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1 Introduction

Critical infrastructures (CIs) are systems that provide vital services to society,
such as the supply of drinking water, electricity, or transportation. Any significant
disruption of these services directly threatens the security and the economic system
of a society, public health and safety, or any combination of the above [5]. Even
small disruptions and component failures can strongly reduce performance and
cause major economic damage. Hence, a physical or cyber-attack on a CI generates
massive negative externalities, especially because of the increasing interdependency
and technical interconnectedness of different CIs. Particularly, the cascading effect
of failures among CIs could pose a serious threat to society [2, 10]. Therefore, CIs
are an ideal target for terrorist, politically motivated, or criminal attacks.

Such attacks constitute the most dangerous asymmetric threat CIs have to face
today and in the future [5]. Hence, there is the need to develop applied models that
can evaluate the costs and consequences of intentional attacks on CIs. In this work,
infrastructure networks are investigated, and a specific method for evaluating the
cost of attacks on CIs is presented. A generic theoretical model is suggested that can
account for different network types and attack patterns. The practical application of
the model allows the reader to identify weak spots within the network.
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2 Background

The model is grounded in solid scientific work from the operations research domain.
The model builds on prior work by Brown et al. [6], Golany et al. [9], and Alderson
et al. [3] who have all modeled and evaluated attacks on CIs. It employs linear
programming and network flow theory [1, 8] and applies prior research on network
interdiction [7]. To date, this research resonates little in the communities of experts
responsible for CI protection. Attempts to prioritize efforts for critical infrastructure
protection typically produce descriptive lists and planning instruments. For instance,
both the Swiss Federal Office for Civil Protection, the U.S. Department of Defense,
and the U.S. Department of Homeland Security have all prioritized critical infras-
tructure elements in an attempt to produce comprehensive protection. However, this
practice is questionable from a scientific perspective since particular components
cannot be prioritized by criticality [2]. The model in this chapter is proposed as an
alternative.

3 Methods

3.1 Operator Model

The model assumes that a homogeneous good or service is transported across a
network. The network contains supply nodes that provide the good or service,
demand nodes that consume it, and transit nodes that transfer it to other nodes.

In order to graphically represent the model, a simple directed graph G = (V ,E)

is given, where V represents a set of nodes (the circles in Fig. 1 and all following
figures), and E a set of arcs (the arrows in Fig. 1 and all following figures). The set
of nodes is partitioned into V = VA ∪ VN ∪ VT , where VA is the set of “supply
nodes”, VN the set of “demand nodes” and VT the set of “transit nodes”. The set of

Fig. 1 A small operator
network with five nodes
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arcs E represents the connections between the objects. In this paper, an arc e ∈ E is
either indicated as e or by its end nodes e = (v,w).

For each node v ∈ V , if v ∈ VA, it can provide a (non-negative) supply av , and
if v ∈ VN , it has a (non-negative) demand nv . Each arc e ∈ E has an arc capacity
ue, which is the maximal flow of a good or service through the arc (for a given time
span), and cost ce for each unit of the good or service transported by this arc.

Figure 1 illustrates this setting for a system with five nodes. In this specific
example, node 1 is a supply node with a supply of av = 7 and node 5 is a demand
node with a demand of nv = 5. All other nodes are transit nodes. Each arc e ∈ E

is represented by an arrow and a pair of numbers ue; ce which indicate the capacity
and the unit cost of the arc.

A solution is sought for a feasible flow x ∈ IRE that minimizes total cost (a so-
called cost-optimal flow). Thus, a respective flow xe has to be found for every arc
e ∈ E. For a given node v ∈ V the net inflow fx(v) is defined as total inflow less
total outflow, formally:

fx(v) =
∑

w:(w,v)∈E

xwv −
∑

w:(v,w)∈E

xvw

A flow is feasible if the flow constraints as well as the capacity constraints are
satisfied. The flow constraints state that a supply node cannot provide more than its
supply, a demand node must satisfy demand, and a transit node has to relay the flow
without losses:

fx(v) ≤ av for all v ∈ VA,

fx(v) = nv for all v ∈ VN,

fx(v) = 0 for all v ∈ VT .

The capacity constraints guarantee that the capacity of the arcs is not exceeded:

0 ≤ xe ≤ ue for all e ∈ E.

Among all feasible flows, we seek to find a minimum-cost flow x, i.e.
∑

e∈E cexe.
Together, these conditions yield the following minimum-cost flow problem (P1):

min
∑

e∈E

cexe

subject to:

fx(v) ≤ av for all v ∈ VA, (P1)

fx(v) = nv for all v ∈ VN,

fx(v) = 0 for all v ∈ VT ,

0 ≤ xe ≤ ue for all e ∈ E.
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Fig. 2 Cost optimal flow for
the network given by Fig. 1
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Figure 2 gives an optimal solution for the example specified by Fig. 1. For each arc
with a positive flow, the calculated flow value is given next to the arc and before the
slash. For example, the flow from node 1 to node 2 equals x12 = 1. In this example,
the total cost of this optimal solution is 12.

3.2 Inclusion of Shortage and Formulation in Standard Form

The above model is now extended and applied to a situation where the network
cannot or not completely satisfy all demands. This is done by assigning a penalty
cost pv to each demand node v ∈ V . Additionally, all flow constraints are now
described by equations in order to formulate the problem in a standard form. Hence,
the following elements are added to graph G = (V ,E):

(a) A pseudo supply node va with supply ava = ∑
v∈VN

nv

(b) For every demand node v ∈ VN , an arc (va, v) with cost pv and capacity nv

(c) A pseudo demand node vn with demand nvn = ∑
v∈VA

av

(d) For every supply node v ∈ VA ∪ {va}, an arc (v, vn) with zero cost and capacity
av

The pseudo supply node can deliver missing units to demand nodes at penalty
cost pv . The resulting graph is denoted by G′ = (V ′, E′). For every node v′ ∈ V ′
the demand bv is defined as:

bv =
⎧
⎨

⎩

−av if v ∈ VA ∪ {va}
nv if v ∈ VN ∪ {vn}
0 else.

Figure 3 illustrates these modifications for a unit penalty cost of 100.
This extended problem can now be described as follows in G′ = (V ′, E′):

z = min
∑

e∈E′
cexe
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Fig. 3 Modified model in standard form

subject to:

fx(v) = bv for all v ∈ V ′, (P2)

0 ≤ xe ≤ ue for all e ∈ E′.

It is assumed that the operator runs the network at optimal cost. In this case
the value of the optimized solution of the following model simply indicates the
“regular” operating costs.

3.3 Modeling an Attack Scenario

It is assumed that an attack on a network can target both nodes and arcs. If an arc
is attacked, it becomes inoperative, i.e. its capacity is reduced to zero. If a node is
attacked, it cannot deliver supply nor serve as a transit node, but its demand remains
unchanged. This situation is modeled by reducing the capacity of all arcs interrupted
as a consequence of the attack to zero.

An attack scenario U = (Vu,Eu) is defined by the sets of attacked nodes Vu ⊆ V

and arcs Eu ⊆ E. Pseudo nodes and pseudo arcs cannot be attacked. A valid solution
for this attack scenario must satisfy the following constraints:

xe = 0 for all e ∈ Eu,

xvw = 0 for all v ∈ Vu,

xvw = 0 for all w ∈ Vu.
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Once these constraints are added to the model, a given attack scenario U =
(Vu,Eu) can be described as:

zU = min
∑

e∈E′
cexe

subject to:

fx(v) = bv for all v ∈ V ′, (P3)

0 ≤ xe ≤ ue for all e ∈ E′,

xe = 0 for all e ∈ Eu,

xvw = 0 for all v ∈ Vu,

xvw = 0 for all w ∈ Vu.

If Vu = ∅ and Eu = ∅ then (P3) is equivalent to (P2). Problem (P3) is
also a minimum cost flow problem, implying that it can be solved efficiently and
that integer input vectors b and u yield integer solutions. This is an important
characteristic of network flow problems.

Again, it is assumed that the network is run at optimal cost after an attack. Hence,
the target variable zU of an optimal solution of (P3) indicates the operating cost after
an attack U = (Vu,Eu). For every attack U the costs KU are defined as:

KU = zu − z.

Hence, the operating costs after an attack exceed those of normal operations, i.e.
zU ≥ z and hence KU ≥ 0 for any attack U . Figure 4 illustrates an attack scenario
U = (Vu,Eu) with Vu = {4} and Eu = {(1, 3)}. Only graph G instead of G′ is
shown. Dashed arcs are unavailable after the attack. Arcs with a positive flow are
underlined. The demand of node 5 can still be met. Total operating cost after the
attack is 27, implying the cost KU of the attack is KU = 27 − 12 = 15.

Fig. 4 Modified model with
an attack on node 4
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Fig. 5 Modified model with
an attack on node 2
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Figure 5 illustrates an attack scenario where only node 2 is attacked, i.e. U2 =
(Vu2 , Eu2) with Vu2 = {2} and Eu2 = ∅:

The demand at node 5 cannot be fully satisfied. One unit cannot be delivered,
implying a penalty cost of 100. The total operating cost of the network is now 106,
such that attack has caused a damage of 106 − 12 = 94 monetary units.

3.4 The Attacker-Defender Model

While the CI operators may not know how exactly the network will be attacked
in the future, they can assume that a well-informed attacker will likely attempt
to maximize any damage, i.e. to maximize the network’s total operating cost. In
the following, the model is modified further to reflect this intention. An attacker
has a given budget B. Every element of the network has a certain strength, which
represents the resources an attacker must invest to disable this element. Specifically,
the attacker incurs a cost of pv units for an attack on any node v ∈ V , and a cost
of pe units for an attack on any arc e ∈ E. The following decision variables are
introduced to model the attack decision:

ye for all e ∈ E : ye is 1 if arc e is attacked and 0 otherwise,

yv for all v ∈ V : yv is 1 if node v is attacked and 0 otherwise.

Further, the attacker is subject to the budget constraint:

∑

e∈E

peye +
∑

v∈V

pvyv ≤ B.
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In a first step, the attack is modeled by adjusting the arc capacities:

0 ≤ xe ≤ ue for all e ∈ E′ − E,

0 ≤ xe ≤ ue (1 − ye) for all e ∈ E,

0 ≤ xvw ≤ uvw (1 − yv) for all (v,w) ∈ E,

0 ≤ xvw ≤ uvw (1 − yw) for all (v,w) ∈ E.

The constraints in the first line address those pseudo arcs whose capacities remain
unchanged. For an arc e = (v,w) ∈ E, the capacity is ue unless either arc e or node
v or w are attacked. In any of these cases, the constraints in lines 2 to 4 specify that
the capacity of any such node or arc is reduced to zero. Hence, the following model
results:

max
y

min
x

∑

e∈E′
cexe

subject to:

fx(v) = bv for all v ∈ V ′, (P4)

0 ≤ xe ≤ ue for all e ∈ E′ − E,

0 ≤ xe ≤ ue (1 − ye) for all e ∈ E,

0 ≤ xvw ≤ uvw (1 − yv) for all (v,w) ∈ E,

0 ≤ xvw ≤ uvw (1 − yw) for all (v,w) ∈ E,

∑

e∈E

peye +
∑

v∈V

pvyv ≤ B,

ye ∈ {0, 1} for all e ∈ E,

yv ∈ {0, 1} for all v ∈ V .

Problem (P4) is a bi-level optimization problem to which standard mathematical
solvers such as CPLEX or Gurobi cannot be applied directly. To transform this bi-
level into a single-level optimization problem, (P4) is reformulated by following
the approach described in Brown et al. [6]. Flows over attacked arcs are penalized,
letting M denote a sufficiently high penalty cost. Hence, (P4) can be rewritten as:

max
y

min
x

∑

e∈E′−E

cexe +
∑

e=(v,w)∈E

(ce + M (ye + yv + yw)) xe
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subject to:

fx(v) = bv for all v ∈ V ′, (P5)

0 ≤ xe ≤ ue for all e ∈ E′,
∑

e∈E

peye +
∑

v∈V

pvyv ≤ B,

ye ∈ {0, 1} for all e ∈ E

yv ∈ {0, 1} for all v ∈ V.

The solution spaces of (P4) and (P5) are not identical but if M is chosen
correctly, the optimal solutions and the optimal objective values are the same in both
problems. (P5) is still a bi-level optimization problem, but the inner optimization
problem can be transformed using duality theory [8]. Informally speaking, the
inner optimization problem (P5) is transformed into a maximization problem while
the value of the optimal solution stays the same. Two types of dual variables are
introduced: αv for each flow constraint of node v ∈ V ′ in (P5) and βvw for each
capacity constraint of arc (v,w) ∈ E′ in (P5). Developing the corresponding dual
constraints for all primal variables and the dual objective function, the following
dual problem is obtained:

max
∑

v∈V ′
bvαv −

∑

e∈E′
ueβe

subject to:

αw − αv + βvw ≤ cvw for all (v,w) ∈ E′ − E, (P6)

αw − αv + βvw ≤ cvw + M (ye + yv + yw) for all e = (v,w) ∈ E,

βe ≥ 0 for all e ∈ E′.

The inner optimization problem of (P5) always has a solution and the optimum
is limited since all cost factors ce are positive. In this case, the objective value of
the optimal solution of (P6) equals the objective value of (P5). Hence, the inner
optimization problem (P5) can be replaced by (P6), which yields the following re-
formulation of (P5):

max
∑

v∈V ′
bvαv −

∑

e∈E′
ueβe
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subject to:

αw − αv + βvw ≤ cvw for all (v,w) ∈ E′ − E, (P7)

αw − αv + βvw ≤ cvw + M (ye + yv + yw) for all e = (v,w) ∈ E,

βe ≥ 0 for all e ∈ E′,
∑

e∈E

peye +
∑

v∈V

pvyv ≤ B,

ye ∈ {0, 1} for all e ∈ E,

yv ∈ {0, 1} for all v ∈ V.

Problem (P7) is a mixed-integer linear program. While we specify this problem
here, we also note that current optimization solvers, such as CPLEX and GUROBI,
are not able to find optimal solutions for large-size instances of this problem
in acceptable computation time. Future research may focus on improving the
numerical analysis and compatibility of this linear program.

3.5 Application to a Small Example

The attacker-defender model is now applied to the operator network example. The
strength pe of each arc e ∈ E is indicated at the third position of the respective data
lines next to the arcs. Nodes are considered infinitely resilient, i.e. pv = ∞ for all
v ∈ V :

Table 1 below gives optimal attack strategies for different attack budgets B. It
demonstrates that there is no straightforward correlation between the attack budget
and the number of attacked arcs.

To illustrate this fact, Figs. 6, 7 and 8 give the respective graphs for attack budgets
of B = 1 and B = 13. Although the cost of the attack increases by a factor of more
than 81 in the latter scenario, only two more arcs are attacked.

Table 1 Optimal attacks and
cost of these attacks for all
attack budgets

Attack budget B Optimal attack Cost of attack

B = 1 (4,5) 6 = (18 − 12)

B = 2 (3,5) 6 = (18 − 12)

3 ≤ B ≤ 9 (3,5),(4,5) 18 = (30 − 12)

B = 10 (2,5) 94 = (106 − 12)

B = 11 (2,5),(4,5) 194 = (206 − 12)

B = 12 (2,5),(3,5) 388 = (400 − 12)

B ≥ 13 (1,2),(1,4),(3,5) 488 = (500 − 12)
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Fig. 6 Application of the
model to an attack on arcs
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Fig. 7 Optimal attack
strategy for B = 1
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Fig. 8 Optimal attack
strategy for B = 13
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Further, a particular arc need not constitute an attractive target in an optimal
strategy anymore as the attack budget increases. This effect shows as B is increased
from 1 to 2 and from 9 to 10. Hence, optimal attacking strategies are not nested with
respect to an increase in B. This implies that network elements cannot be prioritized
by criticality, which confirms the initial criticism of [3].
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Fig. 9 Attack on the Anytown network for B = 3

3.6 Application to the Anytown Network

The Anytown Network is a modeling tool for diverse problems in network design.
To apply it, I used data from the University of Exeter Centre for Water Systems.1 In
all following diagrams, nodes T41 and T42 are water reservoirs whose analysis is
not required for the purposes of our model.

The model allows for bidirectional flows and hence specifies bidirectional arcs
whose capacity is identical. All arcs have unit cost 1 and the penalty cost for all
demand nodes is 1000 per missing unit. It is assumed that all nodes and arcs incident
to node 1 cannot be attacked, while all other arcs have a strength of 1. We calculated
models and generated their corresponding graphs for all attack budgets. For reasons
of space only a selection of the results is discussed here. The full set of graphs is
available on request.

1http://emps.exeter.ac.uk/engineering/research/cws/.

http://emps.exeter.ac.uk/engineering/research/cws/
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Fig. 10 Attack on the Anytown network for B = 7

Figure 9 shows the results of an attack on the network for B = 3. A subsection
of the graph (nodes 5, 6 and 7) is cut off from both the remaining nodes and from
the source, as illustrated by the bold dashed line.

Figure 10 illustrates an attack for B = 7. While the graph remains strongly-
connected, several central elements are attacked, and bidirectional flow is signifi-
cantly reduced, implying a significant increase in operating cost.

Figure 11 shows the results for an attack budget of B = 9. The graph is split
into two sub-graphs, and no other nodes than those directly linked to node 1 can be
operated.

4 Conclusion and Outlook

In this chapter, the cost of an attack on critical infrastructure networks was assessed
with a generic model. This model was implemented as a mixed-integer linear
program and applied to several small-scale examples. Future work could use this
operationalization to analyze actual infrastructures, such as energy or drinking water
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Fig. 11 Attack on the Anytown network for B = 9

networks. While the challenges of modeling such real networks are anything but
trivial, related work may draw on some of the ideas presented here.

Further, the attacker-defender model considered here could be extended to
scenarios where the operator attempts to protect the infrastructure in question by
investing into the strength of the network. Such an operator would use a particular
defence budget to invest in measures that minimize the maximum costs of an attack
(e.g., by increasing the robustness or redundancy of critical components). Future
work may analyze optimal investment strategies for this defence budget. While
the analysis of such defender-attacker-defender models [4, 6] builds on the basic
scenarios we have illustrated here, it is significantly more complex.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms and Applica-
tions. Prentice Hall, Englewood Cliffs (1993)

2. Alcaraz, C., Lopez, J.: Wide-area situational awareness for critical infrastructure protection.
Computer 46(4), 30–37 (2013)



Networks of Critical Infrastructures: Cost Estimation and Defense of Attacks 31

3. Alderson, D.L., Brown, G.G., Carlyle, W.M., Cox Jr, L.A.: Sometimes there is no “most-vital”
arc: assessing and improving the operational resilience of systems. Mil. Oper. Res. 18(1), 21–
37 (2013)

4. Alderson, D.L., Brown, G.G., Carlyle, W.M., Wood, R.K.: Solving defender-attacker-defender
models for infrastructure defense. Technical Report, Naval Postgraduate School Monterey CA
Department of Operations Research (2011)

5. Anderson, R., Fuloria, S.: Security economics and critical national infrastructure. In: Eco-
nomics of Information Security and Privacy, pp. 55–66. Springer, Berlin (2010)

6. Brown, G., Carlyle, M., Salmerón, J., Wood, K.: Defending critical infrastructure. Interfaces
36(6), 530–544 (2006)

7. Collado, R.A., Papp, D.: Network Interdiction–Models, Applications, Unexplored Directions.
Rutcor Res Rep, RRR4, Rutgers University, New Brunswick (2012)

8. Frederick, S., Hillier, L., Gerald, J.: Introduction to Operations Research. McGraw-Hill
Education, New York (2014)

9. Golany, B., Kaplan, E.H., Marmur, A., Rothblum, U.G.: Nature plays with dice–terrorists
do not: allocating resources to counter strategic versus probabilistic risks. Eur. J. Oper. Res.
192(1), 198–208 (2009)

10. Gordon, L.A., Loeb, M.P., Lucyshyn, W., Zhou, L.: Externalities and the magnitude of cyber
security underinvestment by private sector firms: a modification of the Gordon-Loeb model. J.
Inf. Secur. 6(1), 24 (2015)


	Networks of Critical Infrastructures: Cost Estimation and Defense of Attacks
	1 Introduction
	2 Background
	3 Methods
	3.1 Operator Model
	3.2 Inclusion of Shortage and Formulation in Standard Form
	3.3 Modeling an Attack Scenario
	3.4 The Attacker-Defender Model
	3.5 Application to a Small Example
	3.6 Application to the Anytown Network

	4 Conclusion and Outlook
	References


