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Abstract We construct and analyze implicit–explicit multistep schemes for non-
linear evolution convection–diffusion partial differential equations. We establish
optimal order a priori error estimates. We are particularly interested in the depen-
dence of the stability constants on the ratio between the convection and diffusion
coefficients, the so-called Péclet number, and on the diffusion coefficient ε itself. In
particular, we show that the second order implicit–explicit backward differentiation
formula (BDF) admits stability constant independent of the Péclet number.

1 Introduction

This work is concerned with the design and analysis of implicit–explicit multistep
methods for parabolic semilinear convection-diffusion partial differential equation
(p.d.e.) problems. In order to focus on the time-stepping issues, only the time-
discrete schemes are discussed.

Previous works on multistep methods for evolution p.d.e. problems include [1–
8, 11, 12]. For the discretization of convection–diffusion equations by Runge–Kutta
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methods we refer to [9, 10]. The standard monograph for numerical methods for
parabolic equations is [15].

Multistep methods can be computationally attractive, as they do not require the
calculation of intermediate stages (in contrast to, e.g., Runge–Kutta time-stepping
schemes) to achieve high order convergence rates in time. The use of carefully
constructed implicit–explicit schemes can further reduce the computational cost by
requiring the solution of one linear equation at each time step.

More specifically, we shall construct and analyze implicit–explicit multistep
methods for the following initial and boundary value problem: seek a function
u : Ω̄ × [0, T ] → R satisfying

⎧
⎪⎪⎨

⎪⎪⎩

ut − εΔu + ∇ · (
ub(x, t)

) + c(x, t)u = f (u, x, t) in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ),

u(·, 0) = u0 in Ω.

(1.1)

Here Ω ⊂ R
d is a bounded domain, Ω̄ and ∂Ω are the closure and the boundary of

Ω, respectively, T and ε are given positive numbers, and

∇ · (ub) :=
d∑

i=1

(biu)xi
.

The convective coefficient b, the coefficient c, the initial value u0 and the forcing
term f are given functions. We assume the vector-valued function b : Ω̄ ×[0, T ] →
R

d is continuously differentiable, c : Ω̄ × [0, T ] → R is continuous, u0 ∈ L2(Ω)

and f : R× Ω̄ × [0, T ] → R is globally Lipschitz continuous in its first argument,
uniformly with respect to its second and third arguments,

∃L � 0 ∀x ∈ Ω̄ ∀t ∈ [0, T ] ∀y1, y2 ∈ R |f (y1, x, t) − f (y2, x, t)| � L|y1−y2|,
(1.2)

and such that f (0, ·, t) ∈ L2(Ω), for all t ∈ [0, T ]. It is then easily seen that
f (v, ·, t) ∈ L2(Ω), for any v ∈ L2(Ω) and all t ∈ [0, T ]; indeed, using the
Lipschitz condition (1.2) and elementary inequalities, we have

∣
∣f

(
v(x), x, t

)∣
∣2 � 2

∣
∣f

(
v(x), x, t

) − f (0, x, t)
∣
∣2 + 2|f (0, x, t)|2

� 2L2|v(x)|2 + 2|f (0, x, t)|2,

and our claim is evident. Additional hypotheses on the data will be imposed below.
We assume that the initial and boundary value problem (1.1) admits a sufficiently

smooth solution u.
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Let now (α, β) be a strongly A(0)-stable q-step scheme and (α, γ ) be an explicit
q-step scheme, characterized by three polynomials α, β and γ,

α(ζ ) =
q∑

i=0

αiζ
i, β(ζ ) =

q∑

i=0

βiζ
i, γ (ζ ) =

q−1∑

i=0

γiζ
i .

For simplicity, we assume that the order of both q-step schemes, the implicit (α, β)

and the explicit (α, γ ), is p, i.e.,

q∑

i=0

i
αi = 


q∑

i=0

i
−1βi = 


q−1∑

i=0

i
−1γi, 
 = 0, 1, . . . , p. (1.3)

As an example of schemes satisfying our assumptions we mention the implicit–
explicit BDF methods, described by the polynomials

α(ζ ) =
q∑

j=1

1

j
ζ q−j (ζ − 1)j , β(ζ ) = ζ q, γ (ζ ) = ζ q − (ζ − 1)q . (1.4)

The corresponding implicit (α, β)-schemes are the well-known BDF methods,
which are strongly A(0)-stable for q = 1, . . . , 6; their order is p = q. For a given
α, the scheme (α, γ ) is the unique explicit q-step scheme of order p = q. Thus, the
implicit–explicit BDF methods satisfy the order conditions (1.3) with p = q.

Let N ∈ N, k := T/N be the constant time step, and tn := nk, n = 0, . . . , N,

be a uniform partition of the interval [0, T ]. We assume that starting approximations
U0, . . . , Uq−1 are given, as we shall be concerned with q-step schemes for (1.1).

We first write the differential equation in (1.1) in the form

ut + Au + C(t)u = B(t, u(t)), t ∈ (0, T ), (1.5)

with appropriate for our purposes operators A,B and C. The numerical scheme
depends on the particular choice of the operators A,B and C in (1.5). We shall
discuss specific choices later on. We discretize the operators A and C implicitly,
by the implicit scheme (α, β), and the operator B explicitly, by the explicit scheme
(α, γ ). Thus, we define approximations Um to the nodal values um := u(·, tm) of
the exact solution by

q∑

i=0

[
αiI + kβi

(
A + C(tn+i )

)]
Un+i = k

q−1∑

i=0

γiB(tn+i , Un+i ), (1.6)

for n = 0, . . . , N − q.
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1.1 Consistency Error

We shall now discuss a suitable representation of the consistency error of the
implicit–explicit scheme (1.6), which will later be used to derive optimal order
consistency estimates; see also [1]. We assume that the order of both schemes (α, β)

and (α, γ ) is p; cf. (1.3).
The consistency error En of the scheme (1.6) for the solution u of (1.1), i.e., the

amount by which the exact solution fails to satisfy (1.6), is given by

kEn =
q∑

i=0

[
αiI + kβi

(
A + C(tn+i )

)]
un+i − k

q−1∑

i=0

γiB(tn+i , un+i ), (1.7)

n = 0, . . . , N − q. First, letting

En
1 :=

q∑

i=0

[
αiu

n+i − kβiut (t
n+i )

]
, En

2 := k

q∑

i=0

(βi − γi)B(tn+i , un+i ),

with γq := 0, and using the differential equation in (1.5), we infer that

kEn = En
1 + En

2 . (1.8)

Furthermore, via a Taylor expansion about tn, we see that, due to the order
conditions of the implicit (α, β)-scheme (i.e., the first equality in (1.3)) and the
second equality in (1.3), respectively, leading terms of order up to p − 1 cancel, and
we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

En
1 = 1

p!
q∑

i=1

∫ tn+i

tn
(tn+i − s)p−1[αi(t

n+i − s) − pkβi

]∂p+1u

∂tp+1 (s) ds,

En
2 = k

(p − 1)!
q∑

i=1

(βi − γi)

∫ tn+i

tn
(tn+i − s)p−1 dp

dtp
B(s, u(s)) ds.

(1.9)

This representation of the consistency error will allow us to derive optimal order
consistency estimates in suitable norms, under reasonable regularity assumptions.

The remainder of this work is structured as follows. In Sect. 2, we study linearly
implicit numerical schemes, characterised by the same discrete operator for all time
levels, and we derive optimal order error estimates. We show that, under such
general setting, the constant in the stability estimate for this family of methods
depends on the Péclet number. Moreover, the constant in the error estimate depends
also on the diffusion parameter ε implicitly, through high order Sobolev norms of the
exact solution u. In such general setting one does not expect better dependence on
the singular perturbation parameter and the results should be treated as an indication
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of the numerical challenges for this class of methods. At the other end of the
spectrum, in Sect. 3, we focus on first and second order schemes of BDF type,
requiring again one linear solve at every time level to advance in time. Crucially,
however, we shall make use of possibly time-dependent nonsymmetric, in general,
linear discrete operators, stemming from possible respective time-dependence of
the convective and/or reaction coefficients b and c. This somewhat nonstandard
choice will be justified below. Using the A-stability of these low order schemes,
we improve crucially on the estimates of Sect. 2: the stability constant is now
independent of the diffusion parameter ε, while the constant in the error estimate
depends on it only implicitly, through appropriate norms of the exact solution u. To
test the potential of the proposed method, in Sect. 4, we present a series of numerical
experiments demonstrating the performance of the second order BDF method in
the discretization of semilinear convection-diffusion equations, with nonlinearities
admitting non-Lipschitz growth. Although the latter result is somewhat in the
folklore of this class of methods, we were not able to locate a proof under the same
assumptions.

2 Error Estimates with Constants Depending on the Péclet
Number

Let c� be a fixed positive number, let the operator C in (1.5) vanish, and choose the
operators A and B as Av := −εΔv+c�v and B(t, v) := f

(
v(·), ·, t)−∇·(vb(t)

)+(
c� − c(t)

)
v. We can then, obviously, write the p.d.e. in (1.1) in the form (1.5). For

simplicity, we suppressed the dependence on x; we shall follow this convention also
below.

With this splitting, the scheme (1.6) takes the form

q∑

i=0

(αiI + kβiA)Un+i = k

q−1∑

i=0

γiB(tn+i , Un+i ), (2.1)

n = 0, . . . , N − q.

To advance with (2.1) in time, i.e., to compute the unknown Un+q , we need
to solve one linear equation, with the same operator for all time levels. As we
shall see below, this operator is self-adjoint and positive definite; in particular, the
approximate solutions are well defined.

We shall follow the analysis in [4, 7] and [1] to study the implicit–explicit
numerical scheme (1.6).
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2.1 Notation and Lipschitz Conditions

We let H := L2(Ω), denote by (·, ·) and ‖ · ‖ its inner product and norm,
respectively, and we recall the standard Sobolev spaces. Evidently, the operator
A : D(A) = H 2(Ω) ∩ H 1

0 (Ω) → H is linear, self-adjoint and positive definite;
the domain V := D(A1/2) of A1/2 is V = H 1

0 (Ω). We denote by V ′ the dual of V ,
with respect to the pivot space H , i.e., V ′ = H−1(Ω), and we introduce the norms
||| · ||| and ||| · |||� in V and V ′, respectively, by

|||v||| := ‖A1/2v‖ = ( − ε(Δv, v) + c�(v, v)
)1/2 = (

ε‖∇v‖2 + c�‖v‖2)1/2

and

|||v|||� := ‖A−1/2v‖ = (
v, (−εΔ + c�I )−1v

)1/2
.

In a standard fashion, A can be extended to an operator from V onto V ′; the notation
(·, ·) will additionally signify the duality pairing between V ′ and V . The operator
B(t, ·) : D(A) → H can also be viewed as an operator from V into V ′.

For notational convenience, we split the operator B into two parts, B = B1 +B2,

with

B1(t)v := −∇ · (
vb(t)

)
and B2(t, v) := f

(
v(·), ·, t) + (

c� − c(t)
)
v.

Useful Estimates for |||v|||� We have

|||v|||� = sup
u∈V \{0}

(v, u)
(
ε‖∇u‖2 + c�‖u‖2

)1/2 ,

which leads to the estimate

|||v|||� � min
{ 1√

c�
‖v‖, 1√

ε
‖v‖H−1

}
. (2.2)

Indeed, first

|||v|||� � sup
u∈V \{0}

(v, u)√
c�‖u‖ � sup

u∈V \{0}
‖v‖ ‖u‖√

c�‖u‖ ,

whence

|||v|||� �
1√
c�

‖v‖; (2.3)
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furthermore,

|||v|||� � sup
u∈V \{0}

(v, u)√
ε‖∇u‖ � sup

u∈V \{0}
‖v‖H−1 ‖∇u‖√

ε‖∇u‖ � 1√
ε
‖v‖H−1 .

Lipschitz Conditions First, for v, ṽ ∈ V, we have

(B1(t, v), ṽ
) =

∫

Ω

vb(·, t) · ∇ṽ dx =
d∑

i=1

∫

Ω

bi(·, t)v(ṽ)xi
dx,

whence, with

b̂ := max
1�i�d

max
x∈Ω̄

0�t�T

|bi(x, t)|,

we obtain

∣
∣
(
B1(t, v), ṽ

)∣
∣ � b̂‖v‖

d∑

i=1

‖(ṽ)xi
‖ � b̂

√
d‖v‖

( d∑

i=1

‖(ṽ)xi
‖2

)1/2= b̂
√

d‖v‖ ‖∇ṽ‖.

Therefore, since
√

ε‖∇ṽ‖ � |||ṽ|||,

∀t ∈ [0, T ] ∀v ∈ V |||B1(t, v)|||� � μ1‖v‖ with μ1 := b̂√
ε

√
d. (2.4)

Furthermore, with

ĉ := max
x∈Ω̄

0�t�T

|c� − c(x, t)|,

in view of (1.2), for v, ṽ ∈ V, we have

‖B2(t, v) − B2(t, ṽ)‖2 �
∫

Ω

[
(L + ĉ)|v(x) − ṽ(x)|]2

dx = (L + ĉ)2‖v − ṽ‖2,

whence, according to (2.3),

|||B2(t, v) − B2(t, ṽ)|||� �
1√
c�

‖B2(t, v) − B2(t, ṽ)‖ ≤ L + ĉ√
c�

‖v − ṽ‖,

i.e.,

∀t ∈ [0, T ] ∀v, ṽ ∈ V |||B2(t, v)−B2(t, ṽ)|||� � μ2‖v−ṽ‖ with μ2 := L + ĉ√
c�

.

(2.5)
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From (2.4) and (2.5) we obtain the desired global Lipschitz condition

∀t ∈ [0, T ] ∀v, ṽ ∈ V |||B(t, v) − B(t, ṽ)|||� � μ‖v − ṽ‖, (2.6)

with Lipschitz constant μ := μ1 + μ2,

μ = b̂√
ε

√
d + L + ĉ√

c�
. (2.7)

Notice that the Lipschitz constant μ is bounded for uniformly bounded Péclet
numbers b̂/

√
ε.

2.2 Consistency

From the representations (1.8) and (1.9) of the consistency error, we immediately
obtain, under obvious regularity requirements, the desired optimal order consistency
estimate

max
0�n�N−q

|||En|||� � ckp; (2.8)

the coefficient c depends on the diffusion parameter ε, through appropriate norms
of the exact solution u.

2.3 Stability

Let Um, V m ∈ V,m = 0, . . . , N, satisfy (2.1) and

q∑

i=0

(αiI + kβiA)V n+i = k

q−1∑

i=0

γiB(tn+i , V n+i ), (2.9)

n = 0, . . . , N − q, respectively. Then, with ϑm := Um − V m,m = 0, . . . , N, we
have the stability estimate

‖ϑn‖2 + k

n∑


=0

|||ϑ
|||2 � c

q−1∑

j=0

(‖ϑj‖2 + k|||ϑj |||2), n = q − 1, . . . , N, (2.10)

with a constant c independent of Um, V m and k; see [7, Theorem 2.1]. Actually,
since the Lipschitz constant μ in the Lipschitz condition (2.6) depends on ε only
through the Péclet number, the stability constant c in (2.10) depends on the diffusion
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parameter ε also only through the Péclet number; indeed, it is bounded, for bounded
Péclet numbers.

2.4 Error Estimates

According to [7, Theorem 2.1], we have the following error estimate:

Theorem 2.1 (Error Estimate) Let (α, β) be a strongly A(0)-stable q-step scheme
and (α, γ ) be an explicit q-step scheme. Let the order of both schemes (α, β) and
(α, γ ) be p. Assume we are given starting approximations U0, U1, . . . , Uq−1 ∈ V

to u0, . . . , uq−1 such that

max
0�j�q−1

(
‖uj − Uj‖ + k1/2|||uj − Uj |||

)
� ckp. (2.11)

Let Un ∈ V, n = q, . . . , N, be recursively defined by (2.1). Let en = un − Un, n =
0, . . . , N, be the approximation error. Then, there exists a constant c, independent
of k and n, depending exponentially on b̂2/ε, such that

‖en‖2 + k

n∑


=0

|||e
|||2 � c
{ q−1∑

j=0

(
‖ej‖2 + k|||ej |||2

)
+ k

n−q∑


=0

|||E
|||2�
}
, (2.12)

n = q − 1, . . . , N, whence, in view of (2.11) and (2.8),

max
0�n�N

‖u(tn) − Un‖ � ckp. (2.13)

In the estimate (2.12) E
 is the consistency error of the scheme; see (1.7) with
C(t) = 0. �
Remark 2.1 (BDF Schemes) We focus here on the case that the method (2.1) is
the implicit–explicit q-step BDF scheme. Since in the Lipschitz condition (2.6) the
norm ||| · ||| does not enter on the right-hand side, the stability constants λ in the
notation of [7] vanishes; therefore, Remark 7.2 of [4] applies, and we can relax
condition (2.11) on the starting approximations U0, . . . , Uq−1. More precisely, the
statement of Theorem 2.1 is valid in this case under the assumption

max
0�j�q−1

‖uj − Uj‖ � ckp.

�
Remark 2.2 (A Wider Class of Linearly Implicit Methods) The splitting of the p.d.e.
in (1.1) that we used in the scheme (2.1) satisfies also the assumptions imposed in
[4]. Therefore, with this specific splitting, the initial and boundary value problem
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(1.1) can be discretized by the wider class of linearly implicit methods discussed
in [4]. Thus, the abstract results of [4] apply and lead to error estimates with error
constants depending exponentially on b̂2/ε, as is the case in Theorem 2.1. �

2.5 Alternative Forms of the Implicit–Explicit Schemes

Various possibilities of splitting the p.d.e. in (1.1) before discretizing by implicit–
explicit multistep schemes are possible; here, we comment on two such alternatives.

2.5.1 First Choice

Consider now the operators Ã and B̃ defined as Ãv := −εΔv, and B̃(t, v) :=
f

(
v(·), ·, t)−∇ · (vb(t)

)− c(t)v. Notice that the only difference to the splitting we
used in (2.1) is that here we set c� = 0. With this splitting, the scheme (1.6) takes
the form

q∑

i=0

(αiI + kβiÃ)Un+i = k

q−1∑

i=0

γiB̃(tn+i , Un+i ), (2.14)

n = 0, . . . , N − q. In this case,

|||v||| := ‖Ã1/2v‖ = √
ε‖∇v‖ and |||v|||� := ‖Ã−1/2v‖ = 1√

ε
‖(−Δ)−1/2v‖.

and, with B̃2(t, v) := f
(
v(·), ·, t), we have

‖B̃2(t, v) − B̃2(t, ṽ)‖2 =
∫

Ω

∣
∣f

(
v(x), x, t

) − f
(
ṽ(x), x, t

)∣
∣2

dx

� L2
∫

Ω

|v(x) − ṽ(x)|2 dx = L2‖v − ṽ‖2.

Furthermore, using the Poincaré–Friedrichs inequality ‖w‖ � CPF‖∇w‖, for w ∈
V, we easily see that |||v|||� � 1√

ε
CPF‖v‖, for v ∈ H. Thus, we infer that

∀t ∈ [0, T ] ∀v, ṽ ∈ V |||B̃2(t, v) − B̃2(t, ṽ)|||� � μ̃2‖v − ṽ‖ (2.15)

with μ̃2 := 1√
ε
LCPF. Therefore, a straightforward application of the analysis of

[7] leads to a stability estimate with constant depending exponentially on 1/ε,

rather than on the Péclet number. However, the scheme (2.14) can, obviously, be
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equivalently written in the form

q∑

i=0

(αiI + kβiA)Un+i − kc�

q∑

i=0

βiU
n+i = k

q−1∑

i=0

γiB̃(tn+i , Un+i ), (2.16)

n = 0, . . . , N − q. Applying here the analysis of [1], rather than the one of [7],
we can then easily see that the results of both Theorem 2.1 and Remark 2.1 remain
valid also for the scheme (2.14).

2.5.2 Second Choice

We discuss here the discretization of the linear part of Eq. (1.1) implicitly, by the
implicit scheme (α, β), and of the nonlinear part explicitly, by the explicit scheme
(α, γ ). With the operator A used above, C(t)v := ∇ · (

vb(t)
) + (

c(t) − c�
)
v,

and B(t, v) := f
(
v(·), ·, t), the scheme can be written in the form (2.1). Applying

the analysis of [1] (with the operator A rather than with Ã) we easily see that the
results of Theorem 2.1 remain valid in this case as well. Furthermore, in the case of
BDF schemes the requirement on the starting approximations can be relaxed as in
Remark 2.1. Notice that c� is used in the analysis of the schemes only; the schemes
themselves are independent of c�.

Let us emphasize that, in contrast to the schemes (2.1) and (2.14), in this case
the operator of the linear equations is in general time dependent, and so varies from
one time level to the next, if b and/or c are/is time dependent. Also, the numerical
approximations are well defined, provided the time step k is sufficiently small. More
precisely, for a given w ∈ V ′, it suffices to show that equation

αqv + kβq

[ − εΔv + ∇ · (
vb(tn+q)

) + c(tn+q)v
] = w, (2.17)

possesses a unique solution v ∈ V. A well-known property of A(0)-stable multistep
schemes (α, β) is that the product αqβq is positive. Assume, without loss of
generality, that αq is positive. According to the Lax–Milgram Lemma, it obviously
suffices to show that the bilinear form a : V × V → R,

a(v, ṽ) := αq(v, ṽ) + kβqε(∇v,∇ṽ) + kβq

(∇ · (vb(tn+q)), ṽ
) + kβq

(
c(tn+q)v, ṽ

)

is coercive and continuous. First, for v ∈ V, using an elementary inequality, we
have

a(v, v) = αq‖v‖2 + kβqε‖∇v‖2 − kβq

(
vb(tn+q),∇v

) + kβq

(
c(tn+q)v, v

)

= αq‖v‖2 + kβqε‖∇v‖2 + 1

2
kβq

(
v∇ · b(tn+q), v

)
kβq

(
c(tn+q)v, v

)

�
(
αq − 1

2
βqk‖∇ · b(tn+q)‖L∞(Ω) − βqk‖c(tn+q)‖L∞(Ω)

)‖v‖2 + kβqε‖∇v‖2,
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and we infer that a is indeed coercive for sufficiently small k, independent of ε.
Similarly, for v, ṽ ∈ V, we have

|a(v, ṽ)| � αq‖v‖ ‖ṽ‖ + kβqε‖∇v‖ ‖∇ṽ‖ + kβqb�‖v‖ ‖∇ṽ‖ + kβqc�‖v‖ ‖ṽ‖,
and see that a is also continuous.

It is evident from the above discussion that, Péclet-number independent stability
analysis, in such general setting, is an essential challenge and may potentially not
be true for schemes that are not A-stable. Indeed, as we shall see below, upon
employing non-standard and specialised techniques, we are able to recover Péclet-
number independent stability bounds for implicit–explicit Euler method (a known
result, but nevertheless, included for completeness of the presentation) and for the
classical implicit–explicit second order BDF method; the latter is an improvement
upon the results presented in [12].

3 Low Order Schemes

Focusing, now, on low order time stepping schemes, our goal is to establish error
estimates via the energy technique with stability constants independent of ε.

We consider, again, the initial and boundary value problem (1.1) and assume that

c(x, t) + 1

2
∇ · b(x, t) � b2 ∀x ∈ Ω̄ t ∈ [0, T ], (3.1)

for some positive b; notice that this can always be achieved by either adding, if
necessary, to both sides of the differential equation a term of the form au with a
sufficiently large coefficient a, or by the change of variables ũ := e−atu. Notice that
this affects the constant in the error estimate. Indeed, in the first case the Lipschitz
constant changes from L to L+a. In the second case f̃ (ũ, x, t) = e−atf (eat ũ, x, t)

satisfies the Lipschitz condition with constant L, but we need to multiply the
approximations Ũn of ũn by eatn to obtain approximations Un of un and thus
un − Un = eatn

(
ũn − Ũn

)
.

For convenience we introduce the operator A(t) : H 2(Ω)∩H 1
0 (Ω) → L2(Ω) =:

H, t ∈ [0, T ], by

A(t)v := −εΔv + ∇ · (
vb(x, t)

) + c(x, t)v.

Notice, however, that A(t) is not self-adjoint and possibly time-dependent. Obvi-
ously, A(t) can be extended to an operator from V := H 1

0 (Ω) to V ′ = H−1(Ω).

Taking the duality paring with v and integrating by parts, we have

(A(t)v, v) = ε‖∇v‖2 + (∇ · (
vb(x, t)

) + c(x, t)v, v)

= ε‖∇v‖2 + ((c + 1

2
∇ · b)v, v).
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Thus, in view of (3.1), A(t) is coercive:

(A(t)v, v) � ε‖∇v‖2 + b2‖v‖2 ∀v ∈ V = H 1
0 (Ω). (3.2)

3.1 Implicit–Explicit Euler Method

For completeness, we begin by presenting the lowest order case of implicit–explicit
Euler method, keeping careful track of the stability constants.

We recursively define a sequence of approximations Um to the nodal values
u(tm) of the solution u of the initial and boundary value problem (1.1) by the
implicit–explicit Euler method,

Un+1 + kA(tn+1)Un+1 = Un + kf (Un, ·, tn), n = 0, . . . , N − 1, (3.3)

with starting approximation U0 := u0. In view of the coercivity (3.2), it can be
easily seen that the numerical approximations are well defined.

3.1.1 Consistency

The consistency error En of the implicit–explicit Euler scheme (3.3) for the solution
u of (1.1),

kEn = un+1 + kA(tn+1)un+1 − un − kf (un, ·, tn), n = 0, . . . , N − 1, (3.4)

can be written in the form kEn = En
1 + En

2 with

En
1 =

∫ tn+1

tn
(tn − s)utt (s) ds, En

2 = k

∫ tn+1

tn

d

dt
f (u(s), ·, s) ds; (3.5)

cf. (1.9). Therefore, under obvious regularity assumptions, we derive the desired
optimal order consistency estimate

max
0�n�N−1

‖En‖ � ck (3.6)

with a suitable positive constant c. (Of course, c depends implicitly on ε, since the
solution u depends on ε.)
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3.1.2 Stability

Let Um, V m ∈ V,m = 0, . . . , N, satisfy (3.3) and

V n+1 + kA(tn+1)V n+1 = V n + kf (V n, ·, tn), n = 0, . . . , N − 1, (3.7)

respectively. Then, ϑm := Um − V m,m = 0, . . . , N, satisfy the relation

ϑn+1 + kA(tn+1)ϑn+1 = ϑn + k
[
f (Un, ·, tn) − f (V n, ·, tn)], (3.8)

n = 0, . . . , N − 1. Taking in (3.8) the inner product with ϑn+1 and utilizing (3.2),
we obtain

‖ϑn+1‖2 +kε‖∇ϑn+1‖2 +kb2‖ϑn+1‖2 � (ϑn, ϑn+1)+k(f (Un, ·, tn)−f (V n, ·, tn), ϑn+1).

Therefore,

‖ϑn+1‖2 + kε‖∇ϑn+1‖2 + kb2‖ϑn+1‖2 � 1

2
‖ϑn‖2 + 1

2
‖ϑn+1‖2

+ k‖f (Un, ·, tn) − f (V n, ·, tn)‖ ‖ϑn+1‖

� 1

2
‖ϑn‖2 + 1

2
‖ϑn+1‖2 + 1

2
Lk‖ϑn‖2 + 1

2
Lk‖ϑn+1‖2,

whence, by multiplying by 2,

[
1 − (L − 2b2)k

]‖ϑn+1‖2 ≤ (1 + Lk)‖ϑn‖2. (3.9)

Now, for sufficiently small k,

‖ϑn+1‖2 � (1 + c�k)‖ϑn‖2, (3.10)

with a suitable constant c�. This is obviously valid in the case 2b2 � L, with c� =
L. In the case L > 2b2, (3.9) yields, for k < 1/(L − 2b2),

‖ϑn+1‖2 ≤ 1 + Lk

1 − (L − 2b2)k
‖ϑn‖2. (3.11)

For any fixed c� (strictly) larger than 2(L − b2), it is easily seen that

1 + Lk

1 − (L − 2b2)k
� 1 + c�k, (3.12)
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provided that k is sufficiently small,

k � c� − 2(L − b2)

c�(L − 2b2)
, (3.13)

and (3.10) follows from (3.11) and (3.12).
Now, from (3.10) we obtain

‖ϑn‖2 � (1 + c�k)n‖ϑ0‖2, n = 0, . . . , N,

and thus

‖ϑn‖2 � ec�nk‖ϑ0‖2, n = 0, . . . , N.

Hence, we arrive at the desired stability estimate

max
1�n�N

‖ϑn‖ � ec�T /2‖ϑ0‖. (3.14)

Crucially, the above stability constant is independent of the diffusion coefficient ε.

3.1.3 Error Estimate

Let en := un − Un, n = 0, . . . , N. Subtracting (3.3) from (3.4), we obtain the error
equation

en+1 + kA(tn+1)en+1 = en + k
[
f (un, ·, tn) − f (Un, ·, tn)] + kEn, (3.15)

n = 0, . . . , N − 1. Taking here the inner product with en+1, proceeding as in the
stability proof, and utilizing the consistency estimate (3.6) as well as the fact that e0

vanishes, we easily derive the desired error estimate

max
1�n�N

‖en‖ � ck. (3.16)

The constant c on the right-hand side of (3.16) depends on ε only implicitly through
Sobolev norms of the solution u (see (3.5) and (3.6)).

3.2 Implicit–Explicit Two-Step BDF Method

Here we present a robust error analysis for the IMEX using a two-step BDF method.
Although we present the time-discrete analysis only, the result can be used to
improve fully discrete a priori error bounds for fully discrete BDF-IMEX schemes
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for various stable spatial discretizations, e.g., [12]; in particular, the exponential
dependence of the a priori error bound constant on the Péclet number from [12] can
be avoided.

With starting approximation U0 := u0, we first perform one step of the implicit–
explicit Euler scheme to compute U1, i.e., we let U1 be given by

U1 + kA(t1)U1 = U0 + kf
(
U0, ·, t0), (3.17)

and then let the approximations U2, . . . , UN be given by the implicit–explicit two-
step BDF scheme,

3

2
Un+2 − 2Un+1 + 1

2
Un + kA(tn+2)Un+2 = 2kf (Un+1, ·, tn+1) − kf (Un, ·, tn),

(3.18)

n = 0, . . . , N − 2. Again, in view of (3.2), it can be easily seen that the numerical
approximations are well defined.

3.2.1 Consistency

The consistency error En of the implicit–explicit BDF scheme (3.18),

kEn = 3

2
un+2 − 2un+1 + 1

2
un + kA(tn+2)un+2

− 2kf (un+1, ·, tn+1) + kf (un, ·, tn),
(3.19)

n = 0, . . . , N − 2, can be written in the form

kEn = En
1 + En

2

with

En
1 = −

∫ tn+1

tn
(tn+1 − s)2uttt (s) ds + 3

4

∫ tn+2

tn
(tn+2 − s)

(
tn+2 − s − 4

3
k
)
uttt (s) ds,

En
2 = − 2k

∫ tn+1

tn
(tn+1 − s)

d2

dt2
f

(
u(s), ·, s) ds + k

∫ tn+2

tn
(tn+2 − s)

d2

dt2
f

(
u(s), ·, s) ds;

cf. (1.9). Therefore, under the regularity assumptions

‖uttt (t)‖� � c1 and
∥
∥
∥

d2

dt2 f
(
u(t), ·, t)

∥
∥
∥ � c2, (3.20)
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for all t ∈ [0, T ], we immediately conclude that

max
0�n�N−2

‖En
1 ‖ � 2c1k

2 and max
0�n�N−2

‖En
2 ‖ � 2c2k

2.

Thus, we obtain the desired estimate for the consistency error En,

max
0�n�N−2

‖En‖ � Ck2. (3.21)

Remark 3.1 (Regularity Requirement) Note that (3.20) can be replaced by slightly
weaker C2,1-requirements on u and f . Similar remark applies to (3.5) and (3.6).

3.2.2 Stability

Let U0, . . . , UN ∈ V satisfy (3.17) and (3.18), and V 0, . . . , V N ∈ V satisfy

3

2
V n+2 − 2V n+1 + 1

2
V n + kA(tn+2)V n+2 = 2kf (V n+1, ·, tn+1) − kf (V n, ·, tn),

(3.22)

n = 0, . . . , N − 2. Let

ϑm := Um − V m and bm := f (Um, ·, tm) − f (V m, ·, tm),

m = 0, . . . , N. Subtracting (3.22) from (3.18), we obtain

3

2
ϑn+2 − 2ϑn+1 + 1

2
ϑn + kA(tn+2)ϑn+2 = 2kbn+1 − kbn. (3.23)

Now, we observe the identity

(3

2
ϑn+2 − 2ϑn+1 + 1

2
ϑn, ϑn+2

)
= 5

4
‖ϑn+2‖2 − ‖ϑn+1‖2 − 1

4
‖ϑn‖2

− (
(ϑn+2, ϑn+1) − (ϑn+1, ϑn)

) + 1

4
‖ϑn+2 − 2ϑn+1 + ϑn‖2;

(3.24)

cf. [16]. We note that (3.24) stems from the G-stability of the BDF method (α, β)

with the positive definite symmetric matrix G,

G = 1

4

(
5 −2

−2 1

)

;

see [14, Example 6.5].
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Taking the inner product with ϑn+2 in (3.23), and using (3.24) and (3.2), we have

5

4
‖ϑn+2‖2 − ‖ϑn+1‖2 − 1

4
‖ϑn‖2 − (

(ϑn+2, ϑn+1) − (ϑn+1, ϑn)
)

+ kε‖∇ϑn+2‖2 + kb2‖ϑn+2‖2 � 2k‖bn+1‖ ‖ϑn+2‖ + k‖bn‖ ‖ϑn+2‖.
(3.25)

Now, in view of the Lipschitz condition (1.2), we have

‖bm‖ � L‖ϑm‖; (3.26)

therefore, (3.25) yields

5

4
‖ϑn+2‖2 − ‖ϑn+1‖2 − 1

4
‖ϑn‖2 − (

(ϑn+2, ϑn+1) − (ϑn+1, ϑn)
)

+ kε‖∇ϑn+2‖2 + kb2‖ϑn+2‖2 � 2Lk‖ϑn+1‖ ‖ϑn+2‖ + Lk‖ϑn‖ ‖ϑn+2‖,
(3.27)

and, using a standard Poincaré-Friedrichs inequality ‖v‖2 � cPF ‖∇v‖2, we infer

5

4

(‖ϑn+2‖2 − ‖ϑn+1‖2) + 1

4

(‖ϑn+1‖2 − ‖ϑn‖2)

−(
(ϑn+2, ϑn+1) − (ϑn+1, ϑn)

)
�

(3L

2
− δ)k‖ϑn+2‖2 + Lk‖ϑn+1‖2+Lk

2
‖ϑn‖2,

(3.28)

with δ := cPF ε + b2. Summing in (3.28) from n = 0 to n = 
, we obtain

5

4

(‖ϑ
+2‖2 − ‖ϑ1‖2) + 1

4

(‖ϑ
+1‖2 − ‖ϑ0‖2) − (ϑ
+2, ϑ
+1)

� (3L − δ)k


+2∑

n=0

‖ϑn‖2 − (ϑ1, ϑ0),

whence, easily,

1

4
‖ϑ
+2‖2 � (3L − δ)k


+2∑

n=0

‖ϑn‖2 + 1

2

(‖ϑ1‖2 + ‖ϑ0‖2).

Therefore, we have,

‖ϑ
‖2 � 4(3L − δ)k


∑

n=0

‖ϑn‖2 + 2
(‖ϑ1‖2 + ‖ϑ0‖2), (3.29)
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 = 2, . . . , N. Now, for sufficiently small k, whose size depends adversely only on
L, application of the discrete Gronwall inequality leads to the desired local stability
estimate

‖ϑn‖2 � c
(‖ϑ1‖2 + ‖ϑ0‖2), n = 1, . . . , N. (3.30)

Note that, in particular, the dependence of the stability constant c on ε is desirable,
in that it diminishes as ε → 0 and can even be beneficial for large ε.

Now, let V 1 and V 0 be related by

V 1 + kA(t1)V 1 = V 0 + kf (V 0, ·, t0), (3.31)

i.e., starting with initial value V 0 we obtain V 1 by performing one step with the
implicit–explicit Euler scheme to the differential equation in (1.1); see (3.17) and
(3.18). Obviously, in view of the stability property (3.14) of the implicit–explicit
Euler method, ‖ϑ1‖ � c‖ϑ0‖, which combined with (3.30) leads to our final
stability estimate

max
1�n�N

‖ϑn‖ � c‖ϑ0‖, (3.32)

with a constant c > 0 independent of ε.

3.2.3 Error Estimates

Let the implicit–explicit BDF2 approximations U0, . . . , UN be given by (3.17) and
(3.18). Assume that the solution u of (1.1) is sufficiently smooth, such that (3.21)
and (3.6) be valid. Then, combining stability and consistency in the standard way
we establish the following optimal order error estimate

max
0�n�N

‖u(tn) − Un‖ � ck2. (3.33)

Again, here the constant c in (3.32) depends only implicitly on ε, through its
dependence on Sobolev norms of the exact solution u, via the consistency estimates
(3.21) and (3.6).

Remark 3.2 (Energy Technique for Higher Order BDF Methods) Proceeding as in
Sect. 2.1, we can see that

|(A(t)v, u
)| � (√

ε‖∇v‖ + μ‖v‖)(ε‖∇u‖2 + b2‖u‖2)1/2 ∀v, u ∈ V = H 1
0 (Ω),

(3.34)

with a constant μ depending on d, maxx,t |c(x, t)| and the Péclet number b̂/
√

ε. In
view of the coercivity condition (3.2) and (3.34), as well as of the fact that the time



78 G. Akrivis and E. H. Georgoulis

interval [0, T ] is bounded, a slight modification of the stability analysis of [2] leads
to optimal order error estimates in our case with constants depending on the Péclet
number for BDF methods up to order five. Notice that (3.34) is a slight relaxation
of the corresponding boundedness condition [2, (1.7)]. The energy stability analysis
in [2] is based on the Nevanlinna–Odeh multiplier technique. Moreover, it is not
clear if it is possible to improve upon these estimates to arrive to a Péclet-number
independent stability analysis for A(α)-stable BDF methods with α < π/2. �

The proposed implicit-explicit methods are somewhat non-standard in that they
require the solution of a non-symmetric linear system per time-step. Indeed, it
is a usual practice to treat convection explicitly also in an effort to arrive at
symmetric linear systems instead. Such methods, however, require careful tuning
of the discretization parameters, as hyperbolic-type CFL restrictions are introduced
by the explicit treatment of the dominant convection term. The latter is, crucially,
not the case for the low order schemes studied in this work.

We shall now argue that the implicit treatment of the predominantly skew-
symmetric convection term does not hinder the computational efficiency of the
proposed methods in any essential fashion. This is because nonsymmetric linear
systems arising from the discretization of the convection-diffusion spatial operator
through some stable finite elements (e.g., streamline upwinded Petrov-Galerkin
methods, discontinuous Galerkin approaches, etc.) admit a number of special
properties that can be exploited in the design of scalable preconditioning strategies.
For instance, for discontinuous Galerkin methods for steady convection-diffusion
problems it has been shown in [13] that, preconditioning by the symmetric part
of the convection-diffusion stiffness matrix for the interior penalty discontinuous
Galerkin method within a preconditioned GMREs iteration, provides a three-step
recurrence Krylov method that converges independently of the spatial mesh-size.
This means that, up to the cost of inversion of a symmetric preconditioner, the
complexity of the preconditioned GMREs is comparable to that of a standard
Conjugate Gradient iteration that would normally be used for the respective
symmetric linear system of the classical diffusion-only implicit IMEX scheme.
At the same time the step of inverting the symmetric part of the stiffness matrix
can be efficiently tackled by standard multilevel approaches, whose convergence is
further aided by the presence of a strong reaction coefficient stemming from the
time discretization.

4 Numerical Experiments

We present some numerical experiments investigating the convergence rates for the
implicit-explicit second order BDF (BDF2) method, described in Sect. 3.2, as well
as its robustness with respect to the Péclet number. To fully asses the applicability
of the proposed method, our numerical investigations are not confined to globally
Lipschitz nonlinearities.
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Table 1 Example 1: error
and convergence rates

ε = 1 ε = 10−1

k ‖e‖L∞(L2) Rate k ‖e‖L∞(L2) Rate

1.0e−1 2.519e−4 – 1.0e−1 1.646e−4 –

5.0e−2 6.603e−5 1.93 5.0e−2 4.289e−5 1.94

1.0e−2 2.674e−6 1.99 1.0e−2 2.221e−6 1.84

5.0e−3 6.687e−7 1.99 5.0e−3 5.832e−7 1.93

1.0e−3 2.682e−8 1.99 1.0e−3 2.451e−8 1.97

ε = 10−3 ε = 10−5

k ‖e‖L∞(L2) Rate k ‖e‖L∞(L2) Rate

1.0e−1 3.075e−4 – 1.0e−1 3.790e−4 –

5.0e−2 8.958e−5 1.78 5.0e−2 1.102e−4 1.78

1.0e−2 3.874e−6 1.95 1.0e−2 4.786e−6 1.95

5.0e−3 9.731e−7 1.99 5.0e−3 1.203e−6 1.99

1.0e−3 3.897e−8 2.00 1.0e−3 4.572e−8 2.03

4.1 Example 1

We begin with considering the semilinear convection-diffusion problem for Ω =
[0, 1]2, T = 1, b = (1, 1)T , c = 0 and f (u, x, t) = −u2 + g(x, t), with g such that
the exact solution of the problem is given by

u(x, t) := (1 − exp(−t))x1x2(1 − x1)(1 − x2), x := (x1, x2)
T .

The implicit-explicit BDF2 method is implemented for ε = 1, 10−1, 10−3, 10−5,
using the finite element library FEniCS, with spatial discretization via conforming
finite elements on a 32 × 32 triangular mesh. The mesh is fine enough to ensure
that the time-discretization error dominates the spatial error, which is, generally,
non-zero as cubic conforming elements on triangular meshes are used for all
computations but one, namely for k = 10−3, ε = 10−5, where quadric elements
are used.

The errors and the convergence rates are given in Table 1, where k is the time-
step size, ‖e‖L∞(L2) := max0�n�N ‖u(tn) − Un‖, and ‘rate’ is the respective
convergence rate between two consecutive time-step sizes. As predicted by the
theory, second order convergence with respect to k is observed in all cases.

4.2 Example 2

Next, we consider a convective variant of the classical Fisher equation, namely
problem (1.1) with Ω = [0, 1]2, T = 1, b = (1, 1)T , c = 0 and f (u, x, t) =
10u(1 − u). We apply the implicit-explicit BDF2 method for ε = 10−1, 10−2,
with spatial discretization via conforming quadratic finite elements on a 64 × 64
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Table 2 Example 2: error
and convergence rates

ε = 10−1 ε = 10−2

k ‖e‖L∞(L2) Rate k ‖e‖L∞(L2) Rate

1.0e−1 4.982e−2 – 5.0e−2 6.743e−1 –

5.0e−2 1.647e−2 1.58 2.5e−2 2.653e−1 1.34

2.5e−2 4.348e−3 1.87 1.25e−2 2.382e−2 3.48

1.25e−2 8.677e−4 2.12 6.125e−3 6.793e−3 1.81

triangular mesh. The finite element space is accurate enough to ensure that the time-
discretization error dominates the spatial error and that the boundary layers are,
therefore, sufficiently resolved.

As no analytical solution is available, the time-discretization error is computed by
comparing the numerical solution to a much finer reference numerical solution Ũn,
n = 0, 1, . . . , N . The reference numerical solution is computed using the implicit-
explicit Euler method from Sect. 3.1, with k = 2.5 · 10−4 and cubic conforming
finite elements on the same meshes as the numerical solution. The errors and the
convergence rates are given in Table 2, where k is the time-step size, ‖e‖L∞(L2) :=
max0�n�N ‖Ũn − Un‖, and ‘rate’ is the respective convergence rate between two
consecutive time-step sizes. Approximately second order convergence with respect
to k is observed in this case also.
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