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Chapter 1
Benchmarking Basics

“One accurate measurement is worth a thousand expert
opinions.”
—Grace Hopper (1906-1992), US Navy Rear Admiral

“From a user’s perspective, the best benchmark is the user’s
own application program.”
—Kaivalya M. Dixit (1942-2004), Former SPEC President

This chapter provides a definition of the term “benchmark” followed by definitions
of the major system quality attributes that are typically subject of benchmarking.
After that, a classification of the different types of benchmarks is provided, followed
by an overview of strategies for performance benchmarking. Finally, the quality
criteria for good benchmarks are discussed in detail, and the chapter is wrapped up
by a discussion of application scenarios for benchmarks.

1.1 Definition of Benchmark

The term benchmark was originally used to refer to “a mark on a workbench used
to compare the lengths of pieces so as to determine whether one was longer or
shorter than desired.”! In computer science, a benchmark refers to “a test, or set
of tests, designed to compare the performance of one computer system against the
performance of others.”! Performance, in this context, is typically understood as
the amount of useful work accomplished by a system compared to the time and
resources used. Better performance means more work accomplished in shorter time
and/or using less resources. Depending on the context, high performance may involve
one or more of the following: high responsiveness when using the system, high
processing rate, low amount of resources used, or high availability of the system’s

! SPEC Glossary: https://www.spec.org/spec/glossary
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services. While systems benchmarking has traditionally been focused on evaluating
performance in this classical sense (amount of work done vs. time and resources
spent), in recent years, the scope of benchmarking has been extended to cover other
properties beyond classical performance aspects (see Section 1.2). Examples of
such properties include system reliability, security, or energy efficiency. Modern
benchmarks can thus be seen as evaluating performance in a broader sense, that is,
“the manner in which or the efficiency with which something reacts or fulfills its
intended purpose.”?

In line with this development, we use the following definition of the term bench-
mark in this book:

Definition 1.1 (Benchmark) A benchmark is a tool coupled with a methodology
for the evaluation and comparison of systems or components with respect to specific
characteristics, such as performance, reliability, or security.

We refer to the entity (i.e., system or component) that is subject of evaluation
as System Under Test (SUT). This definition is a variation of the definition pro-
vided by Vieira et al. (2012). A more narrow interpretation of this definition was
formulated by Kistowski et al. (2015), where the competitive aspects of benchmarks
are stressed (i.e., “a standard tool for the competitive evaluation and comparison of
competing systems”), reflecting the fact that competitive system evaluation is the
primary purpose of standardized benchmarks as developed by the Standard Perfor-
mance Evaluation Corporation (SPEC) and the Transaction Processing Performance
Council (TPC). To distinguish from tools for non-competitive system evaluation and
comparison, such tools are often referred to as rating tools or research benchmarks.
Rating tools are primarily intended as a common method of evaluation for research
purposes, regulatory programs, or as part of a system improvement and development
approach. Rating tools can also be standardized and should generally follow the same
design and quality criteria as standard benchmarks. SPEC’s Server Efficiency Rating
Tool (SERT), for example, has been designed and developed using a similar process
as the SPECpower_ssj2008 benchmark. The term research benchmark is used mostly
by SPEC’s Research Group? to refer to standard scenarios and workloads that can
be used for in-depth quantitative analysis and evaluation of existing products as well
as early prototypes and research results.

Each benchmark is characterized by three key aspects: metrics, workloads, and
measurement methodology. The metrics determine what values should be derived
based on measurements to produce the benchmark results. The workloads determine
under which usage scenarios and conditions (e.g., executed programs, induced system
load, injected failures / security attacks) measurements should be performed to derive
the metrics. Finally, the measurement methodology defines the end-to-end process to
execute the benchmark, collect measurements, and produce the benchmark results.

2 Random House Webster’s Unabridged Dictionary
3 SPEC Research Group: https://research.spec.org
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1.2 System Quality Attributes

As discussed above, systems benchmarking has evolved to cover properties be-
yond classical performance aspects, such as system reliability, security, or energy
efficiency. According to the ISO/IEC 25010:2011 standard, system quality can be
described in terms of the attributes shown in Figure 1.1. We distinguish between ex-
ternal and internal quality attributes. External quality attributes describe the view of
the system users, for example, performance, reliability, and usability. Internal qual-
ity attributes describe the view of the system developers, typically reflected in the
attribute maintainability, which captures the degree of effectiveness and efficiency
with which the system can be modified.

Functional Suitability

Performance Efficiency

Compatibility
Usability
System/Software
Product Quality
Reliability
Security

Maintainability

Portability

Fig. 1.1: System quality attributes according to ISO/IEC 25010:2011
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In the following, we provide a brief overview of the major quality attributes
targeted for evaluation by modern benchmarks.

Performance As discussed in Section 1.1, performance in its classical sense
captures the amount of useful work accomplished by a system compared to the time
and resources used. Typical performance metrics, which will be introduced more
formally and discussed in detail in Chapter 3, include response time, throughput, and
utilization. Very briefly, response time is the time it takes a system to react to a request
providing a respective response; throughput captures the rate at which requests are
processed by a system measured in number of completed requests (operations) per
unit of time; and utilization is the fraction of time in which a resource (e.g., processor,
network link, storage device) is used (i.e., is busy processing requests).*

Scalability Scalability is the ability to continue to meet performance require-
ments as the demand for services increases and resources are added (Smith and
Williams, 2001).

Elasticity Elasticity is the degree to which a system is able to adapt to workload
changes by provisioning and deprovisioning resources in an autonomic manner, such
that at each point in time, the available resources match the current demand as closely
as possible (Herbst et al., 2013).

Energy Efficiency Energy efficiency is the ratio of performance over power
consumption. Alternatively, energy efficiency can be defined as a ratio of work
performed and energy expended for this work.

Availability Availability is the readiness for correct service (Avizienis et al.,
2004). In practice, the availability of a system is characterized by the fraction of time
that the system is up and available to its users (Menascé et al., 2004), that is, the
probability that the system is up at a randomly chosen point in time. The two main
reasons for unavailability are system failures and overload conditions.

Reliability Reliability is the continuity of correct service (Avizienis et al.,
2004). In practice, the reliability of a system is characterized by the probability that
the system functions properly over a specified period of time (Trivedi, 2016).

Security Security is a composite of the attributes of confidentiality, integrity, and
availability (Avizienis et al., 2004). Confidentiality is the protection of data against
its release to unauthorized parties. Integrity is the protection of data or services
against modifications by unauthorized parties. Finally, availability, in the context
of security, is the protection of services such that they are ready to be used when
needed. Enforcing security typically requires encrypting data, which in many cases
may have a significant performance overhead.

Dependability The notion of dependability and its terminology have been es-
tablished by the International Federation for Information Processing (IFIP) Working
Group 10.4, which defines dependability as “the trustworthiness of a computing sys-
tem that allows reliance to be justifiably placed on the service it delivers.” Depend-
ability is an integrative concept that includes the following attributes (Laprie, 1995):

4 We use the term request in a general sense meaning any unit of work executed by a system that
has a distinct start and end time, for example, a request sent through a browser to open a web page,
a database transaction, a network operation like transferring a data packet, or a batch job executed
by a mainframe system.
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availability (readiness for correct service), reliability (continuity of correct service),
safety (absence of catastrophic consequences on the users and the environment), con-
fidentiality (absence of unauthorized disclosure of information), integrity (absence of
improper system alterations), and maintainability (ability to undergo modifications
and repairs).

Resilience Resilience encompasses all attributes of the quality of “working well
in a changing world that includes faults, failures, errors, and attacks” (Vieira et al.,
2012). Resilience benchmarking merges concepts from performance, dependability,
and security benchmarking. In practice, resilience benchmarking faces challenges
related to the integration of these three concepts and to the adaptive characteristics
of the system under test.

1.3 Types of Benchmarks

Computer benchmarks typically fall into three general categories: specification-
based, kit-based, and hybrid. Furthermore, benchmarks can be classified into syn-
thetic benchmarks, microbenchmarks, kernel benchmarks, and application bench-
marks.

Specification-based benchmarks describe functions that must be realized, required
input parameters, and expected outcomes. The implementation to achieve the specifi-
cation is left to the individual running the benchmark. Kit-based benchmarks provide
the implementation as a required part of official benchmark execution. Any func-
tional differences between products that are allowed to be used for implementing the
benchmark must be resolved ahead of time. The individual running the benchmark
is typically not allowed to alter the execution path of the benchmark.

Specification-based benchmarks begin with a definition of a business problem
and a set of specific requirements to be addressed by the benchmark. The key criteria
for this definition are the relevance topics discussed in Section 1.5 and novelty.
Such benchmarks have the advantage of allowing innovative software to address
the business problem of the benchmark by proving that the specified requirements
are satisfied by the new implementation (Huppler and Johnson, 2014). On the other
hand, they require substantial development prior to running the benchmark and may
have challenges proving that all requirements of the benchmark are met.

Kit-based benchmarks may appear to restrict some innovative approaches to a
business problem, but have the advantage of providing near “load and go” imple-
mentations that greatly reduce the cost and time required to run the benchmark. For
kit-based benchmarks, the “specification” is used as a design guide for the creation of
the kit. For specification-based benchmarks, the “specification” is presented as a set
of rules to be followed by a third party who will implement and run the benchmark.
This allows for substantial flexibility in how the benchmark’s business problem will
be resolved—a principal advantage of specification-based benchmarks.

A hybrid of the specification-based and kit-based approaches may be necessary
if the majority of the benchmark can be provided in a kit, but there is a desire to
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allow some functions to be implemented at the discretion of the individual running
the benchmark. While both specification-based and kit-based approaches have been
successful in the past, current trends favor kit-based development.

The differences between synthetic benchmarks, microbenchmarks, kernel bench-
marks, and application benchmarks are discussed next based on the classification
by Lilja (2000). To evaluate the performance of a system with respect to a given
characteristic, the system must execute some sort of program, as defined by the
benchmark workload. Since the user is ultimately interested in how the system will
perform when executing his application, the best program to run is obviously the
user’s application itself. Unfortunately, in practice this is usually infeasible, as a
significant amount of time and effort may be required to port the application to
the SUT. Also, one may be interested in comparing different systems to determine
which one is most suitable for developing a new application. Since, in such a case,
the application will not exist yet, it cannot be used as a workload for benchmarking.
Given these observations, one is often forced to rely on making measurements while
executing a different program than the user’s application. Depending on the type of
benchmark program used, benchmarks can be classified into synthetic benchmarks,
microbenchmarks, kernel benchmarks, or application benchmarks.

Synthetic benchmarks are artificial programs that are constructed to try to mimic
the characteristics of a given class of applications. They normally do this by executing
mixes of operations carefully chosen to elicit certain system behavior and/or to match
the relative mix of operations observed in the considered class of applications. The
hope is that if the induced system behavior and/or the executed operation mixes are
similar, the performance observed when running the benchmark would be similar to
the performance obtained when executing an actual application from the respective
class. The major issue with synthetic benchmarks is that they do not capture the
impact of interactions between operations caused by specific execution orderings.
Furthermore, such benchmarks often fail to capture the memory-referencing patterns
of real applications. Thus, in many cases, synthetic benchmarks fail to provide
representative workloads exhibiting similar performance to real applications from
the respective domain. However, given their flexibility, synthetic benchmarks are
useful for tailored system analysis allowing one to measure the limits of a system
under different conditions.

Microbenchmarks are small programs used to test some specific part of a system
(e.g., a small piece of code, a system operation, or a component) independent of
the rest of the system. For example, a microbenchmark may be used to evaluate the
performance of the floating-point execution unit of a processor, the memory man-
agement unit, or the I/O subsystem. Microbenchmarks are often used to determine
the maximum performance that would be possible if the overall system performance
were limited by the performance of the respective part of the system under evaluation.

Kernel benchmarks (also called program kernels) are small programs that capture
the central or essential portion of a specific type of application. A kernel benchmark
typically executes the portion of program code that consumes a large fraction of the
total execution time of the considered application. The hope is that since this code
is executed frequently, it captures the most important operations performed by the
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actual application. Given their compact size, kernel benchmarks have the advantage
that they are normally easy to port to different systems. On the downside, they may
fail to capture important influencing factors since they may ignore important system
components (e.g., operating system or middleware) and may not stress the memory
hierarchy in a realistic manner.

Application benchmarks are complete real application programs designed to be
representative of a particular class of applications. In contrast to kernel or synthetic
benchmarks, such benchmarks do real work (i.e., they execute real, meaningful tasks)
and can thus more accurately characterize how real applications are likely to behave.
However, application benchmarks often use artificially small input datasets in order
to reduce the time and effort required to run the benchmarks. In many cases, this
limits their ability to capture the memory and I/O requirements of real applications.
Nonetheless, despite this limitation, application benchmarks are usually the most
effective benchmarks in capturing the behavior of real applications.

1.4 Performance Benchmarking Strategies

As discussed in the beginning of this chapter, in classical performance benchmarking,
a benchmark is defined as a test, or set of tests, designed to compare the performance
of one system against the performance of others. The term performance in this context
is understood as the amount of useful work accomplished by a system compared to
the time and resources used. Better performance means more work accomplished in
shorter time and/or using less resources.

In classical performance benchmarking, three different benchmarking strategies
can be distinguished (Lilja, 2000): (1) fixed-work benchmarks, which measure the
time required to perform a fixed amount of work; (2) fixed-time benchmarks, which
measure the amount of work performed in a fixed period of time; and (3) variable-
work and variable-time benchmarks, which vary both the amount of work and the
execution time.

1.4.1 Fixed-Work Benchmarks

Let W; be the “amount of work™ done by System i in a measurement interval 7;. The
amount of work done can be seen as an event count, where each event represents a
completion of a unit of work.

The system speed (execution rate) is defined as R; = W;/T;. Assuming that we
run a fixed-work benchmark on two systems, that is, W; = W, = W, it follows that
the speedup of the second system relative to the first is given by?>

5 We formally introduce and discuss the metric speedup in more detail in Chapter 3 (Section 3.3).
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Thus, the time 7; a system needs to execute W units of work can be used to com-
pare the performance of systems. The performance of a system typically depends on
the performance of multiple system components (e.g., CPU, main memory, I/O sub-
system) that are used during operation. The main issue with fixed-work benchmarks
is that they introduce an intrinsic performance bottleneck limiting how much the
performance can be improved by improving only a single component of the system.

To illustrate this, assume that a system is optimized by improving the performance
of its most important performance-influencing component (e.g., its CPU). The sys-
tem’s execution time can be broken down into two parts: time spent processing at
the component under optimization and time spent processing at other components
unaffected by the optimization. Assume that the performance of the optimized com-
ponent is boosted by a factor of g. Let T be the time the system needs to execute W
units of work before the optimization is applied, and let 7’ be the time it needs to
execute the same workload after the optimization is applied. Let a be the fraction of
time in which the optimized component is executing. (1 — ) will then correspond to
the fraction of time spent on components and activities unaffected by the optimiza-
tion. Figure 1.2 illustrates the impact of the optimization on the overall benchmark
execution time (Lilja, 2000).
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Fig. 1.2: Impact of optimizing a single system component

We observe that the overall system speedup that can be achieved through the
described kind of optimization is limited:

T T 1
S= = — = —~, (1.2)
Trl-aT 1-a(1-1)
1 1
lim § = lim = . (1.3)

g— qﬁ‘”l—a(l—}j) l-a

Equation (1.3) is known as Amdahl’s law. It introduces an upper bound on the
overall performance improvement that can be achieved by improving the performance
of a single component of a system. Given this upper bound, fixed-work benchmarks
are not very popular in the industry since they have an intrinsic performance bottle-
neck limiting how much performance improvement can be achieved by optimizing a
given system component.
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1.4.2 Fixed-Time Benchmarks

To address the described issue, fixed-time benchmarks do not fix the amount of
work W; and instead measure the amount of work that can be processed in a fixed
period of time. The amount of work that a system manages to process in the available
time is used to compare the performance of systems.

This idea was first implemented in the SLALOM benchmark (Gustafson, Rover,
et al., 1991), which runs an algorithm for calculating radiosity.® The performance
metric is the accuracy of the answer that can be computed in 1 min. The faster
a system executes, the more accurate the result obtained in 1 min would be. The
advantage of this approach is that the problem being solved is automatically scaled
to the capabilities of the system under test.

Fixed-time benchmarks address the described scalability issue of fixed-work
benchmarks. Whatever part of the execution is optimized, it would lead to saving
some time, which can then be used for processing further units of work improving
the benchmark result.

To show this, we consider the same scenario as above but with a fixed execution
time. Let T be the fixed time period for which the benchmark is executed. Given that
the optimized part of the execution is running g times faster, if we imagine running
the same amount of work without the optimization, the respective execution time
would be ¢ times longer. This is illustrated in Figure 1.3, sometimes referred to as
the scaled version of Amdahl’s law (Lilja, 2000). The benchmark execution time is
compared against a hypothetical scenario (7;,) where the same amount of work is
processed without the optimization.

(-0l
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Fig. 1.3: Scaled version of Amdahl’s law

‘We observe that unlike the case for fixed-work benchmarks, this time there is no
upper bound on the speedup that can be achieved:

T, aqly+(1-a)Ty 3

S=I= = 1-a), 1.4
T, T agq+ (1 -a) (1.4)
lim S = lim [ag + (1 —@)] = . (1.5)

q— q—

¢ Radiosity is a global illumination algorithm used in 3D computer graphics rendering.
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1.4.3 Variable-Work and Variable-Time Benchmarks

Fixed-work benchmarks are most intuitive in terms of our expectation of how im-
provements in system performance should impact the execution time of an applica-
tion. Fixed-time benchmarks, on the other hand, have the advantage that the problem
solved is automatically scaled to reflect the capabilities of the system under test. Fi-
nally, there are also variable-work and variable-time benchmarks, which fix neither
the available time T nor the amount of work W (Lilja, 2000). The metric is defined
as a function of 7 and W.

An example of a benchmark that follows this strategy is the HINT bench-
mark (Gustafson and Snell, 1995). It defines a mathematical problem to be solved
and uses the quality of the provided solution as a basis for evaluation. The assump-
tion is that the solution quality can be improved continually if additional time for
computations is available. The ratio of the provided solution quality to the time used
to achieve this quality is used as a performance metric.

The specific problem considered in the HINT benchmark is to find rational upper
and lower bounds for the integral

1
f

The classical interval subdivision technique is used to find the two bounds by
dividing the interval [0, 1] into subintervals and counting the number of squares in
the area completely below the curve and those in the area including the curve. The
solution quality is then defined as 1/(u—1), where u and [ are the computed upper and
lower bounds, respectively. The metric quality improvements per second (QUIPS)
is then computed by dividing the quality of the solution by the execution time in
seconds. By fixing neither the execution time nor the amount of work to be processed,
maximum flexibility is provided to evaluate the performance of systems with different
behavior and performance bottlenecks.

1—x
dx. 1.6
1+xx (1.6)

1.5 Benchmark Quality Criteria

Benchmark designers must balance several, often conflicting, criteria in order to be
successful. Several factors must be taken into consideration, and trade-offs between
various design choices will influence the strengths and weaknesses of a benchmark.
Since no single benchmark can be strong in all areas, there will always be a need for
multiple workloads and benchmarks (Skadron et al., 2003).

It is important to understand the characteristics of a benchmark and determine
whether or not it is applicable for a particular situation. When developing a new
benchmark, the goals should be defined so that choices between competing design
criteria can be made in accordance with those goals to achieve the desired balance.
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Several researchers and industry participants have listed various desirable charac-
teristics of benchmarks (Gustafson and Snell, 1995; Henning, 2000; Huppler, 2009;
Kistowski et al., 2015; Sim et al., 2003; Skadron et al., 2003). The contents of
the lists vary based on the perspective of the authors and their choice of terminol-
ogy and grouping of characteristics, but most of the concepts are similar. The key
characteristics can be organized in the following five groups:

1. Relevance: how closely the benchmark behavior correlates to behaviors that are
of interest to users,

2. Reproducibility: producing consistent results when the benchmark is run with
the same test conﬁguration,

3. Fairness: allowing different test configurations to compete on their merits without
artificial limitations,

4. Verifiability: providing confidence that a benchmark result is accurate, and

5. Usability: avoiding roadblocks for users to run the benchmark in their test envi-
ronments.

All benchmarks are subject to these same criteria, but each category includes
additional issues that are specific to the individual benchmark, depending on the
benchmark’s goals. In the following, the individual criteria are discussed in more
detail based on Kistowski et al. (2015).

1.5.1 Relevance

“Relevance” is perhaps the most important characteristic of a benchmark. Even if the
workload was perfect in every other regard, it will be of minimal use if it does not
provide relevant information to its consumers. Yet relevance is also a characteristic
of how the benchmark results are applied; benchmarks may be highly relevant for
some scenarios and of minimal relevance for others. For the consumer of benchmark
results, an assessment of a benchmark’s relevance must be made in the context of the
planned use of the benchmark results. For the benchmark designer, relevance means
determining the intended usage scenarios of the benchmark and then designing the
benchmark to be relevant for those usage scenarios (SPECpower Committee, 2014).

A general assessment of the relevance of a benchmark or workload involves two
dimensions: (1) the breadth of its applicability and (2) the degree to which the
workload is relevant in a given area. For example, an XML parsing benchmark may
be highly relevant as a measure of XML parsing performance, somewhat relevant
as a measure of enterprise server application performance, and not at all relevant
for graphics performance of 3D games. Conversely, a suite of CPU benchmarks
such as SPEC CPU2017 may be moderately relevant for a wide range of comput-
ing environments. Benchmarks that are designed to be highly relevant in a specific
area tend to have narrow applicability, while benchmarks that attempt to be appli-
cable to a broader spectrum of uses tend to be less meaningful for any particular
scenario (Huppler, 2009).
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Scalability is an important aspect of relevance, particularly for server benchmarks.
Most relevant benchmarks are multiprocess and/or multithreaded in order to be able
to take advantage of the full resources of the server (Skadron et al., 2003). Achieving
scalability in any application is difficult; for a benchmark, the challenges are often
even greater because the benchmark is expected to run on a wide variety of systems
with significant differences in available resources. Benchmark designers must also
strike a careful balance between avoiding artificial limits to scaling and behaving
like real applications, which often have scalability issues of their own.

1.5.2 Reproducibility

Reproducibility is the capability of the benchmark to produce the same results
consistently for a particular test environment. It includes both run-to-run consistency
and the ability for another tester to independently reproduce the results in another
but identical environment.

Ideally, a benchmark result should be a function of the hardware and software
configuration, so that the benchmark is a measure of the performance of that en-
vironment; if this were the case, the benchmark would have perfect consistency. In
reality, the complexity inherent in a modern computer system introduces significant
variability in the performance of an application. This variability is introduced by
several factors, including things such as the timing of thread scheduling, dynamic
compilation, physical disk layout, network contention, and user interaction with the
system during the run (Huppler, 2009). Energy-efficiency benchmarks often have ad-
ditional sources of variability due to power management technologies dynamically
making changes to system performance and temperature changes affecting power
consumption.

Benchmarks can address this run-to-run variability by running workloads for long
enough periods of time (or executing them multiple times successively) in order
to include representative samples of these variable behaviors. Some benchmarks
require submission of several runs with scores that are near each other as evidence
of consistency. Benchmarks also tend to run in steady state’, unlike more typical
applications, which have variations in load due to factors such as the usage patterns
of users.

The ability to reproduce results in another test environment is largely tied to the
ability to build an identical environment. Industry-standard benchmarks require re-
sults submissions to include a description of the test environment, typically including
both hardware and software components as well as configuration options. Similarly,
published research that includes benchmark results generally adds a description of
the test environment that produced those results. However, in both of these cases,

7 Generally, a system or a process is considered to be in a steady state if the variables that define
its behavior are unchanging in time (Gagniuc, 2017). In the context of benchmarking, typically, the
variables that define the workload executed on the system under test are considered.
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the description may not provide enough detail for an independent tester to be able to
assemble an identical environment.

Hardware must be described in sufficient detail for another person to obtain
identical hardware. Software versions must be stated so that it is possible to use
the same versions when reproducing the result. Tuning and configuration options
must be documented for firmware, operating system, and application software so
that the same options can be used when rerunning the test. Unfortunately, much of
this information cannot be automatically obtained in a reliable way, so it is largely
up to the tester to provide complete and accurate details.

TPC benchmarks require a certified auditor to audit results and ensure compliance
with reporting requirements. SPEC uses a combination of automatic validation and
committee reviews to establish compliance.

1.5.3 Fairness

Fairness ensures that systems can compete on their merits without artificial con-
straints. Because benchmarks always have some degree of artificiality, it is often
necessary to place some constraints on test environments in order to avoid unrealis-
tic configurations that take advantage of the simplistic nature of the benchmark.

Benchmark development requires compromises among multiple design goals; a
benchmark developed by a consensus of experts is generally perceived as being more
fair than a benchmark designed by a single company. While “design by committee”
may not be the most efficient way to develop a benchmark, it does require that
compromises are made in such a way that multiple interested parties are able to agree
that the final benchmark is fair. As a result, benchmarks produced by organizations
such as SPEC and TPC (both of which comprise members from industry as well
as academic institutions and other interested parties) are generally regarded as fair
measures of performance.

Benchmarks require a variety of hardware and software components to provide an
environment suitable for running them. It is often necessary to place restrictions on
what components may be used. Careful attention must be placed on these restrictions
to ensure that the benchmark remains fair. Some restrictions must be made for
technical reasons. For example, a benchmark implemented in Java requires a Java
Virtual Machine (JVM) and an operating system and hardware that supports it. A
benchmark that performs heavy disk I/O may effectively require a certain number of
disks to achieve acceptable 1/O rates, which would therefore limit the benchmark to
hardware capable of supporting that number of disks.

Benchmark run rules, which specify the requirements that have to be fulfilled
in order to produce a compliant benchmark result, often require the used hardware
and software to meet some level of support or availability. While this restricts
what components may be used, it is actually intended to promote fairness. Because
benchmarks are by nature simplified applications, it is often possible to use simplified
software to run them; this software may be quite fast because it lacks features that may
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be required by real applications. For example, enterprise servers typically require
certain security features in their software which may not be directly exercised by
benchmark applications; software that omits these features may run faster than
software that includes them, but this simplified software may not be usable for the
customer base to which the benchmark is targeted. Rules regarding software support
can be a particular challenge when using open source software, which is often
supported primarily by the developer community rather than commercial support
mechanisms.

Both of these situations require a careful balance. Placing too many or inap-
propriate limits on the configuration may disallow results that are relevant to some
legitimate situations. Placing too few restrictions can pollute the pool of published
results and, in some cases, reduce the number of relevant results because vendors
cannot compete with the “inappropriate” submissions.

Portability is an important aspect of fairness. Some benchmarks, such as TPC-C,
provide only a specification and not an implementation of the benchmark, allowing
vendors to implement the specification using whatever technologies are appropriate
for their environment (as long as the implementation is compliant with the specifi-
cation and other run rules). Other benchmarks, such as those from SPEC, provide an
implementation that must be used. Achieving portability with benchmarks written
in Java is relatively simple; for C and C++, it can be more difficult (Henning, 2000).

If the benchmark allows code to be recompiled, rules must be defined to state what
compilation flags are allowed. SPEC CPU2017 defines base results (with minimal
allowed compilation flags) and peak results (allowing the tester to use whatever
compilation flags they would like). Similarly, Java benchmarks may put limits on
what JVM command line options may be used.

In some cases, multiple implementations may be required to support different
technologies. In this case, it may be necessary (as with SPECweb2009) for results
with different implementations to be assigned to different categories so they cannot
be compared with each other.

Benchmark run rules often include stipulations on how results may be used.
These requirements are intended to promote fairness when results are published and
compared, and they often include provisions that require certain basic information
to be included any time that results are given. For example, SPECpower_ssj2008
requires that if a comparison is made for the power consumption of two systems at
the 50% target load level, the performance of each system at the 50% load level as
well as the overall ssj_ops/watt value must also be stated.

SPEC has perhaps the most comprehensive fair use policy, which further illustrates
the types of fair use issues that benchmarks should consider when creating their run
rules.®

8 SPEC fair use rules: https://www.spec.org/fairuse.html
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1.5.4 Verifiability

Within the industry, benchmarks are typically run by vendors who have a vested
interest in the results. In academia, results are subjected to peer review and interesting
results will be repeated and built upon by other researchers. In both cases, it is
important that benchmark results are verifiable so that the results can be deemed
trustworthy.

Good benchmarks perform some amount of self-validation to ensure that the
workload is running as expected and that run rules are being followed. While a
workload might include configuration options intended to allow researchers to change
the behavior of the workload, standard benchmarks typically limit these options to
some set of compliant values, which can be verified at run time. Benchmarks may also
perform some functional verification that the output of the test is correct; these tests
could detect some cases where optimizations (e.g., experimental compiler options)
are producing incorrect results.

Verifiability is simplified when configuration options are controlled by the bench-
mark or when these details can be read by the benchmark. In this case, the benchmark
can include the details with the results. Configuration details that must be documented
by the user are less trustworthy since they could have been entered incorrectly.

One way to improve verifiability is to include more details in the results than
are strictly necessary to produce the benchmark’s metrics. Inconsistencies in this
data could raise questions about the validity of the data. For example, a benchmark
with a throughput metric might include response time information in addition to the
transaction counts and elapsed time.

1.5.5 Usability

Most users of benchmarks are technically sophisticated, making ease of use less of a
concern than it is for more consumer-focused applications; however, there are several
reasons why ease of use is important. One of the most important ease of use features
for a benchmark is self-validation. This was already discussed in terms of making
the benchmark verifiable. Self-validating workloads give the tester confidence that
the workload is running properly.

Another aspect of ease of use is being able to build practical configurations for
running the benchmark. For example, one of the top TPC-C results has a system
under test with over 100 distinct servers, over 700 disk drives, 11,000 SSD modules
(with a total capacity of 1.76 petabytes), and a system cost of over $30 million. Of the
18 non-historical accepted TPC-C results published between January 1, 2010 and
August 24, 2013, the median total system cost was $776.627. Such configurations
are not economical for most potential users (Huppler, 2009).

Accurate descriptions of the system hardware and software configuration are
critical for reproducibility but can be a challenge due to the complexity of these
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descriptions. Benchmarks can improve ease of use by providing tools to automatically
extract the relevant information required for generating the descriptions.

1.6 Application Scenarios for Benchmarks

While benchmarking has traditionally been focused on competitive system evaluation
and comparison, over the past couple of decades the scope of benchmarking has
evolved to cover many other application scenarios. In the following, a brief overview
of the main application scenarios for modern benchmarks is given. Benchmarks are
considered in a broad sense including tools for non-competitive system evaluation
(i.e., rating tools or research benchmarks).

As discussed in Section 1.1, systems benchmarking has traditionally been focused
on evaluating performance in a classical sense (amount of work done vs. time and
resources spent); however, in recent years, the scope of systems benchmarking has
been extended to cover other properties beyond classical performance aspects, such
as system reliability, security, or energy efficiency.

Generally, benchmarks are used to evaluate systems with respect to certain quality
attributes of interest. In Section 1.2, we provided an overview of the major system
quality attributes that may be subject of evaluation using benchmarks.

We refer to the entity (e.g., end user or vendor) that employs a benchmark to
evaluate a system under test (SUT) as benchmarker. The SUT could be a hardware
or software product (or service), or it could be an end-to-end application comprising
multiple hardware and software components. Figure 1.4 shows the different scenarios
of what the benchmarker could be with respect to his goals and intentions.

In the first scenario, the benchmarker is a customer interested to buy the SUT who
uses the benchmark to compare and rank competing products offered by different
vendors or to determine the size and capacity of a specific system to be purchased.

In the second scenario, the benchmarker is a vendor who sells the SUT to cus-
tomers and is using the benchmark to showcase its quality for marketing purposes.
Industry-standard benchmarks and standardization bodies provide means to evaluate
and showcase a product’s quality on a level playing field. The benchmarker might
also be interested to receive an official certificate issued by a certification agency,
attesting a given quality level (e.g., energy-efficiency standard).

In the next scenario, the benchmarker is in the process of developing, deploying,
or operating the SUT. In this scenario, one might be using the benchmark for stress or
regression testing, for system optimization or performance tuning, for system sizing
and capacity planning, or for validating a given hardware and software configuration.
In this scenario, the benchmark may also be used as a blueprint demonstrating
programming best practices and design patterns as a guidance for the development
of a new system architecture.

Finally, the benchmarker may be a researcher using the benchmark as a repre-
sentative application to evaluate novel system architectures or approaches to system
development and operation.
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Fig. 1.4: Application scenarios for benchmarks

1.7 Concluding Remarks

In this chapter, we introduced the fundamental concepts and terminology used in
systems benchmarking. We provided a definition of the term “benchmark” followed
by definitions of the major system quality attributes that are typically subject of
benchmarking. We distinguished between external and internal system quality at-
tributes. After that, we presented a classification of the different types of benchmarks,
followed by an overview of strategies for performance benchmarking. Finally, the
quality criteria for good benchmarks, such as relevance, reproducibility, fairness,
verifiability, and usability, were discussed in detail. While benchmarking has tradi-
tionally been focused on competitive system evaluation and comparison, over the
past couple of decades, the scope of benchmarking has evolved to cover many other
application scenarios. In the final section of this chapter, we provided an overview of
the application scenarios for benchmarks discussing both their use in industry and
their use in the research and academic community.
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