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Abstract Consider the transient incompressible Navier-Stokes flow at high
Reynolds numbers. A high-order H(div)-conforming FEM with pointwise
divergence-free discrete velocities is applied to implicit large-eddy-simulation
in two limit cases: (1) decaying turbulence in periodic domains, (2) wall bounded
channel flow.

1 H(div)-Conforming dGFEM for Navier-Stokes Problem

Consider a flow in a bounded polyhedron Ω ⊂ R
d , d ≤ 3 with boundary ∂Ω =

Γ0 ∪ Γper and outer unit normal n = (ni)
d
i=1. Set QT := (0, T ) × Ω and denote f

as source term. We want to find velocity u : QT → R
d and pressure p : QT → R

s.t.

∂tu − νΔu + (u · ∇)u + ∇p = f in QT , (1)

∇ · u = 0 in QT , (2)

u = 0 on (0, T ) × Γ0, (3)

u = u0 on {0} × Ω, (4)

and periodic boundary conditions on Γper . Let H = [L2(Ω)]d with inner product
(·, ·)H and assume u0 ∈ H, f ∈ L2(0, T ; H). The inner product in L2(Ω) is (·, ·)Ω .
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A variational formulation of the transient incompressible Navier-Stokes problem
(1)–(4) is to find (u, p) ∈ X × Q ⊆ [H 1(Ω)]d × L2(Ω) for t ∈ (0, T ) a.e. from

(∂tu(t), v)H + νa(u(t), v) + c(u(t), u(t), v) + b(p(t), v) = (f(t), v)H, (5)

−b(q, u(t)) = 0, (6)

u(0) = u0. (7)

with bounded bilinear resp. trilinear forms

a(u, v) := ν(∇u,∇v)Ω, b(q, v) := −(q,∇ · v)Ω, c(w, u, v) := ((w · ∇)u, w)Ω.

(8)

Consider H(div)-conforming, discontinuous Galerkin methods (dGFEM) with

H(div;Ω) := {w ∈ H : ∇ · w ∈ L2(Ω)}, (9)

HΓ0(div;Ω) := {v ∈ H(div;Ω) : v · n|Γ0 = 0}. (10)

Let Th be a shape-regular decomposition of Ω ⊂ R
d . Moreover, denote Eh the

set of (open) edges (d = 2) or faces (d = 3) in Th. EB
h ⊂ Eh is the set of all

E ∈ Eh with E ∩ Γ0 
= ∅ and E I
h := Eh \ EB

h the set of interior edges. Please note
that edges/faces on Γper are considered as interior edges/faces. Consider adjacent
elements K,K ′ ∈ Th with ∂K ∩ ∂K ′ = E and unit normal vector μE . For a scalar
function v in the broken Sobolev space H 1(Ω,Th) denote jump resp. average of v

across E by

[|v|]E := v|∂K∩E − v|∂K ′∩E,
{{
v
}}

E
:= (v|∂K∩E + v|∂K ′∩E)/2. (11)

For v ∈ [H 1(Ω,Th)]d , jump and average are understood component-wise.

Lemma 1 ([2]) Let Wh be a space of vector-valued polynomials w.r.t. Th. Then
Wh ⊂ H(div;Ω) if [|v|]E · μE = 0 for all v ∈ Wh and all E ∈ E I

h .

Owing to Lemma 1 [|v|]t,E = [|v − (v · μE)μE |]E is the tangential jump across
E ∈ Eh.

Example 1 Examples of H(div)-conforming FEM are given in [1]. On simplicial
grids one can apply Raviart-Thomas (RT) or Brezzi-Douglis-Marini (BDM) spaces

RTk = {wh ∈ HΓ0(div;Ω) : wh|K ∈ Pk(K) ⊕ xPk(K) ∀K ∈ Th}, k ∈ N0 (12)

BDMk = {wh ∈ HΓ0(div;Ω) : wh|K ∈ Pk(K) ∀K ∈ Th}, k ∈ N. (13)

On quadrilateral meshes, local Raviart-Thomas (RT) elements of degree k ∈ N0
are RTk(K) = (Pk+1,k(K),Pk,k+1(K))t , d = 2. For d = 3, one has similarly
RTk(K) = (Pk+1,k,k(K),Pk,k+1,k(K),Pk,k,k+1(K))t . ��
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Let wh ∈ Wh ⊂ H(div;Ω) with Wh ∈ {RTk, BDMk}. The spaces Wh 
⊂
[H 1(Ω)]d are not [H 1(Ω)]d -stable, hence not directly applicable to the Navier-
Stokes problem. As a remedy, we modify the diffusion bilinear form a using
a symmetric interior penalty (SIP) dGFEM-approach with the broken gradient
∇hv := ∇(v|K): For sufficiently smooth u ∈ [Hs(Ω)]d , s > 3

2 , we define by
adding two consistent terms

ah(u, wh) :=
∫

Ω

∇hu : ∇hwh dx +
∑

E∈Eh

σh−1
E

∫

E

|[u|]t |[w]|t ds (14)

−
∑

E∈Eh

∫

E

({{∇hu · μE

}}[|wh|]t + {{∇hwh · μE

}}[|u|]t
)
ds ∀wh ∈ Wh

with hE := diam(E) and parameter σ > 0 (to be chosen according to next lemma).
Define the following discrete H 1-norms ‖w‖1,h and ‖w‖1,h,∗

‖w‖2
1,h :=

∑

K∈Th

‖∇w‖2
L2(K)

+
∑

E∈Eh

h−1
E ‖[|w|]τ‖2

L2(E)
, (15)

‖w‖2
1,h,∗ := ‖w‖2

1,h +
∑

E∈Eh

hE‖{{∇hw · μE

}}‖2
L2(E)

. (16)

Lemma 2 ([2]) There exists constant σ0 (depending only on k and on shape
regularity of Th) s.t. for σ ≥ σ0 one has:

ah(wh, wh) ≥ 1

2
‖w‖2

1,h ∀wh ∈ Wh, (17)

ah(v, wh) ≤ C‖v‖1,h,∗‖wh‖1,h ∀wh ∈ Wh and v ∈ [Hs(Ω)]d , s >
3

2
. (18)

Lemma 3 ([1]) RT- and BDM-spaces, together with appropriate discrete spaces
Qh

Wh = RTk with Qh := {qh ∈ L2(Ω) : qh|K ∈ Pk(K) ∀K ∈ Th} and

Wh = BDMk with Qh := {qh ∈ L2(Ω) : qh|K ∈ Pk−1(K) ∀K ∈ Th}

form inf-sup stable pairs w.r.t. discrete H 1-norm:

∃βh ≥ β0 > 0 s.t. inf
qh∈Qh\{0} sup

wh∈Wh\{0}
(∇ · wh, qh)Ω

‖wh‖1,h‖qh‖L2(Ω)

≥ βh. (19)

By construction ∇ ·Wh = Qh, these spaces are globally pointwise divergence-free:

{wh ∈ Wh : (∇ · wh, qh)Ω = 0 ∀qh ∈ Qh} = {wh ∈ Wh : ∇ · wh = 0}. (20)
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For an exactly divergence-free field b ∈ [L∞(Ω)]d ∩ H(div;Ω) we modify the
convective term c as in [2] by

ch(b; u, v) :=
∑

K∈Th

((b · ∇)u, v)K

−
∑

E∈E i
h

(
(b · μE)([|u|], {{v

}}
)
)

E + 1
2

∑

E∈E i
h

(|b · μE|[|u|], [|v|]))E. (21)

The first right-hand side terms corresponds to the standard form of the convective
term. The last two facet terms, the upwind discretization, are consistent perturba-
tions of the standard form of the convective term for u, v ∈ X. The impact of these
terms is included in the jump semi-norm |v|b,upw defined via

|v|2b,upw := 1

2

∑

E∈E i
h

|b · μE | ‖[|v|]‖2
L2(E)

. (22)

In case of exactly divergence-free fields b, one has ch(b; v, v) = |v|2b,upw.

We consider now the H(div)-conforming dGFEM for the transient Navier-Stokes
problem (5)–(7) with f ∈ L2(0, T ; H). Combining the SIP-form of the diffusive
term and the upwind-discretization of the convective term, one obtains:
Find (uh, ph) : (0, T ) → Wh × Qh with uh(0) = u0,h s.t. for all (vh, qh) ∈
Wh × Qh:

(∂tuh, vh)H + νah(uh, vh) + ch(uh; uh, vh) + b(ph, vh) = (f, vh)H, (23)

−b(qh, uh) = 0. (24)

All computations have been done using a hybridized variant of (23)–(24)
implemented in the high-order sofware package NGSolve [9].

We will consider method (23)–(24) as tool for implicit large-eddy-simulation
(ILES) in two limit cases: (i) decaying turbulence in periodic 2D and 3D domains
(see Sect. 2) and (ii) wall bounded flow in a 3D-channel (see Sect. 3).

2 Decaying 2D- and 3D-Turbulent Flows

2.1 Stability and Error Analysis for Decaying Flows

Consider now decaying flows, i.e. we consider problem (23)–(24) with f ≡ 0.
Using the mesh-dependent expressions (15) and (22) and setting vh = uh in the
semidiscrete problem (23)–(24), one obtains with ‖v‖2

e := ah(v, v) the balance

d

dt

(
1

2
‖uh(t)‖2

L2(Ω)

)
+ ν‖uh(t)‖2

e + |uh(t)|2uh,upw = 0. (25)
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This implies existence of (uh, ph) and bounds for kinetic and dissipation energies:

1

2
‖uh(t)‖2

L2(Ω)
≤ 1

2
‖u0h‖2

L2(Ω)
exp(−νt/C2

F ), (26)

∫ t

0

(ν

2
‖uh(τ )‖2

e + |uh(τ )|2uh,upw

)
dτ ≤ 1

2
‖u0h‖2

L2(Ω)
. (27)

In case of smooth velocity with u ∈ L1(0, T ; [W 1,∞(Ω)]d), we obtain the
following pressure-robust and Re-semi-robust error estimate.

Theorem 1 ([10]) Let u ∈ L2(0, T ; H
3
2 +ε(Ω)), ε > 0, ∇u ∈ L1(0, T , [L∞(Ω)]d)

and uh(0) = πSu0 with Stokes projector πSu, i.e. ah(u − πSu, vh) = 0 ∀vh ∈ Wh;
then:

1

2
‖uh − πSu‖2

L∞(0,T ;L2(Ω))
+

∫ T

0

[ν

2
‖uh − πSu‖2

1,h + |uh − πS |2uh,upw

]
dτ

≤ eGu(T )

∫ T

0

[‖∂t η‖2
L2(Ω)

+ ‖u‖L∞(Ω)‖∇hη‖2
L2(Ω)

+ h−2‖∇u‖L∞(Ω)‖η‖2
L2(Ω)

]
dτ

with η := u − πSu and Gronwall factor

Gu(T ) := T + ‖u‖L1(0,T ;[L∞(Ω)]d ) + C‖∇u‖L1(0,T ;[L∞(Ω)]d ).

The vorticity equation for ω := ∇ ×u describes the dynamics of decaying flows:

∂tω + u · ∇ω − νΔω = ω · ∇u, ∇ · u = 0. (28)

The vortex stretching term ω · ∇u vanishes for d = 2 which leads to a completely
different behavior for d = 2 and d = 3.

2.2 Decaying 2D-Turbulent Flow

Consider the following 2D-turbulent flow problem with a unique solution of (5)–(7).

Example 2 2D-lattice flow
Consider on Ω = (−1, 1)2 the following solution of the steady Euler model (ν = 0)

u0(x) = (−Ψx2(x), Ψx1(x))t , Ψ (x) := 1

2π
sin(2πx1) cos(2πx2).

The initial vorticity ω0 = ∇ × u0 is shown in Fig. 1 for t = 0. The Taylor cells
u(t, x) = u0(x)e−4π2νt are the (unique!) solution of the transient Navier-Stokes
model. For this very smooth solution, a high-order FEM is preferable.
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Fig. 1 Example 2: Snapshots of vorticity ωh = ∇ × uh of high-order FEM with k = 8, N = 8
with t ∈ {0, 22, 23, 26} (see first row) and t ∈ {30, 35, 40, 50} (see second row)
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Fig. 2 Example 2: Temporal development of kinetic energy, enstrophy and palinstrophy

This is a generalized Beltrami flow, since (u · ∇)u = −∇p. Due to pressure-
robustness, a linearization via dropping (u · ∇)u preserves the coherent structures
of the initial solution [4]. For order k = 8 and h = 1

4 , Fig. 1 shows snapshots of the
discrete vorticity on the time interval 0 ≤ t ≤ T = 50 for ν = 10−6. We observe a
self-organization of vortical structures which deviates from the unique solution.

Consider now the behavior of the kinetic energy 1
2‖uh‖2

L2(Ω)
, enstrophy

1
2‖ωh‖2

L2(Ω)
and palinstrophy 1

2‖∇hωh‖2
L2(Ω)

for 0 ≤ t ≤ 50, see Fig. 2.
Around t = 22.0 the solution deviates from coherent structures of the exact
solution, also visible in the strong reduction of the amplitude of the kinetic energy.
The exponential growth of the L2- and H 1-errors of the velocity (according to
Theorem 1) is shown in Fig. 3. The initial condition u0 of the planar lattice flow
induces a flow structure which, due to its saddle point structure, is “dynamically
unstable so that small perturbations result in a very chaotic motion” as stated in
Majda & Bertozzi [6]. A convincing discussion of self-organization in 2D-flows is
given by van Groesen [12].

Note that the preservation of the coherent structures (of the unique solution) can
be extended in time by higher order k and/or h-refinement. Moreover, compared to
standard mixed non-pressure-robust FEM, the application of pressure-robust FEM
leads to much longer existence of such structures, see [4]. ��
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Fig. 3 Example 2: Error plots of high-order FEM for ν = 10−6, k = 8, N = 8, Δt = 10−3

Remark 1

(i) A similar behavior of 2D-decaying turbulent flows is known for the 2D Kelvin-
Helmholtz instability. We refer to careful numerical studies in [11].

(ii) The smallest scales depend on d. For d = 3, one has Kolmogorov-length

λ3D ≈ LRe− 3
4 whereas for d = 2, the Kraichnan-length is λ2D ≈ LRe− 1

2 .
As conclusion, a direct numerical simulation (DNS) of 2D-flows at Re � 1 is
much more realistic than in 3D, see [5]. ��

2.3 Decaying 3D-Turbulent Flows

From the vorticity equation (28) we concluded a completely different behavior of
high Re-number flows for d = 3 as compared to d = 2. The following example
highlights the effect of vortex stretching term (ω · ∇)u.

Example 3 3D-lattice flow
Consider the exact solution of the transient incompressible Navier-Stokes problem

u(t, x) = u0(x)e−4π2νt , u0(x1, x2) = (−Ψx2 , Ψx1 ,
√

2Ψ )t (x1, x2)

in Ω = (0, 1)3 with stream function Ψ as in Example 2, with f = 0 and 1
ν

= 2000.
This problem can be seen as 3D-extension of the 2D-lattice flow [6].

The snapshots of the solution in Fig. 4 show that until t ≈ 6, the numerical
method tries to preserve the 2D-behavior of the 2D-lattice flow. This can be
seen from the “vortex tubes” (presented by the 5.0-isocontour of the so-called Q-
criterion, colored with vorticity). Then the vortex stretching starts to deform the
vortex tubes until t = 7.5. Later on, i.e. around t = 10, there starts the eddy-
breakdown in the inertial range. Here we observe the transition to homogeneous
isotropic turbulence. Finally, in Fig. 5, we consider the influence of the Reynolds
number for 1

ν
∈ {2000, 4000, 100000}. We apply again the high-order H(div)-

dGFEM (here with k = 8, h = 1
8 ). In the first row, one observes the strongly
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Fig. 4 Example 3: Transition to decaying homogeneous isotropic 3D-turbulence: 5.0 isocontour
of Q-criterion, colored with vorticity at t ∈ {0.0, 6.5, 7.0, 7.5, 10.0, 20.0}

decaying kinetic energy and the effect of vortex stretching in the (scaled) dissipation
rate in time.

The solution is still a Beltrami flow since (∇×u)×u = 0. Thus a linearization via
p �→ P := p + 1

2 |u|2 would retain coherent structures as in 2D. This corresponds
to the formal exact solution, see dashed lines. Solid lines correspond to the discrete
solutions with k = 8 and h = 1

8 . The deviation of the discrete solution from the
(formal) exact solution starts earlier for increasing Reynolds number. On the other
hand, the deviation can be shifted to larger times if the FEM-order k is increased
and/or an h-refinement is performed.

In the second row of Fig. 5, we consider the L2- and H 1-errors for u − uh.
According to the estimate in Thm. 1, one observes the exponential behavior of both
errors in time. This again indicates that, after a certain time, the discrete solution
deviates from the (formal) exact solution.

Example 4 3D-Taylor-Green vortex at Re = 1600
A typical LES-benchmark is the 3D-Taylor-Green vortex problem at Re = UL

ν
=

1600 with f = 0 and initial condition

u0(x) = U
(

sin
x1

L
cos

x2

L
cos

x3

L
,− cos

x1

L
sin

x2

L
cos

x3

L
, 0

)t

.

As in the previous example we observe the breakdown of large eddies into
smaller and smaller eddies, see Fig. 6. This indicates that the typical behavior of
homogeneous isotropic turbulence develops already for this relative small Reynolds
number Re = 1600 where we set U = L = 1.

Consider now the temporal development of kinetic energy resp. the L2-energy
spectrum, see Fig. 7. For f = 0, we found in Sect. 3 a weak exponential decay
of kinetic energy according to (26). As reference solution serves the solution of a
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Fig. 5 Example 3. First row: t-dependent kinetic energy and enstrophy, Second row: t-dependence
of errors in L2 and H 1, Legend: 1
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Fig. 6 Example 4. Behavior like decaying homogeneous isotropic 3D-turbulence: 0.1-isocontour
of Q-criterion, coloured with velocity at t ∈ {0.0, 2.0, 4.0, 9.0}

spectral method with 5123 grid points (ooo). For increasing values of FEM-order k

and/or increasing spatial resolution (via refinement of h = 1/N ), we observe grid
convergence for the kinetic energy, see Fig. 7 (left).

In Fig. 7 (right) we plot the spectra of the kinetic energy at t = 10 for different
values of k and h = 1/N . In particular, no pile-up of the spectra for large wave
numbers k occurs. The Kolmogorov rate of E(k) = O(k−5/3) is not reached since
Re = 1600 is too small but will be reached at larger values of Re.

Consider now the temporal development of the kinetic energy dissipation rate
for which we obtained estimate (27). This quantity is much harder to approximate.
For increasing values of FEM-order k and/or increasing resolution (via refinement
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Fig. 7 Example 4. Left: Temporal development of kinetic energy for 3D-Taylor-Green vortex at
Re = 1600 for different values of order k and N = 1/h; Right: Spectrum of kinetic energy at
t = 10 for different values of k and h = 1/N
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Fig. 8 Example 4. Left: Temporal development of energy dissipation rate for Taylor-Green vortex
at Re = 1600 for different values of order k and N = 1/h; Right: Balance of dissipation rates

of h = 1/N ), we observe nearly convergence for the energy dissipation rate. In
particular, we find that upwind stabilization (see solid lines) decreases the energy
dissipation rate on the coarser grids, see Fig. 8 (left).

Finally, consider the balance of dissipation rates according to

d

dt

(1

2
‖uh(t)‖2

L2(Ω)

)
+ νah(uh(t), uh(t)) + |uh(t)|2uh,upw = 0.

The results are plotted for a relatively fine resolution with order k = 8 and
h = 1/N = 1/16. This corresponds to 1283 grid points. We observe a very good
agreement between molecular dissipation rate ν‖∇huh‖2

L2(Ω)
and kinetic energy

dissipation rate d
dt

(
1
2‖uh(t)‖2

L2(Ω)

)
, since the numerical dissipation rate (stemming

from SIP penalty and upwinding) reaches not more than 3% of the other rates around
the peak rate of molecular dissipation rate, see Fig. 8 (right).

Please note that no explicit turbulence modeling has been applied. The price for
such results is the H(div)-dGFEM simulation with around 9 × 106 unknowns.



Implicit LES with High-Order H(div)-Conforming FEM for Incompressible Flows 167

3 Wall-Bounded Flow

For wall-bounded turbulent flows, one striking problem is the presence of strong
boundary layers, e.g. at walls. Another problem is to apply a splitting u(h) = 〈u(h)〉+
u′

(h) of the solution into an averaged velocity with some filter 〈·〉 and fluctuations.

Example 5 (3D Channel Flow)
Figure 9 (left) presents a laminar channel flow with a uniquely defined determin-

istic solution. A snapshot of the turbulent channel flow at Reτ = 180 is shown on
the right. The latter is slightly above the transition from laminar to turbulent flow.
The chaotic solution of turbulent channel flow can be averaged in time and in x1-
and x3-directions. One obtains, after a certain time of averaging, a relatively simple
structure of the flow with 〈u1〉 = 〈u1〉(x2).

Prandtl’s boundary layer theory leads to the so-called law of-the-wall, visible
in Fig. 10. The mean viscous stress at the wall, the wall-shear stress, is τW =
ν∂x2〈u1〉|x2=0. An appropriate velocity resp. length-scale in the near-wall region
are the friction velocity Uτ = √

τW resp. ην = ν/
√

τW = ν/Uτ . The friction-based
Reynolds number is defined as Reτ = UτH/ν with channel half width H . The
layer can be characterized via the non-dimensional distance from wall in wall units
x+

2 = x2/ην = Uτx2/ν. It is characterized by the viscous wall region x+
2 < 50 with

dominance of molecular viscosity, including the steep viscous sublayer at the wall
with x+

2 < 5, and by the outer layer with x+
2 > 50.

The standard approach to resolve boundary layers is to use a (strongly)
anisotropic mesh with refinement towards the wall(s). Very recent results with
a L2-based dGFEM-code by Fehn et al. [3] indicate that a strong anisotropic h-
refinement can be relaxed to a (very) coarse h-mesh if higher-order FEM are applied.
It turns out that for such (highly) under-resolved turbulent flows a “medium order”
(k = 4, . . . , 8) is most efficient. Another point is that a purely numerical approach
to stabilization is applied, i.e. no physical LES or VMS model is used.

Figure 10 shows results for the H(div)-dGFEM for the channel flow at Reτ =
180. It turns out that a method of order k = 2 is not sufficient, but k = 3
provides good results. Very coarse grids with N = 4 resp. N = 8 elements in
each xi-direction with slightly anisotropic refinement in x2-direction towards the
wall (indicated by vertical lines in Fig. 10) are used.

Fig. 9 3D channel flow: Laminar flow (left), Turbulent Reτ = 180-flow (right)
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No explicit physical LES model is applied. In the ILES approach only numerical
dissipation (basically from SIP and upwind) is used. The results for the averaged
mean profile of U+, the Reynolds stress component 〈u′

1u
′
2〉+ and the rms turbu-

lence intensity values u+
RMS , compared to the DNS-data by Moser et al. [7], are

surprisingly good on this very coarse grids with 123 resp. 243 grid points. ��
Results in [3] indicate that such approach is also possible for larger values of Reτ .

4 Outlook

The following features of H(div)-dGFEM are exploited in the numerical simulation
of turbulent flows via implicit LES for incompressible Navier-Stokes flows:

• Minimal stabilization: Numerical dissipation may only result from the SIP term
for the diffusive term ah and upwind term in ch.

• Simple form of convective form: There is no need to modify the convective term
ch since an exactly divergence-free FEM has a clean energy balance a priori.

• Pressure robustness: H(div)-conforming FEM have the relevant property that
changing source term f to f +∇ψ changes the solution (uh, ph) to (uh, ph +ψ).

• Re-semi-robust error estimates: Right-hand-side terms of the error estimate, see
Theorem 1, including the Gronwall-term do not explicitly depend on 1/ν.

We considered an ILES approach to simple turbulent flows with very resonable
results. Turbulent flows in practice are clearly much more complex. A challenge
is the flow around a high-lift airfoil, see Fig. 11, with complicated interplay of
attached laminar and turbulent layers, separation, vortex structures etc. For a careful
numerical study of such flows see [8]. A full DNS is still unfeasable. It would
be of strong interest to develop new numerical concepts for such complex flows
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Fig. 11 Complex flow around three-element high-lift airfoil
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which clearly go beyond the limit cases (homogeneous isotropic turbulence and
turbulent channel flows) under consideration. Nevertheless, the proposed ILES
approach with high-order and pointwise divergence-free H(div)-dGFEM is a very
promising approach. Another important point is that the flow in the previous
example is governed by the compressible Navier-Stokes model. Many aspects of
incompressible flows can be extended to the compressible case, e.g. the approach in
boundary layer regions.
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