
Chapter 7
Operational Analysis and Basic Queueing
Models

“All models are wrong, but some are useful.”
—George E. P. Box (1919-2013), British statistician

In Chapter 1, we introduced the concept of system performance understood in a
classical sense as the amount of useful work accomplished by a system compared
to the time and resources used. Better performance normally means more work
accomplished in shorter time or using less resources. To characterize the performance
behavior of a system, performance metrics are used. In Chapter 3 (Section 3.3), we
introduced the most common basic performance metrics used in practice: response
time, throughput, and utilization.

In this chapter, we start by looking at some basic quantitative relationships, which
can be used to evaluate a system’s performance based on measured or known data,
a process known as operational analysis (Section 7.1). Operational analysis can be
seen as part of queueing theory, a discipline of stochastic theory and operations
research, which provides general methods to analyze the queueing behavior of one
or more service stations. In the second part of the chapter (Section 7.2), we provide
a brief introduction to the basic notation and principles of queueing theory. While
queueing theory has been applied successfully to different domains, for example, to
model manufacturing lines or call center operation, in this chapter, we focus on using
queueing theory for performance evaluation of computer systems. Nevertheless, the
presented concepts and mathematical models are relevant for any processing system
where the generic assumptions described in this chapter are fulfilled. The chapter
is wrapped up with a case study, showing in a step-by-step fashion how to build a
queueingmodel of a distributed software system and use it to predict the performance
of the system for different workload and configuration scenarios.
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7.1 Operational Analysis

In this section, we introduce a set of basic quantitative relationships between the
most common performance metrics. These relationships are commonly known as
operational laws and can be considered to be consistency requirements (i.e., invari-
ant relations) for the values of performance quantities measured in any particular
experiment (Menascé et al., 2004). The process of applying operational laws to de-
rive performance metrics based on measured or known data is known as operational
analysis (Denning and Buzen, 1978). This section introduces the most important
operational laws, which are later revisited in Section 7.2 in the context of queueing
theory. We refer the reader to Menascé et al. (2004) for a more detailed treatment of
operational analysis.

Consider a system made up of K resources (e.g., servers, processors, storage
devices, network links). The system processes requests sent by clients.1 It is assumed
that during the processing of a request, multiple resources can be used, and at each
point in time, the request is either being served at a resource or is waiting for a
resource to become available. The same resource may be used multiple times during
the processing of a request; each time the resource is used, we will refer to this as
the request visiting the resource. We assume that the system is observed for a finite
period of time and that it is in operational equilibrium (i.e., steady state) during this
period; that is, the number of submitted requests is equal to the number of completed
requests.

We will use the notation shown in Table 7.1. Given that the system is assumed to
be in operational equilibrium, the following obvious equations hold:

Si =
Bi

Ci
, Ui =

Bi

T
,

Xi =
Ci

T
, λi =

Ai

T
,

X0 =
C0

T
, Vi =

Ci

C0
,

λi = Xi .

(7.1)

Example During a period of 1min, 240 requests arrive at a server and 240 requests
are completed. The server’s CPU is busy for 36 s in this time period. If the server

1 The term request here is used loosely to refer to any unit of work or processing task executed
in the system, for example, an HTTP request, a database transaction, a batch job, a web service
request, or a microservice invocation. Requests in this context are also commonly referred to as
customers, jobs, or transactions.
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Table 7.1: Notation used in operational analysis (Menascé et al., 2004)

Symbol Meaning
K Number of resources in the system
T Length of time during which the system is observed
Bi Total length of time during which resource i is busy in the observation

period
Ai Total number of service requests (i.e., arrivals) to resource i
A0 Total number of requests submitted to the system
Ci Total number of service completions (i.e., departures) at resource i
C0 Total number of requests processed by the system
Vi Average number of times resource i is visited (i.e., used) during the

processing of a request, referred to as visit ratio
λi Arrival rate at resource i (i.e., average number of service requests that

arrive per unit of time)
Si Average service time of a request at resource i per visit to the resource

(i.e., the average time the request spends receiving service from the
resource excluding waiting/queueing time)

Di Average total service time of a request at resource i over all visits to
the resource, referred to as the service demand at resource i

Ui Utilization of resource i (i.e., the fraction of time the resource is busy
serving requests)

Xi Throughput of resource i (i.e., the number of service completions per
unit of time)

X0 System throughput (i.e., the number of requests processed per unit of
time)

R Average request response time (i.e., the average time it takes to process
a request including both the waiting and service time in the system)

N Average number of active requests in the system, either waiting for
service or being served

uses no resources apart from the CPU, and it only has a single request class, what is
the arrival rate, the CPU utilization, the mean CPU service demand, and the system
throughput?

K = 1, T = 60 s, A0 = A1 = 240, C0 = C1 = 240, B1 = 36 s,

λ1 =
A1

T
=

240
60 s
= 4 req/s, U1 =

B1

T
=

36 s
60 s
= 0.6 = 60%,

S1 =
B1

C1
=

36 s
240
= 0.15 s, X0 =

C0

T
=

240
60 s
= 4 req/s.

(7.2)
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In the following, we introduce the five most common operational laws providing
the basis for operational analysis.

7.1.1 Utilization Law

The utilization law states that the utilization of resource i is given by the request
arrival rate λi multiplied by the average service time Si per visit to the resource;
that is,

Ui = Si × λi = Si × Xi . (7.3)

Proof

Ui =
Bi

T
=

Bi

Ci

T
Ci

=

Bi

Ci

1
Ci
T

=
Si
1
Xi

= Si × Xi = Si × λi . (7.4)

Example A program computes 190 matrix multiplications per second. If each
matrix multiplication requires 1.62 billions of floating point operations, and the
underlying CPU can process up to 380GFLOPS (billions of floating point operations
per second), what is the utilization of the CPU?

K = 1, X1 = 190,

S1 =
1.62
360

= 0.0045 s,

U1 = S1 × X1 = 0.0045 × 190 = 0.855 = 85.5%.

(7.5)

7.1.2 Service Demand Law

The service demand Di (also referred to as resource demand) is defined as the
average total service time of a request at resource i over all visits to the resource.2
The service demand law states that the service demand of a request at resource i is
given by the utilization of resource i divided by the system throughput X0, that is,

Di =
Ui

X0
. (7.6)

Proof
Di = Vi × Si =

Ci

C0
×

Bi

Ci
=

Bi

C0
=

Ui × T
C0

=
Ui

C0
T

=
Ui

X0
. (7.7)

2 In this book, we use the terms service demand and resource demand interchangeably.
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Example A program that calculates matrix multiplications is run 180 times within
5min. For this time period, the underlying CPU reports a utilization of 30%. What
is the CPU service demand for a single program execution?

K = 1, T = 5 × 60 s = 300 s,

X0 =
C0

T
=

180
300 s

= 0.6 runs/s,

U1 = 30% = 0.3,

D1 =
U1

X0
=

0.3
0.6
= 0.5 s.

(7.8)

7.1.3 Forced Flow Law

By definition of the visit ratioVi , resource i is visited (i.e., used)Vi times, on average,
by each processed request. Therefore, if X0 requests are processed per unit of time,
resource i will be visited Vi × X0 times per unit of time. So the throughput of
resource i, Xi , is given by

Xi = Vi × X0. (7.9)

This result, known as forced flow law, allows one to compute the system through-
put based on knowledge of the visit ratio and the throughput of any one resource in
the system. In addition, knowing the visit ratios of all resources and the throughput
of just one resource allows for calculation of the throughput of all other resources in
the system.

Example AREST-basedweb service3 accesses a file server five times and a database
two times for every request. If the web service processes 525 requests in a 7min
interval, what is the average throughput of the web service, the file server, and the
database?

3REST (REpresentational State Transfer) is an architectural style for developingweb services,which
is typically used to build lightweight web and mobile applications. Web services that conform to
the REST architectural style provide interoperability between computer systems on the Internet.
Nowadays, most public web services provide REST APIs (Application Programming Interfaces)
and transfer data in a compact and easy-to-use data-interchange format—the JavaScript Object
Notation (JSON).
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Xweb_service = X0 =
C0

T
=

525
7 × 60 s

= 1.25 req/s,

X f ile_server = Vf ile_server × X0 = 5 × 1.25 = 6.25 req/s,

Xdatabase = Vdatabase × X0 = 2 × 1.25 = 2.5 req/s.

(7.10)

7.1.4 Little’s Law

Little’s law states that the average number of active requests N in the system (sub-
mitted requests whose processing has not been completed yet) is equal to the average
time it takes to process a request (i.e., the request response time R) multiplied by
the number of requests processed per unit of time (i.e., the system throughput X0),
that is,

N = R × X0. (7.11)

We consider Little’s law in the context of a system processing requests; however,
it can generally be applied to any “black box” where some entities arrive, spend
some time inside the black box, and then leave. Little’s law states that the average
number of entities in the black box N is equal to the average residence time R of an
entity in the black box multiplied by the average departure rate X (throughput); that
is, N = R× X . This is illustrated in Figure 7.1. We refer to Little (1961) for a formal
proof. Little’s law holds under very general conditions; the only assumption is that
the black box does not create nor destroy entities.

Fig. 7.1: Little’s law (Menascé et al., 2004)

Example An enterprise resource planning system is implemented based on a mi-
croservice architecture consisting of many individual microservices. What is the
average response time of the enterprise resource planning system if it is used by 273
employees at the same time and they execute 9,450 operations per hour?
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T = 60min × 60 s = 3,600 s,

X0 =
C0

T
=

9,450
3,600 s

= 2.625 ops/s,

R =
N
X0
=

273
2.625

= 104 s.

(7.12)

7.1.5 Interactive Response Time Law

Assume that the system we consider is used by M clients each sitting at their own
workstation and interactively accessing the system. This is an example of a closed
workload scenario (see Chapter 8, Section 8.3.2). Clients send requests that are
processed by the system. It is assumed that after a request is processed by the system,
the respective client waits some time before sending the next request. We refer to
this waiting time as “think time.” Thus, clients alternate between “thinking” and
waiting for a response from the system. If the average think time is denoted by Z ,
the interactive response time law (illustrated in Figure 7.2) states that the average
response time R is given by

R =
M
X0
− Z . (7.13)

client workstations
Z

1

M

X0

R

Interactive  
System

...

Fig. 7.2: Interactive response time law (Menascé et al., 2004)

Proof To show that the interactive response time law holds, we apply Little’s law to
the virtual black box composed of the client workstations and the system considered
as a whole. We now consider the think time spent at the client workstation before
sending a new request as being part of the respective request (e.g., preparation
phase). Thus, each time the processing of a request is completed by the system and
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a response is sent back to the client, we consider this as one entity leaving our
virtual black box and at the same time one new entity arriving at the virtual black
box (corresponding to the next request). The total number of entities in our virtual
black box is equal to the total number of clients M (at each point in time, each
request is either at the respective client workstation or it is being processed inside
the system). The rate at which requests are completed by the system is given by the
system throughput X0. The total average time a request spends in the virtual black
box (i.e., client workstation plus system) is given by Z + R. Applying Little’s law to
the virtual black box, we obtain the following equation, which is equivalent to the
interactive response time law:

M = X0(Z + R). (7.14)

Example A train booking and reservation system is used by 50 employees. Each
of them, on average, issues a request 5 s after receiving the result of the previous
request. A request has an average CPU service demand of 0.1 s; a CPU utilization of
32% is observed. How long do employees have to wait on average until a request is
completed?

X0 = XCPU =
UCPU

DCPU
=

0.32
0.1 s

= 3.2 req/s,

R =
M
X0
− Z =

50
3.2
− 5 s = 10.6 s.

(7.15)

In summary, we introduced the following five operational laws:

Utilization law:
Ui = Si × Xi (7.16)

Service demand law:
Di = Vi × Si =

Ui

X0
(7.17)

Forced flow law:
Xi = Vi × X0 (7.18)

Little’s law:
N = R × X0 (7.19)

Interactive response time law:

R =
M
X0
− Z (7.20)
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7.1.6 Multi-Class Versions of Operational Laws

The operational laws can be extended to the case where multiple types of requests
are processed by the system. The measured quantities and derived metrics are then
considered on a per request class basis. An index c is used to distinguish between
the respective classes. The following multi-class versions of the operational laws
hold (Menascé et al., 2004):

Utilization law:
Ui,c = Si,c × Xi,c (7.21)

Service demand law:
Di,c = Vi,c × Si,c =

Ui,c

X0,c
(7.22)

Forced flow law:
Xi,c = Vi,c × X0,c (7.23)

Little’s law:
Nc = Rc × X0,c (7.24)

Interactive response time law:

Rc =
Mc

X0,c
− Zc (7.25)

Most of the quantities in the multi-class versions of the operational laws can
normally be easily measured by means of standard system monitoring tools based
on the measurement techniques presented in Chapter 6. The only exception is for the
utilizationUi,c and the service time Si,c . For example, monitoring tools can normally
provide measurements of the total resource utilization Ui . However, partitioning the
total utilization on a per request class basis is not trivial.While performance profiling
tools can be used for this purpose (see Section 6.3 in Chapter 6), such tools normally
incur instrumentation overhead, which might lead to perturbation impacting the
system behavior. Also, suitable profiling tools may not be available for the specific
environment. The utilization, broken down on a per request class basis (i.e., Ui,c),
is mainly relevant for obtaining the service demands Di,c . In Chapter 17, we look
at techniques for estimating service demands (also referred to as resource demands)
based on easy to measure high-level metrics.

7.1.7 Performance Bounds

Now that we introduced the basic operational laws, we present some further quanti-
tative relationships between the most common performance metrics, which provide
upper and lower bounds on the performance a system can achieve. The bounds can
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be classified into optimistic and pessimistic bounds and are typically used for bottle-
neck analysis. The term bottleneck is normally used to refer to the resource with the
highest utilization. It is assumed that this resource will first be saturated as the load
increases. If a bottleneck cannot be removed (e.g., by increasing the capacity of the
respective resource), the system is considered non-scalable in terms of performance.
In the following two subsections, we present two sets of performance bounds on the
system throughput and response time. Optimistic bounds capture the largest possible
throughput (Xopt ) and the lowest possible response time (Ropt ), while pessimistic
bounds capture the lowest possible throughput (Xpes) and largest possible response
time (Rpes):

Xpes ≤ X ≤ Xopt, Ropt ≤ R ≤ Rpes . (7.26)

The optimistic bounds can be derived from the service demands (Menascé et
al., 2004). We assume that the service demands are load-independent,4 which is
normally implicitly assumed in the context of operational analysis. The bounding
behavior of a system is determined by its bottleneck resource, which is the resource
with the largest service demand. Applying the service demand law, we obtain the
following upper asymptotic bound on the throughput:

X0 =
Ui

Di
≤

1
Di
≤

1
maxi=1..K {Di }

. (7.27)

Given that a natural lower bound for the response time R is given by the sum of
the service demands at all resources, applying Little’s law, we obtain another upper
asymptotic bound on the throughput:

N = R × X0 ≥ *
,

K∑
i=1

Di
+
-
× X0 ⇔ X0 ≤

N∑K
i=1 Di

. (7.28)

In summary, the upper asymptotic bounds on the throughput are given by

X0 ≤ min


1
max{Di }

,
N∑K

i=1 Di


. (7.29)

From Little’s law and the upper asymptotic bounds, we obtain the following lower
asymptotic bounds on the response time:

R =
N
X0
≥

N

min
[

1
max{Di }

, N∑K
i=1 Di

] = max

N ×max{Di },

K∑
i=1

Di


, (7.30)

R ≥ max

N ×max{Di },

K∑
i=1

Di


. (7.31)

4 A service demand is load-independent if it does not change as the request arrival rates and the
induced utilization of system resources increase or decrease.
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Fig. 7.3: Asymptotic bounds

The asymptotic bounds on throughput and response time are illustrated in Fig-
ure 7.3. In addition to the asymptotic bounds, which are normally quite loose, based
on a technique known as balanced job bounds analysis, the following tighter bounds
can be derived (Menascé et al., 1994):

N
max{Di }[K + N − 1]

≤ X0 ≤
N

avg{Di }[K + N − 1]
. (7.32)

Figure 7.4 illustrates the relationship between the asymptotic bounds and balanced
job bounds.

# Concurrent Transactions (N)

Balanced Job bounds

T
hr

ou
gh

pu
t

Asymptotic bounds

Fig. 7.4: Balanced job bounds (Menascé et al., 1994)

Example Fifty employees use an enterprise resource planning system that is imple-
mented as a three-tier architecture. The web tier has a CPU service demand of 0.2 s,
the business logic tier has a CPU service demand of 0.32 s, and the database tier has
a CPU service demand of 0.15 s. Calculate the asymptotic and balanced job bounds
for the throughput of the enterprise resource planning system under the assumption
that all tiers use no resources apart from their CPU.
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Asymptotic bounds:

X0 ≤ min


1
max{Di }

,
N∑K

i=1 Di


,

X0 ≤ min
[

1
max{0.2, 0.32, 0.15}

,
50

0.2 + 0.32 + 0.15

]
,

X0 ≤ min [3.1, 74.6] = 3.1.

(7.33)

Balanced job bounds:

N
max{Di }[K + N − 1]

≤ X0 ≤
N

avg{Di }[K + N − 1]
,

50
max{0.2, 0.32, 0.15}[3 + 50 − 1]

≤ X0 ≤
50

avg{0.2, 0.32, 0.15}[3 + 50 − 1]
,

3.0 ≤ X0 ≤ 4.3.

(7.34)

7.2 Basic Queueing Theory

The fundamental operational laws presented in the previous section can be seen as
part of queueing theory, a discipline of stochastic theory and operations research. It
provides general methods to analyze the queueing behavior at one or more service
stations and has been successfully applied to different domains in the last decades, for
example, to model manufacturing lines or call center operations.When analyzing the
performance of a computer system, queueing models are often used to describe the
scheduling behavior at hardware resources such as processors, storage, and network
devices. In this section, we provide a brief introduction to the basic notation and
principles of queueing theory. A detailed treatment of the subject can be found
in Lazowska et al. (1984), Bolch, Greiner, et al. (2006), and Harchol-Balter (2013).
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7.2.1 Single Queues

The central concept of queueing theory is a queue, also referred to as a service
station or service center. A queue (illustrated in Figure 7.5) consists of a waiting
line and a server, which serves incoming requests.5 Requests arrive at the queue
and are processed immediately unless the server is already occupied. In the latter
case, requests are put into the waiting line. After a request has been completely
processed by the server, it departs from the queue. A queue can also have several
servers, assumed to be identical, in which case we speak of a multi-server queue.
The semantics are similar; that is, whenever a request arrives, it is processed at one
of the servers that is currently free. If all servers are occupied, the request is put into
the waiting line.

Waiting Line Server

Queue

DeparturesArrivals

Fig. 7.5: Single queue (service station)

A number of terms are commonly used when describing the timing behavior of
a queue. Requests may arrive at a queue at arbitrary points in time. The duration
between successive request arrivals is referred to as inter-arrival time. The average
number of requests that arrive per unit of time is referred to as arrival rate, denoted
as λ. Each request requires a certain amount of processing at a server. The time a
server is occupied by a request is called service time. The average number of requests
that can be processed per unit of time at a single server is referred to as service rate,
denoted as µ. The mean service time is then defined as S = 1/µ and specifies the
time a server is occupied while processing a request on average. The time a request
spends waiting in the waiting line is referred to as queueing delay or simply waiting
time. The response time of a request is the total amount of time the request spends
at the queue, that is, the sum of waiting time and service time.

When one request is completed, the next request to be served is selected from the
requests in the queue according to a scheduling strategy. Typical scheduling strate-

5 The term request here is used in the same way as in Section 7.1, that is, it refers loosely to any
unit of work or processing task executed in the service station. Requests in this context are also
commonly referred to as customers, jobs, or transactions.
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gies are First-Come-First-Served (FCFS), where jobs are processed in the order of
their arrival, Processor-Sharing (PS), where jobs are served concurrently each having
an equal share of the total capacity (i.e., round-robin scheduling with infinitesimally
small time slices), or Infinite-Server (IS), where all requests in the queue are sched-
uled immediately as if the queue were to have an infinite number of servers. When
modeling computer systems, a FCFS scheduling strategy is typically used for queues
representing I/O devices, whereas a PS scheduling strategy is commonly used for
queues representing processors (CPUs) and an IS scheduling strategy for queues
representing constant delays (e.g., average network delays).

There is a standard notation to describe a queue, known as Kendall’s nota-
tion (Kendall, 1953).Aqueue is described bymeans of 6 parameters A/S/m/B/K/SD
defined in Table 7.2. The distribution components are characterized using short-hand
symbols for the type of distribution, the most common of which are shown in Ta-
ble 7.3. A deterministic distribution means that the respective times are constant. A
general distribution means that the distribution is not known. This is commonly used
for empirical distributions obtained from measurements if the underlying shape of
the distribution is unknown. Parameters B and K are usually considered infinite and
are thus often omitted in queue descriptions.

Table 7.2: Kendall’s notation for a queue (A/S/m/B/K/SD)

Symbol Meaning
A Arrival process (i.e., distribution of the inter-arrival times)
S Service process (i.e., distribution of the service times)
m Number of servers in the service station
B Maximum number of requests that a queue can hold (if missing, B is

assumed to be infinite)
K Maximum number of requests that can arrive at the queue, referred to

as system population (if missing, K is assumed to be infinite)
SD Scheduling strategy (by default FCFS)

Table 7.3: Symbols for types of distributions

Symbol Meaning
M Exponential (Markovian) distribution
D Deterministic distribution (i.e., constant times without variance)
Ek Erlang distribution with parameter k
G or GI General (independent) distribution
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In practice, many systems serve requests with different arrival and service char-
acteristics (e.g., the service rate of read and write requests to a database may be
different). In theory, it would be possible to use multi-modal distributions for such
cases; however, this can complicate the parameterization and solution of queueing
models (Harchol-Balter, 2013, Chapter 21). Instead, multi-class queues are used
where multiple types of requests are distinguished, referred to as request classes
or workload classes. Each workload class represents a set of requests with similar
characteristics, described by their own arrival rate and service rate parameters.

For a given queue i, performancemetrics can be considered for a transient point in
time t or for the steady state (i.e., t → ∞). Generally, a system is considered to be in a
steady state if the variables that define its behavior are unchanging in time (Gagniuc,
2017). In the context of queues, it is normally assumed that after a queue has been
in operation for a given amount of time (referred to as transient phase or warm-up
period), it will eventually reach a steady state, in which performance metrics are
stable. In the following, we are interested in the steady-state solution of a queue.
More details on the transient solution of a queue can be found in Bolch, Greiner,
et al. (2006). Typical performance metrics of interest include: the utilization of the
queue, the queue length, the request throughput, and the request response time. The
utilizationUi is the fraction of time in which the queue is busy serving requests. The
queue lengthQi specifies the number of requests waiting for service (excluding those
currently in service). The throughput Xi,c (where c stands for workload class c) is
the number of requests of class c leaving the queue per unit of time. If the maximum
number of requests that arrive at a queue is unlimited, the relation λ < µmust hold,
so that the queue is stable (i.e., a steady-state solution exists). The response time Ri,c

of requests from workload class c is defined as

Ri,c = Wi,c + Si,c, (7.35)

where Wi,c is the time a request has to wait in the queue before being served, and Si,c
is the service time of the request. The waiting time Wi,c depends on a number of
parameters including the scheduling strategy and the arrival and service processes
(i.e., the request inter-arrival and service time distributions).

7.2.2 Queueing Networks

A queueing network (QN) consists of two or more queues (service stations) that
are connected together and serve requests sent by clients. Requests are grouped
into classes (workload classes) where each class contains requests that have similar
arrival behavior and processing requirements. The routing of requests in the queueing
network is specified by a probability matrix. Requests of class c departing from
service station i will move to service station j with probability pc,i, j or leave the
network with probability pc,i,out = 1 −

∑
j pc,i, j . Requests of class c can arrive from

outside the network at service station i with a rate rc,i .
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Figure 7.6 shows an example with three queues, one multi-server queue and
two single server queues. The multi-server queue represents a multicore CPU, and
the two single server queues represent a disk drive and a network, respectively.
The connections between the queues illustrate how requests are routed through the
network of queues. An incoming request, after being processed by the CPU, is routed
either to the disk or to the network. The routes are labeled with probabilities. With
a probability of 0.8, a request coming from the CPU is routed to the disk queue.
With a probability of 0.2, a request coming from the CPU is routed to the queue
representing the network. If a request is completed at the disk or the network queue,
the request either leaves the queueing network with a probability of pleave, or it is
immediately routed back to the CPU queue with a probability of 1−pleave. A request
may visit a queue multiple times while circulating through the queueing network.
A request’s total amount of service time at a queue, added up over all visits to the
queue, is referred to as service demand or resource demand of the request at the
queue.

...

Multicore CPU
Disk

Network

0.2

0.8

Arriving 
requests

Departing 
requests

pleave

1-pleave

Fig. 7.6: Queueing network

A queueing network where the requests come from a source that is external of
the queueing network and leave the network after service completion is referred to
as open. A queueing network where there is no such external source of requests
and there are no departing requests (i.e., the population of requests in the queueing
network remains constant and is equal to the initial population) is referred to as
closed. If a queueing network is open for some workload classes and closed for
others, it is referred to as mixed.

In the context of queueing networks, the notation shown in Table 7.4 is typically
used (similar to the notation we used in Section 7.1 when introducing operational
analysis).
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Table 7.4: Queueing network notation

Symbol Meaning
K Number of queues in the queueing network
C Number of workload classes
λc Average arrival rate of requests of class c in the queueing network

(i.e., average number of requests that arrive per unit of time) (for open
queueing networks)

λi,c Average arrival rate of requests of class c at queue i
µi,c Service rate of requests of class c at queue i
Si,c Mean service time of requests of class c at queue i per visit to the

queue (i.e., average time a request spends receiving service excluding
waiting time)

Xi,c Throughput of requests of class c at queue i (i.e., average number of
service completions for class c per unit of time)

Vi,c Average number of times queue i is visited during the processing of a
request of class c, referred to as visit ratio

X0,c System throughput for class c (i.e., total number of requests of class c
processed per unit of time)

Ui Utilization of queue i (i.e., the fraction of time the queue is busy serving
requests of any class)

Ui,c Utilization of queue i due to requests of class c (i.e., the fraction of
time the queue is busy serving requests of class c)

Di,c Service demand / resource demand (i.e., mean total service time of a
request of class c at queue i over all visits to the queue)

Wi,c Mean time a request of class c has to wait in the waiting line of queue i
before being served

Ri,c Mean response time of requests of class c at queue i (i.e., the average
time it takes to process a request including both the waiting and service
time in the queue)

Ni,c Average number of requests of class c at queue i, either waiting for
service or being served

N0,c Average number of requests of class c in the queueing network, either
waiting for service or being served

Qi Average length of queue i (i.e., average number of requests in the queue
waiting for service)

Qi,c Average number of requests of class c waiting for service at queue i
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Given a queueing network, typical metrics of interest are the response time and
throughput for each workload class and the utilization of each queue. In order to
analyze a queueing network quantitatively, the queueing network’s workload needs
to be specified. For each workload class, the workload intensity and the resource
demands for each visited queue have to be specified. How the workload intensity
is characterized depends on whether it is a closed workload or an open workload.
A closed workload is characterized by the number of requests; an open workload
is characterized by the inter-arrival time of requests. A queueing network is said to
be in steady state (or operational equilibrium) if the number of requests arriving at
the queueing network per unit of time is equal to the number of requests departing
from the queueing network, that is, the arrival rate is equal to the throughput. Closed
formulas for the response times of requests are not easy to derive since they depend
(among others) on the shape of the involved distributions (i.e., the inter-arrival time
and service time distributions for each queue).

The solution of a queueing network with K service stations and C workload
classes is based on deriving the steady-state probabilities π(N1,N2, ...,NK), where
Ni = (n1, n2, ..., nC ) is a vector composed of the number of requests of each workload
class c at service station i. Calculating the steady-state probabilities for a general
queueing network requires construction of the complete state space. This can be a
compute and memory-intensive task and suffers from the problem of state space
explosion with increasing numbers of service stations and requests. However, the
construction of the complete state space is not required for a special class of queueing
networks called product-form queueing networks.

Product-form queueing networks have a special structure that allows one to com-
pute the steady-state probabilities for the queueing network from the respective
steady-state probabilities for the individual service stations using the following equa-
tion:

π(N1,N2, ...,NK) =
1
G

[π(N1) · π(N2) · . . . · π(NK)] , (7.36)

where G is a normalizing constant (Bolch, Greiner, et al., 2006, p. 281). Thus,
a solution of the queueing network can be obtained by analyzing the steady-state
probabilities of each service station independently. Kelly showed that every queueing
network with quasi-reversible queues and Markovian routing has a product-form
solution (Kelly, 1975, 1976). Quasi-reversibility means that “the current state, the
past departures, and the future arrivals are mutually independent” (Balsamo, 2000).
Markovian routing means that the routing of requests does not depend on the current
state of the queueing network.

The BCMP theorem (Baskett et al., 1975) showed that this property holds for the
following types of service stations:

1. M/M/m with FCFS scheduling assuming that the service rate does not depend
on the workload class,

2. M/G/1 with PS scheduling,
3. M/G/∞ with IS scheduling, and
4. M/G/1 with LCFS scheduling with preemption.
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The service rate distribution in cases (2), (3), and (4) are required to have rational
Laplace transforms. In practice, this is no limitation since any exponential, hyperex-
ponential, or hypoexponential distribution fulfills this requirement, and all other types
of distributions can be approximated by a combination of these distributions (Cox,
1955).

Furthermore, Baskett et al. (1975) showed that the product-form property holds
for these scheduling strategies even with certain forms of state-dependent service
rates. Among others, the service rate may depend on the number of requests at a
service station. Thus, queues with multiple servers are also allowed for PS and LCFS
scheduling.

7.2.3 Operational Laws

The operational laws introduced in Section 7.1 provide a quick and simple way to
determine certain average performance metrics of a queue. These laws are indepen-
dent of the arrival and service processes, or the scheduling strategy. Therefore, they
can be applied both to a single queue and to an entire queueing network. The only
assumption is that the considered queue (or queueing network) is in steady state
(operational equilibrium).

Consider a multi-server queue i with mi servers. The most fundamental law in
queueing theory is Little’s law, which applied to queue i states that the average
number of requests Ni,c of workload class c at queue i is equal to the product of the
request arrival rate λc and the average time Ri,c requests spent in the queue (i.e., the
response time); that is,

Ni,c = λc · Ri,c . (7.37)

The utilization law, applied in the context of queue i, states that

Ui,c =
Xi,c · Si,c

mi
, (7.38)

whereUi,c is the utilization of the queue due to requests of class c, Si,c is the service
time, and Xi,c is the throughput for requests of class c.

Finally, the service demand law relates the service demand Di,c of requests from
class c with the utilization Ui,c and the system throughput X0,c for class c:

Di,c =
mi ·Ui,c

X0,c
. (7.39)

7.2.4 Response Time Equations

The response time Ri,c for M/G/m queues with PS or preemptive LCFS schedul-
ing, as well as for M/M/m queues with class-independent service rates and FCFS
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scheduling, is given by

Ri,c = Di,c

(
1 +

1
mi
·

PBi

1 −Ui

)
, (7.40)

where PBi is the probability that all mi servers of the queue are busy and an incoming
request has to wait in the waiting line. PBi can be calculated using the Erlang-C
formula:

PBi =
(miUi)mi

mi!(1 −Ui)
· πi,0

with πi,0 =


mi−1∑
k=0

(miUi)k

k!
+

(miUi)mi

mi!
1

1 −Ui



−1

.

(7.41)

If a queue has IS scheduling strategy, a request never has to wait for service and
the response time simplifies to

Ri,c = Di,c . (7.42)

For single server queues (i.e., mi = 1), the busy probability PBi is equal to the
utilization Ui . As a result, Equation (7.40) can be simplified to

Ri,c =
Di,c

1 −Ui
. (7.43)

We refer toBolch,Greiner, et al. (2006, p. 251) for the derivation andmathematical
proof of the above equations.

The previous equations are not valid for M/M/m service stations with FCFS
scheduling and service rates depending on the workload class. The response time
of such service stations can only be approximated. Franks (2000) compared the
accuracy of different approximations and proposed the following one:

Ri,c = Di,c +
PBi

mi

C∑
s=1

Qi,c · Di,c, (7.44)

where Qi,c is the queue length of requests of workload class c at service station i.

7.2.5 Solution Techniques for Queueing Networks

Different solution techniques for queueing networks have been developed in the last
decades. They can be broadly classified into simulation and analytic techniques.
Discrete event simulation can be used to analyze arbitrarily complex queueing net-
works. However, it often is necessary to simulate a queueing network for a long time
in order to obtain sufficiently accurate results.

Analytic techniques can provide exact solutions of a queueing network, avoid-
ing the overhead of simulation. There are state-space and non-state-space tech-
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niques (Bolch, Greiner, et al., 2006). State-space techniques rely on the generation
of the complete underlying state space of a queueing network, limiting their scala-
bility with increasing numbers of requests, workload classes, and service stations.
If certain assumptions are fulfilled, non-state-space techniques can be used instead.
Given a product-form queueing network with an open workload, we can apply the
equations presented in Section 7.2.4 to directly calculate performance metrics for the
individual queues. Given a product-form queueing network with a closed workload,
the calculation of the normalizing constant G in Equation (7.36) is nontrivial. Mean
Value Analysis (MVA) (Bolch, Greiner, et al., 2006) is a recursive algorithm to
calculate the queue lengths in closed product-form queueing networks, avoiding the
direct determination of the normalizing constant G.

Techniques to solve queueing networks are supported by various tools, such
as SHARPE (Hirel et al., 2000; Sahner and Trivedi, 1987), JMT (Bertoli et al.,
2009), JINQS (Field, 2006), SPEED (Smith and Williams, 1997), and queueing-
tool (Jordon, 2014).

Queueing networks provide a powerful method for modeling contention due to
processing resources, that is, hardware contention and scheduling strategies. For
certain classes of queueing networks, there are efficient analysis methods available.
However, queueing networks are not suitable for representing blocking behavior,
synchronization of processes, simultaneous resource possession, or asynchronous
processing (Kounev, 2005). There are extensions of queueing networks such as
Extended Queueing Networks (EQNs) (Bolch, Greiner, et al., 2006) that provide
some support to mitigate the mentioned drawbacks.

7.2.6 Case Study

Now that we have introduced the basics of queueing network models, we present
a case study—based on Kounev and Buchmann (2003)—showing how queueing
networks can be used to model and predict the performance of a distributed soft-
ware system. Imagine the following hypothetical scenario: A company is about to
automate its internal and external business operations with the help of e-business
technology. The company chooses to employ the Java EE platform6, and it devel-
ops an application for supporting its order-inventory, supply-chain, and manufac-
turing operations. Assume that this application is the one provided by the SPEC-
jAppServer benchmark.7 SPECjAppServer models businesses using four domains:
(1) customer domain—dealing with customer orders and interactions; (2) manufac-
turing domain—performing “just-in-time” manufacturing operations; (3) supplier
domain—handling interactions with external suppliers; and (4) corporate domain—
managing all customer, product, and supplier information. Figure 7.7 illustrates these
domains and gives some examples of typical transactions run in each of them.

6 Java EE platform: https://www.oracle.com/java/technologies/java-ee-glance.html
7 SPECjAppServer benchmark: https://www.spec.org/jAppServer

https://www.oracle.com/java/technologies/java-ee-glance.html
https://www.spec.org/jAppServer
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Fig. 7.7: SPECjAppServer business domains

The customer domain models customer interactions using an order-entry applica-
tion, which provides some typical online ordering functionality. Orders can be placed
by individual customers as well as by distributors. Orders placed by distributors are
called large orders.

The manufacturing domain models the activity of production lines in a manufac-
turing plant. Products manufactured by the plant are called widgets. There are two
types of production lines, namely planned lines and large order lines. Planned lines
run on schedule and produce a predefined number of widgets. Large order lines run
only when a large order is received in the customer domain. The unit of work in the
manufacturing domain is a work order. Each work order is for a specific quantity
of a particular type of widget. When a work order is created, the bill of materials
for the corresponding type of widget is retrieved and the required parts are taken
out of inventory. As the widgets move through the assembly line, the work order
status is updated to reflect progress. Once the work order is complete, it is marked as
completed and the inventory is updated. When the inventory of parts gets depleted,
suppliers need to be located and purchase orders (POs) need to be sent out. This is
done by contacting the supplier domain, which is responsible for interactions with
external suppliers.

Assume that the company plans to deploy the application in the deployment
environment depicted in Figure 7.8. This environment uses a cluster of WebLogic
servers (WLS) as a Java EE container and an Oracle database server (DBS) for
persistence. We assume that all machines in the WLS cluster are identical.

Before putting the application into production, the company conducts a capacity
planning study in order to come up with an adequate sizing and configuration of
the deployment environment. More specifically, the company needs to answer the
following questions:

CUSTOMER DOMAIN

Order Entry Application

      - Place Order
      - Change Order
      - Get Order Status
      - Get Customer Status

CORPORATE DOMAIN

Customer, Supplier and
Parts Information

   - Register Customer
   - Determine Discount

- Check Credit

MANUFACTURING DOMAIN

Manufacturing Application

 - Schedule Work Order
     - Update Work Order
     - Complete Work Order
     - Create Large Order

SUPPLIER DOMAIN

Interactions with
Suppliers

  - Select Supplier
  - Send Purchase Order
  - Deliver Purchase Order
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Fig. 7.8: Deployment environment

• HowmanyWebLogic serverswould be needed to guarantee adequate performance
under the expected workload?

• For a given number of WebLogic servers, what level of performance would the
system provide? What would be the average transaction throughput and response
time? What would be the utilization (CPU/disk utilization) of the WebLogic
servers and the database server?

• Will the capacity of the database server suffice to handle the incoming load?
• Does the system scale or are there any other potential system bottlenecks?

These issues can be approached with the help of queueing network-based perfor-
mance models.

7.2.6.1 Workload Characterization

The first step in the capacity planning process is to describe the workload of the
system under study in a qualitative and quantitative manner. This is called workload
characterization (Menascé and Almeida, 1998), and it typically includes four steps:

1. Describe the types of requests that are processed by the system (i.e., the request
classes),

2. Identify the hardware and software resources used by each request class,
3. Measure the total amount of service time for each request class at each resource

(i.e., the service demand), and
4. Specify the number of requests of each class the system will be exposed to (i.e.,

the workload intensity).

Database Server
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    2 GB RAM, SuSE Linux 8

WebLogic Server 7 Cluster
  Each node equipped with:

     AMD XP 2000+ CPU
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LAN

Client PC

Supplier Emulator
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   WebLogic Server 7

      2 x AMD XP2000+ CPUs
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     Running SPECjAS Driver

  AMD XP 1700+ CPU
     1GB RAM, RedHat Linux 8
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As already discussed, the SPECjAppServer workload is made up of two major
components: (1) the order-entry application in the customer domain and (2) the
manufacturing application in the manufacturing domain. Recall that the order-entry
application is running the following four transaction types:

1. NewOrder: places a new order in the system,
2. ChangeOrder: modifies an existing order,
3. OrderStatus: retrieves the status of a given order, and
4. CustStatus: lists all orders of a given customer.

We map each of them to a separate request class in our workload model. The
manufacturing application, on the other hand, is running production lines. The main
unit of work there is a work order. Each work order produces a specific quantity of
a particular type of widget. As already mentioned, there are two types of production
lines: planned lines and large order lines. While planned lines run on a predefined
schedule, large order lines run only when a large order arrives in the customer do-
main. Each large order results in a separate work order. During the processing of
work orders, multiple transactions are executed in the manufacturing domain (i.e.,
scheduleWorkOrder, updateWorkOrder, and completeWorkOrder). Each work or-
der moves along three virtual stations, which represent distinct operations in the
manufacturing flow. In order to simulate activity at the stations, the manufacturing
application waits for a designated time at each station. One way to model the man-
ufacturing workload would be to define a separate request class for each transaction
run during the processing of work orders. However, this would lead to an overly com-
plex model and would limit the range of analysis techniques that would be applicable
for its solution. Second, it would not be of much benefit, since after all, what most
interests us is the rate at which work orders are processed and not the performance
metrics of the individual work order-related transactions. Therefore, we model the
manufacturing workload only at the level of work orders. We define a single request
classWorkOrder, which represents a request for processing a work order. This keeps
our model simple, and as will be seen later, it is enough to provide us with sufficient
information about the behavior of the manufacturing application.

Altogether, we end up with five request classes: NewOrder, ChangeOrder, Order-
Status, CustStatus, and WorkOrder. The following resources are used during their
processing:

• The CPU of a WebLogic server (WLS-CPU),
• The local area network (LAN),
• The CPUs of the database server (DBS-CPU), and
• The disk drives of the database server (DBS-I/O).

In order to determine the service demands at these resources, we conducted a
separate experiment for each of the five request classes. In each case, we deployed
the benchmark in a configuration with a single WebLogic server and then injected
requests of the respective class into the system. During the experiment, wemonitored
the system resources and measured the time requests spent at each resource during
their processing. For the database server, we used the Oracle 9i Intelligent Agent,
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which provides exhaustive information about CPU consumption and I/O wait times.
For the application server, we monitored the CPU utilization using operating system
tools; we then used the service demand law (D = U/X) to derive the CPU service
demand (see Section 7.2.3).

We decided we could safely ignore network service demands, since all commu-
nication was taking place over a 100 MBit LAN, and communication times were
negligible. Figure 7.9 reports the service demand measurements for the five request
classes in our workload model.

0 10 20 30 40 50 60 70

WorkOrder

CustStatus

OrderStatus

ChangeOrder

NewOrder

Service Demand (ms)

WLS-CPU DBS-CPU DBS-I/O

Fig. 7.9: Workload service demands

Database I/O service demands are much lower than CPU service demands. This
stems from the fact that data is cached in the database buffer, and disks are usually
accessed only when updating or inserting new data. However, even in this case, the
I/O overhead is minimal, since the only thing that is done is to flush the database
log buffer, which is performed with sequential I/O accesses. Here we would like to
point out that the benchmark uses relatively small data volumes for the workload
intensities generated. This results in data contention (Kounev and Buchmann, 2002),
and as we will see later, it causes some difficulties in predicting transaction response
times. Once we know the service demands of the different request classes, we
proceed with the last step in workload characterization, which aims to quantify
the workload intensity. For each request class, we must specify the rates at which
requests arrive. We should also be able to vary these rates, so that we can consider
different scenarios. To this end, we modified the SPECjAppServer driver to allow
more flexibility in configuring the intensity of the workload generated. Specifically,
the new driver allows us to set the number of concurrent order entry clients simulated
as well as their average think time, that is, the time they “think” after receiving a
response from the system, before they send the next request. In addition to this, we
can specify the number of planned production lines run in the manufacturing domain
and the time they wait after processing a work order before starting a new one. In



174 7 Operational Analysis and Basic Queueing Models

this way, we can precisely define the workload intensity and transaction mix. We will
later study in detail several scenarios under different transaction mixes and workload
intensities.

7.2.6.2 Building a Performance Model

We now build a queueing network model of our SPECjAppServer deployment en-
vironment. We first define the model in a general fashion and then customize it
to our concrete workload scenarios. We use a closed model, which means that for
each instance of the model, the number of concurrent clients sending requests to the
system is fixed. Figure 7.10 shows a high-level view of our queueing network model.

Fig. 7.10: Queueing network model of the system

In the following, we briefly describe the queues used:

C : Infinite-Server (IS) queue (delay resource) used to model the client ma-
chine, which runs the SPECjAppServer driver and emulates virtual clients
sending requests to the system. The service time of order entry requests
at this queue is equal to the average client think time; the service time of
WorkOrder requests is equal to the average time a production line waits
after processing a work order before starting a new one. Note that times
spent on this queue are not part of system response times.

A1..AN : Processor-Sharing (PS) queues used tomodel theCPUs of theNWebLogic
servers.

B1, B2 : Processor-Sharing (PS) queues used tomodel the twoCPUs of the database
server.
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D : First-Come-First-Served (FCFS) queue used to model the disk subsystem
(made up of a single 100GB disk drive) of the database server.

L : Infinite-Server (IS) queue (delay resource) used to model the virtual pro-
duction line stations in the manufacturing domain. Only WorkOrder re-
quests visit this queue. Their service time at the queue corresponds to the
average delay at the production line stations simulated by the manufactur-
ing application during work order processing.

The model is a closed queueing network model with the five classes of re-
quests (jobs) defined in the previous section. The behavior of requests in the model
is defined by specifying their respective routing probabilities pi and service demands
at each queue they visit. We discussed the service demands in the previous section.
To set the routing probabilities, we examine the life cycle of client requests in the
queueing network. Every request is initially at the client queue C, where it waits for
a user-specified think time. After the think time elapses, the request is routed to a
randomly chosen queue Ai , where it queues to receive service at a WebLogic server
CPU.

We assume that requests are evenly distributed among the N WebLogic servers;
that is, each server is chosen with probability 1/N . Processing at the CPU may
be interrupted multiple times if the request requires some database accesses. Each
time this happens, the request is routed to the database server, where it queues for
service at one of the two CPU queues B1 or B2 (each chosen equally likely, so
that p3 = p4 = 0.5). Processing at the database CPUs may be interrupted in case I/O
accesses are needed. For each I/O access, the request is sent to the disk subsystem
queue D; after receiving service there, it is routed back to the database CPUs. This
may be repeated multiple times, depending on the routing probabilities p5 and p6.

Having completed their service at the database server, requests are sent back to
the application server. Requests may visit the database server multiple times during
their processing, depending on the routing probabilities p1 and p2. After completing
service at the application server, requests are sent back to the client queue C. Order
entry requests are sent directly to the client queue (for them, p8 = 1 and p7 = 0),
while WorkOrder requests are routed through queue L (for them, p8 = 0 and p7 = 1),
where they are additionally delayed for 1 s. This delay corresponds to the 1 s delay at
the three production line stations imposed by the manufacturing application during
work order processing.

In order to set routing probabilities p1, p2, p5, and p6, we need to know how
many times a request visits the database server during its processing and, for each
visit, how many times, I/O access is needed. Since we know only the total service
demands over all visits to the database, we assume that requests visit the database just
once and need a single I/O access during this visit. This allows us to drop routing
probabilities p1, p2, p5, and p6 and leads us to the simplified model depicted in
Figure 7.11.
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Fig. 7.11: Simplified QN model of the system

The following input parameters need to be supplied before the model can be
analyzed:

• Number of order entry clients (NewOrder, ChangeOrder, OrderStatus, and Cust-
Status),

• Average think time of order entry clients—Customer Think Time,
• Number of planned production lines generating WorkOrder requests,
• Average time production lines wait after processing a work order, before starting

a new one—Manufacturing (Mfg) Think Time, and
• Service demands of the five request classes at queues Ai , Bj , and D.

In our study, we consider two types of deployment scenarios. In the first one, large
order lines in the manufacturing domain are turned off. In the second one, they are
running as defined in the benchmark workload. The reason for this separation is that
large order lines introduce some asynchronous processing, which is generally hard
to model using queueing networks. We start with the simpler case where we do not
have such processing, and we then show how large order lines can be integrated into
the model.

7.2.6.3 Model Analysis and Validation

We now proceed to analyze several different instances of the model, and we then
validate them by comparing results from the analysis with measured data. We first
consider the case without large order lines and study the system in three scenarios
representing low, moderate, and heavy load, respectively. In each case, we exam-
ine deployments with different number of application servers—from one to nine.
Table 7.5 summarizes the input parameters for the three scenarios we consider.
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Table 7.5: Model input parameters for the three scenarios

Parameter Low Moderate Heavy
NewOrder clients 30 50 100

ChangeOrder clients 10 40 50

OrderStatus clients 50 100 150

CustStatus clients 40 70 50

Planned lines 50 100 200

Customer think time 2 s 2 s 3 s

Mfg think time 3 s 3 s 5 s

We employed the PEPSY-QNS tool (Bolch and Kirschnick, 1994), which supports
a wide range of solution methods (over 30) for product-form and non-product-
form queueing networks. Both exact and approximate methods are provided, which
are applicable to models of considerable size and complexity. For the most part,
we have applied the multisum method (Bolch, 1989) for solution of the queueing
network models in this case study. However, to ensure plausibility of the results, we
cross verified them with results obtained from other methods such as bol_aky and
num_app (Bolch and Kirschnick, 1994). In all cases, the difference was negligible.
Low Load Scenario Table 7.6 summarizes the results we obtained for our first
scenario. We studied two different configurations—the first one with one appli-
cation server and the second one with two application servers. The table reports
throughput (X) and response time (R) for the five request classes as well as CPU uti-
lization (U) of the application server and the database server. Results obtained from
the model analysis are compared against results obtained through measurements,
and the modeling error is reported.

As we can see from the table, while throughput and utilization results are ex-
tremely accurate, this does not hold to this extent for response time results. This is
because when we run a transaction mix, as opposed to a single transaction, some
additional delays are incurred that are not captured by themodel. For example, delays
result from contention for data access (database locks, latches), processes, threads,
database connections, and so on. The latter is often referred to as software contention,
in contrast to hardware contention (contention for CPU time, disk access, and other
hardware resources). Our model captures the hardware contention aspects of sys-
tem behavior and does not represent software contention aspects. While software
contention may not always have a big impact on transaction throughput and CPU
utilization, it usually does have a direct impact on transaction response time; there-
fore, the measured response times are higher than the ones obtained from the model.
In Kounev (2006), some techniques were presented for integrating both hardware
and software contention aspects into the same model.
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Table 7.6: Analysis results for the first scenario—low load

One application server Two application servers
Metric Model Measured Error Model Measured Error
NewOrder throughput 14.59 14.37 1.5% 14.72 14.49 1.6%

ChangeOrder throughput 4.85 4.76 1.9% 4.90 4.82 1.7%

OrderStatus throughput 24.84 24.76 0.3% 24.89 24.88 0.0%

CustStatus throughput 19.89 19.85 0.2% 19.92 19.99 0.4%

WorkOrder throughput 12.11 12.19 0.7% 12.20 12.02 1.5%

NewOrder response time 56ms 68ms 17.6% 37ms 47ms 21.3%

ChangeOrder resp. time 58ms 67ms 13.4% 38ms 46ms 17.4%

OrderStatus response time 12ms 16ms 25.0% 8ms 10ms 20.0%

CustStatus response time 11ms 17ms 35.2% 7ms 10ms 30.0%

WorkOrder response time 1,127ms 1,141ms 1.2% 1,092ms 1,103ms 1.0%

WebLogic server CPU util. 66% 70% 5.7% 33% 37% 10.8%

Database server CPU util. 36% 40% 10% 36% 38% 5.2%

From Table 7.6, we see that the response time error for requests with very low
service demands (e.g., OrderStatus and CustStatus) is much higher than the average
error. This is because the processing times for such requests are very low (around
10ms) and the additional delays from software contention, while not that high as
absolute values, are high relative to the overall response times. The results show that
the higher the service demand for a request type, the lower the response time error.
Indeed, the requests with the highest service demand (WorkOrder) always have the
lowest response time error.
Moderate Load Scenario In this scenario, we have 260 concurrent clients interact-
ing with the system and 100 planned production lines running in the manufacturing
domain. This is twice as much compared to the previous scenario. We study two
deployments—the first with three application servers and the second with six. Ta-
ble 7.7 summarizes the results from the model analysis. Again, we obtain very
accurate results for throughput and utilization, and we also obtain accurate results
for response time. The response time error does not exceed 35%, which is considered
acceptable in most capacity planning studies (Menascé et al., 2004).
Heavy Load Scenario In this scenario, we have 350 concurrent clients and 200
planned production lines in total. We consider three configurations—with four, six,
and nine application servers, respectively. However, we slightly increase the think
times in order to make sure that our single machine database server is able to handle
the load. Table 7.8 summarizes the results for this scenario. For models of this
size, the available algorithms do not produce reliable results for response time, and
therefore, we only consider throughput and utilization in this scenario.
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Table 7.7: Analysis results for the second scenario—moderate load

Three application servers Six application servers
Metric Model Measured Error Model Measured Error
NewOrder throughput 24.21 24.08 0.5% 24.29 24.01 1.2%

ChangeOrder throughput 19.36 18.77 3.1% 19.43 19.32 0.6%

OrderStatus throughput 49.63 49.48 0.3% 49.66 49.01 1.3%

CustStatus throughput 34.77 34.24 1.5% 34.80 34.58 0.6%

WorkOrder throughput 23.95 23.99 0.2% 24.02 24.03 0.0%

NewOrder response time 65ms 75ms 13.3% 58ms 68ms 14.7%

ChangeOrder resp. time 66ms 73ms 9.6% 58ms 70ms 17.1%

OrderStatus response time 15ms 20ms 25.0% 13ms 18ms 27.8%

CustStatus response time 13ms 20ms 35.0% 11ms 17ms 35.3%

WorkOrder response time 1,175ms 1,164ms 0.9% 1,163ms 1,162ms 0.0%

WebLogic server CPU util. 46% 49% 6.1% 23% 25% 8.0%

Database server CPU util. 74% 76% 2.6% 73% 78% 6.4%

Table 7.8: Analysis results for the third scenario—heavy load

Four app. servers Six app. servers Nine app. servers
Metric Model Msrd. Error Model Msrd. Error Model Msrd. Error
NewOrder
throughput

32.19 32.29 0.3% 32.22 32.66 1.3% 32.24 32.48 0.7%

ChangeOrder
throughput

16.10 15.96 0.9% 16.11 16.19 0.5% 16.12 16.18 0.4%

OrderStatus
throughput

49.59 48.92 1.4% 49.60 49.21 0.8% 49.61 49.28 0.7%

CustStatus
throughput

16.55 16.25 1.8% 16.55 16.24 1.9% 16.55 16.46 0.5%

WorkOrder
throughput

31.69 31.64 0.2% 31.72 32.08 1.1% 31.73 32.30 1.8%

WebLogic
server CPU util.

40% 42% 4.8% 26% 29% 10.3% 18% 20% 10.0%

Database server
CPU util.

87% 89% 2.2% 88% 91% 3.3% 88% 91% 3.3%

Large Order Lines Scenario We now consider the case when large order lines in
the manufacturing domain are enabled. The latter are activated upon arrival of large
orders in the customer domain. Each large order generates a separate work order,
which is processed asynchronously at one of the large order lines. As already men-
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tioned, this poses a difficulty since queueing networks provide limited possibilities
for modeling this type of asynchronous processing. As shown in Kounev (2006),
other state-space-based models such as queueing Petri nets (QPNs) are much more
powerful in such situations.

Since large order lines are always triggered by NewOrder transactions (for large
orders), we can add the load they produce to the service demands of NewOrder
requests. To this end, we rerun the NewOrder experiments with the large order lines
turned on. The additional load leads to higher utilization of system resources, and
it impacts the measured NewOrder service demands (WLS-CPU: 23.49ms, DBS-
CPU: 21.61ms, DBS-I/O: 1.87ms). While this incorporates the large order line
activity into our model, it changes the semantics of NewOrder jobs. In addition
to the NewOrder transaction load, they now also include the load caused by large
order lines. Thus, performance metrics (throughput, response time) for NewOrder
requests no longer correspond to the respective metrics of the NewOrder transaction.
Therefore, we can no longer quantify the performance of the NewOrder transaction
on itself. Nevertheless, we can still analyze the performance of other transactions
and gain a picture of the overall system behavior. Table 7.9 summarizes the results
for the three scenarios with large order lines enabled. For lack of space, this time
we look only at one configuration per scenario—the first one with one application
server, the second one with three, and the third one with nine.

Table 7.9: Analysis results for the scenario with large order lines

Low/1-AS Moderate/3-AS Heavy/9-AS
Metric Model Error Model Error Model Error
ChangeOrder throughput 4.79 6.4% 19.09 3.5% 15.31 4.5%

OrderStatus throughput 24.77 2.9% 49.46 2.3% 48.96 3.1%

CustStatus throughput 19.83 2.4% 34.67 2.1% 16.37 1.9%

WorkOrder throughput 11.96 5.7% 23.43 2.6% 29.19 1.2%

WebLogic server CPU util. 80% 0.0% 53% 1.9% 20% 0.0%

Database server CPU util. 43% 2.4% 84% 2.4% 96% 1.0%

7.2.7 Conclusions from the Analysis

We used a queueing network model to predict the system performance in several
different configurations, varying the workload intensity and the number of applica-
tion servers available. The results enable us to give answers to the initial capacity
planning questions. For each configuration, we obtained approximations for the av-
erage request throughput, the response time, and the server utilization. Depending
on the Service-Level Agreements (SLAs) and the expected workload intensity, we
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Fig. 7.12: Server utilization in different scenarios

can now determine how many application servers we need in order to guarantee
adequate performance. We can also see, for each configuration, which component is
mostly utilized and thus could become a potential bottleneck (see Figure 7.12). In
the first scenario, we saw that by using a single application server, the latter could
easily turn into a bottleneck, since its utilization would be twice as high as that of
the database server. The problem is solved by adding an extra application server. In
the second and third scenarios, we saw that with more than three application servers,
as we increase the load, the database CPU utilization approaches 90%, while the
application servers remain less than 50% utilized. This clearly indicates that, in this
case, our database server is the bottleneck.

7.3 Concluding Remarks

In this chapter, we introduced some basic quantitative relationships between the
most common performance metrics. We showed how these relationships, referred
to as operational laws, can be applied to evaluate a system’s performance based on
measured or known data. This approach, known as operational analysis, can be seen
as part of queueing theory, which provides general methods to analyze the queueing
behavior at one or more service stations. Having looked at operational analysis, we
provided a brief introduction to the basic notation and principles of queueing theory.
While queueing theory is used in many different domains, from manufacturing to
logistics, in this chapter, we focused on using queueing theory for performance eval-
uation of computer systems. Nevertheless, the introduced concepts andmathematical
models are relevant for any processing system where the assumptions discussed in
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the beginning of the chapter hold. The chapter was wrapped up with a case study,
showing how to build a queueing model of a distributed software system and use it to
predict the system performance for different workload and configuration scenarios.
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