
Chapter 13
Storage Benchmarks

Klaus-Dieter Lange, Don Capps, Sitsofe Wheeler, Sorin Faibish,
Nick Principe, Mary Marquez, John Beckett, and Ken Cantrell

Many operating systems (OS) and information technology (IT) solutions have been
tested and tuned for the storage subsystems to work well with frequently used appli-
cations. This accelerates the storage input/output (I/O) for the respective subsets of
workloads. Nonetheless, the application operation mix will likely change over time
as applications evolve, for example, the system administrator decides to allocate the
same server/storage solution for additional office automation tasks.

Several benchmarks are available to evaluate the storage performance of a specific
storage system or storage component. They can be used by system administrators
to evaluate and compare different products and ensure high performance for their
particular environment. This chapter presents a brief history of the SPEC System
File Server (SFS) benchmarks and takes a closer look at SPEC SFS 2014. It then
introduces the benchmarks from the Storage Performance Council (SPC) and the
IOzone file system benchmark. Finally, the Flexible I/O Tester (fio) is presented,
showing some examples of how it can be used to measure I/O performance.

13.1 Historical Perspective on System File Server Benchmarks

In the 1990s, commercial Network File System (NFS) storage server arrays started
to become mainstream. No longer was storage the realm of government, academia,
and large corporations. This increase of storage solution choices created a need for
a benchmark to enable users of NFS servers to select the solution with the highest
performance. NFS server vendors joined forces with academics and government to
build an NFS benchmark with relevant and meaningful performance metrics. In
October 1992, the synthetic benchmark LADDIS (Wittle and Keith, 1993), named
using the initials of the involved organizations (Legato,Auspex,DataGeneral, Digital
Equipment, Interphase, and Sun Microsystems), was released. It was based on the
nhfsstone workload and measured guaranteed performance, that is, performance
achieved for a given latency target. A higher LADDIS score indicates higher I/O
performance at a lower latency.

285© Springer Nature Switzerland AG 2020

S. Kounev et al., Systems Benchmarking, https://doi.org/10.1007/978-3-030-41705-5_13

https://doi.org/10.1007/978-3-030-41705-5_13
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41705-5_13&domain=pdf

286 13 Storage Benchmarks

In 1993, the LADDIS group joined the Standard Performance Evaluation Corpo-
ration (SPEC) and became its System File Server (SFS) Subcommittee. There, the
NFS benchmark was enhanced for the NFSv2 protocol and released under its new
name SPEC SFS 93. The SPEC SFS 97 benchmark, released in December 1997,
was further enhanced with new functionality and support for the NFSv3 protocol.1 It
became one of the most popular storage performance benchmarks during that time.

In June 2001, a series of bug fixes were released via SPEC SFS 97 V2.0. Later
in 2001, SPEC released SPEC SFS 97_R1V3.0with additional bug fixes and support
for Linux and FreeBSD aswell as initial support for variousUNIX operating systems.
The benchmark remained an NFS benchmark; nonetheless, the need for a new
benchmark that supports the Server Message Block (SMB) protocol, in particular
the Common Internet File System (CIFS), was increasing as most storage vendors
started to support both NFSv3 and SMB protocols. At this point, the members of
the SFS Subcommittee started to develop a new benchmark for Windows servers
using the SMB protocol. In 2008, the work on this benchmark was completed and
the first dual protocol storage benchmark—SPEC SFS 2008—was published.2 In
addition to the introduction of the SMB protocol, several enhancements were made
to the NFSv3 benchmark, including operation mix change and adding new metadata
operations, aligned with the evolving requirements of the storage industry.

During the lifetime of SPEC SFS 2008, its user base started asking for support for
measuring the performance of the clients and servers in a single unified benchmark.
Coincidently, in December 2010, Don Capps was finishing his development of
Netmist—the first benchmark and framework designed as a system benchmark that
runs at the system call level instead of the protocol level. He granted SPEC the
permission to use it as the basis for the next generation file server benchmark.
Netmist combines benchmark ideas from both the SFS benchmarks and the IOzone
benchmark (see Section 13.4), and it was designed as a multi-client, multi-server
benchmark.

13.2 SPEC SFS 2014

After 4 years of joint development, SPECSFS 2014was released inNovember 2014.3
It introduced many novel benchmark ideas inspired by the established file server
benchmarks and included support for cluster file systems (e.g., Lustre and GPFS)
as well as network file servers (e.g., based on NFSv3, NFSv4, and SMB). The SFS
Subcommittee also implemented the support for local POSIX file systems created
on block storage device benchmarks via any POSIX file systems on the raw block
devices and supporting any type of client host OSes including SOLARIS, Linux,
Windows, SGI, AIX, etc., and any client local POSIX file systems.

1 NFS v3 protocol; IETF 1995: https://tools.ietf.org/html/rfc1813
2 SPEC SFS 2008 benchmark: https://www.spec.org/sfs2008
3 SPEC SFS 2014 benchmark: https://www.spec.org/sfs2014

https://tools.ietf.org/html/rfc1813
https://www.spec.org/sfs2008
https://www.spec.org/sfs2014

13.2 SPEC SFS 2014 287

The SPEC SFS 2014 benchmark introduced the concept of business met-
rics (BMs), inspired from real storage applications, and added the capability to
easily modify existing BMs and to create new BMs for research purposes. The five
included BMs (see Table 13.1) measure guaranteed performance based on the same
request–response principles of the five most popular types of storage application
characteristics (e.g., mixes for metadata and data, read and write, and for different
I/O sizes). With the new capability to saturate all physical resources, including CPU,
disk, pipes (FC and IP), BUSes, and memory, the SFS benchmark evolved into an
application benchmark. This enabled the different storage vendors to showcase their
storage solutions for the BM that matched their customers’ usage for either protocol.

Table 13.1: Workloads and their business metric names

Workload Business metric name
Electronic design automation (EDA) Job sets

Database (DATABASE) Databases

Software build (SWBUILD) Builds

Video data acquisition (VDA) Streams

Virtual desktop infrastructure (VDI) Desktops

In 2016, the SPEC SFS 2014 benchmark was enhanced to also serve as a load
generator used for measuring the power consumption of storage servers as de-
fined by the Storage Networking Industry Association (SNIA)—a feature used by
SNIA in the Emerald specification as well as by the U.S. Environmental Protection
Agency’s (EPA) Energy Star program for storage certification.

All previous SFS benchmark results were presenting only two performance met-
rics, theNFS/CIFS I/O operations (IOPS) and overall response time (ORT), aswell as
a result table and a graph (see Table 13.2 and Figure 13.14), showing the guaranteed
performance achieved for each requested I/O load. Starting with SPEC SFS 2014,
the new performance variables, Business Metric (workload specific) and Bandwidth
in MB/sec, were added to the result (see Table 13.3 and Figure 13.25).

With the continuous evolution of storage applications and technology, including
new storage media like solid-state drives (SSD) and non-volatile memory (NVM),
additional workloads become of interest and the current workloads need to be mod-
ified or replaced to reflect new users’ needs and usage models of new application
areas like machine learning, Genomics, and others. The SPEC OSG Storage Sub-
committee, the new name of the SFS Subcommittee, is working to deliver the next
generation of SFS benchmarks, addressing the need for new features and represen-
tative workloads for the storage industry.

4 Corresp. result: https://www.spec.org/sfs2008/results/res2008q1/sfs2008-20080218-00083.html
5 Corresp. result: https://www.spec.org/sfs2014/results/res2014q4/sfs2014-20141029-00002.html

https://www.spec.org/sfs2008/results/res2008q1/sfs2008-20080218-00083.html
https://www.spec.org/sfs2014/results/res2014q4/sfs2014-20141029-00002.html

288 13 Storage Benchmarks

Table 13.2: Exemplary SPEC SFS 2008 publication table

Throughput (ops/sec) Response time (ms)
320 1.5

642 1.8

961 2.0

1,285 2.3

1,607 2.6

1,924 3.2

2,244 4.0

2,579 5.6

2,897 8.5

3,088 10.6

0 500 1000 1500 2000 2500 3000 3500
throughput [1/s]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

re
sp

on
se

 [m
s]

Fig. 13.1: Exemplary SPEC SFS 2008 publication graph

13.2 SPEC SFS 2014 289

Table 13.3: Exemplary SPEC SFS 2014 publication table

Business metric
(builds)

Average latency
(ms)

Builds
(ops/sec)

Builds
(MB/sec)

2 0.6 1,000 12

4 0.7 2,000 25

6 0.7 3,000 38

8 0.7 4,000 51

10 1.0 5,000 64

12 1.1 6,000 77

14 1.1 7,000 90

16 1.0 8,001 103

18 0.9 9,000 116

20 1.0 10,001 128

22 1.1 11,001 141

24 1.3 12,001 154

0 5 10 15 20 25
throughput [1/s]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

re
sp

on
se

 [m
s]

Fig. 13.2: Exemplary SPEC SFS 2014 publication graph

290 13 Storage Benchmarks

13.3 Storage Performance Council (SPC)

The vendor-neutral SPC was founded in 1998 with the goal to develop industry-
standard benchmarks focusing on storage subsystems and to publish third-party
audited benchmark results that include performance and pricing information. Their
core benchmarks—SPC-1 and SPC-2—measure the performance of storage systems,
and they utilize a common SPC framework for benchmark components.

13.3.1 SPC-1

Introduced in 2001, SPC-1 had a singleworkload and targeted storage performance of
business-critical applicationswith a high random I/Omix and a series of performance
hotspots. The benchmark includes query and update operations, and it covers a broad
range of business functions, system configurations, and user profiles.

The SPC-1 benchmark uses the concept of stimulus scaling units (SSUs) to scale
the I/O load while maintaining the operation mix and constraints. The balance
between application I/O and logging I/O is maintained as the SSUs are scaled to
the desired I/O load. Application storage units (ASUs) form the abstracted storage
configuration, which provides the environment in which the workload (represented
by SSUs) is executed. Each ASU is considered the source or destination of data that
requires persistence beyond the benchmark run itself. Figure 13.3 shows an example
of the distribution of the average response time for the first repeatability test run at
the 100% load level.

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13

A
ve

ra
ge

 R
es

p
o

n
se

 T
im

e
(m

s)

Test Run (minutes)

Average Response Time Distribution

ASUS1

All ASUSs

ASUS3

ASUS2Startup Measurement Interval

0.5

0.6

0.7

0.8

0.9

1

0:00 0:10 0:20 0:30 0:40 0:50 1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10 2:20 2:30 2:40 2:50 3:00 3:10 3:20

D
at

a
R

at
e

(M
B

/s
ec

)

Test Run (minutes)

Average Data Rate per Stream

Measurement Interval

60,000 Streams

Fig. 13.3: SPC-1 average response time distribution

SPC-1 has several workload components scaled from smallest to largest:

• I/O REQUEST: A single unit of work,
• I/O STREAM: A single sequence of I/O REQUESTS,
• ASU STREAM: A collection of I/O STREAMs,
• WORKLOAD: A collection of ASU STREAMs.

13.3 Storage Performance Council (SPC) 291

The performance results and response time are part of the benchmark final report,
which includes detailed system and storage subsystem configuration details as well
as pricing information.

13.3.2 SPC-2

SPC-2, introduced in 2005, has three different workloads to stress the storage system
with large-scale sequential data movement, which is one of several differences to the
random I/O nature of the SPC-1 standard. The modeled I/O operations include large
file processing, large database queries, and video on demand.

The SPC-2 benchmark leverages structured patterns of I/O requests referred to
as streams; the number of concurrent streams varies during benchmark execution.
Three or more of these streams are executed for each workload; the maximum and
intermediate number of streams are defined by the benchmark tester. Figure 13.4
shows an example of the average data rate per stream for a load of 60,000 streams.

4 5 6 7 8 9 10 11 12 13

Test Run (minutes)

Average Response Time Distribution

ASUS1

All ASUSs

ASUS3

ASUS2
Measurement Interval

0.5

0.6

0.7

0.8

0.9

1

0:00 0:20 0:40 1:00 1:20 1:40 2:00 2:20 2:40 3:00 3:20

D
at

a
R

at
e

(M
B

/s
ec

)

Test Run (minutes)

Average Data Rate per Stream

Measurement Interval

60,000 Streams

Startup

Fig. 13.4: SPC-2 average data rate per stream

13.3.3 Component and Energy Extension

The derived SPC-1C and SPC-2C benchmarks target specific storage components
like storage devices and controllers, storage enclosures, and storage software. SPC-
1C and SPC-2C retain the essential random or sequential nature, respectively, of their
benchmark progenitors. These two benchmarks are intended to provide performance
data for individual storage components as opposed to a larger storage configuration.

Each SPC benchmark has an optional energy extension (SPC-1/E, SPC-2/E,
SPC-1C/E, and SPC-2C/E), which adds a mode of execution in which also the power
consumption is measured. Power consumption is measured at three load intervals
(idle, moderate, and heavy) and reported with the performance results and pricing

292 13 Storage Benchmarks

of the regular benchmark run. SPC benchmark results with energy extension include
the following additional metrics:

• Nominal Operating Power (W): The average power consumption across the three
intervals,

• Nominal Traffic in IOPS: The average I/O measured across the three intervals,
• Operating IOPS/watt: The computed power metric representing the overall effi-

ciency for I/O traffic,
• Annual Energy Use (kWh): The estimated annual energy usage.

13.4 The IOzone Benchmark

IOzone was initially designed and written by William Norcott and released in the
early 1980s. The initial version, a fairly simpleC-code,measured the time for opening
a file, write/read data, and close the file.

Don Capps started his work on extending IOzone’s functionality in 1985; he
fundamentally redefined IOzone for more accurate performance measurements of
file systems. He added support for large-scale NUMA supercomputers in 1991 and
expanded IOzone’s capability to cover multiple file servers running in parallel.

In 2000, the IOzone.org site was created and the IOzone development continued
under a freeware licensing model with Don Capps as the benchmark maintainer.
This license model allows the users to compile and use the benchmark for free
on any platform and OS. The IOzone benchmark continues to be a living project
with contributions from developers worldwide (e.g., Android support for the use
of IoT devices). Nonetheless, developers are not allowed to distribute changes by
themselves, as it is maintained by a single entity to preserve the integrity of code
contributions and their proper integration.

Similar to fio,6 Iometer,7 and IOR,8 the IOzone benchmark has evolved to one of
the more sophisticated file system performance benchmark utilities, generating and
measuring a variety of file operations (see Table 13.4).

Table 13.4: IOzone’s file operations

read re-read fread random read aio read pread variants
write re-write fwrite random write aio write pwrite variants
read backwards read strided mmap

IOzone has been ported tomany platforms and is available onmostOSes including
AIX, BSDI, HP-UX, IRIX, FreeBSD, Linux, OpenBSD, NetBSD, OSFV3, OSFV4,

6 Flexible I/O Tester (fio): https://fio.readthedocs.io
7 Iometer Project: http://www.iometer.org
8 IOR Benchmark: https://media.readthedocs.org/pdf/ior/latest/ior.pdf

https://fio.readthedocs.io
http://www.iometer.org
https://media.readthedocs.org/pdf/ior/latest/ior.pdf

13.5 Flexible I/O Tester (fio) 293

OSFV5, SCO OpenServer, Solaris, Mac OS X, and Windows (via the Cygwin run-
time application9). Its results can be exported into useful graphs (e.g., Figure 13.5
depicts the fwrite performance under Windows), which can be leveraged to show
performance characteristics and bottlenecks of the disk I/O subsystem, enabling users
to optimize their applications to achieve the best performance for their platform and
OS. This is one of the reasons why the benchmark is widely used to evaluate HPC
storage for supercomputers and computer clusters.

4

32

256

2048

16384

0

15000

30000

45000

60000

75000

90000

105000

120000

135000

150000

165000

180000

195000

210000

225000

240000

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

6
2
1
4
4

4
2
8
8

Record size in Kbytes

Kbytes/sec

File size in Kbytes

225000-240000

210000-225000

195000-210000

180000-195000

165000-180000

150000-165000

135000-150000

120000-135000

105000-120000

90000-105000

75000-90000

60000-75000

45000-60000

30000-45000

15000-30000

0-15000

Fig. 13.5: IOzone fwrite performance

13.5 Flexible I/O Tester (fio)

The Flexible I/O Tester (fio) was designed by Jens Axboe in 2005, filling the void for
a flexible method to simulate customizable I/O workloads and to gain meaningful
I/O statistics on the Linux I/O subsystem and its schedulers.

The fio architecture is comprised of three major parts: (1) front-end that parses a
job description file; (2) back-end layer that performs common work like managing
parallel workers, collecting I/O statistics, and generating/validating I/O patterns; and
(3) implementation of pluggable ioengines that send I/O in different ways over the
network via library calls.

9 Cygwin: http://www.cygwin.com

http://www.cygwin.com

294 13 Storage Benchmarks

The small and portable fio code is pre-packaged by major Linux distributions
because of its versatile nature of exploring various aspects of storage subsystems:

• Investigation of storage performance and root-cause analysis of bottlenecks,
• Modeling of workloads with a balanced read/write access mix across multiple

workers,
• Replay of recorded and hand-built workload patterns,
• Analysis of the effectiveness of different caching algorithms, and
• Reproduction of hardware and software issues.

Fio has been ported to many platforms; nonetheless, its capabilities on other
platforms might not be the same as on Linux, because some features might not have
been ported, or different platforms may not implement the same functionality in the
same way. The latest version can be found at the fio Git repository.10 In the following,
we present a series of examples illustrating fio’s capabilities on Linux.

13.5.1 Running a Simple Job

A fio job file contains a set of statements describing what I/O workload should
be executed. The following example describes a new job called simple that cre-
ates a file at the path /tmp/fio.tmp with a size of two megabytes (by default, all
single- and three-letter storage units in fio are powers of two, for example, 2M is
2,097,152 bytes). It then performs read I/O using the default ioengine (on Linux, this
is psync) and the default block size (4,096 bytes).

[simple]
filename=/tmp/fio.tmp
size=2M
rw=read

If the above was saved to the file simple.fio, it can be run via:

fio simple.fio

Running this job will create an output similar to the following (lines 1–31):

1 simple: (g=0): rw=read, bs=(R) 4096B-4096B, (W) 4096B-4096B,
(T) 4096B-4096B, ioengine=psync, iodepth=1

2 fio-3.16
3 Starting 1 process
4 simple: Laying out IO file (1 file / 2MiB)
5
6 simple: (groupid=0, jobs=1): err= 0: pid=19566: Sat Nov 9

11:39:05 2019
7 read: IOPS=56.9k, BW=222MiB/s (233MB/s)(2048KiB/9msec)
8 clat (nsec): min=896, max=944834, avg=16216.53,

stdev=101996.63

10 Flexible I/O Tester (fio) Git repository: https://github.com/axboe/fio.git

https://github.com/axboe/fio.git

13.5 Flexible I/O Tester (fio) 295

9 lat (nsec): min=934, max=944898, avg=16284.52,
stdev=102006.39

10 clat percentiles (nsec):
11 | 1.00th=[940], 5.00th=[1032], 10.00th=[1064],

20.00th=[1688],
12 | 30.00th=[1784], 40.00th=[1800], 50.00th=[1816],

60.00th=[1832],
13 | 70.00th=[1848], 80.00th=[1880], 90.00th=[1960],

95.00th=[2160],
14 | 99.00th=[716800], 99.50th=[872448], 99.90th=[946176],

99.95th=[946176],
15 | 99.99th=[]
16 lat (nsec) : 1000=2.15%
17 lat (usec) : 2=90.23%, 4=4.88%, 20=0.39%, 50=0.20%,

250=0.20%
18 lat (usec) : 500=0.39%, 750=0.78%, 1000=0.78%
19 cpu : usr=0.00%, sys=25.00%, ctx=13, majf=0, minf=10
20 IO depths : 1=100.0%, 2=0.0%, 4=0.0%, 8=0.0%, 16=0.0%,

32=0.0%, >=64=0.0%
21 submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%,

64=0.0%, >=64=0.0%
22 complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%,

64=0.0%, >=64=0.0%
23 issued rwts: total=512,0,0,0 short=0,0,0,0 dropped=0,0,0,0
24 latency : target=0, window=0, percentile=100.00%, depth=1
25
26 Run status group 0 (all jobs):
27 READ: bw=222MiB/s (233MB/s), 222MiB/s-222MiB/s

(233MB/s-233MB/s), io=2048KiB (2097kB), run=9-9msec
28
29 Disk stats (read/write):
30 dm-0: ios=0/0, merge=0/0, ticks=0/0, in_queue=0,

util=0.00%, aggrios=12/0, aggrmerge=0/0, aggrticks=8/0,
aggrin_queue=8, aggrutil=3.31%

31 sda: ios=12/0, merge=0/0, ticks=8/0, in_queue=8, util=3.31%

The output is comprised of the following parts:

Line 1: A summary of some of the parameters within the job
Line 2: The fio version
Lines 3–4: Information about the job starting
Lines 5–6: Process identification
Line 7: Average IOPS and bandwidth information
Lines 8–15: Latency break down per I/Os
Lines 16–24: Further breakdown of the I/O information
Lines 25–27: Summary of I/O by group
Lines 28–31: Information about how the kernel performed disk I/O

The key information on how the job performed (lines 7–15) is depicted in Fig-
ure 13.6; detailed guidelines on the interpretation of the different parts of the output
can be found in the fio documentation.11

11 https://fio.readthedocs.io/en/latest/fio_doc.html#interpreting-the-output

https://fio.readthedocs.io/en/latest/fio_doc.html#interpreting-the-output

296 13 Storage Benchmarks

100

1000

10000

100000

1000000

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

n
u

m
b

er
 o

f
I/

O

clat percentiles

Completion Latency (clat) per I/O

simple.fio:
Average IOPS: 56.9k
Bandwidth: 222MiB/s
Total I/O: 233MB/s
Total job time: 2048KiB/9msec

Fig. 13.6: Completion latency (clat) per I/O

A job can also be specified using command line options; for example, the previous
job can be written as:

fio --name=simple --filename=/tmp/fio.tmp --size=2M --rw=read

A section is started by using the �name option followed by a value, and parameters
become double-dashed options followed by their value. Although job files are useful
for repeatability and sharing, the remaining jobs shown in this chapter are specified
as command line options for the sake of brevity.

In the read job above, fio actually wrote the data to the file semi-randomly before
reading it back. This is done to prevent special-case optimizations (which may be
applied within the storage stack) from distorting the results of a particular run. An
in-depth explanation on how the random data is generated can be found in the fio
documentation.12

13.5.2 More Complex Workloads

It is easy to change the simple workload from performing read access to write access
by basically changing the �rw command from read to write. It should be pointed out
that using write workloads will destroy the data in the files specified. The following
example shows a job that performs sequential writes with an increased block size of
64 kilobytes (64 × 10242 bytes):

fio --name=simplewrite --filename=/tmp/fio.tmp --size=2M
--rw=write --bs=64k

Fio has the capability to workwith block devices directly, allowing one tomeasure
performance without the overhead of the file system. In the following examples,

12 https://fio.readthedocs.io/en/latest/fio_doc.html#buffers-and-memory

https://fio.readthedocs.io/en/latest/fio_doc.html#buffers-and-memory

13.5 Flexible I/O Tester (fio) 297

/dev/sdd represents such a block device, and fio will try to write to 64 kilobyte
sized blocks in a random order (�rw=randwrite), but it will cover each block exactly
once:

fio --name=simplewrite --filename=/dev/sdd --rw=randwrite
--bs=64k

Additionally, while fio will try and flush kernel caches on supported platforms
before starting a job, by default, no flushing takes place when the job finishes;
thus, data may still be in kernel RAM caches (and non-volatile disk caches). The
end_fsync=1 option can be used to ensure that write data has reached the disk by
the time the job finishes.

fio --name=simplewrite --filename=/dev/sdd --rw=randwrite
--bs=64k --end_fsync=1

Fio jobs can be run in parallel in order to model real-life environments with mul-
tiple concurrent workloads. The following simple example runs two read workloads
accessing different files in parallel:

fio --name=simple1 --filename=/tmp/fio1.tmp --size=2M --rw=read
--name=simple2 \
--filename=/tmp/fio2.tmp --size=2M --rw=read

A global section can be utilized to share common parameters between the jobs,
eliminating duplications.

fio --size=2M --rw=read --name=simple1 --filename=/tmp/fio1.tmp
--name=simple2 \
--filename=/tmp/fio2.tmp

By default, all jobs are part of the same group, which allows fio to provide a way
of summarizing some of the results of multiple jobs (see lines 26–27 in the previous
output example). Note that this summary information may be inaccurate if the jobs
do not actually start at the same time.

Fio provides a number of options for modeling simultaneous reads and writes. For
cases where reads and writes are independent of each other, the following method
can be applied:

fio --size=2M --filename=/tmp/fio1.tmp --name=writes --rw=write
--name=read --rw=read

If they are somehow dependent on each other, the reads and writes can be handled
by the same job via the �rw=readwrite option, and the mix can be specified via the
�rwmixread parameter. The following example requests four reads for every write:

fio --size=2M --filename=/tmp/fio1.tmp --name=mix --rw=readwrite
--rwmixread=80

298 13 Storage Benchmarks

13.5.3 Unusual I/O Patterns

The previous job examples perform uniformly distributed random I/O across the
area being accessed. In some cases, for example, when analyzing the effectiveness of
caching, it might be helpful to access different parts of the targeted area with different
frequency. Fio has multiple ways to define such a distribution; Figure 13.7 shows an
example cache_test that utilizes the �random_distribution=zoned option:

fio --name=cache_test --filename=/tmp/fio1.tmp --size=20G
--rw=randread \
--random_distribution=zoned:30/15:14/15:40/5:14/20:2/45

Zoned Random Distribution

30% of accesses in the first 15%

14% of accesses in the next 15%

40% of accesses in the next 5%

14% of accesses in the next 20%

2% of accesses in the next 45%

Fig. 13.7: Randomly distributed I/O via zones

Many unusual I/O patterns can be created via the vast possibilities of combining
different fio options. The last two examples in this chapter might be helpful in order
to recreate I/O patterns to root-cause hardware and software issues of extent-based
storage.

The gappy job writes every other 8 kilobytes of /tmp/fio1.tmp:

fio --name=gappy --filename=/tmp/fio1.tmp --size=2M
--rw=write:8k --bs=8k

The backwards job seeks 16 kilobytes backwards after every 8 kilobyte writes
are done, before writing the next 8 kilobytes.

fio --name=backwards --filename=/tmp/fio1.tmp --size=2M
--rw=write:-16k --bs=8k

13.5 Flexible I/O Tester (fio) 299

13.5.4 ioengines

The ioengine used in the above examples has been synchronous, which means that
fio will wait for an I/O operation to complete before sending another I/O operation.
However, modern disks and disk controllers have multiple queues that achieve max-
imum performance when many I/O operations are submitted in parallel. In cases
where a kernel cache is being used, the kernel’s buffering can help synthesize that
parallelism at a small cost. However, some I/O engines can create that asynchrony
themselves with lower overhead.

On Linux, the libaio ioengine is typically used for this purpose, but it comes
with strict requirements to prevent blocked submissions:

• I/O must be sent using the O_DIRECT option.
• The amount of I/O backlog should be kept limited.

It is important to adhere to these rules and avoid blocking submissions, because
fio will not be able to queue any more I/O until submissions return.

The following example job utilizes the libaio engine and sets the iodepth,
which controls the maximum amount of I/O operations to be sent simultaneously
and queued. There is no guarantee that, at any given point, the iodepth amount of
I/O operations will be queued up, as I/O operations are queued one at a time, and
if their completion is fast enough, there will not be much outstanding work at any
given time.

fio --ioengine=libaio --iodepth=32 --name=parallelwrite
--filename=/dev/sdd \
--rw=randwrite --bs=64k

It is quite common to run a workload for a fixed amount of time in order to repro-
duce hardware or software issues. This can be achieved by utilizing the time_based
and runtime options. The following fio job will continue to loop the pattern until
runtime has expired:

fio --name=one-minute --filename=/tmp/fio1.tmp --size=2M
--rw=write --time_based \
--runtime=1m

In order to measure the maximum performance of very fast storage subsystems,
it might be necessary to minimize fio’s overhead. The io_uring13 interface was
introduced with the 5.1 Linux kernel, and it is supported by fio version 3.13 and
higher. It has a lower overhead and can therefore push higher bandwidths than the
previous libaio/KAIO interface. Using it is just a matter of changing the ioengine:

fio --ioengine=io_uring --iodepth=32 --name=parallelwrite
--filename=/dev/sdd \
--rw=randwrite --bs=64k

13 https://kernel.dk/io_uring.pdf

https://kernel.dk/io_uring.pdf

300 13 Storage Benchmarks

13.5.5 Future Challenges

Driven by an active development community, fio has grown to be a popular tool,
continuously offering new features, bug fixes, ioengines, and support for new plat-
forms. In this chapter, we touched upon some of the many capabilities of fio, which
should help guide investigation in storage performance, root-cause analysis of bottle-
necks, and the reproduction of hardware and software issues. A future area to explore
would be the ability to create generative models based on the analysis of previously
recorded I/O traces. This would enable the portability of realistic workload replays.

13.6 Concluding Remarks

Several benchmarks have emerged in the last decades specifically designed to eval-
uate the performance of storage systems and storage components. This chapter
presented a brief history of the SPEC System File Server (SFS) benchmarks and
took a closer look at SPEC SFS 2014. It then introduced the benchmarks from the
Storage Performance Council (SPC) and the IOzone file system benchmark. Finally,
the Flexible I/O Tester (fio) was presented, showing some examples of how it can be
used to measure I/O performance.

With the continuous evolution of storage applications and technology, including
new storage media like solid-state drives (SSD) and non-volatile memory (NVM),
additional storage workloads become of interest and the current workloads need to be
modified or replaced to reflect new users’ needs and usage models of new application
areas like machine learning, Genomics, and others.

References

Wittle, M. and Keith, B. E. (1993). “LADDIS: The Next Generation in NFS File
Server Benchmarking”. In: Proceedings of the 1993 Summer USENIX Techni-
cal Conference. (Cincinnati, Ohio). USENIX Association: Berkeley, CA, USA,
pp. 111–128 (cited on p. 285).

	Chapter 13 Storage Benchmarks
	13.1 Historical Perspective on System File Server Benchmarks
	13.2 SPEC SFS 2014
	13.3 Storage Performance Council (SPC)
	13.3.1 SPC-1
	13.3.2 SPC-2
	13.3.3 Component and Energy Extension

	13.4 The IOzone Benchmark
	13.5 Flexible I/O Tester (fio)
	13.5.1 Running a Simple Job
	13.5.2 More Complex Workloads
	13.5.3 Unusual I/O Patterns
	13.5.4 ioengines
	13.5.6 Future Challenges

	13.6 Concluding Remarks
	References

