
Chapter 17
Resource Demand Estimation

Simon Spinner and Samuel Kounev

As discussed in Chapter 7, resource demands, also referred to as service demands,
play a key role in operational analysis and queueing theory. Most generally, the re-
source demand or service demand of a unit of work (e.g., request, job, or transaction)
at a given resource in a system refers to the average time the respective unit of work
spends obtaining service from the resource over all visits to the latter, excluding
any waiting times (cf. Chapter 7, Section 7.1.2). Resource demands are normally
quantified based on measurements taken on the system under consideration; how-
ever, the accurate quantification of resource demands poses many challenges. The
resource demand for processing a request in a computing system is influenced by
different factors, for example: (1) the application logic, which specifies the sequence
of instructions to process a request; (2) the hardware platform, which determines
how fast individual instructions are executed; and (3) platform layers (hypervisor,
operating system, containers, or middleware systems), which may introduce addi-
tional processing overhead. While the direct measurement of resource demands is
feasible in some systems, it requires an extensive instrumentation of the application,
and it typically introduces significant overheads that may distort measurements. For
instance, performance profiling tools (cf. Section 6.3 in Chapter 6) can be used to
obtain execution times of individual application functions when processing a re-
quest. However, the resulting execution times are not broken down into processing
times at individual resources, and profiling tools typically introduce high overheads,
influencing the system performance.

In this chapter, we survey, systematize, and evaluate different approaches to
the statistical estimation of resource demands based on easy to measure system-
level and application-level metrics. We consider resource demands in the context of
computing systems; however, the methods we present are also applicable to other
types of systems. We focus on generic methods to approximate resource demands
without relying on dedicated instrumentation of the application. The goal is to
estimate the resource demands based on indirect measurements (cf. Section 6.1 in
Chapter 6) derived from commonly available metrics (e.g., end-to-end response time
or resource utilization).
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The methods we consider face the following challenges:

• The value of a resource demand is platform-specific (i.e., only valid for a spe-
cific combination of application, operating system, hardware platform, etc.). The
hardware platform determines how fast a piece of code executes in general. Fur-
thermore, each platform layer on top (e.g., hypervisor, operating system, and
middleware systems) may add additional overheads, influencing the resource de-
mands of an application.

• Applications often serve a mix of different types of requests (e.g., read or write
transactions), which also differ in their resource demands. For resource man-
agement purposes, it is beneficial to be able to distinguish between different
types of requests. Quantifying resource demands separately for each type of re-
quest (i.e., workload class) often poses technical challenges due to the lack of
fine-granular monitoring data.

• Modern operating systems can provide only aggregate resource usage statistics
on a per-process level. Many applications, especially the ones running in data
centers, serve different requests with one or more operating system processes
(e.g., HTTP web servers). The operating system is unaware of the requests served
by an application and therefore cannot attribute the resource usage to individual
requests.

• Many applications allow only the collection of time-aggregated request statistics
(e.g., throughput or response time) while they are serving production workloads.
A tracing of individual requests is often considered too expensive for a production
system, as it may influence the application performance negatively.

• Resource demands may change over time due to platform reconfigurations
(e.g., operating system updates) or dynamic changes in the application state
(e.g., increasing database size). Therefore, resource demands need to be updated
continuously at system run time based on up-to-date measurement data.

In the rest of this chapter, we survey the state of the art in resource demand
estimation and provide a systematization of existing estimation methods discussing
their pros and cons with respect to how well they deal with the above challenges.
The goal of the systematization is to help performance engineers select an estimation
method that best fits their specific requirements. We first survey existing estimation
methods and describe their modeling assumptions and their underlying statistical
techniques. Then, we introduce three dimensions for systematization: (1) input pa-
rameters, (2) output metrics, and (3) robustness to anomalies in the input data. For
each dimension, we first describe its features and then categorize the estimation
methods accordingly. In addition to the systematization, we compare and evaluate
the different estimation methods in terms of their accuracy and execution time. The
presented systematization and comparison of estimation methods are based on Spin-
ner et al. (2015) and Spinner (2017). Finally, we briefly discuss a recent approach to
resource demand estimation that relies onmultiple statistical techniques for improved
robustness and uses a cross-validation scheme to dynamically select the technique
that performs best for the concrete scenario (Spinner, 2017).
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In the following, we use a consistent notation for the description of the dif-
ferent approaches to resource demand estimation. We denote resources with the
index i = 1 . . . I and workload classes with the index c = 1 . . .C. The variables used
in the description are listed in Table 17.1, which are consistent with the notation
we used in Chapter 7 (Section 7.2.2) in the context of queueing networks. As usual,
we assume that the considered system is in operational equilibrium (i.e., over a suf-
ficiently long period of time, the number of request completions is approximately
equal to the number of request arrivals). As a result, the arrival rate λc is assumed
to be equal to the throughput Xc . Furthermore, as mentioned earlier, we use the term
resource demand as a synonym for service demand, and for simplicity of exposition,
we assume Vi,c = 1; that is, no distinction is made between service demand and
service time.

Table 17.1: Notation used in resource demand estimation

Symbol Meaning
Di,c Average resource demand of requests of workload class c at resource i
Ui,c Average utilization of resource i due to requests of workload class c
Ui Average total utilization of resource i
λi,c Average arrival rate of workload class c at resource i
Xi,c Average throughput of workload class c at resource i
Ri,c Average response time of workload class c at resource i
Rc Average end-to-end response time of workload class c
Ai,c Average queue length of requests of workload class c seen upon arrival

at resource i (excluding the arriving job)
Vi,c Average number of visits of a request of workload class c at resource i
I Total number of resources
C Total number of workload classes

17.1 Estimation Methods

In this section, we describe the most common methods for resource demand es-
timation that exist in the literature. Table 17.2 gives an overview of the different
methods.
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Table 17.2: Overview of estimation methods categorized according to the
underlying statistical techniques

Technique Variant References

Approximation with response times
Urgaonkar et al. (2007)
Nou et al. (2009)
Brosig et al. (2009)

Service demand law Lazowska et al. (1984)
Brosig et al. (2009)

Linear regression Least squares Bard and Shatzoff (1978)
Rolia and Vetland (1995)
Pacifici et al. (2008)
Kraft et al. (2009); Pérez,
Pacheco-Sanchez, et al. (2013)

Least absolute differences Stewart et al. (2007); Q. Zhang
et al. (2007)

Least trimmed squares Casale et al. (2008); Casale et al.
(2007)

Kalman filter Zheng et al. (2008)
Kumar, Tantawi, et al. (2009)
Wang, Huang, Qin, et al. (2012);
Wang, Huang, Song, et al. (2011)

Optimization Non-linear constrained
optimization

L. Zhang et al. (2002)
Menascé (2008)

Quadratic programming Liu et al. (2006); Wynter et al.
(2004)
Kumar, L. Zhang, et al. (2009)

Machine learning Clusterwise linear regression Cremonesi, Dhyani, et al. (2010)

Independent component analysis Sharma et al. (2008)

Support vector machine Kalbasi, Krishnamurthy, Rolia,
and Richter (2011)

Pattern matching Cremonesi and Sansottera (2012,
2014)

Maximum likelihood estimation Kraft et al. (2009)
Pérez, Pacheco-Sanchez, et al.
(2013)

Gibbs sampling Sutton and Jordan (2011)
Wang and Casale (2013)

Demand estimation with confidence (DEC) Kalbasi, Krishnamurthy, Rolia,
and Dawson (2012); Rolia,
Kalbasi, et al. (2010)
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17.1.1 Approximation with Response Times

Assuming a single queue and insignificant queueing delays compared to the resource
demands, we can approximate the resource demands with the observed response
times. However, this trivial approximation only works with systems under light load
where a single resource dominates the observed response time. This approximation
is used by Nou et al. (2009), Urgaonkar et al. (2007), and Brosig et al. (2009).

17.1.2 Service Demand Law

The service demand law (cf. Chapter 7, Sections 7.1.2 and 7.2.3) is an operational law
that can be used to directly calculate the demand Di,c given the utilization Ui,c and
the throughput Xi,c . However, modern operating systems can report the utilization
only on a per-process level. Therefore, we usually cannot observe the per-class
utilization Ui,c directly, given that single processes may serve requests of different
workload classes. Given a system serving requests of multiple workload classes,
Lazowska et al. (1984) and Menascé et al. (2004) recommend to use additional per-
class metrics if available (e.g., in the operating system) to apportion the aggregate
utilization Ui of a resource between workload classes. Brosig et al. (2009) use
an approximate apportioning scheme based on the assumption that the observed
response times are proportional to the resource demands.

17.1.3 Linear Regression

Given a linear model Y = Xβ + ε , where β (cf. Chapter 2, Section 2.7.1) is a vector
of resource demands Di,r and Y, X contain observations of performance metrics
of a system, we can use linear regression to estimate the resource demands. Two
alternative formulations of such a linear model have been proposed in the literature:

• The utilization law (cf. Chapter 7, Sections 7.1.1 and 7.2.3) requires observations
of the aggregate utilization Ui and the throughputs λi,c . This is a classical model
used by different authors (Bard and Shatzoff, 1978; Casale et al., 2007; Kraft
et al., 2009; Pacifici et al., 2008; Rolia and Vetland, 1995; Stewart et al., 2007;
Q. Zhang et al., 2007). Some of the authors include a constant term Ui,0 in the
model in order to estimate the utilization caused by background work.

• Kraft et al. (2009) and Pérez, Pacheco-Sanchez, et al. (2013) propose a linear
model based on amulti-class version of the response time equation Ri = Di (1+Ai)
requiring observations of the queue length Ai seen by a newly arriving job and
its response time Ri . In their initial work, Kraft et al. (2009) assume a FCFS
scheduling strategy; Pérez, Pacheco-Sanchez, et al. (2013) generalize the model
to PS queueing stations.
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Bard and Shatzoff (1978), Rolia and Vetland (1995), Pacifici et al. (2008), and
Kraft et al. (2009) use nonnegative least squares regression for solving the lin-
ear model. Other regression techniques, such as least absolute differences regres-
sion (Stewart et al., 2007; Q. Zhang et al., 2007) or least trimmed squares (Casale et
al., 2008; Casale et al., 2007), were proposed to increase the robustness of regression-
based estimation techniques to multi-collinearities, outliers, or abrupt changes in the
demand values.

17.1.4 Kalman Filter

The resource demands of a system may vary over time, for example, due to changing
system states or changing user behavior. These variations may be abrupt or contin-
uous. In order to track time-varying resource demands, Zheng et al. (2008), Kumar,
Tantawi, et al. (2009), and Wang, Huang, Qin, et al. (2012) use a Kalman filter
(cf. Chapter 2, Section 2.7.2). The authors assume a dynamic system where the state
vector x consists of the hidden resource demands Di,c that need to be estimated.
Given that no prior knowledge about the dynamic behavior of the system state exists,
they assume a constant state model; that is, Equation (2.49) on page 40 is reduced to
xk = xk−1 + wk .

The observation model z = h(x) requires a functional description of the relation-
ship between the observations z and the system state x. Wang, Huang, Qin, et al.
(2012) use the observed utilization Ui as vector z and define h(x) based on the uti-
lization law (cf. Equation 7.38 on page 167). Given the linear model, a conventional
Kalman filter is sufficient. Zheng et al. (2008) and Kumar, Tantawi, et al. (2009) use
an observation vector consisting of the observed response time Ri,c of each workload
class and the utilization Ui of each resource. The function h(x) is defined based on
the solution of a M/M/1 queue (cf. Equation 7.43 on page 168) and the utilization
law. Due to the non-linear nature, it requires an extended Kalman filter design—see
Equation (2.51) on page 40.

17.1.5 Optimization

Given a general queueing network, we can formulate an optimization problem to
search for values of the resource demands so that the differences between per-
formance metrics observed on the real system and the ones calculated using the
queueing network are minimized. The main challenge is the solution of the queue-
ing network. Depending on the structure of the queueing network, its solution may
be computationally expensive and the optimization algorithm may need to evaluate
the queueing network with many different resource demand values in order to find
an optimal solution. Existing approaches (Kumar, L. Zhang, et al., 2009; Liu et al.,
2006; Menascé, 2008;Wynter et al., 2004) assume a product-form queueing network
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with an open workload. Then, the equations in Chapter 7, Section 7.2.4, can be used
to calculate the end-to-end response times.

Given N observations of the end-to-end response time R̃c and the utilization Ũi ,
Liu et al. (2006) propose the following objective function:

min
D

N∑
n=1

*
,

C∑
c=1

pc
(
Rc (D) − R̃(n)

c

)2
+

I∑
i=1

(
Ui (D) − Ũ (n)

i

)2+
-
. (17.1)

The function Rc (D) is based on the solution of a M/M/1 queue—see Equation (7.43)
on page 168—and Ui (D) on the utilization law.

The factor pc introduces a weighting according to the arrival rates of workload
classes pc = λc/

∑C
d=1 λd . The resulting optimization problem can be solved using

quadratic programming techniques.
Kumar, L. Zhang, et al. (2009) extend this optimization approach to estimate

load-dependent resource demands. Their approach requires prior knowledge of the
type of function (e.g., polynomial, exponential, or logarithmic) that best describes
the relation between arriving workloads and resource demands.

Menascé (2008) formulates an alternative optimization problem that depends only
on response time and arrival rate measurements:

min
D

C∑
c=1

(
Rc (D) − R̃c

)2
with Rc (D) =

I∑
i=1

Di,c

1 −
∑C

d=1 λi,dDi,d

(17.2)

subject to Di,c ≥ 0 ∀i, c and
C∑
c=1

λi,cDi,c < 1 ∀i.

In contrast to Liu et al. (2006), this formulation is based on a single sample of the
observed response times. Menascé (2008) proposes to repeat the optimization for
each new sample using the previous resource demand estimate as the initial point. To
solve this optimization problem we depend on a non-linear constrained optimization
algorithm.

17.1.6 Machine Learning

Cremonesi, Dhyani, et al. (2010) use clusterwise regression techniques to improve the
robustness to discontinuities in the resource demands due to system configuration
changes. The observations are clustered into groups where the resource demands
can be assumed constant, and the demands are then estimated for each cluster
separately. InCremonesi and Sansottera (2012) andCremonesi and Sansottera (2014)
an algorithm is proposed based on a combination of change-point regressionmethods
and pattern matching to address the same challenge.

Independent Component Analysis (ICA) is a method to solve the blind source
separation problem (i.e., to estimate the individual signals from a set of aggregate
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measurements). Sharma et al. (2008) describe a way to use ICA for resource de-
mand estimation using a linear model based on the utilization law. ICA can provide
estimates solely based on utilization measurements when the following constraints
hold (Sharma et al., 2008): (1) the number of workload classes is limited by the
number of observed resources, (2) the arrival rate measurements are statistically
independent, and (3) the inter-arrival times have a non-Gaussian distribution while
the measurement noise is assumed to be zero-mean Gaussian. ICA not only pro-
vides estimates of resource demands, but also automatically categorizes requests
into workload classes.

Kalbasi, Krishnamurthy, Rolia, and Richter (2011) consider the use of Support
Vector Machines (SVM) (Smola and Schölkopf, 2004) for estimating resource de-
mands. They compare it with results from LSQ and LAD regression and show that
it can provide better resource demand estimates depending on the characteristics of
the workload.

17.1.7 Maximum Likelihood Estimation (MLE)

Kraft et al. (2009) and Pérez, Pacheco-Sanchez, et al. (2013) use Maximum Likeli-
hood Estimation (MLE) (cf. Chapter 2, Section 2.7.3) to estimate resource demands
based on observed response times and queue lengths seen upon arrival of requests.
Given N response time measurements R1

i , . . . , RN
i of individual requests, the esti-

mated resource demands Di,1, . . . , Di,C are the values that maximize the likelihood
function L(Di,1, . . . , Di,C ) defined as follows:

maxL(Di,1, . . . , Di,C ) =
N∑
k=1

log f (Rk
i | Di,1, . . . , Di,C ). (17.3)

The density function f is obtained by constructing a phase-type distribution. The
phase-type distribution describes the time to absorption in aMarkov chain represent-
ing the current state of the system. Observations of the queue lengths are necessary
in order to be able to construct the corresponding phase-type distribution. Kraft et al.
(2009) describe the likelihood function for queueing stations with FCFS scheduling.
Pérez, Pacheco-Sanchez, et al. (2013) generalize this approach to PS scheduling.

17.1.8 Gibbs Sampling

Sutton and Jordan (2011) and Wang and Casale (2013) both propose approaches
to resource demand estimation based on Bayesian inference techniques (cf. Sec-
tion 2.7.4). Sutton and Jordan (2011) assume an open, single-class queueing net-
work. They develop a deterministic mathematical model allowing for the calculation
of service times and waiting times of individual requests given the arrival times,
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departure times, and the path of queues of all requests in a queueing network. They
assume that this information can be only observed for a subset of requests. Therefore,
they propose a Gibbs sampler to sample the missing departure times of requests that
were not observed. Given the posterior distribution of the departure times of all
requests, they then derive the expected resource demands at the individual queues.

Wang and Casale (2013) assume a multi-class, closed queueing network that
fulfills the BCMP theorem (cf. Chapter 7, Section 7.2.2). Under this assumption,
the probability distribution of the queue lengths for given resource demands is well-
known (see Equation 7.36 on page 166). They assume the availability of queue-length
samples from a real system and construct a Gibbs sampler for the posterior distri-
bution f (D|A), where D is a vector of resource demands Di,c and A is a vector of
observed queue lengths Ai,c . They propose an approximation for the conditionals
of the posterior distribution as required by the Gibbs sampling algorithm. A main
challenge is the calculation of the normalization constant G for the steady-state prob-
abilities (cf. Equation 7.36 on page 166), which is nontrivial for a closed queueing
network. Wang and Casale (2013) propose a Taylor expansion of G and apply an
algorithm based on mean-value analysis (MVA) to determine its value.

17.1.9 Other Approaches

Rolia, Kalbasi, et al. (2010) and Kalbasi, Krishnamurthy, Rolia, and Dawson (2012)
propose a technique called Demand Estimation with Confidence (DEC) for estimat-
ing the aggregate resource demand of a given workload mix. This technique assumes
that a set of benchmarks is available for the system under study. Each benchmark
utilizes a subset of the different functions of an application. DEC expects the mea-
sured demands of the individual benchmarks as input and then derives the aggregate
resource demand of a given workload mix as a linear combination of the demands
of the individual benchmarks. DEC is able to provide confidence intervals of the ag-
gregate resource demand (Kalbasi, Krishnamurthy, Rolia, and Dawson, 2012; Rolia,
Kalbasi, et al., 2010).

17.2 Input Parameters

Methods for resource demand estimation often differ in terms of the set of input data
they require. We do not consider parameters of the underlying statistical techniques
(e.g., parameters controlling an optimization algorithm) because they normally are
specific to the concrete implementation of an estimation method.

Figure 17.1 depicts the main types of input parameters for demand estimation
algorithms. The parameters are categorized into model parameters and measure-
ments. In general, parameters of both types are required. Model parameters capture
information about the performance model for which we estimate resource demands.



374 17 Resource Demand Estimation

Input Parameters

Measurements

Aggregate

. . .Utilization

Per-request

. . .Response Time

Model Parameters

Resources

Number
of Servers

Scheduling
Strategy

Workload

Think
times

Known Resource
Demands

Workload
Classes

Fig. 17.1: Types of input parameters

Measurements consist of samples of relevant performance metrics obtained from a
running system, either a live production system or a test system.

Before estimating resource demands, it is necessary to decide on certain modeling
assumptions. As a first step, resources and workload classes need to be identified.
This is typically done as part of theworkload characterization activitywhenmodeling
a system. It is important to note that the observability of performance metrics may
influence the selection of resources and workload classes for the system under study.
In order to be able to distinguish between individual resources or workload classes,
observations of certain per-resource or per-class performance metrics are necessary.
At a minimum, information about the number of workload classes and the resources
for which the demands should be determined is required as input to the estimation.
Depending on the estimation method, more detailed information on resources and
workload classes may be expected as input (e.g., scheduling strategies, number of
servers, or think times).

Measurements can be further grouped on a per-request or aggregate basis. Com-
mon per-request measurements used in the literature include response times, arrival
rates, visit counts, and queue lengths seen upon arrival. Aggregate measurements
can be further distinguished in class-aggregate and time-aggregate measurements.
Class-aggregate measurements are collected as totals over all workload classes pro-
cessed at a resource. For instance, utilization is usually reported as an aggregate value
because the operating system is agnostic of the application internal logic and is not
aware of different request types in the application. Time-aggregate measurements
(e.g., average response times or average throughput) are aggregated over a sampling
period. The sampling period can be evenly or unevenly spaced.

Categorization of Existing Methods

We consider the methods for resource demand estimation listed in Table 17.2 and
examine their input parameters. Table 17.3 shows an overview of the input param-
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Table 17.3: Input parameters of estimation methods

Estimation method Measurements Parameters
Ui Rc Xc /λc Ai,c Vi,c Di,c Z P

Approximation with response times
Urgaonkar et al. (2007) 71 7
Nou et al. (2009) 7 7
Brosig et al. (2009) 7

Service demand law
Lazowska et al. (1984) 7 72

Brosig et al. (2009) 7 7 7

Linear regression
Bard and Shatzoff (1978)
Rolia and Vetland (1995)
Pacifici et al. (2008) 7 7
Q. Zhang et al. (2007)
Stewart et al. (2007) 7 7
Kraft et al. (2009); Pérez, Casale, et al. (2015) 7 7 7
Casale et al. (2008); Casale et al. (2007) 7 7

Kalman filter
Zheng et al. (2008) 7 7 7
Kumar, Tantawi, et al. (2009) 7 7 7
Wang, Huang, Qin, et al. (2012) 7 7

Optimization
L. Zhang et al. (2002) 7 7 7 (7)5 7
Liu et al. (2006); Wynter et al. (2004) 7 7 7 7 7

Menascé (2008) 7 7 73

Kumar, L. Zhang, et al. (2009) 7 7 7 7

Machine learning
Cremonesi, Dhyani, et al. (2010) 7 7
Sharma et al. (2008) 7
Kalbasi, Krishnamurthy, Rolia, and Richter (2011) 7 7
Cremonesi and Sansottera (2012, 2014) 7 7

Maximum likelihood estimation
Kraft et al. (2009) 74 74 7 7

Pérez, Casale, et al. (2015) 74 74 7 7

Gibbs sampling
Sutton and Jordan (2011) 74 74 7

Wang and Casale (2013) 74 7

Kalbasi, Krishnamurthy, Rolia, and Dawson
(2012); Rolia, Kalbasi, et al. (2010)

7 7

1 Response time per resource
2 Measured with accounting monitor—system overhead not included
3 A selected set of resource demands is known a priori
4 Non-aggregated measurements of individual requests
5 Requires coefficient of variation of resource demands in case of FCFS scheduling
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eters of each estimation method (utilization Ui , response time Rc , throughput Xc ,
arrival rate λc , queue length Ai,c , visit counts Vi,c , resource demands Di,c , think
time Z , and scheduling policy P). Parameters common to all estimation methods,
such as the number of workload classes and the number of resources, are not in-
cluded in this table. The required input parameters vary widely between different
estimation methods. Depending on the system under study and on the available per-
formance metrics, one can choose a suitable estimation method from Table 17.3.
Furthermore, approaches based on optimization can be adapted by incorporating
additional constraints into the mathematical model capturing the knowledge about
the system under study. For example, the optimization approach by Menascé (2008)
allows one to specify additional known resource demand values as input parameters.
These a priori resource demandsmay be obtained from the results of other estimation
methods or from direct measurements.

Another approach that requires resource demand data is described by Lazowska et
al. (1984, Chapter 12)who assume that the resource demands are approximated based
on measurements provided by an accounting monitor; however, such an accounting
monitor does not include the system overhead caused by each workload class. The
system overhead is defined as the work done by the operating system for processing a
request. Lazowska et al. (1984) describe a way to distribute unattributed computing
time among the different workload classes, providing more realistic estimates of the
actual resource demands.

Approaches based on response time measurements, such as those proposed by
L. Zhang et al. (2002), Liu et al. (2006), Wynter et al. (2004), and Kumar, L. Zhang,
et al. (2009), require information about the scheduling strategies of the involved
resources abstracted as queueing stations. This information is used to construct the
correct problem definition for the optimization technique. The estimation methods
proposed by Kraft et al. (2009), Pérez, Pacheco-Sanchez, et al. (2013), and Wang
and Casale (2013) assume a closed queueing network. Therefore, they also require
the average think time and the number of users as input.

In addition to requiring a set of specific input parameters, some approaches also
provide a rule of thumb regarding the number of required measurement samples.
Approaches based on linear regression (Kraft et al., 2009; Pacifici et al., 2008; Rolia
and Vetland, 1995) need at least K + 1 linear independent equations to estimate
K resource demands. When using robust regression methods, significantly more
measurements might be necessary (Casale et al., 2008; Casale et al., 2007). Kumar,
L. Zhang, et al. (2009) provide a formula to calculate the number of measurements
required by their optimization-based approach. The formula provides only a mini-
mum bound on the number of measurements and more measurements are normally
required to obtain good estimates (Stewart et al., 2007).
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17.3 Output Metrics

Approaches to resource demand estimation are typically used to determine the mean
resource demand of requests of a given workload class at a given resource. However,
in many situations, the estimated mean value may not be sufficient. Often, more
information about the confidence of estimates and the distribution of the resource
demands is required. The set of output metrics an estimation method provides can
influence the decision to adopt a specific method.

Generally, resource demands cannot be assumed to be deterministic (Rolia,
Kalbasi, et al., 2010); for example, they may depend on the data processed by
an application or on the current state of the system (Rolia and Vetland, 1995). There-
fore, resource demands are described as random variables. Estimates of the mean
resource demand should be provided by every estimation method. If the distribution
of the resource demands is not known beforehand, estimates of higher moments of
the resource demands may be useful to determine the shape of their distribution.

Wedistinguish between point and interval estimators of the real resource demands.
Generally, confidence intervals would be preferable; however, it is often a challenge
to ensure that the statistical assumptions underlying a confidence interval calculation
hold for a system under study (e.g., distribution of the regression errors).

In certain scenarios, for example, if DVFS or hyperthreading techniques are
used (Kumar, L. Zhang, et al., 2009), the resource demands are load-dependent. In
such cases, the resource demands are not constant; they are rather a function that
may depend, for example, on the arrival rates of the workload classes (Kumar, L.
Zhang, et al., 2009).

Categorization of Existing Methods

Table 17.4 provides an overview of the output metrics of the considered estima-
tion methods. Point estimates of the mean resource demand are provided by all
approaches. Confidence intervals can be determined for linear regression using stan-
dard statistical techniques as mentioned by Rolia and Vetland (1995) and Kraft et al.
(2009). These techniques are based on the Central Limit Theorem (cf. Section 2.5 in
Chapter 2), assuming an error term with a Normal distribution. Resource demands
are typically not deterministic, violating the assumptions underlying linear regres-
sion. The influence of the distribution of the resource demands on the accuracy of
the confidence intervals is not evaluated for any of the approaches based on linear
regression. DEC (Kalbasi, Krishnamurthy, Rolia, and Dawson, 2012; Rolia, Kalbasi,
et al., 2010) is the only approach for which the confidence intervals have been eval-
uated in the literature. The MLE approach (Kraft et al., 2009) and the optimization
approach described by L. Zhang et al. (2002) are capable of providing estimates of
higher moments. This additional information comes at the cost of a higher amount
of required measurements.
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Table 17.4: Output metrics of estimation methods

Estimation method Resource demands
Point Confidence Higher Load-

estimates interval moments dependent
Response time approximation
Urgaonkar et al. (2007) 7
Nou et al. (2009) 7
Brosig et al. (2009) 7

Service demand law
Lazowska et al. (1984) 7
Brosig et al. (2009) 7

Linear regression
Bard and Shatzoff (1978)
Rolia and Vetland (1995),
Pacifici et al. (2008) 7 72

Q. Zhang et al. (2007) 7 72

Kraft et al. (2009); Pérez, Casale, et al. (2015);
Pérez, Pacheco-Sanchez, et al. (2013)

7 72

Casale et al. (2008); Casale et al. (2007) 7 72

Kalman filter
Zheng et al. (2008) 7
Kumar, Tantawi, et al. (2009) 7
Wang, Huang, Qin, et al. (2012) 7

Optimization
L. Zhang et al. (2002) 7 71

Liu et al. (2006); Wynter et al. (2004) 7
Menascé (2008) 7
Kumar, L. Zhang, et al. (2009) 7 7

Machine learning
Cremonesi, Dhyani, et al. (2010) 7
Sharma et al. (2008) 7
Kalbasi, Krishnamurthy, Rolia, and Richter
(2011)

7

Cremonesi and Sansottera (2012, 2014) 7

Maximum likelihood estimation
Kraft et al. (2009) 7 7
Pérez, Casale, et al. (2015) 7 7

Gibbs sampling
Sutton and Jordan (2011) 7
Wang and Casale (2013) 7

Kalbasi, Krishnamurthy, Rolia, and Dawson
(2012); Rolia, Kalbasi, et al. (2010) (DEC)

7 7

1 Only feasible if a priori knowledge of the resource demand variance is available.
2 The accuracy of the confidence intervals is not evaluated.
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All of the estimation methods in Table 17.2 can estimate load-independent mean
resource demands. Additionally, the enhanced inferencing approach (Kumar, L.
Zhang, et al., 2009) also supports the estimation of load-dependent resource de-
mands, assuming a given type of function.

17.4 Robustness

Usually, it is not possible to control every aspect of a system while collecting
measurements. This can lead to anomalous behavior in the measurements. Casale
et al. (2007), Casale et al. (2008), and Pacifici et al. (2008) identified the following
issues with real measurement data:

• presence of outliers,
• background noise,
• non-stationary resource demands,
• collinear workload, and
• insignificant flows.

Background activities can have two effects on measurements: the presence of
outliers and background noise. Background noise is created by secondary activi-
ties that utilize a resource only lightly over a long period of time. Outliers result
from secondary activities that stress a resource at high utilization levels for a short
period of time. Outliers can have a significant impact on the parameter estimation
resulting in biased estimates (Casale et al., 2007). Different strategies are possible
to cope with outliers. It is possible to use special filtering techniques in an upstream
processing step or to use parameter estimation techniques that are inherently robust
to outliers. However, tails in measurement data from real systems might belong to
bursts (e.g., resulting from rare but computationally complex requests). The trade-off
decision as to when an observation is to be considered an outlier has to be made on
a case-by-case basis, taking into account the characteristics of the specific scenario
and application.

The resource demands of a system may be non-stationary over time (i.e., not only
the arrival process may change over time, but also the resource demands, which,
for example, can be described by a Mt/Mt/1 queue). Different types of changes are
observed in production systems. Discontinuous changes in the resource demands can
be caused by software and hardware reconfigurations, for example, the installation
of an operating system update (Casale et al., 2007). Continuous changes in the
resource demands may happen over different time scales. Short-term variations
can often be observed in cloud computing environments where different workloads
experience mutual influences due to the underlying shared infrastructure. Changes in
the application state (e.g., database size) or the user behavior (e.g., increased number
of items in a shopping cart in an online shop during Christmas season) may result in
long-term trends and seasonal patterns (over days, weeks, and months). When using
the estimated resource demands to forecast the required resources of an application
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over a longer time period, these non-stationary effects need to be considered in order
to obtain accurate predictions. In order to detect such trends and seasonal patterns,
it is possible to apply forecasting techniques on a time series resulting from the
repeated execution of one considered estimation method over a certain time period.
An overview of such forecasting approaches based on time series analysis can be
found in Box et al. (2015).

Another challenge for estimation methods is the existence of collinearities in
the arrival rates of different workload classes. There are two possible reasons for
collinearities in the workload: low variation in the throughput of a workload class
or dependencies between workload classes (Pacifici et al., 2008). For example, if we
model login and logout requests each with a separate workload class, the resulting
classes would normally be correlated. The number of logins usually approximately
matches the number of logouts. Collinearities in the workload may have negative
effects on resource demand estimates. A way to avoid these problems is to detect
and combine workload classes that are correlated.

Insignificant flows are caused by workload classes with very small arrival rates
in relation to the arrival rates of the other classes. Pacifici et al. (2008) experience
numerical stability problemswith their linear regression approachwhen insignificant
flows exist. However, it is noteworthy that there might be a dependency between
insignificant flows and the length of the sampling time intervals. If the sampling
time interval is too short, the variance in arrival rates might be high.

Categorization of Existing Methods

Ordinary least-squares regression is often sensitive to outliers. Stewart et al. (2007)
come to the conclusion that least-absolute-differences regression is more robust to
outliers. Robust regression techniques, as described in Casale et al. (2007) andCasale
et al. (2008), try to detect outliers and ignore measurement samples that cannot be
explained by the regression model. Liu et al. (2006) also include an outlier detection
mechanism in their estimation method based on optimization.

In general, sliding window or data aging techniques can be applied to the input
data to improve the robustness to non-stationary resource demands (Pacifici et al.,
2008). In order to detect software and hardware configuration discontinuities, robust
and clusterwise regression approaches are proposed by Casale et al. (2007), Casale et
al. (2008), and Cremonesi, Dhyani, et al. (2010). If such discontinuities are detected,
the resource demands are estimated separately before and after the configuration
change. Approaches based on Kalman filters (Kumar, Tantawi, et al., 2009; Zheng
et al., 2008) are designed to estimate time-varying parameters. Therefore, they
automatically adapt to changes in the resource demands after a software or hardware
discontinuity. None of the considered estimation methods is able to learn long-term
trends or seasonal patterns (over days, weeks, or months).

Collinearities are one of the major issues when using linear regression (Chatterjee
and Price, 1995). A common method to cope with this issue is to check the workload
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classes for collinear dependencies before applying linear regression. If collinearities
are detected, the involved workload classes are merged into one class. This is pro-
posed by Pacifici et al. (2008) and Casale et al. (2007). The DEC approach (Rolia,
Kalbasi, et al., 2010) mitigates collinear dependencies, since it estimates the resource
demands only for mixes of workload classes.

Pacifici et al. (2008) also consider insignificant flows. They call a workload
class insignificant if the ratio between the throughput of the workload class and
the throughput of all workload classes is below a given threshold. They completely
exclude insignificantworkload classes from the regression in order to avoid numerical
instabilities.

17.5 Estimation Accuracy and Execution Time

Depending on the concrete application scenario, the presented methods for resource
demand estimation can differ significantly in terms of their accuracy and execution
time. Spinner et al. (2015) present a comprehensive experimental comparison, eval-
uating the different estimation methods in terms of their accuracy and overhead. The
aim of the evaluation is to answer the following questions:

• How do the different methods compare in terms of estimation accuracy and
execution time?

• Which factors influence the estimation accuracy of the different methods?
• How to automatically decide which set of estimation methods to apply in a given

scenario?

To address these questions, the influence of the following factors on the estimation
accuracy is evaluated: length of sampling interval, number of samples, number of
workload classes, load level, collinearity of workload classes, missing workload
classes for background activities, and presence of delays during processing at a
resource. Table 17.5 lists the estimation methods considered in the experimental
evaluation.

Table 17.5: Estimation methods considered in the experimental evaluation

Abbreviation Estimation method
SDL Service demand law (Brosig et al., 2009)
UR Utilization regression (Rolia and Vetland, 1995)
KF Kalman filter (Kumar, Tantawi, et al., 2009)
MO Menascé optimization (Menascé, 2008)
LO Liu optimization (Liu et al., 2006)
RR Response time regression (Kraft et al., 2009)
GS Gibbs sampling (Wang, Huang, Qin, et al., 2012)
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In the following, we summarize the results of the experimental comparison
by Spinner et al. (2015):

• When using estimationmethods based on time-aggregated observations (e.g., UR,
KF, MO, or LO), the length of the sampling interval is an important parameter
that needs to be adjusted to the system under study. A good sampling interval
length depends on the response times of requests and the number of requests
observed in one interval. The sampling interval should be significantly larger
than the response times of requests to avoid end effects, and it should be long
enough to be able to calculate the aggregate value based on the observations of a
significant number of requests (more than 60 requests per sampling interval has
proven to provide good results).

• Most estimation methods (except MO and LO) are negatively influenced when
reducing the experiment length to 10min (i.e., 10 samples). However, they still
yield results with acceptable accuracy (relative demand error below 8%).

• All estimationmethods are sensitive to the number of workload classes. The linear
regression method UR, which uses only utilization and throughput observations,
generally yields a degraded accuracy in scenarios with several workload classes.
Observations of the response times of requests can help to improve the estimation
accuracy significantly even in situations with a very high number of workload
classes. However, it is crucial to ensure that the modeling assumptions of the
estimation methods using response times are fulfilled as they are highly sensitive
to violated assumptions (e.g., incorrect scheduling strategies). Furthermore, in-
significant flows can impair resource demand estimation. Workload classes with
a small contribution to the total resource demand of a system should therefore be
excluded from resource demand estimation.

• When a system operates at a high utilization level (80% or higher), the estimation
methods KF, MO, LO, and GS may yield inaccurate results.

• Collinearities in throughput observations of different workload classes impair the
estimation accuracy of UR. While it correctly estimates the total resource de-
mand, the apportioning between workload classes is wrong. The other estimation
methods are much less sensitive to collinearities in throughput observations.

• Methods that rely on response time observations (e.g., MO, RR, and GS) are
more robust to missing workload classes than methods based on utilization.

• Delays due to non-captured software or hardware resources have a strong influence
on the estimation accuracy of estimation methods based on observed response
times. While some estimation methods (e.g., L. Zhang et al. (2002), Liu et al.
(2006), and Menascé (2008)) consider scenarios where multiple resources con-
tribute to the observed end-to-end response time, only Pérez, Pacheco-Sanchez,
et al. (2013) consider contention due to software resources.

• There are significant differences in the computational complexity of the different
estimation methods. In the considered datasets, the estimation takes between
under 1ms and up to 20 s depending on the estimation method. When using
resource demand estimation techniques on a production system (e.g., for online
performance and resource management), the computational effort needs to be
taken into account (especially in data centers with a large number of systems).
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In summary, the evaluation shows that using response times can improve the
accuracy of the estimated resource demands significantly compared to the traditional
approach based on the utilization law using linear regression, especially in cases with
multiple workload classes. However, estimation methods employing response time
measurements are very sensitive if assumptions of the underlying mathematical
model are violated (e.g., incorrect scheduling strategy).

17.6 Library for Resource Demand Estimation (LibReDE)

While the presented systematization and experimental comparison provide a solid
basis for selecting the right resource demand estimation method for a given scenario,
the selection is still not trivial and requires expertise on the underlying statistical
techniques and their assumptions. Also, in many cases, it may be infeasible to
determine the right method in advance, as the respective input data may only be
available at system run time and the decision would have to be made on-the-fly.
Furthermore, the system and its workload may change over time requiring a dynamic
switchover to a different estimation method.

Spinner (2017) presents an approach to resource demand estimation that relies on
multiple statistical techniques for improved robustness and uses a cross-validation
scheme to dynamically select the technique that performs best for the concrete
scenario. This simplifies the usage of resource demand estimation methods for per-
formance engineers. Furthermore, it is a crucial building block for Application
Performance Management (APM) techniques that automatically estimate resource
demands at system run time and use them for online resource management. The
approach has been implemented as an open-source tool called LibReDE.1 The tool
includes a library for resource demand estimation, providing ready-to-use imple-
mentations of eight common estimation methods.

The main idea of LibReDE is to leveragemultiple statistical techniques combined
with a feedback loop to improve the accuracy of the resource demand estimation by
iteratively: (1) adapting the estimation problem, (2) selecting suitable statistical
methods to be applied, and (3) optimizing the configuration parameters of each
method. LibReDE uses cross-validation techniques with an error metric based on
the deviation between the observed response times and utilization, on the one hand,
and the respective predicted metrics using the resource demand estimates, on the
other hand.

LibReDE appliesmultiple statistical techniques in an online setting, automatically
combining, weighting, and iteratively refining their results (in a feedback loop) to
produce as accurate estimates as possible. Further details on LibReDE and the
respective estimation approach it implements can be found in Spinner (2017).

1 http://descartes.tools/librede

http://descartes.tools/librede
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17.7 Concluding Remarks

In this chapter, we surveyed, systematized, and evaluated different approaches to the
statistical estimation of resource demands based on easy to measure system-level
and application-level metrics. The goal of the presented systematization is to help
performance engineers select an estimation method that best fits their specific re-
quirements. We first surveyed existing estimation methods and described their mod-
eling assumptions and their underlying statistical techniques. Then, we introduced
three dimensions for systematization: (1) input parameters, (2) output metrics, and
(3) robustness to anomalies in the input data. For each dimension, we first described
its features and then categorized the estimation methods accordingly. We considered
resource demands in the context of computing systems; however, the methods we
presented are also applicable to other types of systems. We focused on generic meth-
ods to determine resource demands without relying on dedicated instrumentation of
the application. The goal was to estimate the resource demands based on indirect
measurements derived from commonly available metrics (e.g., end-to-end response
time or resource utilization). We summarized the results of a comprehensive exper-
imental comparison evaluating the different estimation methods in terms of their
accuracy and overhead. The evaluation revealed that using response times can im-
prove the accuracy of the estimated resource demands significantly compared to the
traditional approach based on the utilization law using linear regression, especially
in cases with multiple workload classes. However, estimation methods employing
response time measurements are very sensitive if assumptions of the underlying
mathematical model are violated.
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