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Chapter 16
Performance Isolation

Rouven Krebs and Samuel Kounev

Cloud computing enables resource sharing at different levels of a data center infras-
tructure. Hardware and software resources in a data center can be shared based on
server virtualization, application containerization, or multi-tenant software architec-
tures.

Multi-tenancy is an approach to share one application instance among multiple
customers by providing each of them with a dedicated view. Tenants expect to be
isolated in terms of the application performance they observe; therefore, a provider’s
inability to offer performance guarantees can be a major obstacle for potential cloud
customers. A fenant is a group of users sharing the same view onto an application.
This view includes the data they access, the application configuration, the user man-
agement, application-specific functionality, and related non-functional properties.
Usually, the tenants are members of different legal entities. This comes with restric-
tions (e.g., concerning data security and privacy). In this chapter, multi-tenancy is
understood as an approach to share an application instance between multiple tenants
by providing every tenant with a dedicated share of the instance isolated from other
shares with regard to performance, appearance, configuration, user management,
and data privacy (Krebs et al., 2012). Some publications use a broader definition
of the term multi-tenancy; however, in this chapter, we focus on the case of shared
application instances as described above.

Hypervisors and virtual machines provide another way of sharing resources be-
tween customers. In contrast to multi-tenant applications, a hypervisor runs multiple
virtual machines (VMs) on the same hardware. By leveraging virtualization tech-
nology, the VMs can run in parallel and share the underlying physical resources.
This technology is used to provide multiple customers access to Software-as-a-
Service (SaaS) offerings whereby several instances of an application are used
to serve user requests. Furthermore, virtualization is an enabling technology for
Infrastructure-as-a-Service (IaaS) where customers rent VMs from cloud providers.

Despite the use of shared resources, users expect to have the feeling of con-
trol over their own and separate environment, with their own Service-Level Agree-
ments (SLAs) and regulations as known from private data centers, both in virtualized
and multi-tenant application scenarios. In addition, they expect to be isolated from
other customers with regard to functional and non-functional aspects. However, due
to the sharing of resources, performance-related issues may appear when a customer
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sends a high number of requests generating load on the system. This is because the
load generated by one customer competes for resources also used by others. Espe-
cially in the cloud context, where resources are shared intensively among customers,
it is not easy to maintain reliable performance. This is a serious obstacle for cloud
customers, especially for users of multi-tenant applications.

This chapter presents metrics to quantify the degree of performance isolation a
system provides. The metrics are based on Krebs et al. (2014), Krebs (2015), and
Herbst, Bauer, et al. (2018), and they have been endorsed by the SPEC Research
Group (Herbst, Krebs, et al., 2016). In an ideal case, one should be able to measure
performance isolation externally, that is, by running benchmarks from the outside
and treating the system as a black box. This enables their use for a broad set of
applications given that no internal knowledge of the system is required. The metrics
and the thought process to create them serve as a practical example illustrating the
metric attributes and principles introduced in Chapter 3.

The metrics presented in this chapter are applicable for use in performance bench-
marks that measure the performance without requiring internal knowledge. They are
preferable in situations where different request sources use the functions of a shared
system with a similar call probability and demand per request but with a different
load intensity. These characteristics are typical for multi-tenant applications but can
also occur in other shared resource systems. This chapter introduces the metrics and
provides a case study showing how they can be used in a real-life environment.

16.1 Definition of Performance Isolation

To avoid distrust in a multi-tenant application provider, it is necessary to ensure fair
behavior of the system with respect to its different tenants. It is assumed that each
tenant is assigned a quota that specifies the maximum load the tenant is allowed to
place on the system, for example, the maximum number of service requests that can
be sent per second. In this chapter, the following definition of fairness is used:

Definition 16.1 (Fairness) A system is considered to be fair if all of the following
conditions are met:

1. Tenants working within their assigned quotas must not suffer performance degra-
dation due to other tenants exceeding their quotas.

2. Tenants exceeding their quotas may suffer performance degradation; tenants ex-
ceeding their quotas more should suffer higher performance degradation than
tenants exceeding their quotas less.

3. Tenants exceeding their quotas may suffer performance degradation only if other
tenants that comply with their quotas would otherwise be affected.

The term quota refers to the amount of workload a tenant is allowed to execute
(e.g., number of user requests or transactions per second).
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Tenants working within their quotas will be referred to as abiding tenants, whereas
tenants that exceed their quotas will be referred to as disruptive tenants. The term
guarantee refers to the negotiated performance level as part of SLAs with the
provider. The main focus of this chapter is on the first fairness criterion, which
is achieved by performance isolation.

Definition 16.2 (Performance Isolation) Performance isolation is the ability of a
system to ensure that tenants working within their assigned quotas (i.e., abiding
tenants) will not suffer performance degradation due to other tenants exceeding their
quotas (i.e., disruptive tenants).

A system is usually expected to be somewhere in between being completely
performance isolated and non-isolated. A system where the influence of a tenant
on other tenants is lower is considered to provide a better performance isolation
compared to a system where the influence is higher.

SLAs are of major importance for shared services. Therefore, it may be useful
to reflect this in the previous definitions. This would imply that the performance
of tenants working within their quotas is allowed to be reduced as long as the
guaranteed level of performance is maintained. The latter is essential in order to allow
overcommitment of resources. Note that, in a non-isolated system, the guaranteed
performance for abiding tenants eventually will be violated if the disruptive tenants
continue to increase their workload. In contrast, an isolated system will maintain the
guaranteed performance independent of the disruptive tenants’ workload.

16.2 Performance Isolation Metrics

The performance isolation metrics we present in this chapter are not necessarily
coupled to performance and they do not express the system’s capability to accomplish
useful work. They rather express the influence a tenant has on the ability of another
tenant to accomplish useful work.

Existing benchmarks and metrics in the field of shared resources and cloud
computing focus on specific aspects like database performance (Cooper et al., 2010).
Some works discuss metrics for cloud features like elasticity (Herbst, Kounev, et al.,
2013; Islam et al., 2012; Kupperberg et al., 2011), as discussed in Chapter 15,
or performance variability (Iosup, Ostermann, et al., 2011; Schad et al., 2010).
Performance variability characterizes the changes in performance over time while
the workload is assumed to be constant. However, these changes are not set in relation
to the workload induced by others and thus a new approach is required.

In the following, the goals and requirements for the new isolation metrics are
discussed. After that, the definitions of the metrics are presented. A case study
measuring performance isolation in virtualized environments serves as an example
showing the metrics in action. Based on the practical experiences from the case study,
we then perform a final assessment of the usability of the metrics before concluding
this chapter.
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16.2.1 Metrics Goals and Requirements

To improve an existing performance isolation mechanism, application developers
need isolation metrics in order to compare different variants of an isolation approach.
For stakeholders involved in operations, the impact an increasing workload has on
other tenants can be of interest in order to define SLAs or to manage the system’s
capacity.

As per our definition, a system is performance isolated if each tenant working
within his quota is not negatively affected in terms of performance when other
tenants increase their workloads beyond their quotas. A decreased performance for
the tenants exceeding their quotas is fair with regard to the second fairness property
(see Section 16.1). Moreover, as mentioned earlier, it is possible to link the definition
of performance isolation to the assumed performance guarantees using SLAs. As
a result, a decreased performance for tenants working within their quotas would be
acceptable as long as it is within their SLA-defined guarantees. These aspects have
to be reflected by performance isolation metrics.

The metrics should be designed to support answering the following questions:

Q1 How much can a tenant’s workload influence the performance of other tenants?
Q2 How much potential exists for improving a system’s performance isolation?
Q3 Which performance isolation technique is better?

Besides these metric-specific requirements, several general quality attributes and
criteria for good metrics were introduced in Chapter 3 (Section 3.4.2): ease of
measurement, repeatability, reliability, linearity, consistency, and independence.

For the measurement of performance isolation, one has to distinguish between
groups of disruptive and abiding tenants as defined in Section 16.1. The presented
metrics are based on the influence of the disruptive tenants on the abiding tenants.
Thus, the influence on one group as a function of the workload of the other group must
be evaluated. This is a major difference to traditional performance benchmarking.
For the definition of the metrics, a set of symbols is defined in Table 16.1.

The metrics presented in the rest of this chapter can be applied to quantify
isolation with respect to any measurable QoS-related property of a system that is
shared between different entities. As such, the metrics are not limited to performance
isolation in multi-tenant applications, although the latter are used as an example in
this chapter.

Assume a non-isolated system and the situation illustrated in Figure 16.1 where
disruptive tenants increase their workload over time. Assuming that the system is
not isolated, the response time for the abiding tenants and their users would increase
in the same way as if these users would belong to the disruptive tenants.
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Table 16.1: Overview of variables and symbols for performance isolation metrics

Symbol Meaning

D Set of disruptive tenants exceeding their quotas (i.e., tenants inducing
more than the allowed maximum requests per second); in the context
of measuring performance isolation, we assume that |D| > 0

A Set of abiding tenants not exceeding their quotas (i.e., tenants inducing
less than the allowed maximum requests per second); in the context of
measuring performance isolation, we assume that |[A| > 0

t A tenant in the system; we assume thatr € Dort € A

Wy The workload caused by tenant 7 represented as a numeric value in
Rg; the value is considered to increase with higher loads on the system
(e.g., request rate or job size); w, € W

w The total system workload as a set of the workloads induced by all
individual tenants
(W) A numeric value describing the Quality-of-Service (QoS) (e.g., re-

quest response time) provided to tenant #; the individual QoS a tenant
observes depends on the aggregate workload W of all tenants; QoS met-
rics with lower values of z,(W) correspond to better QoS (e.g., faster
response time); z; : W — Ra’

1 The degree of isolation provided by the system; an index is added to
distinguish different types of isolation metrics (the various indices are
introduced later; a numeric suffix to the index is used in some places
to express the load level under which the isolation is measured)

Disruptive

Abiding

Workload
Resp. Time

Time Time

Fig. 16.1: Influence of disruptive tenants on the response time of abiding tenants in
a non-isolated system

16.2.2 QoS-Impact-Based Isolation Metrics

QoS-impact-based isolation metrics depend on at least two measurements: First,
the observed QoS for every abiding tenant r € A at an application-wide reference
workload W,.r; second, the QoS for every abiding tenant + € A at a modified
workload Wy;,, where a subset of the tenants have increased their load to challenge
the system’s isolation mechanisms. W,..r and W, are composed of the aggregate
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workload of the same set of tenants, that is, the union of A and D. In Wy, the
workload of the disruptive tenants is increased.

The relative difference in the QoS for abiding tenants at the reference workload
compared to the disruptive tenant workload can be computed as

% [ Waisr) = 2 (Wrep) |

teA
2 Zt(Wref)
teA

Azp = (16.1)

The relative difference of the load induced by the two workloads is given by

WrEWdis wWr € f
AW — t disr t re ) (16.2)
X W
Wi €Wy

Based on these two quantities, the influence of the increased workload on the
QoS of the abiding tenants is expressed as follows:

Aza

Igos = A (16.3)
A low value of this metric represents a good isolation, as the impact on the QoS
of abiding tenants in relation to the increased workload is low. If the value is 0, the
isolation is perfect. Accordingly, a high value of the metric indicates a bad isolation
of the system. In principle, the upper bound of the metric is unlimited. A negative
value may occur if a mechanism reduces the performance of the disruptive tenants
more than expected, thus providing the abiding tenants an even better performance.
The metric provides a result for two specified workloads (W,..r and Wy;,), and
thus the selection of the workloads plays an important role. However, only one
measurement for a given workload tuple (W;..r, Wy;s,) is not sufficient if the exact
workloads of interest are unknown or variable. To address this, one can consider the

arithmetic mean of Ip,s for m different disruptive tenant workloads as follows:

3

pX 1gos,,
Lyvg i= ——. (16.4)

m

This metric provides an average isolation value for the entire considered space
of workloads and provides one representative numeric value. The disruptive tenant
workload is increased in equidistant steps within a lower and upper bound. However,
the curve’s shape is not reflected in the average value and it may thus lead to
misleading results for some ranges of disruptive tenant workload.

It is conceivable that a provider might be interested in the relative difference
of disruptive tenant workload Aw at which abiding tenants receive a predefined
proportion Az4 of the promised QoS. This is conceptually similar to the already
described metrics and could be used to extend them with further metrics.
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16.2.3 Workload-Ratio-Based Isolation Metrics

The metrics we introduce in the following are not directly associated with the QoS
impact resulting from an increased workload of disruptive tenants. Instead, the idea
is to compensate for the increased workload of disruptive tenants by decreasing the
workload of the abiding ones such that the QoS for abiding tenants can remain un-
affected. Figure 16.2 illustrates this. For simplicity, we assume that in a non-isolated
system, resources are equally shared among the tenants; therefore, the response time
would maintain a constant value if abiding tenants decrease their workload by the
same amount as the amount by which disruptive tenants increase theirs. The better
the performance isolation, the less abiding tenants would have to reduce their work-
load. Naturally, this is only possible with the support of the abiding tenants and such
a behavior would not be expected in productive systems. Thus, these metrics are
planned to be applied in benchmarks with artificial workloads where a load driver
simulates the tenants and can be programmed to follow the described behavior.

Disruptive o
S £
o i
- o Abiding
%]
&
Abiding
Time Time

Fig. 16.2: Influence of disruptive tenants when abiding tenants adapt their workload
accordingly

In the following, the idea is described in more detail. We start by measuring the
isolation behavior of a non-isolated system by continuously increasing the disruptive
tenant workload W,. In such a situation, z, (W) remains unaffected if the workload
of the abiding tenants W, is adjusted accordingly to compensate for the increase in
the disruptive tenant workload.

The x-axis in Figure 16.3 shows the amount of workload W, caused by the
disruptive tenants, whereas the y-axis shows the amount of the workload W, caused
by the abiding tenants. The Non-Isolated line depicts how W, has to decrease
in order to maintain the same QoS as in the beginning. In a non-isolated system
this function decreases linearly; that is, for every additional unit of work added
to the disruptive tenant workload, one has to remove the same amount from the
abiding tenant workload. In a perfectly isolated system, the increased disruptive
tenant workload W, would have no influence on z,(W) for allt € A. Thus, W, would
be constant in this case as reflected by the Isolated line in the figure. The Isolated
and Non-Isolated lines provide exact upper and lower bounds, which correspond to
a perfectly isolated and a non-isolated system, respectively. Figure 16.3 shows some
important data points, which are described in Table 16.2.
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"% Isolated
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Possible Measurement

W,

dbase[”

Wd’”ef dease Wd

Fig. 16.3: Fictitious isolation curve including upper and lower bounds

end

Table 16.2: Description of relevant data points in Figure 16.3

Symbol Meaning

Wy The total workload induced by the disruptive tenants; Wy = 3, w;
teD
Wapso The level of the disruptive tenant workload at which the abiding tenant

workload in a non-isolated system must be reduced to 0 in order to
avoid SLA violations

Wa,na The level of the disruptive tenant workload at which the abiding tenant
workload in the system under test (SUT) must be reduced to 0 in order
to avoid SLA violations

Wa, ., The value of the disruptive tenant workload at the reference point in
the SUT with respect to which the degree of isolation is quantified; it
is defined as the disruptive tenant workload at which, in a non-isolated
system, the abiding tenant workload would have to start being reduced
to avoid SLA violations

W, The total workload induced by the abiding tenants; W, = 3, w;,

teA

Wa,or The value of the abiding tenant workload at the reference point Wy, ,
in the SUT; Wy, , = Wa,, .. = Wa,.,

Abase The value of the abiding tenant workload corresponding to Wy, . . in

the SUT

Based on this approach, several metrics are defined in the following. As dis-
cussed before, the workload scenarios play an important role and it may therefore be
necessary to consider multiple different scenarios.
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16.2.3.1 Metrics Based on Edge Points

The edge points Wq,,, ., Wa,,,.,.» Wa,.;» and W, in Figure 16.3 provide several
ways to define an isolation metric by themselves. I.,4 is a metric derived from
the point at which the workloads of abiding tenants have to be reduced to 0 to
compensate for the disruptive tenant workload. The metric describes a relationship
between Wg,,, and W, .. Due to the discussed relationship of the workloads
in a non-isolated system and the definition of the various points, the condition
Wa,., = Way,ose = Wa,., holds. This relation helps to simplify the formulas. With
Figure 16.3 in mind, the metric /., 4 is defined as follows:

Wd B dease

end

W,

Aref

lona = (16.5)

A value of O for /,,4 reflects a non-isolated system. Higher values reflect better
isolated systems. A value of 1 is interpreted as being twice as good as a non-isolated
system. In case of a perfectly isolated system, the metric value tends to infinity. This
makes it hard to interpret the value of the metric for a given system. A negative value
may occur if, for some reason, the performance of the abiding tenants is reduced
more than the disruptive tenant workload is increased. This may happen in case the
system runs into an overloaded and trashing state.

Another approach to define an isolation metric uses Wy, ., as areference. Setting
this value and W,,,, in relation results in the following isolation metric having a

value in the interval [0, 1]:
W,

Ipase 1= ——base (16.6)
Wa,.

A value of O for I, 45 reflects anon-isolated system, while a value of 1 corresponds
to perfect isolation. Both metrics have some drawbacks resulting from the fact that
they do not take the curve’s form into account. Consider a system that behaves like
a perfectly isolated system until a short distance from Wy, , . and then suddenly
drops to W, = 0. In such a system, both metrics would have the same value as for a
completely non-isolated system, which obviously is unfair in this case. Moreover, a
well-isolated system requires a very high disruptive tenant workload before W, drops
to 0, which makes it hard to measure the metric in an experimental environment.
Ipase has some further disadvantages given that it is only representative for the
behavior of the system within the range between Wy, and Wy, . Given that the
metric does not reflect what happens after Wy, , ., it may lead to misleading results
in the case of well-isolated systems for which the respective W, , points differ
significantly.

For systems that exhibit a linear degradation of the abiding tenant workload, it
is also possible to use isolation metrics based on the angle between the observed
abiding tenant workload’s line segment and the line segment representing a non-
isolated system. However, typically, a linear behavior cannot be assumed.
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16.2.3.2 Metrics Based on Integrals

Next, we define two metrics addressing the discussed disadvantages of the above
metrics. They are based on the area under the curve derived for the measured
system Ajeasurea S€t in relation to the area under the curve corresponding to a
non-isolated system A on—isoiared- The area under the curve corresponding to a
non-isolated system is calculated as Wgre A2

Integral Limited to Wgq,,, The first metric ;;;pqse represents the isolation
as the ratio of Aj,easured and Anon—isolatea Within the interval Wa,.r> Wap o 1-
fm : Wqg — W, is defined as a function that returns the residual workload for the
abiding tenants based on the workload of the disruptive tenants. Based on this
function, we define the metric /;,,;gase as follows:

dease

[ fnWa)ydWa | - W7 /2

Wa,,,
! (16.7)

LintBase =

W3 . 12

LintBase has a value of 0 in case the system is not isolated and a value of 1 if the

system is perfectly isolated within the interval [Wy,,,, Wq,,,.]. The metric’s major
advantage is that it helps to set the system directly in relation to an isolated and
non-isolated system. This metric, again, has the drawback that it only captures the
system behavior within [Wy,, ., Wa,,,. |- Again, a negative value may occur if, for
some reason, the performance of the abiding tenants is reduced to a greater degree
than the disruptive tenant workload is increased.
Integral Without Predefined Intervals In a well-isolated system, it would be
of interest to measure the system behavior beyond the point Wy, . .. The following
metric I rree allows the use of any predefined artificial upper bound pepg > Wa,,,..
representing the highest value of W, that was measured in the SUT. The metric is
defined as follows:

Pend
[ faWaydWa |- W2, /2
Wdref

Wa,ep - (Pend = Wa,o) = W3, /12

(16.8)

LintFree ==

This metric quantifies the degree of isolation provided by the system for a specified
maximum level of injected disruptive tenant workload p.,4. A value of 1 represents
a perfect isolation; a value of O represents a non-isolated system. Negative values
for I;;,:Free have the same interpretation as negative values for /;,;pase-
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16.2.4 Further Isolation Quality Aspects

Although the metrics described in Sections 16.2.2 and 16.2.3 allow one to quantify
isolation, they do not adequately describe the behavior of a system over time. Several
methods for performance isolation employ an adaptive approach that dynamically
adapts the system configuration to ensure isolation often based on a closed control
loop—see, for example, Krebs, Spinner, et al. (2014). Consequently, one can assume
the existence of situations where the system requires a certain amount of time to
adapt to changes in the workload. Therefore, two additional metrics allowing one to
quantify the dynamic aspects of performance isolation mechanisms are discussed.

Some commonly discussed issues in the context of system control theory in the
literature are stability/oscillation, settling time/performance, and accuracy/steady-
state error (Janert, 2013, pp. 19-21). In our context, the accuracy (steady-state error)
is already covered by the metrics in Sections 16.2.2 and 16.2.3. The other two issues
are discussed in the following two sections.

16.2.4.1 Settling Time

The settling time describes the time a system needs to achieve an output value within
a defined error range after a sudden change in input levels. A system with a faster
settling time is generally considered to be better.

Ideally, a Dirac impulse would be used for the input. In our context, the input value
is the workload of the tenants, whereas the output value is the observed value of the
QoS metric under investigation (e.g., response time). Naturally, it is not possible to
generate a Dirac impulse for such a system; therefore, a step function must be used.
However, a significant increase of the workload to a constant value in a very short
time may not be feasible. Therefore, the start event for measuring the settling time
is defined as the point in time at which the workload again achieves stability. An
observation of the QoS metric reaching a stable value can then be used as the trigger
to stop the measurement of the settling time. In these measurements, a certain error
is acceptable. It is possible to relate the start and stop events to the QoS guarantee
provided to a tenant. In this case, the start event is triggered if the observed QoS
is worse than the guarantee, whereas the end event is triggered when it meets the
guarantee again.

However, a different approach would be required should the considered QoS
metric not be related to any QoS guarantees. The proposed metric considers the
average response time of the sample of next m to n observations in the future and
compares it with the current one. The values of m and n should be selected in a
way to fulfill the following conditions: (1) there should be enough sample data in
the floating window to compute a stable average value; (2) m should be far enough
in the future to ensure that the average value is already stable before the impulse
is triggered; and (3) in cases of an online calculation, m should not be too far in
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the future in order to be able to obtain a timely result for the metric.! If the load
increases, one can expect a higher response time, which will decrease as the method
tries to compensate this problem. At some point in time, this value will be close to
the computed average or even cross this line, which marks the end event.

Figure 16.4a,b shows an example throughput over time for an abiding tenant.
The two vertical lines mark the beginning and the end of the time span where the
workload changed. Note that the workload-related lines are based on the amount
of simulated users in the benchmark, and it takes a few seconds to start them. The
throughput itself needs even longer before adapting to the new workload.
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Fig. 16.4: Examples of measuring settling times

! Note that in the case of offline analysis with just one single impulse (e.g., benchmarking), the
selection of m and n is less important and the threshold may even be computed by a separate
measurement run.
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Metrics similar to settling time were already used in the past for adaptive IT
systems in the context of QoS metrics. One example is the CloudScale consor-
tium (Brataas, 2014), which uses a metric referred to as MTTQR to describe the
time an elastic system needs to become SLA-compliant after the occurrence of an
SLA violation. Although MTTQR focuses on different scenarios, it is comparable
to the interpretation of settling time presented here.

16.2.4.2 Oscillation

Oscillation can happen if feedback from the system is used to adapt it to chang-
ing scenarios. Figure 16.5 shows an example of oscillating throughput for abiding
tenants.

~
o

[o2]
&

(o2}
o

Throughput [requests/s]
[9)]
(4]

o
o

N
[

N
o

500 1000 1500 2000 _ 2500 3000
Experiment Time [s]

Fig. 16.5: Example of oscillation

Oscillation is the repetitive variation of the system between two or more different
states. It is a common phenomenon in control theory (Janert, 2013, pp. 19-21). For
this reason, controllers are usually designed to damp the oscillation and ensure that
the amplitude converges to zero. If this is the case, the settling time is a useful metric.
Otherwise, the controller maintains an unstable state.

Discrete systems with random inputs, like an interactive web application, can be
in a steady state concerning the average values of QoS metrics, while the input is
still subject to random processes. Furthermore, in closed systems, the output may
influence the input. This increases the risk that the isolation method never converges
to a steady state. The amplitude and the frequency of resulting oscillations are
indicators to compare different methods. For the purpose of performance isolation
mechanisms, the amplitude would be based on the average relative change of the QoS
metric of interest. An average value for all tenants can be considered. Although this
seems intuitively correct, such a metric would lack in objectivity. This is because
in real systems, oscillation is mixed with noise in the measurements and a clear
oscillation might not be visible at all. Furthermore, if the system reacts very fast to
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minor and possibly random changes, no repeatable pattern may occur. Thus, it is
likely that a precise identification of the highest and lowest point of the oscillation
is not possible. Consequently, it may be difficult to clearly identify patterns caused
by the active control mechanisms as opposed to normal random processes. Thus, a
human would have to define which signals are relevant and which are not, raising the
question of objectivity and reliability of the metric. Furthermore, the distribution of
the measured data would be unknown and potentially different for different isolation
mechanisms.

Therefore, we consider the length of the interval between the 25% and 75%
percentiles set in relation to the observed arithmetic mean or median value of the
QoS metric of interest. In case of high oscillation or high variability of the metric, the
length of the interval would be higher in comparison to scenarios with low oscillation.
This approach does not rely on the assessment of a human. The drawback is that very
strong noise may be classified wrongly as oscillation. This metric is closely related
to an existing approach for quantifying performance variability (Iosup, Yigitbasi,
etal., 2011).

16.3 Case Study

We now present a case study—the initial version of which was published in Krebs et
al. (2014)—showing the metrics in action by applying them to virtualization-based
systems. The case study demonstrates the applicability of the metrics in real-life
environments and provides some insights on the isolation capabilities of the widely
used hypervisor Xen. Furthermore, it is an example of how the metrics can be
employed by system operators to make decisions in a deployment scenario.

Beside multi-tenancy, the sharing of hardware resources by running several op-
erating systems on the same physical host is a widely adopted technology providing
the foundation for IaaS clouds. Xen? is a widely used hypervisor for Linux environ-
ments enabling resource sharing at the hardware level. The goal of the case study we
present in this section is to stress Xen in order to evaluate its performance isolation
capabilities. More precisely, we quantify the degree of isolation for various Xen con-
figurations and deployments based on a black-box measurement approach employing
the isolation metrics introduced in the previous section. We deploy several instances
of the TPC-W benchmark on different virtual machines (VMs) hosted by one Xen
hypervisor and measure how they influence each other. The case study demonstrates
the wide range of scenarios supported by the metrics and how the latter can be used
to reason about the isolation capabilities of IaaS clouds running on Xen.

In the following, we describe some details on the Xen hypervisor, the chosen
benchmark, and the system landscape we consider in our case study. We then present
and discuss the evaluation results.

2 Xen hypervisor: https://xenproject.org
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16.3.1 Xen Hypervisor

A hypervisor is a software enabling the execution of several virtual machines (VM)
as guests on one physical host. Xen is one of the most popular hypervisors for
Linux environments. The operating systems installed within VMs are decoupled
from each other and have no permission for administrative tasks on the hardware or
the hypervisor’s configuration. In order to configure the hypervisor and to execute
administrative tasks, the first VM started in Xen (referred to as domain-0 or dom0) has
special privileges. Furthermore, domQ provides a driver abstraction for the different
guest systems. The drivers in Xen are divided into two parts. The drivers actually
accessing the hardware are installed in domO; the guest systems (referred to as domU
domains) communicate with dom( to access the hardware. Consequently, dom0
might become a bottleneck for various activities. Especially I/O-intensive tasks are
known to produce high overhead in dom0; thus, the independent guest VMs are likely
to influence each other when executing such tasks. Such a behavior was observed
by Huber et al. (2011) and Gupta et al. (2006). By default, VMs have access to all
existing resources on the host. To increase performance and isolation, it is possible
to pin a core exclusively to a domain. It is worth mentioning that domO usually does
not host any services for end users due to its special administrative role.

16.3.2 TPC-W Benchmark

The TPC-W benchmark was introduced in Chapter 9, Section 9.3.3. In the specific
setup of this chapter, TPC-W’s bookshop consists of a Java Servlet-based application
and an SQL database. Instead of using the usual performance metric, which is the
number of web interactions processed per second, we consider the average response
time of the requests for TPC-W’s three profiles. The load can be varied by the amount
of emulated browsers (EB) accessing the system. One EB simulates one user calling
various web transactions in a closed workload. Based on the benchmark’s heavy I/O
demands, we expect to observe the influence of the different VMs on each other.

16.3.3 Experimental Environment

The experimental environment in our case study comprises two servers with two
physical quad core CPUs (2,133 MHz with two threads per core) and 16 GB of
main memory. On both servers, Xen 4.1 is installed and Suse Linux Enterprise
Server (SLES) 11 SP2 is used as a guest operating system. The servers are con-
nected with a 1 Gbit Ethernet link. One server hosts the load driver for the TPC-W
benchmark. The various domains of the second server are described below as part of
the scenario-specific configuration. The database schema is refreshed before every
measurement and filled with 100,000 items and 300,000 customers.
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In total, we study three different configuration scenarios in our case study. In the
pinned scenario, the server hosts four guest systems (doml, dom2, dom3, dom4)
and dom0. Every domU domain has a fixed memory allocation of 3,096 MB and
hosts aMySQL 5.0 database and an SAP-specific customized Tomcat web server. The
various domains were pinned exclusively to the existing cores. Thus, no competition
for the same CPU resources was possible. Based on this run-time environment, four
separate instances of the TPC-W bookshop application were deployed.

In the unpinned scenario, all domU domains and dom0O were not pinned to a
specific CPU and were thus free to use all available hardware resources. Xen’s credit
scheduler was chosen to allocate resources to the various domains.

In addition to this, we investigated an unpinned two-tier scenario, which also does
not have a fixed CPU pinning and likewise uses the Xen credit scheduler. However, the
database and the application server in this case were deployed in separate domains.
Every domU domain with an application server has a fixed memory allocation of
2,024 MB and the database domain uses 1,024 MB. This memory setup was chosen
because of the small database size.

Table 16.3 shows the values we used to define the reference and disruptive tenant
workloads for the three scenarios. The number of emulated browsers (EBs) at the
maximum aggregated throughput of all domains is presented in the second column;
the corresponding throughput per domain and the average response time are listed
next. The last column shows the disruptive domain’s amount of EBs at which we
observed a high proportion of failed requests. In the unpinned two-tier scenario,
we observed different values for the QoS-impact-based and workload-ratio-based
metrics. The relevant QoS for our analysis is the average response time of the tenants.
The additional information is shown only for the sake of better system understanding.

Table 16.3: Scenario setup and configuration

Scenario EBs per Total Throughput Avg.resp. Max. load disruptive
domU throughput  per domU time

Pinned 3,000 1,1951/s 299 1,104 ms 15,000

Unpinned 1,600 7211/s 180 843 ms 13,500

Unpinned 1,300 617r/s 154 833ms 8,000 (QoS-based),

two-tier 11,050 (ratio-based)

In the pinned scenario, the highest difference in throughput for one domain
compared to the mean was around 4.5% and the highest difference in response
time was around 6.5%. In the unpinned scenario, we observed 2.2% (one-tier)
and 2.7% (two-tier) difference in throughput. The difference in response time was
at 8.2% (one-tier) and 9.4% (two-tier).

As a consequence of these observations p.,q4 is set to 15,000 for the pinned
scenario and to 13,500 for the unpinned. In the unpinned two-tier scenario, we had
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to set peng to 11,050 and stop our test for the Ip,s metrics at 8,000 users. It is worth
mentioning that in both unpinned scenarios, p.,q is very close to nine times the load
of the maximum throughput for one domain.

In all presented examples, one tenant has been used to generate the disruptive
load. All other tenants have been classified as abiding tenants.

16.3.4 Performance Isolation Metrics in Action

We now provide an overview of the measurement results and the observed isolation
metrics. Figure 16.6 combines the results for both unpinned scenarios based on nor-
malized values for the abiding and disruptive tenant workloads. Table 16.4 presents
the QoS-impact-based metrics based on the same values for Aw. Thus, the results
provide a comparable view for the two deployments.

1,2

Abiding workload

—+—Non-Isolated

- |solated
0,2
Unpinned

——Unpinned Two Tier

1 2 3 4 5 6 7 8 9
Disruptive workload

Fig. 16.6: Normalized reduction of abiding tenant workload in the unpinned and the
unpinned two-tier scenario

Table 16.4 contains the values of Ip,s for all three scenarios. The first column
of Table 16.4 shows the scenario, the second column shows the number of users in
the disruptive domain, and the third column shows the average response time of all
abiding domains followed by the results for Aw, Az, Ig,s, and 14, . For the pinned
scenario, we collected only one measurement due to the very good isolation. The /¢
values were calculated based on interpolation of the depicted measurements in the
table as supporting points including the reference workload (Aw = 0 with Az = 0).
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For the pinned scenario, we assume a behavior of the isolation between Aw = 0
and Aw = 1.

Table 16.4: Results of /g, s in the different scenarios

Scenario Disruptive load Response time Aw Az Igos lavg
Pinned 15,000 1,317 ms 1.00 0.19 0.19 0.10
3,200 927 ms 0.25 0.10 0.40
. 4,800 942 ms 0.50 0.12 0.24
Unpinned 7,500 9l4ms 092 009 009 O
10,000 1,173 ms 1.31 0.39 0.30
3,000 1,011 ms 0.33 0.21 0.64
Unpinned two-tier 4,400 3,784 ms 0.60 3.54 590 3.06
6,750 4,354 ms 1.05 422 402

16.3.4.1 Pinned Scenario

Overall, this scenario presented a nearly perfect isolation throughout the whole range.
The Ip,s metric presented in Table 16.4 at a disruptive tenant workload of 15,000
users was below 0.2 and the 1, resulted in 0.1. The workload-ratio-based metric
decreased for the abiding tenant workload only once at 12,000 disruptive tenant users.
The related metrics Iin;Free15000 and i pase resulted in a value slightly below 1.

16.3.4.2 Unpinned Scenario

For the metrics based on the QoS impact, we determined the isolation at vari-
ous disruptive tenant workloads shown in Table 16.4. We observed two significant
characteristics. The first one is the increasing response time when the disruptive
tenant workload is set to 3,200 users. The second one is the increasing response
time at 10,000 users. Accordingly, the isolation becomes better between 3,200 users
and 10,000 users. This is due to the widely stable response times at increasing load,
which changes the ratio of Az/Aw. On average, the isolation I, is 0.21.

Figure 16.6 presents the total abiding tenant workload W, based on the disrup-
tive tenant users. Similar to the /p,s-based results, two significant points can be
observed at the same position. In both cases, W,, decreased because of an increasing
response time of the abiding tenants. At a disruptive tenant workload of 13,500 users
(corresponding to 9 in the figure), the disruptive domain failed to successfully handle
incoming requests. Therefore, the results are not valid for higher disruptive tenant
workloads. The overall isolation values are I;,,;;rree13500 = 0.89 and I;,,;Base = 0.86.
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16.3.4.3 Unpinned Two-Tier Scenario

Table 16.4 shows the various disruptive tenant workloads used to evaluate Ip,s.
We configured the disruptive tenant workloads in a way to result in the same Aw
as in the unpinned single-tier scenarios. Due to the increasing number of timeouts
and exceptions in the disruptive domain, we had to stop at 6,750 users. For this
workload range, we observed continuously increasing response times. Nevertheless,
from 4,400 to 6,750 users, the isolation improved, as Aw increased more than Az.
Over the entire range of measurements, the average isolation 1,4, was 3.06.

Figure 16.6 presents the total abiding tenant workload W, based on the disruptive
tenant users for the workload-ratio-based metrics. Analogous to the response times in
Table 16.4, we can see a continuously decreasing amount of abiding tenant workload
in Figure 16.6. At a disruptive tenant workload of 2, we can see the observed
isolation curve crossing the respective curve for a non-isolated system. This is due to
the selected step width for reducing the number of users in the disruptive domain. At
a disruptive tenant workload of 11,050 users (corresponding to 8.5 in Figure 16.6),
the disruptive domain failed to successfully handle incoming requests. The results are
no longer valid for higher disruptive tenant workloads and are therefore illustrated
using a dashed line. The overall isolation values were Ii;;rree1tos = 0.42 and
IintBase = 0.36.

16.3.5 Effectiveness of the Deployment Options

Overall, the pinned scenario exhibited the best results, whereas the unpinned two-tier
scenario exhibited the worst ones. The selected size of the database was small enough
for data to be mostly cached. The memory was not overcommitted in our setup and
the network I/O did not reach the critical point at which the CPUs for dom0 became
a bottleneck in the one-tier scenarios. Therefore, the isolation was nearly perfect
with pinned CPUs. In the unpinned scenario, the resources of the domU domain
were shared with those for domO; therefore, the slightly increased I/O overhead for
dom0 was competing for resources and had some minor effect. The credit scheduler
was not able to compensate completely for this. By splitting the domU domain into
application server and database server, we noticeably increased the network I/O. In
this setup, we observed a significant impact of the disruptive domain on the others,
whereby the handling of the network I/O in domO led to a bottleneck and/or it
requested additional processing resources from the guest domains.

When an administrator has to decide for one of the mentioned deployments,
various considerations might be of importance. In a pinned setup, the overall perfor-
mance and isolation is the best. However, unused resources of one domain cannot
be used by other domains and thus this setup might lack in terms of efficiency.
The unpinned scenario overcomes this drawback at the expense of performance
and isolation. From a separation-of-concerns point of view, it might be beneficial
to separate the database and application server. On the other hand, as can be seen
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from Table 16.3, a distributed deployment provides less performance and the worst
isolation. These example measurements show how the isolation metrics provide the
opportunity to quantify one more dimension in the framework of multiple trade-off
decisions a system provider has to make. An additional result is that an administrator
can increase isolation by hard resource allocations, which also lead to reduced I/O.

16.4 Assessment of the Metrics

For the assessment of the metrics, we concentrate on the following aspects: First,
the practical usability of the metrics for the target group of system owners/providers
or developers/researchers; and second, the expressiveness of the metrics in terms of
the type of evidence they provide; third, the number of measurements required to
obtain a valid value; fourth, situations in which the metrics are not meaningful. In
the following, we evaluate the metrics of each category with respect to these aspects.

16.4.1 QoS-Impact-Based Metrics

These metrics show the influence of disruptive tenant workloads on the QoS of abid-
ing tenants. This helps system owners to manage their systems, because it indicates
the influence of disruptive tenant workloads on the QoS, which is important for
capacity planning. QoS-impact-based metrics can show that a system is perfectly
isolated; however, they fail in ranking a system’s isolation capabilities in the range
between perfectly isolated and non-isolated. Thus, it is hard to estimate the potential
of an isolation method. A single I, metric can be derived with only two measure-
ments to obtain evidence for one point of increased workload. However, to obtain
some more detailed information on the system’s performance isolation capabilities,
more measurements are required. Therefore, /,,, describes the average isolation
value for multiple different scenarios of interest. Nevertheless, the metric is not suit-
able to describe a system’s impact of different disruptive tenant workloads on the
abiding tenants, because these workloads cannot be set into relation for a concrete
scenario.

16.4.2 Edge-Point-Based Metrics

The metric I.,4 might not be practically usable for quantifying isolation in well-
isolated systems. Furthermore, it is not possible to directly deduce from it relevant
system behaviors such as response time behavior. If this metric is provided, it could
help to compare two systems regarding the maximum disruptive tenant workload
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they can handle. However, to quantify /.,4, more measurements are required than
would be the case for the QoS-impact-based metrics.

Ipase orders a system within the range of perfectly isolated and non-isolated
systems for one specific point in the diagram. Nevertheless, it does not provide
information about the behavior of the system before that point. It is limited to
comparing the isolation behavior of the systems at one selected load level and it is
also inadequate to derive direct QoS-related metrics. The usefulness of this metric
is limited compared to the integral-based metrics.

16.4.3 Integral-Based Metrics

LintBase and iy pree are widely comparable metrics. I;,:pqse has the advantage to
be measured at a predefined point. For /;;; r,¢e, the endpoint of the interval must be
additionally specified in order to have a fully defined metric. Both metrics provide
good evidence of the isolation within the considered interval ordered between the
magnitudes of perfectly isolated and non-isolated systems. However, they lack in
providing information concerning the degree of SLA violations. For example, the
SLA violations could be very low and acceptable or critically high in each iteration
as we reduce W,. However, in both cases, the results of the metrics would be
similar. This limits the value of I;;;pgse and I pree for system owners/providers.
Nevertheless, for comparison of systems and analyzing their behavior, the metrics
are very useful and can be exploited by developers or researchers. Finally, on the
negative side, a disadvantage of these metrics is that their measurement may be a
time-consuming task. In our Xen-based case study, we had experiment series of
around 15h.

16.4.4 Discussion

The various metrics show their advantages in different fields of applications and
express various semantics. The Ig,s and 1, metrics capture the reduced QoS due
to disruptive tenant workload. They cannot provide a ranking within the range of
fully isolated and non-isolated systems. However, for a system operator this might
be helpful to estimate the impact of disruptive tenant workloads on the system.
The I.,q4 metric shows how many times a system is better than a non-isolated one.
This information may be helpful to compare different systems if one has to decide for
one. The integral-based metrics rank a system within the range of fully isolated and
non-isolated. This knowledge is beneficial for the developer of a system to estimate
the potential for improvements.

The presented isolation metrics are not limited to multi-tenant environments.
They are also applicable in other scenarios where a system is shared, for example,
a web service triggered by other components, virtual machines hosted on the same
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hypervisor instance (as shown in our case study), or network devices serving packets
from various sources. However, practical limitations might appear, for example, due
to non-uniform workload behavior with work arriving from different sources.

16.5 Concluding Remarks

This chapter presented metrics to quantify the degree of performance isolation a
system provides. The metrics are applicable for use in performance benchmarks that
measure the performance without requiring internal knowledge. They are preferable
in situations where different request sources use the functions of a shared system with
similar demands per request but with a different load intensity. These characteristics
are typical for multi-tenant applications but can also occur in other shared resource
systems. The presented metrics are based on observing the influence of disruptive
tenants (i.e., tenants exceeding their assigned quotas) on the abiding tenants (i.e.,
tenants working within their quotas). Thus, the influence on one group as a function
of the workload of the other group must be evaluated. This is a major difference
to traditional performance benchmarking. We presented a case study showing the
metrics in action by applying them to evaluate the performance isolation of virtual
machines running on a shared physical host. The case study demonstrated the appli-
cability of the metrics in real-life environments and provided some insights on the
isolation capabilities of the widely used virtualization platform Xen. Furthermore, it
showed an example of how the metrics can be employed by system operators to make
decisions in a deployment scenario. The performance isolation metrics presented in
this chapter can be applied to quantify isolation with respect to any measurable
QoS-related property of a system shared between different entities.
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