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1 Introduction

Although street networks appear to be physically robust, intentional disruption can
reduce their performance. To evaluate the reliability of a street network under
extreme conditions, it is important to know the best possible performance of the
network before and after a disruption. To determine this optimal performance of a
street network, we solve the following planning problem. Given is a directed graph
with arcs that represent street segments and nodes that represent intersections. Some
nodes of the network act as origin or destination nodes. A predetermined amount of
traffic must flow from each origin node to each destination node. Every arc of the
graph is associated with a piecewise linear and convex function that determines the
cost for a given amount of traffic. The goal is to determine the flow of traffic from
origin to destination nodes such that total traffic cost is minimized. The resilience
of a network can then be evaluated by comparing the total cost of traffic before and
after the disruption.
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The literature on street network reliability analysis can be roughly divided into
two categories. The first category comprises approaches that identify vulnerabilities
by analyzing the topology of the street network. Demšar et al. [6] use topological
measures such as centrality and betweenness to identify critical nodes or arcs of a
street network. They study the urban street network of the Helsinki Metropolitan
Area in Finland. Duan and Lu [7] also analyze the robustness of street networks of
six cities based on topological measures. They find that the level of granularity at
which the network is represented has a strong impact on the identification of critical
elements. A simplified representation of a street network could therefore lead to
inaccurate conclusions. Jenelius and Mattsson [10] propose a grid-based method to
identify areas in the network that are particularly vulnerable to large disruptions
such as floods or heavy snowfall. They applied the method to a simplified repre-
sentation of the Swedish street network. The second category comprises approaches
that use optimization techniques to study the robustness of street networks. Brown
et al. [5] propose bilevel and trilevel optimization models to identify vulnerabilities
in critical infrastructure. Due to the computational complexity of these models, they
are only applicable to small networks. Bell et al. [3] consider the problem of how to
use a street network if information on several disruption scenarios is available. They
present numerical results for an example that is based on the central London street
network. Matisziw and Murray [13] propose an integer programming formulation
for identifying important links in a truck transport network of Ohio, USA. Lou
and Zhang [12] use mathematical programming to determine resilient transport
networks under random and targeted attacks. Due to the computational complexity
of the approaches in the second category, they are only applicable to relatively small
street networks.

In this chapter, we propose an optimization-based decision support system that
measures the resilience of a street network against user-defined disruptions. In
contrast to existing optimization-based approaches, the proposed decision support
system is applicable to nation-wide street networks. The system consists of a graph
construction tool that transforms OpenStreetMap data into a directed graph, a simple
traffic estimator that defines the traffic volume between origin-destination pairs,
and a linear programming formulation that solves the above described planning
problem and thus determines a minimum cost traffic flow from origin to destination
nodes.

We used the proposed decision support system to analyze real-world street
networks in Switzerland. For city-wide street networks, optimal traffic flows can
be determined within seconds. The running time for large-scale networks increases
considerably with the number of origin-destination pairs. Nevertheless, we were
able to determine an optimal traffic flow for the entire Swiss street network with
380 origin-destination pairs.

The chapter is structured as follows. In Sect. 2, we describe the planning problem
in detail. In Sect. 3, we describe how OpenStreetMap data is transformed into
a directed graph. In Sect. 4, we show a simple method for estimating the traffic
between origin-destination nodes. In Sect. 5, we introduce the linear programming
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formulation. In Sect. 6, we report the computational results. In Sect. 7, we conclude
the chapter and provide some directions for future research.

2 Planning Problem

Given is a directed graph with arcs that represent street segments and nodes that
represent intersections. Different types of traffic flow through this network. For
example, one could differentiate between commercial traffic (trucks and coaches)
and private traffic (cars). Some traffic types might not be allowed to traverse specific
arcs of the street network (e.g., trucks are not allowed on residential streets). Some
nodes of the graph represent origin nodes whereas others represent destination
nodes. Traffic flows from origin nodes through the graph to destination nodes.
Traffic matrices specify for each traffic type and each origin-destination pair the
number of vehicles that flow from the respective origin node to the corresponding
destination node. The numbers in the traffic matrices refer to a specific planning
horizon which is typically a day. Every arc of the graph is associated with a
piecewise linear and convex function that determines the cost for a given amount
of traffic. For example, one could specify a piecewise linear function with two line
segments for an arc such that the first 90,000 vehicles that traverse this arc within
the planning horizon contribute 0.5 Swiss francs per vehicle and kilometer to total
cost, whereas every additional vehicle contributes 50 Swiss francs per kilometer.
The goal is to find the cheapest possible way to send each type of traffic from origin
to destination nodes. This problem corresponds to a multi-commodity network flow
problem with piecewise linear and convex costs.

3 Construction of Graph

An important component of the proposed decision support system is the graph
that represents the street network. We suggest to use the Python package OSMnx
[4] that retrieves spatial geometries from OpenStreetMap [14] and automatically
converts them into a directed graph. The spatial geometries can be retrieved for
a specific place, i.e., a city, a region or an entire country. Note that the retrieval
of the OSM data for an entire country and the respective graph construction
requires considerable running time and memory, especially when the option to
include bikable and walkable paths is selected. We therefore suggest to include
only drivable street types. Nodes and arcs in the directed graph are associated with
several attributes. Tables 1 and 2 list some of these attributes for nodes and arcs,
respectively.

The attribute highway is useful to control the complexity of the graph. For
example, it is possible to represent only arcs whose highway attribute value is either
motorway or motorway_link by removing all arcs with other highway attribute
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Table 1 Node attributes Attribute Description

osmid Unique OSM ID of node

x Geographic longitude of node

y Geographic latitude of node

Table 2 Arc attributes

Attribute Description

osmid Unique OSM ID of street

highway Type of street (e.g., motorway)

maxspeed Speed limit in km/h

lanes Number of lanes (e.g., 2)

name Name of street (e.g., Seedammstrasse)

oneway Binary attribute that indicates if traffic flows only in one direction

values. The OSMnx package also provides a function to eliminate isolated nodes
after the removal of a subset of arcs. Figure 1 shows the directed graph that
represents the drivable street network of the city of Bern (Switzerland).

The motorway segments that lie within the shaded area of Fig. 1 are enlarged
in Fig. 2. The magnification suggests that the graph not only contains nodes to
represent intersections, but also a large number of nodes that approximate the
curvature of the streets.

The OSMnx package provides a function to remove those nodes while keeping
the information on the curvature of the streets. Figure 3 shows the simplified
representation of the graph visualized in Fig. 2.

Finally, we add dummy nodes that represent origins (origin nodes) and destina-
tions (destination nodes) of traffic flow. Origin nodes are connected to the rest of

Fig. 1 Drivable street network of Bern (Switzerland) represented as a graph
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Fig. 2 Close-up of highlighted motorway segments

Fig. 3 Close-up of simplified graph representation

the graph by introducing arcs from the origin nodes to other nodes of the graph
that are within close proximity of the origin nodes. Destination nodes are connected
to the rest of the graph by introducing arcs from other nodes that are within close
proximity of the destination nodes to the destination nodes. Note that traffic can
only flow from origin nodes to the other nodes and from other nodes to destination
nodes. Figure 4 visualizes a graph that contains such an origin node.

The daily throughput capacity of the arcs is not contained in the OSM data, such
that it has to be determined by the analyst. In the computational analysis that we
perform in Sect. 6 of this chapter, we estimate these daily throughput capacities for
each arc based on the attributes highway and lanes.
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Fig. 4 Illustration of an origin node

4 Estimation of Traffic Matrices

The second component of our decision support system are so-called traffic matrices.
There is one traffic matrix for each traffic type. This matrix specifies a daily traffic
volume for each origin-destination pair. Hence, the size of the matrix depends on
the number of origins and destinations the analyst considers. We denote the traffic
matrix by T . Several approaches have been proposed to estimate the entries of the
traffic matrix (see [16]). We use a simple gravity model to estimate the traffic matrix.
Gravity models have been successfully used in social science research to model the
movement of goods, information, or individuals between geographic regions (e.g.,
[18]) and, more recently, also for estimating traffic matrices (e.g., [9]).

The basic idea of a gravity model is that the amount of traffic from a given
origin to a given destination is proportional to the total traffic to the destination.
Analogously to [8], we model the traffic between two cities to be proportional to
the product of the two populations divided by the distance between the two cities.
Hence, the traffic volume from city i to city j is computed by (1):

Tij = σ
PiPj

dij

, (1)

where σ denotes a normalization factor, dij denotes the distance between city i and
city j , and Pi and Pj denote the population of city i and city j , respectively. Ideally,
the normalization factor σ is chosen such that when the resulting traffic volumes
Tij are routed along the shortest paths between the cities, the resulting total traffic
volume for individual arcs corresponds roughly to the data from automatic traffic
counting stations for these arcs.
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5 Formulation of Traffic Flow Model

The third component of our decision support system is an optimization model that
determines a flow of traffic from the origins to the destinations at minimal cost.
We propose an extension of the well-known multi-commodity network flow model
(see [1]). This extension entails using piecewise-linear functions to compute the
total cost of the network flow. In Sect. 5.1, we introduce the notation of the model.
In Sect. 5.2, we describe the constraints of the model. In Sect. 5.3, we discuss the
objective function of the model.

5.1 Notation

Sets
V Nodes
K Types of traffic (e.g., commercial traffic or private traffic)
Ka Types of traffic allowed on arc a ∈ A

V O Origin nodes
V D Destination nodes
V R Regular nodes (neither origin nor destination nodes)
A Arcs
Ain

i Incoming arcs of node i ∈ V

Aout
i Outgoing arcs of node i ∈ V

O Origin-destination pairs
O

org
i Origin-destination pairs that have node i ∈ V O as origin

Odes
i Origin-destination pairs that have node i ∈ V D as destination

Sa Segments of arc a ∈ A

Parameters
Tko Traffic volume of type k for origin-destination pair o ∈ O

cas Cost per vehicle that moves along segment s ∈ Sa on arc a ∈ A

bas Upper bound on traffic volume that moves along segment s ∈ Sa on arc
a ∈ A

Variables
xaks Total flow of type k ∈ Ka on arc a ∈ A through segment s ∈ Sa

xako Total flow of type k ∈ Ka on arc a ∈ A associated with origin-destination
pair o ∈ O

xa Total flow on arc a ∈ A
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5.2 Constraints

Constraints (2) ensure that the total flow along an arc a ∈ A is equal to the sum of
the flows through the different segments of this arc.

xa =
∑

s∈Sa; k∈Ka

xaks (a ∈ A) (2)

Constraints (3) guarantee that the total flow along an arc a ∈ A is equal to the sum
of the flows of different types through this arc.

xa =
∑

o∈O; k∈Ka

xako (a ∈ A) (3)

Constraints (4) enforce for each arc a ∈ A that the sum of flow of type k ∈ Ka

across all segments s ∈ Sa is equal to the sum of the flow of type k ∈ Ka across all
origin-destination pairs o ∈ O.

∑

s∈Sa

xaks =
∑

o∈O

xako (a ∈ A; k ∈ K) (4)

Constraints (5) guarantee for each origin node i ∈ V O that the outgoing traffic
volume of type k ∈ K is equal to the sum of the traffic volume of this type for all
destinations.

∑

a∈Aout
i

xako = Tko (i ∈ V O; k ∈ K; o ∈ O
org
i ) (5)

Constraints (6) prevent traffic flow from starting from the wrong origin node.

∑

a∈Aout
i

xako = 0 (i ∈ V O; k ∈ K; o ∈ O \ O
org
i ) (6)

Constraints (7) guarantee for each destination node i ∈ V D that the incoming traffic
volume of type k ∈ K is equal to the sum of the traffic volume of this type from all
origins.

∑

a∈Ain
i

xako = Tko (i ∈ V D; k ∈ K; o ∈ Odest
i ) (7)
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Constraints (8) guarantee for each regular node i ∈ V R that the incoming traffic
volume of each type k ∈ K is equal to the outgoing traffic volume of this type.

∑

a∈Ain
i ; s∈Sa

xaks =
∑

a∈Aout
i ; s∈Sa

xaks (i ∈ V R; k ∈ K) (8)

Constraints (9) guarantee for each regular node i ∈ V R that the incoming traffic
volume of a specific origin-destination pair o ∈ O is equal to the outgoing traffic
volume of this origin-destination pair.

∑

a∈Ain
i ; k∈Ka

xako =
∑

a∈Aout
i ; k∈Ka

xaks (i ∈ V R; o ∈ O) (9)

Constraints (10) impose upper bounds on the flow through each segment s ∈ Sa of
arc a ∈ A.

∑

k∈Ka

xaks ≤ bas (a ∈ A; s ∈ Sa) (10)

5.3 Objective Function

The objective function computes the total cost of the flow in the network:

∑

a∈A

∑

k∈Ka

∑

s∈Sa

casxaks (11)

The complete linear programm reads as follows:

TF

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Min. (11)

s.t. (2)–(10)

xaks ≥ 0 (s ∈ Sa; a ∈ A; k ∈ Ka)

xako ≥ 0 (a ∈ A; k ∈ Ka)

xa ≥ 0 (a ∈ A)

6 Computational Results

In this section, we test the proposed decision support system with artificial and
real-world data. In Sect. 6.1, we illustrate the proposed traffic model with a simple
example. In Sect. 6.2, we use the street network of the city of Bern to demonstrate
how the resilience of a network can be evaluated. In Sect. 6.3, we demonstrate
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the scalability of the proposed decision support system by applying it to the
nation-wide street network of Switzerland. Finally, in Sect. 6.4, we discuss how the
proposed decision support system could potentially be applied to train networks.
We implemented all parts of the decision support system in Python 3.6 and used the
Gurobi (7.5.2) solver. All computations were performed on a workstation with Intel
Xeon CPUs (model E5-2667 v2) with clock speed 3.30 GHz and 256 GB of RAM.

6.1 Illustrative Example

We consider a directed graph that has four regular nodes, three origin, and three
destination nodes. The graph is shown in Fig. 5.

For each arc between regular nodes, a piecewise-linear convex cost function with
two segments defines the total cost for a given flow of traffic. Figure 6 displays such
a cost function for an arbitrary arc a.

Table 3 provides the parameters of the cost functions for different street types.
Note that the flow on arcs that connect origin and destination nodes with the rest of
the graph is not bounded and does not incur any cost.

Finally, Tables 4 and 5 specify the traffic matrices for private and commercial
traffic, respectively. Private traffic can use any street type and commercial traffic is

1

2

3

4 5 6

7

8

9 10

City A

City B

City C

id Origin node

id Destination node

id Regular node

arcs from origin nodes

arcs to destination nodes

arcs representing motorways (2 lanes)

arcs representing primary roads (1 lane)

arcs representing secondary roads (1 lane)

Fig. 5 Graph of illustrative example
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Flow (# vehicles)
0 ba1 ba1 + ba2

Cost

ca1ba1

ca1ba1 + ca2ba2

Segment 1 Segment 2

Fig. 6 Piecewise linear convex cost function of arc a with two segments

Table 3 Illustrative example:
parameters of cost function
for different street types

Segment 1 Segment 2

Street type ba1 ca1 ba2 ca2

Motorway (2 lanes) 50,000 0.5 50,000 1.5

Primary (1 lane) 30,000 0.5 30,000 1.5

Secondary (1 lane) 15,000 0.5 15,000 1.5

Table 4 Illustrative
example: traffic matrix for
private traffic [1000 vehicles]

A B C

A 0 15 20

B 15 0 25

C 20 25 0

Table 5 Illustrative example:
traffic matrix for commercial
traffic [1000 vehicles]

A B C

A 0 3 4

B 3 0 5

C 4 5 0

restricted to motorways and primary streets. Figure 7 shows an optimal solution to
the illustrative example that we obtained in less than a second.

6.2 Application to the Street Network of the City of Bern

In this section, we demonstrate how our decision support system can be used to
assess the resilience of a street network against a disruption (e.g., a major accident).
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1 2

3

4 5 6

7

8

9 10

15,3

15,3

15,315,3

15,3

15,320,4

9,0

9,0 20,4
20,4

11,4

20,420,45,4

5,4

20,4

15,0

25,5
25,5 25,5

25,5

25,5
25,525,5

25,5

City A

City B

City C

id Origin node

id Destination node

id Regular node
a,b a: private traffic, b: commercial traffic

Traffic from A to B

Traffic from B to A

Traffic from A to C

Traffic from C to A

Traffic from B to C

Traffic from C to B

Fig. 7 Graph of illustrative example

For this analysis, we consider the street network of the city of Bern. The proposed
model TF is used to determine an optimal traffic flow before and after the disruption.
A small difference between the total cost of traffic in these discrete states indicates
high resilience and vice versa. The graph is constructed such that it represents
all motorways, trunks, primary, secondary, tertiary, and residential streets within
the city boundaries. Unclassified streets were eliminated. After simplification and
before adding origin and destination nodes, the graph comprises 2733 nodes and
6805 arcs with a total length of 759.6 km.

We also created four artificial cities to capture transit traffic flowing through
the city of Bern. This transit traffic originates from adjacent areas to the northeast
(from Zurich and Basel), southeast (from Thun), northwest (from Lausanne), and
southwest (from Fribourg). For each artificial city, we add one origin and one
destination node to the graph. These nodes are connected as described in Sect. 3
to all nodes that lie within a certain radius around the origin and destination
nodes. Consistent with the illustrative example above, arcs that connect origin and
destination nodes with regular nodes have infinite capacity and zero cost. Table 6
details for each city the longitude and latitude of the origin-destination nodes, the
population, and the radius. We determined the populations such that the optimal
flow of traffic before the disruption does not exceed any capacity limit. Based on
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Table 6 Location, population, and radius of artificial cities

City Name Latitude Longitude Population Radius [m]

1 Traffic from Fribourg 46.932808 7.405586 15,000 1000

2 Traffic from Zurich and Basel 46.976864 7.467384 45,000 1000

3 Traffic from Thun 46.935052 7.471473 15,000 1000

4 Traffic from Lausanne 46.959727 7.389250 20,000 1000

Fig. 8 Optimal traffic flow before disruption

the population and the location of the artificial cities, the traffic matrix is computed
using formula (1) with σ = 0.00035. For the sake of simplicity, we did not
distinguish here between different types of traffic. Note that in Figs. 8 and 9 the
longitude of the destination nodes is increased by 0.001 in order to distinguish them
from the origin nodes.

Consistent with our illustrative example, a piecewise-linear convex cost function
with two segments defines for each arc between regular nodes the total cost for
a given flow of traffic. The first segment represents fluid, the second segment
congested traffic. Table 7 provides for each street type and segment the daily
capacity and the costs per vehicle and kilometer.

We derived the maximum capacities for the first segments according to the Road
Task Force report’s technical note [15]. Note that these numbers are rough estimates;
they could be refined by considering additional information such as the attribute
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Fig. 9 Optimal traffic flow after disruption

Table 7 Capacity (# vehicles per day) and cost (per vehicle and km) for different street types

Segment 1 Segment 2

Street type Capacity Cost Capacity Cost

Motorway (more than two lanes) 90, 000 0.5 ∞ 50

Motorway (up to two lanes) 60, 000 0.5 ∞ 50

Motorway_link 50, 000 1.5 ∞ 150

Trunk/Trunk_link 50, 000 1.5 ∞ 150

Primary/Primary_link 30, 000 2.0 ∞ 200

Secondary/Secondary_link 15, 000 3.0 ∞ 300

Tertiary/Tertiary_link 10, 000 4.0 ∞ 400

Other 5000 5.0 ∞ 500

maxspeed and data from automatic traffic counters. The capacity of the second
segment is infinite, such that a feasible solution always exists. The costs per vehicle
and kilometer for the first segment are derived from average cost calculations in
[19]. For the second segment, we multiplied this number with a factor of 100 to
account for additional fuel consumption and reduced workforce productivity. By
considering these cost types, we follow the approach of [2].
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Table 8 Numerical results

Instance #Vars #Constrs Time [sec] Total cost #Congested arcs

Before disruption 114,801 73,250 1.5 1,506,024.7 0

After disruption 85,906 56,982 1.7 7,520,532.9 68

A disruption is specified in terms of location, as indicated by its geographical
coordinates, and in terms of magnitude, as measured by its radius. All arcs that have
at least one endpoint within the radius of the disruption are assumed to be affected.
We set the capacity of all affected arcs to zero. In our example, we assume that the
disruption takes place at (46.955889, 7.417909) and has a radius of 400 m.

We applied model TF to determine an optimal traffic flow before and after
the disruption. Table 8 presents the number of variables (#Vars), the number of
constraints (#Constrs), the running time (Time) in seconds, the value of the objective
function (Total cost) and the number of congested arcs (#Congested arcs) for the
case without disruption and the case with disruption.1

The results suggest that the disruption significantly increases the total cost of
traffic flow. Since it dissects the motorway which links the eastern and western city
areas, all motorway traffic must be rerouted through primary and secondary streets.
As a result, 68 arcs are congested, implying that the city’s street network is not
particularly resilient to disruptions of this magnitude. Figures 8 and 9 show the
optimal flow of traffic before and after the disruption.

6.3 Application to the Swiss Street Network

To demonstrate the scalability of the decision support system, we applied it to four
large-scale problem instances that are all based on the nation-wide street network of
Switzerland. The graph depicting this network is constructed such that it represents
all motorways, trunks, primary, secondary, and tertiary streets of Switzerland.
Other street types such as unclassified or residential streets were eliminated. After
simplification and before adding origin and destination nodes, the graph consists of
26,294 nodes and 61,980 arcs with a total length of 45,291.8 km. Figure 10 shows
the graph of the Swiss street network.

The problem instances differ with respect to the number of cities that are con-
sidered. The largest instance considers the 20 most populated cities in Switzerland.
Smaller instances consider only a subset of these cities. Table 9 reports for each
instance the considered cities and the normalization parameter σ that was used

1We obtained the best performance in terms of running time by choosing the interior point method
Method=2 of the Gurobi solver with the following specification: Presolve=1, Crossover=0,
AggFill=5, PrePasses=1. We refer the reader to the documentation of the Gurobi solver at http://
www.gurobi.com/ for a detailed explanation of these options.

http://www.gurobi.com/
http://www.gurobi.com/
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Fig. 10 Graph of the Swiss street network

Table 9 Large-scale problem instances

Instance Cities Normalization parameter σ

1 5 most populated cities 0.00005

2 10 most populated cities 0.00004

3 15 most populated cities 0.00003

4 20 most populated cities 0.00002

to compute the respective traffic matrix. For the sake of simplicity, we did not
distinguish here between different types of traffic.

Origin and destination nodes are added for each city as described in Sect. 6.2.
Table 10 contains for each city the longitude and latitude of the origin-destination
nodes, the radius, and the population. We obtained population figures from the
Swiss Federal Statistical Office [17] and the coordinates from the website https://
www.latlong.net/. The traffic matrix is computed according to formula (1) with the
normalization parameter specified in Table 9.

The cost of traffic is determined as in Sect. 6.2, using the data specified in Table 7.
We applied model TF to all four instances, using the same Gurobi solver settings

as specified in footnote 1, and solved each instance to optimality. Table 11 presents
for each instance the number of origin-destination pairs (#O/D pairs), the number
of variables (#Vars), the number of constraints (#Constrs), the running time (Time)
in minutes, and the value of the objective function (Total cost).

From these results, we can conclude that optimal solutions can be obtained
in reasonable running time even for very large street networks. The running
time, however, increases considerably with the number of origin-destination pairs.
Figure 11 shows the optimal flow of traffic for the largest instance with 20 cities.

https://www.latlong.net/
https://www.latlong.net/
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Table 10 Location, population, and radius of the 20 largest cities in Switzerland

City Name Latitude Longitude Population Radius [m]

1 Zurich 47.376887 8.541694 402, 762 4028

2 Geneva 46.204391 6.143158 198, 979 1990

3 Basel 47.559599 7.588576 175, 940 1759

4 Lausanne 46.519653 6.632273 137, 810 1378

5 Bern 46.953547 7.440301 133, 115 1331

6 Winterthur 47.498820 8.723689 109, 775 1098

7 Lucerne 47.050168 8.309307 81, 592 816

8 St. Gallen 47.424482 9.376717 75, 481 755

9 Lugano 46.003678 8.951052 63, 932 639

10 Biel 47.136778 7.246791 54, 456 545

11 Thun 46.757987 7.627988 43, 568 436

12 Koeniz 46.925634 7.416721 40, 938 409

13 La Chaux-de-Fonds 47.103489 6.832784 38, 965 390

14 Fribourg 46.806477 7.161972 38, 829 388

15 Schaffhausen 47.695890 8.638049 36, 148 361

16 Vernier 46.212264 6.105269 34, 983 350

17 Chur 46.850783 9.531986 34, 880 349

18 Uster 47.348275 8.717874 34, 319 343

19 Sion 46.233122 7.360626 33, 999 340

20 Neuchâtel 46.989987 6.929273 33, 772 338

Table 11 Numerical results

Instance #O/D pairs #Vars #Constrs Time [min] Total cost [million]

1 20 1, 486, 348 873, 250 0.72 33.7

2 90 6, 042, 808 2, 715, 760 9.74 70.2

3 210 13, 866, 784 5, 873, 842 111.00 76.9

4 380 24, 984, 042 10, 348, 938 965.77 56.4

6.4 Application to Train Networks

A major advantage of the proposed decision support system is that it is not restricted
to street networks. Particularly, it can be used (with some modification) to study
train networks as well. We predict that the OSMnx package can be extended such
that it transforms spatial OpenStreetMap information on train routes and networks
directly into graphs. Alternatively, OpenRailwayMap could be used as a source for
raw data as it contains detailed information on the world’s railway infrastructure. A
third option would be to extract the graph from timetable data as described in [11].
Characteristics of a railway system could be incorporated in the traffic flow model
by modifying some constraints or changing the objective function. For example, one
could introduce capacities that are shared by several arcs to model the flexibility
of railway operators to determine whether a track is used in both directions or
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Fig. 11 Optimal traffic flow for instance 4. Note that the origin nodes are co-located with the
destination nodes and hence not visible

only in one direction. Additional insights could be gained by considering a traffic
system that comprises both street and railroad networks. This integration would
allow researchers to investigate higher-order combination effects, e.g. the blockade
or destruction of a road-rail bridge on which both vehicles and trains run.

7 Conclusion

We proposed a decision support system that can be used to evaluate the resilience of
street networks based on publicly available data. The system consists of three main
components: a directed graph that represents the street network, a traffic matrix
that defines the traffic volume between origin-destination pairs, and an optimization
model that determines an optimal flow of traffic from the origins to the respective
destinations. We applied the system to real-world street networks to demonstrate
how the model can be used to study the impact of a disruption and to illustrate the
scalability of the optimization model. An optimal flow of traffic between 380 origin-
destination pairs was determined in a few hours for a nationwide street network with
26,294 nodes and 61,980 arcs.

We suggest that future research could extend our approach by developing more
sophisticated traffic matrix estimation techniques that also incorporate available
traffic counts for specific street segments, by developing a dynamic traffic flow
model that accounts for transfer times, and by applying our decision support system
to train networks.
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