
Chapter 15
Serum Albumin, Lipid and Drug Binding

Koji Nishi, Keishi Yamasaki and Masaki Otagiri

Abstract Albumin is widely conserved from vertebrates to invertebrates, and nature
of mammalian albumins permit them to bind various endogenous ligands and drugs
in the blood. It is known that at least two major ligand binding sites are present on
the albumin molecule, which are referred to as Site I and Site II. These binding sites
are thought to be almost completely conserved among mammals, even though the
degree of binding to these sites are different depending on the physical and chemical
properties of drugs and differences in the microenvironment in the binding pockets.
In addition, the binding sites for medium and long-chain fatty acids are also well
conserved among mammals, and it is considered that there are at least seven binding
sites, including Site I and Site II. These bindings properties of albumin in the blood
are alsowidely known to be important for transporting drugs and fatty acids to various
tissues. It can therefore be concluded that albumin is one of themost important serum
proteins for various ligands, and information on human albumin can be very useful
in predicting the ligand binding properties of the albumin of other vertebrates.
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Introduction

Albumin is one of most widely studied proteins in body fluids. In 400 A.D., Hip-
pocrates described the presence of foam in urine, which was subsequently proved
to be albumin. After more than a thousand years, albumins from human to various
mammals have now been identified. As of this writing, serum albumins from vari-
ous vertebrate and invertebrate species have been identified and cloned. Vertebrate
albumins are known to be the most abundant soluble protein in plasma. Albumins
in mammals including human, bovine, dog, sheep, goat, cat and rabbit have been
researched and their amino acid sequences (Allerton et al. 1962; Brown et al. 1989;
Dixon and Sarkar 1974; Dugaiczyk et al. 1982; Hilger et al. 1996; Ho et al. 1993;
Jacobs and Koj 1969; Lawn et al. 1981; Sala-Trepat et al. 1979a, b; Sargent et al.
1979; Weijers 1977) have been revealed and three-dimensional structures by X-ray
crystallographic studies (Bujacz 2012; He and Carter 1992; Majorek et al. 2012;
Yamada et al. 2016).

The bindings of various endogenous and exogeneous substrates in the blood con-
trol their pharmacokinetics (Fanali et al. 2012; Kragh-Hansen 1981, 1990, 2013;
Peters 1970, 1985). Clinically, human albumin has been used for patients who are
bleeding based on its function to maintain the colloid osmotic pressure of serum
(Kobayashi 2006; Matejtschuk et al. 2000; Ohnishi et al. 2008). Since the 1970s,
not only in humans, but also other mammalians such as bovine, horse and rabbit, the
binding of fatty acids and various drugs to serum albumins has been investigated.
These studies clearly indicate that these albumins have important roles in the delivery
of endogenous and exogenous ligands in blood. In this chapter, the ligand binding
properties, including fatty acid binding properties, are reviewed, focusing on albumin
from mammalian species, especially, human albumin.

Human Albumin

Among the vertebrate and invertebrate albumin species, human albumin has been
the most extensively studied for its function and structure (Chuang and Otagiri 2006;
Fanali et al. 2012; Kragh-Hansen 1981, 1990, 2013; Kragh-Hansen et al. 2002;
Otagiri 2005). Human albumin consists of 585 amino acid residues and there are no
oligosaccharide chains attached to the molecule. The molecule has a heart-shaped
structure, containing α-helices (67%) and no β-sheets. In addition, Human albumin
is composed of three highly homologous domains, which are referred to as domain I,
II and III, respectively. The physiological functions of the molecule other than ligand
binding, include themaintenance of colloid osmotic pressure (Losowsky et al. 1962).
Albumin has been administered to patients with hypoalbuminemia, hemorrhagic
shock due to a loss of albumin (burn victims, the nephrotic syndrome, etc.) and
decreased albumin biosynthesis (cirrhosis, etc.) (Reviewers 1998). Human albumin
also has antioxidant properties (Anraku et al. 2001, 2003;Watanabe et al. 2017). This



15 Serum Albumin, Lipid and Drug Binding 385

is due to the fact that, in addition to albumin being the most abundant molecule in
blood, it contains a free cysteine residue at position 34 in the molecule. There is some
evidence to show that this cysteine residue functions to scavenge reactive oxygen
species that are generated during various inflammatory disease such as, for example,
chronic renal and hepatic disease and diabetes (Anraku et al. 2011; Matsuyama et al.
2009; Mera et al. 2005; Nagumo et al. 2014; Oettl andMarsche 2010; Terawaki et al.
2004). It has been reported that the high glycemic state in blood during diabetes
leads to the glycation of albumin molecules. This glycated albumin finally becomes
an advanced glycation end product known as an AGE and this structure can exert
various adverse effects (Baret et al. 2017; de Souza Pinto et al. 2012; Yamagishi
et al. 2003). It has been also reported that such oxidation and glycation of human
albumin also affects the drug binding capacity of the molecule (Bourdon et al. 1999;
Collison et al. 2002; Keita et al. 1993; Murtiashaw and Winterhalter 1986; van
Boekel et al. 1992; Yamazaki et al. 2005). Thus, human albumin acts as, not only an
important ligand carrier, but also as a serumprotein that can be used as a biomarker for
certain disease states. Other functions, human albumin include enzymatic properties
(esterase and thioesterase activities) (Diaz et al. 2001; Kurono et al. 1992; Watanabe
et al. 2000). In fact, the angiotensin II receptor blocker, olmesartan medoxomil, was
developed as prodrug that can be hydrolyzed by human serum albumin (Ma et al.
2005).

There are essentially two high-affinity drug binding sites on the HSA molecule,
referred to as Site I and II, respectively. Most endogenous and exogenous ligands,
which bind to human albumin, bind to either site in the range of 104–106 M−1. Until
recently it has not been possible to predict which site a ligand binds to, based on
the structural characteristics of the drug. In previous reports, Site I was reported to
be formed as a pocket in subdomain IIA and drugs with multiple rings and bulky
structures such as warfarin, phenylbutazone, acenocoumarol and indomethacin tend
to bind to this site (Kragh-Hansen 1988;Yamasaki et al. 1996). In addition, the finding
that ligands as large as bilirubin bind toSite I suggests that this Site is large (Brodersen
and Stern 1980). This site is considered to be flexible and to have less structural
specificity because Site I-binding drugs exhibit diverse structural characteristics.
Furthermore, Site I is comprised of a broad area on the molecule, called Site Ia,
Ib and Ic. These subsite regions are known to be overlapped (Petersen et al. 2000).
A single mutation in amino acid residues in Site I (K199, W214, R218 and H242)
affects the overall structure and thermal stability of Site I (Watanabe et al. 2001).
Site I is located at the boundary between domain I and domain II. In a study using
recombinants of each domain, it was found that the ligand binding ability of subsites
Ia and Ib could not be detected in recombinant domain II, but the binding of ligands
to subsite Ic in domain II was preserved (Matsushita et al. 2004).

An X-ray crystallographic study showed that Site II is located in subdomain
IIIA (He and Carter 1992; Sudlow et al. 1975). NSAIDs containing aromatic
carboxylic acids such as ketoprofen and ibuprofen bind to Site II (Chuang et al.
1999; Wanwimolruk et al. 1982). Thus, unlike Site I, Site II is considered to have a
narrow binding pocket, and to be slightly rigid compared to Site I. In fact, a single
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mutation of Arg110 or Tyr411, both of which are involved in ligand binding in Site
II, significantly induced a decrease in binding capacity (Watanabe et al. 2000).

Although there are several types of ligands, binding sites other than Site I and Site
II have also been reported. Human albumin contains three metal binding sites (Peters
1966). The N-terminal binding site is one such site, where the binding of Cu (II), Co
(II), Ni (II) can occur, and the binding involves Asp1, Ala2, His3 (Sadler et al. 1994).
In particular, the binding of Cu (II) is very strong, and its dissociation constant is as
low as 6.7× 10−17 M.The secondSite is located atCys34.As described above,Cys34
is located in subdomain IA, and approximately 40% of this residue in circulation is
present as the free form without binding of a low molecular thiol (cysteine and
glutathione). Therefore, free ligands can bind covalently to Cys34 which contains
not only endogenous substances, nitric oxide (Ishima et al. 2009), Ag (I), Cu (II), Au
(I) and Pt (II) (Coffer et al. 1986; Peters 1966), but also thiol-containing drugs, such
as N-acetyl-L-cysteine (Sengupta et al. 2001), D-penicillamine and captopril (Coffer
et al. 1986; Narazaki et al. 1997). The binding capacity of these ligands has been
reported to fluctuate during a disease state, suggesting that the redox state of Cys34
is susceptible during a disease state. The third metal binding site, referred to as a Co
(II) binding site A and B respectively, binds Zn (II) and Cd (II) other than Co (II).
X-ray absorption fine structure spectroscopy and modeling studies suggest that this
binding involves His67, Asn99 (domain I), His247, Asp249 (domain II) (Blindauer
et al. 2009).

The saturated long-chain fatty acids, lauric acid (C12), myristic acid (C14),
palmitic acid (C16), and stearic acid (C18), have all been reported to form a three-
dimensional complex structure with human albumin (Fig. 15.1) (Bhattacharya et al.
2000). Among them, myristic acid and palmitic acid have been extensively studied.
Previous studies indicate that the albumin molecule contains five binding sites for
myristic acid, one in subdomain IB, one at the interface between subdomain IA and
subdomain IIA, two in IIIA and one in IIIB respectively (Peters 1966). Furthermore,
it has been reported that the sixth Site is located at the boundary between subdomains
IIA and IIB. These six fatty acid binding sites have also been identified in other long
chain fatty acids (C12: 0, C16: 0 and C18: 0). In addition, it has also been reported
that a seventh binding Site is present in subdomain IIA.

The binding site of medium-chain fatty acids such as capric acid (C10) is also very
similar to long-chain fatty acids. According to a report by Curry and colleagues there
are an additional two binding sites with slightly lower affinity for the seven long-
chain fatty acid binding sites (Bhattacharya et al. 2000; Petitpas et al. 2001). One
is in the crevice between domain I-II and domain II-III and the other is in between
domain I and III.

Although the binding site of the short-chain fatty acid octanoic acid and albumin
has not been clarified, inhibition experiments using the previous Site II binding ligand
suggest that it is Site II (Kragh-Hansen 1991). Furthermore, we recently reported
that phenylbutyrate, a fatty acid derivative, binds strongly to Site II of the albumin
molecule, and the short medium-chain fatty acid in the side chain is likely to bind
to Site II (Sakurama et al. 2018, 2019). On the other hand, 2D NMR spectroscopy
findings suggest that there are nine binding sites for fatty acids (Hamilton 2013), but
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Fig. 15.1 Structures of human albumin complexed with five different fatty acids. Numbers in
molecules (1–9) represent the biding site of fatty acids respectively (Bhattacharya et al. J Mol Biol.
2000; 303: 721–732.)

the number of fatty acid binding sites of human albumin is still controversial. Similar
to saturated fatty acids, unsaturated fatty acids, oleic acid (cis-form) and arachidonic
acid have been also reported to bind to these seven binding sites, and the binding
modes appear to be very similar to those of saturated fatty acids (Petitpas et al. 2001).

Regarding other endogenous ligands, it is well known that bilirubin, various
metals, and uremic toxins (indoxyl sulfate; IS, 3-carboxy-4-methyl-5-propyl-2-
furanpropanoate; CMPF, which are known to be elevated during renal dysfunction
and are known to be associatedwith renal dysfunction) bind to human albumin (Sakai
et al. 1995). Dicarboxylic acids such as bilirubin or CMPF bind to Site I (Brodersen
and Stern 1980; Petersen et al. 2000; Sakai et al. 1995). It is known that ligands that
contain an aromatic carboxylic acid such as L-tryptophan, indole acetic acid and
indoxyl sulfuric acid bind to Site II (Irikura et al. 1991; Kragh-Hansen 1990).

Other Mammalian Albumins

The three-dimensional structures of albumins have been clarified by X-ray crystal
structure analysis for bovine, dog, horse, sheep, goat, cat and rabbit albumins, and
they show that amino acids sequences and structures of the these molecules are
extremely homologous (71–76%) to human albumin. This suggests that albumins
from these species also have drug and fatty acid binding properties that are equiva-
lent to human albumin. In fact, there are reports that the binding properties of ligands,
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including fatty acids, are similar to those from humans and that binding pockets to
similar to those for human albumins are also present in other mammalian albumins.
Superposing the X-ray crystal structures of human and other mammalian albumins
suggest that other animal albumins also have quite similar binding pockets in Site I
and II. The positions of amino acid residues that are considered to be important for
drug binding in human albumin are also very similar in other mammalian albumins
(Fig. 15.2). Thewidth and shape of the Site I entrance appears to be different between
these albumins (Fig. 15.3). However, there is a little difference in the binding char-
acteristics in site I among human and other mammalian albumins (Kosa et al. 1997).
This may be due to the fact that the entrance of Site I is sufficiently large to bind
bilirubin. On the other hand, the entrance to Site II appears to be much narrower than
site I, and the charge state around the entrance of this site in human albumin appears

Fig. 15.2 Amino acid residues in the vicinity of site I (a) and II (b) of human (red), bovine (pink),
dog (yellow), horse (purple) and rabbit (green) albumins. PDB codes for human bovine, dog, horse
and rabbit albumins are 1UOR, 4F5S, 5GHK, 4F5U and 3V09 respectively

Fig. 15.3 Protein surfaces of site I of human (a), bovine (b), horse (c), dog (d) and rabbit (e) albu-
mins. PDB codes for human bovine, dog, horse and rabbit albumins are 1UOR, 4F5S, 5GHK, 4F5U
and 3V09 respectively
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Fig. 15.4 Protein surfaces at site II of human (a), bovine (b), horse (c), dog (d) and rabbit (e) albu-
mins. PDB codes for human bovine, dog, horse and rabbit albumins are 1UOR, 4F5S, 5GHK, 4F5U
and 3V09 respectively

to be similar to that of dogs but different from other animal species (Fig. 15.4). These
slight differences in the microenvironment may have resulted in minor differences
in drug binding between animal species. This section discusses the ligand binding
properties of other mammalian albumins compared to that from humans.

Bovine

Bovine albumin is also one of the most widely studied albumin from a mammal
species. X-ray crystallographic study data show that three-dimensional structure of
this molecule is quite similar to that of humans. From substitution experiments using
fluorescent probes that bind to Site I or Site II of human albumin, it has been reported
that Site I are retained in bovine albumin (Kosa et al. 1997). On the other hand, it has
been reported that Site II on bovine albumin is slightly different from that of human.
The results of binding experiments suggest that this difference is due to changes in
the microenvironment and is caused by differences in the size and/or hydrophobicity
of the binding site, rather than differences in the amino acid sequences. Isothermal
titration calorimetry assays (ITC) and various spectroscopic methods show, as in
human albumin, there are two binding sites for metal cations such as Cu (II), Zn (II)
and Ni (II), where one is at the N-terminal moiety, and another is cysteine residue at
position 34 (Kolthoff and Willeford 1958; Peters and Blumenstock 1967).

Bovine albumin is also reported to have three primary binding sites for long chain
fatty acids (Hamilton et al. 1991). NMR measurements performed using a pepsin
albumin digest (1–306, 307–582) and a tryptic digest (377–582) suggest that three
primary sites are present on the albumin molecule, among which two are located in
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residues 307–582 or residues 377–582, and one is in the N-terminal fragment (1–
306). Furthermore, based on studies involving the chemical modification of bovine
albumin, the modification of Lys 222 in subdomain IIA was inhibited by a C8 fatty
acid (but not by medium chain, long chain fatty acids (C16, C18, C18:1) (Walker
1976). A possible binding site for short-chain fatty acidsmay be present near Lys222.
In addition, photoaffinity labeling experiment showed Lys116, Lys349 and Lys473
were labeled with palmitate (Reed 1986).

Horse (Equine)

Similar to human albumin, equine albumin is also known to bind NSAID drugs.
Detailed structure of complexes of diclofenac andnaproxenwith equine albumin have
been revealed based on X-ray crystallography and differential scanning calorimetry
data (Sekula and Bujacz 2015). Albumin is known to contain 2 binding sites for both
diclofenac and naproxen respectively; sites for diclofenac are located in domain III,
sites for naproxen are located in domain II and III, and the binding sites in domain III
for each drug overlap. This site is considered to correspond to the Site II of human
albumin. Therefore, similar to human albumin, with regard to Site II, equine albumin
is also considered to contain a Site II for binding drugs.

Dog (Canine)

Representative drugs that bind to Site II of human albumin, warfarin and phenylbu-
tazone, also bind to human, bovine, rabbit and rat albumin, but not dog albumin.
However, drug binding experiments using Site II binding drugs, such as ibuprofen
and diazepam, indicate that ibuprofen binds tomammalian species albumins (human,
bovine, dog, rabbit and rat) to the same degree (1.0–3.0 × 106 M−1), but diazepam
appears to have a high affinity only to human and dog albumin (Kosa et al. 1997).
Furthermore, we recently reported that the antipsychotic drug, aripiprazole, which,
similar to diazepam, contains a chlorine atom binds strongly only to human and dog
albumins among mammalian species (Sakurama et al. 2018). This finding suggests
that the microenvironment of the Site II binding pocket of human and dog albumin
are similar. On the other hand, copper binding sites observed in human and bovine
albumin are lacking (Appleton and Sarkar 1971).

Role of Albumin in the Transport of Fatty Acids

Albumin is known to be one of major carriers of fatty acids in the blood. Very low
density lipoprotein (VLDL) and chylomicrons, fatty acid binding proteins (FABP)
and fatty acid translocase (FAT/CD36), albumin binding protein (ABP) are also
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involved in the transport of long chain fatty acids from the blood to the intracellular
cytosol and mitochondria (Fig. 15.5) (van der Vusse et al. 2002). The first step starts
when fatty acids that are bound to albumin in blood pass to the apical membrane
of vascular endothelial cells. Current knowledge of this indicates that the albumin-
fatty acid complex interacts directly with the lipid bilayer membrane and during the
transcytosis of this complex, fatty acids are thought to be released intracellularly
(Kosa et al. 2007; Horie et al. 1988; Reed and Burrington 1989), whereas albumin
binds to ABP on the membrane surface and the released fatty acids are then taken up
by vascular endothelial cells (Luiken et al. 1999). On other hand, triglycerides (TG)
and cholesterol ester (CE) in VLDL and chylomicrons are hydrolyzed to glycerol,
cholesterol and fatty acids by lipoprotein lipases that are produced by endothelial
cells (van der Vusse et al. 1992). The neonatal Fc receptor (FcRn) on the vascular
endothelial cell membrane is considered to be a receptor for albumin and to be
important for albumin recycling (Kim et al. 2006). Therefore, FcRn may be involved
in the uptake of fatty acids that are bound to albumin. The fatty acids which pass
through the vascular endothelial cells again bind to albumin in the intercellular space
and are then transferred to the cellmembrane of tissue, but themechanism responsible
for this is not well understood. Thereafter, the fatty acids transported into tissue cells
bind to FABP followed by forming Acyl-CoA, which is used for the acylation of
diacylglycerol, protein and signal transduction. In addition, acyl-CoA is transported
into mitochondria and undergoes β-oxidation to become acetyl-CoA, which is a fuel
for the citric acid cycle (van der Vusse et al. 2002). Thus, albumin plays a very
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Fig. 15.5 Fatty acid transport from blood to tissue
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important role in the transport of fatty acids in the blood, for not only the synthesis
of various lipids, but also energy production. Furthermore, albumin not only plays
an important role in fatty acid transport, it is also reported that fatty acids contribute
to the structural stability and thermal stability of human albumin. Therefore, fatty
acids may contribute to the structural stability of albumin, resulting in extending its
retention time in the blood.

Conclusion

Albumin is one of the most extensively studied proteins, and past studies indicate
that it is widely conserved from vertebrates to invertebrates. It is well known that
the binding of drugs and fatty acids are a main functions of albumin, and that the
amino acid sequences, three-dimensional structures and the drug binding properties
(affinity and binding site) of mammalian albumins are all quite similar. In particular,
the transport of fatty acids that are bound to albumin to tissues, where triglycerides
andphospholipids are synthesized, is a very important process in termsofmaintaining
biological homeostasis. Therefore, albumin is a protein that plays an important role
in a wide variety of species ranging from vertebrates to invertebrates, and data on
human albumin is likely to be the useful information for many researchers.
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