®

Check for
updates

Chapter 6
Measurement Techniques

“When you only have a hammer, every problem begins to
resemble a nail.”
—Abraham Maslow

In the previous chapters, we introduced the most common statistics that can be
used to summarize measurements, that is, indices of central tendency and indices
of dispersion, providing a basis for defining metrics as part of benchmarks. Fur-
thermore, the statistical approaches for quantifying the variability and precision of
measurements were introduced. This chapter looks at the different measurement
techniques that can be used in practice to derive the values of common metrics.
While most presented techniques are useful for performance metrics, some of them
can also be applied generally for other types of metrics.

The chapter starts with a brief introduction to the basic measurement strategies,
including event-driven, tracing, sampling, and indirect measurement. We then look at
interval timers, which are typically used to measure the execution time of a program
or a portion of it. Next, we introduce performance profiling, which provides means
to measure how much time a system spends in different states. A performance profile
provides a high-level summary of the execution behavior of an application or a
system; however, this summary does not provide any information about the order in
which events occur. Thus, at the end of the chapter, event-driven tracing strategies
are introduced, which can be used to capture such information. We focus on call path
tracing—a technique for extracting a control flow graph of an application. Finally, the
chapter is wrapped up with an overview of commercial and open-source monitoring
tools for performance profiling and call path tracing.

6.1 Basic Measurement Strategies

Measurement techniques are typically based on monitoring changes in the system
state. Each change in the system state that is relevant for the measurement of a given

© Springer Nature Switzerland AG 2020 131
S. Kounev et al., Systems Benchmarking, https://doi.org/10.1007/978-3-030-41705-5_6

https://doi.org/10.1007/978-3-030-41705-5_6
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41705-5_6&domain=pdf

132 6 Measurement Techniques

metric is referred to as an event. For example, an event could be a request arrival,
a remote procedure call, a processor interrupt, a memory reference, a network ac-
cess, a failure of a given system component, a rolled back database transaction,
a detected denial of service attack, or a security breach. Four fundamental mea-
surement strategies are distinguished: event-driven, tracing, sampling, and indirect
measurement (Lilja, 2000).

Event-driven strategies record information required to derive a given metric only
when specified events of interest occur. The system may have to be instrumented to
monitor the respective events and record relevant information. The term instrumen-
tation, in this context, refers to the insertion of the so-called monitoring hooks in
the code that observe and record relevant information about the events of interest.
For example, counting the number of random disk accesses during the execution of
a benchmark can be implemented by incrementing a counter in the respective I/O
interrupt handling routine of the operating system and dumping the value of the
counter at the end of the benchmark execution.

One important aspect of measurement strategies is how much overhead they
introduce. The measurement overhead may or may not intrude upon the system
behavior, and if it does, such intrusion may lead to a change in the observed behavior,
a phenomenon often referred to as perturbation. The overhead of an event-driven
strategy depends on the frequency of the events being monitored. If the events of
interest occur very frequently, the overhead may be significant possibly leading to
perturbation. In that case, the behavior of the system under test may change and no
longer be representative of the typical or average behavior. Therefore, event-driven
strategies are usually considered for events with low to moderate frequency.

Tracing strategies are similar to event-driven strategies; however, in addition to
counting how often events of interest occur, they record further information about
each event (e.g., information on the system state at the time of the event) required
to derive a given metric of interest. For example, in addition to observing each
random disk access, one may be interested in the specific files accessed and whether
data is read or written. Depending on how much information is stored, tracing may
introduce significant overhead. Moreover, the time required to store the additional
information may significantly alter the behavior of the system under test.

Sampling strategies record relevant information about the system state in equidis-
tant time intervals. The advantage of such strategies is that the overhead they intro-
duce is independent of the frequency with which the respective events of interest
occur. Instead, the overhead depends on the sampling frequency, which can be con-
figured by the user. In contrast to the previous two strategies, sampling strategies do
not observe every occurrence of the events of interest. They observe only a statis-
tical sample of the execution behavior, which means that infrequent events may be
completely missed. Thus, the sampling frequency should be configured to have the
resolution necessary to obtain a representative sample of the events of interest. Given
that only a statistical sample of the execution is observed, repetitive sampling-based
measurements may produce different results. Sampling strategies are typically used
for high frequency events where exact event counts are not required and a statistical
summary is enough.

6.2 Interval Timers 133

Figure 6.1 illustrates the three measurement strategies considered so far.

I+1I+1

+1 +1 +1 +1 +1 +1 +1 +1
Data Data +1

(a) Event-driven strategies (b) Tracing (c) Sampling

Fig. 6.1: Measurement techniques and strategies

Indirect measurement strategies are used in cases where the metric of interest
cannot be measured directly by observing certain events. In such cases, other metrics
that can be measured directly are used to derive or deduce the metric of interest. For
example, based on the service demand law (see Chapter 7, Section 7.1.2), the service
demand of requests at a given resource can be derived from measured throughput
and utilization data.

6.2 Interval Timers

An interval timer is a tool for measuring the duration of any activity during the
execution of a program. Interval timers are typically used in performance measure-
ments to measure the execution time of a program or a portion of it. Most interval
timers are implemented by using a counter variable incremented on each tick of a
system clock. Interval timers are based on counting the number of ticks between the
beginning and end of the respective activity whose duration needs to be measured.
The clock ticks are counted by observing the counter variable at the respective points
in the program execution (Figure 6.2).

Event 1 Event 2
c1 = Counter ¢, = Counter

Fig. 6.2: Interval timers

More specifically, based on how an interval timer is implemented, we distinguish
between hardware timers and software timers (Lilja, 2000). In hardware timers,
the counter variable is incremented directly by a free-running hardware clock. The

134 6 Measurement Techniques

counter is typically set to O when the system is powered up and its value shows the
number of clock ticks that have occurred since then. In software-based timers, the
counter variable is not directly incremented; instead, the hardware clock periodically
generates a processor interrupt, and the respective interrupt-service routine triggers
a process to increment the counter variable accessible to application programs.
Depending on the timer implementation, the process of accessing and updating the
counter variable may span several software layers (e.g., operating system, virtual
machine, middleware).

Denote with T,. the period of time between two updates of the counter variable,
referred to as clock period or resolution of the timer. If ¢; and ¢, are the values
of the counter at the beginning and end of the activity whose duration needs to be
measured, then the duration reported by the timer is (¢, — ¢1)7.

6.2.1 Timer Rollover

An important characteristic of an interval timer is the number of bits available for the
counting variable, which determines the longest interval that can be measured using
the timer. An n bit counter can store values between 0 and (2" — 1). Table 6.1 shows
the longest interval that can be measured for different values of the resolution 7. and
the counter size n.

A timer’s counter variable is said to “roll over” to zero when its value transitions
from the maximum value (2" — 1) to 0. If a timer’s counter rolls over during an
activity whose duration is being measured using the timer, then the value (¢, — ¢1)7,
reported by the timer will be negative. Therefore, applications that use a timer must
either ensure that roll over can never occur when using the timer or they should
detect and correct invalid measurements caused by roll over.

Table 6.1: Length of time until timer rollover (Lilja, 2000)

Resolution (7¢) Counter size in bits (n)
16 32 64
10ns 655 us 43s 58.5 centuries
1 us 65.5ms 1.2h 5,580 centuries
100 us 6.55s 5 days 585,000 centuries

1 ms 1.1 min 50 days 5,850,000 centuries

6.2 Interval Timers 135

6.2.2 Timer Accuracy

The accuracy of measurements obtained through an interval timer generally depends
on two factors: the timer resolution and the timer overhead.

The timer resolution 7 is the smallest time duration that can be detected by the
timer. Given that the timer resolution is finite, there is a random quantization error in
all measurements made using the timer (Lilja, 2000). This is illustrated in Figure 6.3,
which shows an example of an interval timer reporting different duration of the same
activity (e.g., execution of an operation with a fixed execution time) depending on
its exact starting point. Repeated measurements of the same activity duration will
lead to values X + A. This quantization effect was already discussed in Chapter 4
(Section 4.2.1) in the context of random measurement errors.

Clock

Activity

Clock

Activity

(b) Timer measures activity duration of 12 clock ticks.

Fig. 6.3: Example of random quantization errors in timer measurements

Given that it is unlikely that the actual activity duration 7, is exactly a whole
number factor of the timer’s clock period, 7, will normally lie within the range
nT, < T, < (n+ 1)T,., where T, is the timer’s clock period. Thus, the measured
duration 7;,, reported by the timer will be the actual duration 7,, rounded up or down
by one clock period. The rounding is completely unpredictable, introducing random
quantization errors into all measurements reported by the timer. The smaller the
timer’s clock period, the more accurate its measurements will be.

The second factor that affects the accuracy of a timer is its overhead. An interval
timer is typically used like a stopwatch to measure the duration of a given activity.
For example, the following pseudocode illustrates how a timer can be used within a
program to measure the execution time of a critical section in a program:!

1A critical section is a section of code that accesses a shared resource (data structure or device)
that must not be concurrently accessed by more than one thread of execution. Critical sections must
be executed serially; that is, only one thread can execute a critical section at any given time.

136 6 Measurement Techniques

time_start = read_timer();

<critical section to be measured>

time_end = read_timer();

elapsed_time = (time_end - time_start) * clock_period;

Figure 6.4 shows an exemplary time line of the execution. As we can see from the
figure, the time we actually measure includes more than the duration of the critical
section of which we are interested. This is because accessing the timer normally
requires a minimum of one memory-read operation to read the value of the timer
and one memory-write operation to store the read value. These operations must be
performed at the beginning and end of the measured activity.

2] .-
£ %)
o) °
@ c
o)
C C
3 S g 3
o= =
5] 5]
g @ @ 2
> » » >
f (=U © T %
—
g 3 S 28 2
1S 3] = T E ©
:| © &) (&) '..:l [0v]
) us us o
o]) c T
© £ c c 8 £
g = S s& =
= =
i) 5 3 3L 35
© = [o) ') @ =
= =] X X = =]
£ o i w £]
L U Yo)
Al LA} LA LA L4
T4 T, T3 Ty

Fig. 6.4: Timer overhead

In Figure 6.4, T| and 74 represent the time required to read the value of the timer’s
counter variable, whereas T, represents the time required to store the value that
was obtained. The actual duration of the event we are trying to measure is given
by T, = T3. However, due to the delays accessing the timer, we end up measuring
T,y = T, + T3+ Ty instead. Thus, T, = T,,, — (1> +1T4) = T,,, — (T1 + T»), since Ty = T.
The value of T, = T} + T, is referred to as timer overhead (Lilja, 2000).

If the activity being measured has a duration significantly higher than the timer
overhead (T, >> T,), then the latter can simply be ignored. Otherwise, the timer
overhead should be estimated and subtracted from the measurements. However, es-
timating the timer overhead may be challenging given that it often exhibits high
variability in repeated measurements. We refer the reader to Kuperberg, Krogmann,
et al. (2009) for a platform-independent method to quantify the accuracy and over-
head of a timer without inspecting its implementation.

Generally, measurements of intervals with duration of the same order of mag-
nitude as the timer overhead are not reliable. A rule of thumb is that for timer

6.2 Interval Timers 137

measurements to be reliable, the duration of the activity being measured should be
100-1,000 times larger than the timer overhead.

Different timer implementations exhibit different overhead. Evaluating the quality
of a given interval timer involves analyzing several properties, such as accuracy,
overhead, and timer stability, all of which are platform-dependent. A composite
metric, coupled with a benchmarking approach for evaluating the quality of timers,
can be found in Kuperberg and Reussner (2011).

6.2.3 Measuring Short Intervals

Given that a timer’s clock period T is the shortest time interval it can detect, the
question arises how a timer can be used to measure the duration of intervals shorter
than T,.. More generally, the quantization effect makes it hard to measure intervals
that are not significantly larger than the timer’s resolution.

In Chapter 4, Section 4.2.3.3, we presented an indirect measurement approach
to estimate the execution time of a very short operation (shorter than the clock
period of the used interval timer). The idea was to measure the total time for several
consecutive repetitions of the operation and divide this time by the number of
repetitions to calculate the mean time for one execution. We assume that the number
of repetitions is chosen high enough, such that the resolution of the used interval
timer can measure the cumulative times. By repeating this procedure n times, we
obtain a sample of estimated times for one operation execution and can use this
to derive a confidence interval for the mean execution time of the operation. As
discussed in Chapter 4, Section 4.2.3.3, while this approach provides a workaround
for the issue, the normalization has a penalty. On the one hand, the sample size is
reduced, leading to loss of information. On the other hand, we obtain a confidence
interval for the mean value of the aggregated operations, as opposed to the individual
operations themselves. This leads to reducing the variation and thus the resulting
confidence interval might be more narrow than it would have been if applied to the
measured duration of single executions.

We now present an alternative approach to measure short intervals (Lilja, 2000).
Assume that we would like to measure an interval of size 7, using a timer with a
resolution (i.e., clock period) 7, > T,. Short intervals are hard to measure even in
cases where T,, ~ n X T, for n a small integer.

< T—> Case 2: Counter not incremented
<—T—> Case 1: Counter incremented
Te
| } | |
T+1 l+1 T+ T4

t

Fig. 6.5: Approximate measures of short intervals

138 6 Measurement Techniques

There are two possible cases when measuring an interval of size T, < T, (see
Figure 6.5): (1) the measured interval begins in one clock period and ends in the
next, that is, there is one clock tick during the measurement incrementing the timer’s
counter variable and (2) the measured interval begins and ends within the same clock
period, that is, there is no clock tick during the measurement. Each measurement
can thus be seen as a Bernoulli experiment. The outcome of the experiment is 1
with probability p = T, /T, corresponding to the first case (counter is incremented
during measurement) and 0 with probability (1 - p) corresponding to the second case
(counter is not incremented during measurement). If we repeat this experiment n
times and count the number of times the outcome is 1, the resulting distribution will
be approximately Binomial. This is because we cannot assume that the n repetitions
are independent, which is required for a true Binomial distribution. The approxima-
tion will be more accurate if we introduce a random delay between the successive
repetitions of the Bernoulli experiment. If the number of times we get outcome 1 is &,
then the ratio p = k/n will be a point estimate of p (see Chapter 4, Section 4.2.4).
From this, we can derive an estimate for the duration of the measured interval as

follows: v T ' v
pz—:}»—a%—@Ta%—Tc (61)
n T. n n
Furthermore, as shown in Chapter 4, Section 4.2.4, the following approximate
confidence interval for p can be derived:

. [p(1 = p) . [p(1 = p)
P(p—za/z p(Tp Sp<p+zan p(Tp)zl—a/. (6.2)

Multiplying both sides by 7, and considering that pT. = T,, we obtain the
following confidence interval for 7,:

N (1 - p) N (1 - p)
p(,,TC S N L Iy (L) I P

6.3 Performance Profiling

Performance profiling is a process of measuring how much time a system spends in
certain states that are of interest for understanding its behavior. A profile provides
a summary of the execution behavior in terms of the fraction of time spent in
different states, for example, the fraction of time spent executing a given function
or method, the fraction of time the operating system is running in kernel mode, the
fraction of time doing storage or network I/O, or the fraction of time a Java Virtual
Machine is running garbage collection. It is often distinguished between application
profiling and systems profiling, where the former stresses that a specific application is
being profiled in the case of multiple applications running on the system under test.
Application profiling normally aims to identify hotspots in the application code that

6.3 Performance Profiling 139

may be potential performance bottlenecks, whereas systems profiling typically aims
to identify system-level performance bottlenecks. A profile may be used as a basis
for performance tuning and optimization; for example, heavily loaded application
components may be refactored and optimized or system configuration parameters
such as buffer sizes, cache sizes, load balancing policies, or resource allocations may

CTTTUT

Cq++ Co++ Cq++ Co++

Fig. 6.6: Profiling implemented using sampling-based measurement

Performance profiling is normally implemented using a sampling-based measure-
ment approach. The execution is periodically interrupted to inspect the system state
and store relevant information about the states of interest (see Figure 6.6). Assume
that there are k states of interest and the goal is to determine the fraction of time
spent in each of them. Denote with C; fori = 1,2, ..., k the number of times the sys-
tem was observed to be in state i when interrupted during the profiling experiment.
In that case, the interrupt service routine would simply check the current state and
increment the respective element of an integer array used to store C;. At the end of
the experiment, a histogram of the number of times each state was observed would
be available (see Figure 6.7).

120
100 ~
80 1
60 -
40 A

20 A

0 -
Cl Cz C3 C4 C5 CG C7 C8 C9 ClO

Fig. 6.7: Histogram of state frequencies

Assume that the system is interrupted n times to inspect its state. An estimate of
the fraction of time the system spends in state i is given by p; = C;/n. The confidence
intervals for proportions that we derived in Chapter 4 (Section 4.2.4) can now be used

140 6 Measurement Techniques

to obtain an interval estimate of the fraction of time p; the system spends in state i.
Applying Equation (4.31) from Chapter 4, Section 4.2.4, we obtain the following
confidence interval for p;:

R 5 (1 = pi) R 5 (1 = py)
P(pl- —z(,/m/l% < pi < Pi+ Zap ‘% ~1-a. (6.4)

‘We note that the above approach works under the assumption that the interrupts
occur asynchronously with respect to any events in the system under test. This is
important to ensure that the observations of the system state are independent of each
other.

Example A Java program is run for 10 s and interrupted every 40 us for profiling.
The program was observed 36,128 times to execute method A. We apply Equa-
tion (6.4) to derive a 90% confidence interval for the time spent in method A.

m = 36,128

n =10s/40us = 250,000

p=m/n=0.144512 (6.5)
B _ 0.144512(0.855488)

(c1,¢3) =0.144512 % 1.645\/ 250,000 = (0.144,0.146)

We conclude with 90% confidence that the program spent 14.4-14.6% of its time
in method A.

6.4 Event Tracing

A performance profile provides a high-level summary of the execution behavior of
an application or system; however, this summary does not provide any information
about the order in which events occur. Event-driven tracing strategies can be used
to capture such information. A frace is a dynamic list of events generated by the
application (or system under study) as it executes (Lilja, 2000). A trace may include
any information about the monitored events of interest that is relevant for charac-
terizing the application behavior. In the following, we introduce call path tracing, a
technique for extracting a control flow graph of an application.

6.4 Event Tracing 141

6.4.1 Call Path Tracing

Consider a system that processes transactions requested by clients.? An executed
system transaction translates into a path through a control flow graph whose edges
are basic blocks (Allen, 1970). A basic block is a portion of code within an application
with only one entry point and only one exit point. A path through the control flow
graph can be represented by a sequence of references to basic blocks. It is assumed
that the system can be instrumented to monitor the so-called event records.

Definition 6.1 (Event Record) An event record is defined as a tuple e = (I,¢, s),
where [refers to the beginning or end of a basic block, ¢ is a timestamp, and s
identifies a transaction. The event record indicates that / has been reached by s at
time ¢.

In order to trace individual transactions, a set of event records has to be ob-
tained at run time. The set of gathered event records then has to be: (1) partitioned
and (2) sorted. The set of event records is partitioned in equivalence classes [a]g
according to the following equivalence relation:

Definition 6.2 R is a relation on event records: Let a = (I1,11, 51) and b = (I, 12, 52)
be event records obtained through instrumentation. Then, a relates to b, that is,
a ~g b, if and only if 5| = s».

Sorting the event records of an equivalence class in chronological order leads to
a sequence of event records that can be used to derive a call path trace. We refer
to Briand et al. (2006), Israr et al. (2007), and Anderson et al. (2009) where call path
traces are transformed, for example, to UML sequence diagrams.

To reduce the overhead of monitoring system transactions, there exist two orthog-
onal approaches: (1) quantitative throttling—throttling the number of transactions
that are actually monitored—and (2) qualitative throttling—throttling the level of
detail at which transactions are monitored. Existing work on (1) is presented, for
example, in Gilly et al. (2009). The authors propose an adaptive time slot scheduling
for the monitoring process. The monitoring frequency depends on the load of the
system. In phases of high load, the monitoring frequency is throttled. An example
of an approach based on (2) is presented in Ehlers and Hasselbring (2011); this
approach supports adaptive monitoring of requests; that is, monitoring probes can
be enabled or disabled depending on what information about the requests should be
monitored.

When extracting call path traces, one is typically interested in obtaining control
flow statistics that summarize the most important control flow information in a
compact manner. In the rest of this section, we describe the typical control flow
statistics of interest by looking at an example.

2 The term transaction here is used loosely to refer to any unit of work or processing task executed
in the system, for example, an HTTP request, a database transaction, a batch job, a web service
request, or a microservice invocation. Transactions, in this context, are also commonly referred to
as requests or jobs.

142 6 Measurement Techniques

@223 S % 185
C v 185
E

227

Fig. 6.8: Example call path

Consider the example call path shown in Figure 6.8. We have two different
components, depicted as rectangles. The first component contains the basic blocks
A, B, and E; the second component contains the remaining basic blocks C and D. An
arrow between two basic blocks denotes that the control flow is handed over from
one node to another (e.g., by calling a method or service).

The numbers next to the arrows indicate the amount of event records that took the
respective explicit call path. The two components could, for example, correspond to
two different web servers, communicating over the Internet, while offering certain
method interfaces in the form of A, B, C, D, and E. As another example, the
components could also correspond to two methods, with A, B, C, D, and E each
being a portion of code executed when the methods are called. Here, the first method
calls the second method and is then blocked until the second method returns the
control flow back to the first method. The granularity of a basic block depends on
the specific use case, but also on the capabilities of the tracing tool.

In our example, Figure 6.8 shows 241 event records that enter the first component
and trigger execution of basic block A. The latter contains a branch, where 223
of all transactions are directly forwarded to basic block E, and 18 transactions
are forwarded to basic block B. For each of those 18 incoming transactions, B is
assumed to issue an external call to basic block C in the second component. Basic
block C contains a loop that triggers 185 executions of basic block D for each of the
18 transactions. C aggregates the returned information for each of the 18 requests and
sends the response back to B. B implements a filtering step based on the information
provided by C and therefore again implements a branching, where only four of the
18 received transactions are forwarded to E. Finally, E processes and returns all
transactions received by both A and B.

From the described example, we can outline four basic types of information
obtainable by call path tracing:

 Call frequencies,

* Branching probabilities,

¢ Loop iteration counts, and

* Processing times and response times.

6.4 Event Tracing 143

‘We now discuss each of these in more detail.

6.4.1.1 Call Frequencies

By tracing the control flow of transactions between the different basic blocks, it is
easy to simply count the frequencies of ingoing and outgoing transactions for each
block. Figure 6.8 shows the frequencies at the edges connecting the basic blocks.
We usually distinguish between internal and external calls. An external call is a
call between two different components. In Figure 6.8 components are depicted as
rectangles—basic blocks A, B, and E form one component, and basic blocks C and D
form another component. Hence, the call from B to C can be seen as an external call.

The calls triggered by a basic block can be easily derived by dividing the number
of outgoing edges by the number of incoming edges as measured by call path tracing.

6.4.1.2 Branching Probabilities

Branching probabilities describe the probability of entering each branch transition
for every entry of a branch. In Figure 6.8, basic block A represents a branch between
forwarding an incoming transaction to block E, or forwarding it to block B. Deter-
mining the branching probabilities of a given block is very important for analyzing
the performance of a given control flow. For example, Figure 6.8 exhibits very dif-
ferent behavior for transactions forwarded directly to E compared to transactions
forwarded to B first. Note that it is also possible to have more than two branch
transitions, for example, three, four, or more different actions to take for any specific
transaction. In order to extract the respective branching probabilities, one can divide
the number of transactions of each particular branch transition by the number of total
entries into the branch.

6.4.1.3 Loop Iteration Counts

Similarly to branching probabilities, loop iteration counts are important parameters
when analyzing the control flow of an application. Loop iteration counts quantify,
how often a specific basic block is entered due to the execution of a loop as part of
a transaction. This behavior can be seen at basic block D in Figure 6.8, where basic
block C calls basic block D in a loop. The loop iteration counts can be quantified
by dividing the number of loop iterations (i.e., sum of loop body repetitions by all
transactions) by the number of loop entries (i.e., number of transactions reaching the
beginning of the loop).

144 6 Measurement Techniques

6.4.1.4 Processing Times and Response Times

The processing time of an individual basic block, as well as of an entire transaction
(i.e., the transaction response times), can be easily determined based on the times-
tamps of the event records corresponding to the beginning and end of the considered
basic block and transaction, respectively.

In addition to the above described control flow statistics, tracing tools typically
also report transaction throughput and resource utilization data. This allows one to
determine further parameters such as service demands—also referred to as resource
demands—of the individual basic blocks or entire transactions. The service/resource
demand of a transaction at a given system resource is defined as the average total
service time of the transaction at the resource over all visits to the resource. The
term resource demand will be introduced more formally in Chapter 7, Section 7.1.
Chapter 17 presents a detailed survey and systematization of different approaches to
the statistical estimation of resource demands based on easy to measure system-level
and application-level metrics. Resource demands can be considered at different levels
of granularity, for example, for individual basic blocks or for entire transactions.

6.4.2 Performance Monitoring and Tracing Tools

A number of commercial and open-source monitoring tools exist that support the
extraction of call path traces and estimation of the call path parameters discussed
above.

Commercial representatives are, for example, Dynatrace,> New Relic,* AppDy-
namics,> or DX APM.® Commercial tools normally have several advantages in-
cluding product stability, available customer support as well as integrated tooling
for analysis and visualization, providing fast and detailed insights into execution
behavior.

In addition, many open-source and academic tools are available, such as inspectIT
Ocelot,” Zipkin,® Jaeger,® Pinpoint, '° or Kieker.!! Open-source tools are often lim-
ited in their applicability, supported programming languages, and tooling support;
however, they have the advantage of flexibility, extensibility, and low cost. For exam-
ple, the Kieker framework (Hoorn et al., 2012) has been heavily used and extended

3 https://www.dynatrace.com

4 https://newrelic.com

5 https://www.appdynamics.com

6 https://www.broadcom.com/products/software/aiops/application- performance-management
7 https://www.inspectit.rocks

8 https://zipkin.io

9 https://www.jaegertracing.io

10 https://naver.github.io/pinpoint

! http://kieker-monitoring.net

https://www.dynatrace.com
https://newrelic.com
https://www.appdynamics.com
https://www.broadcom.com/products/software/aiops/application-performance-management
https://www.inspectit.rocks
https://zipkin.io
https://www.jaegertracing.io
https://naver.github.io/pinpoint
http://kieker-monitoring.net

6.5 Concluding Remarks 145

over the past 10 years by performance engineers both from industry and academia.
Some examples of academic works employing Kieker for research purposes in-
clude (Brosig et al., 2011; Grohmann et al., 2019; Spinner et al., 2015; Walter,
2018).

6.5 Concluding Remarks

This chapter introduced different measurement techniques that can be used in practice
to derive the values of common metrics. While most presented techniques are useful
for performance metrics, some of them can also be applied generally for other types
of metrics. The chapter started with a brief introduction to the basic measurement
strategies, including event-driven, tracing, sampling, and indirect measurement. We
then looked at interval timers, which are typically used to measure the execution
time of a program or a portion of it. We discussed in detail several issues related to
interval timers, that is, timer rollover, timer accuracy, and strategies for measuring
short intervals. Next, we looked at performance profiling, which provides means to
measure how much time a system spends in different states. A performance profile
provides a high-level summary of the execution behavior of an application or a
system; however, this summary does not provide any information about the order in
which events occur. Thus, at the end of the chapter, event-driven tracing strategies
were introduced, which can be used to capture such information. A trace is a dynamic
list of events generated by the application (or system under study) as it executes; it
may include any information about the monitored events of interest that is relevant
for characterizing the application behavior. We focused on call path tracing—a
technique for extracting a control flow graph of the application. Finally, the chapter
was wrapped up with an overview of commercial and open-source monitoring tools
that support the extraction of call path traces and the estimation of call path statistics,
such as call frequencies, branching probabilities, loop iteration counts, and response
times.

References

Allen, F. E. (1970). “Control Flow Analysis”. ACM SIGPLAN Notices, 5(7). ACM:
New York, NY, USA, pp. 1-19 (cited on p. 141).

Anderson, E., Hoover, C., Li, X., and Tucek, J. (2009). “Efficient Tracing and
Performance Analysis for Large Distributed Systems”. In: Proceedings of the
2009 IEEE International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS 2009). (London, UK).
IEEE Computer Society: Washington, DC, USA, pp. 1-10 (cited on p. 141).

146 6 Measurement Techniques

Briand, L. C., Labiche, Y., and Leduc, J. (2006). “Toward the Reverse Engineering of
UML Sequence Diagrams for Distributed Java Software”. IEEE Transactions on
Software Engineering, 32(9). IEEE Computer Society: Washington, DC, USA,
pp- 642-663 (cited on p. 141).

Brosig, F., Huber, N., and Kouneyv, S. (2011). “Automated Extraction of Architecture-
Level Performance Models of Distributed Component-Based Systems”. In: Pro-
ceedings of the 26th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2011). (Oread, Lawrence, Kansas). IEEE Computer Society:
Washington, DC, USA, pp. 183-192 (cited on p. 145).

Ehlers, J. and Hasselbring, W. (2011). “Self-Adaptive Software Performance Mon-
itoring”. In: Software Engineering 2011 — Fachtagung des GI-Fachbereichs
Softwaretechnik. Ed. by R. Reussner, M. Grund, A. Oberweis, and W. Tichy.
Gesellschaft fiir Informatik e.V.: Bonn, Germany, pp. 51-62 (cited on p. 141).

Gilly, K., Alcaraz, S., Juiz, C., and Puigjaner, R. (2009). “Analysis of Burstiness
Monitoring and Detection in an Adaptive Web System”. Computer Networks,
53(5). Elsevier North-Holland, Inc.: Amsterdam, The Netherlands, pp. 668—679
(cited on p. 141).

Grohmann, J., Eismann, S., Elflein, S., Kistowski, J. von, Kounev, S., and Mazkatli,
M. (2019). “Detecting Parametric Dependencies for Performance Models Using
Feature Selection Techniques”. In: Proceedings of the 27th IEEE International
Symposium on the Modeling, Analysis, and Simulation of Computer and Telecom-
munication Systems (MASCOTS 2019). (Rennes, France). IEEE Computer Soci-
ety: Washington, DC, USA (cited on p. 145).

Hoorn, A. van, Waller, J., and Hasselbring, W. (2012). “Kieker: A Framework
for Application Performance Monitoring and Dynamic Software Analysis”. In:
Proceedings of the 3rd ACM/SPEC International Conference on Performance
Engineering (ICPE 2012). (Boston, Massachusetts, USA). ACM: New York, NY,
USA, pp. 247-248 (cited on p. 144).

Israr, T., Woodside, M., and Franks, G. (2007). “Interaction Tree Algorithms to
Extract Effective Architecture and Layered Performance Models from Traces”.
Journal of Systems and Software, 80(4). Elsevier Science Inc.: Amsterdam, The
Netherlands, pp. 474—492 (cited on p. 141).

Kuperberg, M., Krogmann, M., and Reussner, R. (2009). “TimerMeter: Quantifying
Properties of Software Timers for System Analysis”. In: Proceedings of the 6th
International Conference on Quantitative Evaluation of SysTems (QEST 2009).
(Budapest, Hungary). IEEE: Piscataway, New Jersey, USA, pp. 85-94 (cited on
p- 136).

Kuperberg, M. and Reussner, R. (2011). “Analysing the Fidelity of Measurements
Performed with Hardware Performance Counters”. In: Proceedings of the 2nd
ACM/SPEC International Conference on Performance Engineering (ICPE 2011).
(Karlsruhe, Germany). ACM: New York, NY, USA, pp. 413—414 (cited on p. 137).

6.5 Concluding Remarks 147

Lilja, D. J. (2000). Measuring Computer Performance: A Practitioner’s Guide.
Cambridge University Press: Cambridge, UK (cited on pp. 132-137, 140).

Spinner, S., Casale, G., Brosig, F., and Kounev, S. (2015). “Evaluating Approaches
to Resource Demand Estimation”. Performance Evaluation, 92. Elsevier Science:
Amsterdam, The Netherlands, pp. 51-71 (cited on p. 145).

Walter, J. C. (2018). “Automation in Software Performance Engineering Based
on a Declarative Specification of Concerns”. PhD thesis. Wiirzburg, Germany:
University of Wiirzburg (cited on p. 145).

	Chapter 6 Measurement Techniques
	6.1 Basic Measurement Strategies
	6.2 Interval Timers
	6.2.1 Timer Rollover
	6.2.2 Timer Accuracy
	6.2.3 Measuring Short Intervals

	6.3 Performance Profiling
	6.4 Event Tracing
	6.4.1 Call Path Tracing
	6.4.1.1 Call Frequencies
	6.4.1.2 Branching Probabilities
	6.4.1.3 Loop Iteration Counts
	6.4.1.4 Processing Times and Response Times

	6.4.2 Performance Monitoring and Tracing Tools

	6.5 Concluding Remarks
	References

