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Chapter 6
An Overview of Paclitaxel Delivery 
Systems

Prabakaran A, Sourav Kar, K. Vignesh, and Ujwal D. Kolhe

Abstract  As per the World Health Organization, cancer is the second leading cause 
of death globally and is responsible for an estimated 9.6 million deaths in 2018. 
More than 2 million cases of lung and breast cancer have been reported in 2018. 
Paclitaxel is a natural product based anti-mitotic agent useful for the treatment of 
lung cancer, ovarian cancer and breast cancer. Paclitaxel exhibits low oral bioavail-
ability due to poor aqueous solubility and poor permeability. Paclitaxel is the first 
blockbuster anticancer drug with annual sales of more than US $1  billion in 
1997. Taxol®, Abraxane® and Genexol PM® are commercial injectable preparations 
of paclitaxel with a drug loading of not more than 17% w/w. The toxicity issues of 
Cremophor® EL used in Taxol® led to the development of different delivery systems 
sans Cremophor® EL. The maximum tolerated dose of Taxol® is 135 mg/m2. Taxol® 
exhibited hypersensitivity reactions and required use of special IVEX-2 filter to 
avoid leaching of plasticizer into the product. Genexol PM® was physically unstable 
and was ineffective against multidrug-resistant tumor treatment. Abraxane®  
exhibited limited tumor exposure, tumor uptake, tumor regression and higher  
half-maximal inhibitory concentration. 

In this chapter, we reviewed the literature of paclitaxel delivery systems. Micelles, 
liposomes, nanoparticles, lipid systems, microparticles, emulsions, solid disper-
sions, cyclodextrin complexes, implants, prodrugs and hybrid systems have been 
reported for paclitaxel delivery. The major points of our analysis of the literature are 
(1) Efficiency of solubility enhancement of paclitaxel was found in the decreasing 
order for prodrugs, mixed micelles, cyclodextrin complexes and solid dispersions, 
(2) The oral bioavailability enhancement for nanoparticles, micelles and emulsions 
of paclitaxel was found to be 7-fold, 5-fold and 4-fold respectively, (3) Decreasing 
order of reduction in tumor growth was found in emulsion, liposome, prodrug and 
nanoparticulate delivery system of paclitaxel as compared to that with Taxol®, (4) 
Genexol PM® and Abraxane® do not require special filters to avoid leaching of plas-
ticizer into the product, (5) Genexol PM® and Abraxane® being free from 
Cremophor® EL do not exhibit hypersensitivity reaction, (6) Paclitaxel mixed 
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micelles composed of poly (ethylene glycol-co-lactic acid) and D-α-tocopheryl 
polyethylene glycol 1000 succinate were effective against multidrug-resistant tumor 
cells in contrast to Genexol PM®, (7) Recombinant chimeric polypeptide conju-
gated paclitaxel nanoparticles exhibited 2-fold systemic tumor exposure, tumor 
uptake as compared to Abraxane®  and almost complete tumor regression, (8) 
Paclitaxel loaded polycaprolactone-co-D-α-tocopheryl polyethylene glycol 1000 
succinate nanoparticles exhibited 8-fold lower half maximal inhibitory concentra-
tion as compared to Abraxane®, (9) Paclitaxel delivery systems such as implants, 
nanoparticles, solid dispersions, lipid nanoparticles and micelles have been reported 
with more than 20% drug loading, (10) The maximum tolerated dose of Genexol 
PM® and Abraxane® could be increased from 135 mg/m2 to 300 mg/m2, and (11) 
Orally effective paclitaxel formulations such as DHP107 and Oraxol® are under 
phase II clinical trials.

Keywords  Paclitaxel · Delivery system · Stimuli sensitive delivery · Targeted 
delivery · Natural product · Anticancer

6.1  �Introduction

Paclitaxel is a potent broad-spectrum anticancer drug. Paclitaxel is a diterpenoid 
molecule with a central 8-member taxane ring. Paclitaxel was initially isolated from 
the bark of Taxus brevifolia, family: Taxaciae (the Western Yew tree). The pure form 
of paclitaxel was isolated in 1969. Paclitaxel is used in the treatment of breast, ovar-
ian, lung cancer, head and neck cancer. Paclitaxel belongs to class IV of the biophar-
maceutical classification system, the most difficult category for drug delivery.

The year-wise publication trend for paclitaxel delivery as per the SciFinder 
search engine is given (Fig. 6.1). The publication trend reveals that the number of 
publications have increased 10 times in the last 20 years.

Paclitaxel was extracted from the bark of the western yew tree Taxus brevifolia. 
It was identified as one of the active constituents of this plant in 1967. The structure 
of the compound was elucidated by Wall and Wani 1996. Its cytotoxic activity was 
reported against human KB carcinoma cell line and mouse leukemia cells. The 
availability of the compound was limited because of its low yield from the western 
yew tree. So, Robert A. Holton and his research group came up with a semi-syn-
thetic pathway by which docetaxel was produced from 10-deacetyl baccatin, which 
was present in abundant quantities in Taxus baccata (Alqahtani et al. 2019). A syn-
thetic method for paclitaxel using C7 protected baccatin III with tricyclic ketone 
have been reported (Holton et al. 1994).
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6.1.1  �Chemical Structure of Paclitaxel

Paclitaxel is a diterpenoid compound containing a taxane ring along with other 
hydrophobic substituents. The empirical formula of paclitaxel is C47H51NO14. The 
chemical structure of paclitaxel is given (Fig. 6.2).
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Fig. 6.1  Year-wise publication trend for paclitaxel delivery; this trend has been obtained from 
SciFinder search on June 24, 2019 using publication year trend; note the increase of publications 
for paclitaxel delivery over period of 1997–2019; the publication trend signifies demand for newer 
delivery options for paclitaxel; the existing paclitaxel commercial products lack safety, targeting to 
specific organs and patient inconvenience due to injections

Fig. 6.2  Chemical structure of paclitaxel and C7 protected position for synthesis of paclitaxel 
using baccatin III; paclitaxel was extracted from Yew tree initially hence alternative semi-synthetic 
method using highly abundant baccatin III in the bark of Taxus wallichiana var. mairei has been 
discovered by protecting baccatin III at C7 position and coupling tricyclic ketone to yield paclitaxel
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IUPAC name of the compound is (1S,2S,3R,4S,7R,9S,10S,12R,15S)-4,12-
bis(acetyloxy)-1,9-dihydroxy-15-{[(2R,3S)-2-hydroxy-3-phenyl-3-
(phenylformamido) propa -noyl]oxy}-10,14,17,1tetramethyl 
11-oxo-6-oxatetracyclo[11.3.1.03,10.04,7]heptadec-13-en-2-yl benzoate 
(Weaver 2014).

Paclitaxel has a unique mechanism of action which differs from other anticancer 
agents such as vinca alkaloids. Paclitaxel causes polymerization of microtubule and 
makes these highly stable. Stabilization of microtubules inhibits cell division lead-
ing to cell death (Schiff et al. 1979).

6.1.2  �Problems Associated with Paclitaxel

Paclitaxel is practically insoluble in water with an aqueous solubility of 0.00556 mg/
mL. Paclitaxel is hydrophobic in nature with a Log P value of 3.54 but has poor 
permeability. The molecular weight of paclitaxel is 853.9. The high molecular 
weight of the drug might be responsible for the poor permeability. The consequence 
of poor solubility and permeability of the drug is poor oral bioavailability. Paclitaxel 
is a substrate for P-glycoprotein which is responsible for drug efflux. High molecu-
lar weight of the drug has been attributed to drug efflux. Paclitaxel belongs to class 
IV of the biopharmaceutical classification system (Varma et al. 2005).

6.1.3  �Marketed Paclitaxel Products

The commercial paclitaxel formulations include Taxol®, Abraxane®, Genexol PM® 
and Lipusu® (Nehate et al. 2014). The first marketed product of paclitaxel is Taxol®, 
which was marketed by Bristol-Myers-Squibb in 1992. Taxol® is available in three 
strengths i.e. 30  mg, 100  mg and 300  mg per vial. Taxol® consists of purified 
Cremophor® EL, anhydrous citric acid and dehydrated alcohol. Taxol® is indicated 
as first-line and subsequent therapy of ovarian cancer, for the adjuvant treatment of 
node-positive breast cancer administered subsequently to standard doxorubicin-
containing combination therapy, for the first-line treatment of non-small cell lung 
cancer along with cisplatin in patients who are not potential candidates for curative 
surgery and/or radiation therapy and for the second-line treatment of AIDS-related 
Kaposi’s sarcoma. The major side effects of Taxol® observed in patients are hyper-
sensitivity reaction, low blood counts, hair loss, myalgias, peripheral neuropathy, 
mouth sores, nausea, vomiting, diarrhoea, swelling of feet, low blood pressure and 
darkening of the skin. Taxol® injection requires premedication with a steroid to 
avoid hypersensitivity reaction (Rxlist website 2019).
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The main problem associated with Taxol® injection is Cremophor® EL related 
toxicity. Cremophor® EL is not an inert vehicle and it produces undesirable biologi-
cal effects. Cremophor® EL can cause a severe anaphylactic reaction (Szebeni et al. 
1998). Taxol® needs to be administered using proprietary IVEX-2 filters. IVEX-2 
filters avoid leaching of di-(2-ethylhexyl) phthalate in the product. Leaching of di-
(2-ethylhexyl) phthalate in the product from polyvinyl chloride container and 
administration set has been reported. The leaching was attributed to presence of 
Cremophor® EL and dehydrated alcohol in Taxol® formulation (Kim et al. 2005). 
The literature has cited a number of research publications for the development of 
delivery systems without using Cremophor® EL in order to have safer formulation.

Abraxane® is the second commercial product of paclitaxel, which was marketed 
by Abraxis BioScience in 2005. Abraxane® is composed of drug and human serum 
albumin and has been prepared by high-pressure homogenization method (Ibrahim 
et  al. 2002). Abraxane® is Cremophor EL®-free formulation and hence does not 
exhibit hypersensitivity and leaching of plasticizer from polyvinyl chloride. The 
maximum tolerated dose could be increased from 175 mg/m2 to 300 mg/m2 with 
Abraxane® as compared to that with Taxol® (Gradishar 2006). Lipusu® was the first 
liposome-based injection of paclitaxel, formulated by Luye Pharmaceutical Co. 
Ltd. and was marketed in China. Lipusu® contains paclitaxel, lecithin and choles-
terol. Lipusu® was effective against breast cancer, ovarian cancer, lung cancer with 
fewer side effects than Taxol®.

Genexol-PM® is another injectable polymeric micelle based product of pacli-
taxel, marketed by Samyang Corporation. Genexol-PM® is a poly (ethylene glycol)-
b-poly (lactic acid) block co-polymer based micellar formulation. Genexol-PM® 
does not require steroid premedication and free from the problem of plasticizer 
leaching from polyvinyl chloride. Genexol-PM® can deliver 300 mg paclitaxel dose 
without additional toxicity (Kim et al. 2004). Genexol-PM® was stable at 23 °C for 
24 h but exhibited precipitation into large needle-like crystals at 40 °C within 2–4 h 
(Ron et al. 2008). Genexol-PM® was ineffective in cancer patients with multidrug 
resistance (Fan et al. 2015)

Nanoxel™ is a micellar paclitaxel formulation composed of a copolymer of 
n-isopropyl acrylamide and n-vinyl pyrrolidone having a mean particle size of 
80 nm. The intracellular accumulation of paclitaxel in A549 cell was found to be 
2.5-fold and 3.3-fold higher in Nanoxel™ and Abraxane®-treated cells respectively 
as compared to that of Taxol®. Nanoxel™ at 0.7 mg/mL showed significant aggre-
gation, particle-size growth, and crystallization within 4 h at 40 °C. High-pressure 
liquid chromatography data revealed slightly lower purity of paclitaxel in Nanoxel™ 
as compared to both Abraxane® and Genexol PM®. No drug-related mortality was 
observed following repeated intravenous administration of Abraxane® at dose levels 
of 5, 15, and 30 mg/kg, while Nanoxel™ exhibited 100% mortality at 15 and 30 mg/
kg dose levels in athymic nude mice (Ron et al. 2008; Madaan et al. 2013; Trieu 
et al. 2008).
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6.1.4  �Recent Paclitaxel Products Under Clinical Trials

A number of delivery approaches have been reported in the literature to increase the 
solubility and enhance the antitumor activity of paclitaxel such as micelles, lipo-
somes, nanoparticles, microparticles, solid dispersions, cyclodextrin-drug complex, 
implants and prodrug. This chapter discusses approaches to paclitaxel delivery. The 
emphasis is given on choice of material, type of delivery system and performance. 
Different delivery systems explored for paclitaxel in the literature are discussed in 
subsequent sections (Fig. 6.3).

DHP107 is a novel lipid-based mucoadhesive oral paclitaxel formulation com-
posed of an edible lipid and FDA approved emulsifiers. Phase II clinical trial is 

Fig. 6.3  Different delivery systems of paclitaxel (a) Micelles: Self-assembled aggregates of poly-
mers or surfactants which have a distinct polar head and non-polar tail region; (b) Liposomes: 
Spherical vesicular structures, made up of one or more phospholipid bilayers and an aqueous core; 
(c) PMP/ PNP: Polymeric microparticles/ Polymeric nanoparticles. These are micron sized or 
nanosized particles made up of a polymeric matrix in which the drug is dispersed or encapsulated 
or entrapped; (d) Emulsion: Dispersion of two immiscible liquids where the dispersed phase is 
thoroughly distributed in a dispersion medium with the help of emulsifiers; (e) SLN: Solid lipid 
nanoparticles, submicron carriers made up of high melting point lipid (solid lipid) core and coated 
by aqueous surfactant layer; (f) NLC: Nanostructured lipid carriers, also known as second genera-
tion SLN, where the solid lipid core is replaced by a mixture of solid lipid and liquid lipid; (g) 
Inorganic nanoparticle: Inorganic nanoparticles, the core is made up of nanosized inorganic mate-
rial while the shell is organic, contains drug and/or polymers; (h) Solid dispersion: Dispersion of a 
drug into a solid, inert matrix of carriers; (i) Hybrid systems: Combination of more than one sys-
tems; (j) Implant: Device containing drug, intended to be implanted inside the body; (k) Prodrug: 
Inactive form of a drug, which is converted to a pharmacologically active form upon metabolism 
inside the body; (l) CD complex: Cyclodextrin complex, inclusion complex formed by cyclodex-
trins with drugs; (m) Stent: Metal mesh tube which is implanted in ducts or vessels of the body e.g. 
coronary artery. Drug-eluting stents are used to deliver drugs to a specific site for a long time
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being conducted for this formulation. The study began on July 25, 2018, and it is 
expected to be completed by September 2019. The use of the formulation is indi-
cated for metastatic breast cancer (Kang et al. 2018). Another oral formulation of 
paclitaxel is under phase II clinical trial, named as Oraxol®. Oraxol® consists of 
paclitaxel and HM30181A, a P-glycoprotein inhibitor. Oraxol® has been found to be 
well tolerated in patients without any notable hypersensitivity reaction (Lee et al. 
2015). The toxicity issues in the existing commercial formulations have led to the 
development of alternate formulations for paclitaxel.

6.2  �Micelle-Based Delivery System

Micelles are nanometre sized structures formed by self-assembly of amphiphilic 
block copolymers. The hydrophilic part is oriented towards water whereas the 
hydrophobic portion remains inside the micellar structure (Kwon and Okano 1996). 
The concentration at which the micelles are formed in water is known as critical 
micellar concentration. Lower the critical micellar concentration better is the stabil-
ity of the micelles. The micelles need to be intact for solubilising the hydrophobic 
drug. Upon ingestion, micelles’ structure may be collapsed due to dilution with 
aqueous fluids resulting in precipitation of drug. The breakdown of micelles can be 
avoided by the use of amphiphilic copolymers having a low critical micellar con-
centration (Owen et al. 2012).

Different amphiphilic polymers have been used in the past for preparation of 
drug-loaded micelles. These polymers include diblock copolymers such  as poly 
(ethylene glycol)-b-poly (lactide), poly (ethylene glycol)-b- poly (lactide-co-gly-
colide), etc. Triblock copolymers have also been used for micelle preparation such 
as poly (ethylene glycol)-poly (ε-caprolactone-co-L lactide) (Wang et  al. 2013), 
monomethoxy poly (ethylene glycol)- poly (caprolactone)-D-α-tocopheryl polyeth-
ylene glycol 1000 succinate (Zhang and Zhang 2015). Chitosan has been modified 
with hydrophobic moieties to form an amphiphilic polymer. These hydrophobic 
groups include α-tocopherol succinate (Liang et al. 2016), Pluronic F127 (Xu et al. 
2015a, b), N-succinyl palmitoyl group (Yuan et  al. 2015), N-octyl N-trimethyl 
group (Zhang et al. 2016), polycaprolactone (Almeida et al. 2018). Serum albumin 
has been modified with octyl group to make it amphiphilic for micelle preparation 
(Liu et al. 2011). The schematic of types of paclitaxel micelles are given (Fig. 6.4).

6.2.1  �Simple Micelle-Based Delivery System

Simple micelles are prepared by using an amphiphilic copolymer. The copolymer 
may be di or triblock copolymer composed of the hydrophilic and hydrophobic 
component. Hydrophobically modified serum albumin copolymer was synthesized 
for preparation of paclitaxel micelles. Serum albumin was chosen as it is 
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endogenously present in the plasma. Serum albumin is biocompatible and nontoxic 
protein. The reactive primary amino group of albumin was conjugated to octyl 
chain. The paclitaxel micelles prepared using synthesized octyl conjugated serum 
albumin exhibited 1.3 times higher drug loading than that of unmodified serum 
albumin. Octyl group was chosen to enhance interaction between the hydrophobic 
drug and micelle. In vitro cytotoxicity in Hepg2 cells exhibited a higher percentage 
of cell viability than Taxol® indicating better safety profile of octyl modified albu-
min-based paclitaxel micelles (Gong et al. 2009). Lauryl carbamate modified Inulin 
was used to prepare paclitaxel micelles. Inulin, a hydrophilic carbohydrate offers 
the advantage of being an alternate for poly(ethylene glycol)ylation, poly(ethylene 
glycol)ylation and has been found to exhibit production of anti-poly(ethylene gly-
col) Immunoglobulin M. Paclitaxel micelles of lauryl carbamate modified Inulin 
exhibited enhanced anticancer activity in mouse melanoma B16F10 cells at half the 
dose (Muley et al. 2016).

Polyion complex based micelle composed of cationic Pluronic F127 modified 
chitosan and anionic sodium cholate was reported for paclitaxel delivery. Sodium 
cholate, a bile salt was chosen to enhance drug loading in the Pluronic based 

Fig. 6.4  Types of paclitaxel micelles in literature; (a) simple micelle, (b) poly (ethylene glycol)
ylated micelle where poly(ethylene glycol) is coated or conjugated to the micelle, (c) targeted 
micelle; targeting ligands such as folate or hyaluronic acid is conjugated to the micelle, (d) stimuli 
sensitive micelle; stimuli-responsive i.e. pH/temp/redox-sensitive polymer is conjugated to micelle 
and (e) functional micelles; functional molecule such as mucoadhesive agent, P-glycoprotein 
(P-gp) inhibitor or biodegradable polymer is used
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micelles. Pluronic block copolymers are approved by USFDA but have the draw-
back of low drug loading. The synthesized polymer showed higher drug loading and 
lower critical micelle concentration. These micelles exhibited inhibition of growth 
of cancer cells in a drug-resistant MCF7 cell line (Ge et al. 2016). In another report, 
polyion complex based paclitaxel micelle using Pluronic F127 conjugated chitosan 
with cysteine was investigated. The polyion complex micelles exhibited four times 
higher drug loading as compared to Pluronic F127 based micelles. The polyion 
complex micelles exhibited pH-dependent and sustained release upon oral adminis-
tration (Xu et al. 2015a, b).

Paclitaxel exhibited poor drug loading in poly (ethylene glycol)-b-poly 
(ε-caprolactone). Hence, to increase the drug loading, acyl ester bulky prodrugs of 
paclitaxel were synthesized. The prodrugs were incorporated into poly (ethylene 
glycol)-b-poly (ε-caprolactone) micelles. The hydrophobic modification of the drug 
resulted in enhanced solubilization of the prodrug in micelles. These prodrugs 
exhibited enhancement in drug blood levels as revealed in pharmacokinetics studies 
in rats. The prodrug micelles not only increased mean residence time and volume of 
distribution but also sustained the drug release. Chemical modification of the drug 
resulted in a shift of renal to non-renal clearance of paclitaxel (Forrest et al. 2008).

Paclitaxel micelles prepared using poly (ethylene glycol)-b-poly (lactide) have 
shown low drug loading. A copolymer of poly (2,4 vinylbenzyloxy)- N, 
N-diethylnicotinamide) with poly (ethylene glycol) was synthesized and used to 
prepare paclitaxel micelles. N-N diethylnicotinamide was chosen as a hydrotropic 
agent. The micelles exhibited 37% by weight drug loading as compared to 27% by 
weight in poly (ethylene glycol)-b-poly (lactide) micelles. The paclitaxel micelles 
were stable for 4 weeks at 25 °C whereas there was precipitation of drug in poly 
(ethylene glycol)-b-poly (lactide) micelles. There was higher antiproliferation of 
human cancer cells by micelles with synthesized copolymer than poly (ethylene 
glycol)-b-poly (lactide) micelles (Lee et al. 2007).

6.2.2  �Mixed Micelle-Based Delivery System

Mixed micelles utilize two or more polymers to encapsulate the hydrophobic drug 
in the micelle. The advantages of these over simple micelles include lower critical 
micelle concentration, higher drug loading and the opportunity to incorporate mul-
tiple functionalities in the micellar structure (Attia et al. 2011). Paclitaxel mixed 
micelles were developed by combining Pluronic P123 with Pluronic F127. The 
rationale behind such combination relied on co-micellization of these Pluronic 
grades together during micelle formation. The critical micelle concentration was 
reduced in mixed micelles as compared to those prepared from Pluronic P123. The 
mixed micelles reduced half-maximal inhibitory concentration in A549 human lung 
adenocarcinoma cell lines by 4-fold as compared to Taxol® injection. Mixed 
micelles exhibited sustained release of paclitaxel. Forty-six percent drug was 
released after 2 h followed by slow release up to 12 h whereas Taxol® injection 
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released the drug immediately in an aqueous medium containing sodium salicylate 
by dialysis method at 37 °C and 100 rpm. The mixed micelles exhibited better sta-
bility upon 10 times dilution with phosphate buffer solution and storage for 48 h. 
Ninety percent drug was retained in mixed micelles whereas 35% of the drug was 
precipitated in Taxol® injection. The precipitation of the drug was attributed to dis-
sociation of the micelles upon dilution in case of Taxol® injection (Wei et al. 2009).

Sterically stabilized mixed micelles of paclitaxel were developed to increase the 
drug solubilization with lower critical micelle concentration. It was achieved by 
incorporation of hydrophobic phosphatidylcholine derivative along with poly (eth-
ylene glycol)-g-distearoylphosphatidylethanolamine. The mixed micelles of this 
graft copolymer exhibited 1000-fold enhancement in paclitaxel solubility. The cyto-
toxicity study using human breast cancer cell and MCF 7 cell line exhibited compa-
rable cytotoxicity of the mixed micelle with that of 10% paclitaxel solution in 
dimethyl sulfoxide (Krishnadas et al. 2003). Paclitaxel mixed micelles composed of 
poly(ethylene glycol-co-lactic acid) and D-α-tocopheryl polyethylene glycol 1000 
succinate exhibited higher cellular uptake and effectiveness against multidrug-resis-
tant tumor cells as compared to Genexol PM® (Fan et al. 2015).

Paclitaxel mixed micelles based on Soluplus® and Solutol® HS 15 were prepared 
for enhancement of drug solubilization. Solutol® HS15 (Murgia et  al. 2013) and 
Soluplus® (Jin et al. 2015) were used in solid dispersions to increase drug solubili-
zation and to prevent drug agglomeration. These mixed micelles exhibited higher 
plasma concentration in a pharmacokinetic study in Sprague Dawley rats than free 
paclitaxel. The mixed micelles exhibited higher cytotoxicity than free paclitaxel in 
MB-231 cell line (Hou et al. 2016). In another study, paclitaxel mixed micelles were 
prepared by a combination of α- tocopherol polyethylene glycol 1000 succinate and 
Plasdone® S630. α- tocopherol polyethylene glycol 1000 succinate was chosen for 
its lower critical micelle concentration of 0.02% w/w and Plasdone® S630® for 
higher drug solubilization capacity in solid dispersions. The mixed micelles released 
only 28% drug whereas there was 70% drug release from plain paclitaxel. About 
50% drug was released in a sustained manner from mixed micelles upto 50 h. A 
pharmacokinetic study in Sprague Dawley rats exhibited five times increase in bio-
availability of paclitaxel as compared to free paclitaxel. In vitro toxicity study in 
A459 cells revealed enhanced cytotoxicity of mixed micelles as compared to free 
paclitaxel (Hou et al. 2017).

6.2.3  �Stimuli-Responsive Micelle-Based Delivery System

Micelles which can associate or dissociate with respect to change in stimulus are 
termed as stimuli-responsive micelles. The stimuli such as variation in pH, oxida-
tion-reduction potential, magnetic field, and ultrasound have been used to fabricate 
stimuli-responsive micelles. pH-sensitive systems are the most popular among these 
stimuli since there is a variation in pH of fluids present in the milieu of different 
sites of the gastrointestinal tract, blood, tumor or body organs. The pH is acidic in 
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the stomach which increases to neutral in the intestine. A pH of 7.4 exists in normal 
cells whereas it is slightly acidic around tumor cells (Shen et al. 2008). Intracellular 
and extracellular glutathione concentration varies significantly and hence could be 
used to trigger an oxidation-reduction reaction (Schafer and Buettner 2001). A pH 
and oxidation-reduction potential based micelles utilize internal milieu of the 
human body whereas ultrasound and magnetic field are external stimuli to trigger 
the release of drug from micelles.

pH-sensitive paclitaxel micelles composed of methoxy poly (ethylene glycol)-b-
poly (β-aminoester) were reported. These micelles exhibited 13% and 45% drug 
release in pH 7.4 and pH 6.0 phosphate buffer solutions respectively after 3 days. 
The micelles with 16 mg/kg dose exhibited the lowest tumor volume after 10 days 
of treatment with B16F10 tumor-bearing mice as compared to saline solution (Han 
et al. 2009).

pH-sensitive paclitaxel micelles using methoxy poly (ethylene glycol)-poly 
(ε-caprolactone)-D-α-tocopheryl polyethylene glycol 1000 succinate were designed. 
The purpose of use of biodegradable polycaprolactone core was to dissolve the drug 
in the core whereas polyethylene glycol could bypass reticuloendothelial system 
uptake. D-α-tocopheryl polyethylene glycol 1000 succinate was chosen to over-
come multidrug resistance. These micelles exhibited complete drug release in 
pH 5.0 whereas only 60% drug was released in pH 7.4 buffer solution after 140 h. 
The micelles exhibited higher antitumor activity in A549 cells than the free drug. 
The pharmacokinetic study in Sprague Dawley rats revealed 4-fold higher bioavail-
ability than the free drug (Zhang and Zhang 2015).

N-octyl-N-(2-carboxyl-cyclohexamethenyl) chitosan-based paclitaxel micelles 
were investigated. High drug loading of 43.25% w/w was obtained in the micelles 
with a particle size of 145 nm and low critical micellar concentration of 42 μg/ml. 
The micelles exhibited pH-sensitive drug release. The pharmacokinetic study in 
Sprague Dawley mice exhibited longer half-life and a larger volume of distribution 
than Taxol® (Liu et al. 2011).

Polyethylene glycol-fluorenylmethyoxycarbonyl-disulfide-farnesyl thiosalicylic 
acid-based paclitaxel micelles were developed for intracellular delivery. Disulfide 
group was introduced to impart redox-sensitivity to the system. The micelles formed 
filamentous micelles with 10-fold lower critical micelle concentration values. The 
drug loading was found to be 34% w/w in the micelles. The micelles exhibited 74% 
drug release with 10 mM glutathione in release medium but micelles could release 
only 40% drug in release medium sans glutathione. The intracellular concentration 
of glutathione is in the millimolar scale whereas it is in the micromolar level outside 
the cells (Schafer and Buettner 2001). Pharmacokinetics and biodistribution studies 
revealed more retention of paclitaxel in the bloodstream with accumulation in tumor 
(Xu et al. 2015a, b).

Thermosensitive multi-arm star-shaped copolymer-based folate decorated pacli-
taxel micelles were  formulated. The micelles were designed using 4-arm block 
copolymer consisting of poly (N-isopropylacrylamide-co-acrylamide), poly 
(ε-caprolactone) and folate conjugated methoxy poly (ethylene glycol)/polyethyl-
ene glycol. These blocks were chosen for thermosensitive, biodegradable and 
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biocompatible properties respectively. The micelles exhibited temperature-sensitive 
drug release. The drug release from these micelles was faster at 40 °C than at 37 °C 
at the end of 100 h. The rationale was based on the fact that temperature in normal 
cells is ~37.5 °C whereas 40 °C in tumor environment (Rezaei et al. 2012).

Magnetically responsive paclitaxel micelles were designed. The magnetic mate-
rial used as superparamagnetic iron oxide nanoparticles which were incorporated in 
poly (N-isopropylacrylamide-r-acrylamide) conjugated to an arginine-glycine-
aspartic acid peptide. These micelles were formulated to have dual targeting. The 
peptide ligand was selected due to its affinity for αvβ3 integrin on cancer cells 
(Zitzmann et al. 2002) and magnetic force assisted drug release by virtue of iron 
oxide nanoparticles. The cellular uptake was improved for paclitaxel micelles with 
peptide in HeLa cells. Incorporation of magnetically responsive material in the 
micelles exhibited a synergistic effect on cellular uptake in a cell line (Lin et al. 2015).

Paclitaxel micelles based on monomethoxy poly (ethylene glycol)-b-poly (D, L 
lactide) have increased the maximum tolerated dose to 50 mg/kg from 20 mg/kg for 
Taxol® in murine B16 melanoma induced female SPF C57 BL/6 mice. This formu-
lation exhibited poor drug internalization (Kim et al. 2001). Howard and coworkers 
reported local ultrasound-assisted paclitaxel drug internalization from paclitaxel 
polymeric micelles. Ultrasound enhanced the drug internalization by 20-fold fol-
lowed by 90% tumor reduction in drug-resistant MCF7/ADmt cell lines (Howard 
et al. 2006).

6.2.4  �Functional Micelle-Based Delivery System

Paclitaxel micelles having specific functionality have been developed in the past. 
These functionalities include avoidance of multidrug resistance; p-glycoprotein 
inhibition, biodegradability, mucoadhesive property and the use of carriers with 
intrinsic anticancer activity. The purpose of functional micelles were to enhance 
bioavailability, reduce toxicity, and treatment of multidrug-resistant cancer.

P-glycoprotein inhibitors such as brometetradrine (Zhang et al. 2017), N-octyl-
N′-phthalyl-O-phosphoryl chitosan derivative (Qu et al. 2019), elacridar (Sarisozen 
et al. 2012) and Pluronic F127 (Dahmani et al. 2012) were used in compositions of 
paclitaxel micelles to overcome multidrug resistance. P-glycoprotein causes multi-
drug resistance by efflux of drug from cells (Gottesman et al. 1996). Various biode-
gradable polymers such as poly (ethylene oxide)-b-poly (ε-caprolactone) (Cai et al. 
2007), block copolymers of poly (ethylene glycol) and poly (lactide) (Yang et al. 
2009a, b) and poly (ethylene glycol)-poly (L-lactide)-poly {3(S) methyl-morpho-
line −2,5 dione} (Zhao et al. 2012) were used to prepare biodegradable paclitaxel 
micelles. Thioglycolic acid-modified octyl glycol chitosan (Huo et al. 2018) and 
chitosan grafted polycaprolactone (Almeida et al. 2018) were used to prepare muco-
adhesive paclitaxel micelles. Excipients having intrinsic anticancer activity such as 
Rhein (Wang et al. 2019), methoxy poly(ethylene glycol) conjugated octacosanol 
(Chu et  al. 2016), ethylene glycol-b-dendritic polylysine conjugated phenethyl 
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isothiocyanate (Xiang et al. 2018) and poly (2-ethyl-2 oxazoline) vitamin E succi-
nate and α-tocopherol polyethylene glycol 1000 succinate (Qu et  al. 2018) were 
exploited for preparation of paclitaxel micelles to further substantiate its anticancer 
activity.

6.2.5  �Targeted Micelle-Based Delivery System

Drug delivery to tumor cells can be improved by passive and active targeting of the 
nanocarriers. Systems that target the systemic circulation can be kept under a pas-
sive targeting system. It is a sort of passive process which exploits the natural bio-
distribution of the carrier and as a result, it eventually accumulates in certain organs, 
mainly liver and spleen (Yadav et al. 2019). In passive targeting to the tumor, the 
drug delivery carriers are exploited for their localization in the tumors by enhanced 
permeation and retention effects, phagocytosis and/or reticuloendothelial system. 
Nanocarriers having a size between 100 and 800 nm can accumulate in cancer cells 
due to leaky vasculature of blood vessels and inadequate lymphatic drainage of 
cancer cells (Iyer et al. 2006).

Active targeting refers to the attachment of certain components to the drug car-
rier which can direct the system to the target cells. This is based on molecular rec-
ognition phenomenon between ligand and receptor. The ligand possesses high 
affinity for specific receptor or surface determinant that has been overexpressed in 
the tumor cells. Overexpression of certain receptors like folate, transferrin, lipopro-
tein can be exploited as a target for cancer targeting. Certain tumor-associated anti-
gens like melanoma-associated antigen, carcinoembryonic antigen, and other 
antigens e.g. CD44 are also overexpressed in tumor cells (Thanki et  al. 2015). 
Various peptide-based ligands e.g. albumin, Arg-Gly-Asp peptide; carbohydrate-
based ligands e.g. β-galactose; vitamin-based ligands e.g. folate; chimeric proteins 
and antibodies were used for active targeting. Attachments of these ligands or engi-
neered homing devices or antibodies to drug carrier could facilitate the binding of 
drug carrier to the target cells. The concentration of these surface modifiers should 
be optimized in order to avoid reticuloendothelial system uptake or interaction with 
blood components (Kumar Khanna 2012).

Paclitaxel micelles were reported using mixed micelles composed of N-octyl-N′-
trimethyl chitosan, poly (ethylene glycol stearate) and heparin sodium (Zhang et al. 
2016), peptide ligand for epidermal growth factor receptor conjugated to poly (eth-
ylene glycol)-distearophosphatidylcholine ethanolamine (Ren et  al. 2015). Other 
systems have used dequalinium (Yao et al. 2011) and prostate carcinoma binding 
peptide 1 (Chen et  al. 2016) for mitochondrial and prostate cancer targeting 
respectively.

Paclitaxel targeted micelles having dual response were designed wherein any 
two functionalities like pH sensitivity, biodegradability, active targeting and redox 
sensitivity have been combined. These micelles include folate conjugated poly (eth-
yleneimine-pluronic) and Pluronic L121 (Xu et  al. 2012), Ala-Pro-Arg-Pro-Gly 
peptide conjugated poly (lactide-co-glycolide)-b-poly (ethylene glycol) copolymer 
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(Guo et al. 2015). Other systems include materials such as hyaluronic acid conju-
gated deoxycholic acid by a redox-sensitive disulfide bond (Li et  al. 2015) and 
E-selectin binding peptide conjugated hyaluronic acid micelles (Han et al. 2017).

6.2.6  �Crosslinked Micelle-Based Delivery System

Micelles structure breaks down causing burst release of drug upon dilution in the 
body. Crosslinking is used to increase the stability of micelles against such break-
down. Crosslinking enables intactness upon dilution of the micelle (O’Reilly et al. 
2006). Core crosslinked paclitaxel micelles for improved stability have been 
reported using micelles composed of poly (ethylene glycol methyl ether acrylate)-
b-poly (carboxyethyl acrylate) by disulfide crosslinking (Du et al. 2016) and cross-
linked di/triblock copolymers of methoxy poly (ethylene glycol) and poly 
(ε-caprolactone) by potassium persulfate (Shuai et al. 2004). The details of various 
paclitaxel micelles are summarized (Table 6.1).

6.3  �Liposomal Delivery System

6.3.1  �Simple Liposome-Based Delivery System

Liposomes are spherical vesicular delivery systems composed of phospholipids or 
other amphiphilic lipids. The advantages of liposomes are bio-compatibility, ease of 
preparation and applicability for targeted delivery. Liposomes can be used as a drug 
carrier for both hydrophilic and hydrophobic drugs (Akbarzadeh et al. 2013).

Liposomal paclitaxel formulation composed of soy lecithin and cholesterol were 
reported. The particle size of liposomes and encapsulation efficiency were found to 
be 131 ± 30.5 nm and 94.5 ± 3.2% respectively. In-vitro drug release in pH 7.4 
phosphate buffer saline was 56% after 96 h. Cytotoxicity study using HeLa cell line 
exhibited enhanced antitumor efficiency (Nguyen et al. 2017).

6.3.2  �Polyethylene Glycolated Liposome-Based 
Delivery System

Polyethylene glycolation involves coating of poly (ethylene glycol) on liposomes to 
enhance hydrophilicity and blood circulation time. Liposomes with particle size 
more than 200 nm are directly taken up by the reticuloendothelial system. The larger 
particle size of liposomes causes faster elimination of liposomes. The circulation 
time can be prolonged by poly (ethylene glycol)ylation of liposomes (Sharma and 
Kumar 2015).
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Polyethylene glycolated liposomal formulation of paclitaxel composed of soy-
bean phosphatidylcholine and 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine 
[methoxy (polyethylene glycol)-2000], Cholesterol, Tween 80 and 3-(4, 
5-Dimethyltiazol-2-ly)-2, 5-diphenyl- tetrazolium bromide was reported. This lipo-
somal paclitaxel formulation resulted in enhancement of solubility by 2000 times as 

Table 6.1  Paclitaxel delivery system based on micelles

Serial 
number System detail Remarks Reference

1 P-glycoprotein inhibitor-based micelles
A Brometetradine Brometetradine was co-encapsulated in Solutol HS15 

and TPGS mixed micelles. These micelles exhibited 
superior cytotoxicity and anticancer effect against 
MCF7/Adr cell line.

Zhang 
et al. 
(2016)

B OPPC (N-octyl-
N′-pthalyl-O-
phosphoryl 
chitosan)

OPPC based self-assembled paclitaxel micelles 
exhibited higher loading than those with unmodified 
chitosan. These micelles showed higher cellular 
uptake in Caco-2 cells than Taxol®.

Qu et al. 
(2019)

C Elacridar Elacridar coloaded 1,2-Distearoyl-sn-glycero-3-
phosphoethanolamine-N-[methoxy (polyethene 
glycol) -2000] micelles for intracellular delivery by 
enhanced permeation and retention effect avoided 
nonspecific distribution of micelles. This led to 
P-glycoprotein inhibition of only cancer cells. These 
micelles exhibited higher cytotoxicity in human 
cancer cell lines.

Sarisozen 
et al. 
(2012)

D Pluronic F127 Paclitaxel mixed micelles composed of Pluronic F127 
and low molecular weight all trans-retinoid acid 
exhibited higher drug loading and lower critical 
micellar concentration. In situ permeability study 
through rat intestine exhibited 6-fold enhancement as 
compared to that with Taxol®.

Dahmani 
et al. 
(2012)

2 Targeted micelle-based delivery system
A Heparin based 

system
N-octyl-N-trimethyl chitosan-polyethene glycol 100 
stearate-based paclitaxel micelles showed high drug 
loading. Heparin sodium coated micelles exhibited 
higher cellular uptake with longer circulation time in 
rats.

Zhang 
et al. 
(2016)

B Dual responsive 
system

pH-responsive and cancer cell recognition 
programmed mixed micelles composed of (D- α- 
tocopheryl poly-ethylene glycol 1000 succinate -b- 
poly(β-aminoester) and aptamer exhibited stability at 
pH 7.4 but released the drug at tumor pH.

Zhang 
et al. 
(2015)

C Mitochondria-
targeted system

Paclitaxel micelles composed of poly (ethylene 
glycol-2000)-g-distearoylphosphotidylethanol amine, 
tocopheryl polyethylene glycol succinate with 
dequalinium had a higher solubility than 1 mg/ml, 
exhibited delayed-release and enhanced cellular 
uptake in MCF7/Adr cells than that of Taxol®.

Yao et al. 
(2011)
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compared to conventional liposomes. The pharmacokinetic study on Sprague 
Dawley rats revealed a 3-fold increase in biological half-life in poly(ethylene gly-
col)ylated liposomal formulation of paclitaxel (Yang et al. 2007).

6.3.3  �Targeted Liposomal Delivery System

The targeted delivery system is a strategy of delivering drugs or medications only to 
its site of action and not to the other cells, tissues or organs. The concentration of 
medication is higher in particular cells, tissues or organs as compared to others. 
Targeting systems have the advantages of improving the therapeutic efficacy and 
reduction of side effects of drugs (Gupta and Sharma 2011). Passive targeting 
involves targeting of drugs to the systemic circulation of the body. In this method, 
drug targeting occurs because of the body’s natural response to physicochemical 
characteristics of the drug or drug carrier system. Enhanced permeability and reten-
tion effect passively target the drug to the tumor cells (Bazak et al. 2014).

Active targeting involves the use of a ligand that has an affinity for specific 
receptors which are over-expressed in cancerous organs, tissues, and cells. 
Transferrin, peptides, antibodies, nucleic acids, and their fragments are used as a 
ligand for active targeting (Atar et al. 2018).

Targeting of paclitaxel liposomal formulation to the lungs composed of phospho-
lipon 90H and Tween-80 were reported. The particle size of liposomes and entrap-
ment efficiency were found to be 8.166 ± 0.459 μm and 92.2 ± 2.56% respectively. 
These liposomes exhibited 60.26% drug release in 24 h. In vivo pharmacokinetic 
study in rabbits revealed a 1.6-fold increase in half-life and the significant decrease 
in plasma clearance than Taxol®. Liposomes of size higher than 8 μm could be the 
potential carrier for paclitaxel for the treatment of lung cancer (Wei et al. 2014).

Targeting of paclitaxel liposomal formulation to mitochondria composed of tri-
phenyl phosphene, 6-bromohexanoic acid, dicyclohexylcarbodiimide, 4-dimethyl-
amino-pyridine were reported. D- α- tocopheryl poly-ethylene glycol 1000 
succinate-triphenylphosphine conjugate was used as the mitochondrial targeting 
material. The particle size of liposomes and entrapment efficiency were found to be 
84.67 ± 0.61 nm and 86.27 ± 3.15% respectively. The liposomes exhibited higher 
anticancer in-vitro activity in human lung cancer A549 cells. The paclitaxel lipo-
somes could enhance the cellular uptake and were selectively accumulated in mito-
chondria. The increased uptake of the liposomes enhanced the anticancer efficacy 
(Zhou et al. 2013).

A targeted paclitaxel liposomal formulation composed of dipalmitoyl phosphati-
dylcholine, dimyristoyl phosphatidylglycerol/monomethoxy, polyethylene glycol 
2000, distearoyl phosphatidylethanolamine and folate-poly(ethylene glycol) 
3350-distearyl phosphatidylethanolamine was reported. The particle size of lipo-
somes was found to be 97.1 nm. Cytotoxicity study in the human carcinoma cell 
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line, KB exhibited 4-fold and 2.5-fold lower half maximal inhibitory concentration 
than non-targeted liposomes and Taxol® respectively. The clearance of Taxol® was 
16.5 times higher than folate receptor-targeted liposomes (Wu et al. 2006).

A targeted liposomal paclitaxel formulation composed of dipalmitoyl-sn-
glycero-3-phosphocholine and 1, 2-dioleoyl-3-trimethylammonium-propane, and 
hyaluronic acid was developed. The particle size of liposomes and encapsulation 
efficiency were found to be 106.4 ± 3.2 nm and 92.1 ± 1.7% respectively. In vitro 
drug release in pH 7.4 phosphate buffer saline was 95% in 40 h. In vivo antitumor 
efficacy and biodistribution studies were performed on 4T1 tumour-bearing animal 
models exhibited higher accumulation of the drug in tumor (Ravar et al. 2016).

6.3.4  �Stimuli Sensitive Liposomal Delivery System

Magnetically assisted delivery is a novel approach for delivery of drugs using engi-
neered smart microcarriers which can overcome a number of limitations facing cur-
rent methods of delivering medicines. The drug is formulated into a pharmaceutically 
stable formulation which is usually injected through the artery that supplies the 
target organ or tumor in the presence of an external magnetic field (Koppisetti and 
Sahiti 2011). Focused ultrasound is a method to increase the permeability of drugs 
into the blood-brain barrier to promote drug delivery to specific brain regions. It is 
a potential method of delivery of the drugs into the brain for brain tumors (Burgess 
et al. 2015).

Focused ultrasound was used to enhance permeation through the blood-brain 
barrier and blood tumor barrier. 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine, 1, 
2-distearoyl-sn-glycero-3-phosphoethanolamine and cholesterol were used to pre-
pare liposomal paclitaxel formulation. Focused ultrasound exposure with a 10 ms 
pulse length and 1 Hz pulse repetition frequency at 0.64 MPa peak rarefactional 
pressure was used. In-vivo study in rats showed a 3-fold increase in blood drug level 
from the ultrasound-assisted liposomal formulation as compared to liposomal pacli-
taxel formulation (Shen et  al. 2017). Paclitaxel loaded magneto liposomes com-
posed of 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine and 
1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol were reported. The encap-
sulation efficiency of 83 ± 3% was obtained. In-vitro study under magnetic field on 
HeLa cell line revealed that 89% of cells were killed (Kulshrestha et al. 2012).

6.3.5  �Mucoadhesive Liposomal Delivery System

Mucoadhesion is commonly defined as the adhesion between two materials, at least 
one of which is a mucosal surface. The mucoadhesive property of a delivery system 
is dependent upon a variety of factors, including the nature of the mucosal tissue 
and the physicochemical properties of the polymeric formulation (Shaikh 
et al. 2011).

6  An Overview of Paclitaxel Delivery Systems



178

Mucoadhesive liposomes composed of chitosan, thioglycolic acid and Pluronic 
F127 were used for paclitaxel oral delivery. The particle size of liposomes was 
found to be 121.4 nm. In-vivo study on rats revealed a 3-fold higher bioavailability 
than non-mucoadhesive liposomes. Enhanced mucoadhesion was observed which 
increased the retention time of the chitosan, thioglycolic acid and Pluronic F127 
containing liposomal paclitaxel formulation (Liu et al. 2018).

6.4  �Nanoparticle-Based Delivery System

Nanoparticles can be defined as submicron (10–1000  nm) particles or systems 
derived from polymers, lipids, and/or inorganic materials. Nanoparticle-based sys-
tems can overcome some of the limitations associated with conventional cancer 
therapy (Xin et al. 2017). The limitations include poor solubility of drugs, low spec-
ificity to the tumor cells, inability to accumulate in tumor cells, rapid removal of 
drugs from the systemic circulation and non-specific targeting. Nanoparticles have 
the potential to increase bioavailability and enhance the delivery of poorly soluble 
anticancer drugs like paclitaxel (Tran et al. 2017). Due to small size, high surface to 
volume ratio, ability to modulate drug release and the possibility of surface modifi-
cation, nanoparticles lead to enhanced accumulation of drugs in tumor cells. Surface 
modification, use of internal and external stimuli allows selective targeting of drugs 
to tumor cells. Nanoparticulate systems are also useful to overcome multidrug resis-
tance facilitated by P-glycoprotein efflux pumps in tumor cells (Shi et al. 2017).

6.4.1  �Single Nanocarrier Based System

Paclitaxel nanoparticles fabricated using a single polymer have been discussed in 
this subsection. The carriers can be natural e.g. albumin (Li et al. 2012); semisyn-
thetic e.g. chitosan (Gupta et al. 2017); and synthetic e.g. poly (styrene-co-maleic 
acid) (Dalela et al. 2015), poly (n-butyl cyanoacrylate) (Huang et al. 2007). Use of 
biodegradable polymers like poly (lactic-co-glycolic acid) (Le Broc et al. 2013), 
poly(ε-caprolactone) (Zhu et al. 2010), poly(lactide) (Zhang and Feng 2006) were 
also reported because of their biocompatibility and non-toxicity. Paclitaxel loaded 
poly (lactic-co-glycolic acid) nanoparticles were formulated using Poloxamer 188 
as a stabilizer. Paclitaxel nanoparticles exhibited sustained release of the drug over 
a period of 4  days. The formulation was safe for intravenous administration. 
Pharmacokinetic studies in rats have verified longer retention of drug in the sys-
temic circulation. Mean residence time and plasma half-life were increased by 77 
and 45-fold respectively as compared to the pure drug (Mittal et al. 2019).
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The chitosan-based biocompatible nanoparticulate system was prepared to 
achieve better delivery of paclitaxel which has shown burst release followed by 
sustained release of the drug. The half-maximal inhibitory concentration was 
reduced by 1.6-fold as compared to the pure drug which was attributed to the higher 
uptake of nanoparticles. Therapeutic efficacy was induced by apoptosis induction. 
The drug loading was found to be 11.57% (Gupta et al. 2017). Polygeline has been 
used as a carrier for paclitaxel delivery. Polygeline based paclitaxel nanoparticles 
were formulated as a reconstitutable lyophilized powder for intravenous administra-
tion. The drug loading was found to be 12.04%. It has shown a relative bioavail-
ability of 89.83% as compared to Abraxane® (Xiong et al. 2019).

6.4.2  �Multiple Nanocarriers-Based System

It covers the delivery systems of paclitaxel which contain more than one polymer or 
carriers. Polymers can remain as separate entities as in the case of layer-by-layer 
based albumin-bound paclitaxel nanoparticles. The nanoparticle was fabricated by 
alternate deposition of poly(arginine) and poly (ethylene glycol)-block-poly 
(L-aspartic acid) onto the drug-albumin conjugate. The drug loading capacity was 
found to be 48% w/w. The protective layers have improved the colloidal stability as 
well as biodistribution of albumin-bound paclitaxel nanoparticles. Mean residence 
time and plasma half-life were increased 5 and 4-fold respectively as compared to 
albumin-drug conjugate. These multilayer conjugates exhibited enhanced cytotox-
icity and apoptosis properties (Ruttala et al. 2017).

Two or more polymers can be copolymerized and loaded with paclitaxel to 
design paclitaxel loaded nanoparticles. Methoxy poly (ethylene glycol)-poly(ε-
caprolactone) nanoparticles loaded with paclitaxel have shown improved anti-glio-
blastoma activity than Taxol®. The drug loading was found to be 8.2%. High 
accumulation of the drug in brain cells was observed. The mean survival time was 
increased to 28 days which was 20 days in Taxol® treated animals. (Xin et al. 2010). 
Poly (ethylene glycol)ylated poly(ε-caprolactone) based paclitaxel nanoparticles 
were designed which exhibited similar biodistribution compared to Taxol®. 
Polyethylene glycol and poly(ε-caprolactone) side chains of the nanoparticles could 
avoid opsonization (Colombo et al. 2015).

Paclitaxel loaded nanoparticles composed of poly(ε-caprolactone)–co-α-
tocopheryl polyethylene glycol 1000 succinate were formulated. The nanoparticles 
had 6% drug loading. The nanoparticles exhibited sustained drug release over a 
period of 144 h in pH 7.4 phosphate buffer solution. The half-maximal inhibitory 
concentration for the nanoparticles was found to be 7.8-fold lower than Abraxane®. 
In vivo pharmacokinetic study in rats revealed that the half-life was increased by 11 
and 1.2-fold as compared to Taxol® and Abraxane® respectively. The formulation 
could increase the systemic circulation and lower the elimination of drug than its 
pre-existing marketed formulations (Bernabeu et al. 2014).
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6.4.3  �Stimuli Sensitive Nanosystem

pH sensitivity can be incorporated into either the corona or core of the nanoparti-
cles. The core-shell type nanoparticles are formulated with pH-dependent solubility 
and lower critical solution temperature which exhibits drug release at tumor pH 
(Sutradhar and Amin 2014).

Various polymers have been reported to exhibit pH-responsive release of pacli-
taxel, such as poly  [2-(dimethylamino) ethyl methacrylate-co-methacrylic acid] 
(Lee et al. 2011), O-carboxymethyl chitosan (Sahu et al. 2011), poly (acrylic acid)-
poly(ethylene oxide) (Nguyen et  al. 2019), poly(4-vinyl pyridine) (Contreras-
Cáceres et al. 2017), poly (lactic acid)-block-poly(ethylenimine) and poly (ethylene 
glycol)-block-poly (l-aspartic acid sodium salt) (Jin et al. 2018a, b). Chitosan modi-
fied poly (lactic-co-glycolic acid) nanoparticles of paclitaxel were designed to over-
come the initial burst release of poly (lactic-co-glycolic acid) nanoparticles. The 
drug loading was found to be 6.42%. Chitosan modified nanoparticles were pH-
responsive and have shown faster release in pH 5.5 than at pH 7.4. Enhanced cyto-
toxicity and cellular uptake in MDA-MB-231 cells were due to chitosan modification 
(Lu et al. 2019).

Thermoresponsive delivery systems have been explored for paclitaxel where a 
change in temperature had triggered the release of the drug from the system. A 
novel thermoresponsive triblock copolymer comprised of methoxy poly (ethylene 
glycol), poly(octadecanedioicanhydride) and D, L-lactic acid oligomer was devel-
oped for paclitaxel delivery. The nanoparticles were formulated as a freeze-dried 
powder which is suitable for peritumoral or intratumoral injection upon redisper-
sion with water at ambient temperature. The drug loading was found to be 0.90%. 
Paclitaxel accumulation in tumor cells was enhanced whereas systemic exposure 
was reduced. Plasma half-life and area under the curve were increased by 4.2 and 
1.8-fold respectively as compared to Taxol® in the pharmacokinetic study (Liang 
et al. 2017).

Paclitaxel conjugated recombinant chimeric polypeptide-based nanoparticles 
have been reported. The nanoparticles self-assemble into spherical nanoparticles of 
size below 100 nm. The in vitro dissolution study of the nanoparticles did not release 
the drug in pH 7.4 phosphate buffer solution but completely released the drug within 
6 h in pH 6.5 carbonate buffer solution. The systemic exposure of paclitaxel was 
increased by 2-fold as compared to that of Abraxane®. The tumor uptake of the 
nanoparticles was doubled as compared to that with Abraxane®. Abraxane® treated 
prostate cancer animals could survive less than 60  days, whereas nanoparticle 
treated animals survived more than 70 days with almost complete tumor reduction 
(Bhattacharyya et al. 2015).

The reducing environment of tumors serves as a unique internal signal that 
allows redox-responsive nanoparticles to degrade in tumor cells and release the 
loaded drug. Rapid drug release can be attributed to the high concentration of glu-
tathione in cancer cells (Guo et  al. 2018). Cross-linked polymeric nanocarriers 
made up of poly (lactic acid) core and glutathione-responsive disulfide cross-linked 
poly (oligo-ethylene glycol) corona was loaded with paclitaxel. The drug loading 
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capacity was found to be 20%. In vitro release of paclitaxel from the nanoparticles 
was enhanced in the presence of glutathione in acidic pH. The half-maximal inhibi-
tory concentration showed an 11-fold increase activity in OVCAR-3 cells compared 
to Taxol® which indicated better antitumor efficacy of the nanoparticles (Samarajeewa 
et al. 2013).

6.4.4  �Functional Polymeric Nanoparticles

Multidrug resistance is the major reason for the failure of conventional anticancer 
therapy. P-glycoprotein mediated drug efflux from cancer cells is one of the impor-
tant mechanisms of multidrug resistance (Mansoori et al. 2017). Various nanopar-
ticulate systems of paclitaxel have been formulated to overcome this issue. Paclitaxel 
was loaded in poly [2-(dimethylamino)-ethyl methacrylate-co-methacrylic acid] to 
obtain water-soluble nanoparticles. These nanoparticles were able to reverse the 
multidrug resistance in two p-glycoprotein expressing breast cancer cell lines i.e. 
MCF/ADR, MT3/ADR cell lines compared to pure paclitaxel. This was due to the 
uptake of nanoparticles by endocytosis, bypassing the P-glycoprotein efflux pump 
(Lee et al. 2011).

Poly(lactide)-D-α-tocopheryl polyethylene glycol 1000 succinate copolymer-
based nanoparticles of paclitaxel were developed, where D-α-tocopheryl polyethyl-
ene glycol 1000 succinate acts as a P-glycoprotein inhibitor. The drug loading was 
found to be 5.2%. These nanoparticles exhibited much higher in vitro cytotoxicity 
in HT-29 cells as compared to Taxol® (Zhang and Feng 2006).

P-glycoprotein inhibition potency of tannic acid was used by formulating tannic 
acid nanoparticles of paclitaxel. Tannic acid has lowered the P-glycoprotein expres-
sion; inhibited metastasis, clonogenic formation, proliferation; decreased expres-
sion of multidrug-resistant protein; and increased expression of tumor suppressor 
proteins of MDA-MB-231 breast cancer cells (Chowdhury et al. 2019).

Mucoadhesive polymeric nanoparticles relish localization and prolonged resi-
dence at the site of absorption (Boddupalli et al. 2010). Paclitaxel conjugated tri-
methyl chitosan nanoparticles were developed for oral and intravenous administration 
of the drug. Intestinal transport of paclitaxel was promoted by the mucoadhesive 
property of trimethyl chitosan. A pharmacokinetic study in tumor-bearing mice 
revealed prolong blood retention and improved tumor accumulation of paclitaxel. 
Further modification of nanoparticles by folic acid has improved the overall antitu-
mor efficacy (He and Yin 2017).

6.4.5  �Targeted Polymeric Nanoparticles

Chitosan modified poly (lactic-co-glycolic acid) nanoparticles were loaded with 
paclitaxel. Chitosan modification produced a positively charged surface which 
resulted in increased uptake of the nanoparticles into lung cancer cell line A549. 
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Moreover, a lung-specific biodistribution was achieved as compared to Taxol®. The 
transient formation of aggregates in plasma increased the size of the nanoparticles 
upon intravenous administration. Electrical interaction between positively charged 
nanoparticles and negatively charged tumor vasculature enhanced the accumulation 
of nanoparticles in lung tumor (Yang et al. 2009a, b).

Various active targeting based polymeric nanoparticles have been reported for 
paclitaxel. Paclitaxel loaded cationized polyacrylamide nanoparticles engineered 
with recognition peptide VRPMPLQ were  designed. The presence of positive 
charge and the recognition peptide directed the nanoparticles to dysplasia regions in 
the colon where sialic acid was overexpressed. The uptake of the peptide containing 
nanoparticles was increased 10-fold as compared to non-peptide nanoparticles 
(Tiwari et al. 2017). CD44 is a non-kinase transmembrane glycoprotein that is over-
expressed in certain cancers like gallbladder cancer, breast cancer and ovarian can-
cer (Chen et al. 2018). Hyaluronic acid serves as a targeting ligand for overexpressed 
CD44. Hyaluronic acid decorated serum albumin-based paclitaxel nanoparticles 
were designed for targeting ovarian cancer cells. The encapsulation efficiency was 
found to be 90%. The uptake of the nanoparticles was attributed to receptor-medi-
ated endocytosis. A fluorescent dye fluorescein isothiocyanate was labelled to the 
nanoparticles for in vitro imaging of the tumor. The half-maximal inhibitory con-
centration was decreased by 4.35-fold in hyaluronic acid conjugated paclitaxel as 
compared to free paclitaxel (Edelman et al. 2019).

Ganipineni and co-workers have compared passive, active, magnetic and hybrid 
targeting strategies of paclitaxel for glioblastoma treatment. For passive targeting, 
paclitaxel and superparamagnetic iron oxide loaded poly (lactic-co-glycolic acid) 
nanoparticles were formulated. Accumulation of nanoparticles in the U87MG tumor 
model was due to enhanced permeability and retention effect. Active targeting was 
based on the fact that αvβ3 integrin is overexpressed in glioblastoma and Arg-Gly-
Asp tripeptide was served as a targeting ligand. So, the surface of the nanoparticles 
was modified with Arg-Gly-Asp to achieve active targeting. The inherent magnetic 
property of superparamagnetic iron oxide was explored for magnetic targeting. 
Hybrid targeting was achieved by adding active and magnetic targeting. The best 
therapeutic effect was obtained in magnetic targeting followed by the hybrid target-
ing (Ganipineni et al. 2019). The other polymeric nanocarrier based targeted deliv-
ery systems of paclitaxel is given (Table 6.2).

6.4.6  �Inorganic Nanoparticle-Based System

Inorganic nanoparticles are developed lately in addition  to polymeric or organic 
nanoparticles. Typically, the inorganic nanoparticles are made up of inorganic core 
and organic shell (Bayda et al. 2018). The core contains metals like iron oxide, gold, 
aluminium or non-metals like carbon  or silica. The shell protects the core from 
chemical interactions during circulation and/or acts as a substrate for conjugation 
with biomolecules, such as antibodies, proteins, and oligonucleotides. Inorganic 
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Table 6.2  Polymeric nanocarrier based targeted delivery of paclitaxel

Serial 
number Systems Remarks References

1 Passive targeting based systems
A Paclitaxel loaded poly 

(ethylene glycol)-block 
poly (trimethylene 
carbonate – 
nanoparticle

The nanoparticles exhibited sustained release 
and slightly higher in vivo antitumor efficacy 
than Taxol®. The uptake of nanoparticles to 
glioblastoma was enhanced due to passive 
targeting.

Jiang et al. 
(2011)

B Association of poly 
(ethylene glycol) 
-paclitaxel with free 
paclitaxel [poly 
(ethylene glycol)-
paclitaxel/paclitaxel]

In vitro cytotoxicity was more in poly 
(ethylene glycol)-paclitaxel/paclitaxel than 
poly (ethylene glycol)-poly(lactide)/paclitaxel. 
In vivo cellular uptake and antitumor efficacy 
was more in poly (ethylene glycol)-paclitaxel/
paclitaxel than poly (ethylene glycol)-
poly(lactide)/paclitaxel and Taxol® due to 
efficient passive targeting.

Lu et al. 
(2014)

2 Active targeting-based systems
A Wheat germ agglutinin 

conjugated isopropyl 
myristate incorporated 
poly(lactide-co-
glycolide) 
nanoparticles

The nanoparticles exhibited stronger in vitro 
cytotoxicity due to efficient cellular uptake via 
Wheat germ agglutinin receptor-mediated 
endocytosis and isopropyl myristate-facilitated 
release of paclitaxel from the nanoparticles.

Mo and 
Lim (2005)

B Poly (vinyl benzyl 
lactonamide) 
incorporated paclitaxel 
loaded poly(lactide-co-
glycolide) 
nanoparticles

Enhanced cellular uptake and cytotoxicity 
were observed due to receptor-mediated 
endocytosis of nanoparticles to hepatic cancer 
cells. Poly (vinyl benzyl lactonamide) carried 
galactose residues which were served as a 
ligand.

Wang et al. 
(2012)

C Follicle-stimulating 
hormone β 81–95 
peptide conjugated 
poly (ethylene 
glycol)-poly(lactide) 
nanoparticles

Specific paclitaxel uptake by follicle-
stimulating hormone receptor expressing 
ovarian cancer cells. Side effects were reduced 
as compared to commercial paclitaxel.

Zhang et al. 
(2013)

D 15F and regulon-
peptide modified 
polyester based 
nanoparticles

Internalization of nanoparticles was mediated 
by low-density lipoprotein receptor-1 in the 
brain. Cellular uptake by glioma cells was 
improved due to peptide functionalization.

Di Mauro 
et al. (2018)

E Alendronate modified 
paclitaxel-
polydopamine 
nanoparticles

The nanoparticles exhibited specificity towards 
osteosarcoma cells due to alendronate 
modification. In vivo antitumor activity was 
better as compared to Taxol® with lesser side 
effects.

Zhao et al. 
(2019)
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nanoparticles offer good stability and biocompatibility. These can alter the drug 
release profile and provide the site of attachment for targeting molecules. 
Additionally, few metallic nanoparticles can also be used for contrast imaging and 
photodynamic therapy (Núñez et al. 2018).

Paclitaxel was loaded into mesoporous silica nanoparticles of three different 
pore sizes and was evaluated for in vitro and in vivo antitumor activity. The in vitro 
release of paclitaxel was dependent on the pore size. Early and late apoptosis was 
directly proportional to pore size and was boosted as compared to free paclitaxel. 
Pharmacokinetic parameters were similar to Taxol® (Jia et al. 2013). Paclitaxel was 
loaded into mesoporous carbon spheres and surface modified by the folate-polyeth-
yleneimine function. The enhanced internalization of nanoparticles by Caco-2 cell 
lines was due to folate conjugation. The nanoparticles also demonstrated improved 
oral bioavailability and diminished gastrointestinal toxicity (Wan et al. 2015). Other 
inorganic nanoparticle-based delivery systems of paclitaxel are given (Table 6.3).

6.4.7  �Nanocrystal-Based System

Drug nanocrystals are nanosized, carrier-free, crystalline particles of the drug, usu-
ally produced in the form of nanosuspensions and stabilized by surfactants or poly-
mers. Nanocrystals have several advantages over other nanoparticulate systems 
such as high drug loading capacity, improved solubility, dissolution, stability, and 
long circulation time. Nanocrystals also enjoy excellent commercialization poten-
tials. So, development of nanocrystals of paclitaxel has gained the interest of 
researchers in recent years (Lu et al. 2015).

Paclitaxel nanocrystals were prepared using Pluronic F127 as a stabilizer for 
hyperthermic intraperitoneal chemotherapy of ovarian cancer. The in vitro cytotox-
icity against human ovarian carcinoma cell line, SKOV-3, was equivalent to Taxol®. 
The maximum tolerated dose of the nanocrystals was similar to Taxol® however; the 
rats treated with the nanocrystals recovered faster after hyperthermic intraperitoneal 
chemotherapy treatment (De Smet et  al. 2012). In another study, Pluronic F127 
grafted chitosan copolymer was used as a stabilizer for the development of pacli-
taxel nanocrystals. Enhanced accumulation of paclitaxel in the Caco-2 cell line as a 
result of P-glycoprotein inhibitory potential of the stabilizer was observed. The 
nanocrystals have shown 12.6-fold enhanced absorption as compared to Taxol® 
(Sharma et al. 2015).

Polyethylene glycol stabilized and Arg-Gly-Asp peptide-functionalized pacli-
taxel nanocrystals were reported. Nanocrystals were coated with polydopamine 
which gave a site of attachment to polyethylene glycol and Arg-Gly-Asp peptide. 
Due to surface modification, the uptake and accumulation of nanocrystals were 
increased in adenocarcinomic pulmonary cells. In vivo study in pulmonary tumor-
bearing mice resulted in enhanced antitumor efficacy in RGD peptide-functional-
ized paclitaxel nanocrystals as compared to that with Taxol® (Huang et al. 2019).
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6.5  �Lipid-Based Delivery System

Lipid-based systems possess the advantage of incorporation of the hydrophobic 
drug in amorphous form. It helps to enhance the solubility of the drugs. It also helps 
improving permeability by providing lipophilicity to the delivery system. Lipid sys-
tems can be prepared using solid lipids or a mixture of solid lipids and liquid lipids. 
The former is referred to as solid lipid nanoparticles and the later one as nanostruc-
tured lipid carriers. Solid lipid nanoparticles, as well as nanostructured lipid carriers 
of paclitaxel, have been formulated. These include simple lipid-based systems, poly 
(ethylene glycol)ylated lipid-based systems, oral systems, local systems, pulmonary 
systems, targeted systems and stimuli-responsive systems.

Table 6.3  Inorganic nanoparticle-based delivery systems of paclitaxel

Serial 
number Systems Remarks References

1 Paclitaxel loaded 
chitosan oligosaccharide 
stabilized gold 
nanoparticles

The gold nanoparticles have shown 
sustained drug release at acidic pH and a 
strong cytotoxic effect against 
MDA-MB-231 cells. Gold nanoparticles 
also have the potential to be used as an 
optical contrast agent for photoacoustic 
imaging.

Manivasagan 
et al. (2016)

2 Poly (ethylene glycol)-
carboxyl–poly(ε-capro-
lactone) magnetic 
nanoparticles

In the presence of a magnetic field, the 
nanoparticles were targeted to tumor cells. 
The nanoparticles were less toxic to 
normal cells and found to be 
biocompatible.

Li et al. 
(2017a, b, c)

3 Gadolinium arsenite 
nanoparticles

Conjugations of arsenic trioxide and 
paclitaxel have shown a synergistic effect 
against paclitaxel-resistant HCT 166. 
Intracellular uptake of paclitaxel by 
resistant cells was enhanced.

Chen et al. 
(2017a, b)

4 Pectin conjugated 
magnetic graphene oxide 
nanoparticles

The nanoparticles have shown high drug 
loading capacity i.e. 36% and 
compatibility. In vitro release was more in 
endosomal cancer cell medium than 
normal physiological pH.

Hussien et al. 
(2018)

5 Hyaluronic acid (HA) 
functionalized MHANs 
(mesoporous hollow 
alumina nanoparticles)

Due to HA modification, MHAN was 
targeted to liver cancer cells. In vivo 
cytotoxicity in nude mice was better than 
pure paclitaxel and non-functionalized 
MHANs

Gao et al. 
(2019)
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6.5.1  �Simple Lipid-Based Delivery System

Simple lipid-based systems of paclitaxel have been prepared using lipid and surfac-
tants. Paclitaxel nanostructured lipid particles were prepared using fluorescein iso-
thiocynate-octadecylamine using 0.1% Poloxamer 188 aqueous solution by hot 
melt high-pressure homogenization. The nanoparticles were freeze-dried and were 
found to have 89 nm size and more than 30 mV zeta potential. The nanoparticles 
released ~ 80% drug within 48 h but it was about 50% from nanoparticles prepared 
without octadecyamine. In vitro cellular uptake in A549 cells was found to be higher 
with octadecylamine nanoparticles (Miao et al. 2015).

In another study, paclitaxel solid lipid nanoparticles composed of trilaurin, phos-
photidylcholine were prepared using hot homogenization method. The nanoparti-
cles had a size of ~160  nm. These nanoparticles exhibited sustained release in 
human plasma  over 24 h whereas burst release was observed in Taxol® (Xu 
et al. 2013).

6.5.2  �Lipid-Based Oral Drug Delivery System

Glyceryl monostearate based solid lipid nanoparticles of paclitaxel were prepared 
by emulsification and evaporation method. Wheat germ agglutinin was conjugated 
to these solid lipid nanoparticles which exhibited higher cytotoxicity than non-con-
jugated nanoparticles in A549 cell line. The conjugated nanoparticles exhibited a 
2-fold increase of area under the plasma curve and mean residence time during in 
vivo pharmacokinetic study in rats as compared to the plain drug (Pooja et al. 2016).

6.5.3  �Lipid-Based Topical Drug Delivery System

Paclitaxel loaded solid lipid nanoparticles composed of Carbapol 940, stearic acid, 
egg lecithin and Pluronic PF 68 were reported for topical delivery. Particle size and 
pH of the formulation were found to be 78 nm and 5.4 respectively. The gel released 
70% drug in 24 h in pH 7.4 phosphate buffer solution. The nanoparticle-based gel 
showed higher permeability through the dialysis membrane than that of plain drug-
loaded gel. In vivo study in mice exhibited higher antitumor efficacy (Bharadwaj 
et al. 2016). Another report for topical delivery of paclitaxel was based on nano-
structured lipid carriers composed of glyceryl behenate, capric-caprylic triglycer-
ides mixture with a surfactant cetylpyridinium chloride. The particle size and drug 
loading were found to be 270–315 nm and 3% respectively. The higher zeta poten-
tial of 20 mV was observed. The positive zeta potential helped to increase the per-
meability of drug through the skin (Tosta et al. 2014).
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6.5.4  �Lipid-Based Pulmonary Drug Delivery System

Pulmonary lipid nanoparticles are meant for lung cancer treatment. Nanostructure 
lipid carriers of paclitaxel were designed with a surfactant that can inhibit 
P-glycoprotein mediated drug efflux. These nanoparticles exhibited sustained 
release in pH 7.4 phosphate buffer solution. Nanoparticles of Tween 20 exhibited 
the highest cellular uptake in Caco-2 cell line. In vivo studies of nanoparticles 
exhibited better therapeutic activity and lung deposition (Kaur et al. 2016).

6.5.5  �Lipid-Based Targeted Delivery System

Passive and active targeted lipid-based systems were reported for paclitaxel deliv-
ery. Positively charged solid lipid nanoparticles of paclitaxel composed of stearyl-
amine, sodium behenate and polyvinyl alcohol were prepared. These nanoparticles 
exhibited only 1% drug release after 12 h whereas paclitaxel solution released the 
drug completely in a phosphate buffer solution with 0.1% v/v Tween 80 solution. 
Cytotoxicity study in hCMEC/D3 cells exhibited better anticancer activity with 
improved blood-brain barrier permeation (Chirio et al. 2014). Solid lipid nanopar-
ticles of paclitaxel were prepared using tristearin, hydrogenated soy phosphatidyl-
choline. The surface of the solid lipid nanoparticles was modified with lactoferrin. 
The size of nanoparticles and zeta potential were found to be 250 nm and 3.7 mV 
respectively. Cytotoxicity study in BEAS-2B cell line exhibited a 4-fold reduction 
in half-maximal inhibitory concentration in lactoferrin conjugate nanoparticles as 
compared to non-conjugated nanoparticles. In vivo distribution study in albino rats 
exhibited 1.6-fold higher uptake of the drug as compared to non-targeted nanopar-
ticles (Pandey et al. 2015).

Folate-conjugated poly (ethylene glycol)-cholesteryl hemisuccinate was used to 
prepare a paclitaxel targeted delivery system. Paclitaxel nanostructured lipid carrier 
was prepared using oleic acid and stearic acid from the conjugated polymer. 
Transmission electron microscopy revealed 100 nm size for these carriers. The bio-
distribution study in albino rats exhibited higher deposition of targeted particles in 
the kidney (Ucar et  al. 2017). Paclitaxel solid lipid nanoparticles prepared using 
conjugated polymer of Pluronic P85, 1, 2 distearoyl–sn-glycero-3-phosphatidyl-
ethanolamine and hyaluronic acid by hot homogenization method were developed. 
In vitro drug release study revealed complete drug release from the plain drug but 
the nanoparticles exhibited sustained release up to 48 h in a phosphate buffer solu-
tion with 0.5% w/v Tween 80. The targeted nanoparticles exhibited a 4-fold increase 
in drug concentration in tumor than from free drug in balb/c mice (Wang et al. 2017).

Paclitaxel brain targeted solid lipid nanoparticles were developed. These were 
composed of transferrin conjugated polyethylene glycol, oleic acid, compritol ATO 
888 and cholesterol. These were prepared by the solvent evaporation method. The 
size of the nanoparticles and drug loading were found to be 160  nm and 8.6% 
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respectively. In vitro release study showed that the drug release was in a sustained 
manner up to 75 h in pH 7.4 phosphate buffer saline. 6-fold reduction of half maxi-
mal inhibitory concentration in HL 60 cells was shown by targeted nanoparticles as 
compared to non-targeted nanoparticles (Dai et al. 2018).

6.5.6  �Lipid-Based Stimuli Sensitive Delivery System

Lipid-based stimuli sensitive delivery systems have been utilized for paclitaxel 
delivery such as pH-sensitive system, magnetically assisted system, enzyme-depen-
dent system and photosensitive system. Arginine lauryl ester-based cationic nano-
structured lipid carriers for paclitaxel were developed. The incorporation of arginine 
was attributed to the pH-sensitive behaviour of the system. These cationic nanocar-
riers were further coated with bovine serum albumin to increase their blood circula-
tion time by charge masking. The size of these coated carriers was below 100 nm. 
These carriers exhibited 60–65% drug release at 5.4 pH buffer but released only 
~35% drug at physiological pH of 7.4 buffer saline with 0.1% Tween 80. 
Biodistribution studies in tumor-bearing mice revealed higher retention time and 
tumor targeting from these carriers as compared to Taxol® injection (Li et al. 2012).

Magnetically assisted paclitaxel solid lipid nanoparticles containing magnetite 
and glyceryl monostearate were investigated. The melting point reduction from 56 
to 43 °C was observed after the formation of solid lipid nanoparticles. Magnetic 
hyperthermia assisted drug release occurs as a response to altered temperature upon 
magnetic field change (Moros et  al. 2019). The size of these nanoparticles was 
found to be 277 nm. The nanoparticles released drug faster at 43 °C but only 20% 
at room temperature. Magnetic hyperthermia-induced more than 75% drug release 
from these nanoparticles whereas only 10% drug was released from normal nanopar-
ticles (Oliveira et al. 2018).

Enzyme cleavable paclitaxel solid lipid nanoparticles were prepared using soy 
phosphatidylcholine and glyceryl monostearate. These were fabricated by conjuga-
tion of polyethylene glycol-conjugated peptide that is cleaved by a metalloprotease. 
These nanoparticles exhibited sustained drug release over a period of 200  h in 
pH 7.4 phosphate buffer with 0.1% Tween 80 at 37 °C. These nanoparticles exhib-
ited higher cytotoxicity in the HT1080 cell line as compared to Taxol®. In vivo 
pharmacokinetic study of these nanoparticles in C57BL/6 N mice after incorpora-
tion of a fluorophore, dioctadecyl-3, 3, 3′, 3′-tetramethylindodicarbocyanine and 
4-chlorobenzesulfonate salt exhibited 50% fluorescence after 10 h post-injection. 
The unmodified solid lipid nanoparticles were cleared within 4 h of injection in 
mice (Zheng et al. 2014).

Photosensitive paclitaxel solid lipid nanoparticles composed of a photosensitive 
material aluminum 1,8,15,22 tetrakis (phenylthio) 29H, 31H-phthalocyanine soy 
phosphatidylcholine, Pluronic F68 and ascorbic acid were prepared. These nanopar-
ticles exhibited drug release as a consequence of the breakdown of lipids by 
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near-infrared light of 730 nm wavelength. The half-maximal inhibitory concentra-
tion of these nanoparticles was 20-fold reduced than Taxol® in A549 cells (Meerovich 
et al. 2019).

6.6  �Microparticulate Delivery System

Microparticles are defined as particulate dispersions or solid particles with a size in 
the range of 1–1000 μm. The drug is entrapped or encapsulated in a micro-particu-
late matrix. Microparticles are prepared by spray drying, emulsion polymerization, 
solvent evaporation, and fluidized bed coating. This microencapsulation strategy 
gives protection of the drug from the environment, stabilization of sensitive drug 
substances and masking of unpleasant taste. Hence, microparticles  can play  an 
essential role for sustained release, controlled release, enhancing bioavailability and 
reducing side effects of drugs (Madhav and Kala 2011).

6.6.1  �Biodegradable Microparticle-Based Delivery System

Biodegradable polymers comprised of monomers linked to one another through 
functional groups and have unstable links in the backbone. They are degraded into 
biologically acceptable molecules in the body. Some common examples of biode-
gradable polymers are poly (glycolic acid), poly (ε-caprolactone), poly (lactic-co-
glycolic acid), chitin, cellulose and alginic acid (Vroman and Tighzert 2009).

Biodegradable paclitaxel microparticles composed of poly (D, L-lactide) were 
reported. The particle size of microparticles and encapsulation efficiency were 
found to be 4.6 μm and 90% respectively. Cytotoxicity study using U251 human 
glioma cells exhibited a 70% reduction in cell viability after 120 h (Song et al. 2010).

Biodegradable paclitaxel composite microparticles composed of poly (lactic-co-
glycolic acid) have been reported. The yield and entrapment efficiency were found 
to be 73.06 ± 1.94% and 29.27 ± 1.09% respectively. Cytotoxicity study revealed 
that paclitaxel loaded Poly (lactic-co-glycolic acid)-silica microparticles exhibited 
higher cytotoxicity than those without silica in HeLa cancer cells (Nanaki 
et al. 2017).

6.6.2  �Targeted Microparticles-Based Delivery System

Paclitaxel microparticles composed of Pluronic F-127, Poly (ethylene glycol)-2000 
and stearic acid were reported for passive targeting. The particle size of micropar-
ticles and encapsulation efficiency were found to be 1.76 ± 0.37 μm and 94.73% 
respectively. The microparticles exhibited higher cytotoxicity in an in vitro study 

6  An Overview of Paclitaxel Delivery Systems



190

using SKOC-3 ovarian cancer cells than Taxol® (Han et al. 2019). Paclitaxel loaded 
microparticles composed of folic acid, chitosan and 3-(4, 5-dimethylthiazol-2-yl)-2, 
5-diphenyl tetrazolium bromide were used for active targeting. Folic acid-contain-
ing microparticles of paclitaxel showed higher cytotoxicity than unmodified mic-
roparticles in L929 cells (Wang et al. 2016).

6.6.3  �Stimuli Sensitive Microparticles-Based Delivery System

Stimuli are a state of responsiveness to sensory stimulation or excitability. Stimuli 
sensitive systems deal with the changes in the physiology of the body with respect 
to the environment changes. These systems are beneficial for the controlled and 
sustained delivery of the drug in the body (Bhardwaj et al. 2015). Stimuli respon-
sible drug release can be changed in pH, temperature and magnetic field. 
Magnetically assisted delivery is a novel approach for delivery of drugs using engi-
neered smart microcarriers which overcome a number of limitations facing current 
methods of delivering medicines. The drug is formulated into a pharmaceutically 
stable formulation which is usually injected through the artery that supplies the 
target organ or tumor in the presence of an external magnetic field (Koppisetti and 
Sahiti 2011).

Thermosensitive paclitaxel microparticles composed of chitosan, poly (lactide-
co-glycolide), polyvinyl alcohol were developed. The particle size of microparticles 
was 6.38 ± 0.13 μm. These microparticles showed 63.0% reduction in tumor vol-
ume in M-234p BALB/c tumor model in comparison with non-thermosensitive mic-
roparticles (Pesoa et  al. 2018). Magnetic assisted paclitaxel delivery from 
microparticles composed of magnetite, poly (lactic-co-glycolic acid) and polyvinyl 
alcohol was investigated. The particle size of microparticles and drug loading were 
found to be 0.7 to 5 μm and 38% respectively. In-vitro study in MESSA human 
uterine sarcoma cells showed 5% enhancement in cell killing from magnetic assisted 
microparticles as compared to Taxol® (Hamoudeh et al. 2008).

6.7  �Emulsion-Based Delivery System

Emulsions are liquid biphasic systems in which one phase is dispersed in another 
immiscible phase. Emulsions are stabilized by the aid of emulsifying agents. This 
delivery system can be utilized for administration of poorly water-soluble drugs 
(Goodarzi and Zendehboudi 2019). Microemulsions can be defined as a thermody-
namically stable, isotropically clear dispersion of two immiscible liquids. Globule 
size of microemulsion ranges from 10 to 200 nm. Microemulsions are stabilized by 
a mixture of surfactants namely, surfactant and co-surfactant (Lawrence and Rees 
2000). On the other hand, nanoemulsions are kinetically stable, isotropically clear 
systems containing two immiscible liquids. The globule size ranges from 50 to 
500 nm (Jaiswal et al. 2015). Microemulsions are formed by self-assembly whereas 
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nanoemulsions are formed by mechanical shear. Emulsions can be administrated by 
oral or parenteral routes.

6.7.1  �Simple Emulsion-Based Delivery System

Simple emulsions are made up of a single lipid or a blend of lipid or oil, an emulsi-
fying agent and water. Paclitaxel oleate, a prodrug of paclitaxel, was incorporated in 
a phospholipid-based oil-in-water emulsion. The oil phase was comprised of egg 
phosphatidylcholine, triolein, dipalmitoyl phosphatidylethanolamine and stabilized 
by polysorbate 80 and oleyl chloride. Upon intravenous administration of the emul-
sion in rabbits, improved biodistribution and cytotoxicity was obtained as compared 
to Taxol® (Lundberg et al. 2003).

Two microemulsions of paclitaxel were prepared composed of lecithin, butanol, 
myvacet oil, water and capmul, myvacet oil, water respectively. Both of the systems 
were less cytotoxic and less hemolytic as compared to commercial Taxol®. A com-
paratively higher amount of drug i.e. 12 mg paclitaxel per gram of emulsion could 
be loaded in the microemulsions due to the high solubility of paclitaxel in the oil 
phase (Nornoo and Chow 2008). The microemulsions have shown the slow and 
sustained release of the drug as compared to Taxol®. In vivo pharmacokinetic study 
in rats after intravenous administration revealed that plasma half-life and biodistri-
bution were improved as compared to Taxol® (Nornoo et al. 2008).

Paclitaxel incorporated nanoemulsion of paclitaxel was designed using medium-
chain triglyceride as oil phase and Tween 80 as a surfactant. The half-maximal 
inhibitory concentration of paclitaxel was reduced by 18.82 times in drug-resistant 
MCF7 cells which indicated that paclitaxel resistance was reversed due to 
P-glycoprotein inhibition. Tumor volume became 10.06% in microemulsion treated 
animal models, as compared to paclitaxel solution (Bu et al. 2014).

Tocosol™ is a tocopherol-based formulation of paclitaxel, manufactured by 
Bayer Schering Pharma. The product failed in phase III clinical trial. Abu-Fayyad 
and his co-workers have designed an emulsion-based formulation, similar to 
Tocosol™ but substituting the tocopherol with tocoretinol. The shell of the emul-
sion was made up of polyethylene glycol and tocoretinol. Cytotoxicity of the nano-
emulsion was checked on PANC-1 cells and Bx-PC-3 cells. The new system 
displayed better results than Tocosol™ along with a reduction in the half-maximal 
inhibitory concentration value (Abu-Fayyad et al. 2018).

6.7.2  �Emulsion-Based System for Targeted Delivery

Emulsion-based systems can be passively or actively targeted to tumor cells. A 
series of lipid nanoemulsion of paclitaxel was prepared by taking medium and long-
chain glycerides, oleic acid as oil phase, Tween 80 and polyethylene glycol as a 
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surfactant. The nanoemulsions have shown stronger cytotoxicity against MCF7 
cells. In vivo study in mice revealed that the nanoemulsion had improved biodistri-
bution and intratumor accumulation than Taxol®. The improved activity was corre-
lated to enhanced permeability and retention effect (Chen et al. 2017a, b).

Hyaluronic acid serves as a targeting ligand for CD44 overexpressing cancer 
cells. Hyaluronic acid-coated nanoemulsion, loaded with paclitaxel was prepared 
for the treatment of ovarian cancer. D, L-α-tocopheryl acetate, soybean oil was 
taken as oil phase whereas polysorbate 80 was used as a surfactant. The drug load-
ing was found to be 3.75%. Cell affinity studies in SK-OV-3 and OVCAR-3 cells 
revealed that hyaluronic acid coated nanoemulsion had 10 times higher targeting 
ability than uncoated nanoemulsion (Kim and Park 2017).

6.7.3  �Self Emulsifying Drug Delivery System

Self emulsifying drug delivery systems are made up of a mixture of oil, surfactant, 
solvents and can be administrated orally by encapsulating in gelatin capsules. After 
reaching the gastrointestinal tract, these systems form macro or microemulsions. 
These systems can protect drugs which are prone to enzymatic hydrolysis in the 
gastrointestinal tract. It results in the enhanced oral bioavailability of poorly soluble 
drugs (Gursoy et al. 2003).

A series of self-microemulsifying oily formulations were evaluated for their 
potential for oral delivery of paclitaxel. The self-emulsifying formulations were 
made up of different concentrations of paclitaxel, D-alpha tocopheryl polyethylene 
glycol 1000 succinate, tyloxapol, ethanol, docusate sodium and cyclosporin A. In 
vivo study in P-glycoprotein knockout mice and wild type mice revealed that bio-
availability of paclitaxel was similar to Taxol® after oral administration of the for-
mulations. Efficacy of the formulations was improved due to the presence of 
cyclosporin A and a P-glycoprotein inhibitor (Oostendorp et al. 2011).

Paclitaxel loaded self-nanoemulsifying drug delivery system was developed 
using tocopheryl polyethylene glycol succinate as oil; labrasol as a surfactant; lau-
roglycol 90 as co-surfactant and ethanol as co-solvent. It showed higher cytotoxicity 
in MDA-MB-231 cells than Taxol®. Drug release from the self-nano emulsifying 
system has shown sustained release. Survivin, a member of the inhibitor of apopto-
sis family, was downregulated by the system due to the presence of tocopheryl poly-
ethylene glycol succinate. Its oral bioavailability was 4-fold higher than Taxol® 
(Meher et al. 2018).

6.8  �Solid Dispersion-Based Delivery System

Solid dispersions are a dispersion of drug in the amorphous polymeric matrix. The 
purpose of solid dispersions is to enhance drug solubility and to stabilize the drug 
(Huang and Dai 2014). Paclitaxel solid dispersion composed of hydroxypropyl 

Prabakaran A et al.



193

β-cyclodextrin, polyvinyl pyrrolidone, α-tocopherol and polyoxyl 40 hydrogenated 
castor oil prepared by a supercritical antisolvent process which exhibited a 3-fold 
increase in solubility as compared to Taxol®. This solid dispersion exhibited higher 
tumor growth inhibition as compared to Taxol® up to 90 days in female athymic 
nude mice bearing MDA-MB-231 cancer (Shanmugam et  al. 2011). In another 
study, solid dispersion of paclitaxel referred to as Modrapac001 formulation which 
was prepared from polyvinyl pyrrolidone K30 and sodium lauryl sulfate. This ter-
nary solid dispersion exhibited a multifold increase in drug dissolution (Moes 
et al. 2013).

6.9  �Cyclodextrin-Based Delivery System

Cyclodextrins are cyclic oligosaccharides of glucose having α-1, 4 glycosidic 
bonds. It has 6, 7 or 8 units present in α, β and γ derivatives respectively. Cyclodextrins 
have truncated cone shape wherein the inner cavity is hydrophobic and the outer 
surface is hydrophilic. Water-insoluble molecules can be incorporated into the 
hydrophobic cavity of cyclodextrins and they enhance the solubility and/or stability 
of the molecule. pH-sensitive paclitaxel nanoparticles were prepared using acety-
lated α-cyclodextrin by oil/water solvent evaporation method. These nanoparticles 
exhibited faster release i.e. 83% in 8 h in pH 5.0 but slower drug release in pH 7.4 
phosphate buffer. The cellular uptake in B16F10 cells exhibited complete cellular 
uptake within 4 h from pH-sensitive nanoparticles. These nanoparticles exhibited 
better effectiveness in tumor inhibition in vivo in the melanoma-bearing nude mouse 
model than the plain drug itself (He et al. 2013).

Poly (anhydride) oral nanoparticles containing a complex of paclitaxel in 
β-cyclodextrin were developed. The drug loading was negligible with the drug per 
se but it was increased 2 to 4-fold after complexation of the drug in the nanoparti-
cles. These nanoparticles exhibited 83% relative bioavailability with respect to 
Taxol® in rats. Hence, these nanoparticles could be useful for parenteral to oral 
switch of paclitaxel (Agüeros et al. 2010). In another study, when paclitaxel was 
incorporated into 2, 6 dimethyl β-cyclodextrin complex, the solubility was 
increased to 2.3 mM (Hamada et al. 2006).

Poly (acrylic acid)-co-β-cyclodextrin was used to prepare paclitaxel nanoparti-
cles. The nanoparticles exhibited 170 nm size and 100-fold solubility enhancement. 
The nanoparticles showed sustained release at pH 7.4 phosphate buffer over a period 
of 120 days. In vivo imaging in mice for these nanoparticles revealed their accumu-
lation in the tumor for 144 h due to enhanced permeability and retention effect. In 
vivo antitumor study in H22 tumor-bearing mice exhibited higher antitumor activity 
and 50 days of survival time than that of Taxol® (Yuan et al. 2016).

Folate-conjugated cyclodextrin nanoparticles of paclitaxel were used for targeted 
delivery to tumor cells. Cytotoxicity study in the 4T cell line exhibited higher cyto-
toxicity than that of Taxol®. The survival rate of these nanoparticles was longer than 
that of Taxol® in 4T cell-bearing mice (Erdoğar et al. 2018).
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6.10  �Implant-Based Drug Delivery System

Implants are sterile solid masses consisting of a drug made by compression or 
moulding. These provide a controlled delivery of drug over a period of time at the 
site of implantation. Implantation can be done under the skin into the subcutaneous 
tissue called subcutaneous implant. Two types of implants are available such as 
biodegradable and non-biodegradable implants. Implants are prepared by compres-
sion, moulding or extrusion. The advantages are controlled drug delivery with the 
minimized side effects (Zaki et al. 2012).

6.10.1  �Biodegradable Implant

The advantages of biodegradable systems include polymers used in implants are 
inert and are converted into nontoxic components such as carbon dioxide and water. 
There is no need for surgical removal of implants after the therapy. The polymers 
used in biodegradable implants are polylactic acid, poly (lactide-co-glycolide) and 
chitosan (Rajgor et al. 2011).

Biodegradable implants of paclitaxel composed of poly (ε-caprolactone), poly-
ethylene glycol 6000 were reported. The drug loading was found to be 93%. In vitro 
study showed 79% drug release after 30 days in pH 7.4 phosphate buffer saline 
(Hiremath et  al. 2013). Biodegradable chitosan-based film implants of paclitaxel 
composed of chitosan, lysozyme, Tween 80 and Poloxamer 407 were reported. The 
drug loading and in vitro release in pH 7.4 phosphate buffer saline after 6 h were 
31% and 10% respectively. In vivo study using Swiss mice revealed that the implant 
was biodegradable as it lost the integrity and identity after 50 days (Dhanikula and 
Panchagnula 2004). Biodegradable microfiber implants of paclitaxel composed of 
poly (D, L lactide-co-glycolide) were investigated. The drug loading and encapsula-
tion efficiency were found to be 8.92% and 98% respectively. In vitro release study 
showed 16% drug release after 9 days in pH 7.4 phosphate buffer saline (Ranganath 
and Wang 2008).

Biodegradable stent coating to paclitaxel implants composed of poly (lactic-co-
glycolic acid) and poly (vinyl alcohol)-graft-poly (lactic-co-glycolic acid) were 
reported. The drug loading was found to be 10%. In vitro release study showed 64% 
drug release after 48 days in pH 7.4 phosphate buffer saline (Westedt et al. 2006).

6.10.2  �Non-biodegradable Implant

Non-biodegradable implants are used to administer medications. It is useful for 
patients who need treatment for chronic diseases. These implants need to be removed 
surgically once the medication has been released. These implants are not designed 
to be metabolized by the body. These implants start to work immediately upon 
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insertion and can continue releasing drug doses in a controlled manner over the 
years. The polymers used in non-biodegradable implants are poly (methyl methac-
rylate), thermoplastic polyurethane and poly (ethylene vinyl acetate (Stewart 
et al. 2018).

Non-biodegradable stent implants of paclitaxel composed of poly (methyl meth-
acrylate), 316 L stainless steel stents; poly (n-butyl methacrylate) and poly (ethyl-
ene-co-vinyl acetate) were reported. In vitro study showed 60% drug release after 
14 days in pH 7.4 phosphate buffer solution (Shaulov et al. 2009). In another study, 
non-biodegradable stent implants of paclitaxel composed of 316 L stainless steel 
stents, N-(2-carboxyethyl) pyrrole and butyl ester of N-(2-carboxyethyl) pyrrole 
were reported. In vitro study showed 50% drug release after 30 days in pH 7.4 phos-
phate buffer solution (Okner et al. 2009).

6.10.3  �Site-Specific Implant-Based Delivery System

Targeting to a particular organ or site is a smart approach for delivery of biologically 
active agents. It enhances the therapeutic efficacy of the drugs and reduces the drug 
concentration in non-target organs or sites. It can be very useful for the delivery of 
anticancer drugs to a particular site (Himri and Guaadaoui 2018).

Urinary tract tumor-specific implant of paclitaxel composed of poly(ε-
caprolactone) resin PCL 787, alginic acid sodium salt, and gelatin were reported. In 
vitro release study exhibited complete drug release after 72 h in pH 5.5 artificial 
urine solution. In-vitro study in T24 cell line revealed the half-maximal inhibitory 
concentration of 7.3 ng/ml after 72 h. The tumor growth inhibition from paclitaxel 
implant was 75% in T24 cells (Barros et al. 2016).

Ovarian tumor-specific implant of paclitaxel composed of chitosan, phosphati-
dylcholine and 3-(4, 5- dimethyl-2-thiazolyl)-2, 5-diphenyl-[2H]-tetrazolium bro-
mide) was reported. In-vitro study in SKOV-3 cells showed half-maximal inhibitory 
concentration of 0.211 μm/mL of these paclitaxel implant (Ho et al. 2005).

The tracheal tumor-specific implant of paclitaxel composed of Carbopol 974P, 
ethylene-vinyl acetate was reported. Carbapol 974P was chosen for mucoadhesive 
effect in the trachea. In vitro release study showed 77% drug release after 85 days in 
pH  7.8 phosphate buffer solution with 0.5% sodium dodecyl sulfate (Jin et  al. 
2018a, b).

6.10.4  �Stimuli Sensitive Implant

Stimuli sensitive paclitaxel implants composed of poly (D, L lactide-co-glycolide), 
polyethylene glycol and Tween 80 were reported. The irradiation was performed 
using Cobalt 60 isotope to enhance the drug release. In vitro study showed 10% 
drug release after 6 h in pH 7.2 phosphate buffer solution (Wang et al. 2003).
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6.10.5  �In-Situ Forming Implants

In-situ implants are a potential alternative strategy to preformed implants and they 
avoid surgery. They are injected as a low viscous solution and transform in the body 
to a gel or solid depot due to phase separation or lowered solubility (Kempe and 
Mäder 2012). The in-situ forming implant of paclitaxel composed of polyethylene 
glycol, trimethylene carbonate and glycolide was reported. In vivo study of this 
implant in the mouse flank model exhibited higher antitumor efficacy than that of 
Taxol® (Olbrich et al. 2012). In situ forming injectable paclitaxel implant composed 
of n-butyl-2-cyanoacrylate and ethyl oleate was reported. It was based on the sol-gel 
transition. In vitro drug release in pH 7.4 sodium salicylate solution exhibited 25% 
from the implant versus 91% from Taxol® after 6 days. Fifty percent of the implant 
was degraded in female ICR mice after 8 weeks and hence it was biodegradable. 
The tumor inhibition in mice bearing human MDA-MB-231 was 80% whereas it 
was 44% in Taxol® treated mice (Wu et al. 2017).

6.11  �Prodrug-Based Delivery System

The prodrug is defined as an inactive form of a drug, which is converted to a phar-
macologically active form upon metabolism inside the body. Various prodrugs of 
paclitaxel have been designed in order to alter its physicochemical properties to 
make it suitable for delivery systems.

6.11.1  �Small Molecule-Based Prodrug Delivery System

Small molecules such as malic acid, squalene and silicate-based prodrugs of pacli-
taxel have been developed in the past. The hydrophilic prodrug of paclitaxel was 
synthesized by incorporation of dihydroxyl derivative using solketal chloroformate. 
The prodrug exhibited pH-sensitive hydrolysis at the acidic condition. The prodrug 
exhibited 50 times higher water solubility than the unmodified drug. The prodrug 
exhibited a 2.5-fold higher maximum tolerable dose as compared to the unmodified 
drug in Balb/c mice (Niethammer et al. 2001). Silicate ester prodrugs of paclitaxel 
were synthesized and loaded into poly (ethylene glycol)-b-poly(lactide-co-gly-
colide) nanoparticles by using flash nanoprecipitation method. The drug loading 
was found to be 74%. The silicate ester was sensitive to acidic condition leading to 
hydrolysis followed by drug release. These prodrugs exhibited a 10-fold reduction 
in half-maximal inhibitory concentration in the cell lines (Han et al. 2015).

The lipidic prodrug of paclitaxel was prepared with lipophilic squalenoyl deriva-
tive to increase its lipid affinity. The prodrug was further converted into 
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multilamellar vesicles using 1,2-dimyristoyl-sn-glycero-3-phosphocholine. The 
prodrug could enhance the loading of the drug into vesicles (Sarpietro et al. 2012).

6.11.2  �Peptide-Based Prodrug Delivery System

Peptides such as octreotide and Ac-Cys-Arg-Gly-Asp-Arg-NH2 (Papas et al. 2007) 
have been used to prepare paclitaxel prodrugs. Octreotide based paclitaxel prodrug 
was prepared to increase the hydrophilicity of the drug that resulted in 20,000 times 
solubility enhancement in water than an unmodified drug. The prodrug exhibited 
sustained drug release over a period of 168 h and faster drug release in acidic pH. In 
vitro cytotoxicity study in NCI-H446 cells revealed 2.6-fold lower half maximal 
inhibitory concentration for the octreotide prodrug as compared to the unmodified 
drug. In vivo antitumor growth inhibition study in NCI-H446 xenograft model 
exhibited 1.22 times higher antitumor effect of peptide prodrug than that of Taxol® 
(Huo et al. 2015).

6.11.3  �Polymer-Based Prodrug Delivery System

The drug is attached to the polymer chemically either directly or via a spacer. The 
nature of the polymer and spacer determines the site of release of the drug from the 
prodrug and its release kinetics (Ringsdorf 1975). The molecular weight of the 
polymer should be up to 40,000 Da to aid the filtration by kidneys (Hoste et  al. 
2004). Poly-(γ-L-glutamyl glutamine) conjugate of paclitaxel was developed which 
showed a 3-fold reduction of tumor growth in NCI-H460 human lung cancer cells 
than Abraxane® (Feng et al. 2010). Oligo (lactide)8-paclitaxel prodrug composed of 
poly (ethylene glycol)-b-poly (D, L lactic acid) was reported. Paclitaxel loaded into 
poly (ethylene glycol)-b-poly (lactic acid) exhibited the issue of stability and faster 
elimination from the body. In vitro cytotoxicity study in 4T1-Luc breast cancer cells 
for the drug-loaded synthesized polymer exhibited lower half maximal inhibitory 
concentration than the plain drug (Tam et al. 2019).

6.11.4  �Targeted Prodrug Delivery System

The targeted prodrug of paclitaxel composed of folic acid, distearoyl phosphatidyl-
choline, triolein cholesteryl oleate and polyethylene glycol was reported. In vitro 
study showed 10% drug release after 24  h in pH  7.4 phosphate buffer solution. 
In-vitro study in KB, M109 and CHO cell line revealed higher cytotoxicity com-
pared to Taxol®. In vivo antitumor efficacy in Balb/c mice revealed that folic acid 
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conjugated with paclitaxel containing cholesteryl oleate exhibited higher antitumor 
efficacy compared to Taxol® (Stevens et al. 2004).

The targeted prodrug of paclitaxel composed of hyaluronic acid, diphenylphos-
phinic chloride, adipic acid dihydrazide and succinic anhydride was synthesized. In 
vitro study in H22 cell line revealed higher cytotoxicity compared to paclitaxel 
alone. In vivo antitumor study in H22 tumor-bearing mice revealed a 4-fold decrease 
in tumor growth compared to paclitaxel alone (Xu et al. 2015a, b).

Arg-Gly-Asp peptide-based targeting of paclitaxel prodrug composed of poly 
(lactic-co-glycolic acid), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide, 
Soybean lecithin and 3, 3′-dithiodipropionic acid was prepared. In vivo antitumor 
study in lung tumor-bearing mice revealed peptide modified paclitaxel had higher 
antitumor efficacy compared to free paclitaxel (Wang et al. 2018).

6.11.5  �Stimuli-Sensitive Prodrug Delivery System

Prodrug based pH-sensitive paclitaxel micelles prepared using poly (ethylene gly-
col), 2-hydroxyethyl vinyl ether and acryloyl chloride was reported. The drug load-
ing capacity was found to be 60.3%. In vitro study in HeLa and MDA-MB-231 cells 
exhibited higher antitumor activity in poly (ethylene glycol) conjugated paclitaxel 
compared to paclitaxel alone (Huang et al. 2018).

The photosensitive prodrug of paclitaxel composed of folic acid and polyethyl-
ene glycol was reported. The prodrug of paclitaxel was activated by the far-red light. 
In vitro study in SKOV-3 cells exhibited folic acid conjugated and photosensitive 
prodrug of paclitaxel with polyethylene glycol exhibited more cytotoxicity than 
non-conjugated paclitaxel (Thapa et al. 2017).

The redox-sensitive prodrug of paclitaxel composed of methoxy polyethylene 
glycol amine, N-hydroxysuccinimide, 4-dimethylaminopyridine and 3, 3′-dithiodi-
propionic acid was reported. These polymeric paclitaxel conjugates were structur-
ally confirmed by 1H NMR and exhibited an approximately 23,000-fold increase in 
water solubility over parent paclitaxel. In vivo studies on NCI-H466 tumor-bearing 
nude mice exhibited that redox-sensitive prodrug of paclitaxel conjugates possessed 
superior tumor targeting ability and antitumor activity compared to Taxol® (Yin 
et al. 2015).

6.12  �Hybrid Delivery System

Liposomes, micelles, polymeric nanoparticles, and lipid-based nanoparticles are 
some of the most explored delivery systems for paclitaxel. Each of these systems 
exhibit some inherent problems. Difficulties allied to these systems can be mini-
mized by combining two or more of these systems which can be defined as a hybrid 
drug delivery system.
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Bao and co-workers have developed such a hybrid system by combining gold 
nanoparticles and liposomes. A thiol-terminated polyethylene glycol-paclitaxel 
derivative was covalently attached on the surface of gold nanoparticles followed by 
the incorporation of the conjugate in the phospholipid bilayer region of the lipo-
somes. Due to this, the drug loading was increased to 50.4%. In vitro study exhib-
ited 50% drug release in 7.4 pH phosphate buffer solutions. The hybrid system 
exhibited prolonged circulation of the drug and increased accumulation in the liver 
as compared to Taxol®. Improved pharmacokinetic properties of the system were 
attributed to the protective shell of the liposomes (Bao et al. 2014).

In another study, hybrid liposomes were prepared by incorporating paclitaxel 
loaded polyionic micelles. The micelles were made up of positively charged 
Pluronic F127- poly (ethyleneimine) copolymer and negatively charged sodium 
cholate whereas the liposomes were composed of phospholipid. The drug loading of 
the final system was found to be 5.45%. It was able to sustain the release of pacli-
taxel. Cellular uptake of the system by multidrug-resistant breast cancer cells was 
significantly higher which can be attributed to the P-glycoprotein inhibitory poten-
tial of Pluronic F127. Formation of liposome not only allowed intestinal absorption 
of paclitaxel but also stabilized the drug from gastric degradation. The absolute oral 
bioavailability of paclitaxel in hybrid liposomes was found to be 37.91% (Li et al. 
2017a, b, c).

Silica coated liposomes of paclitaxel were developed by Ingle and co-workers, 
named as liposils. Stability study of 6 months revealed that the liposils were more 
stable than corresponding liposomes. In vitro release study showed silica coating 
was able to retard the drug release from the liposils. The liposils also exhibited in 
vivo release of paclitaxel over a longer duration than corresponding liposomes and 
Taxol®. Biodistribution study in B16F10 cells revealed that accumulation of liposils 
and liposomes was significantly higher in the tumor cells as compared to that of 
Taxol® (Ingle et al. 2018).

6.13  �Miscellaneous Delivery System

Miscellaneous drug delivery systems for paclitaxel based on dendrimer, exosomes, 
dry powder inhalations, and hydrogels are discussed in this subsection.

6.13.1  �Dendrimer-Based Delivery System

Dendrimer-based paclitaxel delivery composed of methoxy polyethylene glycol-
succinimidyl carboxymethyl ester, N-ethyl diisopropylamine, poly (amidoamine), 
α-tocopheryl succinate and polyethylene glycol was reported. The diameter and 
entrapment efficiency were found to be 31.19 ± 0.07 nm and 78.33 ± 2.81% respec-
tively. In vitro study showed 63.97% drug release after 36 h in pH 7.4 phosphate 
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buffer saline. In vitro cytotoxicity study in B16F10 and MDA MB231 cells demon-
strated that the paclitaxel loaded methoxy polyethylene glycol-succinimidyl car-
boxymethyl ester, N-ethyl diisopropylamine, poly (amidoamine), α-tocopheryl 
succinate and polyethylene glycol exhibited higher cytotoxicity compared to free 
paclitaxel (Bhatt et al. 2019).

Dendrimer-based paclitaxel delivery composed of azido-cyanine 5.5, N, 
N-diisopropylethylamine, and N, N, N′, N′-tetramethyl  – (1H-benzotriazol-1-yl) 
uranium hexafluorophosphate was reported. The diameter and drug content were 
found to be 74 nm and 20.9% respectively. In vitro cytotoxicity study in 4T1, 3T3 
and C2C12 exhibited higher cytotoxicity than paclitaxel injection (Li et  al. 
2017a, b, c).

6.13.2  �Dry Powder Inhalation-Based Drug Delivery

Dry powder inhalation formulation based on paclitaxel micelles composed of folic 
acid, polyethylene glycol and dextran was reported. The particle size and entrap-
ment efficiency of the micelles were found to be 57 ± 2 nm and 99 ± 2% respec-
tively. In vitro release study from the micelles showed 70% drug release after 24 h 
in pH 5.0 phosphate buffer. In-vitro study of the micelles in M109-HiFR cell line 
revealed 2-fold reduction of the half-maximal inhibitory concentration as compared 
to that of Taxol®. The formulation exhibited a fine particle fraction upto 50% with 
good redispersibility in physiological buffer (Rosière et al. 2016).

6.13.3  �Exosomes

Exosomes of paclitaxel isolated from raw milk of Jersey cows were reported. The 
particle size and loading efficiency were found to be 108 nm and 8% respectively. 
In vitro study showed 90% drug release after 48 h in pH 5.0 fed-state simulated-
gastric fluid. In vivo antitumor efficacy of exosomes of paclitaxel using athymic 
nude mice bearing subcutaneous lung cancer A549 xenografts exhibited higher 
cytotoxicity compared to paclitaxel alone (Agrawal et al. 2017).

6.13.4  �Hydrogel-Based Delivery System

Thermosensitive hydrogel formulation of paclitaxel composed of chitosan, β-glycero 
phosphate and sodium dodecyl sulfate. In vitro release study showed 92% drug 
release after 30 days in pH 7.4 phosphate buffer saline. In vivo antitumor efficacy of 
hydrogel formulation of paclitaxel in EMT-6 tumors implanted subcutaneously on 
Balb/c mice exhibited 4-fold higher efficacy than Taxol® (Ruel-Gariépy et al. 2004).
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Self-assembled paclitaxel hydrogel of composed of folic acid, hydroxyl benzo-
triazole, alkaline phosphatise and 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetra-
zolium bromide was reported. The hydrodynamic diameter and zeta potential were 
found to be 137.3  ±  15.2  nm and 43.8  ±  3.2  mV respectively. In vitro study in 
HepG2 cells exhibited higher cytotoxicity compared to free paclitaxel. In vivo anti-
tumor study in nude mouse model exhibited enhanced anticancer efficacy compared 
to free paclitaxel. In vivo real-time imaging further demonstrated that the hydrogel 
preferentially accumulated in tumor site (Shu et al. 2017).

6.14  �Conclusion

Poor solubility and permeability of Paclitaxel have compelled formulation scientists 
to commercialize it as injectable products such as Taxol®, Genexol PM®, and 
Abraxane®. Newer delivery systems like micelles, nanoparticles, liposomes, lipid 
systems that can overcome the issues associated with the commercial products of 
paclitaxel have been discussed. Some of these systems have utilized specific materi-
als to impart stimuli sensitivity, targeting or functionality. The highest solubility 
enhancement has been shown by prodrugs, mixed micelles, cyclodextrin complexes 
and solid dispersions for paclitaxel. Drug loading could be increased in implants, 
nanoparticles, emulsions and lipid systems of paclitaxel. Implant and cyclodextrin 
complexes of paclitaxel exhibited sustained release characteristics for a prolonged 
period of time. The half-maximal inhibitory concentration of paclitaxel was reduced 
substantially in the case of micelles, emulsions, nanoparticles. Enhancement in oral 
bioavailability was found to be best in nanoparticles. More efficient tumor growth 
inhibition was found in cases of emulsion, liposome, prodrug and nanoparticulate 
delivery system as compared to that with Taxol®. Non-invasive oral systems of 
paclitaxel such as DHP107 and Oraxol® are under clinical evaluation.
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