
Chapter 18
Software and System Security

Aleksandar Milenkoski and Samuel Kounev

Evaluation of computer securitymechanisms is an active research areawithmany un-
resolved issues. The research community has produced many results that contribute
towards addressing these issues. In this chapter, we systematize the accumulated
knowledge and current practices in the area of evaluating computer security mech-
anisms. We define a design space structured into three parts: workload, metrics,
and measurement methodology. We provide an overview of the current practices by
surveying and comparing evaluation approaches and methods related to each part of
the design space.

Computer securitymechanisms—referred to as securitymechanisms—are crucial
for enforcing the properties of confidentiality, integrity, and availability of system
data and services. A common security mechanism is an intrusion detection sys-
tem (IDS). IDSes monitor on-going activities in the protected networks or hosts,
detecting potentially malicious activities. The detection of malicious activities en-
ables the timely reaction in order to stop an on-going attack or to mitigate the
impact of a security breach. Other common security mechanisms include firewalls
and access control (AC) systems.

To minimize the risk of security breaches, methods and techniques for evaluating
security mechanisms in a realistic and reliable manner are needed. The benefits of
evaluating security mechanisms are manifold. For instance, in the case of IDSes, one
may compare different IDSes in terms of their attack detection accuracy in order to
deploy an IDS that operates optimally in a given environment, thus reducing the risks
of a security breach. Further, one may tune an already deployed security mechanism
by varying its configuration parameters and investigating their influence through
evaluation tests. This enables a comparison of the evaluation results with respect
to the configuration space of the mechanism and can help to identify an optimal
configuration.

The evaluation of security mechanisms is of interest to many different types of
users and professionals in the field of information security. This includes researchers,
who typically evaluate novel security solutions; industrial software architects, who
typically evaluate security mechanisms by carrying out internationally standardized
large-scale tests; and IT security officers, who evaluate security mechanisms in
order to select a mechanism that is optimal for protecting a given environment, or to
optimize the configuration of an already deployed mechanism.
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In this chapter, we survey existing knowledge on the evaluation of security mech-
anisms by defining an evaluation design space that puts existing work into a common
context. Given the significant amount of existing practical and theoretical work, the
presented systematization is beneficial for improving the general understanding of
the topic by providing an overview of the current state of the field. The evaluation
design space that we present is structured into three parts, that is, workload, metrics,
and measurement methodology—the standard components of any system evaluation
scenario. The discussions in this chapter are relevant for the evaluation of a wide
spectrum of security mechanisms, such as firewalls and AC systems.

This chapter is structured as follows: in Section 18.1, we provide the background
knowledge essential for understanding the topic of evaluating security mechanisms;
in Section 18.1.1, we discuss different types of attacks and put the different security
mechanisms into a common context; in Section 18.1.2, we demonstrate the wide
applicability of evaluation of securitymechanisms; and in Sections 18.2.1–18.2.3, we
compare multiple approaches and methods that evaluation practitioners can employ.

The chapter is a compact summary ofMilenkoski,Vieira, et al. (2015),Milenkoski,
Payne, et al. (2015), and Milenkoski (2016). These publications provide more details
on the topics discussed in this chapter.

18.1 Essential Background

We start with some background relevant for understanding the context of the content
presented in the rest of the chapter. We first introduce attacks and common secu-
rity mechanisms used to protect against them. Following this, we describe real-life
practical scenarios where techniques for evaluating security mechanisms are needed,
demonstrating the wide applicability of such techniques and their broad relevance.

18.1.1 Attacks and Common Security Mechanisms

A given system (i.e., a host) is considered secure if it has the properties of confi-
dentiality, integrity, and availability of its data and services (Stallings, 2002). Con-
fidentiality means the protection of data against its release to unauthorized parties.
Integrity means the protection of data or services against modifications by unautho-
rized parties. Finally, availability means the protection of services such that they
are ready to be used when needed. Attacks are deliberate attempts to violate the
previously mentioned security properties (Shirey, 1999).

There are many security mechanisms used to enforce the properties of confiden-
tiality, integrity, and availability of system data and services. Kruegel et al. (2005)
classify security mechanisms by taking an attack-centric approach distinguishing be-
tween attack prevention, attack avoidance, and attack detection mechanisms. Based
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on this classification, we put the different security mechanisms into a common
context, as depicted in Figure 18.1.

Confidentiality

Integrity

Availability

Fig. 18.1: Common security mechanisms

The attack prevention class includes security mechanisms that prevent attackers
from reaching, or gaining access to, the targeted system. A representative mechanism
that belongs to this class is access control, which uses the concept of identity to
distinguish between authorized and unauthorized parties. For instance, firewalls
distinguish between different parties trying to reach a given system over a network
connection based, for example, on their IP addresses. According to access control
policies, firewalls may allow or deny access to the system.

The attack avoidance class includes security mechanisms that modify the data
stored in the targeted system such that it would be of no use to an attacker in
case of an intrusion. A representative mechanism that belongs to this class is data
encryption, which is typically implemented using encryption algorithms, such as
RSA (Rivest–Shamir–Adleman) and DES (Data Encryption Standard).

The attack detection class includes security mechanisms that detect on-going
attacks under the assumption that an attacker can reach, or gain access to, the targeted
system and interact with it. A representative security mechanism that belongs to this
class is intrusion detection. There are several different types of IDSes. For example,
according to the target platform that IDSes monitor, they can be categorized into
host-based (IDSes that monitor the activities of the users of the host where they are
deployed), network-based (IDSes that monitor the network traffic that is destined
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for, and/or originates from, a single host or a set of hosts that constitute a network
environment), or hybrid IDSes. According to the employed attack detection method,
IDSes can be categorized into misuse-based (IDSes that evaluate system and/or
network activities against a set of signatures of known attacks), anomaly-based
(trained IDSes that use a profile of regular network and/or system activities as a
reference to distinguish between regular activities and anomalous activities, the
latter being treated as attacks), or hybrid IDSes.

This chapter surveys existing knowledge on the evaluation of securitymechanisms
that belong to the attack prevention and attack detection class. It treats the topic of
IDS evaluation as a single sub-domain of evaluation of security mechanisms.

18.1.2 Application Scenarios

We now present various application scenarios of evaluation of security mechanisms
in order to demonstrate its wide applicability and broad relevance. This evaluation
helps to determine howwell a securitymechanism performs and howwell it performs
when compared to other mechanisms. The answer to this question is of interest to
many different types of professionals in the field of information security. These
include designers of security mechanisms, both researchers and industrial software
architects, as well as users of security mechanisms, such as IT security officers.

Researchers design novel security mechanisms. They typically focus on design-
ing mechanisms that are superior in terms of given properties that are subject of
research, for example, attack detection accuracy or workload processing capacity.
To demonstrate the value of the research outcome, researchers typically perform
small-scale evaluation studies comparing the proposed security mechanisms with
other mechanisms in terms of the considered properties. For instance, Meng and Li
(2012) measure workload processing throughput, Mohammed et al. (2011) measure
power consumption, and Sinha et al. (2006) measure memory consumption. Fur-
ther, in order to demonstrate that the proposed security mechanisms are practically
useful, researchers also evaluate properties that are not necessarily in the focus of
their research but are relevant from a practical perspective. For example, Lombardi
and Di Pietro (2011) measure the performance overhead incurred by the IDS they
propose.

Industrial software architects design security mechanisms with an extensive set
of features according to their demand on the market. Security mechanisms, in this
context, are typically evaluated by carrying out tests of a large scale. The latter
are part of regular quality assurance procedures. They normally use internationally
standardized tests for evaluating security mechanisms in a standard and compre-
hensive manner. For instance, Microsoft’s Internet Security and Acceleration (ISA)
Server 2004 has been evaluated according to the Common Criteria international
standard for evaluating IT security products.1 Standardized tests are performed in

1 https://www.iso.org/standard/50341.html

https://www.iso.org/standard/50341.html


18.2 Current State 393

strictly controlled environments and normally by independent testing laboratories,
such as NSS Labs,2 to ensure credibility of the results.

In contrast to evaluation studies performed by researchers, evaluation studies in
industry normally include the evaluation of mechanism properties that are relevant
from a marketing perspective. An example of such a property is the financial cost
of deploying and maintaining an IDS or a firewall, which is evaluated as part of the
tests performed by NSS Labs (NSS Labs, 2010).

IT security officers use security mechanisms to protect environments of which
they are in charge from malicious activities. They may evaluate mechanisms, for
example, when designing security architectures in order to select a mechanism that
is considered optimal for protecting a given environment. Further, if a security
architecture is already in place, an IT security officer may evaluate the performance
of the selected mechanism for different configurations in order to identify its optimal
configuration. The performance is typically very sensitive to the way the mechanism
is configured.

In addition to security and performance-related aspects, as part of evaluation
studies, further usability-related aspects may also be considered. This is to be ex-
pected since IT security officers deal with security mechanisms on a daily basis.
For instance, security officers in charge of protecting large-scale environments may
be cognitively overloaded by the output produced by the deployed security mecha-
nisms (Komlodi et al., 2004). Thus, the ability to produce structured output that can
be analyzed efficiently is an important property often considered when evaluating
security mechanisms.

18.2 Current State

In this section, we put the existing practical and research work related to the eval-
uation of security mechanisms into a common context. Since such an evaluation
is a highly complex task, any evaluation experiment requires careful planning in
terms of the selection of workloads, tools, metrics, and measurement methodology.
We provide a comprehensive systematization of knowledge in the respective areas
providing a basis for the efficient and accurate planning of evaluation studies. We
define an evaluation design space structured into three parts: workloads, metrics, and
measurement methodology, considered to be standard components of any evaluation
experiment.

The proposed design space structures the evaluation components and features they
may possess with respect to different properties expressed as variability points in the
design space. Note that we do not claim complete coverage of all variability points
in the design space. We instead focus on the typical variability points of evaluation
approaches putting existing work related to the evaluation of security mechanisms

2 https://www.nsslabs.com

https://www.nsslabs.com
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into a common context. We illustrate the defined design space categories by referring
to evaluation experiments that fit each of the considered categories.

18.2.1 Workloads

In Figure 18.2, we depict the workload part of the design space. In order to evaluate
a security mechanism, one needs both malicious and benign workloads. One can
use them separately, for example, as pure malicious and pure benign workloads for
measuring the capacity of the mechanism (Bharadwaja et al., 2011; Jin, Xiang, Zou,
et al., 2013) or its attack coverage. Alternatively, one can use mixed workloads to
subject the mechanism to realistic attack scenarios. A more detailed overview of
typical use cases of different workload forms is provided in Section 18.2.3 in the
context of measurement methodologies.

Fig. 18.2: Design space—workloads
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Workloads for evaluating security mechanisms normally take an executable form
for live testing, or a recorded form (i.e., a trace) generated by recording a live
execution of workloads for later replay. A major advantage of using workloads in
executable form is that they closely resemble a real workload as monitored by a
security mechanism during operation. However, a malicious workload in executable
form requires a specific victim environment, which can be expensive and time-
consuming to setup.3 In contrast, such an environment is not always required for
replaying workload traces. Further, replicating evaluation experiments when using
executable malicious workloads is usually a challenge since the execution of attack
scripts might crash the victim environment or render it in an unstable state. The
process of restoring the environment to an identical state as before the execution
of the attack scripts may be time-consuming. At the same time, multiple evaluation
runs would be typically required to ensure statistical significance of the observed
system behavior. We refer the reader to Mell et al. (2003) for further comparison
of workloads in executable and trace form. In the following, we discuss different
methods for generating benign and malicious workloads in executable form: use of
workload drivers and manual generation approaches for generation of pure benign
workloads and use of an exploit database and vulnerability and attack injection
techniques for generating pure malicious workloads (Figure 18.2).

18.2.1.1 Workload Drivers

For the purpose of live testing, a common practice is to use benign workload drivers
in order to generate pure benign workloads with different characteristics. We sur-
veyed evaluation experiments (e.g., Jin, Xiang, Zhao, et al. (2009), Lombardi and
Di Pietro (2011), Jin, Xiang, Zou, et al. (2013), Griffin et al. (2003), Patil et al.
(2004), Riley et al. (2008), Reeves et al. (2012), and Zhang et al. (2008)) con-
cluding that some of the commonly used workload drivers are the following (and
alike): SPEC CPU20004 for generation of CPU-intensive workloads; IOzone5 and
Postmark (Katcher, 1997) for generation of file I/O-intensive workloads; httpbench,6
dkftpbench,7 and ApacheBench for generation of network-intensive workloads; and
UnixBench8 for generation of system-wide workloads that exercise not only the hard-
ware but also the operating system. A major advantage of using benign workload
drivers is the ability to customize the workload in terms of its temporal and inten-
sity characteristics. For instance, one may configure a workload driver to gradually

3 While setting up their workbench for evaluation of IDSes, Debar et al. (1998) concluded that
“Transforming exploit scripts found in our database into attack scripts requires some work but
setting up a reliable and vulnerable server has also proved to be a difficult task!”
4 https://www.spec.org/cpu2000
5 http://www.iozone.org
6 http://freecode.com/projects/httpbench
7 http://www.kegel.com/dkftpbench
8 http://code.google.com/p/byte-unixbench

https://www.spec.org/cpu2000
http://www.iozone.org
http://freecode.com/projects/httpbench
http://www.kegel.com/dkftpbench
http://code.google.com/p/byte-unixbench
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increase the workload intensity over time, as typically done when evaluating the
capacity of a security mechanism.

18.2.1.2 Manual Generation

An alternative approach to using workload drivers is to manually execute tasks that
are known to exercise specific system resources. For example, a common approach
is to use file encoding or tracing tasks to emulate CPU-intensive tasks (e.g., Dunlap
et al. (2002) perform ray tracing, while Lombardi and Di Pietro (2011) perform
encoding of a .mp3 file); file conversion and copying of large files to emulate
file I/O-intensive tasks (e.g., Lombardi and Di Pietro (2011) and Allalouf et al.
(2010) use the UNIX command dd to perform file copy operations), and kernel
compilation to emulate mixed (i.e., both CPU-intensive and file I/O-intensive) tasks
(e.g., performed by Wright et al. (2002), Lombardi and Di Pietro (2011), Riley et al.
(2008), Reeves et al. (2012), and Dunlap et al. (2002)). This approach of benign
workload generation enables the generation of workloads with behavior as observed
by the security mechanism under test during regular system operation; however, it
does not support workload customization andmight require substantial human effort.

18.2.1.3 Exploit Database

As puremaliciousworkloads in executable form, security researchers typically use an
exploit database. They have a choice of assembling an exploit database by themselves
or using a readily available one.

A major disadvantage of the manual assembly is the high cost of the attack script
collection process. For instance, when collecting publicly available attack scripts,
the latter typically have to be adapted to exploit vulnerabilities of a specific victim
environment. This includes modification of shell codes, adaptation of employed
buffer overflow techniques, and similar. Depending on the number of collected
attack scripts, this process may be extremely time-consuming. Mell et al. (2003)
report that in 2001 the average number of attack scripts in common exploit databases
was in the range of 9–66, whereas some later works, such as the one of Lombardi
and Di Pietro (2011), use as low as four attack scripts as a malicious workload.

To alleviate the above-mentioned issues, many researchers employ penetration
testing tools to use a readily available exploit database. The Metasploit frame-
work (Maynor et al., 2007) is a popular penetration testing tool that has been used
in evaluation experiments (Görnitz et al., 2009). The interest of security researchers
in Metasploit (and in penetration testing tools in general) is not surprising since
Metasploit enables customizable and automated platform exploitation by using an
exploit database that is maintained up-to-date and is freely available. Metasploit
is very well accepted by the security community not only due to the large exploit
database it provides but also because it enables rapid development of new exploits.
However, although penetration testing frameworks might seem like an ideal solution
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for generating malicious workloads, they have some critical limitations. Gad El Rab
(2008) analyzes the Metasploit’s exploit database to discover that most of the ex-
ploits are executed from remote sources and exploit only implementation and design
vulnerabilities, neglecting operation and management vulnerabilities (Shirey, 1999).
Such characteristics are common for many penetration testing tools, which indicates
their limited usefulness in evaluating security mechanisms.

An effort to provide an extensive collection of exploits to security researchers
has been driven by Symantec. Dumitras and Shou (2011) present Symantec’s WINE
datasets, which contain a collection of malware samples that exploit various novel
vulnerabilities. The large scale of this project is indicated by the fact that Symantec’s
sensors continuously collect malware samples from 240,000 sensors deployed in
200 countries worldwide. Due to the continuous nature of the malware collection
process, this malware database is useful not only as a basis for generating extensive
malicious workloads but also for providing an up-to-date overview of the security
threat landscape. However, since the malware samples are collected from real plat-
forms and contain user data, Symantec’s malware samples can be accessed only
on-site at the Symantec Research Lab to avoid legal issues.

18.2.1.4 Vulnerability and Attack Injection

An alternative approach to the use of an exploit database is the use of vulnerability
and attack injection techniques.

Vulnerability injection enables live testing by artificially injecting exploitable
vulnerable code in a target platform. Thus, this technique is useful in cases where
the collection of attack scripts that exploit vulnerabilities is unfeasible. However,
this method for generation of malicious workloads is still in an early phase of
research and development. Vulnerability injection relies on the basic principles of
the more general research area of fault injection. Since it enables estimation of fault-
tolerant systemmeasures (e.g., fault coverage, error latency) (Arlat et al., 1993), fault
injection is an attractive approach to validate specific fault handling mechanisms and
to assess the impact of faults in actual systems. In the past decades, research on fault
injection has been focused on the emulation of hardware faults. Carreira et al. (1998)
and Rodríguez et al. (1999) have shown that it is possible to emulate these faults in
a realistic manner. The interest in software fault injection has been increasing and
has been a foundation for many research works on the emulation of software faults
(e.g., Durães and Madeira (2003)). In practice, software fault injection deliberately
introduces faults into a software system in a way that emulates real software faults. A
reference technique, proposed by Durães and Madeira (2006), is G-SWFI (Generic
Software Fault Injection Technique), which enables injection of realistic software
faults using educated code mutation. The injected faults are specified in a library
derived from an extensive field study aimed at identifying the types of bugs that are
usually found in many software systems.

A specific application of software fault injection is a security assessment in
which of central importance are software faults that represent security vulnerabili-
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ties. Fonseca and Vieira (2008) analyzed 655 security patches of 6 web applications
to discover that only 12 generic software faults are responsible for all security prob-
lems of the applications. This finding has motivated further research in software fault
injection as a method for security evaluation. Fonseca, Vieira, and Madeira (2009)
proposed a procedure that enables automatic vulnerability injection and attack of
web applications. To accurately emulate real-world web vulnerabilities, this work
relies on results obtained from a field study on real security vulnerabilities (Fonseca
and Vieira, 2008). Fonseca, Vieira, and Madeira (2009) built a Vulnerability and
Attack Injector, a mechanism that automatically exploits injected vulnerabilities. In
order to inject vulnerabilities in the source code of web applications, first the appli-
cation source code is analyzed searching for locations where vulnerabilities can be
injected. Once a possible location is found, a vulnerability is injected by performing
a code mutation. The code mutation is performed by vulnerability operators that
leverage a realistic field data of vulnerable code segments. For more details on the
vulnerability injection procedure, we refer the reader to Fonseca, Vieira, andMadeira
(2009). Aware of the injected vulnerability, the Attack Injector interacts with the web
application in order to deliver attack payloads.

Attack 
Injector 

Web 
application 

Database 
proxy Database 

2. Attack!

IDS 

1. Inject vulnerability!

4. Notify!
5. Process output!

3. Identify signature!

Fig. 18.3: Use of vulnerability injection to evaluate a security mechanism (an IDS)

Fonseca,Vieira, andMadeira (2009) also demonstrated a preliminary approach for
automated (i.e., without human intervention) evaluation of a securitymechanism that
detects SQL (Structured Query Language) injection attacks. We depict a procedure
that follows this approach in Figure 18.3. First, the Vulnerability Injector injects a
vulnerability in the web application, followed by the Attack Injector that delivers an
attack payload with a given signature, that is, an attack identifier. Fonseca, Vieira,
and Madeira (2009) developed a database proxy that monitors the communication
between the application and the database in order to identify the presence of an
attack signature. In case it identifies such signature, it notifies the Attack Injector that
the injected vulnerability is successfully exploited. In this way, the Attack Injector
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builds a ground truth knowledge. Given that Fonseca, Vieira, and Madeira (2009)
customized the Attack Injector to process the output of the security mechanism that
monitors the traffic to the database, the Attack Injector can automatically calculate
values of attack detection accuracy metrics (see Section 18.2.2).

Attack injection, as an approach separate from vulnerability injection, enables the
generation of workloads for evaluating security mechanisms that contain benign and
malicious activities such that attacks, crafted with respect to representative attack
models, are injected during regular operation of a given system. Same as vulnerability
injection, this technique is useful in cases where the collection of attack scripts that
exploit vulnerabilities is unfeasible.

In Milenkoski, Payne, et al. (2015), we proposed an approach for the accurate,
rigorous, and representative evaluation of hypercall security mechanisms designed
to mitigate or detect hypercall attacks. Hypercalls are software traps from the kernel
of a virtual machine (VM) to the hypervisor. For instance, the execution of an attack
triggering a vulnerability of a hypervisor’s hypercall handler may lead to a crash
of the hypervisor or to altering the hypervisor’s memory. The latter may enable the
execution of malicious code with hypervisor privilege. In Milenkoski, Payne, et al.
(2015), we presented HInjector, a customizable framework for injecting hypercall
attacks during regular operation of a guest VM in a Xen-based environment.9 The
goal of HInjector is to exercise the sensors of a security mechanism that monitors the
execution of hypercalls. The attacks injected by HInjector conform to attack models
based on existing Xen vulnerabilities. We distinguish the following attack models:

• Invoking hypercalls from irregular call sites. Some hypercall securitymechanisms
(e.g., Bharadwaja et al. (2011)) may consider hypercalls invoked from call sites
unknown to them, for example, an attacker’s loadable kernel module (LKM), as
malicious.

• Invoking hypercalls with anomalous parameter values (a) outside the valid value
domains or (b) crafted for exploiting specific vulnerabilities not necessarily out-
side the valid value domains. This attack model is based on the Xen vulner-
abilities described in CVE-2008-3687, CVE-2012-3516, CVE-2012-5513, and
CVE-2012-6035.

• Invoking a series of hypercalls in irregular order, including repetitive execution of
a single ormultiple hypercalls. This attackmodel is based on theXen vulnerability
described in CVE-2013-1920. The repetitive execution of hypercalls, for example,
requesting system resources, is an easily feasible attack that may lead to resource
exhaustion of collocated VMs.

In Figure 18.4, we depict the architecture of HInjector, which consists of the
components Injector, LKM, Identificator, Configuration, and Logs. We refer to the
VM injecting hypercall attacks as malicious VM (MVM). The security mechanism
under test (an IDS) is deployed in a secured VM (SVM) collocated with MVM.

The Injector, deployed in the hypercall interface of MVM’s kernel, intercepts
hypercalls invoked by the kernel during regular operation and modifies hypercall pa-

9 https://xenproject.org

https://xenproject.org
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Fig. 18.4: Architecture of HInjector

rameter values on-the-fly, making them anomalous. The Injector is used for injecting
hypercalls invoked from a regular call site.

The loadable kernel module (LKM), a module of MVM’s kernel, invokes regular
hypercalls, hypercalls with anomalous parameter values, or hypercalls in irregular
order. The LKM is used for injecting hypercalls invoked from an irregular call site.

The Identificator, deployed in Xen’s hypercall interrupt handler (i.e., 0x82 inter-
rupt), identifies hypercalls injected by the Injector or theLKM, blocks their execution,
and returns a valid error code. The latter is important for preventing MVM crashes
by allowing the control flow of MVM’s kernel to handle failed hypercalls that have
been invoked by it. The Identificator blocks the execution of Xen’s hypercall han-
dlers to prevent Xen crashes. The Identificator identifies injected hypercalls based
on information stored by the Injector/LKM in the shared_info structure, a memory
region shared between a guest VM and Xen. To this end, we extended shared_info
with a string field named hid (hypercall identification).

The configuration is a set of user files containing configuration parameters for
managing the operation of the Injector and the LKM. Currently, it allows for spec-
ifying the duration of an injection campaign, valid parameter value domains and/or
specifically crafted parameter values for a given hypercall (relevant to the Injector
and the LKM), and valid order of a series of hypercalls (relevant to the LKM).

The logs are user files containing records about injected hypercalls—that is,
hypercall IDs (hypercall identification numbers assigned by Xen) and parameter
values as well as timestamps. The logged data serves as reference data (i.e., as
“ground truth”) used for calculating attack detection accuracy metrics.

In Figure 18.4, we depict the steps involved in injecting a single hypercall by the
Injector/LKM. An illustrative example of the Injector injecting a hypercall with a
parameter value outside of its valid domain is as follows: (1) The Injector intercepts
a hypercall invoked by MVM’s kernel and replaces the value, for example, of the
first parameter, with a generated value outside the parameter’s valid value domain
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specified in the configuration; (2) The Injector stores the ID of the hypercall, the
number of the parameter with anomalous value (i.e., one), and the parameter value
itself in hid; (3) The Injector passes the hypercall to MVM’s virtual CPU, which
then issues a 0x82 interrupt and passes control to Xen; (4) The Identificator, using
the data stored in hid, identifies the injected hypercall when it arrives at Xen’s 0x82
interrupt handler; (5) The Identificator returns a valid error code without invoking
the hypercall’s handler; and (6) After the return code arrives at MVM’s kernel, the
Injector stores in the log files, the ID and parameter values of the injected hypercall,
and a timestamp.

We now discuss methods for obtaining pure benign, pure malicious, or mixed
workloads in trace form. We distinguish between trace acquisition and trace gener-
ation.

18.2.1.5 Trace Acquisition

Under trace acquisition, we understand the process of obtaining trace files from
an industrial organization, that is, real-world traces, or obtaining publicly available
traces.

Real-world traces subject a security mechanism under test to a workload as ob-
served during operation in a real deployment environment. However, they are usually
very difficult to obtain mainly due to the unwillingness of industrial organizations
to share operational traces with security researchers because of privacy and similar
legal concerns. Thus, real-world traces are usually anonymized by using various
techniques, which are known to introduce inconsistencies in the anonymized trace
files. Another challenge is that the attacks in real-world traces are usually not labeled
and may contain unknown attacks, making the construction of the “ground truth”
challenging. Lack of ground truth information severely limits the usability of trace
files; for example, one could not quantify the false negative detection rate. To quote
from Sommer and Paxson (2010): “If one cannot find a sound way to obtain ground-
truth for the evaluation, then it becomes questionable to pursue the work at all, even if
it otherwise appears on a solid foundation.” Among many other things, the labeling
accuracy and feasibility depend on the capturing method used to record the traces,
that is, on the richness of the information regarding the recorded activity itself (e.g.,
network packet timestamps, system call arguments). For instance, Sperotto et al.
(2009) argue that when it comes to evaluating a network-based IDS that differenti-
ates between network flows, traces captured in honeypots enable much more efficient
labeling than traces captured in real-world environments, since honeypots are able
to record relevant activity information that is not usually provided with real-world
production traces. An interesting derived observation is that one may tend to priori-
tize trace generation in an isolated and a specialized environment (e.g., a honeypot).
This is due to the increased feasibility of trace labeling, overusing real-world traces
that are representative of the real world, even in the hardly achievable case when
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real-world production traces are available.10 We discuss more on honeypots and on
trace generation approaches in general in Section 18.2.1.6.

In contrast to proprietary real-world traces, one can obtain publicly available traces
without any legal constraints. However, the use of such traces has certain risks. For
instance, publicly available traces often contain errors, and they quickly become
outdated after their public release; that is, attacks have limited shelf-life, and further,
the characteristics of the benign background activities and the mix of malicious and
benign activities change significantly over time. Since such activities are recorded
permanently in trace files for later reuse, traces lose on representativeness over time.
Some of the most frequently used publicly available traces include the DARPA (MIT
Lincoln Laboratory, 1999) and the KDD Cup’99 (University of California, 1998)
datasets, which are currently considered outdated (Sommer and Paxson, 2010).11
However, these traces have been used in many evaluation experiments over the last
two decades (e.g., Alserhani et al. (2010), Yu and Dasgupta (2011), and Raja et al.
(2012)). We also conclude that the trend of overusing these datasets continues up
to the current date despite the past criticism of their poor representativeness. For
instance, Sommer and Paxson (2010) referred to the DARPA dataset as “no longer
adequate for any current study” and “wholly uninteresting if a network-based IDS
detects the attacks it [the DARPA dataset] contains,” stressing the overuse of these
datasets due to lack of alternative publicly available datasets for security research.
The DARPA and the KDDCup’99 datasets have also been extensively criticized. For
instance, McHugh (2000) criticizes the DARPA dataset for unrealistic distribution
of probe/surveillance attacks in the benign background activity. The KDD Cup’99
dataset is known for lack of precise temporal information on the attacks recorded
in the trace files, which is crucial for attack detection to many IDSes. Despite all
criticism, some researchers are still looking for usage scenarios of these datasets.
For instance, Engen et al. (2011) identify the KDD Cup’99 dataset as useful in the
evaluation of the learning process of anomaly-based IDSes (e.g., learning from a
very large dataset, incremental learning, and similar).

18.2.1.6 Trace Generation

Under trace generation, we understand the process of generating traces by the eval-
uator himself. In order to avoid the previously mentioned issues related to acquiring

10 A worthy point to mention is that real-world traces of a “small” size may still be labeled
in a reasonable time; however, such traces would contain a small amount of attacks. To quote
from Sperotto et al. (2009): “... labeling is a time-consuming process: it could easily be achieved on
short traces, but these traces could present only a limited amount of security events.” The amount
of (human) resources that one has available for labeling plays a central role in determining the
acceptable size of real-world traces that can be labeled in a time-efficient manner.
11We focus on the DARPA and the KDD Cup’99 datasets because of their popularity. However, we
stress that the risk of a dataset to become outdated soon after its public release is not a characteristic
of the DARPA and the KDD Cup’99 datasets in particular, but to the contrary, of all datasets in
general.
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traces, researchers generate traces in a testbed environment or deploy a honeypot in
order to capture malicious activities.

The generation of traces in a testbed environment is challenged by several con-
cerns. For instance, the cost of the resources needed to build a testbed that scales
to realistic production environment may be high. Further, the approach for the gen-
eration of traces may produce faulty or simplistic workloads. For instance, Sommer
and Paxson (2010) warn that activities captured in small testbed environments may
differ fundamentally from activities in a real-world platform. Finally, the methods
used to generate traces are not flexible enough to timely follow the current attack
and benign activity trends. This issue, in particular, has motivated one of the ma-
jor current research directions that deals with the generation of traces in a testbed
environment in a customizable and scientifically rigorous manner. Such research is
mainly motivated by the fact that the characteristics of attacks and of benign work-
loads are rapidly changing over time, making the one-time datasets inappropriate for
evaluation on a long-term basis. To this end, Shiravi et al. (2012) proposed the use of
workload profiles that enable customization of both malicious and benign network
traffic. This includes customization of the distribution of network traffic from specific
applications and protocols as well as customization of intrusive activities.

Honeypots enable recording of malicious activities performed by an attacker
without revealing their purpose. By mimicking real operating systems and vulnera-
ble services, honeypots record the interaction between the attack target and the attack
itself. Security researchers often use honeyd,12 a low-interaction honeypot that can
emulate a network of an arbitrary number of hosts, where each host may run multiple
services. Honeyd is attractive to security researchers since it is open-source and is
well equipped with many logging and log processing utilities. Maybe the most ex-
tensive deployment of honeyd up-to-date is in the frame of the Leurre.com project,13
which at the time of writing consists of 50 active honeyd instances in 30 countries
worldwide. Since honeypots are usually isolated from production platforms, almost
all of the interactions that they observe are malicious, making honeypots ideal for
generation of pure malicious traces. However, since low-interaction honeypots use
complex scripts to interact with attacks, they are often unable to interact with and
record zero-day attacks. Under a zero-day attack, we understand an attack that ex-
ploits a vulnerability that has not been publicly disclosed before the execution of the
attack. The notion “zero-day” indicates that such an attack occurs on “day zero” of
public awareness of the exploited vulnerability. A promising solution of this issue
is the work of Leita et al. (2006) where they incorporate unsupervised learning
mechanism in the interaction state machine of ScriptGen, a framework for automatic
generation of honeyd scripts with the benefit to capture zero-day attacks. ScriptGen
was later enhanced and implemented in the honeyd instances of the Leurre.com
project.

12 http://www.honeyd.org
13 http://www.leurrecom.org

http://www.honeyd.org
http://www.leurrecom.org
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18.2.2 Metrics

In Figure 18.5, we depict themetrics part of the design space.We distinguish between
two metric categories: (1) performance-related and (2) security-related.

Metrics 

Security-
related 

Performance-
related 

Basic Composite 

Cost-based Information-
theoretic 

<derived from> 

[aspect] 

[approach] 

[form] 

<ROC curve> 

Fig. 18.5: Design space—metrics

Under performance-related metrics, we consider metrics that quantify the non-
functional properties of a security mechanism under test, such as capacity, per-
formance overhead, resource consumption, and similar. The metrics that apply to
these properties, such as processing throughput and CPU utilization, are typical
for traditional performance benchmarks. The practice in the area of evaluating se-
curity mechanisms has shown that they are also applicable to security evaluation.
For instance, Meng and Li (2012) measure workload processing throughput, Lom-
bardi and Di Pietro (2011) measure performance overhead, Mohammed et al. (2011)
measure energy consumption, and Sinha et al. (2006) measure memory consump-
tion. In the context of this chapter, we focus on the systematization and analysis of
security-related metrics.

Under security-related metrics, we assume metrics that are used exclusively in
security evaluation. In this chapter, we focus onmetrics that quantify attack detection
accuracy. These are relevant for evaluating security mechanisms that feature attack
detection and issue attack alerts, such as IDSes. We distinguish between basic and
composite security-related metrics. We provide an overview of these metrics in
Table 18.1, where we annotate an attack (or an intrusion) with I and an attack alert
with A.
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Basic Security-Related Metrics The basic metrics are most common, and they
quantify various individual attack detection properties. For instance, the true positive
rate P(A|I) quantifies the probability that an alert is really an intrusion. The false
positive rate P(A|¬I) quantifies the probability that an alert is not an intrusion but a
regular benign activity. Alternatively, one can use the respective complementarymet-
rics, that is, the true negative rate P(¬A|¬I) and the false negative rate P(¬A|I). In
evaluation experiments, the output of the security mechanism under test is compared
with a ground truth information in order to calculate the above-mentioned probabil-
ities. Other basic metrics are the positive predictive value (PPV), P(I |A), and the
negative predictive value (NPV), P(¬I |¬A). The former quantifies the probability
that there is an intrusion when an alert is generated, whereas the latter quantifies the
probability that there is no intrusion when an alert is not generated. These metrics are
normally calculated once one has already calculated P(A|I), P(A|¬I), P(¬A|¬I),
and P(¬A|I) by using the Bayesian theorem for calculating the conditional probabil-
ity (Table 18.1). Thus, PPV and NPV are also known as Bayesian positive detection
rate and Bayesian negative detection rate, respectively. PPV and NPV are useful
from a usability perspective, for example, in situations when an alert automatically
triggers an attack response. In such situations, low values of PPV and NPV indicate
that the considered security mechanism is not optimal for deployment. For example,
a low value of PPV (therefore a high value of its complement 1−P(I |A) = P(¬I |A))
indicates that the considered IDS may often cause the triggering of attack response
actions when no real attacks have actually occurred.

Composite Security-Related Metrics Security researchers often combine the
above presented basic metrics in order to analyze relationships between them. Such
analysis is used to discover an optimal operating point (e.g., a configuration of the
mechanism under test that yields optimal values of both the true and the false pos-
itive detection rate) or to compare multiple security mechanisms. It is a common
practice to use a Receiver Operating Characteristic (ROC) curve in order to investi-
gate the relationship between the true positive and the false positive detection rate.
However, some argue that a ROC curve analysis is often misleading (e.g., Gu et al.
(2006), Gaffney and Ulvila (2001), and Stolfo et al. (2000)) and propose alterna-
tive approaches based on (1) metrics that use cost-based measurement methods or
(2) metrics that use information-theory measurement methods. In the following, we
briefly analyze two of the most prominent metrics that belong to these categories—
that is, the expected costmetric (Gaffney andUlvila, 2001) and the intrusion detection
capability metric (Gu et al., 2006)—presented in Table 18.1. We focus on comparing
the applicability of ROC curves and these metrics for the purpose of comparison of
multiple IDSes. We assume as a goal the comparison of two IDSes: IDS1 and IDS2.
For that purpose, we analyze the relationship between the true positive and the false
positive detection rate denoted by 1− β and α, respectively (Table 18.1). We assume
that for IDS1, 1 − β is related to α with a power function; that is, 1 − β = αk such
that k = 0.002182. Further, we assume that for IDS2, 1 − β is related to α with an
exponential function; that is, 1− β = 1− 0.00765e−208.32α. We take the values of k,
α, and the coefficients of the exponential function from Gaffney and Ulvila (2001).
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We calculate the values of 1− β for IDS1 and IDS2 for α = {0.005, 0.010, 0.015}.
We depict the values of 1 − β for IDS1 and IDS2 in Table 18.2.

Table 18.2: Values of 1 − β, Cexp , and CID for IDS1 and IDS2

IDS1 IDS2

α 1 − β Cexp CID 1 − β Cexp CID

0.005 0.9885 0.016 0.9159 0.973 0.032 0.8867
0.010 0.99 0.019 0.8807 0.99047 0.019 0.8817
0.015 0.9909 0.022 0.8509 0.99664 0.017 0.8635

In Figure 18.6a, we depict the ROC curves that express the relationship between
1 − β and α for IDS1 and IDS2. One may notice that the ROC curves intersect
approximately at 1 − β = 0.99 and α = 0.01. Thus, one could not identify the
better IDS in a straightforward manner. Note that an IDS is considered better than
another if it features higher positive detection rate (1 − β) than the other IDS at
all operating points along the ROC curve. An intuitive solution to this problem,
as suggested by Durst et al. (1999), is to compare the area under the ROC curves,
that is, AUC1 :

∫ α=0.015
α=0.005 α0.002182dα and AUC2 :

∫ α=0.015
α=0.005 (1−0.00765e−208.32α)dα.

However, Gu et al. (2006) consider such a comparison as unfair, since it is based
on all operating points of the compared IDSes, while in reality, a given IDS is
configured according to a single operating point. Moreover, ROC curves do not
express the impact of the rate of occurrence of intrusion events (B = P(I)), known
as the base rate, on α and 1− β. As suggested byAxelsson (2000), the attack detection
performance of an IDS should be interpreted with respect to a base rate measure due
to the base-rate fallacy phenomenon.

In order to overcome the above-mentioned issues related to ROC curve analysis,
Gaffney and Ulvila (2001) propose the measure of cost as an additional comparison
parameter. They combine ROC curve analysis with cost estimation by associating
an estimated cost with an operating point (i.e., with a measure of false negative
and false positive rates); that is, they introduce a cost ratio C = Cβ/Cα, where Cα
is the cost of an alert when an attack has not occurred, and Cβ is the cost of not
detecting an attack when it has occurred. Gaffney and Ulvila (2001) use the cost ratio
to calculate the expected cost Cexp of a security mechanism operating at a given
operating point (see Table 18.1). For further explanation of the analytical formula
of Cexp , we refer the reader to Gaffney and Ulvila (2001). By using Cexp , one
can determine which mechanism performs better by comparing the estimated costs
when each mechanism operates at its optimal operating point. The mechanism that
has lower Cexp associated with its optimal operating point is considered to be better.
A given operating point of a single mechanism is considered optimal if it has the
lowest Cexp associated with it when compared with the other operating points.
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To determine the optimal operating points of IDS1 and IDS2, we calculate the
values of Cexp for each operating point of the two IDSes. Note that Cexp depends
on the base rate B as well as the cost ratio C (Table 18.1). Thus, to calculate the
values of Cexp , we assume that C = 10, that is, the cost of not responding to an
attack is 10 times higher than the cost of responding to a false alert, and B = 0.10.
We present the values of Cexp in Table 18.2. One may conclude that the optimal
operating point of IDS1 is (0.005, 0.9885) and of IDS2 is (0.015, 0.99664); that is,
the associated expected cost with these points is minimal. Since the minimal Cexp of
IDS1 (0.016) is smaller than the minimal Cexp of IDS2 (0.017), one may conclude
that IDS1 performs better. We depict the ROC curves annotated with the minimal
Cexp of IDS1 and of IDS2 in Figure 18.6b.

Although the discussed cost-based metric enables straightforward comparison of
multiple security mechanisms, it strongly depends on the cost ratio C. To calculate
the cost ratio, one would need a cost-analysis model that can estimate Cα and
Cβ . We argue that in reality, it might be extremely difficult to construct such a
model. Cost-analysis models normally take multiple parameters into consideration
that often might not be easy to measure or might not be measurable at all (e.g.,
man-hours, system downtime, and similar). Further, if the cost model is not precise,
the calculation of Cexp would be inaccurate. Finally, Cexp provides a comparison
of security mechanisms based on a strongly subjective measure (i.e., cost), making
the metric unsuitable for objective comparisons. This issue is also acknowledged
by Gu et al. (2006). We argue that the above-mentioned issues apply not only to the
considered cost-based metric but also to all metrics of similar nature.

Another approach for quantification of attack detection performance is the
information-theoretic approach. In this direction, Gu et al. (2006) propose a metric
called intrusion detection capability (denoted by CID , Table 18.1). Gu et al. (2006)
model the input to an IDS as a stream of a random variable X (X = 1 denotes an
intrusion, X = 0 denotes benign activity) and the IDS output as a stream of a random
variable Y (Y = 1 denotes IDS alert, Y = 0 denotes no alert). It is assumed that both
the input and the output stream have a certain degree of uncertainty reflected by the
entropies H (X ) and H (Y ), respectively. Thus, Gu et al. (2006) model the number of
correct guesses by an IDS (i.e., I (X ;Y )) as a piece of mutually shared information
between the random variables X and Y ; that is, I (X ;Y ) = H (X ) − H (X |Y ). An
alternative interpretation is that the accuracy of an IDS is modeled as a reduction of
the uncertainty of the IDS input, H (X ), after the IDS output Y is known. Finally, by
normalizing the shared information I (X ;Y ) with the entropy of the input variable
H (X ), the intrusion detection capability metric CID is obtained (Table 18.1). Note
that CID incorporates the uncertainty of the input stream H (X ) (i.e., the distribution
of intrusions in the IDS input) and the accuracy of an IDS under test I (X ;Y ). Thus,
one may conclude that CID incorporates the base rate B and many basic metrics,
such as the true positive rate (1 − β), the false positive rate (α), and similar. For the
definition of the relationship between CID and B, 1 − β, and α, we refer the reader
to Gu et al. (2006). Given this relationship, a value of CID may be assigned to any
operating point of an IDS in a ROC curve. With this assignment, one obtains a new
curve, that is, a CID curve. Assuming a base rate of B = 0.10, we calculated CID
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for various operating points of IDS1 and IDS2 (Table 18.2). In Figure 18.6c, we
depict the CID curves of IDS1 and IDS2. A CID curve provides a straightforward
identification of the optimal operating point of an IDS, that is, the point that marks
the highest CID . Further, one can compare IDSes by comparing the maximum CID

of each IDS. An IDS is considered to perform better if its optimal operating point
has a higher CID associated with it. From Table 18.2, one would consider the IDS1
as a better performing IDS since it has greater maximum CID (0.9159) than the
maximum CID of IDS2 (0.8867).

Note that, in contrast to the expected cost metric, the intrusion detection capability
metric is not based on subjective measures such as cost, which makes it suitable for
objective comparisons. However, this also implies that this metric lacks expressive-
ness with respect to subjective measures such as the cost of not detecting an attack,
which may also be of interest. For instance, the IDS evaluation methodology of NSS
labs (NSS Labs, 2010) advocates the comparison of IDSes by taking into account
the costs associated with IDS operation at a given operating point.

18.2.3 Measurement Methodology

Under measurement methodology, we understand the specification of the security
mechanism properties that are of interest (e.g., attack detection accuracy, capacity)
as well as the specification of the employed workloads and metrics for evaluating a
given property. In Sections 18.2.1 and 18.2.2, we presented a workload and metric
systematization with respect to their characteristics (e.g., workload content, metric
aspect, metric form). In this section, we systematize different, commonly evaluated
security mechanism properties. We also indicate the applicability of different work-
load and metric types with respect to their inherent characteristics. Thus, we round
up and finalize the evaluation design space.

We identify the following security mechanism properties as most commonly
evaluated in studies: attack detection, resource consumption, capacity, and perfor-
mance overhead. In Table 18.3, we provide a more fine-granular systematization of
these properties. Next, we briefly discuss current methodologies for evaluating the
properties listed in Table 18.3.

18.2.3.1 Attack Detection

This property is relevant for evaluating IDSes since these security mechanisms
feature attack detection. We classify the attack detection property of IDSes into four
relevant categories: (1) attack detection accuracy (attack detection accuracy under
normal working conditions, that is, in presence of mixed workloads); (2) attack
coverage (attack detection accuracy under ideal conditions, that is, in the presence of
attackswithout any benign background activity); (3) resistance to evasion techniques;
and (4) attack detection speed. In Table 18.3, we provide an overview of the workload
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Table 18.3: Design space—measurement methodology

Measurement methodology Workloads Metrics
Variability point Variability point Variability point

[Property] [Content] [Aspect] [Form]

Attack detection
Attack detection accuracy Mixed Security-related Basic, composite

Attack coverage Pure malicious Security-related Basic
Resistance to evasion techniques Pure malicious, mixed Security-related Basic, composite

Attack detection speed Mixed Performance related /

Resource consumption
CPU consumption

Pure benign Performance-related /
Memory consumption
Network consumption
Hard disk consumption

Performance overhead Pure benign Performance-related /

Capacity
Workload processing capacity Pure benign Performance-related /

and metric requirements for evaluating these properties. For instance, in contrast to
the case of evaluating the attack detection accuracy, if one is interested in evaluating
the attack coverage of an IDS, only pure malicious workloads and (basic) metrics
that do not contain measures of false alerts would be required.

When it comes to evaluating the attack detection ability of an IDS, the detection
of novel, unseen attacks is of central interest. Thus, the security research community
has invested efforts in designing various anomaly-based detection techniques, a
process that is still underway (e.g., Avritzer et al. (2010) in 2010 designed system
for intrusion detection that uses performance signatures, Raja et al. (2012) in 2012
leveraged statistical patterns for detection of network traffic abnormalities). Since it
is practically unfeasible to execute a workload that contains unseen attacks in order
to train anomaly-based IDSes, in such cases, researchers use benign workloads that
are considered normal whereby any deviation from such workloads is assumed as
malicious. This assumption, denoted as “closed world” assumption, is considered
unrealistic by Witten et al. (2011). They argue that real-life situations rarely involve
“closed worlds.” Thus, measurement methodologies that follow this assumption
might yield unrealistic results. Furthermore, the prioritization of the attack detection
properties of IDSes, with respect to their importance in case of limited available
resources, is gaining increasing attention. Due to limited resources (e.g., lack of
various malicious workloads), security researchers currently tend to evaluate only
one or two of the attack detection properties (Table 18.3). Thus, to obtain the highest
benefits from evaluation efforts, a proper prioritization of these properties is in order.
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Sommer and Paxson (2010) provide an interesting insight on this matter, stating
that resistance to evasion techniques is a stimulating research topic, but of limited
importance from a practical perspective since most of the real-life attacks perform
mass exploitation instead of targeting particular IDS flaws in handpicked target
platforms. We tend to agree with this statement, which is also supported by many
reports. As an example, an IBM X-Force report, that is, the 2012 Mid-Year Trend
and Risk Report (IBM, 2012), states that the greatest portion of system exploitations
are due to automated SQL injection attacks. Thus, similarly to Sommer and Paxson
(2010), we argue that a representative workload on a global scale would contain
a very small amount of evasive attacks, which decreases the priority of evaluating
resistance to evasion techniques in case of limited resources.

18.2.3.2 Resource Consumption

Resource consumption is evaluated by usingworkloads that are considered normal for
the environment in which the evaluated security mechanism is deployed; that is, such
workloads should not exhibit extreme behavior in terms of intensity or in terms of
the exercised hardware components (i.e., CPU-intensive, memory-intensive). Dreger
et al. (2008) show that the resource consumption of many IDSes is often sensitive
to the workload behavior. Thus, in order to avoid unrealistic and irrelevant resource
consumption observations, onemust be assured that the workloads used in evaluation
experiments are representative of the target deployment environment.

There are mainly two approaches for evaluating resource consumption: black-box
testing and white-box testing. The black-box testing is fairly simplistic since one
measures the resource consumption of the evaluated security mechanism as resource
consumption of a single entity that operates in a given environment (e.g., the resource
consumption of the process of a host-based IDS in an operating system). Although
practical, this approach does not provide insight into the resource consumption of
the individual components of the security mechanism under test. Such insight is
important for optimizing the configuration of the mechanism. To the contrary, the
white-box testing usually assumes the use of amodel that decomposes themechanism
under test; that is, it abstracts individual mechanism components and estimates the
respective resource consumption. Dreger et al. (2008) construct an IDS model that
can estimate CPU and memory consumption of an IDS with a relative error of 3.5%.
Maybe the greatest benefit of the model-based white-box testing approach is that
it can be used to predict resource consumption for varying workloads. The model
of Dreger et al. (2008) assumes orthogonal IDS decomposition; that is, it does not
model the relations between individual IDS components. Although it would be of
great scientific interest to devise a model of a security mechanism that supports
inter-component relations, it would require extensive modeling due to the great
architectural complexity of modern mechanisms. Alternatively, one may opt for
instrumentation of the code of the evaluated security mechanism, making it possible
to capture the resource demands of the individual mechanism components. However,
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this approachmight be unfeasible in case themechanismunder test is not open-source
or if it has a complex codebase.

18.2.3.3 Performance Overhead

Performance overhead is evaluated by using workloads that do not exhibit extreme
behavior in terms of intensity but are extreme in terms of the exercised set of
hardware resources; that is, depending on the evaluated security mechanism, an
overhead evaluation experiment may consist of five independent experiments, where
in each experiment, one executes a task whose workload is CPU-intensive, memory-
intensive, disk I/O-intensive, network-intensive, or mixed. We provided an overview
of such tasks in Section 18.2.1. The execution of these tasks is performed twice,
once with the mechanism under test being inactive and once with it being active.
The differences between the measured task execution times reveal the performance
overhead caused by the operation of the mechanism.

18.2.3.4 Capacity

Workload processing capacity is evaluated by using workloads that exhibit extreme
behavior in terms of intensity; that is, their intensity increases over time. The goal
is to identify a specific workload intensity after which the workload processing
performance of the evaluated security mechanism degrades. Similar to resource
consumption, capacity may be evaluated using a black-box or a white-box testing
approach. With white-box testing, typically multiple live tests that target specific
components of the evaluated security mechanism are used. Hall and Wiley (2002)
propose a methodology consisting of individual tests for measuring the packet flow,
the packet capture, the state tracking, and the alert reporting components of network
IDSes. Although such tests enable identification of workload processing bottlenecks
in a security mechanism, they require time-consuming experimentation.

In addition to investigating the individual properties of security mechanisms
listed in Table 18.3, security researchers are often interested in evaluating trade-offs
between these properties. For instance, Hassanzadeh and Stoleru (2011) propose an
IDS for resource-constrained wireless networks with a focus on achieving an optimal
trade-off between network performance, power consumption, and attack detection
effectiveness. Also, Doddapaneni et al. (2012) analyze the trade-off between the
attack detection efficiency and the energy consumption of security mechanisms for
wireless networks. Due to the increasing complexity and the enhanced detection
abilities of modern security mechanisms, the set of requirements considered to be
crucial for an effective mechanism operation (e.g., low resource consumption, low
performance overhead) is also growing. Thus, simple measurement methodologies,
such as the evaluation of a single mechanism property in isolation, are normally
insufficient. We observe that currently many research efforts, such as the ones that
we previously mentioned, are focusing on evaluating relationships between a small
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set of properties. This trend is justified given the various evaluation requirements
and the great number of (often insurmountable) challenges to satisfy them.

18.3 Concluding Remarks

There are three inter-related points in the planning of every evaluation study: (1) goals
of the study; (2) existing approaches to realize the set goals (i.e., approaches for
generating workloads and for measuring performance metrics, see Section 18.2);
and (3) requirements that need to be met. Under the goals of an evaluation study,
we understand the properties of a security mechanism that one aims to evaluate.
Besides the desired extensiveness of an evaluation study, the selection of mechanism
properties for evaluation is normally done by considering the design objectives and
the target deployment environments of the mechanisms under test.

We now discuss the requirements that have to be met for the different approaches
for evaluating security mechanisms discussed in Section 18.2.We emphasize that the
ability of an evaluator to satisfy the requirements that we present significantly affects
both the planning and the execution of an evaluation experiment. We systematize
requirements for evaluating security mechanisms as follows:

• Availability of required resources, mainly related to the generation or adaptation
of workloads. There are three major types of resources:

– Financial resources: For instance, the financial costs of building a testbed
that scales to realistic production environments are typically significant (Sec-
tion 18.2.1.6);

– Time resources: For instance, when an exploit database is manually assembled,
the attack script collection process and the adaptation of collected attack scripts
to exploit vulnerabilities of the target victim environment may be very time-
consuming (Section 18.2.1.3); and

– Human resources: For instance, the amount of human resources that one has
available for labeling attacks in traces is a key deciding factor whether the
traces can be labeled in a time-efficient manner (Section 18.2.1.5).

• Access to confidential data: This requirement applies when real-world production
traces are used. Organizations are often unwilling to share operational traces with
security researchers, or with the public in general, because of privacy concerns
and legal issues (Section 18.2.1.5).

• Availability of knowledge about:

– The architecture and inner working mechanisms of the security mechanism un-
der test: For instance, when the IDS property resistance to evasion techniques
is evaluated, the decision about which evasion techniques should be applied
is based on knowledge of the workload processing mechanism of the tested
IDS and of the decision-making process of the IDS for labeling an activity as
benign or malicious (Section 18.2.3.1);
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– The characteristics of the employedworkloads: For instance, information about
the attacks used as malicious workloads (e.g., time of execution of the at-
tacks) must be known in order to calculate any security-related metric (Sec-
tion 18.2.2); and

– The implications of different behavior exhibited by the security mechanism
under test: For instance, the cost of the IDS missing an attack must be known
in order to calculate the expected cost metric (Section 18.2.2).

The requirements mentioned above often cannot be fully satisfied. This is under-
standable given the big investment of resources that typically needs to be made. We
observed that in case of limited resources, sacrifices are often made in:

• The representativeness or scale of the employed workloads: An example is the
typically low number of attack scripts used in evaluation studies (Section 18.2.1.3)
and

• The number of evaluated properties of security mechanisms (Section 18.2.3).

Trade-offs made between the quality of evaluations and the invested resources
should be clearly stated when reporting results from evaluation studies so that the
results can be interpreted in a fair and accurate manner. We emphasize that robust
techniques for evaluating security mechanisms are essential not only to evaluate
specific mechanisms but also as a driver of innovation in the field of computer
security by enabling the identification of issues and the improvement of existing
security mechanisms.
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