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Abstract The present study deals with the numerical simulation of a fluid–structure
interaction problem. The fluid is represented by the incompressible Navier–Stokes
equations and the structure is described by an ODE depending on two degrees of
freedom. A recent fictitious domain method on a fixed mesh is considered. For that
choice, we provide several tricks to meet the difficulties arising from the fluid–
structure interaction. All developed tools can be applied to very general geometries
and deformations of the structure. Finally, numerical simulations are conducted in a
realistic aeronautics configuration.

1 Introduction

The interaction between a fluid and a deformable structure, which appears in a very
large field of industrial problems, has recently received increasing attention from the
scientific community. Numerical simulations of such problems remain a challenging
task.

A first difficulty comes from the fact that the whole system is the assembling
of two subsystems of different natures. We can then either consider the full system
as a whole part and write a variational formulation that comprises the fluid and the
structure equations or we can use appropriate solvers for each of these subsystems.
The first approach is called monolithic approach [22]. In the sequel, we considered
the second approach called partitioned approach [12]. We solve separately the
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structure and the fluid equations at each time step. A possibility would have been,
inside a time step, to iterate between the structure and the fluid solvers to reach
an equilibrium between those states. This would have given a strong coupling at
an increased computational cost. However, for small enough time steps, a weak
coupling is sufficient [10, 15].

Another challenge is to handle the fluid domain that changes over time. This is
indeed a difficulty as most of the numerical methods use fitted meshes, i.e. meshes
such that the physical boundary is composed of cell faces. Hence, if we want to
use such a fitted mesh, we need to change it at every time step to fit the moving
boundary. Some algorithms such as the Arbitrary Lagrangian Eulerian (ALE)
approach make it possible with small computation costs for small deformations of
the fluid domain [13]. However, for large deformations of the domain, a complete
remeshing is needed, which is highly expensive.

In order to avoid any change of the mesh during the computation, we consider a
fictitious domain approach, i.e. the boundary of the physical domain can arbitrary
cut the mesh. Several methods are included in this framework, for instance the
immersed boundary method [8, 19, 20] or the penalization method [2, 16, 18].

This kind of method has already been used for fluid–structure interaction in [1,
14, 17]. A recent review can be found in [4].

In the present work, we use a XFEM type method that can also be found under
the name of cutFEM. This method has been developed in the context of crack
propagation in fatigue mechanics [9]. The main characteristic of this method is the
use of a level-set function to locate an interface in the domain and an enrichment
of the finite element basis with functions depending on the position of the interface.
In the fluid–structure context, the interface will be the boundary between the fluid
and the structure. We adapt and investigate a recent method of that type that is
theoretically analyzed for the Stokes problem only in [11]. We focus our attention
on determinant implementation stages that are non-standard.

We present the considered model in Sect. 2, the partitioned process in Sect. 3,
the XFEM in Sect. 4 and the handling of the moving domain in Sect. 5. Numerical
simulations are given in Sect. 6. Finally, Sect. 7 is a summary of the article.

2 The Problem

The system we are interested in corresponds to the 2D interaction of a fluid and a
deformable structure that can be assimilated to a steering gear depending on two
parameters that we denote θ = (θ1, θ2) ∈ R

2.
The whole system is enclosed in a box representing a wind tunnel Ω . The

boundary of that box can be decomposed as ∂Ω = Γi ∪ Γw ∪ ΓN, where Γi, Γw and
ΓN are parts of the boundary where inflow Dirichlet boundary conditions, homo-
geneous Dirichlet boundary conditions and Neumann-like boundary conditions are
respectively imposed (see Fig. 1).
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Fig. 1 The domain
configuration: the whole
domain (a wind tunnel) is
decomposed as
Ω = S(θ) ∪ F(θ) (the
structure and the fluid)

u= ui

S()

We consider the incompressible Navier–Stokes equations for the fluid and a
virtual work principle for the structure, see [6, 7]. The structure and fluid domains
depend on the parameters θ, we denote them respectively S(θ) and F(θ). We denote
Qθ = ∪t∈(0,T ){t} × F(θ(t)), Σθ = ∪t∈(0,T ){t} × ∂S(θ(t)), Σi = (0, T ) × Γi,
Σw = (0, T ) × Γw and ΣN = (0, T ) × ΓN.

The equations considered for the fluid are the following ones

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

+ (u · ∇)u + νΔu − ∇p = fF in Qθ ,

div u = 0 in Qθ ,

u = ui on Σi,

u = 0 on Σw,

σF(u, p)n = 0 on ΣN,

u = uS on Σθ,

(1)

(2)

(3)

(4)

(5)

(6)

this system is completed by the following equation for the structure

Mθθ̈ = MI(θ, θ̇) + MA(θ,−σF(u, p)nθ) + fS on (0, T ), (7)

and we consider the initial conditions

u(0) = u0 in F(θ0), (8)

θ(0) = θ0 = (θ1,0, θ2,0), θ̇(0) = ω0 = (ω1,0, ω2,0). (9)

In the previous equations, we denoted u the velocity field of the fluid, p the
pressure field, ν the viscosity of the fluid, fF a source term acting as a force per
unit volume, ui a Dirichlet datum on the inflow boundary Γi, σF(u, p) = ν(∇u +
(∇u)T ) − pI the stress tensor of the fluid, n the unit outward normal to Ω , uS the
velocity field of the structure, fS a source term on the structure equation. These
equations have to be completed with suitable expressions for Mθ , MI , MA and uS.
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The matrix Mθ ∈ R
2×2, which is invertible, and the vectors MI , MA ∈ R

2 depend
respectively on θ; on θ, θ̇; on θ and the force exerted by the fluid on the structure, i.e.
σF(u, p)nθ , where nθ is the unit normal to ∂S(θ) pointing inward the structure. For
a more general presentation of the numerical scheme, we do not specify those terms.
The numerical simulations will be led with the expressions given in Sect. 6.1. For
those terms, the well-posedness of Eqs. (1)–(9) has been proven in [7]. The reader
can find there further information.

3 The Time-Marching Process

We describe in this section, the time-marching process which is of partitioned type.
This means that we solve the structure and the fluid systems separately and one after
the other.

The fluid step at time tn+1 will be obtained by discretizing with a semi-implicit
scheme the variational formulation: Find (un+1, pn+1,λn+1) ∈ (

H1(F(θn+1)
) ×

(
L2(F(θn+1))

) × (
H−1/2(∂S(θn+1)) × H−1/2(Γi ∪ Γw)

)
such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

F(θn+1)

un+1 − un

Δt
· v + (un · ∇)un+1 · v + ν

2
(∇un+1 + (∇un+1)T ) : (∇v + ∇vT )

−pn+1div v +
∫

Γi∪Γw∪∂S(θn+1)
λn+1 · v =

∫

F(θn+1)
fF(tn+1) · v,

∫

F(θn+1)
qdiv un+1 = 0,

∫

Γi∪Γw∪∂S(θn+1)
un+1 · μ =

∫

Γi

ui (tn+1) · μ +
∫

∂S(θn+1)
uS(tn+1) · μ,

(10)

∀(v, q,μ) ∈ (
H1(F(θn+1)

)×(
L2(F(θn+1))

)×(
H−1/2(∂S(θn+1))×H−1/2(Γi ∪ Γw)

)
.

A Euler scheme semi-discretizes the partial derivative w.r.t. time. It requires un

to be integrated over the domain F(θn+1) (while it is defined on F(θn) only).
We then need an extension procedure that we expose in Sect. 4.4. Note that the
Dirichlet boundary conditions have been imposed in a weak way by the use of
Lagrange multipliers λn+1 = (λn+1

∂S(θn+1)
,λn+1

Γi∪Γw
). This induces the computation of

the additional variable λn+1
∂S(θn+1)

= −σF(un+1, pn+1)nθ which represents the fluid

forces acting on the structure at time tn+1 and will be approximated by λn+1
h . The

index ∂S(θn+1) is dropped in the sequel. The structure evolution is computed by
the following finite difference method:

⎧
⎨

⎩

θn+1 = 2θn − θn−1 + (Δtn+1)
2M−1

θ (MA(θn,λn
h) + MI(θ

n, ωn)),

ωn+1 = ωn + Δtn+1M
−1
θ (MA(θn,λn

h) + MI(θ
n, ωn)),

(11)

(12)
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where we have denoted ωn = (ωn
1 , ωn

2) the approximation of θ̇(tn). Note that we
use λn

h in the structure equations.
At each time step, we use the procedure described in Algorithm 1. The main

difficulties are to compute the fluid step and to adapt the fluid domain, they are
tackled respectively in Sects. 4 and 5.

Algorithm 1 The splitting scheme

Require: (un
h, pn

h,λn
h, θn, θn−1, ωn,Δtn+1).

1 Compute (θn+1, ωn+1) with the structure step (11)–(12).
2 Update F(θn+1).
3 Compute (un+1

h , pn+1
h ,λn+1

h ) with the fluid step.
4 Compute the next time step Δtn+2 with the CFL condition (15) (presented in Sect. 4.3).

4 The Discretization Method for the Fluid Equations

In this section we detail the way we approximate the evolution of the fluid state.

4.1 The Finite Element Method

We define a background mesh Th covering the whole domain Ω = F(θ) ∪ S(θ).
This mesh will not be modified during the simulation. The mesh cells can then
be cut arbitrarily by the interface ∂S(θ). This means that the cells are either
entirely contained in the fluid or the structure domain, or are shared between those
two domains. For each variable, we define a finite element method on the whole
triangulation Th. We choose the use of Taylor–Hood elements, i.e. P2 elements for
uh, P1 elements for ph and for λh.

Then, the approximated functions are the trace of these polynomials on the
physical domain, F(θ) for uh and ph, ∂S(θ) for λh. We depict the functional basis
associated to this method in Fig. 2.

Away from the interface, we have the usual finite elements associated to usual
degrees of freedom (dof). Near the interface, the elements are cut. Note that some
dof of the fluid are located in the structure domain, we call them fictitious degrees
of freedom in the sequel. They correspond to actual dof of the method, however,
their value do not have any physical meaning. This is why we need to handle those
dof carefully (see Sect. 4.4). In the structure, away from the interface, all degrees of
freedom are discarded.
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Degrees of freedom in 2D. Cut elements in 1D.

Fig. 2 The degrees of freedom for P1 finite elements

4.2 The Stabilization Term

Classical XFEM applied to the Navier–Stokes equations does not ensure optimal
convergence rate for the Lagrange multipliers. However, to simulate accurately the
dynamics of the structure, we want λh to be a good approximation of λ.

In order to recover the optimal convergence rate, we add the following stabiliza-
tion term to the variational formulation of the fluid problem (10)

− γ0h

∫

∂S(θ)

(λh + σF(ûh, p̂h)nθ) · (μh + σF(v̂h, q̂h)nθ) dx, (13)

with a mesh–independent constant γ0 > 0. It corresponds to an augmented
Lagrangian approach [5].

If we choose ûh = uh, p̂h = ph, v̂h = vh and q̂h = qh, then we get optimal
convergence rate for λh if the mesh does not have any bad triangle. We call bad
triangle a triangle that is cut by the interface and has only a tiny part of its surface
in the fluid domain. For instance, in Fig. 3, T is a bad triangle.

The coefficients of the matrices are computed by an integration of the basis
functions on the fluid domain. Then, such bad elements with only a tiny part in the
fluid domain induce tiny coefficients in the matrices that are then ill-conditioned.

Since we consider a fixed mesh that can be arbitrarily cut by the interface, this
stabilization is not enough. For such bad triangles, we take the velocity and pressure
terms ûh, p̂h, v̂h and q̂h in (13) as the extrapolation of the values of these variables
in a good neighbor T ′ of T . Doing that way, we obtain optimal convergence for λh

even if some triangles are badly cut in the mesh, see [11].
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Fig. 3 A bad element T and
a good neighbor T ′. The fluid
domain F(θ) is on the right
of the interface represented in
blue

4.3 Algebraic Formulation

We denote with U , P and Λ the coordinate vectors of the velocity, the pressure and
the multiplier into the P2, P1 and P1 Finite Element (FE) basis respectively. The FE
method can be rewritten under the following matrix form:

1

Δt

⎛

⎝
Muu 0 0

0 0 0
0 0 0

⎞

⎠

⎛

⎝
Un+1 − Un

P n+1 − P n

Λn+1 − Λn

⎞

⎠+
⎛

⎜
⎝

Auu Aup Auλ

AT
up App Apλ

AT
uλ AT

pλ Aλλ

⎞

⎟
⎠

⎛

⎝
Un+1

P n+1

Λn+1

⎞

⎠ =
⎛

⎝
Fn+1

0
Gn+1

⎞

⎠ .

(14)

All the matrices are given by the discretization of the terms induced by (10) and
(13). The matrices Auu, Aup, Auλ, AT

up and AT
uλ correspond respectively, up to a

perturbation induced by the stabilization term, to νΔu, ∇p, λ, the incompressibility
constraint and the Dirichlet boundary conditions, Muu is the mass matrix. The
vectors Fn+1 and Gn+1 correspond to the source term and to the Dirichlet data
at tn+1. The matrices App, Apλ, AT

pλ and Aλλ would have been null if there were
no stabilization terms. Since the fluid domain changes over time, we discard and
compute all the matrices at every time step. Some optimizations can be made to
update only the coefficients linked to the cut cells.

In order to have a stable scheme, we use the following CFL condition:

Δtn+1 = min

(

cfl × h

V n
max

,Δtmax

)

, (15)

where cfl ∈ (0, 1), V n
max is the maximum velocity of the fluid in F(θn) and Δtmax

is the maximum time step allowed.

4.4 Initialization of the Fictitious Velocity Values

The time derivative has been discretized in (14) by a finite difference method. This
is a natural way of discretizing it. However, it induces some difficulties. Indeed, at
every time step, in order to compute un+1

h , we need to provide the value of un
h at
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Fig. 4 Initialization of the
velocity dof. In order to tackle
difficulties, all dof that are in
S(θn) (the fictitious and the
discarded ones) are given by
the velocity of the structure at
time tn. Since we consider
adherence conditions between
the fluid and the structure, the
velocity of the structure near
the interface is close to the
one of the fluid. This justifies
the meaning of the value
given to the nodes in S(θn)

every dof considered for F(θn+1). The difficulty is due to the fact that such a value
is not available when that degree of freedom was discarded in F(θn) (see Fig. 4).

Moreover, as exposed above, the values of the fictitious degrees of freedom have
to be carefully used since they do not have any physical meaning. Hence, a dof
that is fictitious in F(θn) and becomes real in F(θn+1) cannot be straightforwardly
used. We then impose the velocity of the structure at tn to all dof that are in S(θn).

5 The Evolution of the Fluid Domain

In this section, we describe the method used to adapt the fluid domain at every time
step. We first describe the integration over the cut cells, then we present the way we
locate the interface between the fluid and the structure.

5.1 Integration over the Cut Cells

All matrices in (14) are computed with an integration on the fluid domain only. We
then need to lead integrations on the mesh, in particular over cut cells. In order to
make these integrations possible, we divide every cut cell in sub-triangles that are
taken fitted to the interface. We then only have to integrate over the sub-triangles that
are in the fluid domain (see Fig. 5). This step is implemented with the qhull library
[3]. The method is classical, we recall it here for completeness of the presentation.
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Fig. 5 Subdivision of the cut
cells. Note that the operation
consists in sub-dividing cut
cells and not remeshing.
Hence, the sub-cells are used
only for integration and no
new degrees of freedom are
defined

This process requires a level-set function to locate the interface (as the null level
of this function). We describe in Sect. 5.2 the way that we compute this function.

5.2 Position of the Interface

We locate the interface as the zero of a level-set function. In the literature, most of
the time, the level-set function is computed as the solution of a PDE representing its
evolution [23]. This generates undesirable effects such as numerical diffusion.

In our setting, the structure position and then the interface depends only on
the two parameters θ = (θ1, θ2). At each time step, we then compute a precise
approximation of the level-set function associated to the parameters (θn

1 , θn
2 ) (see

Fig. 6).
We can tune the number of points considered to gain more precision. The

drawback of this method is that it is time expensive. In order to mitigate the run
time, we compute the level-set function only for the required nodes, i.e. the ones
near the interface. A smart function chooses those nodes.

Fig. 6 Computation of the
level-set function. The
interface is represented by a
list of points (computed
analytically). The distance is
computed with the polygon
formed by those points
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6 Numerical Simulations

In this section we detail our choices for the numerical simulations and show some
results. All simulations are run with the GetFEM++ library [21].

6.1 The Structure Modelling

To represent the deformations of the structure, we introduce a diffeomorphism
X(θ1, θ2, .) that transforms a reference configuration corresponding to θref = (0, 0)

into a given configuration corresponding to θ = (θ1, θ2) (see Fig. 7).
More precisely, we can define this diffeomorphism by

X(θ1, θ2, x) =

⎛

⎜
⎜
⎝

(

g1(x1) + x2
N1(x1)

|N(x1)|
)

cos(θ1) −
(

g2(x1) + x2
N2(x1)

|N(x1)|
)

sin(θ1)
(

g1(x1) + x2
N1(x1)

|N(x1)|
)

sin(θ1) +
(

g2(x1) + x2
N2(x1)

|N(x1)|
)

cos(θ1)

⎞

⎟
⎟
⎠ ,

where N(x1) = (N1(x1), N2(x1)) = (−g′
1(x1), g

′
2(x1)),

g1() =
⎧
⎨

⎩

 if  ≤ a,

a + ( − a) cos(θ2/2) − f () sin(θ2/2) if  ∈ (a, b),

xB ′ + ( − b) cos(θ2) if  ≥ b,

g2() =
⎧
⎨

⎩

0 if  ≤ a,

( − b) sin(θ2/2) + f () cos(θ2/2) if  ∈ (a, b),

yB ′ + ( − b) sin(θ2) if  ≥ b,

•
O

•a •
b

•
×x

•
O

•
•

•
2×X( 1, 2,x)

1X( 1, 2, .)

Fig. 7 The diffeomorphism X
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for xB ′ = b + (b − a) cos(θ2/2), yB ′ = (b − a) sin(θ2/2) and

f () = tan(θ2/2)

b − a
( − (a + b)/2)2 − tan(θ2/2)

b − a

4
.

We use the values a = 0.4 and b = 0.6 in the sequel. To complete (1)–(9), we define

uS(t, x) = θ̇1∂θ1 X(θ1, θ2, x) + θ̇2∂θ2 X(θ1, θ2, x), (16)

(Mθ)ij = (∂θi
X(θ1, θ2, ·), ∂θj

X(θ1, θ2, ·))S, (17)

(MI )j =−
(
θ̇2

1∂
2
θ1

X(θ1, θ2)+2θ̇1θ̇2∂θ1θ2X(θ1, θ2)+θ2
2∂

2
θ2

X(θ1, θ2),∂θj
X(θ1, θ2)

)

S
, (18)

(MA(θ, f))j =
∫

∂S(θ)

f · ∂θj
X(θ1, θ2, Y(θ1, θ2, x)), (19)

where (f, g)S = ρ

∫

∂S(0)

f · g and Y(θ1, θ2, ·) is the inverse diffeomorphism of

X(θ1, θ2, ·).
We have proven well-posedness of the problem (1)–(9) with (16)–(19) in [7]. The

reader will find there further information about this model.

6.2 Numerical Results

The whole domain Ω = (−1.0, 8.0) × (ymin, ymax) with ymin = −2.5 and
ymax = 2.1 is discretized by a triangular mesh of 35,731 cells. It is locally
refined near its boundary, near the corners, in the zone where lies the structure
and in the wake behind the structure. We do not consider any forces in the
fluid fF = 0. The inflow condition is a perturbed Poiseuille profile ui (t, x2) =

6Um

(ymax−ymin)2 (−x2
2+(ymax+ymin)x2−yminymax)−zp(x2)e

−(t−0.5)2
, where Um = 1.0

and zp(x2) = 0.8 sin(2π(x2 + 0.75)/1.5) if x2 ∈ [−0.75, 0.75] and zp(x2) = 0
elsewhere is a profile chosen to perturb the stationary configuration.

We use the parameters ν = 1/120 (Reynolds number of 120), ρ = 5, γ0 = 0.05,
cfl = 0.8 and Δtmax = 5 · 10−4.

The initial parameters for the structure are θ0 = (−20◦, 0) and ω0 = (0, 0).
The initial velocity profile u0 is obtained by solving the stationary Navier–Stokes
equations in the initial configuration. The source on the structure fS is chosen to
compensate the forces of the fluid in the initial configuration and then enforce the
initial state to be a stationary state.

The evolution of the system is reported in Figs. 8 and 9. The stationary setting
is perturbed by the inflow condition. The perturbation propagates in the fluid and
destabilizes the structure. Von Kármán vortex street appears in the wake behind the
structure.



56 G. Delay and M. Fournié

Fig. 8 The velocity magnitude profile (red: high, blue: low), left: whole domain, right: zoom on
the structure. The pictures have been captured at t = 0s, t = 1.5s and t = 6s
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Fig. 9 The evolution of the structure parameters; left: θ1, right: θ2

7 Summary

In the present article, we proposed a method to compute numerically the evolution of
a fluid–structure system with a fixed mesh. It is based on a finite difference method
w.r.t. time and on XFEM w.r.t. space. The structure and fluid steps are partitioned.
We presented some solutions to implement this method. We finally ran numerical
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simulations with small deformations of the structure. Since the advantage of using
XFEM over ALE is to tackle large deformations, more complex test cases should be
considered to fully validate this approach.
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