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1 Introduction

Intentional attacks on critical infrastructure can cause mass casualties among
civilians. Such attacks inflict economic loss in two different ways. First, such mass
casualty incidents (MCIs) put significant strain on medical emergency services
(MES) supply since such supply is not typically organized to consider extreme sce-
narios, implying resources for treatment are limited. Therefore, medical personnel
must use triage to ration available supply and schedule treatment [1].

Second, as a consequence of the attack, a number of victims will not recover
or remain permanently injured. In both cases, these victims represent an economic
loss to the nation’s labor force. As a result, the productivity of the economy suffers.
Since the productivity of labor force participants differs according to whether they
represent specialist, skilled, or unskilled labor, this loss is contingent on the number
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of victims in each group. Hence, intentional attacks on critical infrastructures may
intend to disrupt economic productivity by targeting the labor force, such that
persistent damage is inflicted. Since replacement time increases with labor force
specialization, an MCI likely reduces labor productivity for a significant period of
time [6].

Our analysis first draws up the event space of an MCI and then uses friction time
analysis to model productivity loss. We then explore the effects of three different
triage methods on economic loss reduction. In particular, we compare preferential
to random treatment methods, investigating the extent to which these may reduce
economic loss, if at the price of ethical dilemma.

2 The Consequences of Mass Casualty Incidents

Figure 1 draws up the event space after an MCI has occurred. A total number V of
injured victims demands medical treatment. The limited medical emergency supply
(MES) capacity M is deployed in order to treat as many victims as possible. If these
victims are not treated within a particular timeframe, they cannot recover and hence
these fulltime equivalents (FTEs) are lost (V −M). If they receive treatment, a share
(β · M) of victims under treatment does still not recover, and these FTEs are also
lost. Another share (α · M) recovers but suffers from permanently reduced health
over their remaining lifespan (partial recovery). Some of these victims will never
be able to return to the workforce, hence an additional number (α · γ · M) of FTEs
is lost. The remaining victims, i.e. a share of ((1 − α − β) · M), fully recover. On
the basis of this event space, our model explores the two major consequences of
an MCI: First, the monetary loss to the economy as labor force participants must
be replaced, and second, the strain such an event puts on medical supply capacity.
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Fig. 1 Event space of victim treatment outcomes
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Table 1 List of model parameters

Item Parameter Defined for

Population size N N
+

Number of victims V N
+

Number of groups with different average labor productivity n N
+ ∈ [0, V ]

Group number i N
+ ∈ [1, n]

Group size (number of people in group i) Ni N
+

Number of victims within group i Vi N
+ ∈ [0, V ]

Number of treated victims M N
+ ∈ [0, V ]

Lost full time equivalents L R
+ ∈ [0, V ]

Lost full time equivalents within group i Li R
+ ∈ [0, N ]

Maximum duration of treatment D N
+

Treatment duration d N
+, d < D

Share of victims partially recovered after treatment α R ∈ [0, 1]
Share of victims not recovered despite treatment β R ∈ [0, 1]
Share of lost FTEs after partial recovery γ R ∈ [0, 1]
Simplification parameter η R ∈ [0, 1]
Average labor productivity of group i hi R

+

Lost labor productivity of all groups H R
+

Lost labor productivity of group i Hi R
+ ∈ [0, H ]

Friction period to replace FTE in group i Ti R
+

Friction period function type parameter a R
+, a > 0

Friction period function parameter for scaling c R
+, c > 0

Scaling factor of the sigmoid function δ R
+

Total monetary loss Π R
+

Monetary loss in group i Πi R
+ ∈ [0,Π ]

Solow factor ε R
+, ε > 1

Lost labor productivity in all groups after Solow correction Hε R
+, Hε ≥ H

Total monetary loss after Solow correction Πε R
+,Πε ≥ Π

Table 1 provides an overview of all parameters used in our subsequent analysis of
these two consequences.

2.1 Monetary Loss to the Economy

We assume that all victims, whether (if partially) recovered or not, were labor force
participants. The total number of victims V can be subdivided into n groups that
differ by their productivity levels hi (for i = 1 : n and with h1 > h2 > . . . > hn).
The immediate loss of labor productivity over all n groups can be calculated as

H(t = 0) =
n∑

i=1

Li · hi (1)
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Fig. 2 Lost labor productivity Hi(t) over time

where Li reflects the lost full time equivalents in group i.
In principle, the impact of a loss of productive FTE for an economy could be

modeled by considering the value of a statistical human life (e.g., [5, 9]). However,
the reduction-in-loss estimates obtained by this method may be too high [6], and the
replacement of large numbers of labor force participants requires significant time,
both for the recruitment process and for vocational adjustment (friction time). In
particular, specialists may be very hard to replace (if at all). We therefore prefer to
use friction time analysis, proposing a scaled and shifted sigmoid function by which
we can model the time-lagged replacement process [6, 10]. Figure 2 illustrates our
approach.

As lost labor force participants are replaced, the loss of labor productivity in
group i can be modeled as

Hi(t) = Li · hi ·
(

1 − 1

1 + exp(δ · (1 − 2t
Ti

))
︸ ︷︷ ︸

Scaled and shifted
sigmoid function

)
t ∈ [0, Ti] (2)

where Ti is the friction period and δ is a scaling factor that shapes the gradient
of the curve. We shift and scale this function with t ′ = δ · (2t/Ti − 1) such that
sigmoid(t ′) = 1/(1+exp(−t ′)) gives f (t) = 1/(1+exp(δ ·(1−2t/Ti))). Table 2
illustrates how this parameter shapes the share of FTEs replaced after a particular

Table 2 Share of FTEs replaced as a function of the sigmoid scaling factor δ

δ 3 4 4 6 7 8 9

f (t = Ti) [%] 95.25 98.20 99.33 99.75 99.91 99.97 99.99
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friction time has elapsed. As lost labor force participants are replaced, productivity
loss decreases to zero as replacement time t converges to the friction period Ti .

Ti might differ among groups. Since replacing specialists probably takes much
longer than replacing unskilled labor, friction time likely depends on both the
number and the productivity of lost labor force participants that must be replaced.
Hence, friction time can be specified as can be formulated as

Ti = c · (Li · hi)
a (3)

where a > 0 and c > 0 are ancillary parameters that describe the capacity of the
labor market to replace lost FTEs. The parameter c models the flexibility of the
labor market. Larger values of c prolong friction time, for example in scenarios
where the domestic labor market is unable to provide enough supply at short notice,
or where bureaucratic or migration controls impede fast replacement of FTEs. The
parameter a models the dependency type between the friction period and the lost
labor productivity, such that a = 1 captures proportional and a > 1 disproportionate
dependencies (e.g., when a severe epidemic wipes out many productive participants
of the labor force). As these members are lost, the economy suffers a primary
monetary loss due to lower labor productivity. The primary loss of group i can
be calculated by integrating the lost labor productivity both over time, i.e. from the
time the participants were lost (t = 0) until they were fully replaced (t = Ti), and
over all groups

Πi(Ti) =
∫ Ti

0
Li · hi ·

(
1 − 1

1 + exp(δ · (1 − 2t
Ti

))

)
dt = Li · hi · Ti

2
(4)

Integrating (3) into (4), the monetary loss in group i can be written as

Πi = c

2
· (Li · hi)

a+1 (5)

This loss is graphically represented in Fig. 2 by the area underneath the lost labor
productivity curve Hi(t).

Considering all groups, the overall labor productivity loss is

H(t) =
n∑

i=1

Hi(t) t ∈ [0,max(Ti)] (6)

And thus the total primary monetary loss amounts to

Π =
n∑

i=1

c

2
· (Li · hi)

a+1 (7)



66 J.-C. Metzger and M. M. Keupp

However, in addition to this primary loss, there is also a secondary loss. Capital
productivity also suffers as labor force participants are lost since machinery ceases
to operate for a time or continues to be operated by less qualified staff (and hence
at lower efficiency). Moreover, total factor productivity is reduced since lost labor
force participants can no longer innovate. We consider this secondary loss by scaling
primary loss with a group-specific ancillary parameter εi >= 1, terming it Solow
factor in honor of [8]. Total productivity and monetary losses are hence obtained
after correcting (6) and (7) for such secondary loss:

Hε(t) =
n∑

i=1

Hi(t) · εi t ∈ [0,max(Ti)] (8)

Πε =
n∑

i=1

c

2
· εi · (Li · hi)

a+1 (9)

2.2 Strained Medical Emergency Services Capacity

Supply for medical emergency services (MES) is limited, and hence only a limited
number of victims can be treated within any given timeframe. This number M can
be specified as a function

M = M(
D

d
,R) (10)

where d is the treatment duration and D the time by which victims must have been
treated to avoid certain death. Further, R comprises the available MES resources,
i.e. personnel (doctors, nurses, etc.), infrastructure (hospitals, ambulances, etc.), and
physical supplies (beds, equipment, drugs).

The event space we drew in Fig. 1 suggests that the total number L of lost labor
force participants can be calculated as

L = (V − M) + β · M + α · γ · M

= V − M · (1 − β − α · γ )

= V − M · η (11)

Note that the composite term (1−β −α ·γ ) is renamed to η to simplify the notation
of the following equations. Stratifying L by groups yields

Li = Vi − Mi · η (12)

where Vi is the number of victims in group i that require medical emergency service
and Mi denotes the number of treated victims within group i. We now propose
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three methods to triage victims, and we explore the implications of each method
for monetary loss. Thus, we analytically link human and economic loss, keeping
medical supply constraints in mind. For all three methods, the number of victims
treated in each group Mi is formally derived, then, using (12), the number of lost
labor force participants can be calculated.

First In, First Out (FIFO) Triage methods such as START or SALT are typically
recommended to optimize MES utilization [1, 2, 7]. Such concepts triage victims
according to their level of injury and chances of survival. From an economic
perspective, these treatments represent a random selection for which individual
productivity is irrelevant; treatment is scheduled on a ‘first come, first serve’ basis.

Therefore, the number of victims randomly selected for treatment has a multi-
variate hypergeometric distribution [3], such that the number Mi of treated victims
in each group i is

Mi = min(Vi, E[Mi]) = min(Vi,M · Vi

V
) (13)

Preferential Treatment According to Productivity (PTAP) Treatment could also
be rationed according to productivity levels. Under this scheme, victims belonging
to the group with the highest labor productivity are treated first, those with the next
highest are treated only if resources are still available, and so on until all resources
are exhausted. The number of treated victims then is

Mi = min(Vi,max(0,M −
i−1∑

j=1

Vj )) (14)

Minimization of Total Monetary Loss (MTML) A third triage option is to
minimize total monetary loss to the economy, i.e. friction time is taken into account
when scheduling treatment. Thus, the number of victims treated is obtained by
using (12) in (9), which gives the optimization problem:

min
Mi

n∑

i=1

c

2
· εi · ((Vi − Mi · η) · hi)

a+1 (15)

Subject to:

n∑
i=1

Mi = M,

Mi ∈ [0, Vi]
(16)

The solution to this problem provides an optimal number of treatments Mi in each
group i while minimizing total monetary loss Πε . This function is convex except
for the cases of a = 0 and a = 1 which can be solved by Linear and Quadratic
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Programming, respectively. Convex Programming is required to solve the problem
for any a [4].

3 Illustration for Three Model Economies

We illustrate our concept by introducing the three model economies of Switzovenia,
Tyrrhenia, and Aequatoria. These all differ in terms of population, labor productiv-
ity, and MES supply. While both Switzovenia and Tyrrhenia have small but highly
productive populations, Aequatoria is a densely populated developing economy
whose large unskilled labor force has low productivity. While MES supply is limited
in both Aequatoria and Switzovenia, it is substantially larger in Tyrrhenia.

For each economy we simulate the impact of three distinct MCIs caused by delib-
erate attacks on critical infrastructures: A mass shooting in an underground network
that causes 1000 victims, a series of bomb attacks on railway infrastructure that
affects 10,000 victims, and an epidemic spread through intentionally contaminated
drinking water that causes 100,000 victims.

3.1 Parametrization

The three model economies are specified by the parameters documented in Table 3.
The population in each economy can be partitioned into (n = 3) groups (special-
ists, skilled labor, and unskilled labor) with different average productivity levels
(h1, h2, h3) with h1 > h2 > h3.

Table 3 Specific parameters of model economies

Parameter Switzovenia Tyrrhenia Aequatoria

Group size in millions
{N1, N2, N3}

{2, 2.5, 0.5} {5, 12, 3} {3, 10, 87}

Avg. labor prod. {h1, h2, h3} [$/h] {100, 80, 55} {100, 50, 30} {85, 30, 8}

Solow factor {ε1, ε2, ε3} {1.06, 1.05, 1.0} {1.08, 1.04, 1.0} {1.0, 1.0, 1.0}

Maximum number of treatments 5000 25000 500

Friction period parameter a 1 1 1

Friction period parameter c 0.007 0.0105 0.056

Scaling factor of the sigmoid
function δ

5 5 5

Share of victims

Partially recovered α 0.2 0.2 0.2

Not recovered β 0.1 0.1 0.1

Partially recovered but lost as
FTEs γ

0.5 0.5 0.5
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To simplify the computation, we set the ancillary parameter a to 1. Thus, the
optimization problem can be solved by Quadratic Programming and noted in vector
notation with x = [M1,M2,M3]� and v = [V1, V2, V3]� as

min
x

= 1

2
· x� · H · x + f� · x (17)

Subject to:

A · x ≤ b

0 ≤ x ≤ v
(18)

where

H = c · η2 ·
⎡

⎣
ε1h

2
1 0 0

0 ε2h
2
2 0

0 0 ε3h
2
3

⎤

⎦ (19)

f = −c · η ·
⎡

⎣
ε1h

2
1V1

ε2h
2
2V2

ε3h
2
3V3

⎤

⎦ (20)

A = [
1 · · · 1

]
(21)

b = M (22)

For the case of Switzovenia, we set the ancillary parameter c such that such that the
replacement of 1000 FTEs with an average labor productivity of havg = h2 = 80$/h
takes 3 months (=548 working hours):

c = Tavg

L · havg

= 548 h

1000 · 80$/h
= 0.007 (23)

We assume this baseline value is exceeded by 150% in Tyrrhenia and by 800% in
Aequatoria due to greater transaction cost and labor market inflexibility. Thus, we
obtain (c = 150% · 0.007 = 0.0105) and (c = 8 · 0.007 = 0.056), respectively.

3.2 Simulation Results

Tables 4, 5 and 6 detail the simulation results for all model economies. Victims,
treated victims and lost FTEs are in thousands, and total monetary loss Πε is in
millions.
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Table 4 Simulation results for Switzovenia

Switzovenia FIFO PTAP MTML

Shooting

Victims {V1, V2, V3} 0.4, 0.5, 0.1 0.4, 0.5, 0.1 0.4, 0.5, 0.1

Treated victims {M1,M2,M3} 0.4, 0.5, 0.1 0.4, 0.5, 0.1 0.4, 0.5, 0.1

Lost FTEs {L1, L2, L3} 0.08, 0.1, 0.02 0.08, 0.1, 0.02 0.08, 0.1, 0.02

Total monetary loss Πε 0.477 0.477 0.477

Bombs

Victims {V1, V2, V3} 4, 5, 1 4, 5, 1 4, 5, 1

Treated victims {M1,M2,M3} 2, 2.5, 0.5 4, 1, 0 2.6, 2.4, 0

Lost FTEs {L1, L2, L3} 2.4, 3, 0.6 0.8, 4.2, 1 1.9, 3.1, 1

Total monetary loss Πε 429 449 370

Epidemic

Victims {V1, V2, V3} 40, 50, 10 40, 50, 10 40, 50, 10

Treated victims {M1,M2,M3} 2, 2.5, 0.5 5, 0, 0 5, 0, 0

Lost FTEs {L1, L2, L3} 38.4, 48, 9.6 36, 50, 10 36, 50, 10

Total monetary loss Πε 109,872 107,940 107,940

Table 5 Simulation results for Tyrrhenia

Tyrrhenia FIFO PTAP MTML

Shooting

Victims {V1, V2, V3} 0.25, 0.6, 0.15 0.25, 0.6, 0.15 0.25, 0.6, 0.15

Treated victims {M1,M2,M3} 0.25, 0.6, 0.15 0.25, 0.6, 0.15 0.25, 0.6, 0.15

Lost FTEs {L1, L2, L3} 0.05, 0.12, 0.03 0.05, 0.12, 0.03 0.05, 0.12, 0.03

Total monetary loss Πε 0.3 0.3 0.3

Bombs

Victims {V1, V2, V3} 2.5, 6, 1.5 2.5, 6, 1.5 2.5, 6, 1.5

Treated victims {M1,M2,M3} 2.5, 6, 1.5 2.5, 6, 1.5 2.5, 6, 1.5

Lost FTEs {L1, L2, L3} 0.5, 1.2, 0.3 0.5, 1.2, 0.3 0.5, 1.2, 0.3

Total monetary loss Πε 34 34 34

Epidemic

Victims {V1, V2, V3} 25, 60, 15 25, 60, 15 25, 60, 15

Treated victims {M1,M2,M3} 6.2, 15, 3.8 25, 0, 0 15.5, 9.5, 0

Lost FTEs {L1, L2, L3} 20, 48, 12 5, 60, 15 12.6, 52.4, 15

Total monetary loss Πε 54,810 51,621 47,544

These results suggest that the consequences of intentional attack depend on
both the number of victims and the configuration of the model economy. If not
more than 1000 victims suffer from the attack, in terms of lost FTEs there is no
difference between the three triage concepts in both Switzovenia and Tyrrhenia, and
differences are small for the case of Aequatoria. Total monetary loss is largest in
Aequatoria and is also influenced by the triage method applied there, whereas there
is no such influence in Switzovenia or Tyrrhenia. However, this picture changes
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Table 6 Simulation results for Aequatoria

Aequatoria FIFO PTAP MTML

Shooting

Victims {V1, V2, V3} 0.03, 0.1, 0.87 0.03, 0.1, 0.87 0.03, 0.1, 0.87

Treated victims {M1,M2,M3} 0.01, 0.05, 0.44 0.03, 0.1, 0.37 0.03, 0.08, 0.39

Lost FTEs {L1, L2, L3} 0.02, 0.06, 0.52 0.01, 0.02, 0.57 0.01, 0.04, 0.55

Total monetary loss Πε 0.644 0.608 0.598

Bombs

Victims {V1, V2, V3} 0.3, 1, 8.7 0.3, 1, 8.7 0.3, 1, 8.7

Treated victims {M1,M2,M3} 0.01, 0.05, 0.44 0.3, 0.2, 0 0.25, 0.25, 0

Lost FTEs {L1, L2, L3} 0.29, 0.96, 8.35 0.06, 0.84, 8.7 0.1, 0.8, 8.7

Total monetary loss Πε 165 154.1 153.8

Epidemic

Victims {V1, V2, V3} 3, 10, 87 3, 10, 87 3, 10, 87

Treated victims {M1,M2,M3} 0.01, 0.05, 0.44 0.5, 0, 0 0.5, 0, 0

Lost FTEs {L1, L2, L3} 3.0, 10, 86.7 2.6, 10, 87 2.6, 10, 87

Total monetary loss Πε 17,761 17,451 17,451

once the number of victims grows. For a scenario of 10,000 victims, there is a
significant influence of the triage method in all three economies. Compared to FIFO,
the MTML method reduces total monetary loss by 13.8% in Switzovenia and 6.7%
in Aequatoria, while there is no influence in Tyrrhenia. This is due to the much larger
capacity for treatment in this economy; the system has enough slack to satisfy all
demand for treatment. In the extreme case of an epidemic with 100,000 victims,
monetary loss is largest in Switzovenia since many highly productive labor force
participants cannot recover. Given the larger capacity for MES supply in Tyrrhenia,
monetary loss is 50.1% lower for random and 56% for MTML triage, but the loss
is still significant. The relative differences between the three triage concepts are
also largest in Tyrrhenia, whereas there is only a minor influence of triage on total
monetary loss in Switzovenia and Aequatoria.

3.3 Minimization of Monetary Loss

Figures 3, 4, and 5 show simulation results for all three economies when victims are
triaged such as to minimize total monetary loss to the economy. In each figure, the
thin vertical line to the left-hand side of the diagram represents the capacity limit
M up to which all victims can be treated (Switzovenia: 5000; Tyrrhenia: 25,000;
Aequatoria: 500). In all analyses, these capacities are held constant whereas the
number of victims varies. The upper plot shows how many victims from each of
the three population subgroups (specialists, skilled and unskilled labor) are treated
if MTML triage as defined in formulae 15 and 16 is applied. The lower plot shows
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Fig. 3 Reduction of monetary loss in Switzovenia

the relative reduction of monetary loss which is calculated as the difference in loss
between FIFO and MTML triage, i.e. (Πε,FIFO − Πε,MT ML)/Πε,FIFO .

This relative difference is nil as long as the number of victims does not exceed
MES supply; but if it does, then MTML triage reduces monetary loss by up to 32.8%
in Switzovenia (48.4% in Tyrrhenia, 7.3% in Aequatoria). As the number of victims
who seek treatment grows, the relative reduction of monetary loss converges to zero.

The analysis suggests that treatment scheduling is contingent on group member-
ship once the number of victims exceeds MES supply in the respective economy.
Whenever the number of victims V exceeds the capacity limit M , then MTML
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Fig. 4 Reduction of monetary loss in Tyrrhenia

triage suggests to first reduce treatment for unskilled labor (dotted lines in all
figures), and then to reduce treatment for skilled labor (dashed lines). In other words,
specialists receive preferential treatment, and treatment of the remaining labor force
is rescheduled subject to remaining capacity. Should the number of victims in
Switzovenia exceed 49,000 (in Tyrrhenia: 190,000; in Aequatoria: 22,800), MTML
triage suggests to exclusively treat specialists.



74 J.-C. Metzger and M. M. Keupp

0 5 10 15 20 25 30
Victims in thousands

0

0.1

0.2

0.3

0.4

0.5
T

re
at

ed
 v

ic
tim

s 
in

 th
ou

sa
nd

s

M = 500 specialists
skilled
unskilled

0 5 10 15 20 25 30
Victims in thousands

0%

1%

2%

3%

4%

5%

6%

7%

8%

R
ed

uc
tio

n 
in

 m
on

et
ar

y 
lo

ss

Fig. 5 Reduction of monetary loss in Aequatoria

4 Discussion

Our analysis suggests that whenever the number of victims inflicted by an MCI
exceeds MES supply, a conflict between saving the economy from significant
productivity loss and saving human lives exists. Using triage concepts such as our
proposed MTML significantly reduces up to 48.4% of the monetary loss to the
economy that is inflicted by an MCI. However, this triage also induces an ethical
dilemma, since any preferential treatment on grounds of individual productivity is
incompatible with the Hippocratic oath.



Mass Casualty Treatment After Attacks on Critical Infrastructure: An. . . 75

This dilemma can be somewhat mitigated if MES supply is increased by an
additional emergency supply that can be made operational and scaled at short notice.
However, such spare capacity would be expensive to build and maintain since it
would barely be utilized in the absence of extreme events. Still, if the number
of victims is very high, it will probably exceed any spare capacity. In this case,
our MTML triage concept suggests that preferential treatment should be applied
by treating the most productive members of the labor force first and then ration
the remaining capacity among the less productive groups in order to maintain the
productivity of the economy.

Without this minimization of friction time for specialists, the significant loss of
labor force participants likely induces a productivity loss the neutralization of which
will take a very long time. This perspective makes intentional attacks on critical
infrastructure particularly dangerous, since the economic consequences of such an
attack may change political majorities and society itself. It goes without saying
that such extreme scenarios can only be imagined in the case of an uncontrolled
epidemic, war, or massive terrorist attacks. Still, they illustrate the ethical dilemma
any society would face under such circumstances. Hence, infrastructure defense is
key to minimize the chance that such devastating attacks could ever occur.

The parametrization we provided is specific to the three model economies we
conceptualized, but the simulation model is not. As the reduction of monetary loss
is contingent on the number of victims, MES supply, group productivity levels,
and friction time, we invite future research to feed data from real economies into
our model, complementing our approach with additional illustrations. Further, our
model could be refined by taking additional socioeconomic effects into account.
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