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1 Introduction

The business model of an insurance company is centered around the idea of risk
assessment and control. Insurance is a mechanism that transfers risk from the policy
holder to the insurance company for the cost of a predefined premium [16]. The
firm must minimize any volatility that comes with this risk in order to minimize the
probability of bankruptcy. If the risk event can be observed often, the firm can use
the law of large numbers to achieve this goal. This statistical theorem states that the
average outcome of large numbers of independent trials is close to the expected
value [4]. Therefore, by holding a large number of individual and independent
policies of the same line of business (e.g. motor and life insurance) in a portfolio,
the insurance company can reduce volatility and does, on average, not expect any
large deviations from the calculated mean [16, 21].

Specialized work in extremal risk and damage management illustrates that
coverage can be provided as long as the risk is observable and occurs at random
[7, 10]. Therefore, insurance for large-scale weather-related damage and even
natural disaster exists, as exemplified by Table 1 [29]. The capability of an insurance
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Table 1 Examples of insurance coverage for extreme events

Year Major disaster Insured loss [m USD] Total loss [m USD]

1992 Hurricane Andrew (US) 51,875.1 105,310.4

1994 Northridge Earthquake (US) 45,083.6 159,894.7

1999 Winter Storm Lothar (EU) 51,929.8 165,498.7

2001 9/11 Attacks (US) 53,369.5 200,043.0

2005 Hurricane Katrina, Rita, Wilma (US) 139,741.1 313,045.9

2010 Chile & New Zealand Earthquakes 58,640.6 263,860.5

2011 Japan & New Zealand Earthquakes, Thai-
land flood

142,728.4 454,402.0

2012 Hurricane Sandy (US) 78,748.3 200,382.3

2015 Earthquake in Nepal (NP) 39,437.9 99,317.7

2017 Hurricanes Harvey, Irma, Maria (US) 150,089.9 349,580.5

2018 Camp Fire (US), Typhoon Jebi (JP) 84,669.9 164,986.1

firm to sustain such large payouts for extremal damage is further strengthened
by geographic or business segment diversification [14] and reinsurance. While the
expected payout is identical whether or not the firm purchases reinsurance, volatility
is significantly reduced as the risk is partially transferred to the reinsurer. This effect
also reduces the insolvency risk of the firm [6, 9].

However, natural disaster risk is essentially probabilistic, i.e. such disasters occur
at random, and they can be predicted from past observed events.

Weather-related and seismic movements are monitored by many institutions on
a global scale. The data and predictions these researchers generate are not publicly
available, but they also inform the catastrophe modeling software that is widely used
in the insurance industry.

However, information about intentional attacks on infrastructure is often kept
secret or only shared in non-public industry expert groups. This implies it is difficult
to specify a probability distribution of extreme events because the low number of
observations biases estimators. Most importantly, intentional attacks do not change
at random like the weather does, on the contrary, their strength and effectiveness
grows as attackers learn about the architecture of the infrastructure. The attack
pattern may also change as the attacker’s resource endowment changes. As a result,
intentional attacks are essentially random, such that it is almost impossible to build
a probabilistic model for intentional attacks.

Our analysis begins with a sample of documented intentional attacks on infras-
tructures and the financial damage inflicted by these attacks [3]. Table 2, documents
the 20 most costly terrorist acts of the past decades. We fit a Pareto distribution
to these data, proposing a method to generate unbiased estimators for its auxiliary
parameters (Sect. 2). In a second step, we adapt a compartmentalized model to our
context, infusing it with the above estimators to simulate a private insurance firm’s
accumulated net profit and loss over time (Sect. 3). Our results suggest that it is
highly unlikely that such a firm would ever offer coverage for intentional attacks on
infrastructure, and we provide some discussion of potential alternatives (Sect. 4).
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Table 2 The 20 worst terrorist acts—insured property loss in 2017 USD

Event Date Location
Insured property

Fatalitiesloss [m USD]

9/11 Attacks 09.11.2001 New York, 26,215 2982

Washington DC

Bomb in financial district 24.04.1993 London 1276 1

IRA bombing 15.06.1996 Manchester 1038 0

Bomb in financial district 10.04.1992 London 937 3

Bomb in World Trade Center 26.02.1996 New York 872 6

Rebels destroy military and
civilian aircrafts

24.07.2001 Colombo 555 20

IRA bombing 09.02.1996 London 361 2

Bombing on board of a 747 23.06.1985 North Atlantic 227 329

Truck bomb 19.04.1995 Oklahoma City 203 166

Hijacked Swissair/BOAC
dynamited on ground

12.09.1970 Jordan 178 0

Hijacked PanAm dynamited on
ground

06.09.1970 Cairo 154 0

Bomb in financial district 12.04.1992 London 134 0

Attack on two hotels 26.11.2008 Mumbai 117 172

Bomb attack on a prison 27.03.1993 Weiterstadt 99 0

Bomb at Barajas airport 30.12.2006 Madrid 82 2

Bomb on board of a PanAm 21.12.1988 Lockerbie 80 270

Riot 25.07.1983 Sri Lanka 65 0

Bombing in a tube and a bus 07.07.2005 London 65 52

Hijacked airplane ditched at sea 23.11.1996 Indian Ocean 62 127

Bomb attack on Israel’s
embassy

17.03.1992 Buenos Aires 53 24

2 Pareto Estimation of Risk Premiums

Using a Pareto distribution (PA) is advantageous whenever a limited sample of
observations on extreme events is to be analyzed [17]. Specified by a scale parameter
(x0 > 0) that captures minimum loss and a shape parameter (α > 0) that determines
curvature and tails, its distribution function for a continuous random variable X is
given by Quandt [24].

FX(x, α) = P (X ≤ x) =
{

1 − (
x0
x

)α if x ≥ x0

0 else
(1)

Since we are using the discrete sample data in Table 2 to estimate x0 and α, we
can exploit the fact that the distribution functioncan be rewritten as follows for a
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discrete random variable X, where n corresponds to the number of observations in
the dataset [28]:

Fn(x) = 1

n

n∑
i=1

1Xi≤x with 1Xi≤x =
{

1 if Xi ≤ x

0 else
(2)

Applying (2) to the observations in Table 2, Fn(x) can be determined and plotted
once maximum likelihood estimators for x0 and α are available. Since the losses in
Table 2 are numerically large, the estimator for x0 is simply given by

x̂0 = min
i∈[1,n] Xi (3)

Hence, x̂0 = 53 m USD. The specification of an estimator for α is more complex
since it requires a likelihood function [24, 27] which we specify as

L(Xi, α) =
n∏

i=1

αnxαn
0

X
(1+α)
i

(4)

Logging this function and calculating partial derivatives yields

∂ ln(L(Xi, α))

∂α
= n

α
+ n ln(x0) −

n∑
i=1

ln(Xi) = 0 (5)

which, after isolation of α, gives the estimator

α̂ = n∑n
i=1 ln

(
Xi

x0

) (6)

α̂ is a biased estimator that requires transformation such that a minimum-variance

consistent unbiased estimator can be obtained. Since ln
(

Xi

x0

)
follows an exponential

distribution, the consistent estimator α̃ is

α̃ = n − 1∑n
i=1 ln

(
Xi

x0

) (7)

Now that we have obtained estimators for both the scale and the shape parameter,
the Pareto distribution specified by these is fitted to the data in Table 2. We obtained
an initial estimate of α̃ = 0.6143. To improve the accuracy of α̃, following [15] we
used the method of least squares to minimize the deviation between measured and
predicted values S(α):

S(α) =
n∑

i=1

(Fn(Xi) − F(Xi, α))2 (8)
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Fig. 1 Fitted Pareto distribution function

This procedure was implemented by iteratively deploying the Python function
scipy.stats.pareto.fit() [12]. It converged on an optimal estimator
α̃f = 0.6405.

Figure 1 plots the fitted Pareto distribution as specified by x0 and α̃f . The
empirical distribution function Fn(x) is indicated by black dots, and the fitted
distribution function is shown as a solid black curve. As the distribution function
FX(x, α) converges to 1 the faster the more α increases, predicted loss increases as
α decreases.

The numerical magnitude of α therefore reflects the firms’ loss expectation. To
calculate risk premiums for natural disasters, firms in the commercial reinsurance
industry use α’s between 1.5 and 1.8 for fire, between 0.8 and 1.3 for windstorm,
and between 0.6 and 1.0 for earthquake peril [20]. These values far exceed our
estimate for α̃f = 0.6405. Figure 2 plots these differences, suggesting that the risk
premium for insurance against intentional attacks will far exceed the premium paid
for insurance against natural disasters.

This risk premium can be specified as

R = VaRβ + Cf + Cv + B, for {Cf ,Cv, B} ∈ R≥0 (9)

where Cf represents the fixed costs, Cv the variable costs, B the profit and
VaRβ(X) is the value at risk (VaR). This probabilistic term captures the risk
of loss or impairment of any insured assets subject to an event threshold β. Its
value approximately corresponds to the premium the infrastructure operator must
pay to receive coverage. Exploiting the fact that this risk can be captured by a
Pareto distribution function when extreme events are considered [23], VaR simply
corresponds to the minimum value of x for which the distribution function FX(x, α)
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Fig. 2 Convergence of the Pareto distribution as a function of α

equals the event threshold β, formally:

VaRβ(X) = FX
−1(x, α) = min(x : FX(x, α) ≥ β) (10)

Then, integrating (1) in (10) yields

VaRβ(X) = x0
α
√

1 − β
(11)

Finally, VaR calculation requires a specification of return time, i.e. the period
between any given occurrence of an extreme event and the next occurrence of such
an event. Considering (1), this return time T can be specified as a function of beta
[5]:

T = 1

1 − β
(12)

Using (11) and (12) with the data in Table 2, we can now calculate VaR as a function
of β. Table 3 provides results for selected β values. Considering that the commercial
insurance industry uses a standard level of β = 0.95, an insurance firm can expect
a minimum loss of USD 5696 million once every 20 years.

Moreover, the values in Table 3 represent but a lower bound of expected loss,
i.e. they give the minimum risk cover that any insurer would have to provide. As
according to (9), the fixed and variable cost of operation have to be considered
also, actual risk premiums are likely higher. Finally, Table 3 suggests that expected
loss grows exponentially as β increases, implying that the firm faces a high risk of
bankruptcy even if the extreme event occurs only rarely.
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Table 3 VaR for different
event thresholds β

β VaRβ(X) [m USD] T [years]

50.0% 157 2

90.0% 1930 10

95.0% 5696 20

99.0% 70,270 100

99.6% 293,800 250

99.9% 2,558,672 1000

3 Simulation of Bankruptcy Risk

To simulate the economic situation of the insurance firm, particularly, its risk of
going out of business as a result of an extreme event occurring, we use an adapted
SIR model. Often used in epidemiology, the standard SIR model tracks a population
as an infection spreads, grouping individuals into a susceptible (S), infected (I ), and
recovered (R) compartment. The dynamic spread is captured by an incidence rate γ

and a recovery rate λ [13].
We suggest that can be adapted to our setting. The compartment S can be

reinterpreted as the insurer’s cumulative net profit. As our simulation begins at
t = 0, S starts at zero, hence S(t = 0) = 0. Accumulation of this profit over
time crucially depends on whether or not an extreme event occurs. If it does, the
insurance firm incurs a loss since high damage-related payouts far exceed the risk
premiums paid by operators. Otherwise, it makes a profit as it avoids such payouts
but still earns risk premiums. The insurance firm has an incentive to accumulate
profits in eventless periods in order to finance payouts in periods when an event
occurs. Thus, the compartment R can be reinterpreted as the ‘recovery contribution’
to accumulated net profit, such that this profit increases whenever an extreme event
does not occur (R > 0) and vice versa (R ≤ 0). Hence, accumulated net profit can
be written as:

St+1 = St + Rt (13)

Finally, the compartment I can be reinterpreted as an ‘infected’ asset (i.e. one that
is covered by insurance and damaged or destroyed by an intentional attack). Hence,
the recovery contribution Rt can be calculated as the difference between VaR and
the loss the insurance suffers at time t , formally:

Rt = VaRβ − It (14)

For the sake of simplicity, fixed and variable costs are omitted in this calculation.
Since we use a Pareto distribution function to model the occurrence of extreme
events, It has a Pareto distribution:

It ∼ PA(x0, α) (15)
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Fig. 3 Accumulated net profit for extreme event occurring late

Our setting considers discrete events that appear in an unpredictable sequence
over time. Hence, rather than following the original SIR model which specifies
fixed parameters for incident and recovery rates, we use a Pareto randomization
process by deploying the Python function scipy.stats.pareto.rvs() [12]
to produce numeric values for It based on the estimators for x0 and α̃f we found
in the preceding section. Each randomization round is based on a time interval of
T = 1000 years. The randomization process comprises 10,000 rounds.

Figure 3 shows a simulation where an extreme event occurs after t = 602 years
of operations, i.e. relatively late. The upper panel uses β = 0.95 for VaR calculation,
and the lower panel uses β = 0.999.

The firm has accumulated profits over the first 601 periods of its operations.
However, for the case of β = 0.95 even these significant savings cannot offset the
loss inflicted by the extreme event. Over the complete timespan, the accumulated
loss amounts to 1.4244 billion USD. It is not until β is increased to 0.999 that an
accumulated profit of 1.1311 billion USD results. Hence, even in the case that the
extreme event occurs relatively late, insurance companies would have to charge very
high risk premiums.

Figure 4 details the case that the extreme event occurs after only t = 55 years, i.e.
very early. Both panels use the same VaR specifications as in Fig. 3. They suggest
that the firm can never recover from the accumulated net loss even if operations are
continued for the remaining 945 years, and it can never reestablish profitability. For
β = 0.95 (0.999), accumulated loss is 18.35 (16.379) billion USD at T = 1000.

Since there is an infinite number of possibilities for both the time at which the
extreme event occurs and the magnitude of the damage it inflicts, the firm can
neither generate reliable pricing information for risk premiums, nor can it predict
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Fig. 4 Accumulated net profit for extreme event occurring early

the probability with which it may go out of business. Hence, the fate of an insurance
company is essentially left to chance once it offers insurance for non-probabilistic
extreme events.

4 Conclusion

Probabilistic events that occur at random, such as weather-related damage, can be
captured and predicted by stochastic models [22]. As a result, insurance firms can
offer coverage for such events since they can measure the variability of past events
and compare expected losses to the mean or the median of past losses in order to
calculate a risk premium.

By contrast, the analysis of non-probabilistic events such as intentional attacks
require a deterministic approach that must make qualitative assumptions about
possible worst-case scenarios. The results of such models hence crucially depend
on the assumptions made and the corresponding risk scenarios. Our approach to risk
modeling featured in this chapter illustrates this fundamental problem. The way we
determine the scale and shape parameters of our Pareto distribution is deterministic.
In particular, we assume that data on past observed events are representative of
future damage. However, there is no other way to assess risks that have not
yet been observed. The challenge is hence to develop an extensive catalogue of
extreme events and to reliably estimate the business risk if they occur. As long
as such predictions cannot be made, an insurance firm is highly unlikely to offer
any coverage, and any reinsurer would most probably refuse to underwrite such
risk. It should be noted that our estimates merely constitute lower boundaries of
the actual damage, since the failure of key infrastructure, such as electricity or
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drinking water supply, may cause secondary damage in other sectors of the economy
[1, 2, 8, 11, 25, 26, 30].

Since private firms are unlikely to offer insurance for intentional attacks, are
there any alternatives operators could turn to? There have been proposals to use
the capital market—and, in particular, private risk-taking investment—to provide
coverage [18]. For example, insurance-linked securities (ILS) have been created
to raise funding for coverage in the capital markets. Such ‘catastrophe bonds’
allow the issuer to share peak catastrophe risks with institutional investors who
are disconnected from reinsurance markets [17]. It may hence be possible to issue
‘infrastructure terror bonds’, although, to the best of our knowledge, no such bonds
have been issued in the industry. Further, since publicly issued bonds require a
proper evaluation from a rating agency, the issuers would have to rely on third-party
terrorism risk models.

Public-private initiatives have proposed ‘terrorism pools’ as a solution. The idea
is to create a national fund, backed by state-level guarantees, that could collect
enough financial means to provide coverage for intentional attacks.

Although these initiatives differ, they share a similar operational structure [19].
Private insurance companies provide a basic retention D. Over and above this
amount, up to a pre-defined aggregate limit C, excess coverage is provided by the
reinsurance market. If the aggregated loss L should exceed the sum of D and C,
the government would cover the difference. While the idea seems appealing, only
about one third of all OECD member countries offer such a national terrorism risk
insurance program. Further, given the extreme losses inflicted by intentional damage
of infrastructure, it remains questionable for how long the government can afford to
compensate the loss not covered by private insurers and reinsurers. Operators should
therefore expect that neither private industry nor the government are willing or able
to provide insurance for intentional attacks on critical infrastructure.
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