∈ Li and (r1, p1) ∈ Ri , l2 ∈ Lk and
(r2, p2) ∈ Rk , l3 ∈ L1 and (r3, p3) ∈ R1, l4 ∈ L j and (r4, p4) ∈ R j , l5 ∈ Lm and
(r5, p5) ∈ Rm , and finally (r6, p6) ∈ R1. Here the two rules do not change each
other’s redexes, so the resolution is straightforward.

12.3.1.2 s1 and s2 have common bottom

When the bottom of the two rules coincide, wemaywithout loss of generality assume
that height of s2 is greater than or equal to the height of s1. If the two heights are equal
then the rules are in fact equal, and the ambiguity has a trivial resolution. Otherwise

12 Strong Hom-Associativity 327

the site of the ambiguity has the form

ml1al2a r1mr2m p2 p1

where l1 ∈ Lk , l2 ∈ L j , (r1, p1) ∈ Rk and (r2, p2) ∈ L j for some k, j ∈ N. These
ambiguities are resolved using a truncation s ′

2 of s2 that only acts on the canyon
ml2a r2m p2:

(ml1a(l2a)r1m(r2m p2) p1)
s1→ ml1(ml2a r2m p2)r1a p1

s ′
2→

ml1ml2m r2a p2r1a p1

(ml1al2a r1mr2m p2 p1)
s2→ (ml1a(l2m)r1m(r2a p2) p1))

s1→
ml1ml2m r2a p2r1a p1

12.3.1.3 s2 to the right of s1

If s2 has its bottom in the s1 right canyon wall, then the s2 canyon is to the right of
the s1 canyon, and there is some overlap between the left wall of the s2 canyon and
the right wall of the s1 canyon. Depending on the extent of this overlap, there are
three subcases: the a on top of the s2 left canyon wall may be part of the s1 right
canyon wall, the m on top of the s1 right cayon wall may be part of the part of the
s2 left canyon wall, or it may be that neither is part of the other’s canyon wall; in the
last case, there is a third canyon between the two considered, whose bottom is at an
even higher elevation than either of the two.

In the first subcase, the site of the ambiguity has the form

ml1l2l3l4l5a r1makar5m p5r3m p3 p1

for some l1 ∈ Li , l2 ∈ L1, l3 ∈ Lk , l4 ∈ L1, l5 ∈ L j , (r1, p1) ∈ Ri , (r3, p3) ∈ Rk ,
(r5, p5) ∈ L j , and i, j, k ∈ N; the s2 canyon has height k whereas the s1 canyon has
height i + 1 + k + 1 + j . These ambiguities are resolved using a modification s ′

1 of
s1 that has right canyon wall r1makmr5 instead of r1makar5:

(ml1l2l3l4l5a r1makar5m p5(r3m p3)p1)
s1→

ml1l2l3l4l5m r1(maka(r5a p5)r3m p3)p1
s2→

ml1l2l3l4l5m r1makmr5a p5 r3a p3 p1

ml1l2l3l4l5a r1(maka(r5m p5)r3m p3)p1
s2→

(ml1l2l3l4l5a r1makmr5m p5 (r3a p3)p1)
s ′
1→

ml1l2l3l4l5m r1makmr5a p5 r3a p3 p1

328 L. Hellström

In the second subcase, the site of the ambiguity has the form

ml1l2l3a r1makm l5a r3r4r5m p5 p4 p3 p1

for some l1 ∈ Li , l2 ∈ L1, l3 ∈ Lk , l5 ∈ L j , (r1, p1) ∈ Ri , (r3, p3) ∈ Rk , (r4, p4) ∈
R1, (r5, p5) ∈ R j , and i, j, k ∈ N; the s1 canyon has height i + 1 + k whereas the s2
canyon has height k + 1 + j . These ambiguities are resolved using a modification
s ′
2 of s2 that has left canyon wall akal5 instead of akm l5:

(ml1l2l3a r1makm (l5a)(r3r4r5m p5 p4 p3)p1)
s1→

ml1l2l3m r1(makal5a r3r4r5m p5 p4 p3)p1
s ′
2→

ml1l2l3m r1makal5m r3r4r5a p5 p4 p3 p1

ml1l2l3a r1(makm l5a r3r4r5m p5 p4 p3)p1
s2→

(ml1l2l3a r1makm (l5m)(r3r4r5a p5 p4 p3)p1)
s1→

ml1l2l3m r1makal5m r3r4r5a p5 p4 p3 p1

In the third subcase, the ambiguity has the form

ml1l2l3l4l5a r1makmr5m p5l6a r3r4r6m p6 p4 p3 p1

for some l1 ∈ Li , l2 ∈ L1, l3 ∈ Lk , l4 ∈ L1, l5 ∈ L j , l6 ∈ Lm , (r1, p1) ∈ Ri , (r3, p3) ∈
Rk , (r4, p4) ∈ R1, (r5, p5) ∈ R j , (r6, p6) ∈ Rm , and i, j, k,m ∈ N; the s1 canyon has
height i + 1 + k + 1 + j and the s2 canyon has height k + 1 + m. Here the rules do
not change each other’s redexes, so the resolution is straightforward.

12.3.1.4 s2 on top of s1

The final case is that the bottom of the s2 rule is the m on top of the s1 right canyon
wall. Here the site of the ambiguity has the form

ml1a r1ml2a r2m p2 p1

for some l1 ∈ L j , l2 ∈ Lk , (r1, p1) ∈ R j , (r2, p2) ∈ Rk , and some j, k ∈ N; the height
of the s1 canyon is j and the height of the s2 canyon is k. These ambiguities are
resolved using an extended variant s ′

2 of s2 which has height j + 1 + k, left wall
l1m l2, and right wall r1ar2:

12 Strong Hom-Associativity 329

(ml1a r1m(l2a)(r2m p2)p1)
s1→ (ml1m l2a r1ar2m p2 p1)

s ′
2→

ml1m l2m r1ar2a p2 p1

ml1a r1(ml2a r2m p2)p1
s2→ (ml1a r1m(l2m)(r2a p2)p1)

s1→
ml1m l2m r1ar2a p2 p1

The conclusion of these calculations may be summarised as follows.

Lemma 12.1 The rewrite system S of Definition 12.2 is locally confluent.

It is somewhat curious that the resolutions are all squares, considering that
the resolution of the ambiguity for ordinary associativity is (rather famously) a
pentagon. Part of the reason for this is that with ordinary associativity there is
a three rewrite steps sequence m m m → m mm → mm m → mmm ,
but hom-associativity stops at themm m stage because there is noa in the position
that a third rewrite step would require.

12.3.2 Full Confluence

Besides local confluence, the Diamond Lemma also requires termination of the
rewrite system,which is usually established by providing awell-founded partial order
relation which is compatible with (i) the rewrite system in question and (ii) compo-
sition in the operad; such a relation was given in [5], which basically is a length-
lexicographic order, but extended to function symbols of arbitrary arity. First (the
“length” part), two terms are unrelated unless the height of input i in one term equals
the height of input i in another term, for all inputs; this makes no difference for any of
the rewrite rules considered, but is used for establishing compatibility with compo-
sition for the second part. Second, the Polish notation words for terms are compared
lexicographically, with respect to the alphabet order that makesm < a and all other
symbols (the inputs) isolated singleton components in the Hasse diagram. Hence for
the rules in the rewrite system S the comparisons all come out as

mla rm > mlm ra

(left hand side greater than right hand side) because the first position that differs is
that on top of the left canyon wall, where the left hand side has an a and the right
hand side has anm. Thus by the Diamond Lemma for operads (e.g. as found in [5]),
we have the following.

Theorem 12.2 The rewrite system S for strong hom-associativity is confluent. The
strongly hom-associative operad has a set of normal forms consisting of precisely
those terms which are irreducible with respect to S.

330 L. Hellström

Corollary 12.1 Let X �� m,a be a set of constant symbols. Let Z be the set of all
Polish notation terms on the alphabet X ∪ {m,a} that are irreducible with respect to
the rewrite system S of Definition 12.2. Then the set of all formal linear combinations
of elements of Z constitutes the free strongly hom-associative algebra generated by
X, with operations

α(b) = normal form with respect to S of ab for b ∈ Z ,

μ(b, c) = normal form with respect to S of mbc for b, c ∈ Z .

The rewrite system S is not minimal, because it is not autoreduced: there are
plenty of rules whose left hand sides could be reduced by some smaller rule, because
they have at least one a–m layer in their canyons. Imposing that restriction already
when constructing S is quite doable, but requires coordinating the left and right sides
of the canyons, which would further raise the level of technicality in Definition 12.2;
better then to start out simple and add complications later.

Conjecture 12.1 The smallest subset of S which is (i) confluent and (ii) contains
the axiom rulema m → mm a is precisely that subset of rules whose right hand
sides are irreducible with respect to S, i.e., those rules whose canyons do not have
a left wall a in the same layer as a right wall m.

This conjecture is another argument that strong hom-associativity constitutes a
natural simplification of (weak) hom-associativity: if all canyon identities are needed
to attain confluence, then there is no complete weaker strengthening of weak hom-
associativity than the full strong hom-associativity. (Of course, this is still not the
same as saying that strong hom-associativity is a logical consequence of weak hom-
associativity; the restriction to canyon identity rules is nontrivial, even if it is natural.)

Conjecture 12.2 The free strongly hom-associative algebra over a field has no zero
divisors.

12.4 A Combinatorial Model

Though encoded as Polish notation terms, the basis Z for the free strongly hom-
associative algebra described in Corollary 12.1 is natively a set of trees (in the com-
puter science/formal language sense), so the problemof finding amore direct descrip-
tion of this set is technically one of describing a tree language. Standard tools [1]
in formal language theory for addressing such tasks are automata and grammars.
Preferably the description should be finitary.

The most notable class of tree languages are the regular tree languages, which
in [5] were employed to compute initial terms of the Hilbert series of free weakly
hom-associative algebras (and in particular of the corresponding operad). The major
shortcoming of that work was however that since not all rules of a confluent rewrite

12 Strong Hom-Associativity 331

system were known, it was not possible to take into account more than a finite set of
rules, and thus the results could only approximate the Hilbert series (even if it was
determined howmany termswere correct). Since for the present case of strongly hom-
associative algebras the full set of rules (namely the canyon identities) is known, that
first obstacle has been overcome. Unfortunately that success also makes it clear that
regular tree languages will not suffice.

The problem lies in the restriction that both walls of a canyon must have the
same height, and that this height is not bounded; this means there are infinitely many
subcases to account for,which contradicts the requirement that a regular tree language
can be recognised by a finite automaton. More concretely, a regular tree language on
{a,m} ∪ X can be defined as one which is recognised by some deterministic finite
bottom–up tree automaton, the core of which is an algebra (in the universal algebra
sense) with signature {a,m} ∪ X on some finite set S (the set of states). Evaluating
a term in this algebra amounts to reading the tree in bottom–up order (from leaves
to root), and all information that has been extracted from some branch is encoded
into the automaton state, which is an element of S; at every a or m the state is
modified to take into account the additional information that became available after
reading that far in this branch. In particular, it is at the m at the bottom of a canyon
that information from the left branch is combined with information from the right
branch, and a decision must be reached on whether this canyon matched any of the
canyon identities. To do this, the state must for each height k separately keep track of
whether there is an a at that height in the right side of the branch (since that becomes
the left wall of a canyon), and similarly for each k keep track of whether there is an
m at that height in the left side of the branch, but that is (countably) infinitely many
different cases to distinguish whereas regularity requires that the set of states S is
finite.

Finite tree automata could handle matching against rift identities just fine, or even
rift identities where the height difference is a multiple of some fixed integer, but even
so restricted these would be identities that do not hold in familiar hom-associative
algebras. Finite tree automata could also handle matching against canyon identities
up to any fixed height, but then the corresponding system of rewrite rules is not
confluent. Constructing a combinatorial model therefore requires switching to some
other class of languages.

Other classes of tree languages are known in the literature, but the desirable prop-
erty of being able to describe the complement of a language—needed here because
we seek the set of irreducible elements, starting from the rewrite rules which say
what is reducible—is rare beyond the regular languages. Surprisingly, an alternative
can be to look at word languages for some encoding of the trees as words, because
the literature on formal word languages is larger than that on tree languages. Even
here closure under taking the complement is a rare boon, but there is one formalism
that does the trick: parsing expression languages.

332 L. Hellström

12.4.1 Parsing Expression Grammars

The class of parsing expression languages [2] was invented mostly for practical rea-
sons, but it turned out to have impressive theoretical properties as well, constituting a
sweet spot in the space of formal language frameworks. For the reader’s convenience,
we here give a brief introduction to parsing expressions.

Syntax descriptions in contemporary computing are predominantly given on
Backus–Naur form (BNF), sometimes with convenience extensions (see e.g. [6]),
which technically means they are context-free grammars (CFGs). An example of
such would be

H ::= x | aH | mHH ,

which describes the language H of Polish notation hom-algebra terms on {x}; the
way to read this is “a hom-algebra term is x, or a followed by a hom-algebra term,
orm followed by two hom-algebra terms”. The letters x, a, andm are here referred
to as terminals (actual letters in the words being described), whereas H is called a
nonterminal (representing a set of words) and must be defined using some equation
such as that shown; recursion in these equations is common. A grammar consists of
a set of such equations, together with one nonterminal called the start symbol; the
corresponding language is that of all terminal words which can be produced from
the start symbol through some sequence of expansions of nonterminals.

Though ubiquous in documentation, the practice of computing does not quite
adhere to these grammars; they are often overlaid with additional rules to guide the
parser, in ways that cannot be expressed in the grammar alone. One classical example
is the “dangling else” problem, which concerns whether an else clause belongs to an
inner or an outer if statement; the relevant grammar rule could be written

S ::= L=R | if R then S | if R then S else S

and the ambiguity arises for if a then if b then c = d else e = f , where it is not
clear whether the else clause belongs to the inner ‘if b’ or the outer ‘if a’. Compil-
ers are written to deterministically pick one of these interpretations, but language
specifications cannot simply use a CFG to describe which one should be picked.

Parsing expression grammars (PEGs) resolve this ambiguity by replacing the
unordered choice ‘|’ of a CFG by the prioritised choice operation ‘/’; the meaning
of the parsing expression A / B is ‘first try matching against A at this point, and only
if that fails then attempt to match against B’. The intent that an else belongs to the
closest possible if can then be encoded into the grammar rule

S ::= L = R / if R then S else S / if R then S

since this will cause S to match from the second if until the end of the example,
which means a match at the first if against the second S branch if R then S else
S fails, allowing the third branch if R then S to be tried there and succeed. This

12 Strong Hom-Associativity 333

determinism in the parsing also provides for another development, namely the use of
packrat parsers to perform parsing in linear time. Naively, the question of whether
some input matches a parsing expression can be answered using a backtracking
algorithm—try all variants in sequence, report success when one matches, report
failure when none of them do—even if the recursive nature of the grammar rules
can lead to this algorithm descending into some very deep recursions. A packrat
parser caches the outcomes of all attempted matchings of nonterminals so that each
combination of position and nonterminal need only be tried once, and since the
number of nonterminals is bounded this provides a linear bound on the runtime of the
parser. That is a far tighter complexity bound than one gets for CFGs, which instead
have been proved [7] to be tied to the complexity of boolean matrix multiplication
(with side of matrix equal to length of input to parse)!

In a packrat parser, it is furthermore easy to support a number of additional
features, so PEGs provide these as well. In particular, they provide the lookahead
constraint predicate ‘&’ and the negative lookahead predicate ‘!’, which we shall
rely upon in what follows. The function of these is that the parsing expression &(E)

matches the empty word 1 (so it does not consume any input), but only in a position
where the subexpression E wouldmatch; !(E) converselymatches the emptyword in
a position where E would not match. Lookaheads are a common feature in advanced
regular expressions (though convenient, they do not change the class of languages
that can be described), but when combined with recursion they gain powers beyond
what recursion alone can manage. Concretely, the PEG

D ::= bDc / 1

E ::= aEb / &(D!(T))

where T matches any single terminal (and !(T) thus only matches at the end of
input) has the property that E !(b) only matches words on the form anbncn . The
terminal D by itself matches an arbitrary number of bs followed by an equal number
of cs, in a manner familiar from CFGs. Similarly E without the lookahead constraint
matches an arbitrary number of as followed by an equal number of bs, so that when
the lookaheads are put in, a match requires equal numbers of as, bs, and cs. This
example is important because the language {anbncn}∞n=0 is (by the so-called Pumping
Lemma) one of the classical examples of something which is not context-free.

Surprisingly, the lookahead constraints do not extend the class of parsing expres-
sion languages; any PEG that employs them can be transformed into another PEG
for the same language which only makes use of concatenation, prioritised choice,
and recursion [2]. This is another reason to regard the parsing expression languages
as a sweet spot in the space of formal language frameworks.

334 L. Hellström

12.4.2 Hom-Associativity

From what was said above, an approach for describing the language of hom-algebra
terms that are irreducible with respect to the canyon identities now suggests itself:
start with a vanilla recursive grammar for the language of all hom-algebra terms, then
insert lookahead constraints in strategic places to exclude anything that contains a
canyon with an a on the left side and an m on the right side. The equal height
constraint that so wexed regular languages is easy to impose using the recursion
technique employed above to get equal exponents in anbncn . Easy, that is, provided
there are explicit letters to count; for simplicity we will therefore first consider a
somewhat elaborate encoding of hom-algebra terms as words.

The clockwise notation can be explained as walking around the tree form of a
term (root is down) in clockwise direction, and recording each node (operation or
generator) every time it gets encountered. For an operation p of arity k this means it
will produce k + 1 symbols in the encoding as a word: first a symbol p0 before the
first child (operand), last a symbol pk after the kth child, and between these k − 1
symbols p1, . . . ,pk−1 separating one child from the next. In the case of hom-algebra
terms, the encoding can be carried out by defining the hom-algebra operations μ and
α as

μ(b, c) = m0bm1cm2,

α(b) = a0ba1;

for example μ
(
α(x), μ(x, x)

)
then evaluates to its clockwise notation encoding

m0a0xa1m1m0xm1xm2m2. In this encoding, the concept of being a canyon is cap-
tured by the rule

C ::= (m2/a1)C(m0/a0) / m1

(a canyon is either a left wall segment followed by a canyon followed by a right wall
segment, or a canyon bottom) and the vanilla language of hom-algebra terms on X
becomes

H ::= X / a0Ha1 / m0Hm1Hm2.

Combining these, we get

I ::= X / a0 Ia1!(Cm0) / m0 Im1 Im2 (12.10)

as a parsing expression rule for the language I of clockwise notation hom-algebra
terms which are irreducible with respect to the canyon identities. This may be sum-
marised as a theorem.

Theorem 12.3 There is a parsing expression language encoding a basis of the free
strongly-hom associative algebra.

12 Strong Hom-Associativity 335

Why use this spacious clockwise encoding of hom-algebra terms, though—
wouldn’t the more compact Polish notation or reverse Polish notation be a more
familiar choice? Indeed they would, but it is not clear that the canyon identities in
that case can be described using parsing expressions. For Polish notation, lookaheads
to avoid a match against a canyon identity have to be imposed at them at the canyon
bottom; beyond that point, there is no longer enough information in the unread part
of the input to correlate height in left canyon wall to height in right canyon wall. The
problem with this is that all canyon heights have to be checked at the same point,
which is an infinite number of lookaheads. It is possible to adapt to the canyon height
actually at hand, for example

H ::= X / aH / mHH , (12.11)

G ::= (a/mH)G(m/a) / aH

will have the G inm!(Gm)HH recursing k times, for the maximal k such that there
is an a at that height in the left wall and also a right wall of height k, to a net effect of
preventing match against the height k canyon identity; backtracking would start out
with k being the height of the topmost a in that left wall, and then decreasing as long
as the right wall has height lower than k. Unfortunately this does nothing to guard
against matches for canyon identities of lower height; as soon as one match is found
for G, then that is the only one considered. Nor would it be possible to cater for the
lower heights by correlating the initial and final terminals contributed by expanding
G, because these are in general at different heights; if an expansion of G to aGm
contributes the a to the left wall at height i , then the right wall m will be at height
k − 1 − i , so this a–m combination need not contradict irreducibility.

For the reverse Polish notation, the situation is different in that lookaheads instead
would have to be placed at thea on top of the left canyonwall; thus atmost one canyon
identity would have to be matched against per position in the input, which avoids the
main complication facing a parsing expression grammar for the Polish case. On the
other hand, it is now no longer clear how to locate the corresponding position in the
right wall. In more detail, one must first observe that the trivial reversion

R ::= X / Ra / RRm

of (12.11) does not yield a parsing expression for reverse Polish hom-algebra terms,
since it becomes left-recursive (and thus not well-formed: in order to determine
whether Rmatches at a particular position, one might first have to determine whether
R matches at that position!) To make a PEG for reverse Polish notation, one should
instead focus on the language S of arity 1 suffixes of reverse Polish words, as that
permits

S ::= a / XS∗m,

R ::= XS∗

336 L. Hellström

as a well-formed grammar to the same end. However the naive insertion of canyon
lookaheads

Y ::= (a/m)Y (a/Rm) / RRm (canyon, plus everything attached to the

right wall, not including bottom),

Q ::= a!(Ym) / XQ∗m (like S, but with lookaheads)

does not make XQ∗ a parsing expression for only irreducible terms in reverse Polish
notation; the catch is that the branch RRm of Y which is supposed to match the
subterm on top of the right canyon wall is too greedy. Rather than stopping at the
right height, the S∗ in the first R will consume the entire right wall of the canyon,
after which matching Y fails and the lookahead constraint achieves nothing. Support
for repetition that is just greedy enough to allow a later part of the expression to
match is not something that parsing expressions provide.

Conjecture 12.3 Theword languages inPolish notation and reversePolish notation,
for hom-algebra terms that are irreducible with respect to the canyon identities, are
not parsing expression languages.

For enumeration, the more verbose nature of the clockwise notation is not a prob-
lem. What does constitute a challenge is that parsing expressions is an analytical
language framework—it tests concrete words for belonging to a language—rather
than a generative framework, as it is the generative aspect of regular languages that
one makes use of when translating regular expressions to Hilbert series. Presenta-
tion does however matter; the use of lookaheads in (12.10) makes it unfeasible to
apply generative-style reasoning to this grammar, but the equivalent lookahead-free
PEG could be more tractable. Whereas there is an algorithm for eliminating looka-
heads from PEGs, there cannot by general computability theory be an algorithm
for extracting the Hilbert series for an arbitrary parsing expression language from
a lookahead-free PEG for it, though nothing prevents extracting the Hilbert series
from any particular such PEG.

References

1. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding, C., Tison, S.,
Tommasi, M.: Tree Automata Techniques and Applications (web book), version of November
18, 2008. http://tata.gforge.inria.fr/

2. Ford, B.: Parsing expression grammars: a recognition-based syntactic foundation. In: Jones,
N.D., Leroy, X. (eds.) Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2004, Venice, Italy, January 14–16, 111–122. ACM
(2004)

3. Guo, L., Zhang, B., Zheng, S.: Universal enveloping algebras and Poincaré-Birkhoff-Witt
theorem for involutive Hom-Lie algebras. J. Lie Theory 28(3), 739–759 (2018)

4. Hartwig, J.T., Larsson, D., Silvestrov, S.D.: Deformations of Lie algebras using σ -derivations.
J. Algebra 295, 314–361 (2006)

http://tata.gforge.inria.fr/

12 Strong Hom-Associativity 337

5. Hellström, L., Makhlouf, A., Silvestrov, S.D.: Universal algebra applied to hom-associative
algebras, and more. In: Makhlouf, A., Paal, E., Silvestrov, S., Stolin, A. (eds.), Algebra, Geom-
etry and Mathematical Physics, Springer Proceedings in Mathematics and Statistics, vol. 85,
157–199 (2014)

6. International StandardsOrganization. Syntacticmetalanguage –ExtendedBNF, 1996. ISO/IEC
14977

7. Lee, L.: Fast context-free grammar parsing requires fast Booleanmatrixmultiplication. J. ACM
49(1), 1–15 (2002)

8. Lyndon, R.C.: On Burnside’s problem. Trans. Am. Math. Soc. 77, 202–215 (1954)
9. Makhlouf, A., Silvestrov, S.D.: Hom-algebra structures. J. Gen. Lie Theory Appl. 2(No. 2),

51–64 (2008)
10. Shirshov, A.I.: Subalgebras of free Lie algebras. (Russian) Mat. Sbornik N.S. 33(75), 441–452

(1953)
11. Shirshov, A.I.: Some algorithm problems for Lie algebras. (Russian) Sibirsk. Mat. Ž. 3, 292–

296 (1962)
12. Yau, D.: Enveloping algebra of Hom-Lie algebras. J. Gen. Lie Theory Appl. 2, 95–108 (2008)
13. Zheng, S., Guo, L.: Free involutive Hom-semigroups and Hom-associative algebras. Front.

Math. China 11(2), 497–508 (2016)

	12 Strong Hom-Associativity
	12.1 Introduction
	12.2 Canyons and Identities
	12.3 Applying the Diamond Lemma
	12.3.1 Ambiguity Resolutions
	12.3.2 Full Confluence

	12.4 A Combinatorial Model
	12.4.1 Parsing Expression Grammars
	12.4.2 Hom-Associativity

	References

