
Systems 
Benchmarking

Samuel Kounev 
Klaus-Dieter Lange 
Jóakim von Kistowski

For Scientists and Engineers



Systems Benchmarking



Samuel Kounev • Klaus-Dieter Lange 

Jóakim von Kistowski

Systems Benchmarking

For Scientists and Engineers



 
 

 

ISBN 978-3-030-41704-8 ISBN 978-3-030-41705-5 (eBook) 
https://doi.org/10.1007/978-3-030-41705-5 
 
© Springer Nature Switzerland AG 2020 
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, 
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or 
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar 
methodology now known or hereafter developed.  
The use of general descriptive names, registered names, trademarks, service marks, etc. in this 
publication does not imply, even in the absence of a specific statement, that such names are exempt 
from the relevant protective laws and regulations and therefore free for general use. 
The publisher, the authors, and the editors are safe to assume that the advice and information in this 
book are believed to be true and accurate at the date of publication. Neither the publisher nor the 
authors or the editors give a warranty, expressed or implied, with respect to the material contained 
herein or for any errors or omissions that may have been made. The publisher remains neutral with 
regard to jurisdictional claims in published maps and institutional affiliations. 
 

This Springer imprint is published by the registered company Springer Nature Switzerland AG 
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland 

Samuel Kounev Klaus-Dieter Lange 

University of Würzburg Hewlett Packard Enterprise 

Würzburg, Germany Houston, TX, USA 

 

Jóakim von Kistowski 
DATEV eG  

Nürnberg, Germany 

Cover illustration: © 2020 Klaus-Dieter Lange, reprinted with permission 

https://doi.org/10.1007/978-3-030-41705-5


Foreword by David Patterson

In January of 2010, I met Sam and Klaus at the inaugural International Conference
on Performance Engineering (ICPE), in San Jose, USA. I gave the keynote address
“Software Knows Best: Portable Parallelism Requires Standardized Measurements
of Transparent Hardware” to an audience where half was from the industry and
half from academia. That was by design, since in their roles as co-founders and
steering committee members of ICPE, they drove to establish this forum for sharing
ideas and experiences between industry and academia. Thus, I was not surprised to
see that their book “Systems Benchmarking—For Scientists and Engineers” has the
same underlying tone: to foster the integration of theory and practice in the field of
systems benchmarking.

Their work is twofold: Part I can be used as a textbook for graduate students as it
introduces the foundations of benchmarking. It covers:

• the fundamentals of benchmarking,
• a refresher of probability and statistics,
• benchmark metrics,
• statistical measurements,
• experimental design,
• measurement techniques,
• operational analysis and basic queueing models,
• workloads, and
• benchmark standardization.

Part II features a number of concrete applications and case studies based on input
from leading benchmark developers from consortia such as the Standard Perfor-
mance Evaluation Corporation (SPEC) or the Transaction Processing Performance
Council (TPC). It describes a broad range of state-of-the-art benchmarks, their devel-
opment, and their effective use in engineering and research. In addition to covering
classical performance benchmarks—including CPU, energy efficiency, virtualiza-
tion, and storage benchmarks—the book looks at benchmarks and measurement
methodologies for evaluating elasticity, performance isolation, and security aspects.
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vi Foreword by David Patterson

Moreover, some further topics related to benchmarking are covered in detail, such
as resource demand estimation.

The authors also ventured to share some insightful retrospectives in regard to
benchmark development in industry-standard bodies, as they have been active in
SPEC for many years. The information about the formation and growth of SPEC
and TPC over the last 30 years is valuable when starting new leading initiatives like
Embench or MLPerf.

One of my observations is that benchmarks shape a field, for better or for worse.
Good benchmarks are in alignment with real applications, but bad benchmarks are
not, forcing engineers to choose between making changes that help end users or
making changes that only help with marketing.

This book should be required reading for anyone interested in making good
benchmarks.

Berkeley, CA, USA David Patterson
January 2020 2017 ACM A.M. Turing Award Laureate



Foreword by John R. Mashey

I am delighted to write a foreword for this thorough, comprehensive book on theory
and practice of benchmarking. I will keep it short, so people can quickly start on the
substantial text itself.

Creating good benchmarks is harder than most imagine. Many have been found to
have subtle flaws or have become obsolete. In addition, benchmark audiences differ
in their goals and needs. Computer system designers use benchmarks to compare
potential design choices, so they need benchmarks small enough to simulate before
creating hardware. Software engineers need larger examples to help design software
and tune its performance. Vendors want realistic benchmarks that deter gimmicks by
competitors. They dislike wasting time on those they know to be unrepresentative.
Buyers might like to run their own complete workloads, but that is often impractical.
They certainly want widely reported, realistic benchmarks they trust that correlate
with their own workloads. Researchers like good, relevant examples they can analyze
and use in textbooks.

In the 1980s, benchmarks were still often confusing and chaotic, driven by poor
examples and much hype. Vendors boasted of poorly defined MIPS, MFLOPS,
or transactions, and universities often studied tiny benchmarks. Luckily, the last
few decades have seen huge progress, some contributed by the authors themselves.
From personal experience, the close interaction of academia and industry has long
been very fruitful. The three authors have extensive experience combining academic
research, industrial practice, and the nontrivial methods to create good industry-
standard benchmarks on which competitors can agree.

I am especially impressed by the pervasive balance of treatments in this book.
It aims to serve as both a handbook for practitioners and a textbook for students. It
certainly is the former and if I were still teaching college, I would use it as a text.

It starts with the basics of benchmarks and their taxonomies, then covers the
theoretical foundations of benchmarking: statistics, measurements, experimental de-
sign, and queueing theory. That is very important, from experience giving guest
lectures, where I have often found that many computer science students had not
studied the relevant statistical methods, even at very good schools. The theory is
properly complemented with numerous case studies.
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viii Foreword by John R. Mashey

The book explores the current state of the art in benchmark developments, but as
important, provides crucial context by examining decades of benchmark evolution,
failures and successes. It recounts histories of changes from scattered benchmarks to
the more disciplined efforts of industry–academic consortia, such as the Transaction
Processing Performance Council (TPC) and especially the Standard Performance
Evaluation Corporation (SPEC), both started in late 1988. Much was learned not
just about benchmarking technology and good reporting, but in effective ways to
organize such groups. Both organizations are still quite active, three decades later,
an eternity in computing. Chapter 10’s history of the SPEC CPU benchmarks’
evolution is especially instructive.

From history and long-established benchmarks, the book then moves to modern
topics—energy efficiency, virtualization, storage, web, cloud elasticity, performance
isolation in complex data centers, resource demand estimation, and research in soft-
ware and system security. Some of these topics were barely imaginable for bench-
marking when we started SPEC in 1988 just to create reasonable CPU benchmarks!

This is a fine book by experts. It offers many good lessons and is well worth the
time to study.

Portola Valley, CA, USA John R. Mashey
January 2020 SPEC Co-Founder and

Former Silicon Graphics VP/Chief Scientist



Preface

“To measure is to know... If you cannot measure it, you
cannot improve it.”
—William Thomson—Lord Kelvin (1824–1907),
Scottish engineer, mathematician, and physicist

“You can’t control what you can’t measure.”
—Tom DeMarco, American software engineer, author,
and consultant on software engineering topics

Theme

A benchmark is a tool coupled with a methodology for evaluating and compar-
ing systems, or components thereof, with respect to specific characteristics, such
as performance, energy efficiency, reliability, or security. Modern benchmarks are
increasingly complex applications, sometimes composed of hundreds of thousands
of lines of code, combined with detailed specifications describing the benchmarking
process and evaluation methodology.

Traditional benchmarks have been focused on evaluating performance, typically
understood as the amount of useful work accomplished by a system (or component)
compared to the time and resources used. Ranging from simple benchmarks, target-
ing specific hardware or software components, to large and complex benchmarks
focusing on entire systems (e.g., information systems, storage systems, cloud plat-
forms), performance benchmarks have contributed significantly to improve succes-
sive generations of systems. Beyond traditional performance benchmarking, research
on dependability benchmarking has increased in the past two decades. Dependability
captures “the trustworthiness of a system that allows reliance to be justifiably placed
on the service it delivers.”1 Due to the increasing relevance of security issues, secu-

1 International Federation for Information Processing (IFIP) Working Group 10.4
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x Preface

rity benchmarking has also become an important research field. Finally, resilience
benchmarking faces challenges related to the integration of performance, depend-
ability, and security benchmarking as well as to the adaptive characteristics of the
systems under consideration. Resilience encompasses all attributes of the quality of
“working well in a changing world that includes faults, failures, errors, and attacks.”2

Compared to traditional software, benchmark development has different goals
and challenges. While in the past two decades numerous benchmarks have been de-
veloped, very few contributions focusing on the underlying concepts and foundations
of benchmarking have been published.3

The best-known publication on benchmarking is Gray’s The Benchmark Hand-
book.4 The book presents a detailed description of several benchmarks and discusses
the need for domain-specific benchmarks defining four specific criteria they must
fulfill:

1. Relevance: A benchmark should measure the performance of the typical operation
within the problem domain.

2. Portability: A benchmark should be easy to implement on many different systems
and architectures.

3. Scalability: A benchmark should be scalable to cover small and large systems.
4. Simplicity: A benchmark should be understandable to avoid lack of credibility.

The criteria benchmarks should fulfill are further discussed by Huppler.5 The
questions, what a “good” benchmark should look like and which aspects should be
kept in mind from the beginning of the development process, are discussed in detail
and five key criteria are presented:

1. Relevance: A benchmark has to reflect something important.
2. Repeatable: It should be possible to reproduce the results by running the bench-

mark under similar conditions.
3. Fair and Portable: It should be possible for all systems compared to participate

equally.
4. Verifiable: There should be confidence that the documented results are real. This

can, for example, be assured by reviewing results by external auditors.
5. Economical: The cost of running the benchmark should be affordable.

The increasing size and complexity of modern systems make the engineering
of benchmarks that fulfill the above criteria a challenging task. This book covers
the theoretical and abstract foundations necessary for gaining a deep understanding

2 Bondavalli, A. et al. (2009). Research Roadmap—Deliverable D3.2, AMBER—Assessing, Mea-
suring and Benchmarking Resilience. EU FP7 ICT-216295 Coordination and Support Action (CSA).
3 Vieira, M. et al. (2012). “Resilience Benchmarking”. In: Resilience Assessment and Evaluation
of Computing Systems. Springer-Verlag: Berlin, Heidelberg, pp. 283–301.
4 Gray, J., ed. (1993). The Benchmark Handbook: For Database and Transaction Systems. 2nd
Edition. Morgan Kaufmann.
5 Huppler, K. (2009). “The Art of Building a Good Benchmark”. In: Performance Evaluation and
Benchmarking. Vol. 5895. Lecture Notes in Computer Science. Springer-Verlag: Berlin, Heidelberg,
pp. 18–30.
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of benchmarking and the benchmark engineering process. It also provides a high
number of practical applications and concrete examples of modern benchmarks and
their development processes.

Goals, Prerequisites, and Target Audience

The aim of the book is to serve both as a handbook and as a textbook on bench-
marking of systems and components used as building blocks of modern Information
and Communication Technologies (ICT) applications. Benchmarks enable educated
purchasing decisions and play an important role as evaluation tools during system
design, development, and maintenance. In research, benchmarks play an integral
part in the evaluation and validation of new approaches and methodologies.

Benchmarking evolved from the need to be able to compare different systems
fairly in order to make an informed purchasing decision. Without fair and represen-
tative benchmarks, such decisions are often made based on performance indicators
provided by manufacturers; however, such proprietary performance indicators are
often unreliable, as they may be specifically tailored to showcase the strengths of
a given product or to even exploit weaknesses of competing products. Driven by
the need for tools enabling fair and reliable comparisons of systems, a number of
benchmarks, benchmarking methodologies, and benchmark standardization bodies
have emerged. Since then, benchmarks have found broad acceptance in industry
and academia. They now are employed in many fields of testing, some of which
go beyond the original purpose of competitive system comparisons. These fields
include regulatory programs, research evaluation, and testing during system design
and development.

With benchmarking becoming an ever more pervasive topic extending far beyond
the core audience of people with a computer science background, we identify the
need for a book that both explains the fundamentals of benchmarking and provides
detailed examples of modern benchmarks and their methodologies. The conception,
design, and development of benchmarks require a thorough understanding of bench-
marking fundamentals beyond the understanding of the System Under Test (SUT),
including statistics, measurement techniques, metrics, and relevant workload char-
acteristics. This book fills the identified gap covering the aforementioned areas in
depth. It describes how to determine relevant system characteristics to measure, how
to measure these characteristics, and how to aggregate the measurement results into
a metric. Further, the aggregation of metrics into scoring systems is an additional
challenging topic that is discussed and explained in detail. Finally, the book covers
the topic of workload characterization and modeling.

The book is intended to serve as a reference that provides practical and theoretical
foundations as well as an in-depth look at modern benchmarks and benchmark
development. It is intended to serve two audiences. First, it can be used as a handbook
for professionals and researchers who work in areas related to benchmarking. It
provides an up-to-date point of reference for existing work as well as the latest
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results, research challenges, and future research directions. Second, it can be used
as a textbook for lecturers and students of graduate and postgraduate courses on any
of the many subjects that relate to benchmarking. While the reader is assumed to be
generally acquainted with the principles and practices of computer science, as well
as software and systems engineering, no specific expertise in any subfield of these
disciplines is required.

The book is based on experiences that have been gained over the past 14 years in
teaching a regular graduate course on performance engineering and benchmarking.
The course, developed by Prof. Samuel Kounev, has been held at four different
European universities since 2006, including University of Cambridge, Polytechnic
University of Catalonia, Karlsruhe Institute of Technology (KIT), and University of
Würzburg. The book is based on the broad range of materials that have been collected
in this time frame and the extensive experience gained from teaching this course over
the years. In addition, the book reflects much of the authors’ experiences gained from
benchmark development in industry and academia over the past 20 years.

Book Organization and Outline

The book is structured into two parts: foundations and applications. The first part
introduces the foundations of benchmarking as a discipline, covering the three fun-
damental elements of each benchmarking approach: metrics, workloads, and mea-
surement methodology. The second part of the book focuses on different application
areas, presenting contributions in specific fields of benchmark development. These
contributions address the unique challenges that arise in the conception and devel-
opment of benchmarks for specific systems or subsystems. They also demonstrate
how the foundations and concepts of the first part of the book are being used in exist-
ing benchmarks. A number of concrete applications and case studies are presented,
based on input from leading benchmark developers from consortia such as the Stan-
dard Performance Evaluation Corporation (SPEC) and the Transaction Processing
Performance Council (TPC).

Chapter 1 starts by providing a definition of the term “benchmark” followed
by definitions of the major system quality attributes that are typically subject of
benchmarking. After that, a classification of the different types of benchmarks is
provided, followed by an overview of strategies for performance benchmarking.
Finally, the quality criteria for good benchmarks are discussed in detail, and the
chapter is wrapped up with a discussion of application scenarios for benchmarks.

Chapter 2 briefly reviews the basics of probability and statistics while establishing
the statistical notation needed for understanding some of the chapters in the book. The
chapter is not intended as an introduction to probability and statistics but rather as a
quick refresher, assuming that the reader is already familiar with the basic concepts.
While basic probability and statistics is essential for understanding Chapters 4, 5, 7,
and 17, we note that it is not a prerequisite for understanding the other chapters in
the book.
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Chapter 3, devoted to benchmark metrics, starts by defining the basic concepts:
metric, measure, and measurement. It then introduces the different measurement
scales, which allow one to classify the types of values assigned by measures. Next,
definitions of the most common performance metrics are presented. The chapter
continues with a detailed discussion of the quality attributes of good metrics. Finally,
the different types of averages are introduced while showing how they can be used
to define composite metrics and aggregate results from multiple benchmarks.

Chapter 4 is dedicated to experimental measurements, introducing statistical ap-
proaches to quantify the variability and precision of measurements. The chapter
starts by introducing the most common indices of dispersion for quantifying the
variability, followed by defining basic concepts such as accuracy, precision, and res-
olution of measurements. A model of random errors is introduced and used to derive
confidence intervals for estimating the mean of a measured quantity of interest based
on a sample of measurements. Finally, statistical tests for comparing alternatives
based on measurements are introduced.

Chapter 5 covers the topic of experimental design, that is, the process of plan-
ning a set of experiments coupled with a statistical analysis procedure in order to
understand and explain the variation of information under some specified conditions
(factors). Starting with the case of one factor, the analysis of variance (ANOVA)
technique from statistics is introduced; it is then generalized to multiple factors that
can be varied independently. Following this, the Plackett–Burman design is intro-
duced and compared with the ANOVA technique. Finally, a case study showing how
experimental design can be applied in practice is presented.

Chapter 6 looks at the different measurement techniques that can be used in
practice to derive the values of common metrics. While most presented techniques
are useful for performance metrics, some of them can also be applied for other types
of metrics. The chapter starts with a brief introduction to the basic measurement
strategies. It then looks at interval timers and performance profiling, which provides
means to measure how much time a system spends in different states. Following this,
call path tracing is introduced—a technique for extracting a control flow graph of an
application. Finally, the chapter is wrapped up with an overview of commercial and
open-source monitoring tools for performance profiling and call path tracing.

Chapter 7 starts by introducing operational analysis, an approach to evaluate a
system’s performance based on measured or known data by applying a set of basic
quantitative relationships known as operational laws. Operational analysis can be
seen as being part of queueing theory, which provides general methods to analyze
the queueing behavior of one or more service stations. The chapter provides a brief
introduction to the basic notation and principles of queueing theory. While queueing
theory is used in many different domains, from manufacturing to logistics, in this
chapter, the focus is on performance evaluation of computer systems. Nevertheless,
the introduced concepts and mathematical models are relevant for any processing
system where some generic assumptions hold.

Chapter 8 is devoted to benchmark workloads considering their properties and
characteristics in the context of workload generation. The chapter starts with a
classification of the different workload facets and artifacts. The distinction between
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executable and non-executable parts of a workload is introduced as well as the
distinction between natural and artificial workloads. The rest of the chapter introduces
the different types of workload descriptions that can be used for batch workloads and
transactional workloads as well as for open and closed workloads. The challenges
of generating steady-state workloads and workloads with varying arrival rates are
discussed. Finally, the chapter concludes with a brief introduction of system-metric-
based workload descriptions.

Chapter 9 concludes Part I with an overview of benchmark standardization ef-
forts in the area of computer systems and information technology (IT). In an ef-
fort to provide and maintain fair industry standards for measuring system-level and
component-level performance of computer systems, industry-standard consortia such
as the Standard Performance Evaluation Corporation (SPEC) and the Transaction
Processing Performance Council (TPC) were established in 1988. In 1998, the Stor-
age Performance Council (SPC) was founded with a focus on storage benchmarks.
The chapter provides an overview of benchmark standardization efforts within SPEC
and TPC; a brief overview of SPC can be found in Chapter 13.

Chapter 10, the first chapter in Part II, presents an overview and retrospective
on the development and evolution of one of the industry’s most popular standard
benchmarks for computing systems—the SPEC CPU benchmark suite—designed to
stress a system’s processor, memory subsystem, and compiler. The original version
of this benchmark was released in 1989, and since then, five new generations have
been released. The chapter describes these benchmarks and shows how they have
influenced the computer industry over the years, helping to boost computing perfor-
mance by several orders of magnitude. For the latest benchmark, SPEC CPU2017,
details on the benchmark architecture, workloads, metrics, and full disclosure report
are provided.

The measurement and benchmarking of server energy efficiency has become an
ever more important issue over the last decades. To this end, Chapter 11 describes
a rating methodology developed by SPEC for evaluating the energy efficiency of
servers. The methodology was first implemented in the SPECpower_ssj2008 bench-
mark and later extended with more workloads, metrics, and other application areas
for the SPEC Server Efficiency Rating Tool (SERT). The SERT suite was developed
to fill the need for a rating tool that can be utilized by government agencies in their
regulatory programs, for example, the U.S. Environmental Protection Agency (EPA)
for the use in the Energy Star program for servers. The chapter provides an overview
of both SPECpower_ssj2008 and SERT.

Chapter 12 provides an overview of established benchmarks for evaluating the per-
formance of virtualization platforms, which are widely used in modern data centers.
The chapter focuses on the SPEC VIRT series of industry-standard benchmarks while
also considering the VMmark benchmark by VMware. The discussed benchmarks
provide users with the capability of measuring different virtualization solutions on
either single-host or multi-host platforms, using workloads and methodologies that
are designed for fair comparisons. They have been used by hardware and software
vendors to showcase, analyze, and design the latest generations of virtualization
products.
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Next, Chapter 13 looks at benchmarks specifically designed to evaluate the per-
formance of storage systems and storage components. The chapter presents a brief
history of the SPEC System File Server (SFS) benchmarks and takes a closer look at
SPEC SFS 2014. It then introduces the benchmarks from the Storage Performance
Council (SPC) and the IOzone file system benchmark. Finally, the Flexible I/O
Tester (fio) is presented, showing some examples of how it can be used to measure
I/O performance.

Chapter 14 switches the context to research benchmarks. The chapter introduces
TeaStore, a test and reference application intended to serve as a benchmarking
framework for researchers evaluating their work. Specifically, TeaStore is designed
to be used in one of the three target domains: evaluation of software performance
modeling approaches; evaluation of run-time performance management techniques,
such as autoscalers; and evaluation of server energy efficiency, power models, and
optimization techniques. TeaStore is designed as a distributed microservice-based
application. Its use is demonstrated by a case study, analyzing the energy efficiency
of different deployments and showing the nontrivial power and performance effects
placement decisions can have.

Chapter 15 is dedicated to the evaluation of the elasticity of cloud platforms. The
chapter starts by presenting a set of intuitively understandable metrics that support
evaluating both the accuracy and the timing aspects of elastic behavior. The focus is
on Infrastructure-as-a-Service (IaaS) clouds; however, the presented approach can
also be applied in the context of other types of cloud platforms. The chapter outlines
an elasticity benchmarking approach—called Bungee—that explicitly takes into ac-
count the performance of the underlying hardware infrastructure and its influence
on the elastic behavior. In combination with the proposed metrics, this enables an
independent quantitative evaluation of the actual achieved system elasticity.

Cloud computing enables resource sharing at different levels of a data center
infrastructure, based on server virtualization, application containerization, or multi-
tenant software architectures. However, due to the sharing of resources, if a customer
generates increasing load on the system beyond the expected level, this may impact
the performance observed by other customers. To this end, Chapter 16 presents
metrics to quantify the degree of performance isolation a system provides. It also
presents a case study showing how the metrics can be used in real life. The metrics
presented in this chapter and in the previous chapter, as well as the thought process
to create them, serve as practical examples illustrating the metric attributes and
principles introduced in Chapter 3.

Chapter 17 builds on the foundations introduced in Chapters 6 and 7; it presents
a survey, systematization, and evaluation of different approaches to the statistical
estimation of resource demands, which play a key role in operational analysis and
queueing theory. While the direct measurement of resource demands is feasible
in some systems, it requires an extensive instrumentation of the application. The
chapter presents generic methods to approximate resource demands without relying
on dedicated instrumentation of the application. These methods are an example of
using an indirect measurement strategy as discussed in Chapter 6. Resource demands
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are considered in the context of computing systems; however, the presented methods
are also applicable to other types of systems.

Finally, the last chapter of Part II, Chapter 18, is dedicated to benchmarking of
computer security mechanisms, which are crucial for enforcing the properties of
confidentiality, integrity, and availability of system data and services. To minimize
the risk of security breaches, methods for evaluating security mechanisms in a
realistic and reliable manner are needed. The chapter surveys and systematizes the
existing knowledge and current practices in the area. The discussions in this chapter
are relevant for the evaluation of a wide spectrum of security mechanisms, such as
intrusion detection systems, firewalls, and access control systems.

Book’s Website

A website will be maintained at http://www.benchmarking-book.com to keep readers
informed about new developments and supplementary materials related to this book.
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Foundations



Chapter 1
Benchmarking Basics

“One accurate measurement is worth a thousand expert
opinions.”
—Grace Hopper (1906–1992), US Navy Rear Admiral

“From a user’s perspective, the best benchmark is the user’s
own application program.”
—Kaivalya M. Dixit (1942–2004), Former SPEC President

This chapter provides a definition of the term “benchmark” followed by definitions
of the major system quality attributes that are typically subject of benchmarking.
After that, a classification of the different types of benchmarks is provided, followed
by an overview of strategies for performance benchmarking. Finally, the quality
criteria for good benchmarks are discussed in detail, and the chapter is wrapped up
by a discussion of application scenarios for benchmarks.

1.1 Definition of Benchmark

The term benchmark was originally used to refer to “a mark on a workbench used
to compare the lengths of pieces so as to determine whether one was longer or
shorter than desired.”1 In computer science, a benchmark refers to “a test, or set
of tests, designed to compare the performance of one computer system against the
performance of others.”1 Performance, in this context, is typically understood as
the amount of useful work accomplished by a system compared to the time and
resources used. Better performance means more work accomplished in shorter time
and/or using less resources. Depending on the context, high performance may involve
one or more of the following: high responsiveness when using the system, high
processing rate, low amount of resources used, or high availability of the system’s

1 SPEC Glossary: https://www.spec.org/spec/glossary
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services. While systems benchmarking has traditionally been focused on evaluating
performance in this classical sense (amount of work done vs. time and resources
spent), in recent years, the scope of benchmarking has been extended to cover other
properties beyond classical performance aspects (see Section 1.2). Examples of
such properties include system reliability, security, or energy efficiency. Modern
benchmarks can thus be seen as evaluating performance in a broader sense, that is,
“the manner in which or the efficiency with which something reacts or fulfills its
intended purpose.”2

In line with this development, we use the following definition of the term bench-
mark in this book:

Definition 1.1 (Benchmark) A benchmark is a tool coupled with a methodology
for the evaluation and comparison of systems or components with respect to specific
characteristics, such as performance, reliability, or security.

We refer to the entity (i.e., system or component) that is subject of evaluation
as System Under Test (SUT). This definition is a variation of the definition pro-
vided by Vieira et al. (2012). A more narrow interpretation of this definition was
formulated by Kistowski et al. (2015), where the competitive aspects of benchmarks
are stressed (i.e., “a standard tool for the competitive evaluation and comparison of
competing systems”), reflecting the fact that competitive system evaluation is the
primary purpose of standardized benchmarks as developed by the Standard Perfor-
mance Evaluation Corporation (SPEC) and the Transaction Processing Performance
Council (TPC). To distinguish from tools for non-competitive system evaluation and
comparison, such tools are often referred to as rating tools or research benchmarks.
Rating tools are primarily intended as a common method of evaluation for research
purposes, regulatory programs, or as part of a system improvement and development
approach. Rating tools can also be standardized and should generally follow the same
design and quality criteria as standard benchmarks. SPEC’s Server Efficiency Rating
Tool (SERT), for example, has been designed and developed using a similar process
as the SPECpower_ssj2008 benchmark. The term research benchmark is used mostly
by SPEC’s Research Group3 to refer to standard scenarios and workloads that can
be used for in-depth quantitative analysis and evaluation of existing products as well
as early prototypes and research results.

Each benchmark is characterized by three key aspects: metrics, workloads, and
measurement methodology. The metrics determine what values should be derived
based on measurements to produce the benchmark results. The workloads determine
under which usage scenarios and conditions (e.g., executed programs, induced system
load, injected failures / security attacks) measurements should be performed to derive
the metrics. Finally, the measurement methodology defines the end-to-end process to
execute the benchmark, collect measurements, and produce the benchmark results.

2 Random House Webster’s Unabridged Dictionary
3 SPEC Research Group: https://research.spec.org

https://research.spec.org
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1.2 System Quality Attributes

As discussed above, systems benchmarking has evolved to cover properties be-
yond classical performance aspects, such as system reliability, security, or energy
efficiency. According to the ISO/IEC 25010:2011 standard, system quality can be
described in terms of the attributes shown in Figure 1.1. We distinguish between ex-
ternal and internal quality attributes. External quality attributes describe the view of
the system users, for example, performance, reliability, and usability. Internal qual-
ity attributes describe the view of the system developers, typically reflected in the
attribute maintainability, which captures the degree of effectiveness and efficiency
with which the system can be modified.

Fig. 1.1: System quality attributes according to ISO/IEC 25010:2011
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In the following, we provide a brief overview of the major quality attributes
targeted for evaluation by modern benchmarks.

Performance As discussed in Section 1.1, performance in its classical sense
captures the amount of useful work accomplished by a system compared to the time
and resources used. Typical performance metrics, which will be introduced more
formally and discussed in detail in Chapter 3, include response time, throughput, and
utilization. Very briefly, response time is the time it takes a system to react to a request
providing a respective response; throughput captures the rate at which requests are
processed by a system measured in number of completed requests (operations) per
unit of time; and utilization is the fraction of time in which a resource (e.g., processor,
network link, storage device) is used (i.e., is busy processing requests).4

Scalability Scalability is the ability to continue to meet performance require-
ments as the demand for services increases and resources are added (Smith and
Williams, 2001).

Elasticity Elasticity is the degree to which a system is able to adapt to workload
changes by provisioning and deprovisioning resources in an autonomic manner, such
that at each point in time, the available resources match the current demand as closely
as possible (Herbst et al., 2013).

Energy Efficiency Energy efficiency is the ratio of performance over power
consumption. Alternatively, energy efficiency can be defined as a ratio of work
performed and energy expended for this work.

Availability Availability is the readiness for correct service (Avizienis et al.,
2004). In practice, the availability of a system is characterized by the fraction of time
that the system is up and available to its users (Menascé et al., 2004), that is, the
probability that the system is up at a randomly chosen point in time. The two main
reasons for unavailability are system failures and overload conditions.

Reliability Reliability is the continuity of correct service (Avizienis et al.,
2004). In practice, the reliability of a system is characterized by the probability that
the system functions properly over a specified period of time (Trivedi, 2016).

Security Security is a composite of the attributes of confidentiality, integrity, and
availability (Avizienis et al., 2004). Confidentiality is the protection of data against
its release to unauthorized parties. Integrity is the protection of data or services
against modifications by unauthorized parties. Finally, availability, in the context
of security, is the protection of services such that they are ready to be used when
needed. Enforcing security typically requires encrypting data, which in many cases
may have a significant performance overhead.

Dependability The notion of dependability and its terminology have been es-
tablished by the International Federation for Information Processing (IFIP) Working
Group 10.4, which defines dependability as “the trustworthiness of a computing sys-
tem that allows reliance to be justifiably placed on the service it delivers.” Depend-
ability is an integrative concept that includes the following attributes (Laprie, 1995):

4 We use the term request in a general sense meaning any unit of work executed by a system that
has a distinct start and end time, for example, a request sent through a browser to open a web page,
a database transaction, a network operation like transferring a data packet, or a batch job executed
by a mainframe system.
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availability (readiness for correct service), reliability (continuity of correct service),
safety (absence of catastrophic consequences on the users and the environment), con-
fidentiality (absence of unauthorized disclosure of information), integrity (absence of
improper system alterations), and maintainability (ability to undergo modifications
and repairs).

Resilience Resilience encompasses all attributes of the quality of “working well
in a changing world that includes faults, failures, errors, and attacks” (Vieira et al.,
2012). Resilience benchmarking merges concepts from performance, dependability,
and security benchmarking. In practice, resilience benchmarking faces challenges
related to the integration of these three concepts and to the adaptive characteristics
of the system under test.

1.3 Types of Benchmarks

Computer benchmarks typically fall into three general categories: specification-
based, kit-based, and hybrid. Furthermore, benchmarks can be classified into syn-
thetic benchmarks, microbenchmarks, kernel benchmarks, and application bench-
marks.

Specification-based benchmarks describe functions that must be realized, required
input parameters, and expected outcomes. The implementation to achieve the specifi-
cation is left to the individual running the benchmark. Kit-based benchmarks provide
the implementation as a required part of official benchmark execution. Any func-
tional differences between products that are allowed to be used for implementing the
benchmark must be resolved ahead of time. The individual running the benchmark
is typically not allowed to alter the execution path of the benchmark.

Specification-based benchmarks begin with a definition of a business problem
and a set of specific requirements to be addressed by the benchmark. The key criteria
for this definition are the relevance topics discussed in Section 1.5 and novelty.
Such benchmarks have the advantage of allowing innovative software to address
the business problem of the benchmark by proving that the specified requirements
are satisfied by the new implementation (Huppler and Johnson, 2014). On the other
hand, they require substantial development prior to running the benchmark and may
have challenges proving that all requirements of the benchmark are met.

Kit-based benchmarks may appear to restrict some innovative approaches to a
business problem, but have the advantage of providing near “load and go” imple-
mentations that greatly reduce the cost and time required to run the benchmark. For
kit-based benchmarks, the “specification” is used as a design guide for the creation of
the kit. For specification-based benchmarks, the “specification” is presented as a set
of rules to be followed by a third party who will implement and run the benchmark.
This allows for substantial flexibility in how the benchmark’s business problem will
be resolved—a principal advantage of specification-based benchmarks.

A hybrid of the specification-based and kit-based approaches may be necessary
if the majority of the benchmark can be provided in a kit, but there is a desire to
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allow some functions to be implemented at the discretion of the individual running
the benchmark. While both specification-based and kit-based approaches have been
successful in the past, current trends favor kit-based development.

The differences between synthetic benchmarks, microbenchmarks, kernel bench-
marks, and application benchmarks are discussed next based on the classification
by Lilja (2000). To evaluate the performance of a system with respect to a given
characteristic, the system must execute some sort of program, as defined by the
benchmark workload. Since the user is ultimately interested in how the system will
perform when executing his application, the best program to run is obviously the
user’s application itself. Unfortunately, in practice this is usually infeasible, as a
significant amount of time and effort may be required to port the application to
the SUT. Also, one may be interested in comparing different systems to determine
which one is most suitable for developing a new application. Since, in such a case,
the application will not exist yet, it cannot be used as a workload for benchmarking.
Given these observations, one is often forced to rely on making measurements while
executing a different program than the user’s application. Depending on the type of
benchmark program used, benchmarks can be classified into synthetic benchmarks,
microbenchmarks, kernel benchmarks, or application benchmarks.

Synthetic benchmarks are artificial programs that are constructed to try to mimic
the characteristics of a given class of applications. They normally do this by executing
mixes of operations carefully chosen to elicit certain system behavior and/or to match
the relative mix of operations observed in the considered class of applications. The
hope is that if the induced system behavior and/or the executed operation mixes are
similar, the performance observed when running the benchmark would be similar to
the performance obtained when executing an actual application from the respective
class. The major issue with synthetic benchmarks is that they do not capture the
impact of interactions between operations caused by specific execution orderings.
Furthermore, such benchmarks often fail to capture the memory-referencing patterns
of real applications. Thus, in many cases, synthetic benchmarks fail to provide
representative workloads exhibiting similar performance to real applications from
the respective domain. However, given their flexibility, synthetic benchmarks are
useful for tailored system analysis allowing one to measure the limits of a system
under different conditions.

Microbenchmarks are small programs used to test some specific part of a system
(e.g., a small piece of code, a system operation, or a component) independent of
the rest of the system. For example, a microbenchmark may be used to evaluate the
performance of the floating-point execution unit of a processor, the memory man-
agement unit, or the I/O subsystem. Microbenchmarks are often used to determine
the maximum performance that would be possible if the overall system performance
were limited by the performance of the respective part of the system under evaluation.

Kernel benchmarks (also called program kernels) are small programs that capture
the central or essential portion of a specific type of application. A kernel benchmark
typically executes the portion of program code that consumes a large fraction of the
total execution time of the considered application. The hope is that since this code
is executed frequently, it captures the most important operations performed by the
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actual application. Given their compact size, kernel benchmarks have the advantage
that they are normally easy to port to different systems. On the downside, they may
fail to capture important influencing factors since they may ignore important system
components (e.g., operating system or middleware) and may not stress the memory
hierarchy in a realistic manner.

Application benchmarks are complete real application programs designed to be
representative of a particular class of applications. In contrast to kernel or synthetic
benchmarks, such benchmarks do real work (i.e., they execute real, meaningful tasks)
and can thus more accurately characterize how real applications are likely to behave.
However, application benchmarks often use artificially small input datasets in order
to reduce the time and effort required to run the benchmarks. In many cases, this
limits their ability to capture the memory and I/O requirements of real applications.
Nonetheless, despite this limitation, application benchmarks are usually the most
effective benchmarks in capturing the behavior of real applications.

1.4 Performance Benchmarking Strategies

As discussed in the beginning of this chapter, in classical performance benchmarking,
a benchmark is defined as a test, or set of tests, designed to compare the performance
of one system against the performance of others. The term performance in this context
is understood as the amount of useful work accomplished by a system compared to
the time and resources used. Better performance means more work accomplished in
shorter time and/or using less resources.

In classical performance benchmarking, three different benchmarking strategies
can be distinguished (Lilja, 2000): (1) fixed-work benchmarks, which measure the
time required to perform a fixed amount of work; (2) fixed-time benchmarks, which
measure the amount of work performed in a fixed period of time; and (3) variable-
work and variable-time benchmarks, which vary both the amount of work and the
execution time.

1.4.1 Fixed-Work Benchmarks

Let Wi be the “amount of work” done by System i in a measurement interval Ti . The
amount of work done can be seen as an event count, where each event represents a
completion of a unit of work.

The system speed (execution rate) is defined as Ri = Wi/Ti . Assuming that we
run a fixed-work benchmark on two systems, that is, W1 = W2 = W , it follows that
the speedup of the second system relative to the first is given by5

5 We formally introduce and discuss the metric speedup in more detail in Chapter 3 (Section 3.3).
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S =
R2
R1
=

W
T2
W
T1

=
T1
T2
. (1.1)

Thus, the time Ti a system needs to execute W units of work can be used to com-
pare the performance of systems. The performance of a system typically depends on
the performance of multiple system components (e.g., CPU, main memory, I/O sub-
system) that are used during operation. The main issue with fixed-work benchmarks
is that they introduce an intrinsic performance bottleneck limiting how much the
performance can be improved by improving only a single component of the system.

To illustrate this, assume that a system is optimized by improving the performance
of its most important performance-influencing component (e.g., its CPU). The sys-
tem’s execution time can be broken down into two parts: time spent processing at
the component under optimization and time spent processing at other components
unaffected by the optimization. Assume that the performance of the optimized com-
ponent is boosted by a factor of q. Let T be the time the system needs to execute W
units of work before the optimization is applied, and let T ′ be the time it needs to
execute the same workload after the optimization is applied. Let α be the fraction of
time in which the optimized component is executing. (1−α) will then correspond to
the fraction of time spent on components and activities unaffected by the optimiza-
tion. Figure 1.2 illustrates the impact of the optimization on the overall benchmark
execution time (Lilja, 2000).

Fig. 1.2: Impact of optimizing a single system component

We observe that the overall system speedup that can be achieved through the
described kind of optimization is limited:

S =
T
T ′
=

T
αT
q + (1 − α)T

=
1

1 − α
(
1 − 1

q

) , (1.2)

lim
q→∞ S = lim

q→∞
1

1 − α
(
1 − 1

q

) = 1
1 − α . (1.3)

Equation (1.3) is known as Amdahl’s law. It introduces an upper bound on the
overall performance improvement that can be achieved by improving the performance
of a single component of a system. Given this upper bound, fixed-work benchmarks
are not very popular in the industry since they have an intrinsic performance bottle-
neck limiting how much performance improvement can be achieved by optimizing a
given system component.
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1.4.2 Fixed-Time Benchmarks

To address the described issue, fixed-time benchmarks do not fix the amount of
work Wi and instead measure the amount of work that can be processed in a fixed
period of time. The amount of work that a system manages to process in the available
time is used to compare the performance of systems.

This idea was first implemented in the SLALOM benchmark (Gustafson, Rover,
et al., 1991), which runs an algorithm for calculating radiosity.6 The performance
metric is the accuracy of the answer that can be computed in 1 min. The faster
a system executes, the more accurate the result obtained in 1 min would be. The
advantage of this approach is that the problem being solved is automatically scaled
to the capabilities of the system under test.

Fixed-time benchmarks address the described scalability issue of fixed-work
benchmarks. Whatever part of the execution is optimized, it would lead to saving
some time, which can then be used for processing further units of work improving
the benchmark result.

To show this, we consider the same scenario as above but with a fixed execution
time. Let Tf be the fixed time period for which the benchmark is executed. Given that
the optimized part of the execution is running q times faster, if we imagine running
the same amount of work without the optimization, the respective execution time
would be q times longer. This is illustrated in Figure 1.3, sometimes referred to as
the scaled version of Amdahl’s law (Lilja, 2000). The benchmark execution time is
compared against a hypothetical scenario (Th) where the same amount of work is
processed without the optimization.

Fig. 1.3: Scaled version of Amdahl’s law

We observe that unlike the case for fixed-work benchmarks, this time there is no
upper bound on the speedup that can be achieved:

S =
Th
Tf
=
αqTf + (1 − α)Tf

Tf
= αq + (1 − α), (1.4)

lim
q→∞ S = lim

q→∞
[
αq + (1 − α)

]
= ∞. (1.5)

6 Radiosity is a global illumination algorithm used in 3D computer graphics rendering.
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1.4.3 Variable-Work and Variable-Time Benchmarks

Fixed-work benchmarks are most intuitive in terms of our expectation of how im-
provements in system performance should impact the execution time of an applica-
tion. Fixed-time benchmarks, on the other hand, have the advantage that the problem
solved is automatically scaled to reflect the capabilities of the system under test. Fi-
nally, there are also variable-work and variable-time benchmarks, which fix neither
the available time T nor the amount of work W (Lilja, 2000). The metric is defined
as a function of T and W .

An example of a benchmark that follows this strategy is the HINT bench-
mark (Gustafson and Snell, 1995). It defines a mathematical problem to be solved
and uses the quality of the provided solution as a basis for evaluation. The assump-
tion is that the solution quality can be improved continually if additional time for
computations is available. The ratio of the provided solution quality to the time used
to achieve this quality is used as a performance metric.

The specific problem considered in the HINT benchmark is to find rational upper
and lower bounds for the integral

1∫
0

1 − x
1 + x

dx. (1.6)

The classical interval subdivision technique is used to find the two bounds by
dividing the interval [0, 1] into subintervals and counting the number of squares in
the area completely below the curve and those in the area including the curve. The
solution quality is then defined as 1/(u−l), where u and l are the computed upper and
lower bounds, respectively. The metric quality improvements per second (QUIPS)
is then computed by dividing the quality of the solution by the execution time in
seconds. By fixing neither the execution time nor the amount of work to be processed,
maximum flexibility is provided to evaluate the performance of systems with different
behavior and performance bottlenecks.

1.5 Benchmark Quality Criteria

Benchmark designers must balance several, often conflicting, criteria in order to be
successful. Several factors must be taken into consideration, and trade-offs between
various design choices will influence the strengths and weaknesses of a benchmark.
Since no single benchmark can be strong in all areas, there will always be a need for
multiple workloads and benchmarks (Skadron et al., 2003).

It is important to understand the characteristics of a benchmark and determine
whether or not it is applicable for a particular situation. When developing a new
benchmark, the goals should be defined so that choices between competing design
criteria can be made in accordance with those goals to achieve the desired balance.
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Several researchers and industry participants have listed various desirable charac-
teristics of benchmarks (Gustafson and Snell, 1995; Henning, 2000; Huppler, 2009;
Kistowski et al., 2015; Sim et al., 2003; Skadron et al., 2003). The contents of
the lists vary based on the perspective of the authors and their choice of terminol-
ogy and grouping of characteristics, but most of the concepts are similar. The key
characteristics can be organized in the following five groups:

1. Relevance: how closely the benchmark behavior correlates to behaviors that are
of interest to users,

2. Reproducibility: producing consistent results when the benchmark is run with
the same test configuration,

3. Fairness: allowing different test configurations to compete on their merits without
artificial limitations,

4. Verifiability: providing confidence that a benchmark result is accurate, and
5. Usability: avoiding roadblocks for users to run the benchmark in their test envi-

ronments.

All benchmarks are subject to these same criteria, but each category includes
additional issues that are specific to the individual benchmark, depending on the
benchmark’s goals. In the following, the individual criteria are discussed in more
detail based on Kistowski et al. (2015).

1.5.1 Relevance

“Relevance” is perhaps the most important characteristic of a benchmark. Even if the
workload was perfect in every other regard, it will be of minimal use if it does not
provide relevant information to its consumers. Yet relevance is also a characteristic
of how the benchmark results are applied; benchmarks may be highly relevant for
some scenarios and of minimal relevance for others. For the consumer of benchmark
results, an assessment of a benchmark’s relevance must be made in the context of the
planned use of the benchmark results. For the benchmark designer, relevance means
determining the intended usage scenarios of the benchmark and then designing the
benchmark to be relevant for those usage scenarios (SPECpower Committee, 2014).

A general assessment of the relevance of a benchmark or workload involves two
dimensions: (1) the breadth of its applicability and (2) the degree to which the
workload is relevant in a given area. For example, an XML parsing benchmark may
be highly relevant as a measure of XML parsing performance, somewhat relevant
as a measure of enterprise server application performance, and not at all relevant
for graphics performance of 3D games. Conversely, a suite of CPU benchmarks
such as SPEC CPU2017 may be moderately relevant for a wide range of comput-
ing environments. Benchmarks that are designed to be highly relevant in a specific
area tend to have narrow applicability, while benchmarks that attempt to be appli-
cable to a broader spectrum of uses tend to be less meaningful for any particular
scenario (Huppler, 2009).
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Scalability is an important aspect of relevance, particularly for server benchmarks.
Most relevant benchmarks are multiprocess and/or multithreaded in order to be able
to take advantage of the full resources of the server (Skadron et al., 2003). Achieving
scalability in any application is difficult; for a benchmark, the challenges are often
even greater because the benchmark is expected to run on a wide variety of systems
with significant differences in available resources. Benchmark designers must also
strike a careful balance between avoiding artificial limits to scaling and behaving
like real applications, which often have scalability issues of their own.

1.5.2 Reproducibility

Reproducibility is the capability of the benchmark to produce the same results
consistently for a particular test environment. It includes both run-to-run consistency
and the ability for another tester to independently reproduce the results in another
but identical environment.

Ideally, a benchmark result should be a function of the hardware and software
configuration, so that the benchmark is a measure of the performance of that en-
vironment; if this were the case, the benchmark would have perfect consistency. In
reality, the complexity inherent in a modern computer system introduces significant
variability in the performance of an application. This variability is introduced by
several factors, including things such as the timing of thread scheduling, dynamic
compilation, physical disk layout, network contention, and user interaction with the
system during the run (Huppler, 2009). Energy-efficiency benchmarks often have ad-
ditional sources of variability due to power management technologies dynamically
making changes to system performance and temperature changes affecting power
consumption.

Benchmarks can address this run-to-run variability by running workloads for long
enough periods of time (or executing them multiple times successively) in order
to include representative samples of these variable behaviors. Some benchmarks
require submission of several runs with scores that are near each other as evidence
of consistency. Benchmarks also tend to run in steady state7, unlike more typical
applications, which have variations in load due to factors such as the usage patterns
of users.

The ability to reproduce results in another test environment is largely tied to the
ability to build an identical environment. Industry-standard benchmarks require re-
sults submissions to include a description of the test environment, typically including
both hardware and software components as well as configuration options. Similarly,
published research that includes benchmark results generally adds a description of
the test environment that produced those results. However, in both of these cases,

7 Generally, a system or a process is considered to be in a steady state if the variables that define
its behavior are unchanging in time (Gagniuc, 2017). In the context of benchmarking, typically, the
variables that define the workload executed on the system under test are considered.
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the description may not provide enough detail for an independent tester to be able to
assemble an identical environment.

Hardware must be described in sufficient detail for another person to obtain
identical hardware. Software versions must be stated so that it is possible to use
the same versions when reproducing the result. Tuning and configuration options
must be documented for firmware, operating system, and application software so
that the same options can be used when rerunning the test. Unfortunately, much of
this information cannot be automatically obtained in a reliable way, so it is largely
up to the tester to provide complete and accurate details.

TPC benchmarks require a certified auditor to audit results and ensure compliance
with reporting requirements. SPEC uses a combination of automatic validation and
committee reviews to establish compliance.

1.5.3 Fairness

Fairness ensures that systems can compete on their merits without artificial con-
straints. Because benchmarks always have some degree of artificiality, it is often
necessary to place some constraints on test environments in order to avoid unrealis-
tic configurations that take advantage of the simplistic nature of the benchmark.

Benchmark development requires compromises among multiple design goals; a
benchmark developed by a consensus of experts is generally perceived as being more
fair than a benchmark designed by a single company. While “design by committee”
may not be the most efficient way to develop a benchmark, it does require that
compromises are made in such a way that multiple interested parties are able to agree
that the final benchmark is fair. As a result, benchmarks produced by organizations
such as SPEC and TPC (both of which comprise members from industry as well
as academic institutions and other interested parties) are generally regarded as fair
measures of performance.

Benchmarks require a variety of hardware and software components to provide an
environment suitable for running them. It is often necessary to place restrictions on
what components may be used. Careful attention must be placed on these restrictions
to ensure that the benchmark remains fair. Some restrictions must be made for
technical reasons. For example, a benchmark implemented in Java requires a Java
Virtual Machine (JVM) and an operating system and hardware that supports it. A
benchmark that performs heavy disk I/O may effectively require a certain number of
disks to achieve acceptable I/O rates, which would therefore limit the benchmark to
hardware capable of supporting that number of disks.

Benchmark run rules, which specify the requirements that have to be fulfilled
in order to produce a compliant benchmark result, often require the used hardware
and software to meet some level of support or availability. While this restricts
what components may be used, it is actually intended to promote fairness. Because
benchmarks are by nature simplified applications, it is often possible to use simplified
software to run them; this software may be quite fast because it lacks features that may
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be required by real applications. For example, enterprise servers typically require
certain security features in their software which may not be directly exercised by
benchmark applications; software that omits these features may run faster than
software that includes them, but this simplified software may not be usable for the
customer base to which the benchmark is targeted. Rules regarding software support
can be a particular challenge when using open source software, which is often
supported primarily by the developer community rather than commercial support
mechanisms.

Both of these situations require a careful balance. Placing too many or inap-
propriate limits on the configuration may disallow results that are relevant to some
legitimate situations. Placing too few restrictions can pollute the pool of published
results and, in some cases, reduce the number of relevant results because vendors
cannot compete with the “inappropriate” submissions.

Portability is an important aspect of fairness. Some benchmarks, such as TPC-C,
provide only a specification and not an implementation of the benchmark, allowing
vendors to implement the specification using whatever technologies are appropriate
for their environment (as long as the implementation is compliant with the specifi-
cation and other run rules). Other benchmarks, such as those from SPEC, provide an
implementation that must be used. Achieving portability with benchmarks written
in Java is relatively simple; for C and C++, it can be more difficult (Henning, 2000).

If the benchmark allows code to be recompiled, rules must be defined to state what
compilation flags are allowed. SPEC CPU2017 defines base results (with minimal
allowed compilation flags) and peak results (allowing the tester to use whatever
compilation flags they would like). Similarly, Java benchmarks may put limits on
what JVM command line options may be used.

In some cases, multiple implementations may be required to support different
technologies. In this case, it may be necessary (as with SPECweb2009) for results
with different implementations to be assigned to different categories so they cannot
be compared with each other.

Benchmark run rules often include stipulations on how results may be used.
These requirements are intended to promote fairness when results are published and
compared, and they often include provisions that require certain basic information
to be included any time that results are given. For example, SPECpower_ssj2008
requires that if a comparison is made for the power consumption of two systems at
the 50% target load level, the performance of each system at the 50% load level as
well as the overall ssj_ops/watt value must also be stated.

SPEC has perhaps the most comprehensive fair use policy, which further illustrates
the types of fair use issues that benchmarks should consider when creating their run
rules.8

8 SPEC fair use rules: https://www.spec.org/fairuse.html

https://www.spec.org/fairuse.html
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1.5.4 Verifiability

Within the industry, benchmarks are typically run by vendors who have a vested
interest in the results. In academia, results are subjected to peer review and interesting
results will be repeated and built upon by other researchers. In both cases, it is
important that benchmark results are verifiable so that the results can be deemed
trustworthy.

Good benchmarks perform some amount of self-validation to ensure that the
workload is running as expected and that run rules are being followed. While a
workload might include configuration options intended to allow researchers to change
the behavior of the workload, standard benchmarks typically limit these options to
some set of compliant values, which can be verified at run time. Benchmarks may also
perform some functional verification that the output of the test is correct; these tests
could detect some cases where optimizations (e.g., experimental compiler options)
are producing incorrect results.

Verifiability is simplified when configuration options are controlled by the bench-
mark or when these details can be read by the benchmark. In this case, the benchmark
can include the details with the results. Configuration details that must be documented
by the user are less trustworthy since they could have been entered incorrectly.

One way to improve verifiability is to include more details in the results than
are strictly necessary to produce the benchmark’s metrics. Inconsistencies in this
data could raise questions about the validity of the data. For example, a benchmark
with a throughput metric might include response time information in addition to the
transaction counts and elapsed time.

1.5.5 Usability

Most users of benchmarks are technically sophisticated, making ease of use less of a
concern than it is for more consumer-focused applications; however, there are several
reasons why ease of use is important. One of the most important ease of use features
for a benchmark is self-validation. This was already discussed in terms of making
the benchmark verifiable. Self-validating workloads give the tester confidence that
the workload is running properly.

Another aspect of ease of use is being able to build practical configurations for
running the benchmark. For example, one of the top TPC-C results has a system
under test with over 100 distinct servers, over 700 disk drives, 11,000 SSD modules
(with a total capacity of 1.76 petabytes), and a system cost of over $30 million. Of the
18 non-historical accepted TPC-C results published between January 1, 2010 and
August 24, 2013, the median total system cost was $776.627. Such configurations
are not economical for most potential users (Huppler, 2009).

Accurate descriptions of the system hardware and software configuration are
critical for reproducibility but can be a challenge due to the complexity of these
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descriptions. Benchmarks can improve ease of use by providing tools to automatically
extract the relevant information required for generating the descriptions.

1.6 Application Scenarios for Benchmarks

While benchmarking has traditionally been focused on competitive system evaluation
and comparison, over the past couple of decades the scope of benchmarking has
evolved to cover many other application scenarios. In the following, a brief overview
of the main application scenarios for modern benchmarks is given. Benchmarks are
considered in a broad sense including tools for non-competitive system evaluation
(i.e., rating tools or research benchmarks).

As discussed in Section 1.1, systems benchmarking has traditionally been focused
on evaluating performance in a classical sense (amount of work done vs. time and
resources spent); however, in recent years, the scope of systems benchmarking has
been extended to cover other properties beyond classical performance aspects, such
as system reliability, security, or energy efficiency.

Generally, benchmarks are used to evaluate systems with respect to certain quality
attributes of interest. In Section 1.2, we provided an overview of the major system
quality attributes that may be subject of evaluation using benchmarks.

We refer to the entity (e.g., end user or vendor) that employs a benchmark to
evaluate a system under test (SUT) as benchmarker. The SUT could be a hardware
or software product (or service), or it could be an end-to-end application comprising
multiple hardware and software components. Figure 1.4 shows the different scenarios
of what the benchmarker could be with respect to his goals and intentions.

In the first scenario, the benchmarker is a customer interested to buy the SUT who
uses the benchmark to compare and rank competing products offered by different
vendors or to determine the size and capacity of a specific system to be purchased.

In the second scenario, the benchmarker is a vendor who sells the SUT to cus-
tomers and is using the benchmark to showcase its quality for marketing purposes.
Industry-standard benchmarks and standardization bodies provide means to evaluate
and showcase a product’s quality on a level playing field. The benchmarker might
also be interested to receive an official certificate issued by a certification agency,
attesting a given quality level (e.g., energy-efficiency standard).

In the next scenario, the benchmarker is in the process of developing, deploying,
or operating the SUT. In this scenario, one might be using the benchmark for stress or
regression testing, for system optimization or performance tuning, for system sizing
and capacity planning, or for validating a given hardware and software configuration.
In this scenario, the benchmark may also be used as a blueprint demonstrating
programming best practices and design patterns as a guidance for the development
of a new system architecture.

Finally, the benchmarker may be a researcher using the benchmark as a repre-
sentative application to evaluate novel system architectures or approaches to system
development and operation.
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Fig. 1.4: Application scenarios for benchmarks

1.7 Concluding Remarks

In this chapter, we introduced the fundamental concepts and terminology used in
systems benchmarking. We provided a definition of the term “benchmark” followed
by definitions of the major system quality attributes that are typically subject of
benchmarking. We distinguished between external and internal system quality at-
tributes. After that, we presented a classification of the different types of benchmarks,
followed by an overview of strategies for performance benchmarking. Finally, the
quality criteria for good benchmarks, such as relevance, reproducibility, fairness,
verifiability, and usability, were discussed in detail. While benchmarking has tradi-
tionally been focused on competitive system evaluation and comparison, over the
past couple of decades, the scope of benchmarking has evolved to cover many other
application scenarios. In the final section of this chapter, we provided an overview of
the application scenarios for benchmarks discussing both their use in industry and
their use in the research and academic community.
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Chapter 2
Review of Basic Probability and Statistics

“Statistics are like alienists—they will testify for either side.”
—Fiorello La Guardia (1882-1947), 99th Mayor of NYC

“It is easy to lie with statistics. It is hard to tell the truth
without statistics.”
—Andrejs Dunkels (1939-1998), Swedish mathematics
teacher, mathematician, and writer

In this chapter, we briefly review the basics of probability and statistics while
establishing the statistical notation needed for understanding some of the chapters in
the book. The chapter is not intended as an introduction to probability and statistics
but rather as a quick refresher assuming that the reader is already familiar with the
basic concepts. While basic probability and statistics is essential for understanding
Chapters 4, 5, 7, and 17, we note that it is not a prerequisite for understanding the
other chapters in the book.

Much of the world around us is not deterministic, but it is rather governed by
random processes of which the behavior is hard to predict. Consider an online
banking application hosted on a server inside a data center. The application processes
requests sent from users over the Internet. Although the set of possible requests that
may arrive is finite and known, we cannot know for certain how many requests of
each type will arrive at a given point in time. Moreover, since the server resources
(e.g., processors) are shared, it is hard to predict the processing time of a request
given that it depends on how many other requests are processed concurrently. This
makes it impossible to tell for certain what will happen next. A process like the one
described is referred to as stochastic. There is a vast theory to predict the behavior
of stochastic processes. In the following, we review the basics of probability and
statistics, including random variables and distribution functions, which form the
basis for stochastic models. For a detailed introduction to probability and statistics,
we refer the reader to Walpole et al. (2016). An in-depth treatment of the mathematical
foundations of probability and measure theory can be found in Billingsley (2012).
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2.1 Basic Concepts

We start by introducing some basic concepts and respective notation from probability
and statistics.

Definition 2.1 (Experiment, Sample Space, Sample Point) An experiment
(or random experiment) is a process of which the outcome is uncertain. The set
of possible outcomes of an experiment is called the sample space and is usually
denoted by S. The individual outcomes themselves are called sample points in
the sample space.

Example 2.1 Consider the experiment of tossing a die one time. The sample space
is S = {1, 2, 3, 4, 5, 6}.
Example 2.2 Consider the experiment of measuring the processing time of a database
transaction. In theory, the sample space S is the set of positive real numbers; that is,
S = R+.

Definition 2.2 (Event, Probability) Any subset A of the sample space S, that
is, A ⊂ S, or equivalently any statement of conditions that defines a collection
of certain sample points, is referred to as event. The probability function P(·)
assigns to each event a real number between 0 and 1 (referred to as its prob-
ability) while satisfying the following three Kolmogorov axioms: (i) For any
event A, P(A) ≥ 0; (ii) P(S) = 1; and (iii) if A1, A2, A3, . . . is a countable
sequencea of mutually exclusive eventsb (i.e., Aj ∩ Ak = ∅ whenever j � k), it
follows that P(A1 ∪ A2 ∪ A3 ∪ . . . ) = P(A1) + P(A2) + P(A3) + . . . .
a Countable means that the number of elements is either finite or countably infinite, where
the latter means that the elements can be put in a one-to-one correspondence with the natural
numbers.
b Two or more events are mutually exclusive if it is impossible for two or more such events to
occur at the same time; that is, the occurrence of any one of them implies that the others will
not occur.

Definition 2.3 (Random Variable) A random variable is a function that as-
signs a real number to each point in the sample space S. It is common to denote
random variables by capital letters (e.g., X or Y ) and the concrete values that
they take on in a particular experiment by lowercase letters (e.g., x or y).

Example 2.3 Consider the experiment of tossing a pair of dice. The sample space S is
the set {(1, 1), (1, 2), . . . , (6, 6)}, where (i, j) corresponds to getting i on the first die
and j on the second die. We define X as the random variable equal to the product of
the two dice so that X assigns the value x × y to the outcome (x, y). For example, X
will be equal to 12 if the outcome is (3, 4).

A random variable X is said to be discrete if the number of possible values of X
is countable (i.e., either finite or countably infinite).
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Definition 2.4 (Probability Mass Function—PMF) The probability mass
function (PMF) p(x) of a discrete random variable X is defined as

p(x) = px
def
= P(X = x). (2.1)

It follows that ∑
x

px = 1. (2.2)

An example of a probability mass function for a discrete random variable is shown
in Figure 2.1.

Fig. 2.1: Example of a PMF for a discrete random variable

Next, we consider random variables that can take on an uncountably infinite
number of different values (e.g., all real numbers in a given interval). Such random
variables are called continuous random variables.

Definition 2.5 (Probability Density Function—PDF) For a continuous ran-
dom variable X , it is assumed that there exists a nonnegative function f (x)
called probability density function (PDF) (or simply density function) such
that for any interval [a, b]

P (X ∈ [a, b]) =
∫ b

a

f (x)dx and
∫ +∞

−∞
f (x)dx = 1. (2.3)

An example of a probability density function for a continuous random variable is
shown in Figure 2.2.
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f(x)

Fig. 2.2: Example of a PDF for a continuous random variable

2.2 Distributions of Random Variables

For a given value of x, the probability mass function p(x) of a discrete random
variable X gives us the probability of the random variable taking on the value of x.
For a continuous random variable, the probability of the random variable taking on
a given value x is

P(X = x) = P(X ∈ [x, x]) =
∫ x

x

f (y)dy = 0. (2.4)

Thus, the value of the probability density function f (x) does not directly correspond
to the probability of the random variable taking on the value of x. However, the value
of f (x) still provides an indication of the likelihood of the random variable taking
on a value close to x. Indeed, if Δx > 0, then

P(X ∈ [x, x + Δx]) =
∫ x+Δx

x

f (y)dy, (2.5)

which is the area under f (x) between x and x + Δx. Consequently, the value of a
continuous random variable X is more likely to fall in an interval above which f (x)
is high than in an interval of the same width above which f (x) is low.

Definition 2.6 (Cumulative Distribution Function—CDF) The cumulative
distribution function (CDF) or simply distribution function F (x) of the random
variable X is defined such that

F (y) def
= P(X ≤ y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
x≤y

px for X discrete,

y∫
−∞

f (x)dx for X continuous.

(2.6)
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A distribution function F (x) has the following properties:

0 ≤ F (x) ≤ 1 for all x,

F (x) is nondecreasing, that is, if x1 ≤ x2 then F (x1) ≤ F (x2),
lim
x→∞ F (x) = 1 and lim

x→−∞ F (x) = 0 (since X takes on only finite values).
(2.7)

From the definition of the distribution function F (x), it can be shown that under
some mild technical assumptions f (x) = F ′(x). For an interval [a, b], it then follows
that

P(X ∈ [a, b]) =
∫ b

a

f (x)dx = F (b) − F (a). (2.8)

Definition 2.7 (Mean) The mean μ (also referred to as expected value) of a
random variable X is defined as

μ = E [X] def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
x

xpx for X discrete,

+∞∫
−∞

x f (x)dx for X continuous.
(2.9)

The mean is one measure of central tendency of the distribution of a random
variable. An alternative measure of central tendency is the median x0.5 defined as
the smallest value of x such that FX (x) ≥ 0.5, where FX (x) is the distribution
function of X . For a continuous random variable X , FX (x0.5) = 0.5. In cases where
a random variable X may take on very large or very small values with low probability,
the median is generally considered to be a better measure of central tendency than
the mean, since extreme values (despite being unlikely to occur) may greatly affect
the mean, whereas they do not affect the median in a similar way.

Definition 2.8 (Variance) The variance σ2
X of a random variable X is defined

as

σ2
X = Var (X ) = σ2 [X] def

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
x

(x − μ)2 px for X discrete,

+∞∫
−∞

(x − μ)2 f (x)dx for X continuous.
(2.10)

The variance is a measure of dispersion of the random variable about its mean, so
that the larger the variance, the more likely the random variable will take on values
far from its mean.

It is easy to show that the following relation holds:

Var (X ) = E[(X − μ)2] = E[X2] − E[X]2. (2.11)
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Definition 2.9 (Standard Deviation) The standard deviation σX of a random
variable X is defined as

σX = σ [X] def
=
√

Var (X ). (2.12)

Looking at the definition of variance, given that it is defined based on the squared
deviation of the values of the random variable from its mean, it is expressed in
square units. In contrast, the standard deviation, as the square root of the variance, is
a measure of dispersion expressed in the same units as the random variable, which
makes it easier to work with and interpret.

2.3 Independent and Dependent Random Variables

So far, we considered only one random variable at a time; however, in practice one
often must deal with n random variables {X1, X2, ..., Xn} at the same time.

If {X1, X2, ..., Xn} are discrete random variables, the function

p(x1, x2, ..., xn) = P(X1 = x1, X2 = x2, ..., Xn = xn) (2.13)

is called joint probability mass function of {X1, X2, ..., Xn}.
Definition 2.10 (Independent Random Variables—Discrete Case) The dis-
crete random variables {X1, X2, ..., Xn} are independent if

p(x1, x2, ..., xn) = pX1 (x1)pX2 (x2)...pXn (xn), (2.14)

where pXi (xi) is the probability mass function of the random variable Xi .

If {X1, X2, ..., Xn} are continuous random variables, they are referred to as jointly
continuous if there exists a nonnegative function f (x1, x2, ..., xn), called joint prob-
ability density function of {X1, X2, ..., Xn}, such that for all sets of real numbers
A1, A2, ..., An,

P(X1 ∈ A1, X2 ∈ A2, ..., Xn ∈ An) =
∫
A1

∫
A2

...

∫
An

f (x1, x2, ..., xn)dx1dx2...dxn.

(2.15)

Definition 2.11 (Independent Random Variables—Continuous Case) The
continuous random variables {X1, X2, ..., Xn} are independent if they have a
joint probability density function computed as

f (x1, x2, ..., xn) = fX1 (x1) fX2 (x2)... fXn (xn), (2.16)

where fXi (xi) is the probability density function of the random variable Xi .
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Intuitively, the random variables {X1, X2, ..., Xn} are independent if knowing the
values of a subset of them reveals nothing about the distribution of the remain-
ing random variables. If {X1, X2, ..., Xn} are not independent, we say that they are
dependent.

It can be easily shown that the mean of a linear combination of the random
variables {X1, X2, ..., Xn} is equal to the same linear combination of the means of the
random variables; that is,

E
⎡⎢⎢⎢⎢⎣

n∑
i=1

aiXi

⎤⎥⎥⎥⎥⎦ =
n∑
i=1

aiE [Xi] . (2.17)

The above equation does not require that the random variables {X1, X2, ..., Xn}
be independent. However, if they are independent, it can also be shown that the
variance of a linear combination of the random variables is equal to the respective
linear combination of the variances of the random variables with squared coefficients;
that is,

Var �
n∑
i=1

aiXi
�� =

n∑
i=1

a2
i Var (Xi). (2.18)

We now consider measures that characterize the dependence between two random
variables X and Y .

Definition 2.12 (Covariance) The covariance between the random variables X
and Y is a measure of their (linear) dependence and is defined as follows:

Cov(X,Y ) = CXY
def
= E

[
(X − μX )(Y − μY )

]
= E[XY ] − μX μY, (2.19)

where μX and μY are the mean values of the random variables X and Y ,
respectively.

From the definition of covariance, it is obvious that Cov(X,Y ) = Cov(Y, X ) and
Cov(X, X ) = Var (X ).

If Cov(X,Y ) = 0, we say that the random variables X and Y are uncorrelated. It
can be easily shown that if X and Y are independent, then it follows that they are also
uncorrelated; that is, Cov(X,Y ) = 0. Two uncorrelated variables, however, must not
necessarily be independent.

If Cov(X,Y ) > 0, we say that X and Y are positively correlated, which implies
that the events {X > μX } and {Y > μY } tend to occur together, and also the events
{X < μX } and {Y < μY } tend to occur together.

If Cov(X,Y ) < 0, we say that X and Y are negatively correlated, which implies
that the events {X > μX } and {Y < μY } tend to occur together, and also the events
{X < μX } and {Y > μY } tend to occur together.

In the case of positively correlated random variables, if one variable has a large
value, the other is likely to have a large value as well. For negatively correlated
random variables, if one variable has a large value, the other is likely to have a small
value instead.
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Definition 2.13 (Correlation) Given that the covariance is not a dimensionless
quantity, its interpretation as a measure of dependence between two random
variables X and Y poses difficulties. Therefore, often the correlation is used
instead, which is defined as follows:

Cor(X,Y ) = ρXY
def
=

Cov(X,Y )
σXσY

, (2.20)

where σX and σY are the values of the standard deviation for the random
variables X and Y , respectively.

It can be easily shown that −1 ≤ Cor(X,Y ) ≤ 1. If Cor(X,Y ) is close to 1, then
the random variables X and Y are highly positively correlated, whereas if Cor(X,Y )
is close to −1, they are highly negatively correlated.

2.4 Random Samples and Some Important Statistics

The totality of the observations with which we are concerned in an experiment is
commonly referred to as population. Each observation in a population is a value of
a random variable X with some probability distribution f (x). The field of statistical
inference is concerned with drawing conclusions about a population when it is
impractical to observe the entire population. In such cases, a subset of the population,
referred to as a sample, is observed and used to estimate relevant characteristics of
the population. If our inferences from the sample to the population are to be valid, the
sample must be chosen such that it is representative of the population. A sampling
procedure that consistently overestimates or underestimates a characteristic of the
population is said to be biased. To avoid bias in the sampling procedure, observations
in a sample should be made independently and at random, resulting in a random
sample. More formally, the concept of random sample is captured in the following
definition:

Definition 2.14 (Random Sample) A set of independent and identically dis-
tributed random variables {X1, X2, ..., Xn} with a common distribution func-
tion F (x) is said to constitute a random sample of size n from a population
with distribution function F (x), or equivalently, from any random variable X
with distribution function F (x). A set of specific observed values {x1, x2, ..., xn}
of the random variables {X1, X2, ..., Xn} can be considered to be n independent
measurements of some quantity distributed according to their common distri-
bution. In this context, the term random sample is also used to refer to any such
set of n observed values {x1, x2, ..., xn} from the respective distribution.

Definition 2.15 (Statistic) A statistic is any function of the random variables
that make up a random sample.
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When considering a random sample from a given random variable with an un-
known underlying distribution, some of the most common statistics used in practice
are the sample mean, sample variance, and sample standard deviation.

Definition 2.16 (Sample Mean) The sample mean X̄ of a random sample
{X1, X2, ..., Xn} is defined as

X̄ def
=

∑n
i=1 Xi

n
. (2.21)

The statistic X̄ assumes the value x̄ =
∑n

i=1 xi/n when X1 takes on the value x1,
X2 takes on the value x2, and so on. It is a common practice that the value of a
statistic in a given instance of an experiment is given the same name as the statistic.
As an example, the term sample mean is used to refer to both the statistic X̄ and its
computed value x̄.

Definition 2.17 (Sample Variance) The sample variance S2 of a random sam-
ple {X1, X2, ..., Xn} is defined as

S2 def
=

∑n
i=1(Xi − X̄ )2

n − 1
. (2.22)

Definition 2.18 (Sample Standard Deviation) The sample standard devia-
tion S of a random sample {X1, X2, ..., Xn} is defined as the square root of the
sample variance S2.

As usual, the computed values of S2 and S for a given sample are denoted using
lower case characters s2 and s, respectively.

Definition 2.19 (Estimator, Point Estimate) An estimator is a statistic Θ̂ that
provides an approximation of a given parameter θ of a population (e.g., mean
or standard deviation). A point estimate of the respective parameter θ is a single
value θ̂ of the respective statistic Θ̂.

The sample mean x̄ is a point estimate of the mean μ of the respective distribution,
whereas the sample variance s2 and sample standard deviation s are point estimates
of the variance σ2 and standard deviation σ, respectively. As a general rule of thumb
in statistics, if a sample has at least 30 elements, then the sample variance can be
considered a good estimate of the population variance (Walpole et al., 2016).1

Definition 2.20 (Unbiased Estimator) The estimator Θ̂ of the parameter θ of
a population is said to be an unbiased estimator of θ if E[Θ̂] = θ.

1 Although this rule is typically assumed to apply, the reader is warned to use it with some caution
since it is easy to show examples of distributions where it does not apply.
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It is often preferable to come up with an interval within which we would expect
the value of the unknown population parameter to lie. Such an interval is called
interval estimate of the population parameter.

Definition 2.21 (Interval Estimate) An interval estimate of a given parame-
ter θ of a population is an interval of the form θ̂L < θ < θ̂U , where θ̂L and θ̂U
depend on the value of the statistic Θ̂ for a particular sample as well as on the
distribution of Θ̂.

2.5 Important Continuous Distributions and Central Limit
Theorem

One of the most common continuous probability distributions in statistics is the
Normal distribution (also called Gaussian, Gauss, or Laplace–Gauss distribution).

Definition 2.22 (Normal distribution) The probability density function of the
Normal distribution with parameters μ and σ2 is defined as

f (x) =
1√

2πσ2
e−

(x−μ)2

2σ2 , (2.23)

where μ is the mean and σ2 is the variance of the distribution. When a random
variable is normally distributed with mean μ and variance σ2, we will use the
following notation:

X ∼ N (μ, σ2). (2.24)

f(x)

Fig. 2.3: Example of a Normal distribution

A random variable with a Normal distribution is said to be normally distributed
and is referred to as normal deviate. Figure 2.3 shows an example density function
of a normally distributed random variable. The Normal distribution is sometimes
informally called the bell curve. However, we note that many other distributions are
also bell-shaped (e.g., the Cauchy distribution or the Student t-distribution).
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If the random variables {X1, X2, ..., Xn} are independent and normally distributed
Xi ∼ N

(
μi, σ

2
i

)
|i ∈ {1, . . . , n}, it can be easily shown that any linear combination of

the random variables is also normally distributed. From Equations (2.17) and (2.18),
it then follows that

Y =
n∑
i=1

aiXi ∼ N �
n∑
i=1

aiμi,
n∑
i=1

a2
i σ

2
i
�� . (2.25)

Similarly, based on Equation (2.25), it can be shown that if X ∼ N
(
μi, σ

2
i

)
, then

Z =
(

X − μ
σ

)
∼ N (0, 1) . (2.26)

The random variable Z has a Normal distribution with mean 0 and variance 1.
This distribution is referred to as standard Normal distribution.

In statistics (e.g., in the context of hypothesis testing), it is often required to find
a symmetrical interval around the mean of the standard Normal distribution, such
that the respective area under the density function is equal to a specified target value.
To facilitate this, in most statistics textbooks, statistical tables are provided that list
so-called critical values of the standard Normal distribution. The critical value zα
is typically defined as a value such that the area under the standard Normal density
function to the right of that value is equal to α (see Figure 2.4). The respective area
is called right tail of the distribution. For symmetry reasons, the area to the left of
the value −zα, referred to as left tail of the distribution, is also equal to α. It follows
that the central area under the curve between −zα and zα is equal to 1 − 2α. In
other words, the probability of a random variable with standard Normal distribution
taking on a value in the interval [−zα, zα] is given by 1− 2α. The values −zα and zα
are often referred to as lower critical value and upper critical value of the standard
Normal distribution, respectively.

Fig. 2.4: Critical values of the standard Normal distribution

The Normal distribution is often used in practice because of the Central Limit
Theorem (CLT), which is generally considered to be the most important result in
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probability theory. In its classical form, the theorem states, in effect, that a sum
of a “large number” of values from any distribution with a finite positive variance
will be approximately normally distributed. What is meant by a large number is not
explicitly defined; however, 30 or higher is typically considered large enough (Lilja,
2000; Walpole et al., 2016). If the distribution is not too different from a Normal
distribution, a number higher than six or seven is often considered sufficient to apply
the CLT.2 Below, we present the classical CLT more formally.

Theorem 2.1 (Central Limit Theorem) Let {X1, X2, ..., Xn} be a set of inde-
pendent and identically distributed random variables with finite mean μ and
finite positive variance σ2 > 0. If X̄ and Zn are defined as

X̄ =
∑n

i=1 Xi

n
Zn =

X̄ − μ√
σ2/n

(2.27)

then as n tends to infinity, the distribution function Fn(z) = P(Zn ≤ z) of the
random variable Zn converges to the standard Normal distribution N (0, 1). In
other words, if n is large enough, the random variable Zn will be approximately
normally distributed with mean 0 and variance 1, regardless of the underlying
distribution of the Xi’s. Equivalently, for large n, the sample mean X̄ will be
approximately normally distributed with mean μ and variance σ2/n.

A random variable whose logarithm is normally distributed is said to have a
Log-normal distribution. Such a variable is generated by collections of small multi-
plicative effects, rather than the additive effects that generate Normal distributions.
The mathematics of the Log-normal distribution are relevant to the widespread use
of the geometric mean for aggregating speedup ratios in modern benchmarks, a
procedure discussed in detail in Chapter 3, Section 3.5.3.2.

Another important distribution that we will use in this book is the t-distribution,
also called Student t-distribution.

Definition 2.23 (t-distribution) The probability density function of the t-
distribution with parameter n > 0, referred to as degrees of freedom, is given
by

fn(x) =
Γ
(
n+1

2

)
√

nπ Γ
(
n
2

) (1 + x2

n

)− n+1
2

, (2.28)

where Γ(x) is the gamma function

Γ(x) =
∫ +∞

0
tx−1e−tdt. (2.29)

2 Similarly to the rule about the use of the sample variance as an estimate of the population variance,
the reader is warned to use these rules with caution since it is easy to show examples of distributions
where they do not apply.
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The t-distribution was introduced in 1908 by W. S. Gosset. At that time, Gos-
set was working in an Irish brewery that did not allow its staff members to pub-
lish research results. To circumvent this, Gosset published his work under the
name “Student.” As a result, the distribution is commonly referred to as Student
t-distribution or simply t-distribution.

The t-distribution is similar to the standard Normal distribution. While they are
both bell-shaped and symmetric about a mean of zero, the t-distribution has a higher
variance, which depends on the degrees of freedom n and is always greater than 1.
As the sample size n → ∞, the t-distribution converges to the standard Normal
distribution.

The t-distribution is often used in the context of the following theorem:

Theorem 2.2 Let {X1, X2, ..., Xn} be a set of independent and normally dis-
tributed random variables with mean μ and variance σ2; that is,
Xi ∼ N (μ, σ2) | i ∈ {1, . . . , n}. If X̄ and S2 are defined as

X̄ =
∑n

i=1 Xi

n
S2 =

∑n
i=1(Xi − X̄ )2

n − 1
(2.30)

then the random variable
T =

X̄ − μ
S/
√

n
(2.31)

has a t-distribution with (n − 1) degrees of freedom.

Fig. 2.5: Critical values of the t-distribution

Similarly to the standard Normal distribution, statistical tables listing critical
values for the t-distribution can be found in most statistics textbooks. Critical values
help to easily find a symmetrical interval around the mean of the t-distribution, such
that the respective area under the density function is equal to a specified target value.
The critical value t {α,n−1} for a t-distribution with (n − 1) degrees of freedom is a
value such that the area under the respective density function to the right of that value
is equal to α (see Figure 2.5). This area is referred to as right tail of the distribution,
whereas the symmetrical area to the left of the value−t {α,n−1} is referred to as left tail
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of the distribution. It follows that the central area under the curve between −t {α,n−1}
and t {α,n−1} is equal to 1 − 2α. In other words, the probability of a random variable
with t-distribution taking on a value in the interval [−t {α,n−1}, t {α,n−1}] is given
by 1 − 2α. The values −t {α,n−1} and t {α,n−1} are referred to as lower critical value
and upper critical value of the t-distribution, respectively.

Finally, another distribution used later in this book is the F-distribution.

Definition 2.24 (F-distribution) The probability density function of the F-
distribution with parameters d1 and d2 is given by

f (x; d1, d2) =

√
(d1x)d1d

d2
2

(d1x+d2)d1+d2

x B
(
d1
2 ,

d2
2

) , (2.32)

where B(a, b) is the beta function

B(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt (2.33)

for a > 0 and b > 0.

The F-distribution is often used in the context of the following theorem:

Theorem 2.3 Let X1 and X2 be two independent and normally distributed
random variables with variances σ2

1 and σ2
2 , respectively. If S2

1 and S2
2 are

the sample variances of two random samples of size n1 and n2 taken from X1
and X2, respectively, then the random variable

F =
S2

1/σ
2
1

S2
2/σ

2
2
=
σ2

2S2
1

σ2
1S2

2
(2.34)

has an F-distribution with (n1 − 1) and (n2 − 1) degrees of freedom.

The F-distribution is typically used to draw inferences about the population
variances of two random variables.

2.6 The Bernoulli and Binomial Distributions

Consider an experiment consisting of n trials, called Bernoulli trials, each of which
can result in two possible outcomes, a success or a failure. We define the random
variable X j for j = 1, 2, ..., n to be equal to 1 if the jth trial resulted in a success,
and equal to 0 if the jth trial resulted in a failure. The n Bernoulli trials constitute a
Bernoulli process if they are independent and the probability of a trial resulting in
success remains constant from trial to trial; that is, P(X j = 1) = p for j = 1, 2, ..., n.
From the independence assumption, it follows that the joint probability mass function



2.6 The Bernoulli and Binomial Distributions 37

of the n trials {X1, X2, ..., Xn} is given by

p(x1, x2, ..., xn) = p1(x1)p2(x2)...pn(xn) (2.35)

where

pj (x j ) = p(x j ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p if x j = 1,
1 − p if x j = 0,
0 otherwise,

(2.36)

for j = 1, 2, ..., n. For one trial, the distribution in Equation (2.36) is called the
Bernoulli distribution with parameter p. The mean and variance of X j are given by

E[X j] = 0 · (1 − p) + 1 · p = p,

Var
(
X j

)
=

[
02 · (1 − p) + 12 · p

]
− p2 = p(1 − p).

(2.37)

Let X be the number of successes in n Bernoulli trials. The distribution of the
random variable X is called the Binomial distribution and it has a probability mass
function given by

p(x) =
⎧⎪⎨⎪⎩
(
n
x

)
px (1 − p)n−x for x = 0, 1, ..., n

0 otherwise.
(2.38)

To understand the above formula, we represent the outcome of the n Bernoulli
trials as an n-tuple of zeros and ones, where 0 stands for failure of the respective
trial and 1 stands for success. Consider the n-tuple t1 = (0, 1, 1, 0, ..., 1) with k ones
and (n − k) zeros. The probability of the respective outcome is given by

P(t1) = pk (1 − p)n−k (2.39)

since we have n independent events, k of them occurring with probability p and the
rest with probability (1 − p). There are(

n
k

)
=

n!
k!(n − k)!

(2.40)

possible n-tuples with k ones and (n− k) zeros, each of them representing a possible
outcome with probability given by Equation (2.39). Since these are exclusive events,
the probability that one of them occurs, which corresponds to the probability of the
random variable X taking on the value of k, is given by

P (X = k) =
(
n
k

)
pk (1 − p)n−k . (2.41)

We will use the notation X ∼ B (p, n) to indicate that X has a Binomial distribution
with parameters p and n.
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It can be easily shown that

E[X] = pn, Var (X ) = p(1 − p)n. (2.42)

The random variable P̂ = X/n is an estimator of p. Indeed,

E[P̂] = E[X/n] = E[X]/n = (pn)/n = p. (2.43)

Thus, if n is large, we can estimate p using the sample proportion p̂ = x/n.

Theorem 2.4 (Normal Approximation to the Binomial Distribution)
If X ∼ B (p, n), then the limiting form of the distribution of

Z =
X − np√
p(1 − p)n

(2.44)

as n → ∞ is the standard Normal distribution N(0,1).

The Normal distribution provides a very accurate approximation to the Binomial
distribution when n is large and p is not very close to 0 or 1. It also provides a
reasonably accurate approximation when n is small and p is close to 0.5.

One possible rule of thumb for determining when the approximation is good is: if
[pn ≥ 5∧ (1−p)n ≥ 5], then the Normal distribution provides a good approximation
to the Binomial distribution.

2.7 Statistical Techniques for Parameter Estimation

In this section, we give an overview of statistical techniques that can be used to esti-
mate parameters characterizing properties of a system or its workload from empirical
observations (e.g., transaction resource demands as considered in Chapter 7).

2.7.1 Regression Analysis

Given a set of independent variables {X1, X2, ..., Xk } and a dependent variable Y ,
linear regression aims to capture the relationship between the dependent variable
and the independent variables with the linear model

Y = β0 + β1X1 + β2X2 + . . . + βkXk + ε . (2.45)

In regression analysis, Y is known as response variable and X j for 1 ≤ j ≤ k as
control variables. The goal is to determine the parameters β j for 0 ≤ j ≤ k in such a
way that the residuals ε are minimized with respect to a specific measure. Examples
for such measures are the sum of squared residuals, used in least squares (LSQ)
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regression, or the sum of absolute differences, used in least absolute deviation (LAD)
regression. To be able to determine a unique solution for the parameters β j , at least
n sets of known values {y, x1, . . . , xk } are required, where n > k. The above linear
model can be formulated in matrix notation as (Chatterjee and Price, 1995)

Y = Xβ + ε (2.46)

where

X =
������
1 x1,1 x1,2 · · · x1,k
1 x2,1 x2,2 · · · x2,k
...
...
...

...
1 xn,1 xn,2 · · · xn,k

�������
,Y =

������
y1
y2
...
yn

�������
, ε =

������
ε1
ε2
...
εn

�������
and β =

������
β0
β1
...
βk

�������
.

X is called control matrix and Y is the response vector. We assume that the vector
of error residuals ε is independent and identically distributed with mean E[ε ] = 0
and a constant variance. Then, we can conclude that E[Y] = Xβ. The parameter
vector β needs to be estimated.

LSQ regression estimates the vector β by minimizing the sum of squared residuals.
Hence, the following expression needs to be minimized:

εT ε = (Y − Xβ)T (Y − Xβ). (2.47)

The vector β̂ that minimizes the previous expression can be calculated as fol-
lows (Chatterjee and Price, 1995):

β̂ = (XTX)−1XTY. (2.48)

2.7.2 Kalman Filter

Statistical filtering deals with the estimation of hidden states of a dynamic system
from known system inputs and incomplete and noisy measurements (Kumar et al.,
2009). In this context, the term state is defined as follows:

The states of a system are those variables that provide a complete representation of the
internal condition or status at a given instant of time. (Simon, 2006)

The term dynamic system implies that the state of the system changes over time.
Different statistical filtering methods have been proposed. We describe the Kalman
filter here in more detail because it is often used to estimate transaction resource
demands.

Generally speaking, we can distinguish between discrete-time and continuous-
time systems. Subsequently, we will focus on discrete-time Kalman filters. The
notation we use is based on the one used by Kumar et al. (2009) and Simon (2006).
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The system state x is a vector containing the variables that describe the internal
state of a system. These variables cannot be directly observed. The Kalman filter
estimates the vector x from a series of measurements z. The system is described
by two equations. The first equation describes how the system state evolves over
time (Simon, 2006):

xk = Fk−1xk−1 +Gk−1uk−1 + wk−1. (2.49)

The time advances in discrete steps. xk is the system state at time step k, which is
calculated from the previous system state xk−1 and the control vector uk−1 containing
the inputs of the system. The matrices F and G are called state transition model and
control-input model, respectively. The process noise wk−1 is assumed to be normally
distributed with zero mean and covariance Qk .

The second equation describes the relationship between the system state xk and
the measurements zk at time step k

zk = Hkxk + vk . (2.50)

The matrix Hk is the observation model, which maps the state space to the
observation space. vk is the observation noise, which is assumed to be Gaussian
white noise with zero mean and covariance Rk .

If the relation z = h(x) between system state and measurements is non-linear,
extended Kalman filter (EKF) can be used. EKF approximates a linear model with
the following output sensitivity matrix:

Hk =

[
∂h
∂x

]
x̂k |k−1

. (2.51)

The output sensitivity matrix is set to the Jacobian matrix of h(x). The par-
tial derivatives are evaluated with the current estimates of the system state. The
vector x̂n |m represents the estimated system state x̂ at time step n given measure-
ments {z1, . . . , zm}.

The Kalman filter is a recursive estimator. It starts with an initial state and
continuously updates its estimate as new measurements are obtained. At each time
step k, the calculations depend only on the previous estimate x̂k−1 |k−1 and the
current measurements vector zk (Kumar et al., 2009). The internal state of the filter
is represented by two variables, the state estimate x̂k |k and the error covariance
matrix Pk |k .

The error covariance matrix is a measure for the estimated accuracy of the state
estimates (Kumar et al., 2009). At the beginning, the filter is initialized with given
values for x̂0 |0 and P0 |0.

The algorithm that calculates new state estimates consists of two phases: pre-
dict and update (Kumar et al., 2009). In the predict phase, a new state estimate
x̂k |k−1 is calculated with Equation (2.49). In the update phase, the prediction error
of x̂k |k−1 is determined according to the current measurements zk . Then, a cor-
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rected estimate x̂k |k is calculated. These two steps are carried out each time a new
measurement sample vector becomes available.

Assuming a linear relationship between the measurements and the system state,
and uncorrelated and normally distributed noise with zero mean, the Kalman filter
is an optimal estimator. Since most systems are inherently nonlinear, EKF provides
a linear approximation for cases with slightly nonlinear characteristics.

2.7.3 Maximum Likelihood Estimation

Consider a collection of independent and identically distributed random variables
{Y1,Y2, ...,Yn}, where θ are the parameters of their probability distribution, and a cor-
responding set of observed values {y1, y2, ..., yn} of the random variables. Then, the
joint distribution is represented by the probability density function f (y1, y2, ..., yn |θ).
This function is also known as the likelihood L(θ) stating the probability of observ-
ing the values {y1, y2, ..., yn} for a given θ. The joint distribution can be replaced by
the product of the conditional probability of the individual observed values:

L(θ) =
n∏
i=1

f (yi |θ). (2.52)

An equivalent representation that is often easier to solve is obtained by taking the
logarithm of the likelihood function resulting in a sum of logarithms. This is known
as the log-likelihood function.

The maximum likelihood estimate θ̂ is then defined as

θ̂ = max
θ
L(θ). (2.53)

In case of complex likelihood functions, optimization algorithms (see Chapter 2,
Section 2.7.5) are typically used to determine the maximum likelihood estimate.

2.7.4 Bayesian Inference

In the previous section, we described the maximum likelihood estimation method
based on the frequentist interpretation of probability. In contrast, Bayesian inference
introduces the concept of a prior distribution capturing assumptions and knowledge
available before making observations. Suppose a vector of parameters θ and a vector y
with observations, the posterior distribution f (θ |y) is given by

f (θ |y) =
f (y|θ) f (θ)

f (y)
. (2.54)
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f (y|θ) denotes the likelihood of observing y for a given θ. f (θ) is the prior
distribution, and f (y) is the marginal likelihood of the observations. Assuming fixed
values for the observations y, f (y) can be seen as a normalization constant. The
constant can be calculated using the following indefinite integral:

f (y) =
∫

f (y|θ) f (θ)dθ. (2.55)

However, the exact calculation of this integral, which requires to determine
the joint posterior distribution, is intractable for most practical problems, espe-
cially in case of multi-variate posterior distributions. The Metropolis–Hastings al-
gorithm (Hastings, 1970), a Markov Chain Monte Carlo (MCMC) algorithm for
random sampling, allows us to approximate the posterior distribution without cal-
culating the normalization constant. The algorithm only requires the availability of
a function g that is proportional to a desired probability distribution. In case of
Bayesian inference, the function g is the numerator in Equation (2.54).

The general idea of MCMC algorithms is to construct a Markov chain with an equi-
librium distribution resembling the desired posterior distribution. Samples are gener-
ated by a random walk on this Markov chain. A sample is then the state of the Markov
chain after a certain number of steps. Gibbs sampling (S. Geman and D. Geman,
1984) is a special case of the Metropolis–Hastings algorithm for highly multi-variate
distributions. Suppose we want to obtain a sample X = {x1, x2, ..., xn} from the pos-
terior distribution. Then, Gibbs sampling requires the availability of all conditional
distributions f (xi |x1, ..., xi−1, xi+1, ..., xn). The conditional distributions may be cal-
culated either exactly, or we rely on other random sampling algorithms for single-
dimensional distributions, such as adaptive rejection sampling. In order to determine
the sample in step t, a Gibbs sampler iterates over each component of vector X (t) and
determines its value by sampling from f (x (t)

i |x (t)
1 , ..., x

(t)
i−1, x

(t−1)
i+1 , ..., x

(t−1)
n ). Given

a large set of samples resulting from the Gibbs sampler, we can approximate the ex-
pected value of the posterior distribution by averaging over all samples. It should be
noted that consecutive samples from a Gibbs sampler are typically auto-correlated.
Therefore, only every n-th sample should be included. Furthermore, samples at the
beginning should be discarded as long as the underlying Markov chain is not in its
equilibrium state.

2.7.5 Mathematical Optimization

Mathematical optimization techniques do not belong to the class of statistical esti-
mation techniques; however, we consider them here since they are used often in the
context of parameter estimation in combination with other techniques.

Generally speaking, an optimization problem is described by a cost (objective)
function f with a domain D ⊆ Rn and a constraint set Ω ⊆ D (Dostál, 2009). The
goal is either to minimize or to maximize the objective function. In the following, we
assume that it should be minimized. Then, the optimization problem is also called
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minimization problem and can be solved by finding a value x̄ ∈ Ω such that

f ( x̄) ≤ f (x), x ∈ Ω. (2.56)

Solutions of a minimization problem are called (global) minimizers (Dostál, 2009).
In contrast to global minimizers, there are also local minimizers. A local minimizer x̄
satisfies the condition

f ( x̄) ≤ f (x), x ∈ Ω, ‖x − x̄‖ ≤ δ (2.57)

for δ > 0 (Dostál, 2009).
Optimization problems can be classified into different categories. There are con-

strained and unconstrained optimization problems. In the case of unconstrained
optimization problems, there are no additional constraints in the constraint set; that
is, Ω = D. If additional equality and inequality constraints are given, we speak of
constrained optimization. Depending on the degree of the objective function and the
constraints, the following types of optimization problems exist:

• linear programming problems have a linear objective function and a set of linear
equality and inequality constraints,

• quadratic programming problems have a quadratic objective function and a set
of linear equality and inequality constraints, and

• non-linear programming problems can have any kind of non-linear objective
function and/or non-linear constraints.

Different solution algorithms exist for the different types of optimization prob-
lems. Descriptions of possible solution algorithms can be found in Dostál (2009)
and Nemhauser et al. (1989).

2.8 Concluding Remarks

In this chapter, we reviewed the basics of probability and statistics while establishing
the statistical notation needed for understanding some of the chapters in the book.
This chapter is not intended as an introduction to probability and statistics but rather
as a quick refresher assuming that the reader is already familiar with the basic
concepts. For a detailed introduction to probability and statistics, we refer the reader
to Walpole et al. (2016). An in-depth treatment of the mathematical foundations of
probability and measure theory can be found in Billingsley (2012).
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Chapter 3
Metrics

“Measurements are not to provide numbers but insight.”
—Ingrid Bucher

“It is much easier to make measurements than to know
exactly what you are measuring.”
—J. W. N. Sullivan (1886-1937), English journalist and
science writer

This chapter starts by defining the basic concepts: metric, measure, and measure-
ment. It then introduces the different scales of measurement, allowing one to classify
the types of values assigned by measures. Next, definitions of the most common per-
formance metrics are presented. The chapter continues with a detailed discussion
of the quality attributes of good metrics. Finally, the different types of averages are
introduced while showing how they can be used to define composite metrics and
aggregate results from multiple benchmarks.

3.1 Definition of Metric

According to the Merriam-Webster dictionary, “a metric is a standard of measure-
ment.” The term measurement is defined as the assignment of values to objects or
events according to some rules (Stevens, 1946, 1951). This definition originates
from Stevens who claimed that any consistent and non-random assignment counts as
measurement in the broad sense. A set of rules (i.e., a concrete process) for assigning
values to the individual objects or events is referred to as a measure. Mathematically
speaking, a measure is a function (a mapping) that maps the considered set of objects
or events to a set of values. From a statistical point of view, a measure can be seen
as a variable capturing the outcome of an experiment, that is, an observation of
a property or characteristic of some event or object in the real world. In statistics,
such variables are often referred to as dependent variables to distinguish them from
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independent variables, which can be manipulated by the experimenter. While in
mathematics, the term metric is explicitly distinguished from the term measure (the
former referring to a distance function), in computer science and engineering, the
terms metric and measure overlap in meaning and are often used interchangeably.
One way to distinguish between them is looking at metrics as values that can be
derived from some fundamental measurements comprising one or more measures.

Summarizing, we introduce the following definitions that will be used throughout
the book:

Definition 3.1 (Measurement) A measurement is the assignment of values to ob-
jects or events by applying a given set of rules or a procedure referred to as a
measurement process.

Definition 3.2 (Measure) A measure is a function (mapping) that maps a considered
set of objects or events to a set of values. Each measure can also be seen as a random
variable capturing the outcome of an experiment such as an observation of a property
or characteristic of some event or object in the real world.

Definition 3.3 (Metric) A metric is a value derived from some fundamental mea-
surements comprising one or more measures. In the context of benchmarking, metrics
are used to characterize different properties of the system under test (SUT), such as
performance, reliability, or security.

Definition 3.4 (Composite Metric) A composite metric is a metric whose value
is derived by combining other metrics (elementary or previously defined composite
metrics). The combined metrics may characterize different system properties, or they
may capture measurements of the same property but under different conditions.

3.2 Scales of Measurement

Stevens (1946) defines four scales of measurement—nominal, ordinal, interval, and
ratio—which can be used to classify the types of values assigned by different mea-
sures.

A measure with a nominal scale, also called qualitative scale, assigns values that
are simple categories or names (rather than numerical quantities), which can be used
to partition a set of objects into groups or subsets. Measurements made on nominal
scales are often called categorical data or qualitative data. For example, processors
can be divided into groups based on their manufacturer (Intel, AMD, IBM, etc.).
Numbers may be used as identifiers of the different processor manufacturers; how-
ever, such numbers are simple labels and they do not have numerical value or
meaning. Consequently, no mathematical computations (addition, subtraction, etc.)
may be performed on nominal measures.

A measure with an ordinal scale assigns values that have an inherent ordering,
which can be used to sort the set of objects in a given order. For example, a set of
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Intel Core i series processors can be sorted into first, second, and third generation.
Note that such ordering can be seen as a ranking; however, it does not allow for
characterizing the relative degree of difference between the individual objects. The
difference between the first and second place does not necessarily have the same
meaning as the difference between the second and third place. We know that third
generation is faster than second, and second faster than first; however, we do not
know how much faster they are.

A measure with an interval scale assigns values that have an inherent ordering
where the distances, or intervals, between the values are meaningful. With an ordinal
scale, one value can only be greater than, less than, or equal to another, whereas
with an interval scale, the difference between values is quantified in scale points
that have a consistent meaning across the scale. An example of a measure with an
interval scale is processor temperature measured in degrees centigrade. This scale
has meaningful intervals. A given increase in heat produces the same increase in
degrees no matter where we are on the scale; however, a zero on the centigrade scale
does not indicate an absence of the quantity we are measuring (temperature). This
distinguishes interval scales from ratio scales.

A ratio scale is an interval scale with a meaningful (unique and non-arbitrary)
zero point corresponding to a point at which the quantity measured is absent. For
a ratio scale, the same ratio at two places on the scale carries the same meaning,
allowing one to compare values by considering the ratio between them. As an
example, a duration of 1 h is equivalent to 3/4 h + 1/4 h. Coming back to the example
of processor temperature expressed in a centigrade scale, the latter is not a ratio scale
since it has an arbitrary zero point. However, if we express temperature in the Kelvin
scale, it will then have an absolute zero point. Also, if a temperature measured on
the Kelvin scale is twice as high as another, then the former would have twice the
kinetic energy of the latter. This makes the Kelvin scale a ratio scale. Measurements
in the physical sciences and engineering are typically done on ratio scales, for
example, mass, length, volume, time duration, or power consumption. Informally,
many ratio scales can be seen as specifying a count of something (“how many”) or
an amount/magnitude (“how much”) of something.

The above classification of scales into four categories (i.e., nominal, ordinal,
interval, and ratio) can be further refined, introducing a distinction between linear
and logarithmic interval scales and between ratio scales with and without a natural
unit (Stevens, 1959). A ratio scale with a natural unit is often referred to as absolute
scale. Examples of natural units are those used for counting discrete objects and for
representing probabilities.

The considered measurement scales are increasingly informative. Each scale adds
a given aspect not considered in the previous scales. At the lowest level, the nominal
scale simply names or categorizes objects (responses). The ordinal scale adds an
ordering. The interval scale adds meaning to differences between values (intervals)
across the scale; that is, the same difference at two places on the scale has the
same meaning. The ratio scale adds a meaningful absolute zero point, introducing a
meaning to the ratios of values across the scale; that is, the same ratio at two places
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on the scale also carries the same meaning. Finally, the absolute scale adds a natural
unit.

The measurement scales can also be differentiated with respect to the families of
transformations that measures of the respective types can be subjected to without
loss of empirical information. For example, empirical relations represented on ratio
scales are invariant under multiplication by a positive number (e.g., multiplication
by 1,000 converts from seconds to milliseconds). Linear interval scales are invariant
under both multiplication by a positive number and a constant shift; for example,
the formula TC 9

5 + 32 = TF can be used to convert temperature from Celsius to
Fahrenheit. Ordinal scales are invariant under any transformation function that is
monotonic and increasing, and nominal scales are invariant under any one-to-one
substitution. Finally, absolute scales allow no transformation other than identity.

Table 3.1: Hierarchy of measurement scales

Scale Mapping Transformations Operations Statistics Example
Nominal Unordered

1:1
Any 1:1
substitution

=,� Mode,
frequencies

Processor type:
0 = Intel,
1 = AMD,
2 = Other

Ordinal + ordering Monotonic and
increasing

. . . , <,> Median,
percentiles

Complexity:
0 = low,
1 = medium,
2 = high

Interval + distance
function

M′ = aM + b
(a > 0)

. . . , +,− Mean, standard
deviation

Temperature in
Celsius or
Fahrenheit:
TF = TC

9
5 + 32

Ratio + unit and
zero point

M′ = aM
(a > 0)

. . . , ∗, / Geometric mean,
coeff. of variation

Temperature in
Kelvin scale,
time to execute
an instruction

Absolute + natural
unit

Only identity
M′ = M

Num. of transistors
in a processor,
probability of a
cache miss

Table 3.1 summarizes the most important characteristics of the different mea-
surement scales. It shows the type of mapping used in each scale, the possible
transformations without loss of information, the mathematical operations that can
be performed on measurements, some possible statistics that can be applied to ana-
lyze measurements, and some concrete examples of measures with different scales.
The different statistics are introduced and discussed in detail in Section 3.5.1 and
in Chapter 4 (Section 4.1). Next, we introduce the most common metrics used to
characterize the performance behavior of a system.
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3.3 Performance Metrics

As discussed in Chapter 1, performance in its classical sense is understood as the
amount of useful work accomplished by a system compared to the time and resources
used. Better performance means more work accomplished in shorter time and/or
using less resources. Depending on the context, high performance may involve one
or more of the following: high responsiveness when using the system, high processing
rate, low amount of resources used, or high availability of the system’s services. To
characterize the performance behavior of a system, performance metrics are used.

Definition 3.5 (Performance Metric) A value derived from some fundamental mea-
surements that characterizes a given performance-related property of a system.

The fundamental measurements from which performance metrics are typically
derived can be classified into three groups (Lilja, 2000):

• Count of how often a certain event occurs
• Duration of a time interval
• Size of some parameter

For example, in the context of a database system, one may be interested in the
number of database transactions executed in a given observation interval (count),
how much time a transaction needs to complete (duration), and the amount of data
it writes to the database (size). From such measurements, one can derive different
performance metrics. If the measured count, time, or size value itself is of interest, it
can be used directly as a performance metric. Often, however, basic measurements
are not used directly, but combined using a formula to calculate a given quantity of
interest. For example, event counts are typically normalized to a common time basis
by dividing the number of observed events in a given time interval by the length
of the interval. The result is a rate metric, which allows comparing measurements
made over different time intervals.

3.3.1 Speedup and Relative Change

The term speed is used to refer to any kind of rate metric. Let Wi be the “amount
of work” done by a System i in a measurement interval Ti assuming that the system
is processing during the whole interval. The amount of work done Wi can be seen
as an event count, where each event represents a completion of a unit of work. We
use the term request to refer to any unit of work with a distinct start and end time
(e.g., a system operation or service offered to clients as part of a given use case, a
request sent through a browser to open a web page, a database transaction, a network
operation like transferring a data packet, or a batch job executed by a mainframe
system).
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The system speed as a rate metric Ri is defined as

Ri =
Wi

Ti
. (3.1)

Assuming sequential processing where the units of work do not overlap, the
time Mi for processing a unit of work is given by

Mi =
Ti
Wi
. (3.2)

Considering two different systems observed in the measurement interval Ti , we
define the terms speedup and relative change as follows (Lilja, 2000):

Definition 3.6 (Speedup) The speedup S2,1 of System 2 with respect to System 1
is defined as

S2,1 =
R2
R1
=

M1
M2
. (3.3)

Definition 3.7 (Relative Change) The relative changeΔ2,1 of System 2 with respect
to System 1 is defined as

Δ2,1 =
R2 − R1

R1
. (3.4)

If Δ2,1 > 0, System 2 is faster than System 1. If Δ2,1 < 0, System 2 is slower than
System 1.

3.3.2 Basic Performance Metrics

The most common basic performance metrics used in practice are: response time,
throughput, and utilization.

Definition 3.8 (Response Time) Response time is the time R, usually measured in
seconds, it takes a system to react to a request providing a respective response. The
response time includes the time spent waiting to use various resources (e.g., proces-
sors, storage devices, networks), often referred to as congestion time.

Definition 3.9 (Throughput) Throughput is the rate X at which requests are pro-
cessed by a system, measured in the number of completed requests (operations) per
unit of time. The throughput is a function of the load placed on the system (i.e., num-
ber of incoming requests per second) and of the maximum system capacity.

Definition 3.10 (Utilization) Utilization is the fraction of timeU in which a resource
(e.g., processor, network link, storage device) is used (i.e., it is busy processing
requests).
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(a) Response time under increasing load

System 
saturation

thrashing

no thrashing

(b) Throughput under increasing load

Fig. 3.1: Response time and throughput under increasing load

Figure 3.1 illustrates the behavior of the metrics response time and throughput as
the load placed on the system increases. We assume a static system configuration;
that is, no resources are being added using techniques such as elastic autoscaling
discussed in Chapter 15. Response time rises steadily up to a given point and then
increases rapidly after that. Throughput increases up to a given maximum and then
either stabilizes after that or may start to slightly drop. The point at which the system
throughput reaches its maximum is referred to as system saturation. Ideally, if the load
increases beyond the saturation point, the system throughput should remain stable.
However, in many systems, the throughput may start to drop—an effect referred to
as thrashing. Thrashing is normally caused by increasing system overhead due to
activities such as memory paging or contention for software resources (e.g., database
locks, operating system threads, network connections).

Response time, throughput, and utilization are generic performance metrics that
can be applied to any system that processes some units of work. However, system
performance is inherently a multi-dimensional property, as most systems comprise
different types of resources and offer multiple services, which may exhibit different
performance. Therefore, in performance benchmarking, typically composite metrics
are used to summarize the overall system performance with a single number. They
are derived from elementary metrics like response time, throughput, and utilization.
For a metric to be fair and reliable, it has to possess several fundamental properties.
In the next section, we look at the attributes that make it possible to distinguish good
metrics from bad metrics.

3.4 Quality Attributes of Good Metrics

Different metrics can be used to quantify a given system property under evaluation.
Not all such metrics are good in the sense of providing insight into the system
behavior and helping to make informed decisions. In this section, we describe six
fundamental attributes that characterize the quality of a benchmark metric. We start
with a motivating example.



52 3 Metrics

3.4.1 Motivating Example

Consider the following hypothetical scenario: A service provider has to select a
server platform for a new application that is planned to be launched. The provider
is considering three different servers as possible candidates. A benchmark is used to
evaluate their performance in order to select the best server for the target application.
The benchmark executes two different programs that represent the two main types
of workload that will be executed on the server. For each program, the execution
time is measured on each server. The two programs used as benchmark workloads
are assumed to be equally important; it is assumed that, in real life, each of them
is expected to run 50% of the time while consuming half of the server’s processing
resources. One way to define the benchmark metric is to use the average of the
execution times of the two programs. Table 3.2 shows some example results of
running the benchmark. The execution times of the two programs on the three
servers are shown.

Table 3.2: Example benchmark results using
average of execution times as a metric

Server 1 Server 2 Server 3
Program A 10 s 10 s 5 s

Program B 1,000 s 500 s 1,000 s

Average 505 s 255 s 502.5 s

The benchmark results make the impression that Server 2 is the fastest, followed by
Server 3 and Server 1. However, if we look more closely, we see that this impression
is misleading. Let us use Server 1 as a baseline and compare the performance of
Server 2 and Server 3 against it. Compared to Server 1, Server 2 exhibits the same
execution time for Program A and half the execution time for Program B. When it
comes to Server 3, it is the other way around; it exhibits the same execution time
for Program B and half the execution time for Program A. Server 2 is twice as fast
for Program B, whereas Server 3 is twice as fast for Program A. However, under
the assumption that each program is executed 50% of the time, it should not make
a difference whether the performance of Program A or Program B is boosted by a
factor of two. This is illustrated in Figure 3.2.1

As we can see from the figure, Server 2 and Server 3 save the same amount of time
compared to Server 1. Thus, their performance can be considered to be equivalent
for the target application and the decision of which one to select can be made based
on the price.

1 Note that, in real life, multiple executions of Program A and Program B can occur in an arbitrary
order; for simplicity of the illustration, in Figure 3.2, we have assumed that the repeated execution
of Program A is completed first before execution of Program B starts.
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Fig. 3.2: Behavior of Server 2 and Server 3 compared to Server 1 used as a baseline

The example shows that the selection of the average program execution time as
a benchmark metric leads to misleading results. One way to address this issue is
to use a different metric based on speedup. The advantage of using speedup is that
the actual absolute values of the execution items are irrelevant and only the relative
differences play a role. Thus, speeding up one of the programs by a factor of two
will have the same effect on the overall application performance, no matter which of
the two programs is optimized. Instead of using the execution time as a basis for our
metric, we use the speedup comparing to Server 1 as a reference. Table 3.3 shows
the results if we use the average speedup as a benchmark metric.

Table 3.3: Behavior of Server 2 and Server 3 compared to Server 1
using speedup instead of execution time

Server 1 Server 2 Server 3
Program A 1 1 2

Program B 1 2 1

Average 1 1.5 1.5

As we can see, using speedup as a basis for our metric, we now obtain results that
show the same performance for Server 2 and Server 3. However, there is a subtle issue
here that has to be addressed. We selected Server 1 as a reference server providing a
baseline against which we compared the other servers. The question arises whether
we would have obtained the same results if we had selected one of the other two
servers to use as a reference. Table 3.4 shows the resulting performance rankings
when using Server 2 and Server 3 as reference servers, respectively.

As we can see, the rankings are not consistent, implying that the metric average
speedup may be easily manipulated by selecting a different server to use as a baseline
for computing the relative speedups. The solution to this issue is to use the geometric
mean as the average value instead of the arithmetic mean, which is normally used by
default. The geometric mean has the property of ensuring consistent rankings when
averaging normalized data such as speedups. As shown in Table 3.5, the results
are consistent, independently of which server is chosen as a reference. We will
formally introduce the different averages (i.e., means) and discuss their differences
in Section 3.5. The takeaway point from the above example is that the selection of
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Table 3.4: Ranking of the three servers based on the average
speedup with different reference systems

(a) Speedup relative to Server 1

Server 1 Server 2 Server 3
Average 1 1.5 1.5

Rank 2 1 1

(b) Speedup relative to Server 3

Server 1 Server 2 Server 3
Average 0.75 1.25 1

Rank 3 1 2

(c) Speedup relative to Server 2

Server 1 Server 2 Server 3
Average 0.75 1 1.25

Rank 3 2 1

Table 3.5: Ranking of the three servers based on the
geometric mean of speedups

(a) Speedup relative to Server 1

Server 1 Server 2 Server 3

Geometric mean
√

1
√

2
√

2

Rank 2 1 1

(b) Speedup relative to Server 3

Server 1 Server 2 Server 3

Geometric mean
√

0.5
√

1
√

1

Rank 2 1 1

(c) Speedup relative to Server 2

Server 1 Server 2 Server 3

Geometric mean
√

0.5
√

1
√

1

Rank 2 1 1
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benchmark metrics is critically important to ensure valid comparisons and fairness.
Improper metric selection may lead to misleading results and respective purchasing
decisions. This begs the question of what constitutes a good benchmark metric.

3.4.2 Quality Attributes

We now will describe six fundamental attributes that characterize the quality of a
benchmark metric (Lilja, 2000). These attributes have been specifically discussed in
the context of performance metrics; however, they can also be applied generally to
any benchmark metric.

Easy to measure The easier a metric is to measure, the more likely it is that it
will be used in practice and that its value will be correctly determined.

Repeatable Repeatability implies that if the metric is measured multiple times
using the same procedure, the same value is measured. In practice, small differences
are usually acceptable; however, ideally, a metric should be deterministic when
measured multiple times.

Reliable A metric is considered reliable if it ranks systems consistently with
respect to the property that is subject to evaluation. In other words, if System A
performs better than System B with respect to the property under evaluation, then the
values of the metric for the two systems should consistently indicate this (e.g., higher
value meaning better score).

Linear A metric is linear if its value is linearly proportional to the degree to
which the system under test exhibits the property under evaluation. For example, if a
performance metric is linear, then a twice as high value of the metric should indicate
twice as good performance. Linear metrics are intuitively appealing since humans
typically tend to think in linear terms.

Consistent A metric is consistent if it has the same units and the same precise
definition across different systems or configurations of the same system.

Independent A metric is independent if its definition and behavior are not subject
to influence by proprietary interests of different vendors or manufacturers aiming to
gain competitive advantage by defining the metric in a way that favors their products
or services.

To illustrate the described attributes, we consider three classical metrics for char-
acterizing processor performance: clock rate, MIPS, and MFLOPS.

The clock rate refers to the frequency at which a processor’s central clock is
running and is often used as an indicator of a processor’s speed. It is normally
measured in clock cycles per second or its equivalent, the unit hertz (Hz). The speed
of modern CPUs is typically advertised in gigahertz (GHz), where 1 GHz is equal
to 109 Hz. With respect to the described six quality attributes of good performance
metrics, we can say that clock rate is repeatable (it is constant for a given processor2),

2 Note that modern processors support dynamic frequency scaling where the clock rate may
vary depending on the workload. Repeatability here refers to the fact that the clock rate behaves
consistently under a given workload and configuration.
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easy to measure (it is included in the processor’s technical specification), consistent
(its value is precisely defined across systems), and independent (its definition cannot
be influenced by manufacturers). However, given its limited scope, clock rate is
both non-linear and unreliable as a performance metric. Indeed, a processor with a
faster clock rate does not necessarily imply better overall performance given that the
clock rate ignores many important performance-relevant aspects, such as how much
computation is actually performed in each clock cycle as well as the interaction of
the processor with the memory and I/O subsystems.

MIPS is a rate metric for processor performance capturing the millions of instruc-
tions executed per second. It is intended to allow direct comparison of the processor
speed by considering the execution of an instruction as a measure of useful work
done. The MIPS metric is easy to measure, repeatable, and independent. However, it
is not linear, since twice as high a MIPS rate does not necessarily result in boosting
performance by a factor of two. Moreover, MIPS is neither reliable nor consistent.
The root of the problem with MIPS is that the amount of computation (useful work)
executed with a single instruction varies significantly for different instruction set
architectures (ISA). For example, a reduced instruction set computer (RISC) ar-
chitecture has a small set of simple and general instructions, whereas a complex
instruction set computer (CISC) architecture typically has a large set of complex and
specialized instructions. With CISC, a single instruction can execute several low-
level operations (e.g., read data from main memory into a processor register, perform
an arithmetic operation, and store the result of the operation into main memory).
The fact that instructions are not defined consistently across different processor ar-
chitectures renders the MIPS metric both inconsistent and unreliable as an indicator
of processor performance.

MFLOPS is another rate metric for processor performance, which captures the
millions of floating-point operations executed per second. MFLOPS is an attempt
to address the drawbacks of MIPS by using floating-point operations as a measure
of useful work done. A floating-point operation is an arithmetic operation on two
floating-point numbers. The results of such operations are clearly more comparable
across different processor architectures than the results of individual instructions.
On the other hand, other operations like those operating on integer values are just as
important for the overall processor performance. In real-life applications, floating-
point operations represent only part of the executed programs. The MFLOPS metric
ignores other types of operations, which makes it biased by capturing only one aspect
of processor performance. The MFLOPS metric is easy to measure and repeatable;
however, it does not possess the other four attributes of good metrics. This is because
it is not completely clear how floating-point operations should be counted. Different
processor architectures execute floating-point operations differently and sometimes
such operations are executed as part of the execution of other operations. Processor
manufacturers may use different rules for what is counted as floating-point operation,
which makes the metric fail to meet the criteria for consistency and independence.
For reasons similar to the other two considered metrics, MFLOPS is also neither a
linear nor reliable performance metric.
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Table 3.6: Quality attributes of clock rate, MIPS, and MFLOPS

Easy to
measure

Repeatable Reliable Linear Consistent Independent

Clock rate � � × × � �
MIPS � � × × × �
MFLOPS � � × × × ×

Table 3.6 summarizes the evaluation of the metrics clock rate, MIPS, and
MFLOPS with respect to the described quality attributes (Lilja, 2000).

3.5 From Measurements to Metrics

In Section 3.1, we defined metric as a value that can be derived from some funda-
mental measurements comprising one or more measures. Each measure can be seen
as a random variable capturing the outcome of an experiment such as an observation
(measurement) of a property or characteristic of some event or object in the real
world.

Typically, measurements vary when repeated multiple times. Thus, a set of mea-
sured values {x1, x2, ..., xn} is considered a sample from a random variable X with an
unknown distribution. Metrics are often computed from the sample using statistics
that allow one to summarize the measurements and/or characterize a property of the
underlying population (i.e., the probability distribution of the random variable X).

Consider the response time of a request to a web server. Sending n requests to
the web server and measuring their response times result in a set of n measurements
{x1, x2, ..., xn} forming a sample from the response time distribution. Computing the
average x = 1

n

∑n
i=1 xi of the n measurements allows summarizing the measurements

with a single value that can then be used as a performance metric.

3.5.1 Types of Averages

The most common way to summarize a sample of measurements is to compute
an average value and use it as a metric characterizing the measured property or
characteristic. Informally, an average is a middle or typical value that lies in the
center of the interval where most measurements are distributed. In statistics, different
types of averages are used, typically referred to as indices of central tendency. The
most common types of averages are the sample mean, median, and mode. The mean



58 3 Metrics

normally refers to the arithmetic mean; however, there are also other types of means
such as the harmonic mean and the geometric mean.

For a sample of measurements {x1, x2, ..., xn}, Table 3.7 shows the different types
of average values and how they are defined.

Table 3.7: Most common types of averages (indices of central tendency)

Average value Definition
Arithmetic mean x = 1

n

∑n
i=1 xi

Harmonic mean xH =
n∑n

i=1
1
xi

Geometric mean xG = n
√

x1x2 · · · xn = (
∏n

i=1 xi)
1
n

Median The value that lies in the middle when the measurements are
in sorted order (if there are an even number of values, the
arithmetic mean of the two values in the middle is taken)

Mode The value that occurs most often

The geometric mean can also be expressed as the exponential of the arithmetic
mean of logarithms as follows:

xG = �
n∏
i=1

xi��
1
n

= exp
⎡⎢⎢⎢⎢⎣1
n

n∑
i=1

ln (xi)
⎤⎥⎥⎥⎥⎦ (3.5)

assuming that x1, x2, ..., xn > 0. More generally,

xG = �
n∏
i=1

xi��
1
n

= (−1)m exp
⎡⎢⎢⎢⎢⎣1
n

n∑
i=1

ln |xi |
⎤⎥⎥⎥⎥⎦, (3.6)

where m is the number of negative numbers.
The arithmetic mean is the most common average used to summarize a sample

of measurements. As an index of central tendency, it normally lies in the center
of the interval where most measurements are distributed; however, one drawback
of the arithmetic mean is that it is quite sensitive to outliers in the measurements.
Outliers may introduce a bias that distorts the intuition of central tendency. Consider
the example given in Figure 3.3. First, a sample of measurements without outliers
is shown; then, the same sample with one added outlier is shown. As we can see,
the outlier has significant impact on the arithmetic mean, which in this case does
not serve as a good index of central tendency. The median, however, is much less
influenced by the presence of outliers as shown in the figure. The differences between
the arithmetic mean, harmonic mean, and geometric mean are discussed in detail in
Section 3.5.2.
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(a) Sample without outliers

(b) Sample with one outlier

Fig. 3.3: Impact of outliers on the arithmetic mean

The median is the “middle” value defined as a value such that half of the values
are above and half are below that value. The median can be determined by sorting
the values and taking the value that lies in the middle of the sorted set. If the number
of measurements n is odd, the middle value can be uniquely determined. If n is
even, the median is computed as the arithmetic mean of the two values that lie in the
middle of the sorted set.

Finally, the mode is the value that occurs most often. The mode may not be
unique if multiple values happen to occur with the same frequency. The mode is
typically used when the measured values represent distinct types/categories (i.e., for
categorical data in nominal scale as introduced in Section 3.2).

The standard definitions of means assume that all measurements are equally
important. If that is not the case, one can use weights to represent the relative im-
portance of measurements. Each measured value xi is assigned a weight wi ∈ (0, 1).
The weights are assumed to add up to one; that is,

∑n
i=1 wi = 1.

Table 3.8 shows the weighted versions of the mean values (arithmetic, harmonic,
and geometric).

Table 3.8: Weighted means

Average value Definition
Weighted arithmetic mean xA,w =

∑n
i=1 wi xi

Weighted harmonic mean xH,w =
1∑n

i=1
wi
xi

Weighted geometric mean xG,w =
∏n

i=1 xwi

i
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3.5.2 Composite Metrics

So far, we used statistics to summarize a sample of measurements corresponding
to the same underlying measured system property. In other words, we considered
repeated measurements of the same underlying measure, that is, a sample from a
random variable characterizing a given system property.

Another common scenario in benchmarking is when multiple different metrics
need to be aggregated into a single value in order to summarize the results. Such
a metric is called a composite metric (see Section 3.1) since its values are derived
by combining other metrics (elementary metrics or previously defined composite
metrics). The combined metrics may characterize different system properties, or
they may capture measurements of the same property but under different conditions
(e.g., measurement of response time under different workloads).

A composite metric is typically defined as a mean value (arithmetic, harmonic,
or geometric) of a set of elementary metrics. The arithmetic mean is commonly
used when the sum of raw values has a physical meaning, for example, when the
aggregated metrics represent measured times (durations). Similarly, the harmonic
mean is also used when the sum of raw values has a physical meaning; however,
it is typically used to summarize metrics that represent measured rates. Finally, the
geometric mean is commonly used when the product of raw values has a physical
meaning, such as in the case of averaging speedups.

Similar to our motivating example in Section 3.4.1, consider two programs A
and B executed on two different computers X and Y. Assume that program A runs
twice as fast on computer Y compared to X, whereas program B runs at half the speed
compared to X, so that the speedup of A is 2 and the speedup of B is 0.5. Calculating
the arithmetic mean of the two speedups results in (2 + 0.5)/2 = 1.25, whereas the
geometric mean is

√
2 × 0.5 = 1. Assuming that the two programs are executed for

the same amount of time, the geometric mean provides an average speedup value that
has a physical meaning. Speeding up half of the execution by a factor of two, while
at the same time slowing down the other half by the same factor, results in an overall
speedup of 1 (no change). As we saw in Section 3.4.1, the geometric mean can be
used to compute a mean value of a set of speedup ratios that is consistent regardless
of the choice of reference (i.e., the denominator in the ratios). It is a shortcut
for using the logarithms of the ratios, computing their arithmetic mean, and then
applying the exponential function to return to the linear scale, while hoping that the
logarithms are symmetrically (or even better, normally) distributed (Mashey, 2004).
In Section 3.5.3.2, we discuss the properties of the geometric mean in more detail.

The design of good composite metrics, providing a level playing field for com-
paring systems, is challenging. The main challenge stems from the fact that when
multiple metrics are combined into a single value, normally information is lost. For
example, as discussed in Section 3.3, in performance benchmarking, different types
of metrics are used, such as response time, throughput, and resource utilization, each
characterizing a different aspect of the system performance. Given that performance
is inherently multi-dimensional, it is often not straightforward how to weight the in-
dividual performance metrics when combining them into a single composite metric.
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Also, systems are often specialized for running specific types of workloads. Thus, a
system may perform great for one type of workload and bad for others. Combining
performance metrics for different types of workloads into a single composite metric
leads to losing such information.

Consider the example in Table 3.9. The execution times of five programs on
three different servers are shown. The last row shows the arithmetic mean of the
measured execution times on each server. Although the systems exhibit significant
performance differences when running the different programs, the arithmetic mean of
the execution times is constant. Thus, when using the arithmetic mean as a composite
performance metric, the three servers are indistinguishable.

Table 3.9: Execution times of five programs on three different servers

Program Server 1 Server 2 Server 3
1 50 s 100 s 500 s

2 200 s 400 s 600 s

3 250 s 500 s 500 s

4 400 s 800 s 800 s

5 5,000 s 4,100 s 3,500 s

Arithmetic mean 1,180 s 1,180 s 1,180 s

One way to better reflect the different performance of the three servers is to
consider the frequency with which the different programs are expected to be executed
in practice. If information on the execution frequency of the respective workloads is
available, this information can be used to assign different weights to the execution
times for each program and thus come up with a more representative composite
metric. Table 3.10 shows the weighted arithmetic means of the execution times of
the five programs on the different servers. As we can see, Server 1 performs best,
followed by Server 2 and Server 3. Thus, by using the weighted arithmetic mean to
take into account the execution frequencies of the different workloads, we obtain a
composite metric that better captures the differences between the three systems.

We note that weighted means are normally quite sensitive to the choice of weights.
Table 3.11 shows the performance of Server 1 for two different execution frequencies.
As we can see, the server exhibits very different performance behavior when the
execution frequencies change.
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Table 3.10: Weighted means of the execution times of the five programs

Program Execution
frequency

Server 1 Server 2 Server 3

1 50% 50 s 100 s 500 s

2 30% 200 s 400 s 600 s

3 10% 250 s 500 s 500 s

4 5% 400 s 800 s 800 s

5 5% 5,000 s 4,100 s 3,500 s

Weighted arithmetic mean 380 s 465 s 695 s

Table 3.11: Performance of Server 1 under varying execution frequencies

Program Execution time Execution
frequency 1

Execution
frequency 2

1 50 s 50% 25%

2 200 s 30% 5%

3 250 s 10% 10%

4 400 s 5% 5%

5 5,000 s 5% 55%

Weighted arithmetic mean 380 s 2,817.5 s

3.5.3 Aggregating Results from Multiple Benchmarks

In the previous section, we briefly explained how composite metrics can be used
to summarize results from multiple different measurement experiments testing the
system behavior under different conditions (e.g., when running different types of
workloads). This is common in benchmarking since modern benchmark suites are
often composed of multiple benchmarks that exercise different aspects of the system.
Each benchmark has its own metric or a set of metrics. The results from the individual
benchmarks are normally aggregated into one or more high-level composite metrics.

Ideally, when aggregating metrics from multiple benchmarks, each benchmark
metric should be weighted according to the fraction of time in which the work-
load emulated by the respective benchmark is expected to run in the user’s target
application scenario. For example, consider a benchmark suite composed of three
benchmarks: image processing, encryption, and compression. Each of the three
benchmarks measures and reports its own MIPS metric. For a user whose actual
workload is expected to be encryption for 90% of the time, image processing for 5%,
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and compression for 5%, the weighted arithmetic mean with weights 0.9, 0.05, and
0.05 can be used to aggregate the MIPS metrics measured for the three workloads
into a single overall MIPS metric. If each benchmark is expected to run for an equal
period of time, one can use a simple (unweighted) arithmetic mean of the MIPS.
While this works in the case of MIPS, as we show in the following, using the arith-
metic mean to aggregate metrics from multiple benchmarks does not always produce
a reliable metric.

3.5.3.1 Aggregating Ratio Metrics

Many performance metrics are defined as ratio A/B of two measured quantities A
and B, for example, the metrics MIPS and MFLOPS we discussed in Section 3.4.2
as well as all speedup metrics (Section 3.3). Some further examples of ratio metrics
include cycles per instruction (CPI), instructions per cycle (IPC), cache miss rates,
cache hit rates, and branch miss-prediction rates. Based on the examples provided
in John (2004) and John (2006), in this section, we show how ratio metrics cor-
responding to multiple benchmarks from a benchmark suite can be aggregated to
summarize the system performance with a single number.

Consider a benchmark suite composed of n benchmarks. Assume that a ratio
metric A/B is measured for each of the benchmarks in the suite. In this section, we
show how the metrics can be aggregated to present a summary of the performance
over the entire suite. While we focus on performance metrics, the principles we
present can also be generalized to other metrics that are defined as ratios. We start
with MIPS as an example. Assume that each of the benchmarks in the benchmark
suite reports its individual result MIPSi = ci/ti for i = 1, 2, ..., n, where ci is the
instruction count of the ith benchmark (in millions) and ti is the execution time of
the ith benchmark.

The overall MIPS metric of the benchmark suite is the MIPS metric when the
n benchmarks are considered as part of a single application:

Overall MIPS =
∑n

i=1 ci∑n
i=1 ti

. (3.7)

We now show that the overall MIPS of the benchmark suite can be obtained by:

• a weighted harmonic mean (WHM) of the MIPS of the individual benchmarks
weighted according to the instruction counts or

• a weighted arithmetic mean (WAM) of the MIPS of the individual benchmarks
weighted according to the execution times.

Indeed, if the weight of the ith benchmark according to instruction count is
denoted as wc

i =
ci∑n

k=1 ck
, then the WHM with weights corresponding to instruction

counts is given by
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1∑n
i=1

wc
i

MIPSi

=
1

1∑n
k=1 ck

∑n
i=1

ci
MIPSi

=

∑n
k=1 ck∑n

i=1
ci

MIPSi

=

=

∑n
k=1 ck∑n
i=1

ci ti
ci

=

∑n
k=1 ck∑n
i=1 ti

= Overall MIPS.
(3.8)

Similarly, if the weight of the ith benchmark according to execution time is
denoted as wt

i =
ti∑n

k=1 tk
, then the WAM with weights corresponding to execution

times is given by

n∑
i=1

(
wt
i MIPSi

)
=

1∑n
k=1 tk

n∑
i=1

(tiMIPSi) =

=
1∑n

k=1 tk

n∑
i=1

(
ti

ci
ti

)
=

∑n
i=1 ci∑n
k=1 tk

= Overall MIPS.
(3.9)

Table 3.12: Example benchmark suite with five benchmarks (John, 2004)

Benchmark Instruction count
(in millions)

Execution time
(s)

Individual MIPS

1 500 2 250

2 50 1 50

3 200 1 200

4 1,000 5 200

5 250 1 250

Consider the example in Table 3.12. The results of running a benchmark suite
comprising five benchmarks are shown. For each benchmark, the instruction count,
the execution time, and the individual MIPS rating are shown.

The weights of the benchmarks with respect to instruction counts are(
500
2000

,
50

2000
,

200
2000

,
1000
2000

,
250
2000

)
= (0.25, 0.025, 0.1, 0.5, 0.125) . (3.10)

The weights of the benchmarks with respect to execution times are(
2
10
,

1
10
,

1
10
,

5
10
,

1
10

)
= (0.2, 0.1, 0.1, 0.5, 0.1) . (3.11)
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WHM of individual MIPS (weighted with instruction counts):

1
0.25
250 +

0.025
50 +

0.1
200 +

0.5
200 +

0.125
250
= 200. (3.12)

WAM of individual MIPS (weighted with execution times):

(250 × 0.2) + (50 × 0.1) + (200 × 0.1) + (200 × 0.5) + (250 × 0.1) = 200. (3.13)

Overall MIPS =
∑n

i=1 ci∑n
i=1 ti

=
2000
10
= 200. (3.14)

Generalizing the presented example, we can formulate the following theorem:

Theorem 3.1 Given a benchmark suite made of n benchmarks that use a ratio
metric defined as A/B, where A and B are two measures, the values of the metric
for the individual benchmarks can be aggregated into a single overall metric by
using either: (1) the harmonic mean with weights corresponding to the measure
in the numerator or (2) the arithmetic mean with weights corresponding to the
measure in the denominator.

Corollary 3.1 If A is weighted equally among the benchmarks, the simple (un-
weighted) harmonic mean can be used. If B is weighted equally among the bench-
marks, the simple (unweighted) arithmetic mean can be used.

Tables 3.13 and 3.14 show some examples of how the above theorem and corollary
can be applied to some common metrics used in the computer architecture domain.

Table 3.13: Examples of aggregating ratio metrics (John, 2004)

Metric Appropriate mean value to aggregate metrics over a benchmark suite
A/B WAM weighted with Bs WHM weighted with As

IPC WAM weighted with cycles WHM weighted with inst. count

CPI WAM weighted with inst. count WHM weighted with cycles

MIPS WAM weighted with time WHM weighted with inst. count

MFLOPS WAM weighted with time WHM weighted with FLOP count

Cache hit rate WAM weighted with the number of
references to cache

WHM weighted with number of cache
hits

Transactions
per minute

WAM weighted with execution times WHM weighted with proportion of
transactions for each benchmark

Speedup WAM weighted with execution times
of each benchmark in the enhanced
system

WHM weighted with execution times
of each benchmark in the baseline sys-
tem
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Table 3.14: Use of simple (unweighted) means (John, 2004)

To aggregate metrics over a benchmark suite:
Metric Simple arithmetic mean valid? Simple harmonic mean valid?
A/B If Bs are equal If As are equal

IPC If equal cycles in each benchmark If equal inst. count in each benchmark

CPI If equal inst. count in each benchmark If equal cycles in each benchmark

MIPS If equal times in each benchmark If equal inst. count in each benchmark

MFLOPS If equal times in each benchmark If equal FLOPS in each benchmark

Cache hit rate If equal number of references to cache
for each benchmark

If equal number of cache hits in each
benchmark

Transactions
per minute

If equal times in each benchmark If equal number of transactions in
each benchmark

Speedup If equal execution times in each
benchmark in the enhanced system

If equal execution times in each
benchmark in the baseline system

3.5.3.2 Aggregating Normalized Values

Consider the motivating example we presented in Section 3.4.1. A benchmark suite
composed of two programs, which we can consider as separate benchmarks, was
run on three different servers. The execution times of the two benchmarks were
measured on each server and used to compute a composite metric summarizing the
server performance. We assumed that no information is available about the fraction
of time in which the two workloads emulated by the benchmarks are expected to
run in the user’s application scenario. The two workloads were therefore treated
as equally important assuming that they will be executed for the same fraction of
time. In other words, it was assumed that at a randomly chosen point of time, the
probability that the first workload is running is equal to the probability that the
second workload is running. We showed that using the arithmetic mean to aggregate
the execution times of the two benchmarks leads to a composite metric that does not
reflect the actual server performance and is therefore unreliable.

When using the arithmetic mean of execution times, large absolute values have
a higher influence on the overall result. To address this problem, we computed the
speedup of the different servers with respect to a selected reference server and used
the speedup as a basis for our metric instead of the execution time. The advantage of
using speedup is that the actual absolute values of the execution times are irrelevant
and only the relative differences play a role. Thus, speeding up one of the two
benchmarks by a given factor would have the same effect on the overall performance,
no matter which benchmark is selected. Furthermore, when comparing speedups,
the choice of a reference server does not influence the results; that is, the ratio of two
speedups is independent of the server chosen as a reference (Lilja, 2000). This is
shown in Equation (3.15), where ExecTimeA and ExecTimeB denote the execution
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times on two arbitrary servers and ExecTimere f denotes the respective execution
time on the server used as a baseline.

SpeedupA

SpeedupB

=

ExecTimere f

ExecTimeA

ExecTimere f

ExecTimeB

=
ExecTimeB
ExecTimeA

. (3.15)

While the use of speedup resolved part of the issue, we showed in Section 3.4.1
that if the arithmetic mean is used to compute the average speedup for the two
benchmarks, the resulting rankings of the three servers depend on the choice of
the reference system. Thus, a composite metric based on the arithmetic mean of
speedups may be easily manipulated by selecting a different server as a baseline.
The solution was to use the geometric mean to compute the mean speedup. The
geometric mean has the property that it ensures consistent rankings when averaging
normalized data, such as speedups. In the following, we elaborate a bit more on this
property.

Consider the example in Table 3.15 where the execution times of five benchmarks
executed on three different servers are shown. The table shows the raw execution
times as measured when running the benchmarks as well as the execution times
normalized to Server 1 and Server 2, respectively. The geometric mean is used as
a composite metric summarizing the results for each server. As we can see, in all
three cases the geometric mean provides consistent rankings of the three servers,
independent of the server chosen as a baseline for the normalization.

It can be easily shown that not only are the rankings consistent, but also the
ratios of geometric means corresponding to different servers are independent of the
baseline used for normalization. We denote with xi and yi the results of the i-th
benchmark (in our case, measured execution times) for two selected servers x and y.
We denote with ri the respective benchmark results for a reference server used as a
baseline for normalization. Equation (3.16) shows the ratio of the geometric means
xG and yG of the benchmark results for the two servers. As we can see, the ratio of
the geometric means is independent of the server used for normalization.

xG
yG
=

(
n∏
i=1

xi
ri

) 1
n

(
n∏
i=1

yi
ri

) 1
n

=

(
n∏
i=1

1
ri

) 1
n
(

n∏
i=1

xi

) 1
n

(
n∏
i=1

1
ri

) 1
n
(

n∏
i=1

yi

) 1
n

=

(
n∏
i=1

xi

) 1
n

(
n∏
i=1

yi

) 1
n

. (3.16)

The most prominent example of a benchmark suite that uses the geometric mean
to aggregate metrics from multiple benchmarks is SPEC CPU, which is introduced
in detail in Chapter 10. Since its first version (SPEC CPU89), this benchmark has fol-
lowed the same approach to derive composite metrics summarizing the performance
of a CPU under test. SPEC CPU includes a number of different benchmarks, each
running a different type of workload (e.g., GNU C compiler, video compression,
ray tracing). The benchmarks are executed on the CPU under test. The results are
then normalized by computing the speedup with respect to a standardized reference
machine, the results of which are provided by SPEC. In SPEC’s terminology, the
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Table 3.15: Ranking of three servers based on the geometric mean with different
reference systems

(a) Execution times of five benchmarks executed on three different servers

Benchmark Server 1 Server 2 Server 3
1 417 244 134

2 83 70 70

3 66 153 135

4 39,449 33,527 66,000

5 772 368 369

Geometric mean 586 503 499

Rank 3 2 1

(b) Execution times normalized to Server 1

Benchmark Server 1 Server 2 Server 3
1 1.0 0.59 0.32

2 1.0 0.84 0.85

3 1.0 2.32 2.05

4 1.0 0.85 1.67

5 1.0 0.48 0.48

Geometric mean 1.0 0.86 0.85

Rank 3 2 1

(c) Execution times normalized to Server 2

Benchmark Server 1 Server 2 Server 3
1 1.71 1.0 0.55

2 1.19 1.0 1.0

3 0.43 1.0 0.88

4 1.18 1.0 1.97

5 2.10 1.0 1.0

Geometric mean 1.17 1.0 0.99

Rank 3 2 1

speedup when applied to the execution time is referred to as SPECratio. The normal-
ized results (SPECratios) for the different benchmarks are aggregated by computing
their geometric mean, which is reported as an overall metric.
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The same approach is followed in all SPEC CPU benchmark suites including the
latest, SPEC CPU 2017. The latter offers 43 benchmarks, organized into four suites
(SPECspeed 2017 Integer, SPECspeed 2017 Floating Point, SPECrate 2017 Integer,
SPECrate 2017 Floating Point) that focus on different types of compute intensive
workloads. Each suite is a set of benchmarks that is run as a group to produce one
of the overall metrics. SPEC CPU 2017 uses both execution time (SPECspeed) and
throughput (SPECrate) metrics that are measured and normalized to a reference
machine. The respective ratios for the benchmarks in each of the four suites are then
averaged using the geometric mean, which is reported as the overall metric for the
respective suite.

The motivation to use normalized metrics combined with geometric mean is that
each of the benchmarks should be treated as equally important; that is, the workloads
modeled by the different benchmarks are assumed to be equally represented in
customer applications. The geometric mean is used to compute the overall metric, so
that the results are independent of the reference machine used by SPEC. The intent
is that improvements in each benchmark are encouraged and rewarded equally. In
other words, a 20% improvement in one benchmark should have the same effect
on the overall mean as a 20% improvement on any of the other benchmarks, and
another 20% improvement on that benchmark should have the same effect as the last
20% improvement. This ensures that no one benchmark in the suite becomes more
important than any of the others in the suite.

3.6 Concluding Remarks

This chapter started by defining the basic concepts: metric, measure, and measure-
ment. While in mathematics, the term metric is explicitly distinguished from the term
measure, in computer science and engineering, the terms metric and measure over-
lap in meaning and are often used interchangeably. One way to distinguish between
them is looking at metrics as values that can be derived from some fundamen-
tal measurements comprising one or more measures. We introduced four scales of
measurement—nominal, ordinal, interval, and ratio—which can be used to classify
the types of values assigned by different measures. After that, we defined the most
common performance metrics—response time, throughput, and utilization—while
also introducing the terms speedup and relative change.

We showed that not all metrics that can be used to quantify a given system property
under evaluation are good in the sense of providing insight into the system behavior
and helping to make informed decisions. To distinguish good metrics from bad, we
described six fundamental attributes that characterize the quality of a benchmark
metric: easy to measure, repeatable, reliable, linear, consistent, and independent.
Following this, we introduced the different types of averages (i.e., indices of central
tendency): arithmetic mean, harmonic mean, geometric mean, median, and mode.
We showed how average values can be used to define composite metrics that sum-
marize results from multiple different measurement experiments testing the system
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behavior under different conditions. This is common in benchmarking since modern
benchmark suites are often composed of multiple benchmarks that exercise different
aspects of the system. Each benchmark has its own metric or a set of metrics. The
results from the individual benchmarks are normally aggregated into one or more
high-level composite metrics. The chapter concluded by discussing approaches to
aggregate results from multiple benchmarks.
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Chapter 4
Statistical Measurements

“A man with one watch knows what time it is; a man
with two watches is never quite sure.”
—Lee Segall

In the previous chapter, we saw that the design of good benchmark metrics that
possess the quality attributes presented in Chapter 3 (Section 3.4.2) is challenging. So
far, we focused on ensuring that metrics are reliable and independent from influences
of vendors. In this chapter, we focus on the quality attributes easy to measure and
repeatable.

In Chapter 3 (Section 3.1), we defined metric as a value that can be derived from
measurements of one or more measures that evaluate some properties or characteris-
tics of events or objects in the real world. Typically, the properties or characteristics
of interest cannot be measured directly and can only be estimated statistically. Each
measure can therefore be seen as a random variable capturing the outcome of an ex-
periment, that is, an observation (measurement) of a given property or characteristic
of an event or object.

This chapter introduces statistical approaches for quantifying the variability and
precision of measurements. The chapter starts by introducing the most common
indices of dispersion for quantifying the variability, followed by defining basic con-
cepts such as accuracy, precision, and resolution of measurements as well as the
distinction between systematic and random measurement errors. A model of random
errors is introduced and used to derive confidence intervals for estimating the mean
of a measured quantity of interest based on a sample of measurements. After that,
the special case where the quantity of interest is defined as a proportion is consid-
ered. Finally, statistical tests for comparing alternatives based on measurements are
introduced. The cases of paired and unpaired observations are covered separately.
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4.1 Measurement as a Random Experiment

The process of measurement can be seen as a random experiment in which the
values of the respective measures of interest are observed. Typically, measurements
vary when repeated multiple times. Thus, a set of measured values {x1, x2, ..., xn} is
considered a sample from a random variable X with an unknown distribution. Metrics
are often computed from the sample using statistics that allow one to summarize the
measurements while at the same time characterizing properties of the underlying
population (i.e., the distribution of the random variable X).

Indices of central tendency A sample of measurements is normally summarized
by computing an average value, also referred to as index of central tendency, and
using it as a metric characterizing the measured property or characteristic of interest.
As introduced in Chapter 3 (Section 3.5), the most common indices of central
tendency are the sample mean, median, and mode. When speaking of the sample
mean, the arithmetic mean is assumed. Further indices of central tendency include
the harmonic mean and the geometric mean. In this chapter, we focus on the sample
mean, since it is the standard index of central tendency used in statistics when
considering a sample {x1, x2, ..., xn} from a random variable X . The sample mean is
defined as

x =
1
n

n∑
i=1

xi . (4.1)

The sample mean is an estimate of the mean μ = E[X] of the random variable X ,
also called expected value of X .

Indices of dispersion While the indices of central tendency aim to provide a
middle or typical value that lies in the center of the interval where most measure-
ments are distributed, they do not provide information about the variability of the
measurements. Figure 4.1 shows two histograms corresponding to samples from two
different random variables. While the respective distributions have the same sample
mean, they obviously have different shape, the second one exhibiting much higher
variability. The sample mean does not provide any information on how “spread
out” the measurements are. To quantify the variability of measurements, different
statistics are used, referred to as indices of dispersion. Table 4.1 shows the most
common indices of dispersion for a sample of measurements {x1, x2, ..., xn} with
their definitions.

The most common indices of dispersion are the sample variance, standard de-
viation, and coefficient of variation (COV). The sample variance s2 for a sample of
size n has (n − 1) degrees of freedom. As mentioned in Chapter 2 (Section 2.4), the
sample variance is an estimate of the variance σ2 of the random variable X , also
denoted as Var (X ) or σ2

X . In general, the degrees of freedom of an estimate of a
statistical parameter are equal to the number of independent pieces of information
used as input in the estimation minus the number of parameters used as intermediate
steps. The sample variance for a sample of size n has (n − 1) degrees of freedom,
because it is computed from n random values minus one parameter estimated as
intermediate step (i.e., the sample mean).
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Fig. 4.1: Example of distributions with different variability

Table 4.1: Most common indices of dispersion for a sample of measurements

Index of dispersion Definition
Range max

1≤i≤n
(xi) − min

1≤i≤n(xi)

Maximum distance from the mean max
1≤i≤n

( |xi − x̄ |)

Sample variance s2 s2 =
∑n

i=1 (xi−x)2

n−1

Sample standard deviation s s =
√

s2

Coefficient of variation (COV) COV = s/x

It can be shown that the following equation holds:

s2 =

∑n
i=1(xi − x)2

n − 1
=

n
∑n

i=1 x2
i − (
∑n

i=1 xi)2

n(n − 1)
. (4.2)

The second formula allows us to compute the variance using one pass through
the data, which is normally more convenient to implement.

The sample variance is derived based on the squared distance of the observed
values xi from the sample mean. Given that the square of the distance is taken, the
resulting quantity is in “units-squared” compared to the mean. This makes it hard
to compare the variance to the mean. The sample standard deviation is computed
as the square root of the variance and thus has the same units as the mean. This
allows setting the standard deviation in relation to the mean. Finally, the coefficient
of variation (COV) compares the relative size of the standard deviation to the mean
value and is thus a dimensionless quantity.
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4.2 Quantifying Precision of Measurements

As discussed previously, the process of measurement can then be seen as an experi-
ment in which the values of the respective measures of interest are observed. A set
of measured values {x1, x2, ..., xn} is considered a sample from a population, that
is, a random variable X with an unknown distribution. Metrics are often computed
from the sample using statistics that allow summarizing the measurements while at
the same time quantifying certain properties of the underlying population.

In reality, the actual measured quantity is characterized by the probability distri-
bution of the random variable X . The sample mean x, typically used to summarize a
sample of measurements, is interpreted as an estimate of the mean μ = E[X] of the
random variable X . The mean μ is the main index of central tendency characterizing
the distribution of the measurements. Since the distribution is unknown, μ is also
unknown and it can be only approximated using the sample mean x. However, since
measurements vary when repeated multiple times, the computed sample mean also
varies. This introduces uncertainty into our measurements raising the question of
how good the sample mean x serves as approximation of the population mean μ?
Answering this question is the topic of the rest of this section.

4.2.1 Experimental Errors

The variability in experimental measurements, which introduces uncertainty, is re-
ferred to as noise. The noise is caused by different sources of variability, referred to
as errors. We distinguish between systematic errors and random errors (Lilja, 2000).

Systematic errors are the result of some oversight or mistake in the measurement
process introducing some bias into the measurements. For example, a change in
the temperature may cause a clock period to drift, affecting time measurements.
Similarly, if the experimenter fails to ensure an identical system state in the beginning
of each experiment (e.g., by forgetting to clear the cache or to reload the database),
this may introduce bias into the measurements. Systematic errors typically produce
a constant or a slowly varying bias.

Random errors, on the other hand, result from limitations in the measurement tools
and random processes within the system. They are unpredictable, non-deterministic,
and unbiased, in the sense that they may equally likely cause higher or lower values
to be measured. While systematic errors depend on the skills of the experimenter and
can be controlled, random errors typically can be neither controlled nor completely
eliminated. A number of random processes in modern computer systems may affect
measurements such as CPU caching, process scheduling and synchronization, data
contention, virtual memory paging, virtual machine scheduling, and network packet
collisions. While random errors normally cannot be completely eliminated, their
influence can be analyzed and quantified using statistical methods, as we show in the
rest of this chapter.
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To give an example of a random error, we consider an interval timer. Most
interval timers are implemented using a counter variable incremented on each tick
of a system clock. Figure 4.2 shows an example of an interval timer reporting a
different duration of the same event, depending on the exact starting point of the
measurement. Repeated measurements of the same event duration will lead to values
X ± Δ. This effect is referred to as quantization effect.

Fig. 4.2: Example of random errors caused by quantization effect in interval timers

The measurement process itself, including the employed measurement tools, can
be characterized by three properties that influence the quality of the measurements:
accuracy, precision, and resolution (Lilja, 2000).

The accuracy is the absolute difference between the true value of interest and
the mean of the actual value being measured. In other words, the accuracy is an
indicator of how close the mean μ of the distribution of measurements is to the true
value we are trying to measure. Ideally, there will be no difference between the two;
however, due to systematic errors in the measurement process, often the two values
are not identical. For example, in the case of a timer, the accuracy determines how
close the timer’s measurements match the standard measurement of time based on
agreed-upon standards and reference clocks.

The precision characterizes the repeatability of measurements obtained through
the respective measurement approach. Higher variability leads to more scatter in the
measurements. The high variability translates into higher variance σ2 of the random
variable X , resulting in lower precision of the measurement process. The precision
depends on the amount of random errors in the measurements. The more sources of
random errors, the lower the precision of measurements. Unlike accuracy, which is
up to the skills of the experimenter, the precision of measurements can be quantified
using statistical methods, as will be shown later in this chapter.

Finally, the resolution is the smallest difference between two possible measured
values, that is, the smallest change in the measured quantity that can be detected
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Fig. 4.3: Distribution of measurements—accuracy, precision, and resolution

by the measurement process. For example, for interval timers, the resolution is the
period of time between two clock ticks, which determines the minimum amount of
time that can be measured. As discussed above, the quantization effect is caused
by the limited resolution of interval timers. Figure 4.3 illustrates the concepts of
accuracy, precision, and resolution.

4.2.2 A Model of Random Errors

Consider a measurement experiment resulting in obtaining the sample {x1, x2, ..., xn}
from the random variable X , representing the measured quantity of interest. The
measurements are influenced by a number of error sources causing noise in the
measurements. As a simplification, let us first assume one source of error (e.g.,
quantization effect) that leads to shifting the measured value by e units to the left or
to the right with equal probability. This is shown in Table 4.2a. Now consider two
or three independent sources of errors, each of them behaving in the same way. The
possible measured values and their probabilities are shown in Tables 4.2b and 4.2c,
respectively. Figure 4.4 shows the distribution of measurements.

The effect of multiple error sources on the measurements can be generalized
for n independent error sources as shown in Figure 4.5 (Lilja, 2000). Starting with a
value x, each error source shifts the value either to the left or to the right with an equal
probability. The n + 1 possible resulting values rk = x − (n − 2k)e for k = 0, 1, ..., n
that can be measured are shown at the bottom. For each of the possible values,
the probability of the measurement experiment resulting in the respective value is
proportional to the number of paths from the initial value x to the respective value at
the bottom of the diagram. Each path can be seen as a sequence of “going left” (−e)
vs. “going right” (+e) decisions (n Bernoulli trials with probability 0.5) for n in-
dependent error sources, that is, a Bernoulli process. We denote with p = 0.5 the
probability of “going right.” The final measured value rk depends on the number
of “going right” decisions k in the sequence (ranging from 0 to n). For each pos-
sible number of decisions to go right (k = 0, 1, ..., n),

(
n
k

)
possible orderings exist
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Table 4.2: Effects of multiple error sources

(a) Effect of one error source

Error Measured value Probability

-e x-e 1
2

+e x+e 1
2

(b) Effect of two error sources

Error 1 Error 2 Measured value Probability

-e -e x-2e 1
4

-e +e x 1
4

+e -e x 1
4

+e +e x+2e 1
4

(c) Effect of three error sources

Error 1 Error 2 Error 3 Measured value Probability

-e -e -e x-3e 1
8

+e -e -e x-1e 1
8

-e +e -e x-1e 1
8

-e -e +e x-1e 1
8

+e +e -e x+1e 1
8

+e -e +e x+1e 1
8

-e +e +e x+1e 1
8

+e +e +e x+3e 1
8

corresponding to different paths, all leading to the same final point in the diagram
(measured value). Each of these paths occurs with probability pk (1− p)(n−k) . Thus,
the probability of measuring the value rk = x − (n − 2k)e = x + ke − (n − k)e,
corresponding to k decisions to go right, is given by

P(X = rk ) =
(
n
k

)
pk (1 − p)(n−k) (4.3)

for k = 0, 1, ..., n and p = 0.5, assuming equal probability of going left or right.
The above probabilities correspond to the Binomial distribution with parameters p
and n. The introduced model is very simple given the simplifying assumption of
error sources being independent and each error source having similar behavior.
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(a) One error source (b) Two error sources

(c) Three error sources

Fig. 4.4: Distribution of measurements for one to three error sources

Nonetheless, we can conclude that for n error sources, the measurements would
follow an approximate Binomial distribution.

Now let us assume that the number of error sources becomes large (i.e., n → ∞).
From statistics, we know that the Binomial distribution converges towards Normal
distribution when the number of trials n tends towards infinity (see Chapter 2, Sec-
tion 2.6). Since in practice the number of error sources is large, measurements are
commonly assumed to follow a Normal distribution (Lilja, 2000). In other words,
a measurement experiment can be seen as a random experiment in which a sample
{x1, x2, ..., xn} from a normally distributed random variable X with parameters μ
and σ2 is obtained. By the definition of a sample, the individual measurements can
be seen as independent and identically distributed (IID) Normal random variables
{X1, X2, ..., Xn} with parameters μ and σ2. The Normal distribution, plotted in Fig-
ure 4.6, is one of the most common distributions used in statistics (see Chapter 2,
Section 2.5).
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Fig. 4.5: Simple model of n error sources and their effect on the
measurements (Lilja, 2000)

Fig. 4.6: Modeling measurements with the Normal distribution

4.2.3 Estimating Means

Consider a measurement experiment modeled as a sample {X1, X2, ..., Xn} from
a normally distributed random variable X with parameters μ and σ2; that is,
X ∼ N (μ, σ2). As discussed in the previous sections, the individual measurements
can be seen as independent and identically distributed (IID) Normal random variables
{X1, X2, ..., Xn} with parameters μ and σ2.

The actual measured quantity is characterized by the probability distribution
of the random variable X . While we assume that X is normally distributed, its
parameters μ and σ2 are unknown. The sample mean x provides a point estimate
of the mean μ = E[X]. However, since measurements vary when repeated multiple
times, the computed sample mean also varies. This raises the question of how good
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the sample mean x serves as an approximation of the population mean μ? The answer
to this question depends on the precision of the measurements. In the rest of this
section, we show how the precision can be quantified by deriving an interval estimate
for μ.

An interval estimate for μ is defined as an interval [c1, c2] such that

P(c1 ≤ μ ≤ c2) = 1 − α, (4.4)

where α ∈ (0, 1) is a parameter referred to as significance level. Usually, a symmetric
interval is used so that

P(μ < c1) = P(μ > c2) =
α

2
. (4.5)

Such an interval [c1, c2] is called confidence interval (CI) for the mean μwith con-
fidence level (1−α)×100%. Typical values used for α are 0.1 or 0.05 corresponding
to confidence levels of 90% and 95%, respectively. We will now show how an
interval [c1, c2] that satisfies Equation (4.5) can be derived from the sample of
measurements.

4.2.3.1 CI Based on the Normal Distribution

Let us first assume that we have at least 30 measurements (i.e., n ≥ 30). The sample
mean

X =
∑n

i=1 Xi

n
(4.6)

can be seen as a random variable defined as a linear combination of the random vari-
ables {X1, ..., Xn}, which are assumed to be normally distributed with parameters μ
and σ2. It follows (see Chapter 2, Section 2.5) that the sample mean is also normally
distributed with parameters μ and σ2/n, that is,

Xi ∼ N (μ, σ2) ⇒ X ∼ N (μ, σ2/n). (4.7)

The random variable

Z =
X − μ√

σ2

n

(4.8)

will then have a standard Normal distribution, that is, Z ∼ N (0, 1) (see Chapter 2,
Section 2.5), from which it follows that

P
(−zα/2 ≤ Z ≤ zα/2

)
= 1 − α, (4.9)

where zα/2 is the upper α/2 critical value of the standard Normal distribution (as
illustrated in Figure 4.7).
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Fig. 4.7: Standard Normal distribution

Interpreting Equation (4.9), after some rearrangements, we obtain

P
���−zα/2 ≤ X − μ√

σ2

n

≤ zα/2
���� = 1 − α

P �X − zα/2

√
σ2

n
≤ μ ≤ X + zα/2

√
σ2

n
�� = 1 − α.

(4.10)

As a general rule of thumb in statistics, if a sample from a random variable X has
at least 30 elements, then the sample variance

S2 =

∑n
i=1(Xi − X )2

n − 1
(4.11)

can be considered to be a good estimate of the variance σ2 of X (see Section 2.4 in
Chapter 2).

Given that we assumed a sample size of n ≥ 30, we can thus replace σ2 with S2

in Equation (4.10) obtaining

P �X − zα/2

√
S2

n
≤ μ ≤ X + zα/2

√
S2

n
�� = 1 − α. (4.12)

Equation (4.12) provides a confidence interval [c1, c2] as per Equation (4.4), such
that P(c1 ≤ μ ≤ c2) = 1 − α, where

c1 = x − zα/2

√
s2

n
and c2 = x + zα/2

√
s2

n
. (4.13)

The quantity
√

s2/n is an estimate of the standard deviation of the sample
mean σX =

√
σ2/n, which is commonly referred to as standard error of the mean.

Denoting the estimate of the standard error as SEX =
√

s2/n, the confidence interval
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can also be expressed as

c1 = x − zα/2SEX and c2 = x + zα/2SEX . (4.14)

The interval [c1, c2] is an approximate 100(1 − α)% confidence interval (CI) for
the mean μ. It is approximate because we made some simplifications above, such as
estimating σ2 with S2. The larger the number of measurements n, the more accurate
the resulting confidence interval would be.

4.2.3.2 CI Based on the t-distribution

So far, we assumed a sample size of at least 30 measurements. We now relax this
assumption and consider the case when n < 30. In that case, we generally cannot
assume that the sample variance S2 provides a good estimate of the population vari-
ance σ2. Thus, we cannot use the confidence interval in Equation (4.12). However,
a similar confidence interval based on the t-distribution can be derived.

Since Xi ∼ N (μ, σ2), it follows that

T =
X − μ√

S2

n

(4.15)

has a t-distribution with (n − 1) degrees of freedom (see Chapter 2, Section 2.5,
Theorem 2.2). From this, it follows that

P
(−t {α/2,n−1} ≤ T ≤ t {α/2,n−1}

)
= 1 − α, (4.16)

where t {α/2,n−1} is the upper α/2 critical value of the t-distribution with (n − 1)
degrees of freedom. Interpreting Equation (4.16), after some rearrangements, we
obtain

P
���−t {α/2,n−1} ≤ X − μ√

S2

n

≤ t {α/2,n−1}
���� = 1 − α

P �X − t {α/2,n−1}

√
S2

n
≤ μ ≤ X + t {α/2,n−1}

√
S2

n
�� = 1 − α.

(4.17)

Equation (4.17) provides a confidence interval [c1, c2] as per Equation (4.4), such
that P(c1 ≤ μ ≤ c2) = 1 − α, where

c1 = x − t {α/2,n−1}

√
s2

n
and c2 = x + t {α/2,n−1}

√
s2

n
. (4.18)

As discussed in Chapter 2, Section 2.5, the t-distribution is similar to the standard
Normal distribution (see Figure 4.8); they are both bell-shaped and symmetric about
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a mean of zero. The t-distribution is generally more “spread out” (i.e., it has greater
variance); however, it converges to the standard Normal distribution when n tends to
infinity.

t-distribution

normal-distribution

Fig. 4.8: t-distribution

The confidence interval quantifies the precision of the measurements. The wider
the interval, the less repeatable the measurements are expected to be and the more
uncertainty there will be in the accuracy of the sample mean as an estimate of the
mean of the underlying population.

In the derivation of the two confidence intervals, based on the Normal distri-
bution and on the t-distribution, respectively, we assumed that measurements are
normally distributed random variables. Even though, as argued in Section 4.2.2,
this assumption is reasonable and it is typically made for measurement experiments,
the derivation of the two confidence intervals is not dependent on this assumption.
This can be shown by applying the Central Limit Theorem (CLT). As introduced
in Chapter 2, Section 2.5, the latter states that a sum of a “large number” of values
from any distribution with a finite positive variance will be approximately normally
distributed. What is meant by a large number is not explicitly defined; however, 30
or higher is typically considered large enough (Lilja, 2000; Walpole et al., 2016). If
the distribution is not too different from a Normal distribution, a number higher than
six or seven is often considered sufficient to apply the CLT.1

In the case of n ≥ 30, the assumption of normally distributed measure-
ments {X1, ..., Xn} was used in Equation (4.7) in order to claim that the sample
mean is normally distributed. However, based on the CLT, the sample mean, given
that it is computed as a sum of values, can be assumed to be normally distributed with-
out requiring that the individual measurements {X1, ..., Xn} are themselves normally
distributed. Equation (4.7) would thus still hold, and the approximate confidence
interval based on the Normal distribution remains valid and can be used.

In the case of n < 30, we could possibly try to normalize the measurements by
grouping them into groups of six or more and using the sample mean of each group

1 The reader is warned to use these rules with caution since it is easy to show examples of
distributions where they do not apply.
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as input measurement. By the CLT, the sample means are going to be approximately
normally distributed, which allows us to apply Equation (4.16) and complete the
derivation of the confidence interval based on the t-distribution as was shown above.
We emphasize that this is only an approximation and the quality of the approach
becomes better as the sample size grows.

Table 4.3 shows the formulas for the two confidence intervals we derived based
on the Normal distribution and the t-distribution.

Table 4.3: Confidence intervals for the mean μ based on the
Normal distribution and t-distribution

Number of measurements Confidence interval [c1, c2]

n ≥ 30 c1 = x − zα/2
√

s2

n c2 = x + zα/2
√

s2

n

n < 30 c1 = x − t {α/2,n−1}
√

s2

n c2 = x + t {α/2,n−1}
√

s2

n

Example Consider an experiment in which the response time of a web service is
measured. A sample of eight measurements shown in Table 4.4 is obtained.

Table 4.4: A sample of eight response time measurements

Measurement Measured value
(s)

1 8.0

2 7.0

3 5.0

4 9.0

5 9.5

6 11.3

7 5.2

8 8.5

The sample mean is computed as

x =
∑n

i=1 xi
n

= 7.94 (4.19)

and the sample standard deviation as
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s =

√∑n
i=1(xi − x)2

n − 1
= 2.14. (4.20)

We consider two cases α = 0.1 and α = 0.05 corresponding to confidence levels
of 90% and 95%, respectively. Applying the formulas presented above for α = 0.1:

α = 0.1⇒ p = α/2 = 0.1/2 = 0.05 df = (n − 1) = 7

t {p,d f } = t {0.05,7} = 1.895

c1 = 7.94 − 1.895(2.14)√
8

= 6.5 c2 = 7.94 +
1.895(2.14)√

8
= 9.4

(4.21)

we obtain a 90% confidence interval [6.5, 9.4] for the mean μ.
Similarly, applying the formulas for α = 0.05:

α = 0.05⇒ p = α/2 = 0.05/2 = 0.025 df = (n − 1) = 7

t {p,d f } = t {0.025,7} = 2.365

c1 = 7.94 − 2.365(2.14)√
8

= 6.1 c2 = 7.94 +
2.365(2.14)√

8
= 9.7

(4.22)

we obtain a 95% confidence interval [6.1, 9.7] for the mean μ.
Table 4.5 shows the tabulated data for the critical values of the t-distribution used

in the above computations.

Table 4.5: Critical values of t-distribution with df degrees of freedom

(a) α = 0.1, p = 0.05, d f = 7

p
df 0.10 0.05 0.025
... ... ... ...
5 1.476 2.015 2.517
6 1.440 1.943 2.447
7 1.415 1.895 2.365
... ... ... ...
∞ 1.282 1.645 1.960

(b) α = 0.05, p = 0.025, d f = 7

p
df 0.10 0.05 0.025
... ... ... ...
5 1.476 2.015 2.517
6 1.440 1.943 2.447
7 1.415 1.895 2.365
... ... ... ...
∞ 1.282 1.645 1.960

The two confidence intervals are shown in Figure 4.9 together with the respective
density function of the t-distribution. The semantic of the 90% confidence interval
is that there is 90% chance that the population mean lies in the interval [6.5, 9.4].
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Similarly, there is 95% chance that the population mean lies in the interval [6.1, 9.7].
As we can see, the second interval is wider. This makes sense intuitively. Given that
both intervals are derived from the same underlying measurements with no additional
data available, a higher confidence level would naturally result into a wider interval.

Fig. 4.9: Semantics of the two confidence intervals

4.2.3.3 Indirect Measurement

Sometimes the quantity of interest cannot be measured directly, for example, due
to limited resolution of the measurement tool. As introduced in Section 4.2.1, the
resolution is the smallest change in the measured quantity that can be detected by the
measurement process. For example, if the execution time of an operation is shorter
than the period of time between two clock ticks, an interval timer will not be able
to measure the operation execution time. In such a case, an indirect measurement
approach can be applied (Lilja, 2000).

To illustrate this, we stick to the example with measuring the execution time
of a very short operation. In this case, one can measure the total time for several
consecutive repetitions of the operation and divide this time by the number of
repetitions to calculate the mean time for one execution. Denote with Tj the total
time for k j consecutive executions of the operation. The mean time for one execution
is then given by

x j =
Tj

k j
. (4.23)

By repeating the above procedure n times, we obtain a sample {x1, x2, . . . , xn} of
estimated times for one execution of the operation. We assume that the number of
executions k j for j = 1, ..., n are chosen high enough, such that the resolution of the
used interval timer can measure the cumulative times Tj .

We can now use the formulas for deriving a confidence interval, Equations (4.13)
and (4.18), by applying them to the sample of n mean values {x1, x2, . . . , xn}. While

(a) 90% confidence interval (b) 95% confidence interval
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this approach provides a workaround for the issue, the normalization has a penalty.
On the one hand, the sample size is reduced leading to loss of information. On the
other hand, we obtain a confidence interval for the mean value of the aggregated
operations, as opposed to the individual operations themselves. This leads to reducing
the variation and thus the resulting confidence interval might be more narrow than
it would have been if applied to the measured runtimes of single executions.

4.2.3.4 Determining the Number of Measurements Needed

The confidence intervals we derived (summarized in Table 4.3) were computed for
a given sample of n measurements. From the formulas, we see that the width of
the confidence intervals is inversely proportional to

√
n. The higher the number

of measurements, the smaller the resulting confidence intervals. In practice, an
experimenter will be interested to know how many measurements one needs to
conduct in order to obtain a confidence interval with a given target maximum width.
We now show how the experimenter can determine how many measurements are
needed to obtain the desired confidence interval.

Let us assume that the experimenter needs a confidence interval [c1, c2] of
length 2ex expressed relative to the center of the interval x, where e is a parame-
ter specifying the targeted maximum half-width. For simplicity, we assume that at
least 30 measurements will be obtained and the confidence interval based on the
Normal distribution will be used. Given that confidence intervals are symmetric
around the mean, we can write down the following equation that must be satisfied:

(c1, c2) =
(
(1 − e)x, (1 + e)x

)
=

(
x − zα/2

s√
n
, x + zα/2

s√
n

)
. (4.24)

Solving this equation for n, we obtain

zα/2
s√
n
= xe ⇒ n =

( s.zα/2
xe

)2
. (4.25)

We now have an estimate of the required number of measurements; however, to
apply the formula in Equation (4.25), we need the sample mean x and the standard
deviation s. To solve this, one should proceed as follows: First an experiment with
a small number of measurements (at least 30) is conducted to obtain an estimate
for x and s. The estimates are then inserted into Equation (4.25) to determine how
many measurements in total are needed to obtain the desired confidence interval
width. Then the experiment is continued until the target number of measurements
is reached. The final sample of measurements is then used to derive the confidence
interval.
Example Assume that, based on 30 measurements, we found: x = 7.94 s and
s = 2.14 s. To obtain a 90% confidence interval that the true mean is within 3.5% of
the sample mean (i.e., e = 0.035), we apply the formula in Equation (4.25):



88 4 Statistical Measurements

n =
( zα/2s

xe

)2
=

(
1.6449(2.14)
7.94(0.035)

)2
= 160.44. (4.26)

We conclude that we need 161 measurements to obtain a confidence interval with
the desired target width.

4.2.4 Estimating Proportions

In the previous section, we considered a general measurement experiment modeled as
a sample {X1, X2, ..., Xn} from a random variable X . The actual measured quantity is
characterized by the probability distribution of the random variable X . The two most
important parameters of the distribution are the mean μ and the standard deviationσ.
We showed how to derive point estimates for μ and σ as well as interval estimates
(i.e., confidence intervals) for μ.

We now look at a more specific type of measurement experiment in which the
quantity of interest to be measured is defined as a proportion. Assume we have a
large collection of objects and we would like to estimate the proportion of objects
that satisfy a given property by examining a random sample from the collection. A
similar scenario arises when the frequency with which a specific event occurs (out of
a given set of possible events) should be estimated by counting the number of times
the respective event occurs. For example, one may be interested in measuring the
fraction of time in which a system is in a given state (e.g., operating system running
in kernel mode) by examining the system state at a set of randomly selected points
in time. Each observation of the system state can then be seen as an event of a given
type (e.g., kernel mode vs. user mode) and the goal is to estimate the proportion of
events of the respective type of interest.

We model the above experiment as a sequence of n Bernoulli trials (Lilja, 2000).
We examine a sample of n objects/events from the set of all possible objects/events.
Each time we examine an object, we have a Bernoulli experiment with two possible
outcomes: the object/event satisfies the respective property of interest (success) or
the object/event does not satisfy it (failure). Let p be the probability of success. We
assume that the successive Bernoulli trials are independent. Consider the random
variable X defined as the number of successes in the n trials, that is, the number of
objects/events from the sample that satisfy the property of interest. We know that X
will have a Binomial distribution B(p, n) with parameters p and n (see Chapter 2,
Section 2.6). The actual quantity of interest that we would like to estimate is the
parameter p of the Binomial distribution, which corresponds to the proportion of
objects/events that satisfy the respective property. In the following, we will show
how to derive a confidence interval for p.

Given that X has a Binomial distribution with parameters p and n, we know that

E[X] = pn σ2[X] = p(1 − p)n. (4.27)
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The random variable P̂ = X/n is an estimator of p. Indeed, E[P̂] = E[X/n] =
E[X]/n = (pn)/n = p. Thus, if n is large, we can estimate p using the sample
proportion p̂ = x/n. Assuming in addition that [p̂n ≥ 5 ∧ (1 − p̂)n ≥ 5], we can
approximate the Binomial distribution with a Normal distribution (see Chapter 2,
Section 2.6):

X ∼ B(p, n) ⇒ X ≈ N (pn, p(1 − p)n). (4.28)

Since we can estimate p with p̂, we can approximate the variance σ2[X] =
p(1 − p)n with p̂(1 − p̂)n such that

X ≈ N (pn, p̂(1 − p̂)n). (4.29)

From the above equation, it follows that Z = (X − E[X])/σ[X] ∼ N (0, 1) (see
Chapter 2, Section 2.5). Interpreting this, we obtain

P
(−zα/2 ≤ Z ≤ zα/2

) ≈ 1 − α

P �−zα/2 ≤ X − pn√
p̂(1 − p̂)n

≤ zα/2�� ≈ 1 − α

P
(
X − zα/2

√
p̂(1 − p̂)n ≤ pn ≤ X + zα/2

√
p̂(1 − p̂)n

)
≈ 1 − α

P �p̂ − zα/2

√
p̂(1 − p̂)

n
≤ p ≤ p̂ + zα/2

√
p̂(1 − p̂)

n
�� ≈ 1 − α.

(4.30)

We found an interval [c1, c2] such that P(c1 ≤ p ≤ c2) = 1 − α, where

c1 = p̂ − zα/2

√
p̂(1 − p̂)

n
and c2 = p̂ + zα/2

√
p̂(1 − p̂)

n
. (4.31)

The interval [c1, c2] is an approximate 100(1 − α)% confidence interval for the
probability p, which represents the proportion we wanted to estimate. It is approx-
imate because we made some simplifications above, such as approximating the
Binomial distribution with a Normal distribution. The larger the number of mea-
surements n, the more accurate the resulting confidence interval would be.

4.2.4.1 Determining the Number of Measurements Needed

The confidence interval we derived—Equation (4.31)—was computed for a given
sample of n measurements. We now show how the experimenter can determine how
many measurements one needs to conduct in order to obtain a confidence interval
with a given target maximum width. Let us assume that the experimenter needs
a confidence interval [c1, c2] of length 2ep̂ expressed relative to the center of the
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interval p̂, where e is a parameter specifying the targeted maximum half-width.
Given that confidence intervals are symmetric around the mean, we can write down
the following equation that must be satisfied:

(1 − e) p̂ = p̂ − zα/2

√
p̂(1 − p̂)

n
⇒ ep̂ = zα/2

√
p̂(1 − p̂)

n
. (4.32)

Solving this equation for n, we obtain

n =
z2
α/2 p̂(1 − p̂)

(ep̂)2 . (4.33)

We now have an estimate of the required number of measurements; however, to
apply the formula in Equation (4.33), we need the sample proportion p̂ = x/n. To
solve this, first an experiment with a small number of measurements (at least 30)
is conducted to obtain an initial estimate p̂. The estimate is then inserted into
Equation (4.33) to determine how many measurements in total are needed to obtain
the desired confidence interval width. Then the experiment is continued until the
target number of measurements is reached. The final sample of measurements is then
used to derive the confidence interval.

Alternatively, an upper bound for n based on the absolute error (ep̂) can be
obtained as follows:

p̂(1 − p̂) = −(p̂2 − p̂) =
1
4
−
(
p̂2 − p̂ +

1
4

)
=

1
4
−
(
p̂ − 1

2

)2
≤ 1

4

n =
z2
α/2 p̂(1 − p̂)

(ep̂)2 ≤
z2
α/2

4(ep̂)2 .

(4.34)

Example Consider an experiment aiming to estimate how much time a proces-
sor (CPU) spends executing operating system (OS) code. The execution is inter-
rupted every 10 ms updating two counters: (1) the number of times x, the processor’s
program counter (PC) register is observed to point to an instruction within OS code
and (2) the total number of interrupts n. After running the experiment for 1 min,
the values of the two counters are as follows: n = 6000, x = 658. Using the for-
mulas in Equation (4.31), we obtain the following 95% confidence interval for the
probability p of executing OS code:

(c1, c2) = p̂ ∓ zα/2

√
p̂(1 − p̂)

n
=

= 0.1097 ∓ 1.96
√

0.1097(1 − 0.1097)
6000

= (0.1018, 0.1176).
(4.35)
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Based on these results, we can claim with 95% confidence that the processor
spends between 10.2% and 11.8% of its time executing OS code. Now, assume that
we would like to have a confidence interval of half-length p̂0.5%, that is, e = 0.005.
We use Equation (4.33) to determine how long the experiment must be run to collect
enough measurements:

p̂ =
x
n
=

658
6000

= 0.1097

n =
z2
α/2 p̂(1 − p̂)

(ep̂)2 =
(1.960)2(0.1097)(1 − 0.1097)

[0.005(0.1097)]2 = 1,247,102.

(4.36)

Under the assumption that the execution is interrupted every 10 ms, we will need
to run the experiment for 3.46 h to collect enough measurements.

4.3 Comparing Alternatives

So far, we considered a measurement experiment modeled as a sample {x1, x2, ..., xn}
from a random variable X representing the measured quantity of interest. We showed
that measurements are typically influenced by errors causing noise, and we intro-
duced confidence intervals, which help to quantify the precision of measurements.
The precision indicates how good the sample mean x serves as approximation of the
true mean of the underlying population μ. The wider the confidence interval, the less
repeatable the measurements are expected to be, and the more uncertainty there will
be when the sample mean is used as an estimate of the measured quantity of interest.

Now consider a scenario where two systems need to be compared with respect
to a given property that can be measured experimentally (Lilja, 2000). Two separate
measurement experiments are conducted resulting in two sets of measurements, one
for each of the two systems under study. This scenario occurs in practice when, for
example, two different systems are compared to determine which one is better with
respect to a considered property of interest. Another example is when a change is
made to a system and the new system is compared with the original one to determine
the impact of the change. Given the presence of random errors and the uncertainty
they introduce in experimental measurements, the goal is to determine whether
differences observed in the measurements are statistically significant or if they are
simply due to random noise. Note that statistical significance should not be confused
with actual importance. Scientists have argued that in many cases this may lead to
overhyped claims or overlooked effects. For further discussion of this issue, we refer
the reader to Amrhein et al. (2019).

In the rest of this section, we will assume that two sets of measurements are col-
lected corresponding to the two alternatives that need to be compared. We denote the
individual measurements as random variables {X1,1, ..., X1,n1 } for the first alternative
and {X2,1, ..., X2,n2 } for the second alternative.
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We will distinguish between two cases:

• non-corresponding measurements (also referred to as unpaired observations),
when the two sets of measurements are independent and

• before-and-after comparisons (also referred to as paired observations), when the
two sets of measurements are not independent.

4.3.1 Non-corresponding Measurements

In the case of non-corresponding measurements, we consider the measurements
within each set as independent and identically distributed (IID) random variables
with variances σ2

1 and σ2
2 , respectively. In other words, each set of measurements is

modeled as a sample from an unknown distribution and the two samples are assumed
to be independent. By the Central Limit Theorem (CLT), the sample means of the
two sets of measurements

X i =
1
ni

ni∑
j=1

Xi, j for i ∈ {1, 2} (4.37)

are approximately normally distributed. Therefore, the difference of the two
means X = X1 − X2 is also approximately normally distributed being a linear
combination of normally distributed random variables:

X ∼ N (μ, σX
2) ⇒ Z =

X − μ
σX

∼ N (0, 1). (4.38)

Interpreting Equation (4.38), we apply the same approach as in Section 4.2.3.1;
see Equation (4.9) and the following derivations. If n1 ≥ 30 and n2 ≥ 30, after
applying the approach from Section 4.2.3.1, we arrive at the following confidence
interval [c1, c2] for the difference of means X :

c1 = x − zα/2sX and c2 = x + zα/2sX, where sX =

√
s2

1
n1
+

s2
2

n2
, (4.39)

where s2
1 and s2

2 are the sample variances of the two sets of measurements and the
quantity sX is an estimate of the standard deviation σX of the random variable X .
To show this, we recall that the variance σ2 of a linear combination of independent
random variables is equal to the same linear combination of the variances of the indi-
vidual random variables with squared coefficients; see Equation (2.18) in Chapter 2,
Section 2.3. Applying this rule, we observe that
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σ2
X
= Var

(
X1 − X2

)
= 12Var �

∑n1
j=1 X1, j

n1
�� + (−1)2Var �

∑n2
j=1 X2, j

n2
�� =

=
1
n2

1

n1∑
j=1

Var
(
X1, j
)
+

1
n2

2

n2∑
j=1

Var
(
X2, j
)
=

n1σ
2
1

n2
1
+

n2σ
2
2

n2
2
=
σ2

1
n1
+
σ2

2
n2
.

(4.40)

Assuming that n1 ≥ 30 and n2 ≥ 30, we can approximate the variancesσ2
1 andσ2

2
with the sample variances s2

1 and s2
1 of the two sets of measurements. Thus, from

Equation (4.40), it follows that the quantity

s2
X
=

s2
1

n1
+

s2
2

n2
(4.41)

is an estimate of the variance σ2
X

from which it follows that the quantity sX is an
estimate of the standard deviation σX of X .

If n1 < 30 and n2 < 30, we can follow a similar approach as in Section 4.2.3.2
assuming that the measurements Xi, j are approximately normally distributed and
using the t-distribution. Under this assumption, it can be shown that the following
confidence interval [c1, c2] for the difference of means X is valid (Walpole et al.,
2016):

c1 = x − t {α/2,nd f }sX and c2 = x + t {α/2,nd f }sX,

where nd f ≈

(
s2

1
n1
+

s2
2
n2

)2
(
s2

1/n1
)2

n1−1 +

(
s2

2/n2
)2

n2−1

.

(4.42)

Based on the above derivations, we can follow the following procedure to deter-
mine if there is a statistically significant difference between the two sets of measure-
ments and the respective alternatives they represent:

1. Compute the means of the two sets of measurements X1 and X2 using Equa-
tion (4.37).

2. Compute the difference of means X = X1 − X2.

3. Compute an estimate of the standard deviation sX of the difference of means X
using Equation (4.41).

4. Compute confidence interval [c1, c2] for this difference using Equation (4.39) if
n1 ≥ 30, n2 ≥ 30 and Equation (4.42), otherwise.
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5. If 0 � [c1, c2], it can be concluded that there is a statistically significant difference
between the two alternatives.

The two confidence intervals we derived for the difference of means X are shown
in Table 4.6.

Table 4.6: Confidence intervals for the difference of means X

Number of
measurements

Confidence
interval [c1, c2]

n1 ≥ 30 and n2 ≥ 30 (c1, c2) = x ∓ zα/2sX, where sX =

√
s2

1
n1
+

s2
2
n2

n1 < 30 and n2 < 30 (c1, c2) = x ∓ t {α/2,nd f }sX, where nd f ≈
(
s2
1

n1
+

s2
2

n2

)2
(s2

1 /n1)2

n1−1 +
(s2

2 /n2)2

n2−1

The described procedure is known as (unpaired) t-test. Note that in case the zero
point lies inside the derived confidence interval, that is, 0 ∈ [c1, c2], no conclusion
can be drawn from the test. In other words, one cannot interpret the result of the
test as evidence that there is no statistically significant difference between the two
alternatives.
Example Consider an experiment in which the processing time of a job is measured
when executed on two different servers. A sample of measurements is collected
for each server. We assume that the measurements are approximately normally dis-
tributed. The first sample has 12 measurements with mean x1 = 1243 s and standard
deviation s1 = 38.5; the second sample has 7 measurements with mean x2 = 1085 s
and standard deviation s2 = 54.0. To determine if there is a statistically significant
difference between the measurements on the two servers, in the following, we apply
the above described t-test to derive a 90% confidence interval for the difference of
means based on Equation (4.42):
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x = x1 − x2 = 1243 − 1085 = 158

sX =

√
38.52

12
+

542

7
= 23.24

nd f =

( 38.52

12 +
542

7
)2(

38.52
12

)2
12−1 +

(
542
7

)2
7−1

= 9.62⇒ 10

[c1, c2] = x ∓ t {α/2,nd f }sX

t {α/2,nd f } = t {0.05,10} = 1.813

[c1, c2] = 158 ∓ 1.813(23.24) = [116, 200].

(4.43)

Given that 0 � [116, 200], we conclude that there is a statistically significant
difference between the two sets of measurements.
Special Case A special case applies when only a few measurements are available
(i.e., n1 < 30 or n2 < 30) but the measurements are approximately normally
distributed and either σ1 = σ2 or n1 = n2. It can be shown that the following
confidence interval [c1, c2] for the difference of means X is then valid (Walpole
et al., 2016):

[c1, c2] = x ∓ t {α/2,nd f }sp

√
1
n1
+

1
n2

nd f = n1 + n2 − 2 sp =

√
s2

1(n1 − 1) + s2
2(n2 − 1)

n1 + n2 − 2
.

(4.44)

This confidence interval is typically tighter than the general one obtained through
the standard t-test we described above.

4.3.2 Before-and-After Comparisons

In the case of before-and-after comparisons (also referred to as paired observations),
the measurements within each set are not independent. This scenario occurs, for
example, when the effect of an optimization is evaluated by measuring its impact
on a given system metric when applied to a set of systems. Two corresponding
measurements of the respective metric are collected for each system: one without
the optimization and one with the optimization. Another example is when a set of
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benchmarks are run on two systems and two corresponding measurements of a given
metric of interest are collected for each benchmark.

We assume that the measurements can be grouped into corresponding pairs (bi, ai)
for i = 1, 2, ..., n, where bi is referred to as before measurement and ai as after mea-
surement. We consider the set of differences di = bi − ai for i = 1, 2, ..., n as a
random sample from a population of differences that we shall assume to be approx-
imately normally distributed with mean μD = μ1 − μ2 and standard deviation σD .
We denote with d the sample mean of the differences di = bi − ai and with sd the
sample standard deviation. Applying the formulas from Section 4.2.3 (Table 4.3) to
the sample of measurements di for i = 1, 2, ..., n, we obtain the confidence intervals
for the mean of differences d shown in Table 4.7.

Table 4.7: Confidence intervals for the mean of differences d

Number of measurements Confidence interval [c1, c2]

n ≥ 30 (c1, c2) = d ∓ zα/2
sd√
n

n < 30 (c1, c2) = d ∓ t {α/2,n−1} sd√n

As previously, if 0 � [c1, c2], it can be concluded that there is a statistically
significant difference between the two alternatives. In case 0 ∈ [c1, c2], no conclusion
can be drawn from the test.
Example Consider an experiment aiming to evaluate the effect of implementing an
operating system (OS) kernel optimization on the response time of a system call
(in microseconds). The optimization is applied to six installations of the OS on
identical hardware. Two measurements are collected for each of the six installations:
one before applying the optimization and one after applying the optimization. The
measurements are shown in Table 4.8.

The mean of differences is d̄ = −1; the standard deviation is sd = 4.15. Given
that the mean of differences is negative, it appears that the optimization resulted in
slightly worse performance (i.e., higher response time). However, we notice that the
standard deviation is large, which introduces uncertainty. To determine if there is
a statistically significant difference between the measurements before and after the
optimization, we calculate a 95% confidence interval for the mean of differences d
based on the t-distribution:

t {α/2,n−1} = t {0.025,5} = 2.571

(c1, c2) = d ∓ t {α/2,n−1}
sd√

n
= −1 ∓ 2.571

(4.15√
6

)
= [−5.36, 3.36].

(4.45)

Given that 0 ∈ [c1, c2], we cannot claim with 95% confidence that the optimization
introduces statistically significant performance improvement.
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Table 4.8: Response time of a system call on six OS installations
before and after applying a kernel optimization

Measurement (i) Before (bi) After (ai) Difference
(di = bi − ai)

1 85 86 -1

2 83 88 -5

3 94 90 4

4 90 95 -5

5 88 91 -3

6 87 83 4

4.3.3 Comparing Proportions

We showed how confidence intervals can be used to determine if there is a statistically
significant difference between the means of two sets of measurements, corresponding
to two alternatives. We now look at the case where the quantity of interest that is
subject to comparison is defined as a proportion. This scenario occurs, for example,
when we consider two collections of objects and would like to compare the proportion
of objects that satisfy a given property by examining a random sample from each
collection. Similarly, one may be interested in comparing the fraction of time in
which two systems are in a given state (e.g., operating system running in kernel
mode) by examining the state of each system at a set of randomly selected points in
time. Each observation of the system state can then be seen as an event of a given
type (e.g., kernel mode vs. user mode) and the goal is to compare the proportion of
events of the respective type of interest.

The above scenario can be mathematically modeled as two sequences of Bernoulli
trials (Lilja, 2000). For each of the two alternatives, we examine a sample
of ni, i = {1, 2} objects/events from the set of all possible objects/events. Each
time we examine an object, we have a Bernoulli experiment with two possible out-
comes: the object/event satisfies the respective property of interest (success) or the
object/event does not satisfy it (failure). Let pi be the probability of success. We
assume that the successive Bernoulli trials are independent. Consider the random
variables Xi for i = {1, 2} defined as the number of successes in the ni trials, that is,
the number of objects/events from the sample that satisfy the property of interest.
We know that Xi will have a Binomial distribution B(pi, ni) with parameters pi
and ni (see Chapter 2, Section 2.6). The actual quantity of interest that we would
like to estimate is p1 − p2, that is, the difference between the two proportions under
comparison. In the following, we will show how to derive a confidence interval
for p1 − p2.
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Given that Xi has a Binomial distribution with parameters pi and ni , we know
that

E[Xi] = pini Var (Xi) = pi (1 − pi)ni . (4.46)

The random variable P̂i = Xi/ni is an estimator of pi . Indeed, E[P̂i] = E[Xi/ni] =
E[Xi]/ni = (pini)/ni = pi . If n1 and n2 are large, we can estimate pi using the sample
proportion p̂i = xi/ni . Assuming in addition that [p̂ini ≥ 5 ∧ (1 − p̂i)ni ≥ 5], we
can approximate the Binomial distribution with Normal distribution (see Chapter 2,
Section 2.6):

Xi ∼ B(pi, ni) ⇒ Xi ≈ N (pini, pi (1−pi)ni) ⇒ Xi ≈ N (pini, p̂i (1− p̂i)ni). (4.47)

Let P̂ = P̂1 − P̂2 = (X1/n1) − (X2/n2). The mean of P̂ is

E[P̂] = E
[

X1
n1
− X2

n2

]
=

E[X1]
n1

− E[X2]
n2

= p1 − p2. (4.48)

Interpreting Equation (4.47), after some rearrangements, we derive a confidence
interval for the mean of P̂ as follows:

Xi ≈ N (pini, p̂i (1 − p̂i )ni ) ⇒ Xi

ni
≈ N

(
pi,

p̂i (1 − p̂i )
ni

)

P̂ =
X1
n1
− X2

n2
≈ N

(
p1 − p2,

p̂1(1 − p̂1)
n1

+
p̂2(1 − p̂2)

n2

)

P
���−zα/2 ≤ P̂ − (p1 − p2)√

p̂1 (1−p̂1 )
n1

+
p̂2 (1−p̂2 )

n2

≤ zα/2
���� = 1 − α

P �P̂ − zα/2

√
p̂1(1 − p̂1)

n1
+

p̂2(1 − p̂2)
n2

≤ p1 − p2 ≤ P̂ + zα/2

√
p̂1(1 − p̂1)

n1
+

p̂2(1 − p̂2)
n2

�� =
= 1 − α.

(4.49)

We found an interval [c1, c2] such that P(c1 ≤ p1 − p2 ≤ c2) = 1 − α, where

[c1, c2] = p̂ ∓ zα/2sp, where sp =

√
p̂1(1 − p̂1)

n1
+

p̂2(1 − p̂2)
n2

. (4.50)

The interval [c1, c2] is an approximate 100(1−α)% confidence interval for p1 − p2,
that is, the difference between the two proportions under comparison. It is approx-
imate because we made some simplifications above, such as approximating the
Binomial distribution with a Normal distribution. As previously, if 0 � [c1, c2], it
can be concluded that there is a statistically significant difference between the two
alternatives. Otherwise, if 0 ∈ [c1, c2], no conclusion can be drawn from the test.
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Example Consider a scenario where two versions of an operating system (OS) are
compared with respect to the fraction of time the system is executing OS code.
The first OS is run for 3.5 h during which it is interrupted 1,300,203 times and
observed 142,892 times to execute OS code. Similarly, the second OS was inter-
rupted 999,382 times and observed 84,876 times to execute OS code. Applying
the formula from Equation (4.50), we obtain the following confidence interval for
the difference between the fraction of time the system is executing OS code when
running the two OS versions:

n1 = 1, 300, 203 x1 = 142, 892 p̂1 = 0.1099

n2 = 999, 382 x2 = 84, 876 p̂2 = 0.0849

p̂1 − p̂2 = 0.0250 sp = 0.0003911

[c1, c2] = [0.0242, 0.0257].

(4.51)

Given that the confidence interval does not include 0, we conclude that there is a
statistically significant difference between the two OS versions.

4.4 Concluding Remarks

This chapter introduced statistical approaches for quantifying the variability and
precision of measurements. We started by introducing the most common indices of
dispersion for quantifying the variability (sample variance, standard deviation, and
coefficient of variation), followed by defining basic concepts such as accuracy, pre-
cision, and resolution of measurements as well as the distinction between systematic
and random measurement errors. A model of random errors was introduced and
used to derive confidence intervals for estimating the mean of a measured quantity
of interest based on a sample of measurements. We briefly discussed an indirect
measurement approach for cases where the quantity of interest cannot be measured
directly due to limited resolution of the measurement tool. After that, the special
case where the quantity of interest is defined as a proportion was considered. Finally,
statistical tests for comparing alternatives based on measurements were introduced.
The cases of paired and unpaired observations were covered separately.
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Chapter 5
Experimental Design

“No amount of experimentation can ever prove me right;
a single experiment can prove me wrong.”
—Albert Einstein (1879-1955)

In Chapter 4, we showed how two systems can be compared with respect to a
given measurable property by conducting a t-test to determine if there is a statistically
significant difference between the systems. The procedure we introduced there falls
under the broad topic of experimental design, also referred to as design of experi-
ments. Experimental design is the process of planning a set of experiments, coupled
with a statistical analysis procedure, in order to understand and explain the variation
of information under some specified conditions hypothesized to have influence on
the variation. During the experiments, typically one or more input variables (factors)
are systematically changed to observe the impact they have on one or more response
variables (metrics). Experimental design begins by setting concrete objectives for
the experimental study and selecting the input variables for the study. A good exper-
imental design aims to optimize the amount of “information” that can be obtained
for a given amount of experimental effort. This involves planning experiments to
ensure that the right type of data and a sufficient sample size are collected to answer
the research questions of interest in an objective and efficient manner.

This chapter introduces the foundations of experimental design. Starting with the
case of one factor, the analysis of variance technique from statistics is introduced,
followed by the method of contrasts for comparing subsets of alternatives. The
analysis of variance technique is then generalized to two factors that can be varied
independently, and after that, it is generalized to m factors. Following this, the
Plackett–Burman fractional factorial design is introduced and compared with the
full-factorial analysis of variance technique. Finally, a case study showing how
experimental design can be applied in practice is presented.
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5.1 One-Factor Analysis of Variance

We start by generalizing the method we introduced in Chapter 4 (Section 4.3) for
comparing two alternatives. Imagine there are more than two alternative systems
that need to be compared with respect to a given measurable property of interest.
The goal is to design a set of experiments and an analysis procedure to determine
if there is a statistically significant difference between the systems.1 A naive ap-
proach would be to compare the systems two-by-two by applying the method from
Chapter 4. This has the disadvantage that, as the number of alternatives increases,
the number of confidence intervals that need to be computed rapidly increases. A
more robust approach is to use the general technique from statistics called analysis
of variance (ANOVA). In the specific scenario we are considering, where n alter-
native systems need to be compared, we speak of one-factor analysis of variance,
which is sometimes also referred to as one-factor experimental design or one-way
classification. The choice of system is considered to be an input variable, whereas
the considered property of interest is the response variable under study. We speak
of one factor since there is one input variable. We assume that for each alternative,
a sample of measurements of the response variable is obtained. We further assume
that the errors in the measurements for the different alternatives are independent
and normally distributed with equal variance for all alternatives. We refer the reader
to Walpole et al. (2016) for a discussion of the relevance and implications of these
assumptions.

The ANOVA technique aims to separate the total variation observed in all of the
measurements into two components (Lilja, 2000):

1. Variation within each alternative, assumed to be caused by random errors in the
measurements and

2. Variation between the alternatives, assumed to be caused both by real differences
between the alternatives and by random errors.

The aim of ANOVA is to determine if the magnitude of the second component
of the observed variation is significantly larger in a statistical sense than the mag-
nitude of the first component. In other words, ANOVA provides a statistical test to
determine if the observed differences between the measured mean values for the
alternatives are due to real differences between the alternatives, or they are simply
due to measurement errors.

Assume that we have k alternatives and for each of them, n measurements are
collected. We denote with yi j the ith measurement for the j th alternative (see Ta-
ble 5.1). As stated above, we assume that the measurement errors for the different
alternatives are independent and normally distributed with equal variance for each
of the alternatives.

1 As mentioned in Chapter 4, Section 4.3, statistical significance should not be confused with
actual importance, which as discussed in Amrhein et al. (2019) may lead to overhyped claims or
overlooked effects.
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Table 5.1: Measurements for all alternatives

Alternatives
Measure-

ments 1 2 ... j ... k

1 y11 y12 ... y1j ... y1k
2 y21 y22 ... y2j ... y2k
... ... ... ... ... ... ...
i yi1 yi2 ... yi j ... yik
... ... ... ... ... ... ...
n yn1 yn2 ... ynj ... ynk

We denote with ȳ. j the mean of the measurements within the j th alternative (i.e.,
the mean of the measurements in the j th column of Table 5.2a) and with ȳ.. the
overall mean of the measurements for all alternatives (see Table 5.2b):

ȳ. j =

∑n
i=1 yi j

n
, (5.1)

ȳ.. =

∑k
j=1
∑n

i=1 yi j

kn
=

∑k
j=1 ȳ. j

k
. (5.2)

Each measurement yi j can be represented as

yi j = ȳ. j + ei j (5.3)

where ei j stands for measurement error and is defined as the deviation of the mea-
sured value from the mean of the measurements for the respective alternative (i.e.,
the column mean). Similarly, the column means can be represented as

ȳ. j = ȳ.. + α j (5.4)

where α j is called effect of alternative j and is defined as the deviation of the column
mean from the overall mean (see Table 5.2c). Each individual measurement can
then be represented as the sum of the overall mean plus the effect of the respective
alternative plus the measurement error:

yi j = ȳ. j + ei j = ȳ.. + α j + ei j . (5.5)

From Equations (5.3)–(5.5), it follows that

ei j = yi j − ȳ. j

α j = ȳ. j − ȳ..

ti j = α j + ei j = yi j − ȳ..

(5.6)
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Table 5.2: Column means, overall mean, and effects

(a) Column means

Alternatives
Measure-

ments 1 2 ... j ... k

1 y11 y12 ... y1j ... y1k
2 y21 y22 ... y2j ... y2k
... ... ... ... ... ... ...
i yi1 yi2 ... yi j ... yik
... ... ... ... ... ... ...
n yn1 yn2 ... ynj ... ynk

Col. mean y.1 y.2 ... y. j ... y.k

(b) Overall mean

Alternatives
Measure-

ments 1 2 ... j ... k

1 y11 y12 ... y1j ... y1k
2 y21 y22 ... y2j ... y2k
... ... ... ... ... ... ...
i yi1 yi2 ... yi j ... yik
... ... ... ... ... ... ...
n yn1 yn2 ... ynj ... ynk

Col. mean y.1 y.2 ... y. j ... y.k

(c) Effects

Alternatives
Measure-

ments 1 2 ... j ... k

1 y11 y12 ... y1j ... y1k
2 y21 y22 ... y2j ... y2k
... ... ... ... ... ... ...
i yi1 yi2 ... yi j ... yik
... ... ... ... ... ... ...
n yn1 yn2 ... ynj ... ynk

Col. mean y.1 y.2 ... y. j ... y.k
Effect α1 α2 ... α j ... αk

We define the following three sums SSE, SSA, and SST:

SSE =
k∑
j=1

n∑
i=1

(ei j )2 =

k∑
j=1

n∑
i=1

(yi j − ȳ. j )2, (5.7)

SSA = n
k∑
j=1

(α j )2 = n
k∑
j=1

( ȳ. j − ȳ..)2, (5.8)

SST =
k∑
j=1

n∑
i=1

(ti j )2 =

k∑
j=1

n∑
i=1

(yi j − ȳ..)2. (5.9)

The three sums (SSE, SSA, and SST) are called sums of squares of differences,
and they each characterize some part of the variation observed in the measurements.
SSE characterizes the variation due to measurement errors within the individual
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alternatives. SSA characterizes the variation due to the effects of the different al-
ternatives plus measurement errors across alternatives. SST characterizes the total
variation in all measurements.

By expanding SST and observing that
∑k

j=1 α j = 0, it can be easily shown that

SST = SSA + SSE. (5.10)

The above equation separates the total variation observed in the measurements
into two components: (1) variation due to the effects of alternatives plus measurement
errors (SSA) and (2) variation due to measurement errors within alternatives (SSE).
The next step is to determine if the magnitude of the first component (SSA) is larger
in a statistical sense than the magnitude of the second component (SSE). If that is
the case, we can conclude that the observed differences between the measurements
for the different alternatives are due to real differences between the alternatives, as
opposed to measurement errors. The question is how to compare the magnitude of
SSA and SSE in a statistical sense. One simple approach would be to consider the
two ratios:

1. SSA/SST : fraction of total variation explained by differences among the alterna-
tives plus measurement errors,

2. SSE/SST : fraction of total variation due to measurement errors only.

While the two ratios provide some indication, some further analysis is needed
to determine if the difference between SSA and SSE is statistically significant.
We now show how this can be done using the F-test from statistics. The F-test
provides a method to compare two sample variances in a statistical sense using the
F-distribution. The F-test compares the ratio of two sample variances F = s2

1/s
2
2

with the critical value F[1−α;d f (num),d f (denom)] of the F-distribution, where α is
the significance level, df (num) is the degrees of freedom of the variance in the
numerator of the ratio, and df (denom) is the degrees of freedom of the variance in
the denominator of the ratio. If the computed F-ratio is greater than the respective
critical value, the conclusion is that it can be claimed with (1−α)×100% confidence
level that the difference between the two variances is statistically significant.

Coming back to the three sums of squares of differences SSE, SSA, and SST,
looking at Equations (5.7)–(5.9), we notice that the way the sums are defined, they
resemble the computation of sample variances (see Table 4.1 in Chapter 4) for one or
more samples. Indeed, looking at SSE, we notice that the values whose squares are
summed are differences between a sample of n measurements yi j for i = {1, 2, ..., n}
and their mean value ȳ. j . Dividing by the degrees of freedom (n − 1), we obtain the
variance of the respective sample. k such variances are summed for j = {1, 2, ..., k}.
Similarly, looking at SSA, we notice that the values whose squares are summed
are differences between a sample of k measurements ȳ. j for j = {1, 2, ..., k} and
their mean value ȳ... Dividing by the degrees of freedom (k − 1), we obtain the
variance of the respective sample. Finally, the values whose squares are summed in
SST are differences between a sample of kn measurements yi j for i = {1, 2, ..., n},
j = {1, 2, ..., k} and their mean value ȳ... Dividing by the degrees of freedom (kn−1),
we obtain the variance of the respective sample.
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Based on the above observations, we can convert the three sums, SSE, SSA, and
SST, into sample variances by dividing them by the respective degrees of freedom.
The resulting variances are called mean square values and are calculated as follows:

s2
e =

SSE
k (n − 1)

, s2
a =

SSA
k − 1

, s2
t =

SST
kn − 1

. (5.11)

We now apply the F-test to the ratio of variances F = s2
a/s

2
e. If the computed F is

greater than the critical value F[1−α;k−1,k (n−1)] of the F-distribution, the conclusion
is that it can be claimed with (1− α) × 100% confidence level that the variation due
to actual differences in the alternatives plus measurement errors (SSA) is larger in
a statistical sense than the variation due to measurement errors only (SSE). In other
words, it can be claimed that the observed differences between the measurements
for the different alternatives are due to real differences between the alternatives, as
opposed to measurement errors. Table 5.3 summarizes the one-factor ANOVA.

Table 5.3: Summary of one-factor ANOVA

Variation Alternatives Error Total

Sum of squares SSA SSE SST

Degrees of freedom k − 1 k (n − 1) kn − 1

Mean square value s2
a =

SSA
k−1 s2

e =
SSE

k (n−1) s2
t =

SST
kn−1

Computed F s2
a/s

2
e

Tabulated F F[1−α;k−1,k (n−1)]

Example Consider an experiment aiming to compare the execution time of three
different alternative implementations of an algorithm. A sample of five measurements
is collected for each alternative as shown in Table 5.4. The table shows the means of
the three samples and the respective computed effects for each alternative.

Table 5.5 summarizes the results from applying the one-factor ANOVA technique.
Given that the computed F statistic is greater than the tabulated F critical value,
we conclude with 95% confidence that the observed differences among the three
implementations of the algorithm are statistically significant.

The ratio SSA/SST = 0.7585/0.8270 = 0.917 indicates that 91.7% of the ob-
served total variation in the measurements is due to differences among the three al-
ternatives plus measurement errors. The ratio SSE/SST = 0.0685/0.8270 = 0.083
indicates that 8.3% of the total variation in the measurements is due to measurement
errors (random noise).
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Table 5.4: One-factor ANOVA example

Alternatives
Measure-

ments 1 2 3 Overall
mean

1 0.0972 0.1382 0.7966
2 0.0971 0.1432 0.5300
3 0.0969 0.1382 0.5152
4 0.1954 0.1730 0.6675
5 0.0974 0.1383 0.5298

Col. mean 0.1168 0.1462 0.6078 0.2903
Effects -0.1735 -0.1441 0.3175

Table 5.5: Results of applying the one-factor ANOVA technique

Variation Alternatives Error Total

Sum of squares SSA = 0.7585 SSE = 0.0685 SST = 0.8270

Degrees of freedom k − 1 = 2 k (n − 1) = 12 kn − 1 = 14

Mean square value s2
a = 0.3793 s2

e = 0.0057

Computed F 0.3793/0.0057 = 66.4

Tabulated F F[0.95;2,12] = 3.89

5.2 Method of Contrasts

While ANOVA provides a statistical test to determine if the observed differences
between the considered alternatives are statistically significant, it does not provide
any information on where exactly these differences are. For this purpose, a so-called
method of contrasts can be used that allows us to compare subsets of alternatives,
for example, {A} vs. {B} or {A, B} vs. {C}.

A contrast is defined as a linear combination of effects of alternatives:

c =
k∑
j=1

w jα j, where
k∑
j=1

w j = 0. (5.12)

Contrasts are used to compare effects of a subset of the alternatives. For exam-
ple, assuming that there are three alternatives and the first two of them should be
compared, one can use the following contrast for this purpose:
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c = (1)α1 + (−1)α2 + (0)α3 = α1 − α2

(w1 = 1, w2 = −1, w3 = 0).
(5.13)

The contrast is defined such that for all alternatives that should be included in
the comparison, a non-zero weight w j is used. For the remaining, the weight is set
to zero. Under the assumption that the variation due to errors is equally distributed
among the kn total measurements, it can be shown that the following confidence
interval for the contrast c is valid (Walpole et al., 2016):

(c1, c2) = c ∓ t {α/2,k (n−1) }sc, (5.14)

where

sc =

√∑k
j=1(w2

j s2
e)

kn
and s2

e =
SSE

k (n − 1)
. (5.15)

As usual, if 0 � [c1, c2], it can be concluded that there is a statistically significant
difference between the alternatives included in the contrast. Otherwise, if 0 ∈ [c1, c2],
no conclusion can be drawn from the test.

5.3 Two-Factor Full Factorial Designs

We now generalize the ANOVA technique to two factors that can be varied at the
same time. Consider the following example based on Lilja (2000): Table 5.6 shows
the measured average transaction processing time for different levels of concur-
rency (Factor A) and varying amounts of main memory (Factor B) installed in a
server running an online transaction processing (OLTP) system. The concurrency
level specifies the average number of transactions processed concurrently at a point
in time.

Table 5.6: Two-factor ANOVA example (Lilja, 2000)

B (GB)
A 32 64 128
1 0.25 0.21 0.15
2 0.52 0.45 0.36
3 0.81 0.66 0.50
4 1.50 1.45 0.70

The goal is to determine if the two considered factors (level of concurrency and
amount of main memory) have a statistically significant impact on the transaction
processing time. One possible approach would be to vary one factor at a time and
apply the one-factor ANOVA technique from the previous section. We could, for
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example, fix Factor B to 64 GB and vary Factor A, and then fix Factor A to 3 and
vary Factor B. This would reduce the number of configurations to be considered
from 12 to 6. However, using this approach, we would not be able to determine if
there is any interaction between the two factors; in other words, to determine if the
selected combination of values of the two factors itself has an influence. Looking at
the table, we see that for A = 4, the response time decreases non-linearly with B;
however, when A < 4, the response time appears to be more directly correlated to B.

A more robust approach to the above described problem is to apply a generalized
version of the one-factor ANOVA technique introduced in Section 5.1. In the fol-
lowing, we introduce a two-factor analysis of variance, also referred to as two-factor
experimental design or two-way classification.

We assume that there are two input variables (factors) that are varied: Factor A
and Factor B. The goal is to determine the effects of each input variable as well
as the effect of the interaction between the two variables and the magnitude of the
experimental error. As previously, the measured output value (i.e., the considered
property of interest) is referred to as response variable. For each factor, the specific
values of the respective input variable are referred to as levels, which can be either
continuous (e.g., bytes) or discrete (e.g., type of system) values.

For every combination of input values of the factors, a sample of measurements of
the response variable is obtained; that is, the experiment is repeated n times, where
each repetition is referred to as replication. Multiple replications are needed in order
to be able to determine the impact of the measurement errors. We assume that the
errors in the measurements for the different combinations of levels for the factors
are independent and normally distributed with equal variance for all combinations.
Again, we refer the reader to Walpole et al. (2016) for a discussion of the relevance
and implications of these assumptions. We will speak of interactions between factors
when the effect of one factor depends on the level of another factor.

The two-factor ANOVA aims to separate the total variation observed in all of the
measurements into the following components (Lilja, 2000):

1. Variation due to Factor A plus measurement errors,
2. Variation due to Factor B plus measurement errors,
3. Variation due to interaction of A and B (AB) plus measurement errors, and
4. Variation due to measurement errors only.

The aim of the two-factor ANOVA is to determine if the magnitude of the first
three components of the observed variation is significantly larger in a statistical
sense than the magnitude of the last component. In other words, ANOVA provides a
statistical test to determine if the observed differences between the measured mean
values for the different combinations of factor levels are due to real influences of the
factors, or they are simply due to measurement errors.

Assume that there are a possible input levels for Factor A and b possible input
levels for Factor B. For each combination of input levels, n measurements are
collected resulting in a × b × n total measurements. We denote with yi jk the k th

measurement for the combination of Factor A set to level i and Factor B set to
level j (Table 5.7). As stated above, we assume that the measurement errors for the
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different experiments are independent and normally distributed with equal variance
for each experiment.

Table 5.7: Measurements for all combinations of factor levels

Factor A
1 2 ... i ... a

1 ... ... ... ... ... ...
2 ... ... ... ... ... ...
... ... ... ... ... ... ...
j ... ... ... yi jk ... ...
... ... ... ... ... ... ...

Factor B

b ... ... ... ... ... ...
n replications

It can be easily shown that each individual measurement can be broken down into
the following components:

Mean of all measurements: ȳ... =

∑a
i=1
∑b

j=1
∑n

k=1 yi jk

abn
,

Effect of Factor A: αi = ȳi.. − ȳ...

where
a∑
i=1
αi = 0,

Effect of Factor B: β j = ȳ. j. − ȳ...

where
b∑
j=1
β j = 0,

Effect of interaction btw. A and B: γi j = ȳi j. − ȳi.. − ȳ. j. + ȳ...

where
a∑
i=1
γi j = 0

b∑
j=1
γi j = 0,

Measurement error: ei jk .
(5.16)

Each measurement can then be represented as the sum of the above components:

yi jk = ȳ... + αi + β j + γi j + ei jk . (5.17)

Similarly to the one-factor ANOVA, we define the following sums of squares of
differences, each characterizing some part of the variation observed in the measure-
ments:
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SSA = bn
a∑
i=1

( ȳi.. − ȳ...)2,

SSB = an
b∑
j=1

( ȳ. j. − ȳ...)2,

SSAB = n
a∑
i=1

b∑
j=1

( ȳi j. − ȳi.. − ȳ. j. + ȳ...)2,

SSE =
a∑
i=1

b∑
j=1

n∑
k=1

(yi jk − ȳi j.)2,

SST =
a∑
i=1

b∑
j=1

n∑
k=1

(yi jk − ȳ...)2.

(5.18)

SSA characterizes the variation due to Factor A plus measurement errors, SSB
characterizes the variation due to Factor B plus measurement errors, and SSAB
characterizes the variation due to the interaction of A and B plus measurement
errors. SSE characterizes the variation due to measurement errors only, and finally,
SST characterizes the total variation in all measurements. By expanding SST and
noticing that all of the cross-product terms are zero, while also taking into account
that effects add up to zero, it can be easily shown that the following equation, referred
to as sum-of-squares identity, holds:

SST = SSA + SSB + SSAB + SSE. (5.19)

Each of the sums of squares of differences can be transformed into a set of sample
variance computations (see Table 4.1 in Chapter 4) by dividing the respective sum
by the degrees of freedom. To determine the degrees of freedom, we consider how
many sample variances are computed in each sum of squares and how many values
there are in each sample. This results in the following degrees of freedom (df) for
each sum of squares:

df (SSA) = a − 1,
df (SSB) = b − 1,

df (SSAB) = (a − 1)(b − 1),
df (SSE) = ab(n − 1),
df (SST ) = abn − 1.

(5.20)

We notice that the sum-of-squares identity applies also when considering the
respective degrees of freedom:

df (SST ) = df (SSA) + df (SSB) + df (SSAB) + df (SSE). (5.21)
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It can be shown that the sums of squares of differences can alternatively be
computed using the following formulas:

SSA =
∑a

i=1 S2
i..

bn
− S2

...

abn
, SSB =

∑b
j=1 S2

. j.

an
− S2

...

abn
,

SSAB =

∑a
i=1
∑b

j=1 S2
i j.

n
−
∑a

i=1 S2
i..

bn
−
∑b

j=1 S2
. j.

an
+

S2
...

abn
,

SST =
a∑
i=1

b∑
j=1

n∑
k=1

y2
i jk −

S2
...

abn
,

SSE = SST − SSA − SSB − SSAB,

where S... =
a∑
i=1

b∑
j=1

n∑
k=1

yi jk, Si.. =
b∑
j=1

n∑
k=1

yi jk, S. j. =
a∑
i=1

n∑
k=1

yi jk .

(5.22)

Dividing the sums of squares of differences by the respective degrees of freedom,
we obtain the mean square values. Similarly to the one-dimensional case, we now
apply the F-test to the ratios of variances Fa = s2

a/s
2
e, Fb = s2

b
/s2

e, and Fab = s2
ab
/s2

e.
If the computed F is greater than the respective critical value of the F-distribution,
the conclusion is that it can be claimed with (1−α)×100% confidence level that the
variation due to the effect of the respective factor (SSA, SSB) or interaction between
factors (SSAB) plus measurement errors is larger in a statistical sense than the
variation due to measurement errors only, SSE. In other words, it can be claimed that
the observed differences between the measurements for the different combinations of
factor levels are due to real differences, as opposed to measurement errors. Table 5.8
summarizes the two-factor ANOVA technique.
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Example Coming back to the motivating example in the beginning of this section, we
now assume that for every combination of input values of the Factors A and B (level
of concurrency and amount of main memory), a sample of two measurements of
the transaction processing time (i.e., experiment replications) is collected. Table 5.9
shows the measurement results. For each combination of values for the Factors A
and B, the respective two measurements of the transaction processing time are shown
on two separate rows. Note that to be able to quantify the impact of the measurement
errors, normally a bigger sample of measurements would be required; here, we show
only two measurements for the sake of compactness. The goal was to determine if
the two considered factors have a statistically significant impact on the transaction
processing time. In addition to the two factors in isolation, we also consider the
impact of the interaction between them.

Table 5.9: Two-factor ANOVA example

B (GB)
A 32 64 128
1 0.25 0.21 0.15

0.28 0.19 0.11
2 0.52 0.45 0.36

0.48 0.49 0.30
3 0.81 0.66 0.50

0.76 0.59 0.61
4 1.50 1.45 0.70

1.61 1.32 0.68

Table 5.10 summarizes the results from applying the two-factor ANOVA tech-
nique. Given that the computed F statistic is greater than the tabulated F critical
value, we conclude with 95% confidence that the observed effects of the two factors,
as well as the interaction between them, are statistically significant.

The ratios SSA/SST = 77.6 and SSB/SST = 11.8 indicate that 77.6% and
11.8% of the observed total variation in the measurements are due to the effects of
Factor A (concurrency level) and Factor B (amount of main memory), respectively,
plus measurement errors. The interaction between the two factors plus measurement
errors is responsible for 9.9% (SSAB/SST) of the total variation. Finally, the ratio
SSE/SST = 0.7% indicates that only 0.7% of the total variation in the measurements
is due to measurement errors (random noise).

5.4 General m-Factor Full Factorial Designs

We now further generalize the ANOVA technique to m factors that can be varied at
the same time (Lilja, 2000). We assume that there are m input variables (factors)
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Table 5.10: Results of applying the two-factor ANOVA technique

Variation A B AB Error

Sum of
squares

3.3714 0.5152 0.4317 0.0293

Degrees of
freedom

3 2 6 12

Mean
square value

1.1238 0.2576 0.0720 0.0024

Computed F 460.2 105.5 29.5

Tabulated F F[0.95;3,12] = 3.49 F[0.95;2,12] = 3.89 F[0.95;6,12] = 3.00

that are varied: A, B, C, and so on. The goal is to determine the effects of each input
variable, the effect of the interaction between each combination of input variables,
and the magnitude of the experimental error. As previously, the measured output
value (i.e., the considered property of interest) is referred to as response variable,
and for each factor, the specific values of the respective input variable are referred
to as levels.

For every combination of input values of the factors, a sample of measurements of
the response variable is obtained; that is, the experiment is repeated n times, where
each repetition is referred to as replication. As previously, multiple replications are
needed in order to be able to determine the impact of the measurement errors and
we assume that the errors in the measurements for the different combinations of
levels for the factors are independent and normally distributed with equal variance
for all combinations. We will speak of interactions between factors when a given
combination of factors, considered as a whole, has an impact on the measurement
results.

Given that we have m factors, there are 2m − 1 possible combinations of factors
whose effects can be considered:
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m factors⇒ m main effects,(
m
2

)
two-factor interactions,(

m
3

)
three-factor interactions,

. . .(
m
m

)
= 1 m-factor interactions.

(5.23)

As previously, for each combination of factors, we consider a respective sum of
squares of differences that characterizes some part of the variation observed in the
measurements: SSA, SSB, SSC, ..., SSAB, SSAC, .... The degrees of freedom for a
combination of factors is calculated by multiplying the degrees of freedom for the
respective factors:

df (SSA) = (a − 1),
df (SSB) = (b − 1),
df (SSC) = (c − 1),

. . .

df (SSAB) = (a − 1)(b − 1),
df (SSAC) = (a − 1)(c − 1),

. . .

df (SSE) = abc(n − 1),
df (SST ) = abcn − 1.

(5.24)

Dividing the sums of squares of differences by the respective degrees of freedom,
we obtain the mean square values s2

x . For a combination of factors x (a single factor
or a set of factors), we can determine if its effect is statistically significant by applying
the F-test to the ratios of mean square values Fx = s2

x/s
2
e. If the computed F is greater

than the respective critical value of the F-distribution, the conclusion is that it can be
claimed with (1 − α) × 100% confidence level that the variation due to the effect of
the combination of factors x plus measurement errors is larger in a statistical sense
than the variation due to measurement errors only, SSE. In other words, it can be
claimed that the observed differences between the measurements for the different
combinations of factor levels are due to real differences, as opposed to measurement
errors.

In summary, the m-factor ANOVA technique proceeds as follows:

1. Calculate (2m − 1) sum of squares terms (SSx) and SSE,

2. Determine the degrees of freedom for each (SSx) and for SSE,
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3. Calculate the mean square values s2
x and s2

e,

4. Apply the F-test to the ratio Fx = s2
x/s

2
e, and

5. If the computed Fx is greater than the critical value F[1−α;d f (SSx),d f (SSE )], we
conclude with (1− α) × 100% confidence that the effect of the considered set of
factors x is statistically significant.

The described m-factor full factorial design requires measuring the response
variable for all possible combinations of values for the input variables (factors).
In addition, each measurement is replicated n times to determine the effect of the
measurement error. With m factors, v levels per factor, and n replications, we arrive
at vm × n measurement experiments that need to be conducted. As an example, for
m = 5, v = 4, and n = 3, we arrive at 45 × 3 = 3,072 measurement experiments.
Thus, the full factorial design requires a substantial amount of measurements even
for a low number of factors. In many cases, it is not feasible to conduct measurements
for all possible combinations of inputs. This limits the practical applicability of the
full factorial m-factor ANOVA technique. In the rest of this chapter, we look at
approaches to deal with this issue.

A straightforward approach to reduce the number of measurement experiments
required by the full factorial m-factor ANOVA is to follow a two-step procedure as
follows: In the first step, each factor is restricted to two possible levels (labeled low and
high, respectively) and the normal ANOVA technique is applied to identify the factors
with the highest impact. The two levels should ideally be chosen to cover the typical
range of values of the respective factor. n2m measurement experiments are required
and thus, this experiment design is often referred to as n2m factorial design. In the
second step, the generalized full factorial design is applied to the identified factors
with highest impact without restricting their levels in order to further investigate their
influences. In many cases, however, this approach still incurs significant experimental
effort. In the next section, we present a method for fractional factorial design that
requires a significantly lower experimental effort. Fractional factorial designs are
experimental designs that require only a carefully chosen subset (fraction) of the
experiments of a full factorial design.

5.5 Fractional Factorial Designs: Plackett–Burman

Plackett–Burman (PB) designs were originally developed by Robin L. Plackett and
J. P. Burman in 1946. They require O(m) experiments for m factors instead of O(vm)
as for full factorial designs. However, PB designs provide less detailed information
than full factorial designs, as only the effects of the main factors are considered.
An extension of the technique (PB designs with foldover) also covers two-factor
interactions but no other arbitrary interactions. Figure 5.1 compares PB designs
against the experimental designs discussed so far. The x-axis shows the cost in
terms of number of required experiments; the y-axis shows the level of detail of
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the information provided by the respective design. One-at-a-time refers to the trivial
approach of applying one-factor ANOVA while varying only one factor at a time.
PB designs bridge the gap between low-cost/low-detail approaches, such as one-at-
a-time, and high-cost/high-detail approaches, such as full factorial ANOVA designs.
The advantage of PB designs is that they provide the most important information but
at a very low cost comparable to the cost of the trivial one-at-a-time approach.

Fig. 5.1: Trade-off between cost and detail of experimental designs

We now introduce the PB design. Let X be the next multiple of four greater
than the number of input variables m (factors). As an example, we assume that
X = 8. For each input variable, two possible levels are considered (high and low)
and carefully chosen to cover the typical range of values of the respective factor.
Table 5.11 shows the PB design matrix, which has X rows and (X −1) columns. The
columns correspond to the input variables. If m < (X − 1), some dummy variables
are used for the additional columns. Let us assume that m = 7. Each row represents
a configuration of the input variables. For each input variable either −1 or +1 is
indicated, corresponding to setting the respective factor to its low or high value,
respectively. The first row is initialized with predefined values provided in Plackett
and Burman (1946). Each subsequent row is initialized by a circular right shift of
the preceding row. The last row is initialized with −1.

The choice of high and low values for each factor should be done carefully to avoid
bias. For example, if the high and low values are selected to span a range of values
that is too small, this may lead to underestimating the effect of the respective factor.
Similarly, selecting a range that is too large may overestimate the effect. Ideally,
the high and low values should represent the typical interval in which the values of
the respective factor normally vary, excluding any outliers. For each row in the PB
design matrix, the response variable is measured for the respective configuration of
the input variables. The result is then entered into the last column of the matrix.
Table 5.12 shows some example results.

Full-factorial ANOVA

n2m ANOVA

Plackett-Burman

One-at-a-time
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Table 5.11: Example PB design matrix—initialization

Config Factors Response
A B C D E F G

1 +1 +1 +1 -1 +1 -1 -1
2 -1 +1 +1 +1 -1 +1 -1
3 -1 -1 +1 +1 +1 -1 +1
4 +1 -1 -1 +1 +1 +1 -1
5 -1 +1 -1 -1 +1 +1 +1
6 +1 -1 +1 -1 -1 +1 +1
7 +1 +1 -1 +1 -1 -1 +1
8 -1 -1 -1 -1 -1 -1 -1

Effect

Table 5.12: Example PB design matrix—response variable

Config Factors Response
A B C D E F G

1 +1 +1 +1 -1 +1 -1 -1 9
2 -1 +1 +1 +1 -1 +1 -1 11
3 -1 -1 +1 +1 +1 -1 +1 2
4 +1 -1 -1 +1 +1 +1 -1 1
5 -1 +1 -1 -1 +1 +1 +1 9
6 +1 -1 +1 -1 -1 +1 +1 74
7 +1 +1 -1 +1 -1 -1 +1 7
8 -1 -1 -1 -1 -1 -1 -1 4

Effect

The next step is to calculate the effects of each factor. This is done by multiplying
the respective column in the matrix with the response column (vector multiplication).
The result is entered in the last row as shown in Table 5.13.

EffectA = (+1 × 9) + (−1 × 11) + (−1 × 2) + . . . + (−1 × 4) = 65. (5.25)

The effects show the relative influence of the factors on the variation observed in
the response variable. Note that only the magnitudes of the values are relevant; the
signs are meaningless. Comparing the effects, the factors can be ranked from most
important to least important. In our example, the following ranking is observed:

(C, D, E) → F → G → A→ B. (5.26)

The presented base PB design does not provide any information about the impacts
of interactions between factors. We now present an extended version of the PB design,
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Table 5.13: Example PB design matrix—computing the effects

(a) Effect of Factor A

Config Factors Resp.
A B C D E F G

1 +1 +1 +1 -1 +1 -1 -1 9
2 -1 +1 +1 +1 -1 +1 -1 11
3 -1 -1 +1 +1 +1 -1 +1 2
4 +1 -1 -1 +1 +1 +1 -1 1
5 -1 +1 -1 -1 +1 +1 +1 9
6 +1 -1 +1 -1 -1 +1 +1 74
7 +1 +1 -1 +1 -1 -1 +1 7
8 -1 -1 -1 -1 -1 -1 -1 4

Effect 65

(b) Effect of Factor B

Config Factors Resp.
A B C D E F G

1 +1 +1 +1 -1 +1 -1 -1 9
2 -1 +1 +1 +1 -1 +1 -1 11
3 -1 -1 +1 +1 +1 -1 +1 2
4 +1 -1 -1 +1 +1 +1 -1 1
5 -1 +1 -1 -1 +1 +1 +1 9
6 +1 -1 +1 -1 -1 +1 +1 74
7 +1 +1 -1 +1 -1 -1 +1 7
8 -1 -1 -1 -1 -1 -1 -1 4

Effect 65 -45

(c) Effects of Factors C-G

Config Factors Resp.
A B C D E F G

1 +1 +1 +1 -1 +1 -1 -1 9
2 -1 +1 +1 +1 -1 +1 -1 11
3 -1 -1 +1 +1 +1 -1 +1 2
4 +1 -1 -1 +1 +1 +1 -1 1
5 -1 +1 -1 -1 +1 +1 +1 9
6 +1 -1 +1 -1 -1 +1 +1 74
7 +1 +1 -1 +1 -1 -1 +1 7
8 -1 -1 -1 -1 -1 -1 -1 4

Effect 65 -45 75 -75 -75 73 67

referred to as PB design with foldover, which additionally quantifies the effects of
two-factor interactions. The PB design matrix is expanded by adding X additional
rows and initializing them with opposite signs to the ones in the original rows, as
shown in Table 5.14. The response variable is measured for each of the new rows.

The effects are computed in the same way as previously but the additional X rows
of the PB design matrix are also taken into account (the vectors whose product is
taken are twice as long). The extended matrix now also allows computing the effects
of two-factor interactions. For two arbitrary factors, the effect of the interaction
between them is computed by first forming a vector of signs that are products of the
respective signs for the two considered factors and then multiplying this vector with
the response vector. For example, the effect of the interaction between Factors A
and B is computed as follows:

EffectAB = ((1×1)×9)+((−1×1)×11)+((−1×(−1))×2)+. . .+((1×1)×112) = −91.
(5.27)

The remaining effects of two-factor interactions can be computed in a similar way
and can then be included in the ranking of the individual factors.
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Table 5.14: Example PB design matrix with foldover

A B C D E F G Resp.
+1 +1 +1 -1 +1 -1 -1 9
-1 +1 +1 +1 -1 +1 -1 11
-1 -1 +1 +1 +1 -1 +1 2
+1 -1 -1 +1 +1 +1 -1 1
-1 +1 -1 -1 +1 +1 +1 9
+1 -1 +1 -1 -1 +1 +1 74
+1 +1 -1 +1 -1 -1 +1 7
-1 -1 -1 -1 -1 -1 -1 4
-1 -1 -1 +1 -1 +1 +1 17
+1 -1 -1 -1 +1 -1 +1 76
+1 +1 -1 -1 -1 +1 -1 6
-1 +1 +1 -1 -1 -1 +1 31
+1 -1 +1 +1 -1 -1 -1 19
-1 +1 -1 +1 +1 -1 -1 33
-1 -1 +1 -1 +1 +1 -1 6
+1 +1 +1 +1 +1 +1 +1 112
191 19 111 -13 79 55 239

The main advantage of the presented PB design is that it requires only O(m)
experiments for m factors. PB designs are often used to reduce the number of factors
to the most significant ones. The full factorial ANOVA technique can then be applied
to the reduced number of factors to explore their influences in more detail. Next, we
present a case study illustrating this procedure.

5.6 Case Study

Having introduced several techniques for experimental design, in this section, we
present a case study demonstrating how these techniques can be applied in practice.
We look at the problem of tuning machine learning algorithms to optimize their
performance. Machine learning algorithms typically offer a vast set of configuration
parameters usually referred to as hyperparameters. Due to lack of expertise or lack
of time, the average user does not configure these parameters and would usually
leave them to their default values. However, tuning hyperparameters can massively
influence the accuracy and performance of machine learning algorithms. Simply
brute forcing all possible parameter combinations is impossible, or at least practi-
cally undesirable, due to the exponential explosion of parameter combinations to be
searched. We therefore need to reduce the number of parameters to optimize. It is
not trivial to determine which of the parameters have the most influence and how
they interact with each other. This is therefore an excellent application scenario for
experimental design.
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In this example, we analyze one specific instance of a supervised machine learn-
ing algorithm. The task of supervised machine learning is usually described as
follows (Russell and Norvig, 2009): A set of labeled training data T contain-
ing n training tuples {(y1, x1), . . . , (yn, xn)} is given. Each of these tuples (yi, xi)
for i ∈ 1, 2, . . . , n labels a usually multi-dimensional feature vector xi with a label yi .
The machine learning task that we focus on in this example is classification, which
implies that there are l possible different classes for yi . The task is to find a func-
tion h : Rk �→ {1, 2, . . . , x}, mapping from xi to yi . If h can be found, then h can
be used to predict the label yj for any new and unseen samples of x j for j > n.
Note that for simplicity, we assume all features to be from the domain of R. The
dimensionality of the input space k corresponds to the number of features.

One algorithm for solving such a machine learning task is the random forest
algorithm (Breiman, 2001). The algorithm works by training a set of smaller clas-
sifiers (the so-called trees) with a subset of the training set and a randomized sub-
feature-space. Each tree generates its own prediction, which is aggregated to the
overall prediction of the whole forest. Like many other machine learning algorithms,
random forest is highly configurable, allowing one to parameterize the number of
underlying trees and how they are trained. The tree sub-classifiers have additional pa-
rameters that influence their training behavior. We use the implementation of Scikit
learn (Pedregosa et al., 2011), which offers the list of tunable parameters shown in
Table 5.15.

Table 5.15: List of relevant parameters available for optimization

Parameter Datatype Description

n_estimators integer The number of trees in the forest
criterion enum The function to measure the quality of a split
max_depth integer The maximum depth of the tree
min_samples_split integer The minimum number of samples required to

split an internal node
min_samples_leaf integer The minimum number of samples required to

be at a leaf node
min_weight_fraction_leaf float The minimum weighted fraction of the sum

total of weights (of all input samples) required
to be at a leaf node

max_features enum The number of features to consider when look-
ing for the best split

max_leaf_nodes integer Grow trees with max_leaf_nodes in best-first
fashion. Best nodes are defined in terms of
relative reduction in impurity.

min_impurity_decrease float A node will be split if the split induces a de-
crease of the impurity greater than or equal to
this value.

bootstrap boolean Whether bootstrap samples are used when
building trees. If false, the whole dataset is
used to build each tree.

class_weight enum Weights associated with classes
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Understanding the exact meaning of these hyperparameters is not required for this
example, as our goal here is to automatically identify the most important parameters
by applying the statistical techniques introduced in this chapter. Table 5.16 defines
a set of possible parameter settings that we use for our evaluation. These values are
chosen based on experience and general rules of thumb.

Table 5.16: List of possible parameter values in our example

Parameter Considered set of possible values

n_estimators 10, 25, 50, 100, 150
criterion gini, entropy
max_depth 5, 10, 30, 10000
min_samples_split 2, 5, 10, 20, 30
min_samples_leaf 1, 5, 10, 20, 30
min_weight_fraction_leaf 0, 0.1, 0.2
max_features sqrt, log2, none
max_leaf_nodes 5, 10, 10000
min_impurity_decrease 0, 0.1, 0.2, 0.3, 0.4
bootstrap True, False
class_weight balanced, balanced_subsample, none

5.6.1 Problem Statement

Let us now consider the following concrete example of a classification problem: A
set of hard disk drives (HDDs) are installed as part of a storage system running in a
data center. The goal is to predict whether an HDD is likely to fail within the next
seven days. Being able to reliably predict such failures would enable us to proactively
exchange faulty HDDs before any data gets corrupted.

We assume that monitoring data on the state of each HDD is collected at run time
and fed into a machine learning algorithm in order to learn patterns in the data that
indicate if a failure is likely to occur in the next 7 days. In this example, we have a
classification problem with two classes (i.e., l = 2): (1) the HDD is “healthy” and
(2) the HDD is likely to fail within the next 7 days. Assume that we have a training
set T consisting of n = 5,000 training samples collected from historical data logs of
HDD failures in the data center. Each sample contains a feature vector comprised
of k = 100 values. These values are sensor metrics collected within an HDD that
monitor the state of the drive; one example of such a dataset is the well-known
S.M.A.R.T. monitoring system for HDDs.2 Each of the training samples is assigned
to one of the two classes, based on historical data revealing whether or not the
respective HDD failed during the next 7 days.

2 S.M.A.R.T. Monitoring Tools: https://sourceforge.net/projects/smartmontools

https://sourceforge.net/projects/smartmontools
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We can now use a random forest algorithm to learn the function h. However, the
parameters in Table 5.15 heavily influence the performance of the random forest
algorithm and are not trivial to configure.

We can evaluate the generated function h by splitting the given dataset of 5,000
samples into two sets: (1) a training set of 4,000 samples and (2) an evaluation set
of 1,000 samples. By training our algorithm on the training set, we can evaluate how
well h predicts the class of the remaining 1,000 samples. In our example, we use
the F1 score3 of h on the 1,000 samples, a common practice in the area of machine
learning. This process is called cross validation (Russell and Norvig, 2009) and can
be used to obtain our response.

Now that we have a measure of how well h represents the data, we can simply try
all parameter settings listed in Table 5.16 to find out which parameter values lead to
the best results. However, as parameters may influence each other, we would need
to test every combination of parameter settings. In our example, this would result
in 5 × 2 × 4 × 5 × 5 × 3 × 3 × 3 × 5 × 2 × 3 = 810,000 parameter combinations.
Additionally, as the name random forest suggests, the training of the random forest is
influenced by random factors. To cope with that, we need to repeat each experiment
multiple times in order to ensure that random effects do not play a role. In our
example, five repetitions provide sufficient confidence for the results. In total, we
need to conduct 810,000×5 = 4,050,000 experiments if we want to do a full factorial
design. Even if one experiment would take only one second to run, we still would
need 1,125 h or over 46 days to evaluate all combinations of parameters. Note that the
number of possible values dramatically impacts the number of combinations and the
respective runtime of the algorithms. If we would add another parameter with four
possible values, this would again quadruple the possible combinations. Therefore,
this approach is often infeasible in practice.

Instead, we first apply the Plackett–Burman design in order to analyze the effects
of the different parameters and reduce them to the most important ones, as shown in
Figure 5.2. After that, we apply a full factorial ANOVA on the remaining parameters
in order to analyze their impact in more detail. This allows us to filter more unimpor-
tant parameters and to cluster the remaining parameters into groups that influence
each other and therefore need to be optimized together.

5.6.2 Plackett–Burman Design

We first apply a Plackett–Burman (PB) design. As described in Section 5.5, PB
designs need significantly less experiments to analyze the impacts of different pa-
rameters. Hence, we apply a PB design to obtain a rough analysis of the parameters
and to filter out the unimportant ones.

3 The F1 score is a standard measure used in machine learning to rate the classification performance
of a learned function h by analyzing how many samples were correctly classified in relation to how
many samples were wrongly classified (Russell and Norvig, 2009).
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Fig. 5.2: Systematically reducing the set of hyperparameters using PB design
followed by ANOVA

In our case, we have 11 parameters available, which implies that our PB design
consists of only 12 experiment runs. Recall that we always need a multiple of four. As
minimum and maximum values of the parameters, we use the first and the last value
in the value set provided in Table 5.16. After performing the experiments and adding
all scores based on the respective response, we arrive at the ordering presented in
Table 5.17.

Table 5.17: List of parameters sorted according to their corresponding
Plackett-Burman (PB) scores

Parameter PB score

max_depth 0.011
bootstrap 0.031
criterion 0.049
min_samples_split 0.055
min_samples_leaf 0.087
class_weight 0.141
n_estimators 0.153
max_features 0.217
max_leaf_nodes 0.401
min_weight_fraction_leaf 0.407
min_impurity_decrease 1.901

Analyzing the results in Table 5.17, we conclude that the five most important pa-
rameters are n_estimators, max_features, max_leaf_nodes, min_weight_fraction_leaf,
and min_impurity_decrease. Therefore, we continue with these parameters applying
a full factorial ANOVA to further investigate their effects.
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5.6.3 Full Factorial ANOVA

We apply a full factorial ANOVA on the identified most important parame-
ters n_estimators, max_features, max_leaf_nodes, min_weight_fraction_leaf, and
min_impurity_decrease. This requires us to evaluate 675 × 5 = 3,375 experiment
series. The results are shown in Table 5.18.

First, it is interesting to note that all found significance values are actually highly
significant (p-value of less than 0.001). Most other entities are very far away from
any significance threshold (typically p-values of 0.01 or 0.05) and can thus be
safely ignored. This means that the experiment results were quite conclusive and
unambiguous for ANOVA.

From Table 5.18, we can furthermore draw the conclusion that the interac-
tion between the three parameters min_weight_fraction_leaf, max_leaf_nodes, and
min_impurity_decrease is important and should not be neglected. ANOVA shows
that the response variable (the quality of our machine learning algorithm) highly de-
pends on these parameters and their interactions with each other. This implies that it
is not possible to optimize these influencing parameters independently of each other,
which would save a lot of computation time. Instead, these three parameters must be
optimized together given that the interactions between them are highly relevant.

Furthermore, ANOVA reveals that max_features actually does not have a statis-
tically significant influence on the response variable or any statistically significant
interaction with any of the other parameters. Hence, when optimizing the parameters,
we can safely exclude the max_features parameter and thus save computation time.
This is a bit surprising considering our previous result from the Plackett–Burman
design, but it is probably due to random errors and influences.

Finally, the parameter n_estimators has a significant influence on the response. Un-
fortunately, the interaction between n_estimators and min_impurity_decrease is also
significant. This is unfortunate, because it means that we need to account for interac-
tion between the n_estimators parameter and the min_impurity_decrease parameter,
which in turn interacts heavily with max_leaf_nodes and min_weight_fraction_leaf.
Therefore, we have to consider all four parameters together when optimizing the
performance of the machine learning algorithm. If n_estimators had no significant
interactions with the other parameters, we could have optimized the two groups
independently of each other. We could first optimize min_weight_fraction_leaf,
max_leaf_nodes, and min_impurity_decrease in combination, and after optimizing
them, we could start a separate optimization tuning the n_estimators parameter.
Again, as we would not need to consider all combinations of these values, this would
save a lot of computation time for the optimization.

5.6.4 Case Study Summary

We applied a Plackett–Burman design and a subsequent full factorial ANOVA to
analyze the impact of hyperparameters on the performance of a selected machine
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Table 5.18: Results of the ANOVA technique applied on the most important
parameters; bold entries mark highly significant effects (p-value < 0.001);

parameter interactions are denoted by the "&" sign

Parameter p-value

n_estimators 2.91e-14
min_weight_fraction_leaf < 2e-16
max_features 0.996354
max_leaf_nodes 0.000219
min_impurity_decrease < 2e-16
n_estimators & min_weight_fraction_leaf 0.341666
n_estimators & max_features 0.995322
min_weight_fraction_leaf & max_features 0.958687
n_estimators & max_leaf_nodes 0.832510
min_weight_fraction_leaf & max_leaf_nodes 5.28e-05
max_features & max_leaf_nodes 0.996501
n_estimators & min_impurity_decrease < 2e-16
min_weight_fraction_leaf & min_impurity_decrease < 2e-16
max_features & min_impurity_decrease 0.990143
max_leaf_nodes & min_impurity_decrease 3.91e-08
n_estimators & min_weight_fraction_leaf & max_features 0.972791
n_estimators & min_weight_fraction_leaf & max_leaf_nodes 0.470147
n_estimators & max_features & max_leaf_nodes 0.999892
min_weight_fraction_leaf & max_features & max_leaf_nodes 0.990162
n_estimators & min_weight_fraction_leaf & min_impurity_decrease 0.182299
n_estimators & max_features & min_impurity_decrease 0.995795
min_weight_fraction_leaf & max_features & min_impurity_decrease 0.978592
n_estimators & max_leaf_nodes & min_impurity_decrease 0.518709
min_weight_fraction_leaf & max_leaf_nodes & min_impurity_decrease 3.89e-09
max_features & max_leaf_nodes & min_impurity_decrease 0.995688
n_estimators & min_weight_fraction_leaf & max_features & max_leaf_nodes 0.995791
n_estimators & min_weight_fraction_leaf & max_features & min_impurity_decrease 0.964687
n_estimators & min_weight_fraction_leaf & max_leaf_nodes & min_impurity_decrease 0.235314
n_estimators & max_features & max_leaf_nodes & min_impurity_decrease 0.999667
min_weight_fraction_leaf & max_features & max_leaf_nodes & min_impurity_decrease 0.998793
n_estimators & min_weight_fraction_leaf & max_features & max_leaf_nodes &
min_impurity_decrease

0.997986

learning algorithm, namely random forest, on a given problem instance. Our analy-
sis concludes that the four parameters min_weight_fraction_leaf, max_leaf_nodes,
min_impurity_decrease, and n_estimators have influence on the response variable;
that is, they have influence on the performance of the random forest algorithm for the
given problem instance. Furthermore, they heavily interact with each other, which
implies that they cannot be optimized in isolation and need to be optimized simul-
taneously. This required us to conduct 3,375 + 12 = 3,387 experiments, whereas
evaluating all possible parameter combinations would have required 4,050,000 ex-
periments. This is a relative saving of over 99.9%. The conclusion is that we should
focus on optimizing these four parameters. The next step would then be to define
an optimization problem using the four parameters and to then apply a search al-
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gorithm, for example, manual experimentation, brute forcing all combinations, or
more sophisticated algorithms (Noorshams et al., 2013), in order to determine the
best parameter combination.

5.7 Concluding Remarks

In this chapter, we introduced the foundations of experimental design. We focused on
the analysis of variance (ANOVA) technique from statistics, starting with one-factor
ANOVA and then generalizing to two factors and finally to m factors. The presented
m-factor full factorial design requires conducting experiments for all possible com-
binations of values for the input variables (factors). In addition, each measurement
must be replicated n times to determine the effect of the measurement error. Thus,
the full factorial design requires substantial amount of measurements limiting its
practical applicability.

We looked at approaches to deal with the above issue by using fractional factorial
designs requiring only a fraction of the experiments of a full factorial design. Af-
ter briefly describing n2m factorial designs, we focused on Plackett–Burman (PB)
designs. The latter bridge the gap between low-cost/low-detail approaches, such
as varying factors one-at-a-time, and high-cost/high-detail approaches, such as full
factorial ANOVA designs. The advantage of PB designs is that they provide the
most important information but at a very low cost similar to the cost of the trivial
one-at-a-time approach.

Finally, having introduced several techniques for experimental design, we pre-
sented a case study demonstrating how these techniques can be applied in practice.
We applied a Plackett–Burman design and a subsequent full factorial ANOVA to
analyze the impact of hyperparameters on the performance of a popular machine
learning algorithm (random forest) on a given problem instance.
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Chapter 6
Measurement Techniques

“When you only have a hammer, every problem begins to
resemble a nail.”
—Abraham Maslow

In the previous chapters, we introduced the most common statistics that can be
used to summarize measurements, that is, indices of central tendency and indices
of dispersion, providing a basis for defining metrics as part of benchmarks. Fur-
thermore, the statistical approaches for quantifying the variability and precision of
measurements were introduced. This chapter looks at the different measurement
techniques that can be used in practice to derive the values of common metrics.
While most presented techniques are useful for performance metrics, some of them
can also be applied generally for other types of metrics.

The chapter starts with a brief introduction to the basic measurement strategies,
including event-driven, tracing, sampling, and indirect measurement. We then look at
interval timers, which are typically used to measure the execution time of a program
or a portion of it. Next, we introduce performance profiling, which provides means
to measure how much time a system spends in different states. A performance profile
provides a high-level summary of the execution behavior of an application or a
system; however, this summary does not provide any information about the order in
which events occur. Thus, at the end of the chapter, event-driven tracing strategies
are introduced, which can be used to capture such information. We focus on call path
tracing—a technique for extracting a control flow graph of an application. Finally, the
chapter is wrapped up with an overview of commercial and open-source monitoring
tools for performance profiling and call path tracing.

6.1 Basic Measurement Strategies

Measurement techniques are typically based on monitoring changes in the system
state. Each change in the system state that is relevant for the measurement of a given
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metric is referred to as an event. For example, an event could be a request arrival,
a remote procedure call, a processor interrupt, a memory reference, a network ac-
cess, a failure of a given system component, a rolled back database transaction,
a detected denial of service attack, or a security breach. Four fundamental mea-
surement strategies are distinguished: event-driven, tracing, sampling, and indirect
measurement (Lilja, 2000).

Event-driven strategies record information required to derive a given metric only
when specified events of interest occur. The system may have to be instrumented to
monitor the respective events and record relevant information. The term instrumen-
tation, in this context, refers to the insertion of the so-called monitoring hooks in
the code that observe and record relevant information about the events of interest.
For example, counting the number of random disk accesses during the execution of
a benchmark can be implemented by incrementing a counter in the respective I/O
interrupt handling routine of the operating system and dumping the value of the
counter at the end of the benchmark execution.

One important aspect of measurement strategies is how much overhead they
introduce. The measurement overhead may or may not intrude upon the system
behavior, and if it does, such intrusion may lead to a change in the observed behavior,
a phenomenon often referred to as perturbation. The overhead of an event-driven
strategy depends on the frequency of the events being monitored. If the events of
interest occur very frequently, the overhead may be significant possibly leading to
perturbation. In that case, the behavior of the system under test may change and no
longer be representative of the typical or average behavior. Therefore, event-driven
strategies are usually considered for events with low to moderate frequency.

Tracing strategies are similar to event-driven strategies; however, in addition to
counting how often events of interest occur, they record further information about
each event (e.g., information on the system state at the time of the event) required
to derive a given metric of interest. For example, in addition to observing each
random disk access, one may be interested in the specific files accessed and whether
data is read or written. Depending on how much information is stored, tracing may
introduce significant overhead. Moreover, the time required to store the additional
information may significantly alter the behavior of the system under test.

Sampling strategies record relevant information about the system state in equidis-
tant time intervals. The advantage of such strategies is that the overhead they intro-
duce is independent of the frequency with which the respective events of interest
occur. Instead, the overhead depends on the sampling frequency, which can be con-
figured by the user. In contrast to the previous two strategies, sampling strategies do
not observe every occurrence of the events of interest. They observe only a statis-
tical sample of the execution behavior, which means that infrequent events may be
completely missed. Thus, the sampling frequency should be configured to have the
resolution necessary to obtain a representative sample of the events of interest. Given
that only a statistical sample of the execution is observed, repetitive sampling-based
measurements may produce different results. Sampling strategies are typically used
for high frequency events where exact event counts are not required and a statistical
summary is enough.
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Figure 6.1 illustrates the three measurement strategies considered so far.

(a) Event-driven strategies (b) Tracing (c) Sampling

Fig. 6.1: Measurement techniques and strategies

Indirect measurement strategies are used in cases where the metric of interest
cannot be measured directly by observing certain events. In such cases, other metrics
that can be measured directly are used to derive or deduce the metric of interest. For
example, based on the service demand law (see Chapter 7, Section 7.1.2), the service
demand of requests at a given resource can be derived from measured throughput
and utilization data.

6.2 Interval Timers

An interval timer is a tool for measuring the duration of any activity during the
execution of a program. Interval timers are typically used in performance measure-
ments to measure the execution time of a program or a portion of it. Most interval
timers are implemented by using a counter variable incremented on each tick of a
system clock. Interval timers are based on counting the number of ticks between the
beginning and end of the respective activity whose duration needs to be measured.
The clock ticks are counted by observing the counter variable at the respective points
in the program execution (Figure 6.2).

Fig. 6.2: Interval timers

More specifically, based on how an interval timer is implemented, we distinguish
between hardware timers and software timers (Lilja, 2000). In hardware timers,
the counter variable is incremented directly by a free-running hardware clock. The
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counter is typically set to 0 when the system is powered up and its value shows the
number of clock ticks that have occurred since then. In software-based timers, the
counter variable is not directly incremented; instead, the hardware clock periodically
generates a processor interrupt, and the respective interrupt-service routine triggers
a process to increment the counter variable accessible to application programs.
Depending on the timer implementation, the process of accessing and updating the
counter variable may span several software layers (e.g., operating system, virtual
machine, middleware).

Denote with Tc the period of time between two updates of the counter variable,
referred to as clock period or resolution of the timer. If c1 and c2 are the values
of the counter at the beginning and end of the activity whose duration needs to be
measured, then the duration reported by the timer is (c2 − c1)Tc .

6.2.1 Timer Rollover

An important characteristic of an interval timer is the number of bits available for the
counting variable, which determines the longest interval that can be measured using
the timer. An n bit counter can store values between 0 and (2n − 1). Table 6.1 shows
the longest interval that can be measured for different values of the resolution Tc and
the counter size n.

A timer’s counter variable is said to “roll over” to zero when its value transitions
from the maximum value (2n − 1) to 0. If a timer’s counter rolls over during an
activity whose duration is being measured using the timer, then the value (c2− c1)Tc

reported by the timer will be negative. Therefore, applications that use a timer must
either ensure that roll over can never occur when using the timer or they should
detect and correct invalid measurements caused by roll over.

Table 6.1: Length of time until timer rollover (Lilja, 2000)

Resolution (Tc) Counter size in bits (n)
16 32 64

10 ns 655 μs 43 s 58.5 centuries

1 μs 65.5 ms 1.2 h 5,580 centuries

100 μs 6.55 s 5 days 585,000 centuries

1 ms 1.1 min 50 days 5,850,000 centuries
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6.2.2 Timer Accuracy

The accuracy of measurements obtained through an interval timer generally depends
on two factors: the timer resolution and the timer overhead.

The timer resolution Tc is the smallest time duration that can be detected by the
timer. Given that the timer resolution is finite, there is a random quantization error in
all measurements made using the timer (Lilja, 2000). This is illustrated in Figure 6.3,
which shows an example of an interval timer reporting different duration of the same
activity (e.g., execution of an operation with a fixed execution time) depending on
its exact starting point. Repeated measurements of the same activity duration will
lead to values X ± Δ. This quantization effect was already discussed in Chapter 4
(Section 4.2.1) in the context of random measurement errors.

Fig. 6.3: Example of random quantization errors in timer measurements

Given that it is unlikely that the actual activity duration Ta is exactly a whole
number factor of the timer’s clock period, Ta will normally lie within the range
nTc < Ta < (n + 1)Tc , where Tc is the timer’s clock period. Thus, the measured
duration Tm reported by the timer will be the actual duration Ta rounded up or down
by one clock period. The rounding is completely unpredictable, introducing random
quantization errors into all measurements reported by the timer. The smaller the
timer’s clock period, the more accurate its measurements will be.

The second factor that affects the accuracy of a timer is its overhead. An interval
timer is typically used like a stopwatch to measure the duration of a given activity.
For example, the following pseudocode illustrates how a timer can be used within a
program to measure the execution time of a critical section in a program:1

1 A critical section is a section of code that accesses a shared resource (data structure or device)
that must not be concurrently accessed by more than one thread of execution. Critical sections must
be executed serially; that is, only one thread can execute a critical section at any given time.
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time_start = read_timer();
<critical section to be measured>
time_end = read_timer();
elapsed_time = (time_end - time_start) * clock_period;

Figure 6.4 shows an exemplary time line of the execution. As we can see from the
figure, the time we actually measure includes more than the duration of the critical
section of which we are interested. This is because accessing the timer normally
requires a minimum of one memory-read operation to read the value of the timer
and one memory-write operation to store the read value. These operations must be
performed at the beginning and end of the measured activity.

Fig. 6.4: Timer overhead

In Figure 6.4, T1 and T4 represent the time required to read the value of the timer’s
counter variable, whereas T2 represents the time required to store the value that
was obtained. The actual duration of the event we are trying to measure is given
by Ta = T3. However, due to the delays accessing the timer, we end up measuring
Tm = T2 +T3 +T4 instead. Thus, Ta = Tm − (T2 +T4) = Tm − (T1 +T2), since T4 = T1.
The value of To = T1 + T2 is referred to as timer overhead (Lilja, 2000).

If the activity being measured has a duration significantly higher than the timer
overhead (Ta >> To), then the latter can simply be ignored. Otherwise, the timer
overhead should be estimated and subtracted from the measurements. However, es-
timating the timer overhead may be challenging given that it often exhibits high
variability in repeated measurements. We refer the reader to Kuperberg, Krogmann,
et al. (2009) for a platform-independent method to quantify the accuracy and over-
head of a timer without inspecting its implementation.

Generally, measurements of intervals with duration of the same order of mag-
nitude as the timer overhead are not reliable. A rule of thumb is that for timer
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measurements to be reliable, the duration of the activity being measured should be
100–1,000 times larger than the timer overhead.

Different timer implementations exhibit different overhead. Evaluating the quality
of a given interval timer involves analyzing several properties, such as accuracy,
overhead, and timer stability, all of which are platform-dependent. A composite
metric, coupled with a benchmarking approach for evaluating the quality of timers,
can be found in Kuperberg and Reussner (2011).

6.2.3 Measuring Short Intervals

Given that a timer’s clock period Tc is the shortest time interval it can detect, the
question arises how a timer can be used to measure the duration of intervals shorter
than Tc . More generally, the quantization effect makes it hard to measure intervals
that are not significantly larger than the timer’s resolution.

In Chapter 4, Section 4.2.3.3, we presented an indirect measurement approach
to estimate the execution time of a very short operation (shorter than the clock
period of the used interval timer). The idea was to measure the total time for several
consecutive repetitions of the operation and divide this time by the number of
repetitions to calculate the mean time for one execution. We assume that the number
of repetitions is chosen high enough, such that the resolution of the used interval
timer can measure the cumulative times. By repeating this procedure n times, we
obtain a sample of estimated times for one operation execution and can use this
to derive a confidence interval for the mean execution time of the operation. As
discussed in Chapter 4, Section 4.2.3.3, while this approach provides a workaround
for the issue, the normalization has a penalty. On the one hand, the sample size is
reduced, leading to loss of information. On the other hand, we obtain a confidence
interval for the mean value of the aggregated operations, as opposed to the individual
operations themselves. This leads to reducing the variation and thus the resulting
confidence interval might be more narrow than it would have been if applied to the
measured duration of single executions.

We now present an alternative approach to measure short intervals (Lilja, 2000).
Assume that we would like to measure an interval of size Ta using a timer with a
resolution (i.e., clock period) Tc > Ta. Short intervals are hard to measure even in
cases where Ta ≈ n × Tc for n a small integer.

Fig. 6.5: Approximate measures of short intervals
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There are two possible cases when measuring an interval of size Ta < Tc (see
Figure 6.5): (1) the measured interval begins in one clock period and ends in the
next, that is, there is one clock tick during the measurement incrementing the timer’s
counter variable and (2) the measured interval begins and ends within the same clock
period, that is, there is no clock tick during the measurement. Each measurement
can thus be seen as a Bernoulli experiment. The outcome of the experiment is 1
with probability p = Ta/Tc corresponding to the first case (counter is incremented
during measurement) and 0 with probability (1−p) corresponding to the second case
(counter is not incremented during measurement). If we repeat this experiment n
times and count the number of times the outcome is 1, the resulting distribution will
be approximately Binomial. This is because we cannot assume that the n repetitions
are independent, which is required for a true Binomial distribution. The approxima-
tion will be more accurate if we introduce a random delay between the successive
repetitions of the Bernoulli experiment. If the number of times we get outcome 1 is k,
then the ratio p̂ = k/n will be a point estimate of p (see Chapter 4, Section 4.2.4).
From this, we can derive an estimate for the duration of the measured interval as
follows:

p ≈ k
n
⇒ Ta

Tc
≈ k

n
⇒ Ta ≈ k

n
Tc (6.1)

Furthermore, as shown in Chapter 4, Section 4.2.4, the following approximate
confidence interval for p can be derived:

P �p̂ − zα/2

√
p̂(1 − p̂)

n
≤ p ≤ p̂ + zα/2

√
p̂(1 − p̂)

n
�� ≈ 1 − α. (6.2)

Multiplying both sides by Tc and considering that pTc = Ta, we obtain the
following confidence interval for Ta:

P �p̂Tc − zα/2Tc

√
p̂(1 − p̂)

n
≤ Ta ≤ p̂Tc + zα/2Tc

√
p̂(1 − p̂)

n
�� ≈ 1 − α. (6.3)

6.3 Performance Profiling

Performance profiling is a process of measuring how much time a system spends in
certain states that are of interest for understanding its behavior. A profile provides
a summary of the execution behavior in terms of the fraction of time spent in
different states, for example, the fraction of time spent executing a given function
or method, the fraction of time the operating system is running in kernel mode, the
fraction of time doing storage or network I/O, or the fraction of time a Java Virtual
Machine is running garbage collection. It is often distinguished between application
profiling and systems profiling, where the former stresses that a specific application is
being profiled in the case of multiple applications running on the system under test.
Application profiling normally aims to identify hotspots in the application code that
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may be potential performance bottlenecks, whereas systems profiling typically aims
to identify system-level performance bottlenecks. A profile may be used as a basis
for performance tuning and optimization; for example, heavily loaded application
components may be refactored and optimized or system configuration parameters
such as buffer sizes, cache sizes, load balancing policies, or resource allocations may
be tuned.

Fig. 6.6: Profiling implemented using sampling-based measurement

Performance profiling is normally implemented using a sampling-based measure-
ment approach. The execution is periodically interrupted to inspect the system state
and store relevant information about the states of interest (see Figure 6.6). Assume
that there are k states of interest and the goal is to determine the fraction of time
spent in each of them. Denote with Ci for i = 1, 2, ..., k the number of times the sys-
tem was observed to be in state i when interrupted during the profiling experiment.
In that case, the interrupt service routine would simply check the current state and
increment the respective element of an integer array used to store Ci . At the end of
the experiment, a histogram of the number of times each state was observed would
be available (see Figure 6.7).

Fig. 6.7: Histogram of state frequencies

Assume that the system is interrupted n times to inspect its state. An estimate of
the fraction of time the system spends in state i is given by p̂i = Ci/n. The confidence
intervals for proportions that we derived in Chapter 4 (Section 4.2.4) can now be used
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to obtain an interval estimate of the fraction of time pi the system spends in state i.
Applying Equation (4.31) from Chapter 4, Section 4.2.4, we obtain the following
confidence interval for pi:

P �p̂i − zα/2

√
p̂i (1 − p̂i)

n
≤ pi ≤ p̂i + zα/2

√
p̂i (1 − p̂i)

n
�� ≈ 1 − α. (6.4)

We note that the above approach works under the assumption that the interrupts
occur asynchronously with respect to any events in the system under test. This is
important to ensure that the observations of the system state are independent of each
other.
Example A Java program is run for 10 s and interrupted every 40 μs for profiling.
The program was observed 36,128 times to execute method A. We apply Equa-
tion (6.4) to derive a 90% confidence interval for the time spent in method A.

m = 36,128
n = 10 s/40 μs = 250,000
p = m/n = 0.144512

(c1, c2) = 0.144512 ∓ 1.645
√

0.144512(0.855488)
250,000

= (0.144, 0.146)

(6.5)

We conclude with 90% confidence that the program spent 14.4–14.6% of its time
in method A.

6.4 Event Tracing

A performance profile provides a high-level summary of the execution behavior of
an application or system; however, this summary does not provide any information
about the order in which events occur. Event-driven tracing strategies can be used
to capture such information. A trace is a dynamic list of events generated by the
application (or system under study) as it executes (Lilja, 2000). A trace may include
any information about the monitored events of interest that is relevant for charac-
terizing the application behavior. In the following, we introduce call path tracing, a
technique for extracting a control flow graph of an application.
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6.4.1 Call Path Tracing

Consider a system that processes transactions requested by clients.2 An executed
system transaction translates into a path through a control flow graph whose edges
are basic blocks (Allen, 1970). A basic block is a portion of code within an application
with only one entry point and only one exit point. A path through the control flow
graph can be represented by a sequence of references to basic blocks. It is assumed
that the system can be instrumented to monitor the so-called event records.

Definition 6.1 (Event Record) An event record is defined as a tuple e = (l, t, s),
where l refers to the beginning or end of a basic block, t is a timestamp, and s
identifies a transaction. The event record indicates that l has been reached by s at
time t.

In order to trace individual transactions, a set of event records has to be ob-
tained at run time. The set of gathered event records then has to be: (1) partitioned
and (2) sorted. The set of event records is partitioned in equivalence classes [a]R
according to the following equivalence relation:

Definition 6.2 R is a relation on event records: Let a = (l1, t1, s1) and b = (l2, t2, s2)
be event records obtained through instrumentation. Then, a relates to b, that is,
a ∼R b, if and only if s1 = s2.

Sorting the event records of an equivalence class in chronological order leads to
a sequence of event records that can be used to derive a call path trace. We refer
to Briand et al. (2006), Israr et al. (2007), and Anderson et al. (2009) where call path
traces are transformed, for example, to UML sequence diagrams.

To reduce the overhead of monitoring system transactions, there exist two orthog-
onal approaches: (1) quantitative throttling—throttling the number of transactions
that are actually monitored—and (2) qualitative throttling—throttling the level of
detail at which transactions are monitored. Existing work on (1) is presented, for
example, in Gilly et al. (2009). The authors propose an adaptive time slot scheduling
for the monitoring process. The monitoring frequency depends on the load of the
system. In phases of high load, the monitoring frequency is throttled. An example
of an approach based on (2) is presented in Ehlers and Hasselbring (2011); this
approach supports adaptive monitoring of requests; that is, monitoring probes can
be enabled or disabled depending on what information about the requests should be
monitored.

When extracting call path traces, one is typically interested in obtaining control
flow statistics that summarize the most important control flow information in a
compact manner. In the rest of this section, we describe the typical control flow
statistics of interest by looking at an example.

2 The term transaction here is used loosely to refer to any unit of work or processing task executed
in the system, for example, an HTTP request, a database transaction, a batch job, a web service
request, or a microservice invocation. Transactions, in this context, are also commonly referred to
as requests or jobs.
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Fig. 6.8: Example call path

Consider the example call path shown in Figure 6.8. We have two different
components, depicted as rectangles. The first component contains the basic blocks
A, B, and E; the second component contains the remaining basic blocks C and D. An
arrow between two basic blocks denotes that the control flow is handed over from
one node to another (e.g., by calling a method or service).

The numbers next to the arrows indicate the amount of event records that took the
respective explicit call path. The two components could, for example, correspond to
two different web servers, communicating over the Internet, while offering certain
method interfaces in the form of A, B, C, D, and E. As another example, the
components could also correspond to two methods, with A, B, C, D, and E each
being a portion of code executed when the methods are called. Here, the first method
calls the second method and is then blocked until the second method returns the
control flow back to the first method. The granularity of a basic block depends on
the specific use case, but also on the capabilities of the tracing tool.

In our example, Figure 6.8 shows 241 event records that enter the first component
and trigger execution of basic block A. The latter contains a branch, where 223
of all transactions are directly forwarded to basic block E, and 18 transactions
are forwarded to basic block B. For each of those 18 incoming transactions, B is
assumed to issue an external call to basic block C in the second component. Basic
block C contains a loop that triggers 185 executions of basic block D for each of the
18 transactions. C aggregates the returned information for each of the 18 requests and
sends the response back to B. B implements a filtering step based on the information
provided by C and therefore again implements a branching, where only four of the
18 received transactions are forwarded to E. Finally, E processes and returns all
transactions received by both A and B.

From the described example, we can outline four basic types of information
obtainable by call path tracing:

• Call frequencies,
• Branching probabilities,
• Loop iteration counts, and
• Processing times and response times.
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We now discuss each of these in more detail.

6.4.1.1 Call Frequencies

By tracing the control flow of transactions between the different basic blocks, it is
easy to simply count the frequencies of ingoing and outgoing transactions for each
block. Figure 6.8 shows the frequencies at the edges connecting the basic blocks.
We usually distinguish between internal and external calls. An external call is a
call between two different components. In Figure 6.8 components are depicted as
rectangles—basic blocks A, B, and E form one component, and basic blocks C and D
form another component. Hence, the call from B to C can be seen as an external call.

The calls triggered by a basic block can be easily derived by dividing the number
of outgoing edges by the number of incoming edges as measured by call path tracing.

6.4.1.2 Branching Probabilities

Branching probabilities describe the probability of entering each branch transition
for every entry of a branch. In Figure 6.8, basic block A represents a branch between
forwarding an incoming transaction to block E, or forwarding it to block B. Deter-
mining the branching probabilities of a given block is very important for analyzing
the performance of a given control flow. For example, Figure 6.8 exhibits very dif-
ferent behavior for transactions forwarded directly to E compared to transactions
forwarded to B first. Note that it is also possible to have more than two branch
transitions, for example, three, four, or more different actions to take for any specific
transaction. In order to extract the respective branching probabilities, one can divide
the number of transactions of each particular branch transition by the number of total
entries into the branch.

6.4.1.3 Loop Iteration Counts

Similarly to branching probabilities, loop iteration counts are important parameters
when analyzing the control flow of an application. Loop iteration counts quantify,
how often a specific basic block is entered due to the execution of a loop as part of
a transaction. This behavior can be seen at basic block D in Figure 6.8, where basic
block C calls basic block D in a loop. The loop iteration counts can be quantified
by dividing the number of loop iterations (i.e., sum of loop body repetitions by all
transactions) by the number of loop entries (i.e., number of transactions reaching the
beginning of the loop).



144 6 Measurement Techniques

6.4.1.4 Processing Times and Response Times

The processing time of an individual basic block, as well as of an entire transaction
(i.e., the transaction response times), can be easily determined based on the times-
tamps of the event records corresponding to the beginning and end of the considered
basic block and transaction, respectively.

In addition to the above described control flow statistics, tracing tools typically
also report transaction throughput and resource utilization data. This allows one to
determine further parameters such as service demands—also referred to as resource
demands—of the individual basic blocks or entire transactions. The service/resource
demand of a transaction at a given system resource is defined as the average total
service time of the transaction at the resource over all visits to the resource. The
term resource demand will be introduced more formally in Chapter 7, Section 7.1.
Chapter 17 presents a detailed survey and systematization of different approaches to
the statistical estimation of resource demands based on easy to measure system-level
and application-level metrics. Resource demands can be considered at different levels
of granularity, for example, for individual basic blocks or for entire transactions.

6.4.2 Performance Monitoring and Tracing Tools

A number of commercial and open-source monitoring tools exist that support the
extraction of call path traces and estimation of the call path parameters discussed
above.

Commercial representatives are, for example, Dynatrace,3 New Relic,4 AppDy-
namics,5 or DX APM.6 Commercial tools normally have several advantages in-
cluding product stability, available customer support as well as integrated tooling
for analysis and visualization, providing fast and detailed insights into execution
behavior.

In addition, many open-source and academic tools are available, such as inspectIT
Ocelot,7 Zipkin,8 Jaeger,9 Pinpoint,10 or Kieker.11 Open-source tools are often lim-
ited in their applicability, supported programming languages, and tooling support;
however, they have the advantage of flexibility, extensibility, and low cost. For exam-
ple, the Kieker framework (Hoorn et al., 2012) has been heavily used and extended

3 https://www.dynatrace.com
4 https://newrelic.com
5 https://www.appdynamics.com
6 https://www.broadcom.com/products/software/aiops/application-performance-management
7 https://www.inspectit.rocks
8 https://zipkin.io
9 https://www.jaegertracing.io
10 https://naver.github.io/pinpoint
11 http://kieker-monitoring.net

http://kieker-monitoring.net
https://naver.github.io/pinpoint
https://www.jaegertracing.io
https://zipkin.io
https://www.inspectit.rocks
https://www.broadcom.com/products/software/aiops/application-performance-management
https://www.appdynamics.com
https://newrelic.com
https://www.dynatrace.com
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over the past 10 years by performance engineers both from industry and academia.
Some examples of academic works employing Kieker for research purposes in-
clude (Brosig et al., 2011; Grohmann et al., 2019; Spinner et al., 2015; Walter,
2018).

6.5 Concluding Remarks

This chapter introduced different measurement techniques that can be used in practice
to derive the values of common metrics. While most presented techniques are useful
for performance metrics, some of them can also be applied generally for other types
of metrics. The chapter started with a brief introduction to the basic measurement
strategies, including event-driven, tracing, sampling, and indirect measurement. We
then looked at interval timers, which are typically used to measure the execution
time of a program or a portion of it. We discussed in detail several issues related to
interval timers, that is, timer rollover, timer accuracy, and strategies for measuring
short intervals. Next, we looked at performance profiling, which provides means to
measure how much time a system spends in different states. A performance profile
provides a high-level summary of the execution behavior of an application or a
system; however, this summary does not provide any information about the order in
which events occur. Thus, at the end of the chapter, event-driven tracing strategies
were introduced, which can be used to capture such information. A trace is a dynamic
list of events generated by the application (or system under study) as it executes; it
may include any information about the monitored events of interest that is relevant
for characterizing the application behavior. We focused on call path tracing—a
technique for extracting a control flow graph of the application. Finally, the chapter
was wrapped up with an overview of commercial and open-source monitoring tools
that support the extraction of call path traces and the estimation of call path statistics,
such as call frequencies, branching probabilities, loop iteration counts, and response
times.
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Chapter 7
Operational Analysis and Basic Queueing
Models

“All models are wrong, but some are useful.”
—George E. P. Box (1919-2013), British statistician

In Chapter 1, we introduced the concept of system performance understood in a
classical sense as the amount of useful work accomplished by a system compared
to the time and resources used. Better performance normally means more work
accomplished in shorter time or using less resources. To characterize the performance
behavior of a system, performance metrics are used. In Chapter 3 (Section 3.3), we
introduced the most common basic performance metrics used in practice: response
time, throughput, and utilization.

In this chapter, we start by looking at some basic quantitative relationships, which
can be used to evaluate a system’s performance based on measured or known data,
a process known as operational analysis (Section 7.1). Operational analysis can be
seen as part of queueing theory, a discipline of stochastic theory and operations
research, which provides general methods to analyze the queueing behavior of one
or more service stations. In the second part of the chapter (Section 7.2), we provide
a brief introduction to the basic notation and principles of queueing theory. While
queueing theory has been applied successfully to different domains, for example, to
model manufacturing lines or call center operation, in this chapter, we focus on using
queueing theory for performance evaluation of computer systems. Nevertheless, the
presented concepts and mathematical models are relevant for any processing system
where the generic assumptions described in this chapter are fulfilled. The chapter
is wrapped up with a case study, showing in a step-by-step fashion how to build a
queueing model of a distributed software system and use it to predict the performance
of the system for different workload and configuration scenarios.
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7.1 Operational Analysis

In this section, we introduce a set of basic quantitative relationships between the
most common performance metrics. These relationships are commonly known as
operational laws and can be considered to be consistency requirements (i.e., invari-
ant relations) for the values of performance quantities measured in any particular
experiment (Menascé et al., 2004). The process of applying operational laws to de-
rive performance metrics based on measured or known data is known as operational
analysis (Denning and Buzen, 1978). This section introduces the most important
operational laws, which are later revisited in Section 7.2 in the context of queueing
theory. We refer the reader to Menascé et al. (2004) for a more detailed treatment of
operational analysis.

Consider a system made up of K resources (e.g., servers, processors, storage
devices, network links). The system processes requests sent by clients.1 It is assumed
that during the processing of a request, multiple resources can be used, and at each
point in time, the request is either being served at a resource or is waiting for a
resource to become available. The same resource may be used multiple times during
the processing of a request; each time the resource is used, we will refer to this as
the request visiting the resource. We assume that the system is observed for a finite
period of time and that it is in operational equilibrium (i.e., steady state) during this
period; that is, the number of submitted requests is equal to the number of completed
requests.

We will use the notation shown in Table 7.1. Given that the system is assumed to
be in operational equilibrium, the following obvious equations hold:

Si =
Bi

Ci
, Ui =

Bi

T
,

Xi =
Ci

T
, λi =

Ai

T
,

X0 =
C0
T
, Vi =

Ci

C0
,

λi = Xi .

(7.1)

Example During a period of 1 min, 240 requests arrive at a server and 240 requests
are completed. The server’s CPU is busy for 36 s in this time period. If the server

1 The term request here is used loosely to refer to any unit of work or processing task executed
in the system, for example, an HTTP request, a database transaction, a batch job, a web service
request, or a microservice invocation. Requests in this context are also commonly referred to as
customers, jobs, or transactions.
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Table 7.1: Notation used in operational analysis (Menascé et al., 2004)

Symbol Meaning
K Number of resources in the system
T Length of time during which the system is observed
Bi Total length of time during which resource i is busy in the observation

period
Ai Total number of service requests (i.e., arrivals) to resource i
A0 Total number of requests submitted to the system
Ci Total number of service completions (i.e., departures) at resource i
C0 Total number of requests processed by the system
Vi Average number of times resource i is visited (i.e., used) during the

processing of a request, referred to as visit ratio
λi Arrival rate at resource i (i.e., average number of service requests that

arrive per unit of time)
Si Average service time of a request at resource i per visit to the resource

(i.e., the average time the request spends receiving service from the
resource excluding waiting/queueing time)

Di Average total service time of a request at resource i over all visits to
the resource, referred to as the service demand at resource i

Ui Utilization of resource i (i.e., the fraction of time the resource is busy
serving requests)

Xi Throughput of resource i (i.e., the number of service completions per
unit of time)

X0 System throughput (i.e., the number of requests processed per unit of
time)

R Average request response time (i.e., the average time it takes to process
a request including both the waiting and service time in the system)

N Average number of active requests in the system, either waiting for
service or being served

uses no resources apart from the CPU, and it only has a single request class, what is
the arrival rate, the CPU utilization, the mean CPU service demand, and the system
throughput?

K = 1, T = 60 s, A0 = A1 = 240, C0 = C1 = 240, B1 = 36 s,

λ1 =
A1
T
=

240
60 s
= 4 req/s, U1 =

B1
T
=

36 s
60 s
= 0.6 = 60%,

S1 =
B1
C1
=

36 s
240
= 0.15 s, X0 =

C0
T
=

240
60 s
= 4 req/s.

(7.2)
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In the following, we introduce the five most common operational laws providing
the basis for operational analysis.

7.1.1 Utilization Law

The utilization law states that the utilization of resource i is given by the request
arrival rate λi multiplied by the average service time Si per visit to the resource;
that is,

Ui = Si × λi = Si × Xi . (7.3)

Proof

Ui =
Bi

T
=

Bi

Ci

T
Ci

=

Bi

Ci

1
Ci
T

=
Si
1
Xi

= Si × Xi = Si × λi . (7.4)

Example A program computes 190 matrix multiplications per second. If each
matrix multiplication requires 1.62 billions of floating point operations, and the
underlying CPU can process up to 380 GFLOPS (billions of floating point operations
per second), what is the utilization of the CPU?

K = 1, X1 = 190,

S1 =
1.62
360

= 0.0045 s,

U1 = S1 × X1 = 0.0045 × 190 = 0.855 = 85.5%.

(7.5)

7.1.2 Service Demand Law

The service demand Di (also referred to as resource demand) is defined as the
average total service time of a request at resource i over all visits to the resource.2
The service demand law states that the service demand of a request at resource i is
given by the utilization of resource i divided by the system throughput X0, that is,

Di =
Ui

X0
. (7.6)

Proof
Di = Vi × Si =

Ci

C0
× Bi

Ci
=

Bi

C0
=

Ui × T
C0

=
Ui

C0
T

=
Ui

X0
. (7.7)

2 In this book, we use the terms service demand and resource demand interchangeably.
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Example A program that calculates matrix multiplications is run 180 times within
5 min. For this time period, the underlying CPU reports a utilization of 30%. What
is the CPU service demand for a single program execution?

K = 1, T = 5 × 60 s = 300 s,

X0 =
C0
T
=

180
300 s

= 0.6 runs/s,

U1 = 30% = 0.3,

D1 =
U1
X0
=

0.3
0.6
= 0.5 s.

(7.8)

7.1.3 Forced Flow Law

By definition of the visit ratio Vi , resource i is visited (i.e., used) Vi times, on average,
by each processed request. Therefore, if X0 requests are processed per unit of time,
resource i will be visited Vi × X0 times per unit of time. So the throughput of
resource i, Xi , is given by

Xi = Vi × X0. (7.9)

This result, known as forced flow law, allows one to compute the system through-
put based on knowledge of the visit ratio and the throughput of any one resource in
the system. In addition, knowing the visit ratios of all resources and the throughput
of just one resource allows for calculation of the throughput of all other resources in
the system.

Example A REST-based web service3 accesses a file server five times and a database
two times for every request. If the web service processes 525 requests in a 7 min
interval, what is the average throughput of the web service, the file server, and the
database?

3REST (REpresentational State Transfer) is an architectural style for developing web services, which
is typically used to build lightweight web and mobile applications. Web services that conform to
the REST architectural style provide interoperability between computer systems on the Internet.
Nowadays, most public web services provide REST APIs (Application Programming Interfaces)
and transfer data in a compact and easy-to-use data-interchange format—the JavaScript Object
Notation (JSON).
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Xweb_service = X0 =
C0
T
=

525
7 × 60 s

= 1.25 req/s,

X f ile_server = Vf ile_server × X0 = 5 × 1.25 = 6.25 req/s,

Xdatabase = Vdatabase × X0 = 2 × 1.25 = 2.5 req/s.

(7.10)

7.1.4 Little’s Law

Little’s law states that the average number of active requests N in the system (sub-
mitted requests whose processing has not been completed yet) is equal to the average
time it takes to process a request (i.e., the request response time R) multiplied by
the number of requests processed per unit of time (i.e., the system throughput X0),
that is,

N = R × X0. (7.11)

We consider Little’s law in the context of a system processing requests; however,
it can generally be applied to any “black box” where some entities arrive, spend
some time inside the black box, and then leave. Little’s law states that the average
number of entities in the black box N is equal to the average residence time R of an
entity in the black box multiplied by the average departure rate X (throughput); that
is, N = R× X . This is illustrated in Figure 7.1. We refer to Little (1961) for a formal
proof. Little’s law holds under very general conditions; the only assumption is that
the black box does not create nor destroy entities.

Fig. 7.1: Little’s law (Menascé et al., 2004)

Example An enterprise resource planning system is implemented based on a mi-
croservice architecture consisting of many individual microservices. What is the
average response time of the enterprise resource planning system if it is used by 273
employees at the same time and they execute 9,450 operations per hour?
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T = 60 min × 60 s = 3,600 s,

X0 =
C0
T
=

9,450
3,600 s

= 2.625 ops/s,

R =
N
X0
=

273
2.625

= 104 s.

(7.12)

7.1.5 Interactive Response Time Law

Assume that the system we consider is used by M clients each sitting at their own
workstation and interactively accessing the system. This is an example of a closed
workload scenario (see Chapter 8, Section 8.3.2). Clients send requests that are
processed by the system. It is assumed that after a request is processed by the system,
the respective client waits some time before sending the next request. We refer to
this waiting time as “think time.” Thus, clients alternate between “thinking” and
waiting for a response from the system. If the average think time is denoted by Z ,
the interactive response time law (illustrated in Figure 7.2) states that the average
response time R is given by

R =
M
X0
− Z . (7.13)

client workstations
Z

1

M

X0

R

Interactive
System

...

Fig. 7.2: Interactive response time law (Menascé et al., 2004)

Proof To show that the interactive response time law holds, we apply Little’s law to
the virtual black box composed of the client workstations and the system considered
as a whole. We now consider the think time spent at the client workstation before
sending a new request as being part of the respective request (e.g., preparation
phase). Thus, each time the processing of a request is completed by the system and
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a response is sent back to the client, we consider this as one entity leaving our
virtual black box and at the same time one new entity arriving at the virtual black
box (corresponding to the next request). The total number of entities in our virtual
black box is equal to the total number of clients M (at each point in time, each
request is either at the respective client workstation or it is being processed inside
the system). The rate at which requests are completed by the system is given by the
system throughput X0. The total average time a request spends in the virtual black
box (i.e., client workstation plus system) is given by Z + R. Applying Little’s law to
the virtual black box, we obtain the following equation, which is equivalent to the
interactive response time law:

M = X0(Z + R). (7.14)

Example A train booking and reservation system is used by 50 employees. Each
of them, on average, issues a request 5 s after receiving the result of the previous
request. A request has an average CPU service demand of 0.1 s; a CPU utilization of
32% is observed. How long do employees have to wait on average until a request is
completed?

X0 = XCPU =
UCPU

DCPU
=

0.32
0.1 s

= 3.2 req/s,

R =
M
X0
− Z =

50
3.2
− 5 s = 10.6 s.

(7.15)

In summary, we introduced the following five operational laws:

Utilization law:
Ui = Si × Xi (7.16)

Service demand law:
Di = Vi × Si =

Ui

X0
(7.17)

Forced flow law:
Xi = Vi × X0 (7.18)

Little’s law:
N = R × X0 (7.19)

Interactive response time law:
R =

M
X0
− Z (7.20)
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7.1.6 Multi-Class Versions of Operational Laws

The operational laws can be extended to the case where multiple types of requests
are processed by the system. The measured quantities and derived metrics are then
considered on a per request class basis. An index c is used to distinguish between
the respective classes. The following multi-class versions of the operational laws
hold (Menascé et al., 2004):

Utilization law:
Ui,c = Si,c × Xi,c (7.21)

Service demand law:
Di,c = Vi,c × Si,c =

Ui,c

X0,c
(7.22)

Forced flow law:
Xi,c = Vi,c × X0,c (7.23)

Little’s law:
Nc = Rc × X0,c (7.24)

Interactive response time law:

Rc =
Mc

X0,c
− Zc (7.25)

Most of the quantities in the multi-class versions of the operational laws can
normally be easily measured by means of standard system monitoring tools based
on the measurement techniques presented in Chapter 6. The only exception is for the
utilization Ui,c and the service time Si,c . For example, monitoring tools can normally
provide measurements of the total resource utilization Ui . However, partitioning the
total utilization on a per request class basis is not trivial. While performance profiling
tools can be used for this purpose (see Section 6.3 in Chapter 6), such tools normally
incur instrumentation overhead, which might lead to perturbation impacting the
system behavior. Also, suitable profiling tools may not be available for the specific
environment. The utilization, broken down on a per request class basis (i.e., Ui,c),
is mainly relevant for obtaining the service demands Di,c . In Chapter 17, we look
at techniques for estimating service demands (also referred to as resource demands)
based on easy to measure high-level metrics.

7.1.7 Performance Bounds

Now that we introduced the basic operational laws, we present some further quanti-
tative relationships between the most common performance metrics, which provide
upper and lower bounds on the performance a system can achieve. The bounds can
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be classified into optimistic and pessimistic bounds and are typically used for bottle-
neck analysis. The term bottleneck is normally used to refer to the resource with the
highest utilization. It is assumed that this resource will first be saturated as the load
increases. If a bottleneck cannot be removed (e.g., by increasing the capacity of the
respective resource), the system is considered non-scalable in terms of performance.
In the following two subsections, we present two sets of performance bounds on the
system throughput and response time. Optimistic bounds capture the largest possible
throughput (Xopt ) and the lowest possible response time (Ropt ), while pessimistic
bounds capture the lowest possible throughput (Xpes) and largest possible response
time (Rpes):

Xpes ≤ X ≤ Xopt, Ropt ≤ R ≤ Rpes . (7.26)

The optimistic bounds can be derived from the service demands (Menascé et
al., 2004). We assume that the service demands are load-independent,4 which is
normally implicitly assumed in the context of operational analysis. The bounding
behavior of a system is determined by its bottleneck resource, which is the resource
with the largest service demand. Applying the service demand law, we obtain the
following upper asymptotic bound on the throughput:

X0 =
Ui

Di
≤ 1

Di
≤ 1

maxi=1..K {Di } . (7.27)

Given that a natural lower bound for the response time R is given by the sum of
the service demands at all resources, applying Little’s law, we obtain another upper
asymptotic bound on the throughput:

N = R × X0 ≥ �
K∑
i=1

Di
�� × X0 ⇔ X0 ≤ N∑K

i=1 Di

. (7.28)

In summary, the upper asymptotic bounds on the throughput are given by

X0 ≤ min
⎡⎢⎢⎢⎢⎣ 1
max{Di } ,

N∑K
i=1 Di

⎤⎥⎥⎥⎥⎦ . (7.29)

From Little’s law and the upper asymptotic bounds, we obtain the following lower
asymptotic bounds on the response time:

R =
N
X0
≥ N

min
[

1
max{Di } ,

N∑K
i=1 Di

] = max
⎡⎢⎢⎢⎢⎣N ×max{Di },

K∑
i=1

Di

⎤⎥⎥⎥⎥⎦ , (7.30)

R ≥ max
⎡⎢⎢⎢⎢⎣N ×max{Di },

K∑
i=1

Di

⎤⎥⎥⎥⎥⎦ . (7.31)

4 A service demand is load-independent if it does not change as the request arrival rates and the
induced utilization of system resources increase or decrease.



7.1 Operational Analysis 159

Actual throughput

Heavy load bound

Light load bound

(a) Upper bounds on throughput

Actual response time
Heavy

load bound

Light load bound

(b) Lower bounds on response time

Fig. 7.3: Asymptotic bounds

The asymptotic bounds on throughput and response time are illustrated in Fig-
ure 7.3. In addition to the asymptotic bounds, which are normally quite loose, based
on a technique known as balanced job bounds analysis, the following tighter bounds
can be derived (Menascé et al., 1994):

N
max{Di }[K + N − 1]

≤ X0 ≤ N
avg{Di }[K + N − 1]

. (7.32)

Figure 7.4 illustrates the relationship between the asymptotic bounds and balanced
job bounds.

Balanced Job bounds

Asymptotic bounds

Fig. 7.4: Balanced job bounds (Menascé et al., 1994)

Example Fifty employees use an enterprise resource planning system that is imple-
mented as a three-tier architecture. The web tier has a CPU service demand of 0.2 s,
the business logic tier has a CPU service demand of 0.32 s, and the database tier has
a CPU service demand of 0.15 s. Calculate the asymptotic and balanced job bounds
for the throughput of the enterprise resource planning system under the assumption
that all tiers use no resources apart from their CPU.
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Asymptotic bounds:

X0 ≤ min
⎡⎢⎢⎢⎢⎣ 1
max{Di } ,

N∑K
i=1 Di

⎤⎥⎥⎥⎥⎦ ,
X0 ≤ min

[
1

max{0.2, 0.32, 0.15} ,
50

0.2 + 0.32 + 0.15

]
,

X0 ≤ min [3.1, 74.6] = 3.1.

(7.33)

Balanced job bounds:

N
max{Di }[K + N − 1]

≤ X0 ≤ N
avg{Di }[K + N − 1]

,

50
max{0.2, 0.32, 0.15}[3 + 50 − 1]

≤ X0 ≤ 50
avg{0.2, 0.32, 0.15}[3 + 50 − 1]

,

3.0 ≤ X0 ≤ 4.3.

(7.34)

7.2 Basic Queueing Theory

The fundamental operational laws presented in the previous section can be seen as
part of queueing theory, a discipline of stochastic theory and operations research. It
provides general methods to analyze the queueing behavior at one or more service
stations and has been successfully applied to different domains in the last decades, for
example, to model manufacturing lines or call center operations. When analyzing the
performance of a computer system, queueing models are often used to describe the
scheduling behavior at hardware resources such as processors, storage, and network
devices. In this section, we provide a brief introduction to the basic notation and
principles of queueing theory. A detailed treatment of the subject can be found
in Lazowska et al. (1984), Bolch, Greiner, et al. (2006), and Harchol-Balter (2013).
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7.2.1 Single Queues

The central concept of queueing theory is a queue, also referred to as a service
station or service center. A queue (illustrated in Figure 7.5) consists of a waiting
line and a server, which serves incoming requests.5 Requests arrive at the queue
and are processed immediately unless the server is already occupied. In the latter
case, requests are put into the waiting line. After a request has been completely
processed by the server, it departs from the queue. A queue can also have several
servers, assumed to be identical, in which case we speak of a multi-server queue.
The semantics are similar; that is, whenever a request arrives, it is processed at one
of the servers that is currently free. If all servers are occupied, the request is put into
the waiting line.

Waiting Line Server

Queue

DeparturesArrivals

Fig. 7.5: Single queue (service station)

A number of terms are commonly used when describing the timing behavior of
a queue. Requests may arrive at a queue at arbitrary points in time. The duration
between successive request arrivals is referred to as inter-arrival time. The average
number of requests that arrive per unit of time is referred to as arrival rate, denoted
as λ. Each request requires a certain amount of processing at a server. The time a
server is occupied by a request is called service time. The average number of requests
that can be processed per unit of time at a single server is referred to as service rate,
denoted as μ. The mean service time is then defined as S = 1/μ and specifies the
time a server is occupied while processing a request on average. The time a request
spends waiting in the waiting line is referred to as queueing delay or simply waiting
time. The response time of a request is the total amount of time the request spends
at the queue, that is, the sum of waiting time and service time.

When one request is completed, the next request to be served is selected from the
requests in the queue according to a scheduling strategy. Typical scheduling strate-

5 The term request here is used in the same way as in Section 7.1, that is, it refers loosely to any
unit of work or processing task executed in the service station. Requests in this context are also
commonly referred to as customers, jobs, or transactions.
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gies are First-Come-First-Served (FCFS), where jobs are processed in the order of
their arrival, Processor-Sharing (PS), where jobs are served concurrently each having
an equal share of the total capacity (i.e., round-robin scheduling with infinitesimally
small time slices), or Infinite-Server (IS), where all requests in the queue are sched-
uled immediately as if the queue were to have an infinite number of servers. When
modeling computer systems, a FCFS scheduling strategy is typically used for queues
representing I/O devices, whereas a PS scheduling strategy is commonly used for
queues representing processors (CPUs) and an IS scheduling strategy for queues
representing constant delays (e.g., average network delays).

There is a standard notation to describe a queue, known as Kendall’s nota-
tion (Kendall, 1953). A queue is described by means of 6 parameters A/S/m/B/K/SD
defined in Table 7.2. The distribution components are characterized using short-hand
symbols for the type of distribution, the most common of which are shown in Ta-
ble 7.3. A deterministic distribution means that the respective times are constant. A
general distribution means that the distribution is not known. This is commonly used
for empirical distributions obtained from measurements if the underlying shape of
the distribution is unknown. Parameters B and K are usually considered infinite and
are thus often omitted in queue descriptions.

Table 7.2: Kendall’s notation for a queue (A/S/m/B/K/SD)

Symbol Meaning
A Arrival process (i.e., distribution of the inter-arrival times)
S Service process (i.e., distribution of the service times)
m Number of servers in the service station
B Maximum number of requests that a queue can hold (if missing, B is

assumed to be infinite)
K Maximum number of requests that can arrive at the queue, referred to

as system population (if missing, K is assumed to be infinite)
SD Scheduling strategy (by default FCFS)

Table 7.3: Symbols for types of distributions

Symbol Meaning
M Exponential (Markovian) distribution
D Deterministic distribution (i.e., constant times without variance)
Ek Erlang distribution with parameter k
G or GI General (independent) distribution
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In practice, many systems serve requests with different arrival and service char-
acteristics (e.g., the service rate of read and write requests to a database may be
different). In theory, it would be possible to use multi-modal distributions for such
cases; however, this can complicate the parameterization and solution of queueing
models (Harchol-Balter, 2013, Chapter 21). Instead, multi-class queues are used
where multiple types of requests are distinguished, referred to as request classes
or workload classes. Each workload class represents a set of requests with similar
characteristics, described by their own arrival rate and service rate parameters.

For a given queue i, performance metrics can be considered for a transient point in
time t or for the steady state (i.e., t → ∞). Generally, a system is considered to be in a
steady state if the variables that define its behavior are unchanging in time (Gagniuc,
2017). In the context of queues, it is normally assumed that after a queue has been
in operation for a given amount of time (referred to as transient phase or warm-up
period), it will eventually reach a steady state, in which performance metrics are
stable. In the following, we are interested in the steady-state solution of a queue.
More details on the transient solution of a queue can be found in Bolch, Greiner,
et al. (2006). Typical performance metrics of interest include: the utilization of the
queue, the queue length, the request throughput, and the request response time. The
utilization Ui is the fraction of time in which the queue is busy serving requests. The
queue length Qi specifies the number of requests waiting for service (excluding those
currently in service). The throughput Xi,c (where c stands for workload class c) is
the number of requests of class c leaving the queue per unit of time. If the maximum
number of requests that arrive at a queue is unlimited, the relation λ < μmust hold,
so that the queue is stable (i.e., a steady-state solution exists). The response time Ri,c

of requests from workload class c is defined as

Ri,c = Wi,c + Si,c, (7.35)

where Wi,c is the time a request has to wait in the queue before being served, and Si,c
is the service time of the request. The waiting time Wi,c depends on a number of
parameters including the scheduling strategy and the arrival and service processes
(i.e., the request inter-arrival and service time distributions).

7.2.2 Queueing Networks

A queueing network (QN) consists of two or more queues (service stations) that
are connected together and serve requests sent by clients. Requests are grouped
into classes (workload classes) where each class contains requests that have similar
arrival behavior and processing requirements. The routing of requests in the queueing
network is specified by a probability matrix. Requests of class c departing from
service station i will move to service station j with probability pc,i, j or leave the
network with probability pc,i,out = 1 −∑j pc,i, j . Requests of class c can arrive from
outside the network at service station i with a rate rc,i .
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Figure 7.6 shows an example with three queues, one multi-server queue and
two single server queues. The multi-server queue represents a multicore CPU, and
the two single server queues represent a disk drive and a network, respectively.
The connections between the queues illustrate how requests are routed through the
network of queues. An incoming request, after being processed by the CPU, is routed
either to the disk or to the network. The routes are labeled with probabilities. With
a probability of 0.8, a request coming from the CPU is routed to the disk queue.
With a probability of 0.2, a request coming from the CPU is routed to the queue
representing the network. If a request is completed at the disk or the network queue,
the request either leaves the queueing network with a probability of pleave, or it is
immediately routed back to the CPU queue with a probability of 1−pleave. A request
may visit a queue multiple times while circulating through the queueing network.
A request’s total amount of service time at a queue, added up over all visits to the
queue, is referred to as service demand or resource demand of the request at the
queue.

...

Multicore CPU
Disk

Network

0.2

0.8

Arriving 
requests

Departing 
requests

pleave

1-pleave

Fig. 7.6: Queueing network

A queueing network where the requests come from a source that is external of
the queueing network and leave the network after service completion is referred to
as open. A queueing network where there is no such external source of requests
and there are no departing requests (i.e., the population of requests in the queueing
network remains constant and is equal to the initial population) is referred to as
closed. If a queueing network is open for some workload classes and closed for
others, it is referred to as mixed.

In the context of queueing networks, the notation shown in Table 7.4 is typically
used (similar to the notation we used in Section 7.1 when introducing operational
analysis).
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Table 7.4: Queueing network notation

Symbol Meaning
K Number of queues in the queueing network
C Number of workload classes
λc Average arrival rate of requests of class c in the queueing network

(i.e., average number of requests that arrive per unit of time) (for open
queueing networks)

λi,c Average arrival rate of requests of class c at queue i
μi,c Service rate of requests of class c at queue i
Si,c Mean service time of requests of class c at queue i per visit to the

queue (i.e., average time a request spends receiving service excluding
waiting time)

Xi,c Throughput of requests of class c at queue i (i.e., average number of
service completions for class c per unit of time)

Vi,c Average number of times queue i is visited during the processing of a
request of class c, referred to as visit ratio

X0,c System throughput for class c (i.e., total number of requests of class c
processed per unit of time)

Ui Utilization of queue i (i.e., the fraction of time the queue is busy serving
requests of any class)

Ui,c Utilization of queue i due to requests of class c (i.e., the fraction of
time the queue is busy serving requests of class c)

Di,c Service demand / resource demand (i.e., mean total service time of a
request of class c at queue i over all visits to the queue)

Wi,c Mean time a request of class c has to wait in the waiting line of queue i
before being served

Ri,c Mean response time of requests of class c at queue i (i.e., the average
time it takes to process a request including both the waiting and service
time in the queue)

Ni,c Average number of requests of class c at queue i, either waiting for
service or being served

N0,c Average number of requests of class c in the queueing network, either
waiting for service or being served

Qi Average length of queue i (i.e., average number of requests in the queue
waiting for service)

Qi,c Average number of requests of class c waiting for service at queue i
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Given a queueing network, typical metrics of interest are the response time and
throughput for each workload class and the utilization of each queue. In order to
analyze a queueing network quantitatively, the queueing network’s workload needs
to be specified. For each workload class, the workload intensity and the resource
demands for each visited queue have to be specified. How the workload intensity
is characterized depends on whether it is a closed workload or an open workload.
A closed workload is characterized by the number of requests; an open workload
is characterized by the inter-arrival time of requests. A queueing network is said to
be in steady state (or operational equilibrium) if the number of requests arriving at
the queueing network per unit of time is equal to the number of requests departing
from the queueing network, that is, the arrival rate is equal to the throughput. Closed
formulas for the response times of requests are not easy to derive since they depend
(among others) on the shape of the involved distributions (i.e., the inter-arrival time
and service time distributions for each queue).

The solution of a queueing network with K service stations and C workload
classes is based on deriving the steady-state probabilities π(N1,N2, ...,NK), where
Ni = (n1, n2, ..., nC ) is a vector composed of the number of requests of each workload
class c at service station i. Calculating the steady-state probabilities for a general
queueing network requires construction of the complete state space. This can be a
compute and memory-intensive task and suffers from the problem of state space
explosion with increasing numbers of service stations and requests. However, the
construction of the complete state space is not required for a special class of queueing
networks called product-form queueing networks.

Product-form queueing networks have a special structure that allows one to com-
pute the steady-state probabilities for the queueing network from the respective
steady-state probabilities for the individual service stations using the following equa-
tion:

π(N1,N2, ...,NK) =
1
G

[π(N1) · π(N2) · . . . · π(NK)] , (7.36)

where G is a normalizing constant (Bolch, Greiner, et al., 2006, p. 281). Thus,
a solution of the queueing network can be obtained by analyzing the steady-state
probabilities of each service station independently. Kelly showed that every queueing
network with quasi-reversible queues and Markovian routing has a product-form
solution (Kelly, 1975, 1976). Quasi-reversibility means that “the current state, the
past departures, and the future arrivals are mutually independent” (Balsamo, 2000).
Markovian routing means that the routing of requests does not depend on the current
state of the queueing network.

The BCMP theorem (Baskett et al., 1975) showed that this property holds for the
following types of service stations:

1. M/M/m with FCFS scheduling assuming that the service rate does not depend
on the workload class,

2. M/G/1 with PS scheduling,
3. M/G/∞ with IS scheduling, and
4. M/G/1 with LCFS scheduling with preemption.
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The service rate distribution in cases (2), (3), and (4) are required to have rational
Laplace transforms. In practice, this is no limitation since any exponential, hyperex-
ponential, or hypoexponential distribution fulfills this requirement, and all other types
of distributions can be approximated by a combination of these distributions (Cox,
1955).

Furthermore, Baskett et al. (1975) showed that the product-form property holds
for these scheduling strategies even with certain forms of state-dependent service
rates. Among others, the service rate may depend on the number of requests at a
service station. Thus, queues with multiple servers are also allowed for PS and LCFS
scheduling.

7.2.3 Operational Laws

The operational laws introduced in Section 7.1 provide a quick and simple way to
determine certain average performance metrics of a queue. These laws are indepen-
dent of the arrival and service processes, or the scheduling strategy. Therefore, they
can be applied both to a single queue and to an entire queueing network. The only
assumption is that the considered queue (or queueing network) is in steady state
(operational equilibrium).

Consider a multi-server queue i with mi servers. The most fundamental law in
queueing theory is Little’s law, which applied to queue i states that the average
number of requests Ni,c of workload class c at queue i is equal to the product of the
request arrival rate λc and the average time Ri,c requests spent in the queue (i.e., the
response time); that is,

Ni,c = λc · Ri,c . (7.37)

The utilization law, applied in the context of queue i, states that

Ui,c =
Xi,c · Si,c

mi
, (7.38)

where Ui,c is the utilization of the queue due to requests of class c, Si,c is the service
time, and Xi,c is the throughput for requests of class c.

Finally, the service demand law relates the service demand Di,c of requests from
class c with the utilization Ui,c and the system throughput X0,c for class c:

Di,c =
mi ·Ui,c

X0,c
. (7.39)

7.2.4 Response Time Equations

The response time Ri,c for M/G/m queues with PS or preemptive LCFS schedul-
ing, as well as for M/M/m queues with class-independent service rates and FCFS
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scheduling, is given by

Ri,c = Di,c

(
1 +

1
mi
· PBi

1 −Ui

)
, (7.40)

where PBi is the probability that all mi servers of the queue are busy and an incoming
request has to wait in the waiting line. PBi can be calculated using the Erlang-C
formula:

PBi =
(miUi)mi

mi!(1 −Ui)
· πi,0

with πi,0 =
⎡⎢⎢⎢⎢⎣
mi−1∑
k=0

(miUi)k

k!
+

(miUi)mi

mi!
1

1 −Ui

⎤⎥⎥⎥⎥⎦
−1

.

(7.41)

If a queue has IS scheduling strategy, a request never has to wait for service and
the response time simplifies to

Ri,c = Di,c . (7.42)

For single server queues (i.e., mi = 1), the busy probability PBi is equal to the
utilization Ui . As a result, Equation (7.40) can be simplified to

Ri,c =
Di,c

1 −Ui
. (7.43)

We refer to Bolch, Greiner, et al. (2006, p. 251) for the derivation and mathematical
proof of the above equations.

The previous equations are not valid for M/M/m service stations with FCFS
scheduling and service rates depending on the workload class. The response time
of such service stations can only be approximated. Franks (2000) compared the
accuracy of different approximations and proposed the following one:

Ri,c = Di,c +
PBi

mi

C∑
s=1

Qi,c · Di,c, (7.44)

where Qi,c is the queue length of requests of workload class c at service station i.

7.2.5 Solution Techniques for Queueing Networks

Different solution techniques for queueing networks have been developed in the last
decades. They can be broadly classified into simulation and analytic techniques.
Discrete event simulation can be used to analyze arbitrarily complex queueing net-
works. However, it often is necessary to simulate a queueing network for a long time
in order to obtain sufficiently accurate results.

Analytic techniques can provide exact solutions of a queueing network, avoid-
ing the overhead of simulation. There are state-space and non-state-space tech-
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niques (Bolch, Greiner, et al., 2006). State-space techniques rely on the generation
of the complete underlying state space of a queueing network, limiting their scala-
bility with increasing numbers of requests, workload classes, and service stations.
If certain assumptions are fulfilled, non-state-space techniques can be used instead.
Given a product-form queueing network with an open workload, we can apply the
equations presented in Section 7.2.4 to directly calculate performance metrics for the
individual queues. Given a product-form queueing network with a closed workload,
the calculation of the normalizing constant G in Equation (7.36) is nontrivial. Mean
Value Analysis (MVA) (Bolch, Greiner, et al., 2006) is a recursive algorithm to
calculate the queue lengths in closed product-form queueing networks, avoiding the
direct determination of the normalizing constant G.

Techniques to solve queueing networks are supported by various tools, such
as SHARPE (Hirel et al., 2000; Sahner and Trivedi, 1987), JMT (Bertoli et al.,
2009), JINQS (Field, 2006), SPEED (Smith and Williams, 1997), and queueing-
tool (Jordon, 2014).

Queueing networks provide a powerful method for modeling contention due to
processing resources, that is, hardware contention and scheduling strategies. For
certain classes of queueing networks, there are efficient analysis methods available.
However, queueing networks are not suitable for representing blocking behavior,
synchronization of processes, simultaneous resource possession, or asynchronous
processing (Kounev, 2005). There are extensions of queueing networks such as
Extended Queueing Networks (EQNs) (Bolch, Greiner, et al., 2006) that provide
some support to mitigate the mentioned drawbacks.

7.2.6 Case Study

Now that we have introduced the basics of queueing network models, we present
a case study—based on Kounev and Buchmann (2003)—showing how queueing
networks can be used to model and predict the performance of a distributed soft-
ware system. Imagine the following hypothetical scenario: A company is about to
automate its internal and external business operations with the help of e-business
technology. The company chooses to employ the Java EE platform6, and it devel-
ops an application for supporting its order-inventory, supply-chain, and manufac-
turing operations. Assume that this application is the one provided by the SPEC-
jAppServer benchmark.7 SPECjAppServer models businesses using four domains:
(1) customer domain—dealing with customer orders and interactions; (2) manufac-
turing domain—performing “just-in-time” manufacturing operations; (3) supplier
domain—handling interactions with external suppliers; and (4) corporate domain—
managing all customer, product, and supplier information. Figure 7.7 illustrates these
domains and gives some examples of typical transactions run in each of them.

6 Java EE platform: https://www.oracle.com/java/technologies/java-ee-glance.html
7 SPECjAppServer benchmark: https://www.spec.org/jAppServer

https://www.spec.org/jAppServer
https://www.oracle.com/java/technologies/java-ee-glance.html
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Fig. 7.7: SPECjAppServer business domains

The customer domain models customer interactions using an order-entry applica-
tion, which provides some typical online ordering functionality. Orders can be placed
by individual customers as well as by distributors. Orders placed by distributors are
called large orders.

The manufacturing domain models the activity of production lines in a manufac-
turing plant. Products manufactured by the plant are called widgets. There are two
types of production lines, namely planned lines and large order lines. Planned lines
run on schedule and produce a predefined number of widgets. Large order lines run
only when a large order is received in the customer domain. The unit of work in the
manufacturing domain is a work order. Each work order is for a specific quantity
of a particular type of widget. When a work order is created, the bill of materials
for the corresponding type of widget is retrieved and the required parts are taken
out of inventory. As the widgets move through the assembly line, the work order
status is updated to reflect progress. Once the work order is complete, it is marked as
completed and the inventory is updated. When the inventory of parts gets depleted,
suppliers need to be located and purchase orders (POs) need to be sent out. This is
done by contacting the supplier domain, which is responsible for interactions with
external suppliers.

Assume that the company plans to deploy the application in the deployment
environment depicted in Figure 7.8. This environment uses a cluster of WebLogic
servers (WLS) as a Java EE container and an Oracle database server (DBS) for
persistence. We assume that all machines in the WLS cluster are identical.

Before putting the application into production, the company conducts a capacity
planning study in order to come up with an adequate sizing and configuration of
the deployment environment. More specifically, the company needs to answer the
following questions:

CUSTOMER DOMAIN

Order Entry Application

      - Place Order
      - Change Order
      - Get Order Status
      - Get Customer Status

CORPORATE DOMAIN

Customer, Supplier and
Parts Information

   - Register Customer
   - Determine Discount

- Check Credit

MANUFACTURING DOMAIN

Manufacturing Application

 - Schedule Work Order
     - Update Work Order
     - Complete Work Order
     - Create Large Order

SUPPLIER DOMAIN

Interactions with
Suppliers

  - Select Supplier
  - Send Purchase Order
  - Deliver Purchase Order
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Fig. 7.8: Deployment environment

• How many WebLogic servers would be needed to guarantee adequate performance
under the expected workload?

• For a given number of WebLogic servers, what level of performance would the
system provide? What would be the average transaction throughput and response
time? What would be the utilization (CPU/disk utilization) of the WebLogic
servers and the database server?

• Will the capacity of the database server suffice to handle the incoming load?
• Does the system scale or are there any other potential system bottlenecks?

These issues can be approached with the help of queueing network-based perfor-
mance models.

7.2.6.1 Workload Characterization

The first step in the capacity planning process is to describe the workload of the
system under study in a qualitative and quantitative manner. This is called workload
characterization (Menascé and Almeida, 1998), and it typically includes four steps:

1. Describe the types of requests that are processed by the system (i.e., the request
classes),

2. Identify the hardware and software resources used by each request class,
3. Measure the total amount of service time for each request class at each resource

(i.e., the service demand), and
4. Specify the number of requests of each class the system will be exposed to (i.e.,

the workload intensity).

Database Server

...

Oracle 9i Database Server
 Hosting the SPECjAS DB

    2 x AMD XP 2000+ CPUs
    2 GB RAM, SuSE Linux 8

WebLogic Server 7 Cluster
  Each node equipped with:

     AMD XP 2000+ CPU
     1 GB RAM, SuSE Linux 8

100 Mbit
LAN

Client PC

Supplier Emulator

Supplier Emulator Machine
   WebLogic Server 7

      2 x AMD XP2000+ CPUs
      2 GB RAM, SuSE Linux 8

Client Emulator Machine
     Running SPECjAS Driver

  AMD XP 1700+ CPU
     1GB RAM, RedHat Linux 8
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As already discussed, the SPECjAppServer workload is made up of two major
components: (1) the order-entry application in the customer domain and (2) the
manufacturing application in the manufacturing domain. Recall that the order-entry
application is running the following four transaction types:

1. NewOrder: places a new order in the system,
2. ChangeOrder: modifies an existing order,
3. OrderStatus: retrieves the status of a given order, and
4. CustStatus: lists all orders of a given customer.

We map each of them to a separate request class in our workload model. The
manufacturing application, on the other hand, is running production lines. The main
unit of work there is a work order. Each work order produces a specific quantity of
a particular type of widget. As already mentioned, there are two types of production
lines: planned lines and large order lines. While planned lines run on a predefined
schedule, large order lines run only when a large order arrives in the customer do-
main. Each large order results in a separate work order. During the processing of
work orders, multiple transactions are executed in the manufacturing domain (i.e.,
scheduleWorkOrder, updateWorkOrder, and completeWorkOrder). Each work or-
der moves along three virtual stations, which represent distinct operations in the
manufacturing flow. In order to simulate activity at the stations, the manufacturing
application waits for a designated time at each station. One way to model the man-
ufacturing workload would be to define a separate request class for each transaction
run during the processing of work orders. However, this would lead to an overly com-
plex model and would limit the range of analysis techniques that would be applicable
for its solution. Second, it would not be of much benefit, since after all, what most
interests us is the rate at which work orders are processed and not the performance
metrics of the individual work order-related transactions. Therefore, we model the
manufacturing workload only at the level of work orders. We define a single request
class WorkOrder, which represents a request for processing a work order. This keeps
our model simple, and as will be seen later, it is enough to provide us with sufficient
information about the behavior of the manufacturing application.

Altogether, we end up with five request classes: NewOrder, ChangeOrder, Order-
Status, CustStatus, and WorkOrder. The following resources are used during their
processing:

• The CPU of a WebLogic server (WLS-CPU),
• The local area network (LAN),
• The CPUs of the database server (DBS-CPU), and
• The disk drives of the database server (DBS-I/O).

In order to determine the service demands at these resources, we conducted a
separate experiment for each of the five request classes. In each case, we deployed
the benchmark in a configuration with a single WebLogic server and then injected
requests of the respective class into the system. During the experiment, we monitored
the system resources and measured the time requests spent at each resource during
their processing. For the database server, we used the Oracle 9i Intelligent Agent,
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which provides exhaustive information about CPU consumption and I/O wait times.
For the application server, we monitored the CPU utilization using operating system
tools; we then used the service demand law (D = U/X) to derive the CPU service
demand (see Section 7.2.3).

We decided we could safely ignore network service demands, since all commu-
nication was taking place over a 100 MBit LAN, and communication times were
negligible. Figure 7.9 reports the service demand measurements for the five request
classes in our workload model.

0 10 20 30 40 50 60 70

WorkOrder

CustStatus

OrderStatus

ChangeOrder

NewOrder

Service Demand (ms)

WLS-CPU DBS-CPU DBS-I/O

Fig. 7.9: Workload service demands

Database I/O service demands are much lower than CPU service demands. This
stems from the fact that data is cached in the database buffer, and disks are usually
accessed only when updating or inserting new data. However, even in this case, the
I/O overhead is minimal, since the only thing that is done is to flush the database
log buffer, which is performed with sequential I/O accesses. Here we would like to
point out that the benchmark uses relatively small data volumes for the workload
intensities generated. This results in data contention (Kounev and Buchmann, 2002),
and as we will see later, it causes some difficulties in predicting transaction response
times. Once we know the service demands of the different request classes, we
proceed with the last step in workload characterization, which aims to quantify
the workload intensity. For each request class, we must specify the rates at which
requests arrive. We should also be able to vary these rates, so that we can consider
different scenarios. To this end, we modified the SPECjAppServer driver to allow
more flexibility in configuring the intensity of the workload generated. Specifically,
the new driver allows us to set the number of concurrent order entry clients simulated
as well as their average think time, that is, the time they “think” after receiving a
response from the system, before they send the next request. In addition to this, we
can specify the number of planned production lines run in the manufacturing domain
and the time they wait after processing a work order before starting a new one. In



174 7 Operational Analysis and Basic Queueing Models

this way, we can precisely define the workload intensity and transaction mix. We will
later study in detail several scenarios under different transaction mixes and workload
intensities.

7.2.6.2 Building a Performance Model

We now build a queueing network model of our SPECjAppServer deployment en-
vironment. We first define the model in a general fashion and then customize it
to our concrete workload scenarios. We use a closed model, which means that for
each instance of the model, the number of concurrent clients sending requests to the
system is fixed. Figure 7.10 shows a high-level view of our queueing network model.

Fig. 7.10: Queueing network model of the system

In the following, we briefly describe the queues used:

C : Infinite-Server (IS) queue (delay resource) used to model the client ma-
chine, which runs the SPECjAppServer driver and emulates virtual clients
sending requests to the system. The service time of order entry requests
at this queue is equal to the average client think time; the service time of
WorkOrder requests is equal to the average time a production line waits
after processing a work order before starting a new one. Note that times
spent on this queue are not part of system response times.

A1..AN : Processor-Sharing (PS) queues used to model the CPUs of the N WebLogic
servers.

B1, B2 : Processor-Sharing (PS) queues used to model the two CPUs of the database
server.
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D : First-Come-First-Served (FCFS) queue used to model the disk subsystem
(made up of a single 100 GB disk drive) of the database server.

L : Infinite-Server (IS) queue (delay resource) used to model the virtual pro-
duction line stations in the manufacturing domain. Only WorkOrder re-
quests visit this queue. Their service time at the queue corresponds to the
average delay at the production line stations simulated by the manufactur-
ing application during work order processing.

The model is a closed queueing network model with the five classes of re-
quests (jobs) defined in the previous section. The behavior of requests in the model
is defined by specifying their respective routing probabilities pi and service demands
at each queue they visit. We discussed the service demands in the previous section.
To set the routing probabilities, we examine the life cycle of client requests in the
queueing network. Every request is initially at the client queue C, where it waits for
a user-specified think time. After the think time elapses, the request is routed to a
randomly chosen queue Ai , where it queues to receive service at a WebLogic server
CPU.

We assume that requests are evenly distributed among the N WebLogic servers;
that is, each server is chosen with probability 1/N . Processing at the CPU may
be interrupted multiple times if the request requires some database accesses. Each
time this happens, the request is routed to the database server, where it queues for
service at one of the two CPU queues B1 or B2 (each chosen equally likely, so
that p3 = p4 = 0.5). Processing at the database CPUs may be interrupted in case I/O
accesses are needed. For each I/O access, the request is sent to the disk subsystem
queue D; after receiving service there, it is routed back to the database CPUs. This
may be repeated multiple times, depending on the routing probabilities p5 and p6.

Having completed their service at the database server, requests are sent back to
the application server. Requests may visit the database server multiple times during
their processing, depending on the routing probabilities p1 and p2. After completing
service at the application server, requests are sent back to the client queue C. Order
entry requests are sent directly to the client queue (for them, p8 = 1 and p7 = 0),
while WorkOrder requests are routed through queue L (for them, p8 = 0 and p7 = 1),
where they are additionally delayed for 1 s. This delay corresponds to the 1 s delay at
the three production line stations imposed by the manufacturing application during
work order processing.

In order to set routing probabilities p1, p2, p5, and p6, we need to know how
many times a request visits the database server during its processing and, for each
visit, how many times, I/O access is needed. Since we know only the total service
demands over all visits to the database, we assume that requests visit the database just
once and need a single I/O access during this visit. This allows us to drop routing
probabilities p1, p2, p5, and p6 and leads us to the simplified model depicted in
Figure 7.11.



176 7 Operational Analysis and Basic Queueing Models

Fig. 7.11: Simplified QN model of the system

The following input parameters need to be supplied before the model can be
analyzed:

• Number of order entry clients (NewOrder, ChangeOrder, OrderStatus, and Cust-
Status),

• Average think time of order entry clients—Customer Think Time,
• Number of planned production lines generating WorkOrder requests,
• Average time production lines wait after processing a work order, before starting

a new one—Manufacturing (Mfg) Think Time, and
• Service demands of the five request classes at queues Ai , Bj , and D.

In our study, we consider two types of deployment scenarios. In the first one, large
order lines in the manufacturing domain are turned off. In the second one, they are
running as defined in the benchmark workload. The reason for this separation is that
large order lines introduce some asynchronous processing, which is generally hard
to model using queueing networks. We start with the simpler case where we do not
have such processing, and we then show how large order lines can be integrated into
the model.

7.2.6.3 Model Analysis and Validation

We now proceed to analyze several different instances of the model, and we then
validate them by comparing results from the analysis with measured data. We first
consider the case without large order lines and study the system in three scenarios
representing low, moderate, and heavy load, respectively. In each case, we exam-
ine deployments with different number of application servers—from one to nine.
Table 7.5 summarizes the input parameters for the three scenarios we consider.
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Table 7.5: Model input parameters for the three scenarios

Parameter Low Moderate Heavy
NewOrder clients 30 50 100

ChangeOrder clients 10 40 50

OrderStatus clients 50 100 150

CustStatus clients 40 70 50

Planned lines 50 100 200

Customer think time 2 s 2 s 3 s

Mfg think time 3 s 3 s 5 s

We employed the PEPSY-QNS tool (Bolch and Kirschnick, 1994), which supports
a wide range of solution methods (over 30) for product-form and non-product-
form queueing networks. Both exact and approximate methods are provided, which
are applicable to models of considerable size and complexity. For the most part,
we have applied the multisum method (Bolch, 1989) for solution of the queueing
network models in this case study. However, to ensure plausibility of the results, we
cross verified them with results obtained from other methods such as bol_aky and
num_app (Bolch and Kirschnick, 1994). In all cases, the difference was negligible.
Low Load Scenario Table 7.6 summarizes the results we obtained for our first
scenario. We studied two different configurations—the first one with one appli-
cation server and the second one with two application servers. The table reports
throughput (X) and response time (R) for the five request classes as well as CPU uti-
lization (U) of the application server and the database server. Results obtained from
the model analysis are compared against results obtained through measurements,
and the modeling error is reported.

As we can see from the table, while throughput and utilization results are ex-
tremely accurate, this does not hold to this extent for response time results. This is
because when we run a transaction mix, as opposed to a single transaction, some
additional delays are incurred that are not captured by the model. For example, delays
result from contention for data access (database locks, latches), processes, threads,
database connections, and so on. The latter is often referred to as software contention,
in contrast to hardware contention (contention for CPU time, disk access, and other
hardware resources). Our model captures the hardware contention aspects of sys-
tem behavior and does not represent software contention aspects. While software
contention may not always have a big impact on transaction throughput and CPU
utilization, it usually does have a direct impact on transaction response time; there-
fore, the measured response times are higher than the ones obtained from the model.
In Kounev (2006), some techniques were presented for integrating both hardware
and software contention aspects into the same model.
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Table 7.6: Analysis results for the first scenario—low load

One application server Two application servers
Metric Model Measured Error Model Measured Error
NewOrder throughput 14.59 14.37 1.5% 14.72 14.49 1.6%

ChangeOrder throughput 4.85 4.76 1.9% 4.90 4.82 1.7%

OrderStatus throughput 24.84 24.76 0.3% 24.89 24.88 0.0%

CustStatus throughput 19.89 19.85 0.2% 19.92 19.99 0.4%

WorkOrder throughput 12.11 12.19 0.7% 12.20 12.02 1.5%

NewOrder response time 56 ms 68 ms 17.6% 37 ms 47 ms 21.3%

ChangeOrder resp. time 58 ms 67 ms 13.4% 38 ms 46 ms 17.4%

OrderStatus response time 12 ms 16 ms 25.0% 8 ms 10 ms 20.0%

CustStatus response time 11 ms 17 ms 35.2% 7 ms 10 ms 30.0%

WorkOrder response time 1,127 ms 1,141 ms 1.2% 1,092 ms 1,103 ms 1.0%

WebLogic server CPU util. 66% 70% 5.7% 33% 37% 10.8%

Database server CPU util. 36% 40% 10% 36% 38% 5.2%

From Table 7.6, we see that the response time error for requests with very low
service demands (e.g., OrderStatus and CustStatus) is much higher than the average
error. This is because the processing times for such requests are very low (around
10 ms) and the additional delays from software contention, while not that high as
absolute values, are high relative to the overall response times. The results show that
the higher the service demand for a request type, the lower the response time error.
Indeed, the requests with the highest service demand (WorkOrder) always have the
lowest response time error.
Moderate Load Scenario In this scenario, we have 260 concurrent clients interact-
ing with the system and 100 planned production lines running in the manufacturing
domain. This is twice as much compared to the previous scenario. We study two
deployments—the first with three application servers and the second with six. Ta-
ble 7.7 summarizes the results from the model analysis. Again, we obtain very
accurate results for throughput and utilization, and we also obtain accurate results
for response time. The response time error does not exceed 35%, which is considered
acceptable in most capacity planning studies (Menascé et al., 2004).
Heavy Load Scenario In this scenario, we have 350 concurrent clients and 200
planned production lines in total. We consider three configurations—with four, six,
and nine application servers, respectively. However, we slightly increase the think
times in order to make sure that our single machine database server is able to handle
the load. Table 7.8 summarizes the results for this scenario. For models of this
size, the available algorithms do not produce reliable results for response time, and
therefore, we only consider throughput and utilization in this scenario.
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Table 7.7: Analysis results for the second scenario—moderate load

Three application servers Six application servers
Metric Model Measured Error Model Measured Error
NewOrder throughput 24.21 24.08 0.5% 24.29 24.01 1.2%

ChangeOrder throughput 19.36 18.77 3.1% 19.43 19.32 0.6%

OrderStatus throughput 49.63 49.48 0.3% 49.66 49.01 1.3%

CustStatus throughput 34.77 34.24 1.5% 34.80 34.58 0.6%

WorkOrder throughput 23.95 23.99 0.2% 24.02 24.03 0.0%

NewOrder response time 65 ms 75 ms 13.3% 58 ms 68 ms 14.7%

ChangeOrder resp. time 66 ms 73 ms 9.6% 58 ms 70 ms 17.1%

OrderStatus response time 15 ms 20 ms 25.0% 13 ms 18 ms 27.8%

CustStatus response time 13 ms 20 ms 35.0% 11 ms 17 ms 35.3%

WorkOrder response time 1,175 ms 1,164 ms 0.9% 1,163 ms 1,162 ms 0.0%

WebLogic server CPU util. 46% 49% 6.1% 23% 25% 8.0%

Database server CPU util. 74% 76% 2.6% 73% 78% 6.4%

Table 7.8: Analysis results for the third scenario—heavy load

Four app. servers Six app. servers Nine app. servers
Metric Model Msrd. Error Model Msrd. Error Model Msrd. Error
NewOrder
throughput

32.19 32.29 0.3% 32.22 32.66 1.3% 32.24 32.48 0.7%

ChangeOrder
throughput

16.10 15.96 0.9% 16.11 16.19 0.5% 16.12 16.18 0.4%

OrderStatus
throughput

49.59 48.92 1.4% 49.60 49.21 0.8% 49.61 49.28 0.7%

CustStatus
throughput

16.55 16.25 1.8% 16.55 16.24 1.9% 16.55 16.46 0.5%

WorkOrder
throughput

31.69 31.64 0.2% 31.72 32.08 1.1% 31.73 32.30 1.8%

WebLogic
server CPU util.

40% 42% 4.8% 26% 29% 10.3% 18% 20% 10.0%

Database server
CPU util.

87% 89% 2.2% 88% 91% 3.3% 88% 91% 3.3%

Large Order Lines Scenario We now consider the case when large order lines in
the manufacturing domain are enabled. The latter are activated upon arrival of large
orders in the customer domain. Each large order generates a separate work order,
which is processed asynchronously at one of the large order lines. As already men-
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tioned, this poses a difficulty since queueing networks provide limited possibilities
for modeling this type of asynchronous processing. As shown in Kounev (2006),
other state-space-based models such as queueing Petri nets (QPNs) are much more
powerful in such situations.

Since large order lines are always triggered by NewOrder transactions (for large
orders), we can add the load they produce to the service demands of NewOrder
requests. To this end, we rerun the NewOrder experiments with the large order lines
turned on. The additional load leads to higher utilization of system resources, and
it impacts the measured NewOrder service demands (WLS-CPU: 23.49 ms, DBS-
CPU: 21.61 ms, DBS-I/O: 1.87 ms). While this incorporates the large order line
activity into our model, it changes the semantics of NewOrder jobs. In addition
to the NewOrder transaction load, they now also include the load caused by large
order lines. Thus, performance metrics (throughput, response time) for NewOrder
requests no longer correspond to the respective metrics of the NewOrder transaction.
Therefore, we can no longer quantify the performance of the NewOrder transaction
on itself. Nevertheless, we can still analyze the performance of other transactions
and gain a picture of the overall system behavior. Table 7.9 summarizes the results
for the three scenarios with large order lines enabled. For lack of space, this time
we look only at one configuration per scenario—the first one with one application
server, the second one with three, and the third one with nine.

Table 7.9: Analysis results for the scenario with large order lines

Low/1-AS Moderate/3-AS Heavy/9-AS
Metric Model Error Model Error Model Error
ChangeOrder throughput 4.79 6.4% 19.09 3.5% 15.31 4.5%

OrderStatus throughput 24.77 2.9% 49.46 2.3% 48.96 3.1%

CustStatus throughput 19.83 2.4% 34.67 2.1% 16.37 1.9%

WorkOrder throughput 11.96 5.7% 23.43 2.6% 29.19 1.2%

WebLogic server CPU util. 80% 0.0% 53% 1.9% 20% 0.0%

Database server CPU util. 43% 2.4% 84% 2.4% 96% 1.0%

7.2.7 Conclusions from the Analysis

We used a queueing network model to predict the system performance in several
different configurations, varying the workload intensity and the number of applica-
tion servers available. The results enable us to give answers to the initial capacity
planning questions. For each configuration, we obtained approximations for the av-
erage request throughput, the response time, and the server utilization. Depending
on the Service-Level Agreements (SLAs) and the expected workload intensity, we
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Fig. 7.12: Server utilization in different scenarios

can now determine how many application servers we need in order to guarantee
adequate performance. We can also see, for each configuration, which component is
mostly utilized and thus could become a potential bottleneck (see Figure 7.12). In
the first scenario, we saw that by using a single application server, the latter could
easily turn into a bottleneck, since its utilization would be twice as high as that of
the database server. The problem is solved by adding an extra application server. In
the second and third scenarios, we saw that with more than three application servers,
as we increase the load, the database CPU utilization approaches 90%, while the
application servers remain less than 50% utilized. This clearly indicates that, in this
case, our database server is the bottleneck.

7.3 Concluding Remarks

In this chapter, we introduced some basic quantitative relationships between the
most common performance metrics. We showed how these relationships, referred
to as operational laws, can be applied to evaluate a system’s performance based on
measured or known data. This approach, known as operational analysis, can be seen
as part of queueing theory, which provides general methods to analyze the queueing
behavior at one or more service stations. Having looked at operational analysis, we
provided a brief introduction to the basic notation and principles of queueing theory.
While queueing theory is used in many different domains, from manufacturing to
logistics, in this chapter, we focused on using queueing theory for performance eval-
uation of computer systems. Nevertheless, the introduced concepts and mathematical
models are relevant for any processing system where the assumptions discussed in
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the beginning of the chapter hold. The chapter was wrapped up with a case study,
showing how to build a queueing model of a distributed software system and use it to
predict the system performance for different workload and configuration scenarios.
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Chapter 8
Workloads

“It’s not so much how busy you are, but why you are busy.
The bee is praised, the mosquito is swatted.”
—Marie O’Conner

A workload is one of the cornerstones of any benchmark. It is the part that is
actively executed on a system under test (SUT), triggering the system behavior that
is then measured based on a specified measurement methodology and quantified
using a set of defined metrics. The process by which a benchmark schedules, places,
and executes its workload is referred to as workload generation. In this chapter, we
consider workloads in the context of workload generation. To facilitate workload
generation, we must answer questions such as: “What parts of a workload must be
implemented and specified for a benchmark in order to be able to generate it?” and
“What are the primary decision criteria when deciding on the design of a workload?”

The chapter starts with a classification of the different workload facets and ar-
tifacts. We introduce the distinction between executable and non-executable parts
of a workload as well as the distinction between natural and artificial workloads.
The executable parts are then discussed in detail, including natural benchmarks,
application workloads, and synthetic workloads. Next, the non-executable parts are
discussed, distinguishing between workload traces and workload descriptions. In the
rest of the chapter, we introduce the different types of workload descriptions that can
be used for batch workloads and transactional workloads, as well as for open and
closed workloads. The challenges of generating steady-state workloads and work-
loads with varying arrival rates are discussed. Finally, the chapter concludes with a
brief introduction of system-metric-based workload descriptions.

8.1 Workload Facets and Artifacts

In the context of workload generation, we distinguish between executable and non-
executable parts of a workload:
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• Executable parts: The executable parts of a workload comprise the actual tasks
(i.e., code) being executed on the system, often structured into executable work
units. The executable parts can emulate a real-world application or they can be
designed synthetically to elicit certain system behavior (e.g., get the system in a
certain power-saving state in order to analyze its behavior in that state).

• Non-executable parts: The non-executable parts of a workload govern how and
when the executable parts are to be run in order to ensure that the workload is ex-
ecuted in a well-defined and reproducible manner. To this end, methods and rules
for workload execution are needed. These rules govern the workload’s properties
and configuration. For example, they define if work units are executed repeatedly
and, if yes, how often and in what intervals they should be repeated. They may
also define a sequence of different work units or work unit configurations or may
be defined in a way as to emulate some user behavior.

Workloads can also be categorized into one of the two categories—natural work-
loads and artificial workloads (Menascé, V. A. Almeida, et al., 2004)—sometimes
referred to as workload models in the literature. Natural workloads are constructed
from real workloads of the system under study or from execution traces of real work-
loads. In the former case, they are called natural benchmarks; in the latter case, they
are called workload traces. A natural benchmark is a set of programs extracted from
the real workload such that they represent the major characteristics of the latter. A
workload trace is a chronological sequence of records describing specific events that
were observed during execution of the real workload. For example, in a three-tier
server architecture, the logs collected by the servers at each tier (web servers, appli-
cation servers, and database servers) can be used as workload traces. While traces
usually exhibit good representativeness, they have the drawback that they normally
consist of large amounts of data and do not provide a compact representation of the
workload.

Unlike natural workloads, artificial workloads are not constructed using basic
components of real workloads as building blocks; however, they may try to mimic
real workloads. Artificial workloads can be classified into synthetic workloads, ap-
plication workloads, and workload descriptions. This classification is in line with
the classification of benchmark types that we introduced in Chapter 1, Section 1.3.
Synthetic workloads are artificial programs designed to execute mixes of operations
carefully chosen to elicit certain system behavior and/or to match the relative mix of
operations observed in some class of applications. They usually do no real (useful)
work. In contrast to this, application workloads are implementations of complete
applications that do useful work. They are normally specifically designed to be rep-
resentative of a given class of real-life applications. Finally, workload descriptions
are specifications typically comprised of a set of parameters that specify how the
executable parts of the workload are to be executed. Such specifications can be con-
crete step-by-step instructions with parameters and actions for a specific workload.
However, they may also be very generic and abstract based on mathematical models
such as Markov chains or other stochastic models (Bolch et al., 2006). Depending on
the type of workload, different parameters may be used, such as transaction/request
types, times between successive request arrivals (inter-arrival times), transaction
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execution rates, and so forth. Figure 8.1 illustrates the relationships between the
different workload facets and artifacts.

Fig. 8.1: Classification of workload facets and artifacts

In general, taken together, the executable and non-executable parts of a workload
must satisfy the quality criteria for benchmarks described in Chapter 1 (Section 1.5):
relevance, reproducibility, fairness, and verifiability (usability being a bit less rele-
vant to the workload itself).

8.2 Executable Parts of a Workload

The executable parts of a workload comprise the tasks (i.e., software components)
that are being executed on the SUT. The executable components can be a part of a
real-world application, components designed to mimic a real-world application, or
completely synthetic components designed to elicit and test certain system behavior.

Common examples for natural executable workload components can be found in
compression benchmarks. For example, regular compression libraries and tools, such
as zip and tar, can be run as workloads in larger benchmark suites. Of course, these
are not specialized benchmark workloads, but regular compression tools originally
created for use by end users. Similarly, in the gaming domain, games are often
utilized as natural workloads to test the performance of desktop computers. Again,
these workloads have not been created specifically for use in benchmarking, but
instead as games to be played by end users.

However, a workload is not completely specified by deciding to run a certain
natural benchmark, for example, a zip compression tool. In the context of the com-
pression example, the obvious question is: “What data should be compressed?”
Similarly, a game or any natural workload usually used interactively by a human
user must specify the user input that should be used as part of the benchmarking
workload. This is where the non-executable parts of the workload come in. They
specify these properties and configurations, which sometimes may be very specific
to the executable parts of the workload itself.

Application workloads are specifically created as benchmarking workloads and
are thus artificial in nature. Yet, they attempt to mimic real-world applications in
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terms of the operations they perform. There are multiple reasons why artificial ap-
plication workloads are often employed instead of simply using natural workloads.
The primary reasons usually have to do with the two benchmark quality criteria of
reproducibility and fairness. Natural workloads, or rather real-world applications,
are usually not designed with reproducibility regarding performance in mind (nor
reproducibility regarding any other property that may be target of benchmarking).
Specifying and configuring such applications in a way to be run as a reproducible
workload can be very difficult, and it may be easier to simply create an artificial
application workload instead. In addition, natural workloads may not be very fair.
Real-world applications are often heavily optimized towards target hardware and
software stacks (e.g., operating system). In-house applications, developed by a com-
pany for use on their own devices, have potential for a lot of optimization to achieve
the best possible performance on these devices. However, benchmarks are usually
designed for comparison of different hardware or software stacks. Running a heav-
ily optimized application as a natural workload within a benchmark might thus be
considered unfair.

The benchmarks in Part II of this book feature several examples of application
workloads. The workload of the SPECpower_ssj2008 energy-efficiency benchmark
is an example of such a workload (Lange, 2009) (see Chapter 11). It emulates an
online e-business application by introducing a mix of different request types that
are run on the emulated application as part of the benchmark. In contrast to natural,
real-world applications, SPECpower_ssj2008’s work units have been designed for
consistent (repeatable) performance. As explained in Chapter 11, energy-efficiency
measurements are best performed at stable loads with stable performance and power
consumption over the measurement duration (ideally leading to smaller confidence
intervals). This can be best achieved with artificial workloads. Using an applica-
tion workload allows SPECpower_ssj2008 to have this stability while still retaining
much of the relevance a natural e-business workload would have. TeaStore is an
application workload created for similar reasons (Kistowski, Eismann, et al., 2018)
(see Chapter 14). TeaStore emulates a microservice application and can be used as
a workload in elasticity and cloud resource management benchmarks. Again, repro-
ducibility is one of the major concerns that prompted the development of an artificial
application benchmark instead of using a natural real-world microservice workload.
Chapter 14 lists several additional reasons for the use of artificial workloads, specific
to TeaStore’s intended usage scenario.

Finally, synthetic workloads are artificial workloads designed to execute mixes
of operations carefully chosen to elicit certain system behavior and/or to match
the relative mix of operations observed in some class of applications. In the latter
case, the hope is that if the executed instruction mixes are similar, the performance
observed when running the benchmark would be similar to the performance obtained
when executing an actual application from the respective class. Synthetic workloads,
given their flexibility, are especially useful for tailored system analysis allowing one to
measure the limits of a system, or a selected part of it, under different configurations
and workloads. For example, they can be used to evaluate the performance of a
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given system operation or a system component under extreme workload conditions
stressing that particular operation/component.

Most workloads included in the SPEC SERT (see Chapter 11) serve as examples
for synthetic workloads. SERT runs a number of small synthetic workloads, referred
to as worklets. Each of those is designed to execute a single operation commonly
found in server applications, stressing a certain hardware component of the server
under consideration. Among other things, the worklets perform matrix decompo-
sition, array sorting, and cryptographic operations. The mix of these worklets is
intended to provide insight on how the server’s energy efficiency reacts to a range of
different scenarios.

8.3 Non-executable Parts of a Workload

The non-executable parts of a workload govern how and when the executable parts are
to be run. They consist of rules, methods, and/or descriptions that consider, among
other things, placement, scheduling, configuration, and potential user inputs for the
executable parts. Some non-executable parts of a workload can be very generic,
whereas others may be very specific to the workload in question. For example, a
web application workload needs to specify the user actions performed on the web
application as part of the workload specification. The number of concurrent users
is an example of a very generic parameter, as it can be applied to almost any web
application benchmark. However, the specific user inputs (e.g., buttons clicked, text
entered) are specific to the concrete executable web application used as part of the
benchmark.

In general, the non-executable parts of the workload can be split into two cate-
gories: traces and workload descriptions. Traces are records of real-world application
runs, whereas workload descriptions describe how to execute a workload based on
an abstract mathematical model or specification. For example, workload descriptions
may be stochastic models, specifying the probability of certain work units executing
next. Traces and workload descriptions may be combined, each describing a differ-
ent set of parameters. Again, using an executable web application as an example,
a trace may be used to define arrival times for the users’ requests based on a log
from a real-world web server, while user actions may be defined separately using a
stochastic model.

8.3.1 Workload Traces

Traces are execution records of real-world applications. They are often, but not
exclusively, derived from logs. Traces can be used to define a non-executable part of
a workload with the intention of replaying the original behavior. The most intuitive
way of using traces is using them in conjunction with a natural benchmark. A trace
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derived from a real-life execution of a natural benchmark can be used together with
its executable counterpart in order to replay a scenario that actually occurred during
the run time of the real-life natural application.

However, traces can also be used with artificial workloads. In this case, they can
be used to replay a scenario recorded with one application in the context of a different
application. Doing so usually requires the traces to be adapted or supplemented with
artificial workload descriptions. Sticking with the web application example, when
replacing a natural executable web application with an artificial web application, it
is likely that the user inputs of the original application may not be directly usable in
the context of the new application; for example, the UI may be different. However,
more general parameters of the trace may still be applicable. For example, the time
between user request arrivals may still be replayed, resulting in replaying the request
rate of the original natural application. Table 8.1 shows such an example of a web
server trace that might be used for workload generation. When adapting this trace for
use with artificial executable workload components, URIs and HTTP-bodies might
have to be adjusted to fit the workload. In this case, only the relative timestamps and
methods would remain.

Table 8.1: Example web server-based workload trace

Timestamp Method URI Body
1570271839 GET /api/products
1570271848 POST /api/products {’name’:’Pear’}
1570271863 GET /api/products
. . .

Note that traces are also heavily used in the context of instrumentation and
monitoring tools as discussed in Chapter 6 (Section 6.4). Such traces overlap a
lot with traces used for workload generation. After all, the records used to specify
the non-executable parts of a workload are often obtained using instrumentation
and monitoring tools. However, the content of traces in the instrumentation and
monitoring domain often exceeds the content needed for workload generation. For
example, monitoring tools often produce call path traces that detail which method
within the code calls which other methods (see Chapter 6, Section 6.4.1). In workload
generation, this is left to the executable parts of the workload (which may, of course,
have used such information in their design), but is usually not relevant for traces that
describe non-executable parts of a workload.
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8.3.2 Workload Descriptions

Workload descriptions are specifications typically comprised of a set of parameters
that specify how the executable parts of a workload are to be executed. Among other
things, they describe how to configure, schedule, and place the executable compo-
nents during benchmark execution. Workload descriptions can be concrete step-by-
step instructions with parameters and actions for specific executable components.
These types of descriptions can be very similar to traces, except for their artificial
nature. However, workload descriptions may also be very generic and abstract. In
the latter case, it is left to the benchmark to derive, at run time, the final concrete set
of parameters for its executable components based on the abstract description. For
example, an abstract workload description could specify a file of specific length, but
containing random data, to be compressed with zip. The benchmark would then have
to generate a random file according to the description when initializing. Afterwards,
it can run the executable component (zip tool or library) with this concrete file as
input.

Workload descriptions (as well as traces) must consider two major types of
executable work units they describe, as the sets of parameters that must be considered
by the descriptions differ considerably between these types:

• Batch Workload: A batch workload is a workload consisting of a single, usu-
ally long-running, executable work unit. A batch workload is run once until it
completes or its execution is halted. Batch workloads lend themselves well (but
not exclusively) to being used as a basis for building fixed-work benchmarks (see
Chapter 1, Section 1.4.1).

• Transactional Workload: A transactional workload consists of small work units
that are repeated multiple times during the execution of a benchmark. Each
execution of such a work unit is referred to as a transaction. The workload
may consist of multiple transaction types that are interwoven or run in parallel.
Transactional workloads lend themselves well (but not exclusively) to being used
as a basis for building fixed-time benchmarks (see Chapter 1, Section 1.4.2).

In general, descriptions for batch workload generation are simpler than those for
their transactional counterparts. Batch workloads must consider the configuration
for their long-running unit of work. This concerns mostly startup configuration and
input data. In addition, the descriptions may have to deal with the initial placement
of the batch workload on the available computing resources of the SUT.

Descriptions for transactional workloads are more complex. Before explaining
this, we provide a definition of a workload transaction in the context of workload
generation.

Definition 8.1 (Workload Transaction) A workload transaction is a concrete exe-
cution of an executable workload unit. It is characterized by the five properties listed
in Table 8.2.

Transactional workload descriptions must specify many of the above properties of
their respective workload transactions, although some of them (usually tend) can be
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Table 8.2: Properties of workload transactions

Symbol Meaning
w An executable unit of work
P A set of executable workload-specific parameters pi
V A set of concrete values ci for P used to initialize this specific transaction
tstart A concrete point in time when the execution starts
tend A concrete point in time when the execution ends

a product of the workload’s execution. At a minimum, the workload must specify the
executable unit of work w and the values V for the workload-specific parameters P.
Transaction starting times tstart are usually specified in advance, but may also
be chosen at benchmark run time. In the latter case, the non-executable workload
description must contain some sort of rules on how exactly to derive tstart during
benchmark execution. tend is usually not specified as part of workload descriptions,
but it may be specified in special cases, such as transactional workloads with fixed
transaction duration.

Transactional workloads can be classified into two groups (Schroeder et al., 2006):

• Closed workload: A closed workload assumes a fixed number of virtual users
interacting with the system. It describes non-executable parts of a workload in
terms of the actions a virtual user takes. Some user actions trigger execution of
a transaction, yet other actions are also possible. For example, the user may have
to wait for a certain time before triggering the next transaction. For each action,
the user waits until the action completes and then performs the next action. The
workload is considered closed, as all users exist from the beginning and users never
leave the system performing a theoretically infinite (usually repeating) sequence
of actions until stopped by workload termination (e.g., after a fixed time). In
terms of a transaction’s properties, closed workloads describe a transaction’s start
time tstart in a manner that depends on the end time tend of some previous
transactions (each user’s first transaction being an exception).

• Open workload: An open workload assumes a varying number of virtual users
interacting with the system. Users may enter the system at any specified arrival
time to perform their actions and execute transactions. The users then exit the
system once these actions are completed. In the simplest case, each user executes
a single transaction before immediately exiting the system. In this case, the user
can be reduced to a concrete set of transaction parameters V and an arrival time,
which equals a single transaction’s start time tstart . In more complex cases, users
may perform multiple actions and start multiple transactions. In this case, only
the user’s arrival time is known in advance. tstart for each transaction is derived
based on the user specification, as for closed workloads.

In the following, we present several concrete approaches to describe transactional
workloads.
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8.3.2.1 Closed Workloads

Closed workloads assume a fixed number of virtual users performing actions on
the system under consideration. Many of these actions trigger the execution of an
executable workload transaction. The workload description must cover two aspects:
generic configuration of users and description of the user actions. The former deals
with generic questions, such as how many users should be emulated or which re-
sources of the SUT should be allocated to each user? These questions are generic
in the sense that they do not consider the specific user actions, but their answers
may be very specific to a concrete benchmark setup. For example, allocation of SUT
resources to users can only be defined for a specific SUT with a concrete set of
resources. Consequently, this configuration is often left to the operator executing the
benchmark. It is expected that the operator documents the used parameter values to
ensure reproducibility.

Second, a non-executable workload description must specify the user actions per-
formed as part of the transactional workload. User actions are normally specified as
a sequence or as a graph. In case of a sequence, users execute a series of (parame-
terized) transactions and potential wait actions. Considering that users do not leave
the system, the sequence is repeated until the benchmark execution terminates. As a
result, it can be viewed as a cycle.
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Fig. 8.2: User action sequence for TeaStore’s Browse workload (see Chapter 14)

Figure 8.2 shows an example user action sequence from TeaStore’s Browse work-
load (see Chapter 14). Users navigate the web store’s pages. The workload transac-
tions in this case are the web page calls with cookies, query parameters, and so forth,
seen as transaction parameters P. The figure also makes it visually intuitive that a
closed workload’s user action sequence can be viewed as a non-branching directed
cyclic graph. The directed graph is cyclic, as it connects the last action with the first
one (or using a start/stop action connecting those two, as shown in the figure). It is
non-branching, as each node has exactly one outgoing edge. In a cycle where every
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node has exactly one outgoing edge, it follows that each node must also have exactly
one incoming edge.

Of course, the next step from a non-branching directed cyclic graph is a branching
directed cyclic graph where nodes may have multiple outgoing and incoming edges,
but all paths return to a defined starting node. Menascé, V. A. F. Almeida, et al. (1999)
introduced such a graph for workload description of e-commerce applications, calling
it Customer Behavior Model Graph (CBMG). An example for such a graph is shown
in Figure 8.3.

Fig. 8.3: Example of a customer behavior model graph (CBMG) (Menascé,
V. A. F. Almeida, et al., 1999)

A CBMG has one node for each possible transaction (e.g., home page, browse (b),
search (s), select (t), add to cart (a), and pay (p) in Figure 8.3) and directed edges
connecting these transaction nodes. Similar to Markov chains (Bolch et al., 2006),
a probability is assigned to each edge. When a virtual user reaches a node with
multiple outgoing edges, one of these edges is chosen at random according to the
probabilities of those edges. In practice, this choice is usually made using a pseudo-
random number generator, which is initialized with a predefined and documented
random seed to ensure reproducibility.

CBMGs do not consider wait actions. Instead, they use the concept of think
time Zs . Think time is defined as the waiting time between two transactions from
the SUT’s perspective. Each edge can be labeled with its own think time, indicating
the time the workload execution must wait before starting the next transaction. Note
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that Figure 8.3 does not show think times. Also note that the edges labeled with
“Exit” must be reconnected with the “Entry” node for the example to constitute a
user example for a closed workload.

A CBMG can be more formally characterized by a pair (P, Z ), where P = [pi, j]
is an n × n matrix of transition probabilities between the n states of the CBMG, and
Z = [zi, j] is an n × n matrix that represents the average think times between states
of the CBMG.

CBMGs do not distinguish multiple types of virtual users. Instead a separate
CBMG is used for each user type and virtual users are assigned a type and a
corresponding CBMG according to a separately specified distribution.

If an application is deployed in a production environment, CBMGs can be auto-
matically extracted from monitoring data collected during operation. An exemplary
approach in this area, based on the techniques described in Chapter 6 (Section 6.4),
is described by Vögele et al. (2018). The approach, called WESSBAS, enables the
automatic extraction of workload descriptions similar to CBMGs from recorded ex-
ecution logs of session-based web applications. The extracted workload descriptions
can be used for workload generation (using load testing tools) or for building a per-
formance model of the application (e.g., based on the queueing modeling techniques
described in Chapter 7).

8.3.2.2 Open Workloads

Open workloads are workloads where virtual users may enter the system at any time
to perform actions and execute transactions. The users then exit the system once
these actions are completed. In other words, in open workloads, new jobs arrive
independent of previous job completions. Open workloads are common in Web
applications, as human users interacting with Web services are usually unaware of
each other. In contrast to closed workloads, open workloads must specify how to
determine when new users arrive. The arrival time of a user is the time at which
a new user starts executing actions on the SUT. In the simplest case, a user simply
executes a single transaction before immediately exiting the system. In this case, the
user can be reduced to a concrete set of transaction parameters V and its arrival time
equals a single transaction’s start time tstart .

With users entering the system at different times and then leaving after completion
of their activities, load intensity becomes a major workload property to consider. In
the context of benchmark workloads, Kistowski, Herbst, et al. (2017) define load
intensity as the arrival rate of abstract workload units (usually virtual users or single
transactions) at a given point in time.

A load intensity profile is a function that describes the load intensity over time.
Real-life examples of such profiles can be found for many applications. As an
example, Figure 8.4 shows a load profile of HTTP requests to the NASA Kennedy
Space Center web server starting July 1, 1995 at 00:00. This example profile is a
varying profile, as the arrival rate changes over time, which is common in real-life
applications.
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Fig. 8.4: Load intensity profile of the NASA Kennedy Space Center web server

Steady State In order to improve the ability to compute statistical measures for
measurements taken during a benchmark run, many open workloads are designed to
be executed in steady state, also referred to as operational equilibrium (see Chapter 7,
Section 7.1). This implies that for a given measurement interval, the number of work
units present in the system at the beginning of the interval should equal the number
of units at the end of the interval. The intended effect of this state is that, for multiple
intervals, the number of work units completed per interval (i.e., the throughput)
should remain constant. In practice, it is hard to achieve a true steady state for
workloads executed on real-world computing devices. After all, the rate of work
unit completion is a product of the SUT and not necessarily known in advance. In
addition, it is reasonable to expect the SUT to exhibit at least some performance
variability.

The quality (i.e., steadiness) of a steady-state workload can be measured by
considering the throughput variability, where a lower variability indicates a higher
workload stability. The indices of dispersion introduced in Chapter 4 (Section 4.1)
can be used to quantify the throughput variability. The sample variance and standard
deviation are generally applicable in this context. However, they have the drawback
of being workload dependent; that is, a workload with a higher mean throughput
(e.g., due to smaller, less computationally expensive work units) is likely to have
higher absolute throughput variance and standard deviation. To account for this, the
coefficient of variation (COV), which is a dimensionless quantity, is normally used.

Based on the throughput COV, a benchmark can report the quality of its generated
steady-state workload. In addition, industry-standard and regulatory benchmarks can
define upper bounds for this metric for steady-state workloads. Benchmark runs
where the workload exceeds these bounds are considered invalid. For example, the
Power and Performance Benchmark Methodology (SPECpower Committee, 2014)
defines an upper bound of 5% on the throughput COV for steady-state workloads.
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Generating Steady-State Workloads The generation of any open workload re-
quires definition of the arrival times of the work units (i.e., transactions, virtual
users) under consideration. For steady-state workloads, it is intuitive that the (mean)
arrival time should be evenly distributed. The obvious way of achieving this is to
use a constant inter-arrival time, resulting in equidistant arrival times. Doing this
would result in an equal amount of work arriving in each interval. The workload’s
throughput variation should be small as long as the SUT is able to handle the given
load intensity.

However, equidistant arrival times have some drawbacks. First, they only allow
testing of a very specific scenario where the SUT has a guaranteed pause after the
arrival of each request until the arrival of the next. A benchmarker might want to have
more variation in order to test the SUT’s behavior when dealing with varying inter-
arrival times. Second, equidistant arrival times are not representative of the behavior
of real-world system users. Especially, human users send requests independently and
are generally unaware of each other.

Instead of using equidistant arrival times, we assume that request arrivals follow a
Poisson process. In general, a Poisson process describes random arrivals that arrive
at a mean arrival rate of λ, but are otherwise independent of each other. This is
useful for generating steady-state open workloads. We do want each workload to
have a stable mean arrival rate, but also want it to exhibit some variation. The
Poisson assumption of independent users matches our perception of real-world users
for many types of open workloads. The inter-arrival times needed to generate such
workloads can be modeled using an exponential distribution. Equation (8.1) shows
the probability density function (PDF) for the exponential distribution with a mean
arrival rate λ.

fλ(x) =
⎧⎪⎨⎪⎩λe−λx x ≥ 0

0 x < 0
(8.1)

To generate an open workload with exponentially distributed inter-arrival times,
we dispatch a work unit (i.e., create a virtual user or start a transaction) and then
draw a waiting time from an exponential distribution. This exponential distribution
must be parameterized with our target mean arrival rate as its parameter λ.

A practical concern when generating load with varying inter-arrival times (usu-
ally exponentially distributed) is the amount of computational work that must be
performed by the load driver. The load driver must perform computations in order
to draw from the exponential distribution for every single request. If run on the SUT,
the load on the benchmark harness might influence the measurement results. If run
on a separate machine sending requests over a network, the hardware requirements
for the load generator machine might prevent some users from being able to execute
the benchmark. A practical solution to this is to perform some work unit batching
as done in the SPEC Power benchmarks (SPECpower Committee, 2014). To reduce
the computational load on the load driver, work units are aggregated into work unit
batches of a fixed size. All work units within these batches are sent out at once and
the waiting times are only used to derive inter-batch waiting times.
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Open Workloads with Varying Arrival Rates Steady-state measurements are
usually preferred when working with open workloads as they allow for calculation
of statistically significant measures on the set of obtained results. However, some
benchmarking use cases require arrival rates to vary and change over time resulting in
non-steady-state measurements. Examples include stress tests that steadily increase
the load intensity in order to determine the maximum load that can be handled by the
SUT. A more complex example of varying arrival rates can be found in the context
of the cloud elasticity benchmarks described in Chapter 15. These benchmarks are
designed to evaluate the resource management behavior of cloud systems when the
load intensity varies.

A workload description for an open workload with a varying arrival rate profile
must specify the arrival rates and how they change over time. Concrete inter-arrival
times for the user (or transaction) arrivals can then be derived from this profile. This
can be achieved by specifying the target arrival rate for each measurement interval
and then drawing concrete inter-arrival times from stochastic distributions (e.g., ex-
ponential distribution) in the same way that is done for steady-state workloads.

A varying arrival rate profile can be modeled as a time series. It can be reduced
to a single scalar data point (i.e., arrival rate) defined for a series of points in time.
Kistowski, Herbst, et al. (2017) extract workloads from real-world arrival rate time
series by decomposing them into different workload-relevant parts: seasonal, trend,
burst, and noise (inspired by regular time series decomposition schemes such as the
ones by Verbesselt et al. (2010) and Cleveland et al. (1990)). Figure 8.5 shows an
example of such a decomposition (without the optional burst part).

Fig. 8.5: Example decomposition of a time series into season, trend, and
noise (Verbesselt et al., 2010)
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The seasonal part of a load intensity profile is its repeating part. It repeats
indefinitely until the profile ends or until a major break in the profile replaces it with
a new seasonal pattern. Seasonal patterns are often sinusoidal in appearance and may
be described or approximated using sinusoidal functions. The seasonal part has an
inherent period (i.e., the duration of a single season). In a real-life profile, seasonal
patterns would constitute things such as daily or weekly usage patterns.

The trend part of the load intensity profile is a piecewise function that models the
workload changes over longer time frames. It spans one or more seasonal periods
and is normally added to or multiplied with the seasonal base function. Trends show
overarching developments over time, for example, an increasing number of users of
an online shop each day in December up to the holiday season. In this example,
the base night–day seasonal pattern remains stable, but the number of users per day
increases.

The burst part is an optional part that describes planned or unplanned single events
that significantly affect the profile for a short time span. Bursts are not considered
in generic time series decomposition methods, as they are somewhat specific to
workload intensity profiles. However, they are of relevance for benchmark engineers
as they may want to test a system’s response to a sudden unexpected increase in
load. An example for a planned burst would be the sudden increase in hits to a
manufacturer’s site after a big product announcement. An example for an unplanned
burst could be the increase in load to a social media site after a natural disaster.

Finally, the noise part constitutes the remainder that is not captured as part of
the season, trend, and burst parts. It can be modeled as a stochastic distribution
parameterized with the parameters specific to the distribution of choice.

8.3.3 System-Metric-Based Workload Descriptions

In this book, we consider workload descriptions to describe non-executable parts
of a workload in terms of its relevant parameters and elements. Workload descrip-
tions typically cover transactions, transaction parameters, request arrival times, user
profiles, and user actions. This is the primary way of describing workloads for
benchmark designers whose goal normally is to evaluate the system behavior when
executing the respective workloads.

However, some areas of research also require the reverse way of workload specifi-
cation, that is, specifying a workload that elicits a certain target behavior on the SUT,
characterized by a specified system metric. For example, a researcher or a system
designer might want a workload to cause a CPU utilization of 80% on the SUT in
order to conduct some specific SUT analysis. This would result in a workload speci-
fication based on targeted system metrics instead of workload metrics. Generating a
workload based on a system metric specification is usually done using one of the two
approaches: (1) a priori workload analysis and calibration or (2) run-time control
loops.
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A priori workload analysis and calibration runs one or more separate experiments
to measure the SUT-specific workload characteristics. The benchmark then derives
a regular non-executable workload description with the target SUT metrics based on
these calibration and analysis results. An example of such a priori calibration runs can
be found in the BUNGEE Cloud Elasticity Benchmark (Herbst et al., 2015) described
in Chapter 15. Note that such workload analysis and calibration experiments also
have many uses outside of benchmarking. Among other things, they can be used by
software developers for bottleneck detection or by system operators for evaluation
of resource management strategies.

As an alternative to a priori calibration, a workload can use a run-time control
loop. This loop is configured with the observed system metrics during execution and
controls the parameters of the workload in order to achieve a target metric result.
Some care must be taken when designing such a loop, as control loops are generally
prone to oscillation.

8.4 Concluding Remarks

In this chapter, we focused on benchmark workloads considering their characteris-
tics in the context of workload generation. We started by introducing the distinction
between executable and non-executable parts of a workload as well as the distinction
between natural and artificial workloads. The executable parts were then discussed
in detail, including natural benchmarks, application workloads, and synthetic work-
loads. Next, the non-executable parts were discussed, distinguishing between work-
load traces and workload descriptions. In the rest of the chapter, we introduced the
different types of workload descriptions that can be used for batch workloads and
transactional workloads as well as for open and closed workloads. The challenges
of generating steady-state workloads and workloads with varying arrival rates were
discussed. Finally, the chapter concluded with a brief introduction of system-metric-
based workload descriptions.
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Chapter 9
Standardization

“The reputation of current ’benchmarketing’ claims regarding
system performance is on par with the promises made by
politicians during elections.” (1993)
—Kaivalya M. Dixit (1942-2004), Long-time SPEC President

In order to maintain the usefulness of a good benchmark, it needs a continuous
development cycle to keep up with emerging technologies. For example, in order
to accurately measure the performance gain of a new computer microarchitecture,
a compiled version of the benchmark code (including its libraries, if applicable)
supporting this new microarchitecture would be required. Performance gains of less
than 3.0% from microarchitecture optimizations are quite common. In an effort
to provide and maintain fair industry standards for measuring system-level and
component-level performance of computer systems, industry-standard consortia such
as the Standard Performance Evaluation Corporation (SPEC)1 and the Transaction
Processing Performance Council (TPC)2 were established in 1988. In 1998, the
Storage Performance Council (SPC)3 was founded with a focus on standardizing
industry-standard storage benchmarks. In this chapter, we provide an overview of
benchmark standardization efforts in the area of computer systems benchmarking.
We focus on SPEC and TPC, the two most prominent benchmark standardization
bodies in the area of computer systems and information technology (IT). A brief
overview of SPC can be found in Chapter 13.

9.1 Historical Perspective on Computer Systems Benchmarking

Since the earliest days of digital computer systems, the goal of quantifying, improv-
ing, and optimizing computer performance has been a subject of great interest. The

1 Standard Performance Evaluation Corporation (SPEC): https://www.spec.org
2 Transaction Processing Performance Council (TPC): http://www.tpc.org
3 Storage Performance Council (SPC): https://spcresults.org
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earliest performance benchmarks were based on comparisons of low-level instruc-
tion execution times. A mix of several of these execution times would be combined
to produce an overall rating that could be compared between systems. The most well-
known of these early benchmarks was the Gibson Mix, devised by Jack Gibson of
IBM (Gibson, 1970). As high-level computer languages were developed, more com-
plex applications were created to develop additional rigorous methods of measuring a
system’s performance. Whetstone (Longbottom, 2004) and Dhrystone (Weiss, 2002)
are both early examples of high-level language benchmarks.

One of the first benchmarks to attempt to standardize the measurement of floating-
point performance of CPUs was Whetstone. Developed in 1972 by Harold Curnow
of the UK Central Computer and Telecommunications Agency,4 the benchmark
workload was a representation of a set of 124 simple Whetstone ALGOL 60 compiler
instructions translated into FORTRAN. The benchmark result was measured in
thousands of Whetstone instructions per second (KWIPS), and later in millions of
Whetstone instructions per second (MWIPS). The benchmark was updated over the
years and ported to C, C++, Basic, and Java. It has frequently been included in
component benchmark suites.

The synthetic benchmark program Dhrystone (a pun on the benchmark name
Whetstone) was developed by Reinhold P. Weicker in 1984 to measure integer-based
processing performance. It utilized metadata from several applications written in
different programming languages with frequency of high-level language constructs
similar to that of real applications studied. For many years, Dhrystone was considered
the representative benchmark for general processor performance. Originally written
in Ada, it was translated into C and ported to UNIX, and it is still often used as
part of component benchmark suites. In later years, Weicker joined SPEC to develop
industry-standard benchmarks that focus on compute performance and advised that
people should rely on the SPEC CPU benchmarks (see Chapter 10) in place of
Dhrystone.

As computer systems became more complex, benchmarks were developed to
measure the performance of the individual system components such as memory,
floating-point arithmetic coprocessors, data I/O, etc. Most of these early benchmarks
utilized synthetic workloads and were usually provided to users as source code that
needed to be compiled on the system under test (SUT). This allowed such benchmarks
to be used on multiple platforms, but there were generally no run rules on how to
compile such benchmarks or how to compare results between different architectures,
which limited the scope of their use.

The LINPACK5 benchmark (Dongarra et al., 2003) uses the LINPACK soft-
ware library to solve a set of n-by-n linear algebra equations in order to measure a
system’s floating-point computing performance using floating-point operations per
second (FLOPS) as a metric. The benchmark workload is almost exclusively floating-
point based, so it is an excellent stressor of the processors’ math and vector instruction
sets. There have been several versions of LINPACK benchmarks since their creation

4 Whetstone benchmark history and results: http://www.roylongbottom.org.uk/whetstone.htm
5 LINPACK benchmark programs and reports: http://www.netlib.org/benchmark/index.html

http://www.netlib.org/benchmark/index.html
http://www.roylongbottom.org.uk/whetstone.htm


9.1 Historical Perspective on Computer Systems Benchmarking 205

in 1979, which include LINPACK 100 (n=100), LINPACK 1000 (n=1000), and
HPLinpack (a highly parallelized version that can run across multiple systems).
HPL is a portable implementation of the HPLinpack benchmark written in C. Pre-
compiled LINPACK and HPL are available for a number of system architectures.

The STREAM6 benchmark (McCalpin, 1995) is a simple synthetic benchmark
that measures sustainable memory bandwidth, reported in MB/s. It requires that
the dataset must be much larger than the available processor cache on any given
system so that the results are more indicative of the performance of a very large
vector-style application. The benchmark yields four metrics representing different
memory operations: Copy, Add, Scale, and Triad. The benchmark is available in C
and FORTRAN, which can run either in a single-threaded or distributed fashion. A
precompiled version of this benchmark is often included in component benchmark
suites.

lmbench7 measures the memory and network data bandwidth performance, as
well as the latency of operating system primitive operations, such as system calls
and process creation. It was originally developed by Larry McVoy during his work at
Sun Microsystems. He continued its development after his move to Silicon Graphics
and was joined by Carl Staelin from the Hewlett-Packard Laboratories.

Netperf8 performs bandwidth testing between two hosts on a network. It measures
the performance of bulk data transfer and request/response network traffic, using
either TCP or UDP via BSD sockets. There are optional tests that measure the
performance of DLPI, UnixDomainSockets, the Fore ATM API, and the HP HiPPI
LLa interface. Originally developed by Hewlett-Packard, it is now available on
GitHub. Netperf has been ported to run on numerous distributions of UNIX, Linux,
Windows, and VMware.

These benchmarks are useful tools to analyze IT equipment and troubleshoot
performance bottlenecks. They utilize standard applications (or their core routines
that focus on a particular access pattern) in order to measure the performance of a
primary server or storage component, such as CPU computations, memory accesses,
storage I/O, or network I/O. By limiting their scope, component benchmarks enable
deeper analysis of the targeted subsystem. At the same time, component benchmarks
are often less complex and easier to develop than benchmarks that stress the complete
system environment. Therefore, component benchmarks are typically less expensive
to run because they require less equipment and engineering resources.

Single component benchmarks are generally not directly useful for evaluating
complete IT environments, as they only evaluate a specific system aspect or com-
ponent. A suite of component benchmarks like the SERT suite (Lange and Tricker,
2011) can be a key method for measuring the behavior of the primary server and stor-
age components. Nonetheless, they are not measuring the interaction and possible
performance bottlenecks between those components. The real usefulness of compo-
nent benchmarks is their role in simplifying performance analysis and pinpointing

6 STREAM benchmark: https://www.cs.virginia.edu/stream/
7 lmbench benchmark: http://www.bitmover.com/lmbench
8 Netperf benchmark: https://github.com/HewlettPackard/netperf

https://github.com/HewlettPackard/netperf
http://www.bitmover.com/lmbench
https://www.cs.virginia.edu/stream/
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the actual performance bottlenecks within a component. The primary application
of component benchmarks is their usage during system development and the de-
sign/deployment phases of new IT environments. In general, the first step is to run
one of the component suites (or a series of hand-picked component benchmarks)
in order to determine if one subsystem exhibits lower-than-expected performance.
Next, an analysis of the subsystem is conducted to further pinpoint the root causes.
For example, suppose that the performance results from the SERT suite show lower-
than-expected CPU subsystem performance. The next step would include running
the SPEC CPU2017 benchmark suite (cf. Chapter 10) to further investigate the root
cause. Finally, after a possible resolution of the issues is implemented, the original
component suite should be run again in order to verify that the resolution satisfac-
torily fixed the bottleneck. Note that it is the nature of performance bottlenecks to
switch from one component to another once the root cause of the original bottleneck
is resolved.

9.2 Standard Performance Evaluation Corporation (SPEC)

The global non-profit consortium, SPEC, was formed in 1988 with the goal to
establish, maintain, and endorse a standardized set of relevant benchmarks that
can be applied to the newest generation of compute equipment. SPEC fostered the
collaboration of hardware and software vendors, as well as academia, to advance
the practice of computer performance and server efficiency measurement. Over 20
benchmarks and tools were developed by SPEC to ensure that the marketplace
has an industry-standard set of metrics to differentiate computing systems in a fair
and useful manner. For the last 30+ years, its benchmarks have been well-studied
in academia (Hennessy and Patterson, 1990) and influenced industry designs of
computer architecture and software. SPEC became an influential example for other
groups, both in methodology and organization.

9.2.1 SPEC’s Origin

In the late 1980s, UNIX and C had become widespread, which increased soft-
ware portability and eased creations of new microprocessor architectures. There
was tremendous interest in which of the many new processor designs would enable
computer workstations to break out and bring the promise of high-performance com-
puting directly to the individual engineers and designers in a myriad of offices around
the world. These microprocessor wars were fierce and their marketing was confus-
ing, often invoking ill-defined ratings in millions of instructions per second (MIPS)
or millions of floating-point operations per second (MFLOPS). The existing bench-
marks were weakly defined, and their ambiguities allowed vendors to increase their
scores in ways that impeded fair comparisons. Nonetheless, performance results
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were republished or created by magazines, for example, Byte, Digital Review, UNIX
Review, or Electronic Engineering Times (EE Times).

The idea that started SPEC and changed the ways in which computers were
measured and compared arose from a small group of industry’s leading performance-
minded computer architects sharing a round of drinks in a local bar. The engineers
were frustrated at the quality of information being used to try to evaluate their new
designs, and even worse, being used to make decisions that determined which designs
were funded and which were ignored.

Key to this conversation was the host of this gathering, the respected journalist
Stan Baker from EE Times magazine. At a recent trade event, Baker had again
fielded complaints from architects about the news coverage of their new designs
and the “microkernel” benchmark based comparisons. In particular, John Mashey
from MIPS Computer Systems complained about an article ranking systems based
on Dhrystone MIPS. He pointed out that his testing of actual customer applications,
as published in the MIPS Performance Brief, showed a completely different story,
and no vendor liked the Dhrystone-based rankings. Baker threw the challenge back
at these architects suggesting “If you don’t like it, give me something better!” More
importantly, Baker initiated the next step and offered his bar in Campbell, California
as a neutral meeting ground for Mashey and the representatives from his major
competitors, Hewlett-Packard, Apollo Computer, and Sun Microsystems, in order
to listen to each other’s complaints. In spite of the intense company rivalries and
massive corporate expenditures on competitive marketing, key designers and other
principals knew each other well enough to be comfortable “talking shop” with each
other, mostly because the community of leading processor and system architects was
relatively small.

Baker began a series of meetings to discuss what they should do to provide useful
benchmarks that produce well-documented, repeatable, and reliable results. They
were all using a copy of the popular GCC compiler9 as a test for basic computations
as well as workloads based on the common SPICE tool10 to simulate calculation-
intensive circuits and stress the processor’s floating-point unit (FPU). There were
more than a dozen of these tests in common usage across the internal tests; unfortu-
nately, everybody was using a different GCC version and different input data. They
quickly reached agreement on an overall methodology that included the need for
multiple sub-benchmarks with a metric that reported performance ratios using the
geometric mean for composite summaries as discussed in detail in Chapter 3 (Sec-
tion 3.5.3.2).

Earnest work began to create a single copy of these codes, with the same set of
input files, and all producing the same outputs across each system tested. This code
could not be under the control of a single vendor and therefore the group convinced
their respective companies to support this effort by creating a workable organiza-
tional structure and by recruiting additional vendors. In November 1988, EE Times,
Apollo Computer, Hewlett-Packard, MIPS, and Sun Microsystem decided to form

9 GNU website: https://gcc.gnu.org
10 SPICE website: http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE

http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE
https://gcc.gnu.org
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the non-profit Standard Performance Evaluation Cooperative (SPEC)—later changed
to Standard Performance Evaluation Corporation. Thus, what started as a series of
informal meetings became a formal cooperative, established to develop standard
benchmarks for comparing systems. Stan Baker served as the first President when
SPEC was incorporated, and he was later succeeded by Kaivalya Dixit, Walter Bays,
and David Reiner.

9.2.2 Membership

SPEC has grown over the last 30 years from a single benchmark development group
into the largest organization in its field. Its diverse membership11 is comprised
of interested computer hardware and software vendors, educational and research
institutions, government agencies, and supporting individuals who commit to support
SPEC’s common goals. Their reasons for joining and contributing to SPEC include:

• Access to cutting-edge benchmark development,
• Access to all benchmarks of a specific group,
• Influence on the development of new benchmarks and tools,
• Participation in development meetings,
• Getting information on the latest thinking in commercial engineering,
• Publication of benchmark results,
• Gaining real-world experience for graduate students to aid in dissertation research

and job searches,
• Connecting with many leading universities globally for research collaboration,
• Utilizing collaboration opportunities for participation in the ACM/SPEC Interna-

tional Conference on Performance Engineering (ICPE).

9.2.3 Structure and Organization

SPEC has established four groups (see Figure 9.1), each with its own governing
bodies, subcommittees, project groups, and working groups. These groups report to
SPEC’s Board of Directors, which acts on behalf of SPEC’s membership to make
overall policy decisions, provide oversight, and perform SPEC’s financial and legal
fiduciary responsibilities.

11 SPEC membership: https://www.spec.org/consortium

https://www.spec.org/consortium
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Fig. 9.1: SPEC’s organizational structure

9.2.4 Open Systems Group (OSG)

The OSG, the original SPEC group, focuses on component- and system-level bench-
marks for desktop systems, high-end workstations, and servers running open sys-
tems operating environments. It is governed by the Open System Steering Com-
mittee (OSSC), which helps with overarching issues and supports the collaboration
between its large number of subcommittees, benchmarks, and members. In 2020,
the OSG has six subcommittees and one working group, each focusing on a different
computing area.

The OSG CPU Subcommittee created the first SPEC benchmark SPECmark, later
known as SPEC CPU 89, and subsequently released new versions over the years.
For the full history and details on their benchmark releases, we refer the reader to
Chapter 10.

The first storage benchmark from SPEC was released in 1993 by the SFS Subcom-
mittee, now called the OSG Storage Subcommittee. The latest version, SFS2014,
measures file server throughput and response time of end-to-end storage solutions
for specific applications and its details can be found in Chapter 13.

The OSG Java Subcommittee develops client- and server-side Java benchmarks.
Their current benchmarks are JVM2008, JBB2015, the SPECjEnterprise (Java EE)
Enterprise Application Server benchmarks, and the Java Message Service benchmark
SPECjms2007 (Sachs et al., 2009).

In 2006, the new OSG Power Subcommittee was founded and developed
SPECpower_ssj2008, the first industry-standard benchmark for evaluating the en-
ergy efficiency for server class computers (Lange, 2009). Additionally, they released
the SPEC PTDaemon, the Server Efficiency Rating Tool (SERT) (Lange and Tricker,
2011), and the Chauffeur Worklet Development Kit (WDK). More details about this
subcommittee and its work can be found in Chapter 11.

The OSG Virtualization Subcommittee’s SPEC VIRT_SC 2013 benchmark mea-
sures the end-to-end performance of data center servers used in virtualized server
consolidation. Details about their development can be found in Chapter 12.

The SPEC Cloud IaaS 2016 Benchmark, developed by the OSG Cloud Subcom-
mittee, provides metrics and workloads for performance evaluation of public and
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private cloud environments, focusing on Infrastructure-as-a-Service (IaaS) cloud
platforms.

In late 2018, the OSG Machine Learning (ML) working group was established
in order to explore the requirements for benchmarks in the area of machine learning
and possible creation of a new OSG Subcommittee. At the conclusion of the working
group’s feasibility study, the OSSC may either terminate the working group or charter
it as a subcommittee to continue its work to develop a standard benchmark.

9.2.5 Graphics and Workstation Performance Group (GWPG)

Initially, SPEC was focused only on CPU benchmarks. Administrative functions
were contracted to the National Computer Graphics Association (NCGA), which
had an analogous mission for graphics performance benchmarks. NCGA had grown
out of an effort in ACM’s SIGGRAPH to create application standards. Financial dif-
ficulties forced NCGA to the brink of dissolution, which would have eliminated the
standard graphics performance benchmark efforts as well as SPEC’s administrative
contract. Both sides shared common principles of openness, repeatability, and rep-
resentative measures and in 1996, SPEC not only hired NCGA’s administrative staff
but moved the Graphics Performance Council (GPC), now called the Graphics and
Workstation Performance Group (GWPG), under its umbrella. GWPG’s focus is on
the development of benchmarks that measure the performance of professional-level
workstations and graphics subsystems. Over the years, the group expanded to three
project groups in order to create a stronger focus in each of their development teams.

The Graphics Performance Characterization (SPECgpc) group12 establishes
graphics performance benchmarks for systems running under OpenGL and other
application programming interfaces (APIs). Its SPECviewperf benchmark is the
most popular standardized software worldwide for evaluating performance based on
professional-level CAD/CAM, digital content creation, and visualization applica-
tions.

The Application Performance Characterization (SPECapc) group13 provides a
broad-ranging set of standardized benchmarks spanning popular CAD/CAM, digital
content creation, and visualization applications.

The Workstation Performance Characterization (SPECwpc) group14 has created a
benchmark that measures the performance of workstations running algorithms used
in popular professional applications, but without requiring the full application and
associated licensing to be installed on the system under test.

12 SPECgpc project group: https://www.spec.org/gwpg/gpc.static/overview.html
13 SPECapc project group: https://www.spec.org/gwpg/apc.static/apc_overview.html
14 SPECwpc project group: https://www.spec.org/gwpg/wpc.static/wpc_overview.html

https://www.spec.org/gwpg/wpc.static/wpc_overview.html
https://www.spec.org/gwpg/apc.static/apc_overview.html
https://www.spec.org/gwpg/gpc.static/overview.html
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9.2.6 High Performance Group (HPG)

The Perfect Club was an academic organization dedicated to the creation of a set of
benchmarks suitable for evaluating performance of high performance and parallel
systems. The professors involved wanted to focus on performance issues and had
little time and interest in the ancillary work of managing the organization. Reassured
by the successful integration of the GPC, the Perfect Club came into SPEC as the
High Performance Group in 1994. Their goal is to develop benchmarks that target
high-performance system architectures such as symmetric multi-processor systems,
workstation clusters, distributed memory parallel systems, and traditional vector
and vector parallel supercomputers. SPEC’s HPG developed and maintained three
distinguished benchmarks:

• SPEC ACCEL15 focuses on the performance of highly parallel compute-intensive
applications using hardware acceleration based on the OpenCL and OpenACC
standards.

• SPEC MPI16 is SPEC’s benchmark suite for measuring the performance of
compute-intensive applications using the Message-Passing Interface (MPI) across
a wide range of cluster and SMP hardware.

• SPEC OMP17 is designed for measuring the performance of applications based
on the OpenMP standard for shared-memory parallel processing. The benchmark
also includes an optional metric for measuring energy consumption.

9.2.7 Research Group (RG)

SPEC had a semi-regular tradition of benchmark workshops spurred on by European
members like Reinhold Weicker, as the European industry had more of an academic
orientation than the US industry. Some academics participated, attracted by the
potential benefits to their research and by the existence of the HPG. But there was
not a good structure for academics to participate in subcommittees, given that they
are oriented towards relatively short-term deliverables relevant to the current market,
whereas researchers are often oriented towards the evaluation of future architectures.
Moreover, the SPEC workshops, which were not refereed, did not count towards
university publications, and so it was difficult for professors and students to get
funding to travel to these workshops to present their work or to hear about work of
others in their field.

In 2011, SPEC’s Research Group (RG)18 was formed with the mission to promote
innovative research in the area of quantitative system evaluation and analysis by

15 SPEC ACCEL: https://www.spec.org/accel
16 SPEC MPI: https://www.spec.org/mpi2007
17 SPEC OMP: https://www.spec.org/omp2012
18 SPEC RG: https://research.spec.org

https://research.spec.org
https://www.spec.org/omp2012
https://www.spec.org/mpi2007
https://www.spec.org/accel
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serving as a platform for collaborative research efforts and to foster interactions
between industry and academia in the field.

The scope of this group includes computer benchmarking, performance evalua-
tion, and experimental system analysis in general, considering both classical perfor-
mance metrics such as response time, throughput, scalability, and efficiency as well
as other non-functional system properties included under the term dependability, for
example, availability, reliability, and security (cf. Section 1.2 in Chapter 1).

The conducted research efforts span the design of metrics for system evaluation as
well as the development of methodologies, techniques, and tools for measurement,
load testing, profiling, workload characterization, dependability, and efficiency eval-
uation of computing systems.

The RG started off with two working groups covering the areas of cloud per-
formance and security benchmarking, and it subsequently established four addi-
tional working groups expanding into the areas of Big Data, DevOps, Power, and
Quality-of-Experience (QoE). Besides guiding its working groups, the Research
Group Steering Committee (RGSC) publishes the regular SPEC RG Newsletter,
determines the annual winner of the SPEC Kaivalya Dixit Distinguished Disserta-
tion Award, and coordinates with the ICPE Steering Committee on its upcoming
conferences.

The RG also maintains a peer-reviewed tools repository19 for quantitative sys-
tem evaluation and analysis. Tools published in this repository have undergone a
thorough review process by multiple independent experts to ensure high quality and
relevance to the community. The review process covers important quality factors,
including maturity, availability, and usability. Most tools include ready-to-use bina-
ries, documentation, usage rules (including licenses), and source code. Figure 9.2
illustrates the interaction of SPEC RG with other groups within SPEC as well as
with external entities.

9.2.8 Benchmark Development Cycle

Over the years, SPEC has implemented and fine-tuned its development processes
in order to guide its membership to produce fair benchmarks. In the following, we
briefly describe the general SPEC benchmark development cycle (see Figure 9.3).
Individual subcommittees have customized this process in order to accommodate
their specific target workload and performance domain.

For each benchmark, the workload and benchmark harness code is developed and
ported to a variety of platforms by members of a subcommittee that focuses on a
specific compute area or subsystem, for example, CPU, storage, energy efficiency.
This ensures that the timing of the workload and the execution of the actual stress on
the subsystem(s) are equally challenging on each platform and therefore rendering
the results from different architectures comparable. A number of different harnesses

19 SPEC RG tool repository: https://research.spec.org/tools

https://research.spec.org/tools
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are in use at SPEC, developed for the requirements of particular workloads. However,
it is quite common that a new benchmark can reuse a harness developed by another
group as-is, or with minor alterations.

The members of the subcommittee are also responsible for writing the Run and
Reporting Rules (R&RR) for each of their benchmarks, which must be followed
in order to create a valid benchmark result in the form of a Full Disclosure Re-
port (FDR). In order to help the benchmark user to measure a compliant result,
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the subcommittee creates a corresponding report generator and validation program,
which combines and validates the performance (and power) data with the configura-
tion details, flags any invalid or inconsistent information, calculates the benchmark
metric, and produces the FDR.

Results produced with the benchmark can be submitted to SPEC, where they
will undergo a 2-week review cycle conducted by the members of the subcommittee
which rejects results that are not in compliance with the R&RR. During this review
period the subcommittee may question the submitter concerning details of the mea-
surement and the tested equipment, and the submitter responses may alleviate the
subcommittee’s concerns regarding run rule compliance. The FDR of a compliant
result that passed the review will be published on SPEC’s website.

SPEC has published Fair Use Rules20 for the use of each SPEC benchmark
result in order to guide fair public comparisons. The benchmark support for each
benchmark is also handled by the corresponding subcommittee, further encouraging
members to put the highest quality in their products in order to minimize their
support burden.

SPEC has reviewed over 64,000 results and turned them into a large public
repository of well-documented, peer-reviewed benchmark results.

9.3 Transaction Processing Performance Council (TPC)

In the 1980s, commercial computing came into its own. No longer was computing the
realm of government, academia, and very large corporations. Virtually every business
of reasonable size was looking to computer technology for “run your business”
applications. This generated a large demand for computing products, which a wide
range of hardware and software manufacturers were happy to fulfill.

These “run your business” applications were typified by individual units of work
referred to as transactions. As an example, you go to a bank to withdraw some
cash, the teller reduces the balance in your account, and delivers the cash to you—a
complete transaction. As another example, you bring groceries to the counter, check
them out, and pay—a complete transaction. In each case, it is important that the
entire transaction completes (you would not be happy if the bank teller reduced your
balance but did not deliver the cash; nor would the store be happy if you collected
your groceries without paying).

Given the extensive opportunities in the area of transaction processing, the com-
petition among computer vendors was intense. A key aspect of this competition was
to demonstrate superiority in the ability to perform these business transactions. Be-
ginning in the mid-1980s, computer system and database vendors began to make per-
formance claims based upon the TP1 benchmark, a benchmark originally developed
within IBM that then found its way into the public domain. However, being in the pub-
lic domain without regulation allowed each vendor to implement the “benchmark” in

20 SPEC fair use rules: https://www.spec.org/fairuse.html

https://www.spec.org/fairuse.html
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ways that highlighted their strengths and avoided their weaknesses—miraculously,
EVERYONE was best! As a result and not surprisingly, the TP1 marketing claims,
had little credibility with the press, market researchers (among them Omri Serlin, the
founder of TPC), or users. The situation also deeply frustrated vendors who believed
their competitors’ marketing claims, based upon flawed benchmark implementations,
were ruining every vendor’s credibility.

Early Attempts at Civilized Competition, as stated by Kim Shanley, TPC’s first
consortium administrator (Shanley, 1998):

In the April 1, 1985 issue of Datamation, Jim Gray in collaboration with 24 others
from academia and industry published (anonymously) an article titled: “A Measure
of Transaction Processing Power.” This article outlined a test for online transaction
processing, which was given the title of “DebitCredit.” Unlike the TP1 benchmark,
Gray’s DebitCredit benchmark specified a true system-level benchmark where the
network and user interaction components of the workload were included. In addition,
it outlined several other key features of the benchmarking process that were later
incorporated into the TPC process:

• Total system cost published with the performance rating. Total system cost
included all hardware and software used to successfully run the benchmark,
including 5 years of maintenance costs. Until this concept became law in the TPC
process, vendors often quoted only part of the overall system cost that generated
a given performance rating.

• Test specified in terms of high-level functional requirements rather than spec-
ifying any given hardware or software platform or code-level requirements. This
allowed any company to run the benchmark if it could meet its functional require-
ments.

• The benchmark workload scale up rules—the number of users and size of
the database tables—increased proportionally with the increasing power of the
system to produce higher transaction rates. The scaling prevented the workload
from being overwhelmed by the rapidly increasing power of online transaction
processing (OLTP) systems.

• The overall transaction rate would be constrained by a response time re-
quirement. In DebitCredit, 95% of all transactions had to be completed in less
than one second.

While having a “standard benchmark” was a noteworthy endeavor, the industry
soon discovered that having an “unregulated standard benchmark” was not the least
bit “standard.” There was a need for both the standardization of a benchmark defini-
tion and a validation (and subsequent certification) that rules of the benchmark were
appropriately met.
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9.3.1 The Beginning of TPC

In 1988, the Transaction Processing Performance Council (TPC) was formed by rep-
resentatives across the industry with the specific purposes of defining and regulating
computer benchmarks that were transactional in nature and exercised a broad range
of the components that make up a commercial computing environment. Early TPC
benchmarks featured several characteristics:

• A focus on data processing (as opposed to “compute intensive”).
• Language-based rather than code-based specifications: The data processing in-

dustry was and continues to be rapidly evolving. Because consumers and vendors
have quite different methods for satisfying the same business requirements, early
TPC benchmarks were defined in a technology-agnostic way as functional speci-
fications that included descriptions of the data to be processed, necessary input,
necessary output, and a set of required “robustness” functions, without requiring
a specific technology to be used for the implementation.

• The inclusion of system price and a price/performance metric (to encourage being
realistic in the configuration of systems measured). Initially, a “system” included
not only the computer, but all of the storage, networking, and end-user terminals
required to deliver the entire business computing solution.

• Specific rules for scaling data and the number of users as the capacity of a
computer grows.

• The inclusion of ACID (Atomicity, Consistency, Isolation, and Durability) prop-
erties intended to ensure that transactions are either fully completed or rolled
back as if they never started.

• The inclusion of a Quality-of-Service (QoS) requirement (such as 90% of trans-
actions completing within 2 s, as was the case for the first TPC benchmark).

• A requirement to demonstrate sustained performance over a period of time.
• A requirement for public disclosure of the benchmark implementation at a level

that would both demonstrate compliance with the benchmark rules and allow
others to reproduce the results.

• Publication of results from validated implementations on an official TPC database
(initially in hardcopy, eventually online).

9.3.2 From Engineering to Marketing, From Benchmarking to
Benchmarketing

With the level of presumed integrity that the rigor of TPC’s benchmark definition
and implementation processes provided, the use of TPC benchmark results rapidly
gained popularity as tools for helping to sell computing solutions to the end consumer.
However, consider the following familiar progression:

• Engineer: “We’ve measured 190 active users with TPC Benchmark A.”
• Manager: “We can drive almost 200 active users in a TPC benchmark.”
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• Marketing: “This system delivers the work of 200 active users, as verified by the
TPC.”

• Sales: “You can be confident that your application will support over 200 active
users on this system. We proved that with TPC benchmarks.”

Not only were there challenges associated with the proper portrayal of TPC
results, there was also intense pressure at the engineering level to improve upon
those results. Many of these improvements delivered real and tangible benefits to the
end consumer. However, some of them took advantage of the necessarily simplistic
nature of the benchmark to deliver an improved benchmark value without delivering
an improvement for a more general application.

It became clear to the members of TPC that additional regulation was needed to
ensure the integrity of TPC benchmark results and their use in public. Within the
first few years of TPC’s formation, the processes were enhanced with:

• A requirement that benchmark implementations be reviewed and attested as valid
prior to publication.

• A requirement that the TPC benchmark identifiers could not be used for any result
that was not deemed to be official within TPC.

• The formation of a Technical Advisory Board populated by members of TPC who
served as the “grand jury” (making recommendations to the full council) when
someone felt that a benchmark implementation did not follow the requirements
of the benchmark specification.

• Requirements for the window of time between when a result is published and when
a customer can order and install the benchmarked configuration and software.

• Fair use requirements on the use of TPC-related information, including require-
ments associated with

– Fidelity: Adherence to facts, accuracy,
– Candor: Above-board; needful completeness,
– Due Diligence: Care for integrity of TPC results.

9.3.3 A Progression of Benchmarks

TPC, like other benchmark development groups, has seen a need to continue to
develop new benchmarks for a variety of reasons:

• To exercise important functions that have not been well stressed in prior bench-
marks.

• To correct or adapt existing benchmarks where the functions stressed are not as
representative as one would hope or where the benchmark definition allowed for
implementations that do not reflect customer reality.

• To keep pace with technology growth and the explosion of new functions and
new techniques that this has allowed.

• To adapt to trends in the industry for the delivery of data processing solutions.
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Thus, in the area of traditional data processing on a single system, the TPC
developed:

• TPC-A (Gray, 1993), which added TPC’s rigor to the DebitCredit benchmark.
It was TPC’s first benchmark to measure the performance of online transaction
processing (OLTP) applications.

• This was followed by the addition of TPC-B (Gray, 1993), which focused on the
central computer of an OLTP application by providing the primary data processing
transaction in a batch mode that did not require networking or a user interface.

• TPC-C (Raab, 1993) shifted from a single, simple transaction to a mixture of
multiple transaction types and included added complexity for storage I/O and
end-user display I/O, thereby mimicking a more complex OLTP application. The
weight of the end-user display I/O demonstrated the need (in both the benchmark
and the industry in general) to develop three-tier environments where the end-user
interface is handled by a middle-tier application server, leaving the primary server
to focus specifically on the data processing.

• While the above benchmarks were developed at a period where free-form applica-
tion development was still required due to lack of standards or de-facto standards,
the TPC-E (Hogan, 2009) benchmark was able to rely on SQL standards to more
rigidly define portions of the implementation as well as adding some of the com-
plexity reflective of more modern applications, additional integrity requirements,
and an application design that fit naturally with either a two-tier or a three-tier
environment.

TPC-C and TPC-E continue to be active benchmarks, while TPC-A and TPC-B
have been retired as being too simplistic to adequately measure today’s systems.

Although the word “transaction” is a part of TPC’s name, a more appropriate (but
wordy) description might be the “Business Information Data Processing Performance
Council,” because there are other important areas to information processing that do
not fit the mold of an interactive online application. In particular, TPC recognized a
need to develop benchmarks associated with queries that might run for some period
of time (termed “decision support” or “data warehouse” or “business intelligence”).

The first of these was TPC-D (both because it was the fourth benchmark in TPC’s
development series and perhaps “D” for decision support). TPC-D was designed
to be a series of moderate and complex queries that would be executed against a
database of information. The complexity of mapping the queries to the data precluded
a smooth scaling mechanism as had been used for the transactional benchmarks and
required TPC-D to be split into a series of non-comparable database sizes.

A challenge with any benchmark definition, but particularly with one that is
specification-based, is that sometimes optimization techniques can be employed that
deliver results in ways that are far faster than originally expected. “The development
of aggregate/summary structures (e.g., join indices, summary tables, materialized
views) that are automatically maintained and transparently used by the query opti-
mizer via query rewrite was spurred by TPC-D because this technology decreased
query elapsed times resulting in an over proportional increase in the main perfor-
mance metric” (Nambiar and Poess, 2006). These new optimization technologies
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provided results much like what one might expect from a regularly run report pro-
gram and very unlike what one would expect from a unique new query. As a result,
TPC divided the benchmark into TPC-R (for “report”) which allowed these new
functions, and TPC-H (Poess and Floyd, 2000) (for “ad hoc”) which did not.

The TPC-DS (Nambiar and Poess, 2006) (for “decision support”) benchmark
reflected the inclusion of many SQL features that were not standardized at the time
TPC-D/R/H were developed. It differs from TPC-H in the overall database design,
the constraints defined between tables, the number and complexity of queries exe-
cuted, and the method for computing the overall QoS metric. It resembles TPC-H
in a requirement for specific query language and execution over a selection of non-
comparable database sizes. Version 2 of TPC-DS, a significant rewrite of the speci-
fication, targets the performance measurement of Big Data implementations (Poess,
2017; Poess, Rabl, and Jacobsen, 2017).

In addition to the importance of the actual business intelligence functions in to-
day’s data processing environments, there is a growing need to efficiently move data
from an online transaction processing system to a system that is dedicated to the busi-
ness intelligence functions. The TPC developed the TPC-DI (Poess, Rabl, Jacobsen,
and Caufield, 2014) (for “data integration”) benchmark to simulate the functions in
Extract, Transform, and Load (ETL) environments that might migrate information
from a variety of transactional systems into a data warehouse environment.

Finally, the TPC-W (for “web”) benchmark is a benchmark for business-oriented
transactional web servers. The workload is based on a controlled Internet commerce
environment and simulates a bookshop. The benchmark simulates multiple online
browser sessions by accessing dynamically generated pages. The performance met-
ric reported by TPC-W is the number of web interactions processed per second.
The benchmark simulates three profiles that differ by the browse-to-buy request
ratio: (1) primarily shopping, (2) browsing, and (3) web-based ordering. Although
discontinued, TPC-W has often been employed as a reference web application by
researchers evaluating their work.

While TPC-D, TPC-R, and TPC-W have been retired, the TPC-H, TPC-DS, and
TPC-DI benchmarks are actively in use today.

9.3.4 Evolution of the TPC Model Over Time

The computing industry has changed radically over recent decades, and so it is
natural that the TPC benchmark model would change, too.

The workload in OLTP applications is mostly driven by interface devices that
enable end users to input and display application output. In real life, these devices
are referred to as workstations. The pricing of individual workstations as a part
of the overall system cost was eliminated from the specifications, both because
optimal benchmark implementations generated work of an overwhelming number
of simulated workstations and because of the transition to multi-purpose personal
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computers in place of the character mode displays that were common when TPC was
formed.

It also became practical to manage pricing rules at a “corporate” level, rather
than benchmark by benchmark, so a TPC Pricing standard was created, providing a
consistent set of rules for all benchmarks.

As the millennium turned, another substantial component of the cost of computing
became important: the amount of energy required to provide a computing solution.
TPC developed and published a TPC Energy specification (Poess, Nambiar, et al.,
2018), which detailed methods to quantify the power/work required to deliver a TPC
benchmark result.

Both the TPC Pricing and the TPC Energy specifications are common spec-
ifications across all benchmarks. They augment all TPC benchmarks by adding
methodologies and requirements for including and reporting pricing and energy
metrics.

The requirement for benchmark publications to be reviewed and attested as com-
pliant with specifications required the formal introduction of auditors into the TPC
policies. They define the role, responsibilities as well as the process of becoming a
TPC certified auditor.

As industry-standard benchmarking matured, so too did techniques for stretching
the limits where marketing claims were concerned. The TPC tightened rules for fair
use of TPC-related information, including a documented penalty progression for
those who violated these rules. In order to help ensure fair comparisons, TPC also
reclassified older results that were perfectly valid for their time but might not be
representative of the current time. A new “Historical Result” category allowed the
results to stay on the books, but not to be unfairly compared to a brand new result.

While the TPC-C specification has changed over time, the base application
requirements of the benchmark have remained the same. When introduced
in 1992, the highest TPC-C published throughput result was 54 tpmC with
price/performance of $188,562/tpmC (IBM AS/400 Model E35, Historical
Result, online reference not available). By the end of 2002, the highest re-
sult was 709,220 tpmC with price/performance of $14.96/tpmC (HP Pro-
Liant DL760-900-256P Historical Result http://www.tpc.org/tpcc/results/
tpcc_result_detail.asp?id=101091903). This result was not comparable to
the prior one listed because the rules for pricing changed in the interim. As
of 2012, the highest throughput result was 30,249,688 tpmC with a price/per-
formance of $1.01/tpmC (SPARC SuperCluster with T3-4 servers).

The advances in computing technology (raw compute power of processors, dra-
matic improvements in memory and storage technologies, and impressive advances
in software capabilities) that allowed the growth in a score from just over 50, to
over 700,000 a decade later, to over 30,000,000 a decade after that, have spurred
developments that have altered the way TPC benchmarks are defined and managed:

• The massive amount of compute power has enabled the work that was once con-
tained on a single system to now be hosted as a “virtual system” using only a

http://www.tpc.org/tpcc/results/tpcc_result_detail.asp?id=101091903
http://www.tpc.org/tpcc/results/tpcc_result_detail.asp?id=101091903
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fraction of the resources on a larger system. This has prompted the creation of a
number of virtualization support products from computing hardware and software
manufacturers and has led TPC to the clear need to provide tools to demonstrate
performance in these environments, with regard to the data processing environ-
ments that are the focus of TPC.

• The massive amount of compute power has also enabled the development of a
broad range of information processing applications that were unheard of in the
first two decades of TPC’s existence. With TPC’s interest in business information
processing, this opened an opportunity for a broader spectrum of functions to be
covered by TPC benchmarks.

The complexity of modern information processing applications and the size of
modern computing solutions make it extremely expensive to generate and optimize
an application (including an application that implements a benchmark specification)
from scratch. Fortunately, the industry has also matured enough that there are suf-
ficient standards and pseudo-standards for application implementations that some
information processing benchmarks can be defined as executable code. A custom
application from a functional specification is no longer a requirement to ensure
fairness.

9.3.5 The Need and Opportunity for Kit-Based Benchmarks

When TPC was formed, the variety of implementation methods in use for solving
business data processing problems was widespread. This necessitated the creation
of functional specifications that did not dictate a specific implementation. This, in
turn, prompted the creation of a rigorous set of tests to ensure the specification was
met, and the requirement for a third-party attestation as to the probable validity of
the benchmark implementation.

These aspects are some of the true strengths of TPC benchmarks. However,
they can also be perceived as detractors for benchmark implementers (Huppler and
Johnson, 2014):

• The fact that TPC specifications are technology agnostic enables the use of a wide
range of technologies to be benchmarked. It also encourages the development of
new technologies to improve the performance of computer systems for the type of
application TPC benchmarks mimic. However, it also requires extensive resources
to implement and maintain a TPC benchmark implementation.

• The requirement for an audit and a set of tests (including crashing the system
and proving appropriate recovery) adds expense and complexity, especially if the
purpose of running the benchmark is an academic study.

• In addition, the TPC benchmarks discussed thus far tend to require fairly robust
system configurations in terms of processor, memory, and storage—adding yet
another expense that can be discouraging for both computer manufacturers and
academia.
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• Furthermore, TPC’s pricing requirement (another perceived strength with the
first several TPC benchmarks) makes it difficult to move from a traditional in-
house, capitalized single-server environment to one of the many virtual options
(in-house virtualization, shared resource solutions, cloud solutions, and more)
that are available today.

• Finally, the time required to create a new TPC benchmark precluded the delivery
of benchmarks that exercised new advances in technology while they were still
actually new.

In 2012–2013, a proposal for a revised benchmark development approach was
presented to TPC. The net of the proposal was that TPC should follow two tracks.
The first one, called the enterprise track, would focus on the style of existing TPC
benchmarks, retaining their inherent qualities and value. The second one, called
the express track, would focus on developing ready-to-run benchmark kits, trading
more rigid requirements on benchmark implementation for greater ease and cost of
measuring.

Kit-based benchmarks have a proven record of success in SPEC, which has
typically focused on a variety of areas where it was more reasonable to define specific
executable applications. While TPC continues to find strength in technology-agnostic
specifications, this is no longer a requirement for TPC benchmarks, both because of
the maturity of database and related standards and because of the reduction of likely
hardware and operating environments that are common today.

Table 9.1, updated from its original proposal by Huppler and Johnson (2014),
summarizes some of the current aspects in the dual methodology approach:

Table 9.1: Dual methodology approach of Huppler and Johnson (2014)

Enterprise model Express model
Functional benchmark specification;
perhaps with some required
TPC-provided code

Executable benchmark kit, enhanced by
documentation such as a user guide

Custom implementation Only system tuning for the fixed
implementation

Audit by TPC certified auditor Much self-validation

Price required Price optional (Note: price was
“eliminated” in the original proposal, but
shifted to “optional” as implemented)

Full system configuration (including
servers, storage, and intra-server
networking)

Limited configuration focused on
stressing key components of the
benchmark

Substantial implementation costs Reduced implementation costs
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Another key aspect of Express benchmark specifications is that they are restricted
to specific platforms. If a TPC member makes modifications to the benchmark
specification to allow for an expansion to another platform and those changes are
reviewed and found compliant with the current specification, the potential audience
for the benchmark is expanded. This aspect can help accelerate the time between
when a benchmark is proposed and when it can be used by the general public.

The inclusion of the Express model for benchmark development has had a very
positive impact on TPC. New members have joined to work on benchmarks in new
areas of data processing. Several new benchmarks have been released. In fact, in the
5 years since the proposal was formalized, there have been five new TPC benchmarks
that are based on the Express model—a substantial change from prior years! When
coupled with the TPC-DI benchmark discussed earlier and the TPC-VMS benchmark
discussed in the following section, it is clear that TPC has greatly broadened the areas
of data processing that can be evaluated with its benchmarks and taken steps to ensure
that this process is available broadly to both industry and academia.

The current Express benchmarks are TPCx-BB (big data benchmark) (Cao et al.,
2016; Wang et al., 2017), TPCx-HCI (benchmark for hyper-converged infrastruc-
ture) (Taheri et al., 2018), TPCx-HS (big data system benchmark) (Nambiar, Poess,
et al., 2014), TPCx-IoT (benchmark for IoT gateway systems) (Poess, Nambiar, et al.,
2018), and TPCx-V (virtualization benchmark for database workloads) (Sethuraman
and Taheri, 2010).

9.3.6 The Virtual World of Computing

Advances in hardware, software, storage, and networking technologies have allowed
customers to share resources in a highly protected way, where each customer can
act as if they have dedicated systems, but in fact they are using resources that are
shared among many. This can be done using virtualization techniques on a single
server, or it can be extended by what is commonly called the Cloud, where a specific
amount of compute resources (particularly processor and storage, often network
bandwidth and capacity, and sometimes other logical components) are contracted
to be available, without any specific understanding of the physical system(s) where
those resources reside. In the case of cloud systems, not only are compute resources
shared among many users, but systems management (back-up, disaster protection,
software updates, etc.) can also be a part of the contract.

Early TPC benchmarks were written with the single, dedicated server in mind.
There is still a strong need for this level of information, as there is still a strong
use of this compute paradigm. However, there is a growing need to measure the
performance of applications running in cloud environments.

To enable the existing TPC benchmarks to be run in cloud environments, TPC
has updated most benchmarks and the pricing specification to include cloud word-
ing. Specifically, TPC has updated the pricing specification to allow for cloud-based
pricing. If a benchmark standard does not specify a pricing model, a default pricing



224 9 Standardization

methodology, as defined in the pricing specification applies. The price of the entire
priced configuration of a benchmark publication, that is, prices for all hardware and
software components including their maintenance, must be used. For cloud publica-
tions this wording was amended to include licensed compute services. TPC defines
licensed compute services as “...publicly offered processing, storage, network, and
software services that are hosted on remote computer servers accessed via a wide
area network (e.g., the Internet). A customer pays a license fee to the Licensed Com-
pute Services vendor for the use of the processing, storage, network, and software
services. The Licensed Compute Services are not located or installed on a customer’s
premises.”

Because cloud providers offer short term and even “pay as you go” licensed
compute services, TPC added support for those pricing models. The wording ac-
commodates most vendors. For instance, if a vendor’s pricing does not include a
1-year price, the pricing of a benchmark publication may multiply the price of the
licensed compute services 1-month price by 12 to satisfy the above requirement.

At the same time, TPC has incorporated licensed compute services into bench-
mark specifications to allow for publication in clouds. To publish in public clouds
there remains one challenge: ACID. Many enterprise class benchmark specifications
such as TPC-C, TPC-E, and TPC-H mandate proof of ACID (Atomicity, Consistency,
Isolation, and Durability) compliance. To prove ACID compliance, each benchmark
publication must run an ACID test. This test, among others, requires failing a durable
media. Failing a durable media in a public cloud is inherently difficult, unless a ven-
dor isolates the test environment from other customers of its cloud. TPC is currently
discussing approaches to solving this issue.

More recent TPC benchmarks focus specifically on the expanding areas of vir-
tualization and cloud computing. All of the benchmarks mentioned above that were
developed under the Express model relate to these environments. In addition, TPC
has developed and delivered the TPC-VMS benchmark using the Enterprise model.

9.4 Concluding Remarks

In an effort to provide and maintain fair industry standards for measuring system-level
and component-level performance of computer systems, industry-standard consor-
tia such as the Standard Performance Evaluation Corporation (SPEC)21 and the
Transaction Processing Performance Council (TPC)22 have established themselves
in the computer industry. We provided an overview of benchmark standardization
efforts in the area of computer systems. We focused on SPEC and TPC, the two
most prominent benchmark standardization bodies in the area of computer systems
and information technology (IT). One of their next big challenges is to tackle arti-
ficial intelligence (AI) and machine learning (ML). While there exist benchmarks

21 Standard Performance Evaluation Corporation (SPEC): https://www.spec.org
22 Transaction Processing Performance Council (TPC): http://www.tpc.org

http://www.tpc.org
https://www.spec.org
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for evaluating AI capabilities, these benchmarks focus mainly on the performance
of a single application that fits in a server or a set of servers. However, many of
today’s commercial AI systems run very large, complex applications. Measuring the
performance of such systems calls for a benchmark framework that can encapsulate
the complexity of such systems. It must include multiple servers running in multiple
data centers, user interfaces, high availability, network communication, and storage
I/O. Beyond a training and inference component, it must include mechanisms that
enable high concurrent access and load balancing capabilities to measure latency
and throughput.
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Chapter 10
The SPEC CPU Benchmark Suite
Klaus-Dieter Lange, James Bucek, and Alexander Carlton

This chapter presents an overview and retrospective on the emergence, develop-
ment, and evolution of one of the industry’s most popular standard benchmarks for
computing systems, the SPEC CPU benchmark suite by the Standard Performance
Evaluation Corporation (SPEC). SPEC CPU is designed to stress a system’s pro-
cessor, memory subsystem, and compiler. The original version of this benchmark
SPEC CPU89 was released in 1989 as SPEC’s first benchmark. Since then, five
new generations of the SPEC CPU benchmark have been released: CPU92, CPU95,
CPU2000, CPU2006, and CPU2017. In the following, we describe each of these
benchmarks and show how they have influenced the computer industry over the
years, helping to boost computing performance by several orders of magnitude. For
CPU2017, we provide details on the benchmark architecture, workloads, metrics,
and full disclosure report.

10.1 SPEC CPU89

SPEC’s goal with CPU89 was to shift the focus of the marketplace away from the
existing problematic microkernel implementations for MIPS and MFLOPS tests.
With the release of CPU89, SPEC was driving two major changes. First, to become
far more rigorous in the definition of the benchmarks and thus make comparisons
more meaningful. Second, to upscale the benchmarks dramatically so that current
and upcoming systems had to work hard to provide good performance and scalability.

While the old microkernels were typically only a few dozen lines of code each,
which may or may not be written equivalently for all systems, the SPEC CPU bench-
mark included 214,000 lines (including white space and comments) of explicitly
defined portable source code (Henning, 2007).

CPU89 consisted of ten workloads that all met the necessary criteria (cf. Chapter 1,
Section 1.5). These criteria included requirements that the workloads be based on
useful applications with code and inputs taken from real-world usage in order to
exercise new processor designs in a realistic manner. Each workload used a single
set of source code that compiled on all systems of interest without changes, used a
single set of input files, and had one set of reference output files against which results
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were compared to validate correct operation. Also all code and inputs had to be either
freely available or licensed to SPEC so that they could be easily redistributed in this
standardized form. All workloads had to run long enough that measurement timings
were robust and not greatly impacted by startup effects. In the first release, four
of these workloads were primarily integer-based workloads of varying complexity
written in C, while the rest were FORTRAN programs dominated by their floating-
point calculations.

The new benchmark generated considerable traction when it was announced. By
the time of CPU89, the original group of the EE Times magazine and the four
founding vendors of SPEC had grown to a full dozen member companies, including
the big names in computing, and the rapid growth had drawn notable attention. The
presence of the EE Times magazine in a leadership role of the SPEC organization
added to the degree of coverage in the press.

The public reception of the new benchmark was further aided when Reinhold We-
icker, the author of the then popular Dhrystone benchmark commonly used (against
his advice) to measure MIPS, publicly supported the new CPU89 benchmark. We-
icker’s 10 page article, “An Overview of Common Benchmarks” in IEEE Computer
of December 1990 (Weicker, 1990) included a deep technical review of the popular
Dhrystone, Whetstone, and LINPACK benchmarks as well as touching on several of
the other known public tests including the new SPEC benchmark, which he described
as “probably the most important current benchmarking effort.” Weicker eventually
became a key participant in the SPEC CPU Subcommittee helping to develop four
generations of its benchmarks. His insight gleaned from the work to define some
of industry’s first run rules for Dhrystone later influenced many sections of the
SPEC CPU rules that are described below.

One of the notable aspects of SPEC’s new benchmark was the amount of informa-
tion published with a result (cf. Chapter 1, Section 1.5.2). In addition to the top-level
SPECmark score (the main metric summarizing the measured CPU performance),
every result disclosure listed the runtime for each of the ten individual workloads
along with each resulting performance score, calculated so that everyone could see
which workloads did especially well and which workloads showed less performance.
Hence, each result disclosure showed a sort of fingerprint from which an astute reader
could begin to determine which of the ten benchmarks matched their own use cases
and therefore which aspects of a system design were the likely performance bot-
tlenecks. Furthermore, complete information about the system tested, including a
full listing of every compiler switch used, made it much easier for others to repli-
cate the experiment and prove to themselves the results were sound. Companies
and academics were free to try and estimate their SPECmark scores, but all results
published in the SPEC Newsletter underwent a review by the members of SPEC that
would check for errors, question the compliance of compilers and other performance
techniques, and serve as a significant hurdle for those who might want to overstate
their capabilities. Before too long many parts of the computer marketplace, from the
tech press to the purchasing manager dealing with vendor sales materials, learned
there was value in a proper SPEC result that included all the details.
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After the initial release of SPEC’s CPU89 benchmark, it quickly became clear that
changes and enhancements were needed. A little over a year later, the benchmark was
on its second update. The most significant change was the definition of the developer-
favored SPECint and SPECfp metrics in order to replace the press-favored combined
metric. This addressed the problem of attempting to have a single SPECmark metric
to try to cover both integer performance and the very rapidly evolving arena of
floating-point performance.

The update also included the first attempt to define throughput metrics and test-
ing methodology to enable comparisons against multi-processing capable systems
where even more performance could be realized with multiple processes executing
simultaneously.

10.2 SPEC CPU92

Within another year, SPEC released the CPU92 benchmark.1 This release was an
upgrade to the original CPU89 benchmark. The developers started with the existing
workloads and all that had been learned from them, and then looked at many new
suggested workloads as well as ways to improve all of the existing workloads.

As released, CPU92 expanded the set of workloads to 6 integer-centric workloads
and 14 floating-point intensive workloads including two that reflected the changes
happening in computer languages where some interesting new work was being done
in C rather than FORTRAN. The new workloads expanded the application space
to include file compression, ray tracing and analysis of sound, neural networks,
and a variety of simulation and modeling applications from electromagnetic plasma
through atomic structures up to shallow water models from weather forecasting.

While the application space was expanded, overall the practical scope of the
workload source codes remained largely similar. The lines of code expanded slightly,
to about 240,000. Several of the existing individual workloads were replaced with
updated code and larger inputs that increased the complexity of those workloads in
order to better stay ahead of the current state of the art in processor and compiler
techniques. And, in a sign of what would happen to any static benchmark facing
rapidly evolving technology, one workload, 030.matrix300, was dropped entirely
from the benchmark because that workload had been rendered too simplistic by the
sophisticated optimizations and advances of compiler technology.

SPEC benchmark developers improved their checking of assumptions with an-
alytic data. Workload candidates were analyzed not just for their portability and
scope, but also for their micro-level statistics (e.g., instruction mix or cache behav-
ior), and evaluated on their behavior and their stability as well as their usefulness
and applicability.

Many initially interesting workload candidates suffered from being too tightly
coupled to their target architecture, relying on non-portable compiler features unique

1 SPEC CPU92: https://www.spec.org/cpu92

https://www.spec.org/cpu92
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to a specific environment. Other popular workloads proved to suffer from numerical
stability issues, for example, executing notably different iteration counts because
of details such as architecture specific underflows. Some applications produced
similar but inconsistent results across different systems, variations which application
experts considered to be equally valid but rendered comparisons unmanageable.
Some applications could not be set up to run for long enough times without inordinate
amounts of input, while some others only reached a long runtime from high degrees of
repetitive behavior. With each passing meeting more promising workload candidates
would prove to suffer from unsolvable forms of this kind of problem and hence were
dropped from the lists along the way towards the final release.

By this time, the development for the SPEC benchmarks was punctuated by a
series of what were called benchathons. These were week-long meetings where
engineers would leave their respective company offices and travel to one location
where everyone set up workstations in some large room and work together side-by-
side, fixing the benchmarks. Often groups of different experts would be standing
over some engineer at the keyboard, everyone throwing out ideas for the issues that
were causing one workload or another to misbehave. Good work could get done via
email and phone calls during all the other weeks, but key to the quality of the SPEC
benchmarks was getting all this talent away from their day jobs and then having them
work together for days on end just to make each benchmark as good as it could be.

Soon after the release of CPU92, SPEC announced the definition of SPECrates,
an improvement to the multi-processing metric that remained the basis for the mea-
surement methodology for the next several releases. The original throughput method-
ology was somewhat cumbersome and because the metric was explicitly tied to the
number of simultaneous processes it worked against making any comparisons across
different configurations (which was becoming a problem as there were starting to
be some single-processor systems that could run two or more copies of a workload
almost as fast as some of the multi-processor systems). The new SPECrate metrics
offered a way to compare the total throughput achieved regardless of the level of
concurrency used to reach those levels. These new metrics also enabled an easier
way to look at a multi-processor system’s ability to scale total throughput as the
count of processes was increased, revealing in some cases systems which struggled
to supply all that their processors would demand when fully utilized.

During CPU92’s time as a popular benchmark, performance (and especially
compiler technology) advanced rapidly. Soon, SPEC was faced with a problem
of how carefully crafted compiler tools could lead to notably higher scores than
common compilers. Smart compiler writers could target specific compiler techniques
at specific issues in specific codes which then could be turned into opportunities for
dramatic increases in performance, but perhaps only for relatively narrow use cases,
and this could be a problem if the narrow uses were only a bit wider than necessary
to validate the results of a CPU92 benchmark.

SPEC already had rules in place against the use of compiler tricks—or any
other technique—if such tricks were effective only for a specific benchmark. How-
ever, sometimes legitimate improvements in optimization techniques caused existing
benchmarks to be obsoleted. For example, the 300×300 matrix multiplication bench-
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mark, 030.matrix300, had long been considered useful, but then compilers added
valuable cache-aware optimizations for vector and matrix algorithms. These were
not gimmicky benchmark specials, but they boosted performance on that benchmark
far more than they did on larger, more realistic codes, so 030.matrix300 became
unrepresentative and it was dropped.

In 1994, SPEC announced a distinction between base results and peak results.
This enabled the separation of SPEC CPU results by the kinds of compiler features
that could be utilized. The base rules emphasized safety (could not lead to unexpected
behavior) and broad applicability (would lead to performance improvements across
a wide variety of types of code). Under the base rules, all compiler flags used had
to be endorsed as good for general use, only a limited number of flags (four) could
be passed to the compiler, and the same set of compiler flags would be used for all
of the workloads in the set. Additionally, base flags could not specify an assertion
(for example, assert that in this application no data structures ever overlapped in
memory), nor could a flag name any specific routine or variable in the sources
(hence could not specify what functions to inline or which variables to promote),
nor enable feedback-directed optimization.2

In the other category, the peak rules allowed some room for compiler features
that could have benefits on some types of code but that might suffer problems when
applied to other types of code. Here the list of compiler flags, or even the compiler
itself, was allowed to be unique to each specific test, so that one could enable compiler
features only for the particular workloads that would benefit. Further, there was no
limit on the length of the list of compiler flags, so that it was possible to enable yet
another feature to get that last percentage of extra performance. However, the rules
stated that if a result utilized the peak rules, then one is also required to publish the
same configuration as measured under the base rules; and the benchmark tools were
set up to generate both sets of scores and test information on the same page.

The base rules about safety set the tone for what was expected by these rules which
made it more likely that the techniques and tools used would be a more reasonable
match for average customers. However, in practice two aspects of the new base rules
accounted for much of the differences in vendor measurements. The simple limit on
the count of flags in base results meant that vendors had to focus on the effective use
of only a few switches, which kept the lists of options from overwhelming customers
reading the results. But also the base rules pushed compilers to focus on successfully
generalizing their key techniques to be safe and effective across almost all code
simply because of the variety of wildly different applications in the benchmark set,
and that each of these different applications needed to have all their results pass
explicitly defined output validation.

Also worthy of noting about CPU92, this was the release where SPEC learned a
lot about what happens when the world at large is motivated to improve their SPEC
scores. CPU92 included 072.sc as one of the workloads, which was derived from an
ASCII spreadsheet application which was considered to be a workload of common

2 Two-pass compilers where the executable built by the first pass of the compiler was then exercised
to generate run-time profile data that would be used to guide the compiler’s second pass in order to
generate code optimized for the profiled behavior.
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interest. Unfortunately, SPEC underestimated the value that vendors could squeeze
out by reimplementing the “curses” library that was integral to the design of the
original application and was still involved in a notable percentage of the workload’s
execution profile.

During the years when CPU92 was in high use, several vendors shipped increas-
ingly clever implementations of this “curses” library, implementations that adapted
their behavior to the run-time conditions in ways that greatly reduced the amount
of work performed in several situations including how this library was used in the
CPU92 benchmark. Late in the life cycle of CPU92, SPEC addressed this problem
by releasing a SPEC-specific version of this library and updated the rules to require
all new measurements to be based on this specific version of the library. Still, the
SPEC developers learned to be very careful to avoid making assumptions about the
behavior of any code not provided by the benchmark itself. From this point onwards,
SPEC added a more robust analysis of all execution times to the candidate workload
evaluation criteria, and since then most SPEC CPU workloads spend 95% or more
of their instructions in code explicitly compiled from sources provided by the SPEC
benchmark.

Related to the learning experience with the 072.sc workload, the CPU92 bench-
mark was the first benchmark where SPEC provided support for Microsoft Windows.
Taking advantage of Windows NT support for the POSIX API, the Unix-based work-
loads could now be compiled on a Windows system. SPEC’s efforts to produce clean
single source implementations of the applications in the suite pushed the SPEC
developers to avoid code that relied on proprietary extensions either in the com-
piler namespace or in the library namespace. It was a relatively straightforward
task to port the resulting code to any system that provided complete support for
the POSIX interface definitions, including the new POSIX feature in Windows NT.
This enabled the SPEC CPU benchmarks to be run on a whole new category of
systems, which became especially interesting to those seeking to compare the RISC
designs in Unix-based systems to Intel’s CISC designs that were primarily available
in Windows-based systems.

10.3 SPEC CPU95

Barely 3 years later, the evolution of computer performance already demanded a
new set of benchmarks. For the CPU95 release the SPEC CPU team threw aside just
about everything and started from scratch to create a new benchmark suite that was
several times larger and far more robust.3

Most of the workloads in the CPU95 suite were entirely new. A few cases used
the same base application, but the CPU95 workload was significantly changed from
the similar workload in CPU92, usually based on a newer release of the application
code, and in all cases with much larger and usually much more complex input sets.

3 SPEC CPU95: https://www.spec.org/cpu95

https://www.spec.org/cpu95


10.4 SPEC CPU2000 237

For example, in CPU95 the benchmark based on the “li” Xlisp interpreter now
evaluated an entire suite of Lisp stress tests rather than CPU92’s one implementation
of a 9-Queens chessboard puzzle. And instead of this chessboard puzzle, CPU95
entered the area of artificial intelligence in computer gaming with a full version of
an internationally ranked “Go” playing program. Similar leaps in scope happened
across the entire suite of workloads. Overall, the total lines of code across all the
workloads in the suite had more than doubled from CPU92 to 426,000 lines.

SPEC also developed an entirely new benchmark harness to manage both the
building and the execution of the benchmarks as well as the production of all result
files. For SPEC CPU95 and later suites, whoever runs the benchmark edits a single
configuration file with all of the desired settings including specifying any benchmark-
specific compiler switches or flags, and once this configuration file is set one script
invocation does everything: build or rebuild any of the benchmarks as necessary, set
up the execution environment, execute each benchmark as defined, verify that correct
answers are obtained, and produce a formatted PostScript report including a graph
of the results. This new harness enabled the automation of CPU95 measurements
and removed the opportunity for manual interventions that might affect the integrity
of a benchmark during execution.

10.4 SPEC CPU2000

CPU2000 was the fourth generation of the SPEC CPU benchmark suite.4 And
much like its predecessors, CPU2000 carried most of the same basic approaches
to measuring processor and system performance, just scaled up with more modern
applications and workloads to meet the needs of better comparative testing of the
latest processors and systems.

It took 5 years to develop this next generation of the SPEC CPU benchmark.
This was partially due to difficulties in finding applications that can satisfy the
ever-increasing requirements for a candidate workload to be relevant. Faster systems
implied the need for longer computations for a benchmark to remain doing interesting
work for enough time to enable robust measurements, and the source code was not
available for many interesting applications designed to remain compute bound for
long periods of time. And not all of those applications had readily available workloads
to use as inputs that fit within reasonable storage and memory limitations and also
produce stable results that can be validated by automated methods.

For CPU2000, SPEC openly solicited candidate codes from the general public in
exchange for a small award to offset the costs of working with SPEC to get a candidate
code through the benchmark development process. In the end, 17 of the 26 workloads
in the CPU2000 suite came to SPEC through this public solicitation, which enabled
the benchmark to provide a much richer set of performance challenges.

4 SPEC CPU2000: https://www.spec.org/cpu2000

https://www.spec.org/cpu2000
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The resulting benchmark had an integer suite, called CINT2000, with 12 work-
loads in C and C++, as well as a floating point suite, CFP2000, with another 14 work-
loads in FORTRAN 77 and FORTRAN 90. The total lines of code to be compiled
across the entire benchmark has again about doubled to be 811,000 lines.

With the increasing size of the workloads, SPEC paid closer attention to the
memory usage patterns of the workloads. Workloads that are too small will readily
have their working set living in cache and hence potentially lead to overoptimistic
performance expectations. However, workloads that are too large risk driving com-
mon configurations into significant paging behavior making them unstable and also
uninteresting to most of the performance community. The target for most workloads
in CPU2000 was preferably 100 MB or more, but no more than 200 MB so that the
workload can run comfortably on a system with a 256 MB memory configuration.
This memory requirement becomes potentially significant when running the bench-
mark on the larger server systems with 32, 64, 128, and even more processors, each
of which may have a process eagerly consuming 200 MB of memory.

10.5 SPEC CPU2006

The fifth generation of the SPEC CPU benchmark suite, CPU2006 was released in
August 2006 after another 5+ years of development, again using a public Search
Program to solicit candidate codes from a wider range of sources. To keep up with
the increases in system performance and capabilities, the new workloads were again
several times larger than was common for CPU2000, the target memory sizes were
now 1 GB rather than 200 MB, and again the overall lines of code had more than
tripled to three million lines of code.

The benchmark harness was also significantly upgraded. A large change was the
much improved support for replicating workloads across the potentially large number
of processors in the bigger system. However, there were also a slew of new features
that made it easier to manage large-scale testing, including a new sysinfo capability
to automatically extract information from the system being tested avoiding the need
to tailor the benchmark configuration file for each and every system tested.

This focus on improvements to the benchmark harness was a reflection of the
growth in the usage of SPEC CPU measurements. Back in the days of CPU89 there
were ~200 results submitted to SPEC for publication. CPU92 had ~1,200 result
submissions published by SPEC. For CPU95 that count had jumped to ~2,000. With
CPU2000 the count leapt again up to over 7,500 results. By the end of CPU2006,
there had been nearly 50,000 results submitted to SPEC for publication. This data,
along with SPEC CPU2017 data, can be seen in Table 10.1.

Table 10.2 briefly details the changes between all of the SPEC CPU benchmark
suites throughout the years (Henning, 2007).



10.6 SPEC CPU2017 239

Table 10.1: Growth of SPEC CPU benchmark result publications on www.spec.org
as of June 24, 2020

CPU89 CPU92 CPU95 CPU2000 CPU2006 CPU2017
Number of
results

191 1,292 2,574 7,654 48,381 19,648

Table 10.2: Growth of SPEC CPU benchmarks (KLOC, thousands of lines of code)

CPU89 CPU92 CPU95 CPU2000 CPU2006 CPU2017
Integer

Workloads 4 6 8 12 12 10

KLOC 182 163 394 583 1,612 2,484

Languages C C C C, C++ C, C++ C, C++,
FORTRAN
95

Floating point

Workloads 6 14 10 14 17 14

KLOC 32 77 32 236 1,719 4,684

Languages FORTRAN
77

C,
FORTRAN
77

C,
FORTRAN
77

C,
FORTRAN
77 + 90

C, C++,
FORTRAN
77 + 90

C, C++
FORTRAN
77 + 90 + 95
+ 2003

10.6 SPEC CPU2017

The most recent industry-standard compute-intensive benchmark from SPEC is
SPEC CPU2017.5 Similar to its five predecessor benchmarks, SPEC CPU2017 is
designed to stress a computing system’s processor, memory subsystem, and com-
piler (Bucek et al., 2018). The benchmark consists of four suites, containing 43 dis-
tinct workloads, capable of producing 16 different metrics, which one can use to
measure and compare computing performance.

SPEC CPU2017 is delivered to those that hold a license for the benchmark
suite in an ISO image that contains source code files. Since SPEC CPU2017 is
a collection of source code and pre-compiled tools, the suite is portable to many
operating environments. Since there are pre-built tools that come with the overall
suite, the user typically does not need to build the main harness tools as part of
the installation process. SPEC CPU2017 is ported to various architectures (such as
AMD64, ARMv8, AArch64, Intel IA32, Power ISA, SPARC, and more) and various

5 SPEC CPU2017: https://www.spec.org/cpu2017

https://www.spec.org/cpu2017
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Unix-based (AIX, Linux, Mac OS X, and Solaris) and Windows operating systems.6
The install scripts that are provided with the SPEC CPU2017 image recognize
supported systems. If a user is installing SPEC CPU2017 on an unsupported, or
a not fully supported environment, the user will likely have to build some tools
manually. Documentation provides some guidance on how to accomplish this feat.

Since SPEC CPU2017 is delivered as source code, the individual workloads
within the suite need to be compiled in order to create an executable binary. To
build these binaries a user will need compilers that can build C99, C++2003, and
Fortran-2003. Through building executable binaries with compiler options that fit
with the SPEC CPU2017 Run and Reporting Rules, the suite is able to stress a
system’s compiler. Results can vary greatly from a very basic compilation without
optimizations to results that have a high base optimization level and specialized peak
optimization for various workloads. Alternatively, if you are a license holder that
routinely publishes SPEC CPU2017 results for comparison purposes, you may be
able to obtain a set of pre-compiled binaries bundled together and distributed from
various OEMs (typically processor or compiler manufacturers).

During the development of SPEC CPU2017, the SPEC CPU committee conducted
a Search Program in order to find acceptable candidate workloads to include in the
suite.7 Some workloads from the previous and now retired suite, SPEC CPU2006,
were updated to newer versions of their respective source codes and/or workloads for
SPEC CPU2017. The SPEC CPU committee continued its tradition of preferring to
adapt real-world applications into benchmarks, instead of using synthetic programs.

In the rest of the chapter, we present SPEC CPU2017 in detail describing its
architecture, workloads, metrics, and full disclosure report.

10.6.1 SPEC CPU2017 Suites

As previously mentioned, SPEC CPU2017 has four suites.8 These suites are as
follows:

• SPECspeed 2017 Integer
• SPECspeed 2017 Floating Point
• SPECrate 2017 Integer
• SPECrate 2017 Floating Point

Each of the four SPEC CPU2017 suites contains at least ten workloads and pro-
duces an overall base metric, with an optional peak metric. These metrics are allowed

6 SPEC CPU2017 system requirements:
https://www.spec.org/cpu2017/Docs/system-requirements.html
7 SPEC CPU benchmark search program: https://www.spec.org/cpu/cpuv6
8 SPEC CPU2017 suites: https://www.spec.org/cpu2017/Docs/overview.html#suites

https://www.spec.org/cpu2017/Docs/overview.html#suites
https://www.spec.org/cpu/cpuv6
https://www.spec.org/cpu2017/Docs/system-requirements.html
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to be used for any purpose that fits within the Fair Use Rules for SPEC CPU2017,
including comparisons to other systems.9

A SPECspeed suite and a SPECrate suite differ in terms of what type of metric is
being measured, the number of copies of a given workload that may be run, whether
parallelism can be used during the benchmark, how much memory is required by the
benchmark (due to different workload sizes), and how much disk space is required.
In a SPECrate suite, the user determines the number of copies of a given workload
to run at a given time. For a SPECspeed suite, only one copy of a given workload
will be run at a given time. This single copy does not mean that the workloads are
single threaded. SPECspeed can have multiple threads run due to the use of OpenMP
and/or compiler auto-parallelization. In contrast, SPECrate suites explicitly disallow
the use of parallelization by the run rules.10 In order to properly fit the workload
size of SPECrate suites into a system, SPEC CPU2017 requires 1 GB (if compiled
in 32-bit) to 2 GB (if compiled in 64-bit) of physical memory per copy. SPECspeed
suites require a minimum of 16 GB of physical memory due to the workload size.11
All SPEC CPU2017 suites are recommended to have at least 250 GB of disk space
available. SPECrate suites require up to an extra 1.2 GB of disk space per copy of an
active benchmark.12

The difference between an integer or floating point suite is based on the amount
of floating-point operations performed by each workload. The SPEC CPU subcom-
mittee measured candidate workloads and found that (depending on the system and
compiler) the integer suites typically issue 1% or fewer floating-point instructions,
whereas the floating point suites typically issue 10–35% floating-point instructions.

10.6.2 SPEC CPU2017 Workloads

As previously mentioned, SPEC CPU2017 contains 43 workloads, which can be
seen as separate benchmarks (sub-benchmarks) within the four suites. The integer-
based suites (SPECspeed 2017 Integer and SPECrate 2017 Integer), as well as the
SPECspeed 2017 Floating Point suite, each contain ten benchmarks. The SPECrate
2017 Floating Point suite contains 13 benchmarks. These benchmarks are listed in
Figure 10.1.13

For the integer suites, each benchmark has a SPECspeed and SPECrate bench-
mark pair that are similar to each other (except for the differences noted in the last
section) and have very similar benchmark names—5xx.something_r for SPECrate

9 Fair use rules for SPEC CPU2017:
https://www.spec.org/fairuse.html and https://www.spec.org/fairuse.html#CPU2017
10 Compiler parallelization: https://www.spec.org/cpu2017/Docs/runrules.html#compilerParallel
11 SPEC CPU2017 physical memory system requirements:
https://www.spec.org/cpu2017/Docs/system-requirements.html#memory
12 SPEC CPU2017 disk space system requirements:
https://www.spec.org/cpu2017/Docs/system-requirements.html#disk
13 SPEC CPU2017 benchmarks: https://www.spec.org/cpu2017/Docs/#benchmarks

https://www.spec.org/cpu2017/Docs/#benchmarks
https://www.spec.org/cpu2017/Docs/system-requirements.html#disk
https://www.spec.org/cpu2017/Docs/system-requirements.html#memory
https://www.spec.org/cpu2017/Docs/runrules.html#compilerParallel
https://www.spec.org/fairuse.html#CPU2017
https://www.spec.org/fairuse.html
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Fig. 10.1: SPEC CPU2017 benchmark suite

benchmarks and 6xx.something_s for SPECspeed benchmarks. Among the floating
point suites, there are only nine SPECspeed and SPECrate benchmark pairs. The
SPECrate 2017 Floating Point suite contains four benchmarks that are not in the
SPECspeed 2017 Floating Point suite. There were various reasons for this case, but
most commonly the benchmark either did not have OpenMP support or the work-
load was deemed too similar to another benchmark. There is one benchmark in the
SPECspeed2017 Floating Point suite that is not in the SPECrate 2017 Floating Point
suite. This was due to not being able to obtain a workload that fits within the size
requirements for SPECrate benchmarks.

The SPEC CPU2017 benchmarks are written in C, C++, Fortran, or some combi-
nation of those programming languages. The benchmarks come from a wide range
of application areas such as (but not limited to) programming languages, route
planning, discrete event simulation, XML to HTML conversion, video compres-
sion, artificial intelligence, data compression, molecular dynamics, fluid dynamics,
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explosion modeling, various imaging applications, various weather forecasting/mod-
eling applications, physics and electromagnetics applications. The applications in
the integer suites are all written in one of the three aforementioned languages (five
written in C, four written in C++, and one written in Fortran). The floating point
suite applications are written in one or more languages of C, C++, Fortran (three in
C only, two in C++ only, three in Fortran only, two in C++ and C, three in Fortran
and C, and one in C++, C, and Fortran). All of this shows that the benchmarks in
SPEC CPU2017 are derived from a diverse spectrum of computing domains and are
well representative of many applications that users care about or interact with on a
regular basis.

Of the 43 benchmarks in SPEC CPU2017, 13 benchmarks were updated and share
similar names to SPEC CPU2006 benchmarks. However, during the update process
new source code and workloads were provided or modified such that SPEC CPU2006
and SPEC CPU2017 benchmarks with similar names may not perform the same. The
other 30 benchmarks were new applications that were included via the SPEC CPU
Benchmark Search Program. The Search Program was designed to encourage indi-
viduals or teams to submit their real-world, compute bound, portable applications
with various problem sizes for consideration. Not every submission successfully
entered the Search Program, and not all submissions that did enter the Search Pro-
gram successfully completed all six steps. Along the path to completing each step,
it was expected that the submitter of an application will be able to work with the
SPEC CPU Subcommittee to port the application to the SPEC CPU harness, provide
workloads as necessary demonstrating the application’s profile, and assist in porting
the application to various environments.

10.6.3 SPEC CPU2017 Metrics

Of the 16 different metrics SPEC CPU2017 can measure, four per suite, the most im-
portant differentiation occurs between SPECspeed and SPECrate metrics. A SPEC-
speed metric answers the common question of how fast a computing system can
complete a given set of workloads; in other words, it is a time-based metric (cf.
Chapter 3, Section 3.3). A SPECrate metric answers the common question of how
much work a computing system can complete in a measured amount of time; in other
words, it is a throughput metric.

Given that a SPECspeed and a SPECrate metric measure different aspects of a
computing system’s performance, the values that are used as a basis to derive these
types of metrics are also computed differently. After a single copy of a SPECspeed
benchmark is completed on a given system under test (SUT), the runtime of that
copy is recorded and divided into the runtime of the same benchmark on a reference
machine. This produces a ratio that is then shown in results disclosures. This ratio
can be increased either through optimizations (compiler, BIOS, OS, hardware con-
figuration) or through running a multi-threaded versus a single-threaded copy of a
given SPECspeed benchmark. A SPECrate metric shares the same basis for comput-
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ing a metric as a SPECspeed benchmark (SPECrate benchmark runtime on a SUT
divided into the runtime of the same SPECrate benchmark on a reference machine),
but it has an extra multiplier. The multiplier for the SPECrate benchmark comes
from the number of copies a user chooses to run on a SUT. A SPECrate metric is not
comparable or convertible to a SPECspeed metric. This is due to run rules, system
requirements, and implementation of the benchmarks within SPEC CPU2017. A
summary of the differences between SPECspeed and SPECrate metrics is provided
in Table 10.3.14 For both SPECspeed and SPECrate metrics, in order to provide
some assurance that results are repeatable, the entire process is repeated. The tester
may choose: (1) to run the suite of benchmarks three times, in which case the tools
select the medians of the ratios or (2) to run twice, in which case the tools select the
lower ratios (i.e., slower).

The second differentiation for SPEC CPU2017 metrics are base and peak metrics.
Each result must have one base metric and optionally can have one peak metric. The
difference between a base and peak metric primarily comes from the compilation
environment used for the metrics. Base metrics are intended to represent a simpler
build process and environment. In a base metric, all benchmarks of a given language
(C, C++, Fortran) must use the same compiler flags in the same order. On the other
hand, a peak metric is intended to represent a more complex environment where more
consideration may be given to optimizing performance of individual applications.
In a peak metric, benchmarks of the same language may have different compiler
optimizations applied. Peak metrics also allow for feedback-directed optimization,
whereas base metrics do not.15

Although SPEC CPU2017 metrics are calculated to many decimal points in the
raw file (.rsf files produced by runs) and logs of an individual run, SPEC CPU2017
metrics are always reported to a maximum of three significant digits. SPEC CPU2017
results report the overall metrics (e.g., SPECrate2017_fp_peak) shown in Full Dis-
closure Reports using a geometric mean of the computed performance ratios for the
individual benchmarks.

14 SPECspeed and SPECrate metrics: https://www.spec.org/cpu2017/Docs/overview.html#Q15
15 SPEC CPU2017 base and peak metrics:
https://www.spec.org/cpu2017/Docs/overview.html#Q16

https://www.spec.org/cpu2017/Docs/overview.html#Q16
https://www.spec.org/cpu2017/Docs/overview.html#Q15
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The motivation to use normalized metrics (i.e., performance ratios with respect
to a reference machine) aggregated using a geometric mean is that each of the bench-
marks should be treated as equally important; that is, the workloads modeled by the
different benchmarks are assumed to be equally important for customer applications
without weighting them in any way. The geometric mean is used to compute the
overall metric, so that the results are independent of the reference machine used
by SPEC. The intent is that improvements in each benchmark are encouraged and
rewarded equally. In other words, a 20% improvement in one benchmark should
have the same effect on the overall mean as a 20% improvement on any of the other
benchmarks, and another 20% improvement on that benchmark should have the same
effect as the last 20% improvement. This ensures that no single benchmark in the
suite becomes more important than any of the others in the suite. The properties of
the geometric mean that ensure this behavior were discussed in detail in Chapter 3
(Section 3.5.3.2).

10.6.4 SPEC CPU2017 Energy Metrics

Experimental power statistics were introduced with V1.0 in order to gain a better un-
derstanding on how much power is consumed by the SUT and how much of this con-
sumption is influenced by the workloads (Lange, 2009). The energy metrics matured
over time and became officially supported with the release of SPEC CPU2017 V1.1.16
Now, vendors may choose to publish and make public comparisons based on any or
all of the eight additional metrics. To conduct such SPEC CPU2017 energy metric
measurements, the following additional hardware is required:

• a power analyzer,
• a temperature sensor,
• a separate Linux or Windows controller system, in order for the SPEC PTDae-

mon (Huppler et al., 2012) to gather power data without interfering with the
SUT.

When measuring the energy metrics (e.g., SPECrate2017_int_energy_base), in
addition to obtaining geometric mean performance and geometric mean energy
metrics, the user can obtain data on the energy (in kilojoules), average power, and
maximum power for each benchmark within a suite (e.g., 500.perlbench_r in the
SPECrate2017_int suite). The Energy Ratios for each benchmark are based on the
collected energy data and calculated as follows:

16 https://www.spec.org/cpu2017/Docs/changes-in-v1.1.html

https://www.spec.org/cpu2017/Docs/changes-in-v1.1.html
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Energy Ratio (SPECspeed_benchmark) =

=
Energy (SPECspeed_benchmark) of the reference machine

Energy (SPECspeed_benchmark) of the SUT
,

Energy Ratio (SPECrate_benchmark) =

=
Energy (SPECrate_benchmark) of the reference machine

Energy (SPECrate_benchmark) of the SUT
× number of copies.

(10.1)

These Energy Ratios are used to compute the geometric mean Energy Ratios,
which are seen as the SPEC CPU2017 energy metrics.17 As an example, the first non-
reference system result that published a SPEC CPU 2017 energy metric produced a
SPECrate2017_int_energy_base result of 1,080.18

The SPEC CPU2017 energy metrics were incorporated as part of the SPEC
Power and Performance Benchmark Methodology (SPECpower Committee, 2014),
the methodology used when designing the SPECpower_ssj2008 benchmark (Lange
et al., 2012). The SPECpower_ssj2008 benchmark and the SPEC Power and Perfor-
mance Benchmark Methodology are presented in detail in Chapter 11.

10.6.5 SPEC CPU2017 Full Disclosure Report

In addition to containing measured performance data (graphs and tables to display
runtimes, ratios, statistics, and metrics), the Full Disclosure Report (FDR) for a
SPEC CPU2017 result contains information that is essential to understanding the
result. To understand a SPEC CPU2017 FDR, it is best to look at one. Let us consider
the first result from the reference system, a SPECrate2017_fp result gathered on a
Sun Fire V490 system.19

Looking at the top of the first page, the user can see information about the
system, hardware vendor, test sponsor/tester, test and availability dates as well as the
geometric means reported as the SPECrate2017_fp metrics for the result. Notice,
there is only a SPECrate2017_fp_base metric and the SPECrate2017_fp_peak metric
is shown as “Not Run.” SPEC CPU2017 requires all results to produce a base metric,
but the peak metrics are optional. Below the top sections of the result, there is a graph
area. This graph is meant to be a summary and visual representation of information
found in the results table at the bottom of the second page of the result.

Also included in the FDR are required sections to fully and accurately describe
the SUT hardware and software, notes fields (for the operating system, platform,
and other general notes), compiler invocation details and portability flags used,

17 https://www.spec.org/cpu2017/Docs/runrules.html#rule_4.10.3
18 https://spec.org/cpu2017/results/res2019q3/cpu2017-20190903-17792.html
19 SPEC CPU2017 reference system result:
https://spec.org/cpu2017/results/res2017q2/cpu2017-20161026-00001.pdf

https://spec.org/cpu2017/results/res2017q2/cpu2017-20161026-00001.pdf
https://spec.org/cpu2017/results/res2019q3/cpu2017-20190903-17792.html
https://www.spec.org/cpu2017/Docs/runrules.html#rule_4.10.3
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optimization flags and other compiler flags used, and user supplied flag files that
explain compiler and systems settings in more details.

The result table (see Figure 10.2) in any SPEC CPU2017 result shows all of
the performance data measured and computed during a run. Besides the runtime of
an individual benchmark, all of the data in this table have been rounded to three
significant digits. To understand the result table, it is best to break it down into
sections.

Fig. 10.2: SPEC CPU2017 results table

The base table (there would be a peak table if the result ran the peak metric) in
the FDR previously referenced can be defined by four groups of columns. The first
group of columns are the two leftmost columns that show the name of the benchmark
and the number of copies. If this were a SPECspeed result, the copies column would
be replaced by a threads column. The next group of columns is from the first column
labeled “seconds” to the first column labeled “maximum power.” These six columns
represent the first iteration of the benchmarks for the SPECrate2017_fp_base metric.
The next six columns represent the second iteration, and the blank last six columns
represent the third iteration (if it had been run).

In the case of the SPECrate2017_fp_base result being studied, each value in each
“seconds” column for all benchmarks is the number of seconds it took for the indi-
vidual copy to run rounded to the nearest second. In the event that a SPECrate2017
result is a multi-copy result, the results in each “seconds” column for each bench-
mark would represent the time the slowest copy took to complete. Moving to the
right, a “ratio” column displays the ratio for the benchmark run as described in
Section 10.6.3 (Table 10.3). The next four columns display power statistics as well
as one Energy Ratio.

Each benchmark in a result table for a given SPEC CPU2017 result will have
one set of information displayed in bold text for a given iteration. This bold text
shows which iteration is used to calculate geometric mean ratios. In the event of a
two iteration run, such as the referenced SPECrate2017_fp_base result, the slower of
the two iterations will be used to calculate geometric mean ratios. If a result has all
three base or peak iterations run, then the median runtime of all three iterations for a
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benchmark (based on the full runtime calculated to multiple decimal points) would
be used to calculate geometric means. The geometric means can be seen below all
the values in the results table, near the metric or geometric mean values gathered
during the run.

10.6.6 Concluding Remarks

This chapter presented an overview and retrospective on the emergence, develop-
ment, and evolution of the SPEC CPU benchmark suite, which is designed to stress
a system’s processor, memory subsystem, and compiler. We looked at the six gener-
ations of this benchmark starting from 1989 with the release of SPEC CPU89 until
the latest release in 2017 (SPEC CPU2017).

Moving forward with the next suite, the SPEC CPU committee is already exploring
internal workload candidates for the next SPEC CPU suite (in collaboration with the
SPEC High Performance Group and the SPEC Research Group), discussing how to
organize a new Search Program, and trying to proactively determine some rules and
requirements that were previously very contentiously debated. It is hard to say with
any certainty what exact changes may be introduced; nonetheless, new applications
and workloads, updated source codes to stay relevant with the status of programming
languages, and ever-evolving tools seem like good bets. The general hope is to have
a much shorter development period for the next benchmark suite.
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Chapter 11
Benchmarking the Energy Efficiency of Servers
Jóakim von Kistowski, Klaus-Dieter Lange, and Jeremy A. Arnold

The measurement and benchmarking of computing server energy efficiency has
become an ever more important issue over the last decades. In addition to mobile and
other end-user devices, the energy efficiency of data centers and servers has gained
attention as power consumption increases and is expected to continue increasing in
the future. In 2010, the U.S. Environmental Protection Agency (U.S. EPA) estimated
that 3% of the entire energy consumption in the USA is caused by data center power
draw (Lange and Tricker, 2011). According to a New York Times study from 2012,
data centers worldwide consume about 30 billion watts, which is equivalent to the
approximate output of 30 nuclear power plants (Glanz, 2012).

Improving the energy efficiency of data centers and servers requires the ability
to measure and rate that efficiency. A comprehensive rating method can enable data
center owners to purchase more efficient devices. It can also help service providers
to select the most efficient servers for their specific applications. Finally, a reliable
rating method makes it possible for regulators to define standards and regulations
specifying which devices are considered energy efficient and which are not. To
achieve these goals, a rating method must meet a number of criteria based on the
generic benchmark quality criteria we discussed in Chapter 1, that is, it must be
relevant, reproducible, fair, and verifiable.

Relevance in the context of energy efficiency is challenging, as most servers in
modern day data centers are not being utilized to their full capacity. Instead, servers
are used to serve requests that arrive over time and are provisioned with additional
capacity in order to be able to cope with variations in load such as unexpected bursts.
This leads to an average load somewhere between 10% and 50% (Barroso and Hölzle,
2007). However, servers consume a different amount of power depending on the load
level. An energy-efficiency benchmark must account for this and measure these states
to obtain a complete picture of the server’s energy efficiency. Older server efficiency
benchmarks did not consider this issue of low load power consumption. While some
benchmarks used for power and efficiency testing, such as JouleSort by Rivoire et al.
(2007), run multiple workloads in a suite, these benchmarks are executed only at full
load.

This chapter describes a rating methodology developed by the SPEC OSG Power
Subcommittee for commodity servers. It is designed to characterize and rate the
energy efficiency of a SUT for multiple load levels, showcasing load level differ-
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ences in system behavior regarding energy efficiency. The methodology was first
implemented in the SPECpower_ssj2008 benchmark and later extended with more
workloads, metrics, and other application areas for the SPEC Server Efficiency Rat-
ing Tool (SERT). The SERT suite was developed to fill the need for a rating tool that
can be utilized by government agencies in their regulatory programs, for example,
the U.S. Environmental Protection Agency (EPA) for the use in the Energy Star
program for servers.

11.1 SPEC Power and Performance Benchmark Methodology

All SPEC Power benchmarks and rating tools share the underlying SPEC Power
and Performance Benchmark Methodology (SPECpower Committee, 2014) as their
basis. The methodology has been developed by the SPEC OSG Power Committee
as a tool for the analysis and evaluation of the energy efficiency of server systems.
It was first implemented in SPECpower_ssj2008 (Lange, 2009) and later in the
SPEC SERT (Lange and Tricker, 2011) and SPEC Chauffeur Worklet Development
Kit (SPECpower Committee, 2017a). In the following, we discuss the measurement
methodology and its general building blocks.

11.1.1 Device Setup

The SUT is at the center of the methodology’s power measurement setup. It is
a physical system that runs the workloads used for evaluation. The SUT’s power
consumption and its performance during testing are used to derive the energy-
efficiency score. Performance metrics are gathered from the SUT using a testing
software harness. The actual test execution software on the SUT is referred to
as the host software. The host spawns separate on-SUT processes, referred to as
clients, for each logical CPU core (hardware thread). These client processes execute
the executable part of the workload. Spawning multiple clients allows for easy
parallelization, as workloads can simply be executed in parallel within different
isolated client environments. Alternatively, a client may also be configured to span
multiple logical CPUs, in which case the executable workload is expected to run in a
multi-threaded environment, utilizing all available CPU resources. The overarching
goal of this parallelization scheme is to ensure scalability, which, in this case, is
considered to be a subset of the relevance criterion from Chapter 1.

In most cases, a transactional workload (see Chapter 8) is executed on the clients.
The clients collect the performance metrics for their workload and forward this
information to the host. The workload is controlled by the controller system. It coor-
dinates which workload to run at which load level. It also collects all measurements
both from the SUT, as well as from external measurement devices, and it calculates



11.1 SPEC Power and Performance Benchmark Methodology 253

the metrics and scores. The director manages all software instances as well as all
measurement devices. The setup is illustrated in Figure 11.1.

Controller Director

System under Test (SUT)

Power Analyzer PSU

Temp. Sensor

Network

Host

CPU 0 CPU n

Core 0 Core n

HWT 0 HWT n HWT 0 HWT n

Client Client Client Client

starts

pinned

HWT: Hardware Thread
PSU: Power Supply

Fig. 11.1: Typical server power measurement device setup

The power methodology requires at least one external power analyzer and one
temperature sensor. The power analyzer measures the power consumption of the
entire SUT, whereas the temperature sensor verifies the validity of measurements,
ensuring that all experiments are conducted under similar environmental conditions.
External power and temperature instrumentation are used, as opposed to potential in-
ternal instrumentation, as the methodology makes no assumptions about the internal
structure of the SUT, allowing for maximum portability. Reliance on external power
measurement devices also enables the definition of tight constraints on the accuracy
of the power measurement devices. Specifically, power measurement devices must
feature a maximum measurement error of 1% or better.

The use of internal instrumentation may be adequate and appropriate for research
purposes when working with a specific hardware model and when the researcher
understands exactly what the sensors are measuring. Nonetheless, making compar-
isons across different models or architectures based on internal sensors is likely to
result in inaccurate comparisons.
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11.1.2 Load Levels

According to Barroso and Hölzle (2007), servers spend most of their time in a
CPU utilization range between 10% and 50%. To account for this, workloads within
the SPEC Power and Performance Benchmark Methodology are designed to mea-
sure system energy efficiency at multiple load levels. This sets benchmarks imple-
menting the methodology apart from conventional performance benchmarks, such
as SPEC CPU (cf. Chapter 10), or other energy-efficiency benchmarks, such as
JouleSort (Rivoire et al., 2007) or the TPC-Energy benchmarks (Poess et al., 2010).
To achieve workload execution at different load levels, a methodology-compliant
benchmark calibrates the load by first determining the maximum transaction rate for
the given workload on the SUT. The maximum transaction rate is measured by run-
ning concurrently on each client as many workload transactions as possible. For the
calibration, the executable workload is executed according to the closed workload
scheme (cf. Chapter 8, Section 8.3.2.1); that is, a new transaction is scheduled after
the previous transaction in the respective thread (client) terminates.

This calibrated rate is then set as a 100% load level for all consecutive runs. For
each target load level (e.g., 100%, 75%, 50%, 25%), the benchmark calculates the
target transaction rate and derives the corresponding mean time from the start of one
transaction to the start of the next transaction. During the measurement interval, these
delays are randomized using an exponential distribution that statistically converges
to the desired transaction rate. As a result, lower target loads consist of short bursts
of activity separated by periods of inactivity. It follows that these load levels are
executed according to the open workload scheme (cf. Chapter 8, Section 8.3.2.2), as
the point in time when a transaction terminates has no bearing on the time at which
the next transaction is dispatched.

Figure 11.2 shows how calibration and the following measurement intervals would
run using intervals at 100%, 67%, and 33% as an example. Note that the load levels
are defined as percentage of target throughput and do not indicate CPU utilization,
which is a common misconception.

11.1.3 Phases and Intervals

The transactional executable workload is executed in three phases to achieve repro-
ducible calibration and measurement results: a warm-up phase, a calibration phase,
and a measurement phase. The warm-up phase runs the executable workload at full
load for a short period of time discarding any measurements to account for tran-
sient side-effects. After warm up, the workload enters the calibration phase. During
calibration, transactions are executed as fast as possible to determine the maximum
transaction rate on the specific SUT. Finally, the measurement phase takes place. In
the measurement phase, transactions are scheduled according to the targeted load
level.
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Fig. 11.2: Example intervals for the calibration and measurement phase (Kistowski,
Beckett, et al., 2015)

Each phase is split into a configurable number of intervals, which serve different
purposes depending on the phase in question. Each interval is the period in time,
during which the actual work of the phase is being executed.

The executable workload is put to sleep for 10 s between each interval, allowing
external power analyzers to adjust their range settings for the next interval. Each
interval is also split into a pre-measurement, measurement, and post-measurement
period. The pre-measurement period allows the interval to reach a steady state,
whereas the post-measurement period ensures that the workload and hardware do
not begin shutdown during measurement. The measurement period performs the
phase-specific work. It measures the maximum throughput during calibration and
the current throughput and power consumption during the measurement phase. In
this time, all transactions are logged and power measurements are reported at 1 s
intervals.

Each phase runs its intervals in sequence. The type of sequence depends on the
phase in question. The warm-up phase runs multiple intervals of varying length,
and the calibration phase runs multiple identical calibration intervals in sequence.
The calibration result is the average throughput of those intervals. The measurement
phase runs its intervals in a graduated measurement sequence executing workloads at
gradually diminishing target transaction rates. Running multiple warm-up intervals
provides higher visibility as to whether the warm-up time was sufficient to reach
steady state.
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11.1.4 Basic Energy-Efficiency Metric

The power methodology computes efficiency based on performance and power mea-
surements. In addition to defining how power is measured, it must also define a
performance measure and measurement method. This performance measure is in-
tended to be used in conjunction with the power measurements in order to derive
an efficiency metric. For this context, throughput (see Chapter 3, Section 3.3.2) has
established itself as the commonly used metric.

As the size and execution duration may vary between different workloads,
throughput is often normalized by comparing it to the throughput of a reference
system—see Equation (11.1). This results in a speedup metric (see Chapter 3, Sec-
tion 3.3.1).

normalized_throughput =
measured_throughput
reference_throughput

(11.1)

The basic energy-efficiency metric for a single point in time or single measure-
ment interval is computed as a ratio of performance to power consumption—see
Equation (11.2)—where performance is either throughput or normalized through-
put.

efficiency =
performance

power_consumption
(11.2)

Alternatively, efficiency can be calculated as the ratio of work performed—see
Equation (11.3)—to the energy expended, which is mathematically equivalent to
performance per power consumption in the case of throughput being the primary
performance metric.

efficiency =
work_performed
energy_expended

(11.3)

Using throughput as performance metric, energy efficiency is the ratio of through-
put to power consumption in Watts. This is mathematically equivalent to the alter-
native efficiency ratio, as work units per time divided by power equals work units
divided by energy—see Equation (11.4).

efficiency =
throughput

power_consumption

[
s−1

W

]
=

work_units
energy_expended

[
1
J

]
(11.4)

Both SPECpower_ssj2008 and the SPEC SERT use this base metric for each
measurement interval. For each specific executable workload and each concrete
load level, average throughput is normalized and then divided by average power
consumption—see Equation (11.5).

load_level_efficiency =
normalized_throughput

power_consumption

[
1
J

]
(11.5)
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11.2 SPECpower_ssj2008

The SPECpower_ssj2008 benchmark was developed by the SPEC OSG Power Com-
mittee and was the first industry-standard benchmark to measure the energy efficiency
of servers. It was developed in conjunction with the initial version of the SPEC Power
and Performance Benchmark Methodology and served both as the basis for devel-
oping the first draft of the methodology and as its first implementation. The lessons
learned during the development of the benchmark were incorporated into the method-
ology. The benchmark was based on the earlier SPECjbb2005 benchmark, which
was a Java implementation of a simple OLTP workload. In SPECpower_ssj2008 the
workload was modified to run at ten different load levels (100%, 90%, ..., 10%) as
well as an active idle measurement, rather than only measuring performance at full
utilization like its predecessor.

The order of the load levels, from 100% down to 10% and then Idle, was chosen
intentionally in order to eliminate a sudden change in load between calibration
and the first measurement interval. Jumping directly from 100% utilization during
calibration to a 10% load is both unrealistic (for most server environments) and
difficult to measure accurately, since it may take time for the server to adjust to the
new load.

The benchmark is implemented in Java for portability to different operating
systems and processor architectures, and it makes use of multiple threads and Java
Virtual Machines to scale to different size systems. While the initial version of the
benchmark only included support for measuring the energy efficiency of a single
server, later updates allowed the benchmark to test multiple servers together. This
capability is important for measuring the energy efficiency of blades and similar
servers that utilize a shared power infrastructure.

11.2.1 Metric Calculation

The SPECpower_ssj2008 report1 shows the throughput (ssj_ops) and power con-
sumption as well as a load level efficiency score (“Performance to Power Ratio”) for
each load level. The load level efficiency score is calculated as in Equation (11.5),
but in this case the throughput is not normalized. It was not necessary to normalize
the performance in SPECpower_ssj2008 since there was only a single workload and
the scores did not need to be combined.

The overall metric is calculated as the sum of the throughput for each load level
divided by the sum of the power consumption in each load level (including active
idle). This metric weights each of the load levels equally, and making improvements
to either the performance score or the power consumption at any load level will result
in an improvement to the score.

1 https://www.spec.org/power_ssj2008/results/res2007q4/power_ssj2008-20071129-00015.html

https://www.spec.org/power_ssj2008/results/res2007q4/power_ssj2008-20071129-00015.html
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One drawback of using an energy-efficiency ratio as the only primary metric of
SPECpower_ssj2008 results is that it does not account for the capacity of the servers
when comparing results. So while System A may be more efficient than System B,
this may be irrelevant if System A does not have high enough performance to meet
the needs of a particular application when System B does. So the reader of the results
should be considering the maximum performance as well as the efficiency.

11.2.2 System Configuration

Another innovation in SPECpower_ssj2008 was the detailed reporting of the system
configuration required in the Full Disclosure Report (FDR) for published results.
While SPEC benchmarks have historically required documentation of any hardware,
software, and other configuration details required to reproduce the result (in support
of the reproducible and verifiable benchmark quality criteria described in Chapter 1),
the SPEC OSG Power Committee recognized that many components of the system
could influence the power consumption even if they did not affect performance.

As a result, the SPECpower_ssj2008 full disclosure report has more detail than
most benchmarks regarding specific vendors, power supply details, and the presence
of extra hardware such as additional network cards, keyboard, and optical drives
which will not affect the reported performance but may influence the power con-
sumption of the server. The run rules also require detailed disclosure of non-default
firmware settings, which can often be used to influence power consumption, even if
such settings are not often adjusted by most users.

11.3 SPEC Server Efficiency Rating Tool (SERT)

The SPEC Server Efficiency Rating Tool (SERT) has been developed by the SPEC
OSG Power Committee as a tool for the analysis and evaluation of the energy
efficiency of server systems. In contrast to energy-efficiency benchmarks such as
JouleSort (Rivoire et al., 2007), the TPC-Energy benchmarks (Poess et al., 2010), and
SPECpower_ssj2008, SERT does not execute an application from a specific domain.
It does not aim to emulate real-world end-user workloads, but instead provides a set
of focused synthetic micro-workloads called worklets that exercise selected aspects
of the SUT. The worklets have been developed to exercise the processor, memory,
and storage I/O subsystems.

For each of the server components to be stressed, SERT offers a range of worklets
designed to exercise the targeted component in a different manner. This allows for
thorough analysis of system energy behavior under different workload types designed
to target the same component. As an example, the CryptoAES worklet profits from
both specialized instruction sets, as well as better CPU to memory connectivity,
whereas the SOR worklet primarily scales with processor frequency.



11.3 SPEC Server Efficiency Rating Tool (SERT) 259

11.3.1 Workload and Worklets

SERT’s goal is the execution of different mini-workloads at multiple load levels.
Those mini-workloads are referred to as worklets and are grouped into worklet
collections, referred to as workloads. Specifically, a workload is a collection of
worklets with a common testing goal. All worklets within a workload are designed to
test a common resource by utilizing it in a specific fashion. They execute work units,
referred to as transactions. The SERT v2.0 suite features three separate workloads:
CPU, Memory, and Storage. Each of these workloads consists of multiple worklets,
which are executed at several load levels.

Each worklet’s performance and power consumption are measured separately for
each load level, and the energy efficiency, as well as the normalized energy efficiency,
is calculated from the measurement results. The workload score is an aggregate of all
the separate worklet scores. It provides a workload efficiency score, which signifies
how well the tested system performed for all the worklets in the specified category
(for details, see Section 11.3.2).

In the following, we describe each of the workloads in detail. Each workload
was designed so that it primarily stresses the server subsystem after which it was
named (the CPU workload stresses CPU, the Memory workload stresses memory,
the Storage workload stresses internal storage devices). However, it is important
to keep in mind that workloads do not exclusively stress that subsystem. Work-
loads also measure and characterize the energy efficiency of interactions between
multiple subsystems. To this end, the CPU workload also utilizes some memory,
the memory workload utilizes some CPU, and the storage workload utilizes some
CPU and memory. All following descriptions are consistent with the SERT design
document (SPECpower Committee, 2017b).

11.3.1.1 CPU Workload

The CPU workload is defined as a collection of seven CPU worklets:

1. Compress: De-/compresses data using a modified Lempel–Ziv–Welch (LZW)
method (Welch, 1984).

2. CryptoAES: Encrypts/decrypts data using the AES or DES block cipher algo-
rithms.

3. LU: Computes the LU factorization of a dense matrix using partial pivoting.
4. SHA256: Performs SHA-256 hashing transformations on a byte array.
5. SOR (Jacobi Successive Over-Relaxation): Exercises typical access patterns in

finite difference applications.
6. SORT: Sorts a randomized 64-bit integer array during each transaction.
7. Hybrid / SSJ: The hybrid SSJ worklet stresses both CPU and memory, with either

serving as the primary bottleneck, depending on the system configuration. SSJ
performs multiple different simultaneous transactions, simulating an enterprise
application.
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11.3.1.2 Memory Workload

The memory workload consists of worklets designed to scale with installed memory.
Specifically, this means that the worklets are designed to measure a higher (better)
performance score with improved memory characteristics (e.g., higher bandwidth,
lower latency, total memory size). The primary memory characteristics being tested
are bandwidth and capacity.

The memory worklets serve as the major exception to the load level and interval
specification in Section 11.1.2. In contrast to other worklets, they do not scale via
transaction rate, but instead scale with memory capacity. In addition, they do not
use throughput as their performance metric, but they modify it to include bandwidth
and/or capacity.

1. Flood: A sequential memory bandwidth test that exercises memory using arith-
metic operations and copy instructions. Flood is multi-threaded to reward servers
that can utilize more memory concurrently with multiple CPUs and DIMMs. It
automatically adjusts to use all available system RAM. It runs at two load levels
called “Full” and “Half,” utilizing all and half of the system memory, respec-
tively. Flood’s performance score is a function of both the memory capacity and
the bandwidth measured during testing.

2. Capacity: A memory capacity test that performs XML operations on a minimum
and maximum dataset. Capacity scales with capacity over its load levels. If the
worklet’s memory set exceeds the amount of physically available memory, it
incurs a performance penalty for each transaction that attempts to read data not
stored within physical memory. The final metric is a function of transaction rate
and physical memory size including performance penalties.

11.3.1.3 Storage Workload

The developers of the SERT suite have included a workload for testing storage in
order to enable a well-rounded system test. Storage worklets test the server’s internal
storage devices.

1. Random: Reads and writes data to/from random file locations.
2. Sequential: Reads and writes data to/from file locations picked sequentially.

11.3.1.4 Idle Workload

Idle keeps the system in an idle state in order to measure the idle power consumption.
It does not measure any efficiency metric (only consumption).
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11.3.2 Energy-Efficiency Metrics

SERT calculates separate intermediate energy-efficiency metrics, where each step
aggregates the efficiency of the previous step. The calculation is illustrated in Fig-
ure 11.3 and consists of the following intermediate metrics:

1. Interval efficiency,
2. Worklet efficiency (over all load levels),
3. Workload efficiency (for all worklets),
4. Total efficiency.

Fig. 11.3: Calculation of energy-efficiency metrics (Kistowski, Lange, et al., 2019)

11.3.2.1 Interval Energy Efficiency

Energy efficiency is calculated separately for each interval using the metric described
in Section 11.1.4. As a small change, interval efficiency is multiplied by a constant
factor of 1000—Equation (11.6). This is a cosmetic factor used to move the resulting
score into a number range easier to read for a human reader.

interval_efficiency =
normalized_throughput

power_consumption

[
1
J

]
× 1000 (11.6)
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11.3.2.2 Worklet Energy Efficiency

The worklet energy-efficiency score is calculated using the geometric mean of each
worklet’s separate interval scores as follows:

worklet_efficiency = �
n∏
i=1

(interval_efficiencyi)��
1
n

, (11.7)

where n represents the number of load levels per worklet, and interval_efficiencyi
represents the energy efficiency for load level i.

SERT uses the geometric mean over the arithmetic mean as it is known to preserve
ratios (such as energy efficiency and the normalized throughput, see Chapter 3,
Section 3.5.3.2).

11.3.2.3 Workload Energy Efficiency

The workload energy-efficiency score is calculated by aggregating the efficiency
scores of all worklets within the workload using the geometric mean as follows:

workload_efficiency = �
n∏
i=1

(worklet_efficiencyi)��
1
n

, (11.8)

where n represents the number of worklets per workload, and worklet_efficiencyi is
the energy efficiency for each specific worklet, calculated using Equation (11.7).

11.3.2.4 Final Aggregate Energy Efficiency

The server energy-efficiency score is the final aggregate of the workload scores. It
is also derived using the geometric mean. In contrast to the other geometric mean
aggregates, the final score does not consider all workloads equally. Instead, it uses
a weighted mean, putting a different focus on each of the workload scores. For
specific use cases, weights may be chosen according to the use case. The U.S. EPA
has adopted SERT v2.0 for regulatory purposes. They use the following workload
weights:

• High CPU weight: 65%,
• Medium Memory weight: 30%,
• Low Storage weight: 5%.

With these weights, the final score would be calculated as follows:
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server_efficiency =exp(0.65 × ln(CPU_workload_efficiency)
+ 0.3 × ln(memory_workload_efficiency)
+ 0.05 × ln(storage_workload_efficiency)).

(11.9)

This specific weighting is targeted at regular data center compute nodes, resulting
in a high CPU and medium memory weight that is intended to mirror a typical
real-world compute workload’s resource profile. Storage is weighted with a low 5%
weight, as storage servers are not the target devices for this weighting.

11.4 Concluding Remarks

This chapter introduced the SPEC Power and Performance Benchmark Methodology,
which is designed to facilitate the measurement and rating of server energy efficiency.
Taking into account that servers are usually not fully utilized, the methodology is
built to ensure workload execution at multiple load levels to obtain a thorough and
relevant view of the server in question. The chapter described two implementations
of the methodology in detail: SPECpower_ssj2008 and the SPEC SERT suite.

SPECpower_ssj2008, the first benchmark to implement this methodology, has
been successfully applied to measure the energy efficiency of servers since its release
in 2007, and it has driven the development of new, energy-efficient servers since
then. In contrast, the SERT suite is not a benchmark, but a rating tool intended
for use by regulatory programs such as the U.S. EPA Energy Star Version 3.0
Enterprise Servers Program,2 and the EU Commission Regulation 2019/424.3 Also,
the International Organization for Standardization (ISO), in collaboration with the
International Electrotechnical Commission (EIC), adopted the SERT suite in their
server energy standard (ISO/IEC 21836),4 which will foster the usage of the SERT
suite globally. SERT implements the methodology, running multiple executable
mini-workloads, each at multiple load levels. It aggregates its partial results in a
single metric using multiple intermediate geometric means.

The SPEC Power and Performance Benchmark Methodology has had a significant
impact on the development of new benchmarks and on the energy efficiency of
servers. It has been applied in many benchmarks, including some TPC and VMware
benchmarks, and it has helped drive and measure a significant improvement in the
energy efficiency of servers since 2007.

Energy-efficient servers are one part of the combination necessary to provide
services. The second part, the software itself, can still be wasting energy, either
through deficient configuration, suboptimal deployment, unnecessary computations,
or a combination of those. Several initiatives are underway to extend the scope of
server efficiency, for example, the SPEC Power Research Working Group started

2 https://www.energystar.gov/products/data_center_equipment/enterprise_servers
3 https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0424&from=EN
4 https://www.iso.org/standard/71926.html

https://www.iso.org/standard/71926.html
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0424&from=EN
https://www.energystar.gov/products/data_center_equipment/enterprise_servers
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to identify what programming languages are more sensitive to compiler optimiza-
tions (Schmitt et al., 2020), and ISO/IEC is drafting a new standard energy efficiency
of middleware (ISO/IEC JTC 1/SC 39, 2020). These will help to consider how to
benchmark and rate the energy efficiency of software in standardized benchmarks.
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Chapter 12
Virtualization Benchmarks
Klaus-Dieter Lange, David Schmidt, and David Morse

The concept of partitioning a computer’s physical resources to create virtualized user
environments has been around for decades. From the mainframes of the 1960s and
1970s through the current era of x86 servers, the goal of maximizing the utilization
and efficiency of business IT resources has driven the ongoing development of server
virtualization technologies. The fundamental component of server virtualization is
the hypervisor, which is computer software, firmware, or hardware that creates
and runs virtual machines. Hypervisors can run directly on a host’s hardware, or
can run as an application within a traditional OS, to manage and control virtual
machines (VMs) on the host.

At the end of the twentieth century and the beginning of the twenty-first century,
a new wave of hypervisors, led by VMware’s VMware Workstation and VMware
ESX Server, ushered in a renaissance of server virtualization in the computer industry.
These new hypervisors ran on newer x86 servers which were increasing in popularity
with businesses. In less than 10 years, many hardware and software vendors such as
HP, Sun, Microsoft, Citrix, Oracle, and Red Hat introduced competing virtualization
solutions. Additionally, the open-source community developed hypervisors like Xen.

One of the early uses of these hypervisors was to take advantage of improved
performance of newer generations of server hardware products to consolidate the
business applications running on older servers onto fewer new ones. This consoli-
dation increased the utilization of servers in a data center and because fewer servers
were needed it led to reduced space, cooling, and energy costs.

Further development of hypervisors introduced redundancy capabilities allowing
VMs to be moved between physical servers and storage pools within a cluster of
hypervisors while still being fully active. This capability allowed IT departments
to perform maintenance on the hardware, add new hardware to a given cluster, and
balance the resource utilization across multiple servers, all with no downtime for
the end users. New VMs can be provisioned from predefined templates for rapid
deployment. These hypervisor capabilities provide the infrastructure for what is now
known as “The Cloud.”

With the introduction and rise in popularity of new server virtualization products
in the early 2000s, the inevitable question arose: Which solution performs better?
The question is not a simple one, as virtualization environments consist of hypervi-
sors, server platforms, storage, and networking. No common workload was devel-
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oped to measure head-to-head performance of different hypervisors, as traditional
benchmarks were intended to run on bare-metal servers, not within a virtualized
environment. The traditional benchmark would be constrained by the resources pro-
vided to the VM rather than the entire virtualization solution. Likewise, running a
traditional benchmark on the bare-metal server with the hypervisor present, even if
possible, would not provide a meaningful measure of the hypervisor’s performance.

In this chapter, we provide an overview of established benchmarks for evalu-
ating the performance of virtualization platforms. We focus on the SPEC VIRT
series of industry-standard benchmarks released by SPEC (SPEC VIRT_SC 2010,
SPEC VIRT_SC 2013, and SPECvirt Datacenter 2020) while also considering the
VMmark benchmark released by VMware.

12.1 SPEC Virtualization Benchmarks

In October 2006, SPEC established the OSG Virtualization Working Group to ex-
plore the possibility of developing an industry-standard benchmark to measure vir-
tualization performance. The initial members of the working group were representa-
tives from AMD, Dell, Fujitsu Siemens, Hewlett-Packard, Intel, IBM, Sun Microsys-
tems, and VMware. In March 2007, the working group became a full subcommittee
with its initial charter: “The goal of the subcommittee is to develop a standard
method for comparing virtualization performance of data center servers. The sub-
committee’s deliverable will be a benchmark that will model server consolidation
of commonly virtualized systems including mail servers, database servers, applica-
tion servers, web servers, and file servers. The benchmark will support hardware
virtualization, operating system virtualization, and hardware partitioning schemes
for server consolidation scenarios.”

12.1.1 SPEC VIRT_SC 2010

The first SPEC virtualization benchmark was SPEC VIRT_SC 2010 (Lange et
al., 2012), released on July 14, 2010. It was designed to be a standard method
for measuring a virtualization platform’s ability to manage a server consolida-
tion scenario and for comparing performance between virtualized environments.
SPEC VIRT_SC 2010 measures the performance of the hardware, software, and
application layers within a virtualized environment with a single hypervisor host.
It uses three modified SPEC benchmarks as a workload to stress the system under
test (SUT). Each of these three applications, SPECweb2005, SPECjAppServer2004,
and SPECmail2008, drives predefined loads against the SUT. The benchmark re-
quires the use of a set of clients to support the benchmark harness and drive
the workloads on the SUT. SPEC VIRT_SC 2010 also supports the use of the
SPECpower methodology to measure power usage during the benchmark. Results
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can be submitted in three categories: performance only (SPECvirt_sc2010), per-
formance/power for the SUT (SPECvirt_sc2010_PPW), and performance/power for
server only (SPECvirt_sc2010_ServerPPW).

12.1.1.1 Design

The benchmark suite consists of several SPEC workloads that represent applications
that, at the time, industry surveys reported to be common targets of virtualization
and server consolidation. The workloads were modified to match a typical server
consolidation scenario’s resource requirements for CPU, memory, disk I/O, and
network utilization for each workload. The SPEC workloads used were:

• SPECweb2005: This workload represents a web server, a file server, and
an infrastructure server. The SPECweb workload is partitioned into two vir-
tual machines (VMs): a web server and a combined file server and backend
server (BeSim). SPEC VIRT_SC 2010 uses the support workload from the orig-
inal benchmark with a modified dataset.

• SPECjAppserver2004: This workload represents an application server and back-
end database server. Specifically, SPECjAppServer2004 was modified such that
it created a dynamic load, increased the database scale, and decreased the session
lengths. Additionally, the injection rate for queries varied significantly during
the course of the benchmark. A sequence of different injection rates are cycled
through during the course of a run, where each tile starts at a different injec-
tion rate in this sequence in order to create a “bursty” utilization pattern for the
workload.

• SPECmail2008: This workload represents a mail server. Specifically, the harness
employs the SPECmail IMAP component with new transactions.

SPEC VIRT_SC 2010 employs a fourth workload called SPECpoll developed
explicitly for the benchmark. SPECpoll serves two functions: It sends and acknowl-
edges network pings against an idle server VM in the 100% load phase to measure
its responsiveness, and to all VMs in the 0% load phase (active idle) during power-
enabled runs. SPECpoll ensures that sufficient resources are allocated to the idle
server to function during the benchmark.

The four workloads described above run across 6 VMs in a set known as a “tile.”
Figure 12.1 shows the structure of the tile and its interaction with the SUT and client
harness. A tile will deliver a specific amount of stress to the SUT and each workload
must achieve a minimum level of Quality-of-Service (QoS). Scaling the benchmark
on the SUT entails running an increasing number of tiles. Peak performance is
reached at the point in which the addition of another tile fails to achieve the QoS
criteria. The final benchmark result is the sum of the score achieved for each tile.
The VMs of the same type were required to be configured identically across all tiles;
only items like VM, IP, and NFS share names could be unique.
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Fig. 12.1: SPEC VIRT_SC 2010 single-tile layout

To allow for fine tuning of the workload scaling, the final tile employed can be a
“partial tile.” This partial tile throttles down the workload drivers so that less stress
is delivered to the SUT. The partial tile’s score is proportionally scaled down.

12.1.1.2 The Need for a New Benchmark

SPEC VIRT_SC 2010 was released in July 2010 and several vendors published
results on server configurations with 2–16 CPUs. Within a year of its release, a few
trends became clear:

• As the number of tiles used by the benchmark increased, each injection rate used
by the application server workload was exercised simultaneously by one of the
tiles. In this case, the overall utilization across all tiles became more constant,
removing the desired variability (i.e., burstiness) during the course of a run. As a
result, the overall SUT CPU utilization could be driven to near 100%, which was
not representative of real-world use cases.

• The workload levels for the tiles were too low. The initial utilization levels for the
workloads within a tile were intended to be representative. However, as time went
on, the amount of virtual resources needed for each VM decreased significantly.
Within a year of the release, no VM needed more than a single vCPU, and the
memory footprints for several VMs were less than 1 GB. This was significantly
less than intended for the benchmark.
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• A result of the reduced virtual resources needed per tile led to an increase in the
number of tiles a SUT could support. Results that supported more than 17 tiles
(102 VMs) on a 2P server became quite common. Feedback from customers
expressed the large number of VMs reported in the results were unrealistic.
Additionally, the benchmark harness struggled with the number of tiles being run
on 8P and 16P configurations, topping over 100 tiles in some cases.

These concerns drove the SPEC Virtualization Subcommittee to develop a re-
placement benchmark.

12.1.2 SPEC VIRT_SC 2013

SPEC VIRT_SC 2013, released in May 2013, represents a significant update to
its predecessor SPEC VIRT_SC 2010 which retired in February 2014. While still
employing the concept of a tile for its basic unit of work, the design of the tile
itself changed, with a set of tiles sharing a single database VM. Each workload
was overhauled to increase its stress level and the idle server VM was replaced
with a batch server VM with a new workload. Workload injection rates were made
variable on the mail server in addition to the application server. Lastly, the web server
introduced encryption in its web requests. All of the above updates are made for a
much more robust tile.
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Fig. 12.2: SPEC VIRT_SC 2013 single-tile layout
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Figure 12.2 shows the updated tile layout for SPEC VIRT_SC 2013. Notable
enhancements for the new benchmark over its predecessor are as follows:

• Shared database VM. To ensure the presence of multi-vCPU VMs in the bench-
mark, the application server workload’s database VM was pulled out of the tile.
With SPEC VIRT_SC 2013, the application server VMs for every four tiles share
the same database server VM, each with its own data within the database. This
configuration requires the database VM to consume more resources to handle the
increased database activity. Figure 12.3 shows a multi-tile configuration with the
shared database VMs.

• Web-server workload implemented SSL encryption. To increase the utiliza-
tion on the web-server VM, SSL encryption was introduced into the web-server
workload. With the latest version of SPEC VIRT_SC 2013, SSLv3 and TLS 1.x
encryptions are supported.

• New batch workload. To introduce more burstiness in the benchmark’s workload
profile, the new batch server VM replaces the idle server VM in the tile. The batch
workload is based on one of the SPEC CPU 2006 training workloads, which runs
10 copies of the workload every hour and is idle for the rest of the hour. The
10 “jobs” must complete within 15 min, necessitating resource allocation from
the SUT sufficient to satisfy this requirement. The batch jobs are staggered from
one tile to another to avoid an unreasonable spike in server utilization at the
beginning of the benchmark.

• Mail server workload profile is now bursty. Again, to add workload variation,
the mail server workload now has a bursty profile akin to the application server’s
workload profile.
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Fig. 12.3: SPEC VIRT_SC 2013 multi-tile layout
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The operation of SPEC VIRT_SC 2013 is the same as SPEC VIRT_SC 2010.
Scaling the workload is identical with the exception that only one database VM is
added for every four tiles. All VMs of the same type must be identical across tiles.
Partial tiles are allowed in SPEC VIRT_SC 2013. As with SPEC VIRT_SC 2010,
SPEC VIRT_SC 2013 also supports measuring power performance.

SPEC VIRT_SC 2013 achieved its goal of a more intensive tile. At the time
of the release, a 2P server that would require 28 tiles (168 VMs) to satu-
rate it with SPEC VIRT_SC 2010 would need only 6.6 tiles (37 VMs) with
SPEC VIRT_SC 2013. The benchmark continues to be active with new publica-
tions on the latest generations of hardware.

12.1.3 SPECvirt Datacenter 2020: The Next Generation

As the virtualization industry evolved, more complex environments became com-
mon. Configurations with multiple hypervisor hosts, shared networking, and com-
mon storage, all controlled by a central management application, are prevalent in
modern data centers. Simple server consolidation is no longer the most interesting
use case for businesses. The need for an industry-standard, multi-host virtualization
benchmark became more urgent. Such a benchmark is needed to factor in com-
mon data center operations such as dynamic provisioning of VMs, automatically
balancing resource utilization across multiple hosts, and introducing new physical
resources into an environment. The subcommittee’s charter was expanded to reflect
this goal: “The goal of the subcommittee is to develop standard methods for compar-
ing virtualization performance of data centers. The subcommittee will develop and
maintain benchmarks that represent typical virtualized infrastructure for various en-
terprise customer scenarios, such as server consolidation and multi-host virtualized
environments.”

With this goal in mind, the first SPEC virtualization multi-host benchmark,
SPECvirt Datacenter 2020, is planned to be released in 2020. It is a completely
new virtualization benchmark designed to measure the performance of a different
use case than SPEC VIRT_SC 2013, a multi-host virtualized data center. In addi-
tion to measuring traditional host capacity performance like SPEC VIRT_SC 2013,
SPECvirt Datacenter 2020 also measures the virtual data center’s ability to dynami-
cally deploy VMs, balance workload levels across a cluster of hosts, and utilize new
host resources that come online during run time. SPECvirt Datacenter 2020 also
introduces preconfigured template VMs to simplify its setup and use.

12.1.3.1 Design

SPECvirt Datacenter 2020 uses five workloads contained within a 12-VM tile as
its unit of work; see Figure 12.4 for the tile layout. Some of the VMs within a tile
are deployed from a template during the course of the benchmark, while others
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Fig. 12.4: SPECvirt Datacenter 2020 single-tile layout

are brought online from a powered off state. This behavior models the dynamic
nature of a real-world virtualized data center environment. The workloads used in
SPECvirt Datacenter 2020 are:

• a synthetic workload that simulates the stress of a pair of collaboration servers
interacting with each other, modeled from real-world data. Two Collaboration
Server VMs interact with each other to run this workload.

• a synthetic workload that simulates the stress of a web-server environment based
on the SPEC VIRT_SC 2013 web-server workload. A Web Server VM runs on
the SUT and interacts with a remote process that runs on the client.

• a synthetic workload that simulates the stress of an IMAP mail server applica-
tion environment based on the SPEC VIRT_SC 2013 mail server workload. A
standalone Mail Server VM runs this workload.

• a transactional database workload based on the HammerDB load testing and
benchmarking tool.1 The workload utilizes two VMs running on the SUT: an
Application Server VM and a Database Server VM.

• a big data workload based on a modified version of BigBench that utilizes an
Apache/Hadoop environment to execute complex database queries. The workload
runs across six VMs on the SUT: a Name Node VM, a Database VM, and four
Data Node VMs.

Unlike SPEC VIRT_SC 2013 where all of the tiles were started at the begin-
ning of the benchmark and began their measurement intervals at the same time,

1 https://www.hammerdb.com

https://www.hammerdb.com


12.1 SPEC Virtualization Benchmarks 275

SPECvirt Datacenter 2020 employs a more complex run profile as shown in Fig-
ure 12.5. During the first phase of the measurement interval, 1/4 of the hosts within
the SUT are in maintenance mode. The benchmark will then bring the tiles’ work-
loads online, starting or deploying the VMs used for each tile as needed. The ability
of the SUT environment to deploy more rapidly and start a tile’s workloads will
be reflected as a longer active duration for that tile’s measurement intervals. Once
the target number of tiles for Phase 1 have been deployed, the SUT will remain at
steady state until the end of the phase. Phase 2 begins with the activation of all of the
hosts that were in maintenance mode during Phase 1. The SUT then will be able to
take advantage of the newly available resources to balance the load on the systems.
Phase 3 then sees the deployment of additional tiles to fully saturate the entire SUT
environment.
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Fig. 12.5: SPECvirt Datacenter 2020 measurement interval (MI) profile

The performance score for each tile uses the aggregate throughput for each work-
load across all phases during which it was active. These throughput scores are nor-
malized to reference values and then combined using a weighted geometric mean.
The final score is the sum of the weighted means for all tiles. SPECvirt Datacen-
ter 2020 also permits the use of a partial tile to allow for finer tuning of the saturation
of a SUT. However, unlike SPEC VIRT_SC 2013, a partial tile for SPECvirt Dat-
acenter 2020 consists of a subset of the workloads within a single tile; the partial
tile will contain only the VMs needed to run the subset of workloads. The order
of adding the workloads to a partial tile is fixed to ensure reproducibility of the
benchmark results.

12.1.3.2 SPECvirt Datacenter 2020 Template VMs

SPECvirt Datacenter 2020 is a highly complex benchmark, even more so than the
SPEC VIRT_SC benchmarks. In an effort to focus more attention on tuning the vir-
tualization solution rather than tuning the application stacks within the tiles’ VMs,
SPECvirt Datacenter 2020 utilizes pre-built template VMs provided with the bench-
mark kit to create and deploy all of the VMs needed to build the benchmark harness
(master controller and clients) and all of the tile’s workloads. No modifications are
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needed—or allowed—within the VMs beyond the provided configuration and control
scripts. This frees up the focus of performance tuning to be solely at the hypervisor
and host level. At the time of the initial release, the template provides scripts for
VMware’s vSphere and Red Hat’s RHV virtualization products. Other toolkits for
different or newer versions of hypervisors are allowed but must be reviewed and
approved by the SPEC Virtualization Subcommittee.

12.2 VMware’s Virtualization Benchmarks

VMmark is a virtualization benchmark developed and maintained by VMware. It is
intended for hardware vendors aiming to showcase the performance of their prod-
ucts using the VMware ESXi hypervisor. The first VMmark multi-workload server
consolidation benchmark was released in August 2007 and measured the single-host
performance in virtualized environments. Its successor, VMmark 2, was enhanced
with multi-host virtual machine capabilities that addressed the increasing virtual-
ization of bursty and heavy workloads, dynamic virtual machine and data store
relocation, and the automation of many provisioning and administrative tasks across
large-scale multi-host environments. In this new paradigm, some of the stress on the
CPU, network, disk, and memory subsystems is generated by the underlying infras-
tructure operations. While still focusing on user-centric application performance, this
benchmark also accounted for the effects of infrastructure activities on the overall
platform performance.

12.2.1 The VMmark 3 Benchmark

Over the years, virtualization has become more common and end users are now
considering highly scalable workloads and more complex online transaction pro-
cessing (OLTP) workloads. VMmark 3 was developed to address this evolution as
well as the additional challenges resulting from the increased load, frequency, and
complexity of infrastructure operations.

The unit of work for a benchmark targeted at evaluating virtualized consolidation
environments is generally defined as a collection of virtual machines executing a
set of diverse workloads and the VMmark 3 benchmark follows the convention of
its predecessor and refers to it as a tile. The total number of VMmark tiles (see
Figure 12.6) a multi-host platform can accommodate provides a coarse-grained
measure of that platform’s consolidation capacity. This concept is similar to some
server benchmarks, such as TPC-C (see Chapter 9, Section 9.3), that scale the
workload in a stepwise fashion to increase the system load.

Tiles are relatively heavyweight objects that cannot capture small variations in
platform performance. To address this, both the number of tiles and the performance
of each individual workload determine the overall benchmark score. Each workload
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VMmark Tile

Scalable Web
Simulation
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DVD Store 3

Standby System

Heartbeat

Fig. 12.6: VMmark tile

within a tile is constrained to execute at less than full utilization of its virtual
machine. However, the performance of each workload can vary to a degree with the
speed and capabilities of the underlying platform, for example, the addition of a fast
disk array might result in disk-centric workloads producing a more favorable score.
These variations can capture system improvements that do not warrant the addition
of another tile. However, the workload throttling forces the use of additional tiles for
large jumps in platform performance.

When a tile is added, the performance of the workloads in existing tiles might
decrease. However, the aggregate score should increase if the system has not been
overcommitted and the minimum Quality-of-Service (QoS) requirements are met.
This results in a flexible benchmark metric that provides a measure of the total
number of workloads that can be supported by a particular multi-host platform as
well as the overall performance level within the workload virtual machines.

12.2.1.1 Workloads

A meaningful consolidation benchmark should be based on a set of relevant data
center workloads. A survey of data center applications led to the inclusion of the
workloads shown in Table 12.1 representing popular applications commonly run by
VMware customers and a series of common infrastructure activities described later
in this section. Rather than developing workloads from scratch, existing workloads
and benchmarks were used where possible in order to reduce the implementation
effort and to provide a well-understood foundation upon which to build.
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Scalable Web Simulation Scalable web applications are used to provide a wide
variety of services such as social networking and online auction websites. These ap-
plications typically will have a core application that implements the business logic,
surrounded by a variety of support services such as load balancers, web servers,
message servers, and databases. The application logic may be distributed among
multiple independently deployed services. Each tier in a scalable web application
deployment might stress different infrastructure resources. For example, the appli-
cation servers might have high CPU demands, while the data services might place
high demands on storage or memory.

Weathervane2 is an application-level benchmark for virtual infrastructure and
cloud performance tests. The Weathervane application, named Auction, is a scal-
able web application that implements a website for hosting real-time auctions. The
Auction application uses a scalable architecture that allows deployments to be easily
sized for a large range of user loads. A deployment of the application involves a
wide variety of support services such as caching, messaging, NoSQL data store, and
relational database tiers.

In VMmark 3, the Weathervane workload uses two independent instances of the
Weathervane Auction application, a static instance and an elastic instance. The virtual
machine configuration used in these application instances are shown in Table 12.1.
Each instance includes:

• a load balancer running HAproxy 1.5.18,
• web servers running Nginx 1.12.0,
• application servers running Tomcat 8.5.13 and Java 1.8.0.121,
• a message server running RabbitMQ 3.5.3,
• a database running PostgreSQL 9.3, and
• a NoSQL data service running MongoDB 3.0.14.

In the static application instance, all of these services run on their own virtual
machines. In the elastic application instance, the message server, load balancer, and
NoSQL data service share a single virtual machine.

The static application instance, as its name implies, injects a relatively consistent
load on the SUT. The elastic application instance, on the other hand, is both elastic
and bursty. As in today’s data centers it is increasingly common to have self-scaling
applications that dynamically add and remove resources to meet demands, VMmark 3
takes advantage of Weathervane’s elasticity-related capabilities to add and remove
an application server and a web server throughout the benchmark run. This elastic
component (along with the cyclical application profile generated by DVD Store 3
described below) allows VMmark 3 to represent more accurately today’s bursty
environments. The load for Weathervane is generated by a workload driver that
simulates users interacting with the Weathervane Auction application. The load
generated by each user is constant as long as the application can satisfy its quality-
of-service (QoS) requirements. These QoS requirements specify the 99th-percentile
response time for each operation as well as the required mix of operations performed

2 Weathervane: https://github.com/vmware/weathervane

https://github.com/vmware/weathervane
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by all users. The performance metrics from Weathervane include the operation
throughput, the average response time for each operation, and the percentage of each
operation that completes within the response-time limits.

E-Commerce Simulation Databases running transactional workloads support a
wide array of applications, typically as part of a multi-tier architecture. Databases
tend to be resource-intensive and exercise most server and infrastructure components.
In many cases, database systems also face strict response-time demands. Transac-
tion processing often exhibits bursty behavior, resulting in widely varying resource
demands over time. The ability of the underlying platform to support usage spikes
is critical to maintaining acceptable performance.

DVD Store Version 3 (DS3)3 is a complete online e-commerce test application
with a back-end database component, a web application layer, and driver programs.
The DS3 driver simulates users logging into a web server and browsing a catalog of
products using basic queries. Users may select items for purchase, and then proceed
to check out or continue shopping. Each web server communicates with a database
server that maintains user accounts and inventory data.

The DS3 workload used in VMmark 3 utilizes four virtual machines in each tile,
three web servers and one database server. The three virtual machines in the DS3 web
tier (DS3WebA, DS3WebB, and DS3WebC) each run the Apache 2.4.6 web server,
and the DS3 database tier runs the MySQL database. One of the web servers delivers
a constant load to the database throughout each benchmark interval. The other two
web servers deliver periodic load to the database during the benchmark interval to
create a bursty overall load profile and varying resource demands. For VMmark 3,
each web server is driven by 24 driver threads when active. The performance metric
for this workload is the total number of transactions per minute. Minimum QoS
metrics must also be met.

Virtual Machine Cloning and Deployment Creating a new virtual machine and
installing a guest operating system and applications can be time-consuming. Using
virtual machine cloning technology, administrators can make many copies of a virtual
machine using a single installation and configuration process. Cloning, configuration,
and deployment operations create bursty loads on platform resources, particularly
the storage subsystem as the virtual machine files are copied.

The infrastructure workload: (1) clones the VMmark template virtual machine,
(2) powers-on and pings the clone, (3) takes a snapshot, (4) performs a hot add of
CPU and memory, (5) takes another snapshot, (6) creates a small MySQL database,
(7) then reverts the snapshots, (8) pings the clone again, and (9) finally deletes the
clone.

The benchmark then waits 40 s and repeats this process, continuing for the duration
of the benchmark period. The number of concurrent clone and deploy operations
increases with the number of tiles and the number of hosts in the benchmark cluster.
The performance metric used is the number of clone and deploy operations per hour.

3 DVD Store Version 3: http://github.com/dvdstore/ds3

http://github.com/dvdstore/ds3


12.2 VMware’s Virtualization Benchmarks 281

Dynamic Virtual Machine Relocation Between Servers Live migration tech-
nology such as VMware vMotion leverages the complete virtualization of servers,
storage, and networking to move an entire running virtual machine seamlessly from
one server to another. During a vMotion operation, the active memory and precise
execution state of a virtual machine are rapidly transmitted over a high-speed net-
work from one physical server to another and access to the virtual machine’s disk
storage is instantly switched to the new physical host. This transition can result in
bursty loads on platform resources, particularly the networking subsystem. VMmark
mimics the manual relocation of a virtual machine, which can be a common task
performed by an administrator.

This infrastructure workload acts on one of the AuctionMSQ virtual machines
selected in a round-robin fashion from among all the tiles. A destination host is
selected at random from among all hosts in the benchmark cluster (other than the
virtual machine’s current host). The virtual machine is moved to the destination host,
left there for 2 min, and then returned to its original host. VMmark then waits another
2 min and repeats this process, continuing for the duration of the benchmark period.
The number of concurrent relocation operations increases with the number of tiles
and the number of hosts in the benchmark cluster. The performance metric used is
the number of relocations per hour.

Dynamic Virtual Machine Relocation Across Storage Live migration of virtual
machine disk files across or within storage arrays enables enormous flexibility for
storage maintenance, upgrades, and load balancing. Storage relocations can create
bursty loads on platform resources, particularly the storage subsystem.

In this infrastructure workload, VMmark relocates a virtual machine’s disk files to
a maintenance partition, then returns them to their original location. This round-trip
approach models an administrator temporarily evacuating a disk partition, perform-
ing maintenance on the storage system, and then returning the system to its initial
state.

This infrastructure workload acts on one of the standby server virtual machines
selected in a round-robin fashion from among all the tiles. The virtual machine’s files
are moved to the maintenance partition, left there for 2 min, and then moved back to
their original location. VMmark then waits another 2 min and repeats this process,
continuing for the duration of the benchmark period. The number of concurrent
storage relocation operations increases with the number of tiles and the number
of hosts in the benchmark cluster. The performance metric used is the number of
relocations per hour.

Simultaneous Server and Storage Virtual Machine Relocation The live migra-
tion of virtual machines simultaneously across both servers and storage (vMotion
without shared storage) allows even more flexibility than either capability alone. This
infrastructure workload produces a combination of the infrastructure loads created
by the individual operations.

In this infrastructure workload, VMmark uses vMotion to relocate a virtual ma-
chine while simultaneously invoking the storage relocation of the same virtual ma-
chine’s disk files to a maintenance partition. After two and a half minutes, the virtual
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machine is returned to its original host and the files are returned to their original
location. VMmark then waits another two and a half minutes and repeats the process.
This workload models an administrator temporarily evacuating a host and disk parti-
tion, performing maintenance on the host and/or storage system, and then returning
the system to its initial state.

This infrastructure workload acts on one of the DS3WebA virtual machines
selected in a round-robin fashion from among all the tiles. The number of concurrent
relocation operations increases with the number of tiles and the number of hosts in
the benchmark cluster. The performance metric used is the number of relocations
per hour.

Automated Load Balancing Automatically balancing resource demands among
multiple physical servers using technology such as VMware’s Distributed Resource
Scheduler (DRS) has become a fundamental part of modern virtualized data centers.
Intelligently allocating and balancing resources allow the underlying platform to
respond effectively to bursty-load conditions even when utilizations are high.

VMmark requires DRS to be enabled and running at (or above) a specific level
to ensure that rebalancing occurs in a timely manner when utilizations are high.
This should improve overall performance by addressing load imbalances occurring
during the benchmark interval.

12.2.1.2 Scoring Methodology

VMmark 3 aggregates the throughput metrics of all application and infrastructure
workloads to create a single overall benchmark metric that can be used to quickly
compare different platform configurations. If any of the workloads within any tile
fails to run, produces errors during a run, or fails its minimum QoS requirement,
the entire VMmark run is considered to be incompliant. After the completion of a
compliant VMmark benchmark run, each individual application and infrastructure
workload reports its relevant performance score (see Table 12.2). These scores were
collected every 60 s during the standard 3 h run resulting in a series of meaningful
numbers for each of the workloads. VMmark 3 automatically generates graphs of
key performance metrics for each workload as shown in Figure 12.7.

The scores of the application and infrastructure workloads are computed and
aggregated separately based on the geometric mean, and the final benchmark metric
is the weighted arithmetic mean of the scores (geometric means) for the application-
workload component (80%) and the infrastructure-workload component (20%).
These weights were chosen to reflect the relative contribution of infrastructure and
application workloads to overall resource demands.

The VMmark 3 metric shows the virtualization overheads of the individual work-
loads as well as the scalability of the entire system. Therefore, results for multi-tile
runs are reported as the aggregate score for all tiles, the individual scores for each
of the tiles, and the scores for the workloads within the tiles as well as the individ-
ual scores for each infrastructure workload. If two different virtualization platforms
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Fig. 12.7: Throughput and Quality-of-Service (QoS)

Table 12.2: Individual VMmark workload scores

Workload name Applications(s) Scores
Weathervane static Auction Operations/s

Weathervane elastic Auction Operations/s

DS3WebA Apache, MySQL Transactions/min

DS3WebB Apache, MySQL Transactions/min

DS3WebC Apache, MySQL Transactions/min

Standby server None None

Clone and deploy Infrastructure Deployed VMs/h

vMotion Infrastructure VM migrations/h

Storage vMotion Infrastructure VM migrations/h

XvMotion Infrastructure VM migrations/h

Distributed Resource
Scheduler (DSR)

Infrastructure None

achieve similar VMmark scores with a different number of tiles, the score with the
lower tile count is generally preferred. The higher tile count could be a sign that the
underlying hardware resources were not properly balanced. Studying the individual
workload metrics is suggested in these cases.
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12.3 Concluding Remarks

We provided an overview of established benchmarks for evaluating the perfor-
mance of virtualization platforms. We focused on the SPEC VIRT series of
industry-standard benchmarks (SPEC VIRT_SC 2010, SPEC VIRT_SC 2013, and
SPECvirt Datacenter 2020) while also considering the VMmark benchmark by
VMware. The discussed benchmarks provide users with the capability of measur-
ing different virtualization solutions on either single-host or multi-host platforms,
using workloads and methodologies that are designed for fair comparisons. Great
effort was taken to ensure a wide range of virtualization solutions can utilize the
benchmarks and they have been used by hardware and software vendors to showcase,
analyze, and design the latest generations of virtualization products.
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Chapter 13
Storage Benchmarks
Klaus-Dieter Lange, Don Capps, Sitsofe Wheeler, Sorin Faibish,
Nick Principe, Mary Marquez, John Beckett, and Ken Cantrell

Many operating systems (OS) and information technology (IT) solutions have been
tested and tuned for the storage subsystems to work well with frequently used appli-
cations. This accelerates the storage input/output (I/O) for the respective subsets of
workloads. Nonetheless, the application operation mix will likely change over time
as applications evolve, for example, the system administrator decides to allocate the
same server/storage solution for additional office automation tasks.

Several benchmarks are available to evaluate the storage performance of a specific
storage system or storage component. They can be used by system administrators
to evaluate and compare different products and ensure high performance for their
particular environment. This chapter presents a brief history of the SPEC System
File Server (SFS) benchmarks and takes a closer look at SPEC SFS 2014. It then
introduces the benchmarks from the Storage Performance Council (SPC) and the
IOzone file system benchmark. Finally, the Flexible I/O Tester (fio) is presented,
showing some examples of how it can be used to measure I/O performance.

13.1 Historical Perspective on System File Server Benchmarks

In the 1990s, commercial Network File System (NFS) storage server arrays started
to become mainstream. No longer was storage the realm of government, academia,
and large corporations. This increase of storage solution choices created a need for
a benchmark to enable users of NFS servers to select the solution with the highest
performance. NFS server vendors joined forces with academics and government to
build an NFS benchmark with relevant and meaningful performance metrics. In
October 1992, the synthetic benchmark LADDIS (Wittle and Keith, 1993), named
using the initials of the involved organizations (Legato, Auspex, Data General, Digital
Equipment, Interphase, and Sun Microsystems), was released. It was based on the
nhfsstone workload and measured guaranteed performance, that is, performance
achieved for a given latency target. A higher LADDIS score indicates higher I/O
performance at a lower latency.
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In 1993, the LADDIS group joined the Standard Performance Evaluation Corpo-
ration (SPEC) and became its System File Server (SFS) Subcommittee. There, the
NFS benchmark was enhanced for the NFSv2 protocol and released under its new
name SPEC SFS 93. The SPEC SFS 97 benchmark, released in December 1997,
was further enhanced with new functionality and support for the NFSv3 protocol.1 It
became one of the most popular storage performance benchmarks during that time.

In June 2001, a series of bug fixes were released via SPEC SFS 97 V2.0. Later
in 2001, SPEC released SPEC SFS 97_R1 V3.0 with additional bug fixes and support
for Linux and FreeBSD as well as initial support for various UNIX operating systems.
The benchmark remained an NFS benchmark; nonetheless, the need for a new
benchmark that supports the Server Message Block (SMB) protocol, in particular
the Common Internet File System (CIFS), was increasing as most storage vendors
started to support both NFSv3 and SMB protocols. At this point, the members of
the SFS Subcommittee started to develop a new benchmark for Windows servers
using the SMB protocol. In 2008, the work on this benchmark was completed and
the first dual protocol storage benchmark—SPEC SFS 2008—was published.2 In
addition to the introduction of the SMB protocol, several enhancements were made
to the NFSv3 benchmark, including operation mix change and adding new metadata
operations, aligned with the evolving requirements of the storage industry.

During the lifetime of SPEC SFS 2008, its user base started asking for support for
measuring the performance of the clients and servers in a single unified benchmark.
Coincidently, in December 2010, Don Capps was finishing his development of
Netmist—the first benchmark and framework designed as a system benchmark that
runs at the system call level instead of the protocol level. He granted SPEC the
permission to use it as the basis for the next generation file server benchmark.
Netmist combines benchmark ideas from both the SFS benchmarks and the IOzone
benchmark (see Section 13.4), and it was designed as a multi-client, multi-server
benchmark.

13.2 SPEC SFS 2014

After 4 years of joint development, SPEC SFS 2014 was released in November 2014.3
It introduced many novel benchmark ideas inspired by the established file server
benchmarks and included support for cluster file systems (e.g., Lustre and GPFS)
as well as network file servers (e.g., based on NFSv3, NFSv4, and SMB). The SFS
Subcommittee also implemented the support for local POSIX file systems created
on block storage device benchmarks via any POSIX file systems on the raw block
devices and supporting any type of client host OSes including SOLARIS, Linux,
Windows, SGI, AIX, etc., and any client local POSIX file systems.

1 NFS v3 protocol; IETF 1995: https://tools.ietf.org/html/rfc1813
2 SPEC SFS 2008 benchmark: https://www.spec.org/sfs2008
3 SPEC SFS 2014 benchmark: https://www.spec.org/sfs2014

https://www.spec.org/sfs2014
https://www.spec.org/sfs2008
https://tools.ietf.org/html/rfc1813


13.2 SPEC SFS 2014 287

The SPEC SFS 2014 benchmark introduced the concept of business met-
rics (BMs), inspired from real storage applications, and added the capability to
easily modify existing BMs and to create new BMs for research purposes. The five
included BMs (see Table 13.1) measure guaranteed performance based on the same
request–response principles of the five most popular types of storage application
characteristics (e.g., mixes for metadata and data, read and write, and for different
I/O sizes). With the new capability to saturate all physical resources, including CPU,
disk, pipes (FC and IP), BUSes, and memory, the SFS benchmark evolved into an
application benchmark. This enabled the different storage vendors to showcase their
storage solutions for the BM that matched their customers’ usage for either protocol.

Table 13.1: Workloads and their business metric names

Workload Business metric name
Electronic design automation (EDA) Job sets

Database (DATABASE) Databases

Software build (SWBUILD) Builds

Video data acquisition (VDA) Streams

Virtual desktop infrastructure (VDI) Desktops

In 2016, the SPEC SFS 2014 benchmark was enhanced to also serve as a load
generator used for measuring the power consumption of storage servers as de-
fined by the Storage Networking Industry Association (SNIA)—a feature used by
SNIA in the Emerald specification as well as by the U.S. Environmental Protection
Agency’s (EPA) Energy Star program for storage certification.

All previous SFS benchmark results were presenting only two performance met-
rics, the NFS/CIFS I/O operations (IOPS) and overall response time (ORT), as well as
a result table and a graph (see Table 13.2 and Figure 13.14), showing the guaranteed
performance achieved for each requested I/O load. Starting with SPEC SFS 2014,
the new performance variables, Business Metric (workload specific) and Bandwidth
in MB/sec, were added to the result (see Table 13.3 and Figure 13.25).

With the continuous evolution of storage applications and technology, including
new storage media like solid-state drives (SSD) and non-volatile memory (NVM),
additional workloads become of interest and the current workloads need to be mod-
ified or replaced to reflect new users’ needs and usage models of new application
areas like machine learning, Genomics, and others. The SPEC OSG Storage Sub-
committee, the new name of the SFS Subcommittee, is working to deliver the next
generation of SFS benchmarks, addressing the need for new features and represen-
tative workloads for the storage industry.

4 Corresp. result: https://www.spec.org/sfs2008/results/res2008q1/sfs2008-20080218-00083.html
5 Corresp. result: https://www.spec.org/sfs2014/results/res2014q4/sfs2014-20141029-00002.html

https://www.spec.org/sfs2014/results/res2014q4/sfs2014-20141029-00002.html
https://www.spec.org/sfs2008/results/res2008q1/sfs2008-20080218-00083.html
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Table 13.2: Exemplary SPEC SFS 2008 publication table

Throughput (ops/sec) Response time (ms)
320 1.5

642 1.8

961 2.0

1,285 2.3

1,607 2.6

1,924 3.2

2,244 4.0

2,579 5.6

2,897 8.5

3,088 10.6

Fig. 13.1: Exemplary SPEC SFS 2008 publication graph
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Table 13.3: Exemplary SPEC SFS 2014 publication table

Business metric
(builds)

Average latency
(ms)

Builds
(ops/sec)

Builds
(MB/sec)

2 0.6 1,000 12

4 0.7 2,000 25

6 0.7 3,000 38

8 0.7 4,000 51

10 1.0 5,000 64

12 1.1 6,000 77

14 1.1 7,000 90

16 1.0 8,001 103

18 0.9 9,000 116

20 1.0 10,001 128

22 1.1 11,001 141

24 1.3 12,001 154

Fig. 13.2: Exemplary SPEC SFS 2014 publication graph
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13.3 Storage Performance Council (SPC)

The vendor-neutral SPC was founded in 1998 with the goal to develop industry-
standard benchmarks focusing on storage subsystems and to publish third-party
audited benchmark results that include performance and pricing information. Their
core benchmarks—SPC-1 and SPC-2—measure the performance of storage systems,
and they utilize a common SPC framework for benchmark components.

13.3.1 SPC-1

Introduced in 2001, SPC-1 had a single workload and targeted storage performance of
business-critical applications with a high random I/O mix and a series of performance
hotspots. The benchmark includes query and update operations, and it covers a broad
range of business functions, system configurations, and user profiles.

The SPC-1 benchmark uses the concept of stimulus scaling units (SSUs) to scale
the I/O load while maintaining the operation mix and constraints. The balance
between application I/O and logging I/O is maintained as the SSUs are scaled to
the desired I/O load. Application storage units (ASUs) form the abstracted storage
configuration, which provides the environment in which the workload (represented
by SSUs) is executed. Each ASU is considered the source or destination of data that
requires persistence beyond the benchmark run itself. Figure 13.3 shows an example
of the distribution of the average response time for the first repeatability test run at
the 100% load level.
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Fig. 13.3: SPC-1 average response time distribution

SPC-1 has several workload components scaled from smallest to largest:

• I/O REQUEST: A single unit of work,
• I/O STREAM: A single sequence of I/O REQUESTS,
• ASU STREAM: A collection of I/O STREAMs,
• WORKLOAD: A collection of ASU STREAMs.
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The performance results and response time are part of the benchmark final report,
which includes detailed system and storage subsystem configuration details as well
as pricing information.

13.3.2 SPC-2

SPC-2, introduced in 2005, has three different workloads to stress the storage system
with large-scale sequential data movement, which is one of several differences to the
random I/O nature of the SPC-1 standard. The modeled I/O operations include large
file processing, large database queries, and video on demand.

The SPC-2 benchmark leverages structured patterns of I/O requests referred to
as streams; the number of concurrent streams varies during benchmark execution.
Three or more of these streams are executed for each workload; the maximum and
intermediate number of streams are defined by the benchmark tester. Figure 13.4
shows an example of the average data rate per stream for a load of 60,000 streams.
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Fig. 13.4: SPC-2 average data rate per stream

13.3.3 Component and Energy Extension

The derived SPC-1C and SPC-2C benchmarks target specific storage components
like storage devices and controllers, storage enclosures, and storage software. SPC-
1C and SPC-2C retain the essential random or sequential nature, respectively, of their
benchmark progenitors. These two benchmarks are intended to provide performance
data for individual storage components as opposed to a larger storage configuration.

Each SPC benchmark has an optional energy extension (SPC-1/E, SPC-2/E,
SPC-1C/E, and SPC-2C/E), which adds a mode of execution in which also the power
consumption is measured. Power consumption is measured at three load intervals
(idle, moderate, and heavy) and reported with the performance results and pricing
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of the regular benchmark run. SPC benchmark results with energy extension include
the following additional metrics:

• Nominal Operating Power (W): The average power consumption across the three
intervals,

• Nominal Traffic in IOPS: The average I/O measured across the three intervals,
• Operating IOPS/watt: The computed power metric representing the overall effi-

ciency for I/O traffic,
• Annual Energy Use (kWh): The estimated annual energy usage.

13.4 The IOzone Benchmark

IOzone was initially designed and written by William Norcott and released in the
early 1980s. The initial version, a fairly simple C-code, measured the time for opening
a file, write/read data, and close the file.

Don Capps started his work on extending IOzone’s functionality in 1985; he
fundamentally redefined IOzone for more accurate performance measurements of
file systems. He added support for large-scale NUMA supercomputers in 1991 and
expanded IOzone’s capability to cover multiple file servers running in parallel.

In 2000, the IOzone.org site was created and the IOzone development continued
under a freeware licensing model with Don Capps as the benchmark maintainer.
This license model allows the users to compile and use the benchmark for free
on any platform and OS. The IOzone benchmark continues to be a living project
with contributions from developers worldwide (e.g., Android support for the use
of IoT devices). Nonetheless, developers are not allowed to distribute changes by
themselves, as it is maintained by a single entity to preserve the integrity of code
contributions and their proper integration.

Similar to fio,6 Iometer,7 and IOR,8 the IOzone benchmark has evolved to one of
the more sophisticated file system performance benchmark utilities, generating and
measuring a variety of file operations (see Table 13.4).

Table 13.4: IOzone’s file operations

read re-read fread random read aio read pread variants
write re-write fwrite random write aio write pwrite variants
read backwards read strided mmap

IOzone has been ported to many platforms and is available on most OSes including
AIX, BSDI, HP-UX, IRIX, FreeBSD, Linux, OpenBSD, NetBSD, OSFV3, OSFV4,

6 Flexible I/O Tester (fio): https://fio.readthedocs.io
7 Iometer Project: http://www.iometer.org
8 IOR Benchmark: https://media.readthedocs.org/pdf/ior/latest/ior.pdf

https://media.readthedocs.org/pdf/ior/latest/ior.pdf
http://www.iometer.org
https://fio.readthedocs.io
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OSFV5, SCO OpenServer, Solaris, Mac OS X, and Windows (via the Cygwin run-
time application9). Its results can be exported into useful graphs (e.g., Figure 13.5
depicts the fwrite performance under Windows), which can be leveraged to show
performance characteristics and bottlenecks of the disk I/O subsystem, enabling users
to optimize their applications to achieve the best performance for their platform and
OS. This is one of the reasons why the benchmark is widely used to evaluate HPC
storage for supercomputers and computer clusters.
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Fig. 13.5: IOzone fwrite performance

13.5 Flexible I/O Tester (fio)

The Flexible I/O Tester (fio) was designed by Jens Axboe in 2005, filling the void for
a flexible method to simulate customizable I/O workloads and to gain meaningful
I/O statistics on the Linux I/O subsystem and its schedulers.

The fio architecture is comprised of three major parts: (1) front-end that parses a
job description file; (2) back-end layer that performs common work like managing
parallel workers, collecting I/O statistics, and generating/validating I/O patterns; and
(3) implementation of pluggable ioengines that send I/O in different ways over the
network via library calls.

9 Cygwin: http://www.cygwin.com

http://www.cygwin.com
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The small and portable fio code is pre-packaged by major Linux distributions
because of its versatile nature of exploring various aspects of storage subsystems:

• Investigation of storage performance and root-cause analysis of bottlenecks,
• Modeling of workloads with a balanced read/write access mix across multiple

workers,
• Replay of recorded and hand-built workload patterns,
• Analysis of the effectiveness of different caching algorithms, and
• Reproduction of hardware and software issues.

Fio has been ported to many platforms; nonetheless, its capabilities on other
platforms might not be the same as on Linux, because some features might not have
been ported, or different platforms may not implement the same functionality in the
same way. The latest version can be found at the fio Git repository.10 In the following,
we present a series of examples illustrating fio’s capabilities on Linux.

13.5.1 Running a Simple Job

A fio job file contains a set of statements describing what I/O workload should
be executed. The following example describes a new job called simple that cre-
ates a file at the path /tmp/fio.tmp with a size of two megabytes (by default, all
single- and three-letter storage units in fio are powers of two, for example, 2 M is
2,097,152 bytes). It then performs read I/O using the default ioengine (on Linux, this
is psync) and the default block size (4,096 bytes).

[simple]
filename=/tmp/fio.tmp
size=2M
rw=read

If the above was saved to the file simple.fio, it can be run via:

fio simple.fio

Running this job will create an output similar to the following (lines 1–31):

1 simple: (g=0): rw=read, bs=(R) 4096B-4096B, (W) 4096B-4096B,
(T) 4096B-4096B, ioengine=psync, iodepth=1

2 fio-3.16
3 Starting 1 process
4 simple: Laying out IO file (1 file / 2MiB)
5
6 simple: (groupid=0, jobs=1): err= 0: pid=19566: Sat Nov 9

11:39:05 2019
7 read: IOPS=56.9k, BW=222MiB/s (233MB/s)(2048KiB/9msec)
8 clat (nsec): min=896, max=944834, avg=16216.53,

stdev=101996.63

10 Flexible I/O Tester (fio) Git repository: https://github.com/axboe/fio.git

https://github.com/axboe/fio.git
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9 lat (nsec): min=934, max=944898, avg=16284.52,
stdev=102006.39

10 clat percentiles (nsec):
11 | 1.00th=[ 940], 5.00th=[ 1032], 10.00th=[ 1064],

20.00th=[ 1688],
12 | 30.00th=[ 1784], 40.00th=[ 1800], 50.00th=[ 1816],

60.00th=[ 1832],
13 | 70.00th=[ 1848], 80.00th=[ 1880], 90.00th=[ 1960],

95.00th=[ 2160],
14 | 99.00th=[716800], 99.50th=[872448], 99.90th=[946176],

99.95th=[946176],
15 | 99.99th=[]
16 lat (nsec) : 1000=2.15%
17 lat (usec) : 2=90.23%, 4=4.88%, 20=0.39%, 50=0.20%,

250=0.20%
18 lat (usec) : 500=0.39%, 750=0.78%, 1000=0.78%
19 cpu : usr=0.00%, sys=25.00%, ctx=13, majf=0, minf=10
20 IO depths : 1=100.0%, 2=0.0%, 4=0.0%, 8=0.0%, 16=0.0%,

32=0.0%, >=64=0.0%
21 submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%,

64=0.0%, >=64=0.0%
22 complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%,

64=0.0%, >=64=0.0%
23 issued rwts: total=512,0,0,0 short=0,0,0,0 dropped=0,0,0,0
24 latency : target=0, window=0, percentile=100.00%, depth=1
25
26 Run status group 0 (all jobs):
27 READ: bw=222MiB/s (233MB/s), 222MiB/s-222MiB/s

(233MB/s-233MB/s), io=2048KiB (2097kB), run=9-9msec
28
29 Disk stats (read/write):
30 dm-0: ios=0/0, merge=0/0, ticks=0/0, in_queue=0,

util=0.00%, aggrios=12/0, aggrmerge=0/0, aggrticks=8/0,
aggrin_queue=8, aggrutil=3.31%

31 sda: ios=12/0, merge=0/0, ticks=8/0, in_queue=8, util=3.31%

The output is comprised of the following parts:

Line 1: A summary of some of the parameters within the job
Line 2: The fio version
Lines 3–4: Information about the job starting
Lines 5–6: Process identification
Line 7: Average IOPS and bandwidth information
Lines 8–15: Latency break down per I/Os
Lines 16–24: Further breakdown of the I/O information
Lines 25–27: Summary of I/O by group
Lines 28–31: Information about how the kernel performed disk I/O

The key information on how the job performed (lines 7–15) is depicted in Fig-
ure 13.6; detailed guidelines on the interpretation of the different parts of the output
can be found in the fio documentation.11

11 https://fio.readthedocs.io/en/latest/fio_doc.html#interpreting-the-output

https://fio.readthedocs.io/en/latest/fio_doc.html#interpreting-the-output
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A job can also be specified using command line options; for example, the previous
job can be written as:

fio --name=simple --filename=/tmp/fio.tmp --size=2M --rw=read

A section is started by using the �name option followed by a value, and parameters
become double-dashed options followed by their value. Although job files are useful
for repeatability and sharing, the remaining jobs shown in this chapter are specified
as command line options for the sake of brevity.

In the read job above, fio actually wrote the data to the file semi-randomly before
reading it back. This is done to prevent special-case optimizations (which may be
applied within the storage stack) from distorting the results of a particular run. An
in-depth explanation on how the random data is generated can be found in the fio
documentation.12

13.5.2 More Complex Workloads

It is easy to change the simple workload from performing read access to write access
by basically changing the �rw command from read to write. It should be pointed out
that using write workloads will destroy the data in the files specified. The following
example shows a job that performs sequential writes with an increased block size of
64 kilobytes (64 × 10242 bytes):

fio --name=simplewrite --filename=/tmp/fio.tmp --size=2M
--rw=write --bs=64k

Fio has the capability to work with block devices directly, allowing one to measure
performance without the overhead of the file system. In the following examples,

12 https://fio.readthedocs.io/en/latest/fio_doc.html#buffers-and-memory

https://fio.readthedocs.io/en/latest/fio_doc.html#buffers-and-memory
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/dev/sdd represents such a block device, and fio will try to write to 64 kilobyte
sized blocks in a random order (�rw=randwrite), but it will cover each block exactly
once:

fio --name=simplewrite --filename=/dev/sdd --rw=randwrite
--bs=64k

Additionally, while fio will try and flush kernel caches on supported platforms
before starting a job, by default, no flushing takes place when the job finishes;
thus, data may still be in kernel RAM caches (and non-volatile disk caches). The
end_fsync=1 option can be used to ensure that write data has reached the disk by
the time the job finishes.

fio --name=simplewrite --filename=/dev/sdd --rw=randwrite
--bs=64k --end_fsync=1

Fio jobs can be run in parallel in order to model real-life environments with mul-
tiple concurrent workloads. The following simple example runs two read workloads
accessing different files in parallel:

fio --name=simple1 --filename=/tmp/fio1.tmp --size=2M --rw=read
--name=simple2 \
--filename=/tmp/fio2.tmp --size=2M --rw=read

A global section can be utilized to share common parameters between the jobs,
eliminating duplications.

fio --size=2M --rw=read --name=simple1 --filename=/tmp/fio1.tmp
--name=simple2 \
--filename=/tmp/fio2.tmp

By default, all jobs are part of the same group, which allows fio to provide a way
of summarizing some of the results of multiple jobs (see lines 26–27 in the previous
output example). Note that this summary information may be inaccurate if the jobs
do not actually start at the same time.

Fio provides a number of options for modeling simultaneous reads and writes. For
cases where reads and writes are independent of each other, the following method
can be applied:

fio --size=2M --filename=/tmp/fio1.tmp --name=writes --rw=write
--name=read --rw=read

If they are somehow dependent on each other, the reads and writes can be handled
by the same job via the �rw=readwrite option, and the mix can be specified via the
�rwmixread parameter. The following example requests four reads for every write:

fio --size=2M --filename=/tmp/fio1.tmp --name=mix --rw=readwrite
--rwmixread=80
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13.5.3 Unusual I/O Patterns

The previous job examples perform uniformly distributed random I/O across the
area being accessed. In some cases, for example, when analyzing the effectiveness of
caching, it might be helpful to access different parts of the targeted area with different
frequency. Fio has multiple ways to define such a distribution; Figure 13.7 shows an
example cache_test that utilizes the �random_distribution=zoned option:

fio --name=cache_test --filename=/tmp/fio1.tmp --size=20G
--rw=randread \
--random_distribution=zoned:30/15:14/15:40/5:14/20:2/45

30% of accesses in the first 15%

14% of accesses in the next 15%

40% of accesses in the next 5%

14% of accesses in the next 20%

2% of accesses in the next 45%

Fig. 13.7: Randomly distributed I/O via zones

Many unusual I/O patterns can be created via the vast possibilities of combining
different fio options. The last two examples in this chapter might be helpful in order
to recreate I/O patterns to root-cause hardware and software issues of extent-based
storage.

The gappy job writes every other 8 kilobytes of /tmp/fio1.tmp:

fio --name=gappy --filename=/tmp/fio1.tmp --size=2M
--rw=write:8k --bs=8k

The backwards job seeks 16 kilobytes backwards after every 8 kilobyte writes
are done, before writing the next 8 kilobytes.

fio --name=backwards --filename=/tmp/fio1.tmp --size=2M
--rw=write:-16k --bs=8k
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13.5.4 ioengines

The ioengine used in the above examples has been synchronous, which means that
fio will wait for an I/O operation to complete before sending another I/O operation.
However, modern disks and disk controllers have multiple queues that achieve max-
imum performance when many I/O operations are submitted in parallel. In cases
where a kernel cache is being used, the kernel’s buffering can help synthesize that
parallelism at a small cost. However, some I/O engines can create that asynchrony
themselves with lower overhead.

On Linux, the libaio ioengine is typically used for this purpose, but it comes
with strict requirements to prevent blocked submissions:

• I/O must be sent using the O_DIRECT option.
• The amount of I/O backlog should be kept limited.

It is important to adhere to these rules and avoid blocking submissions, because
fio will not be able to queue any more I/O until submissions return.

The following example job utilizes the libaio engine and sets the iodepth,
which controls the maximum amount of I/O operations to be sent simultaneously
and queued. There is no guarantee that, at any given point, the iodepth amount of
I/O operations will be queued up, as I/O operations are queued one at a time, and
if their completion is fast enough, there will not be much outstanding work at any
given time.

fio --ioengine=libaio --iodepth=32 --name=parallelwrite
--filename=/dev/sdd \
--rw=randwrite --bs=64k

It is quite common to run a workload for a fixed amount of time in order to repro-
duce hardware or software issues. This can be achieved by utilizing the time_based
and runtime options. The following fio job will continue to loop the pattern until
runtime has expired:

fio --name=one-minute --filename=/tmp/fio1.tmp --size=2M
--rw=write --time_based \
--runtime=1m

In order to measure the maximum performance of very fast storage subsystems,
it might be necessary to minimize fio’s overhead. The io_uring13 interface was
introduced with the 5.1 Linux kernel, and it is supported by fio version 3.13 and
higher. It has a lower overhead and can therefore push higher bandwidths than the
previous libaio/KAIO interface. Using it is just a matter of changing the ioengine:

fio --ioengine=io_uring --iodepth=32 --name=parallelwrite
--filename=/dev/sdd \
--rw=randwrite --bs=64k

13 https://kernel.dk/io_uring.pdf

https://kernel.dk/io_uring.pdf
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13.5.5 Future Challenges

Driven by an active development community, fio has grown to be a popular tool,
continuously offering new features, bug fixes, ioengines, and support for new plat-
forms. In this chapter, we touched upon some of the many capabilities of fio, which
should help guide investigation in storage performance, root-cause analysis of bottle-
necks, and the reproduction of hardware and software issues. A future area to explore
would be the ability to create generative models based on the analysis of previously
recorded I/O traces. This would enable the portability of realistic workload replays.

13.6 Concluding Remarks

Several benchmarks have emerged in the last decades specifically designed to eval-
uate the performance of storage systems and storage components. This chapter
presented a brief history of the SPEC System File Server (SFS) benchmarks and
took a closer look at SPEC SFS 2014. It then introduced the benchmarks from the
Storage Performance Council (SPC) and the IOzone file system benchmark. Finally,
the Flexible I/O Tester (fio) was presented, showing some examples of how it can be
used to measure I/O performance.

With the continuous evolution of storage applications and technology, including
new storage media like solid-state drives (SSD) and non-volatile memory (NVM),
additional storage workloads become of interest and the current workloads need to be
modified or replaced to reflect new users’ needs and usage models of new application
areas like machine learning, Genomics, and others.
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Chapter 14
TeaStore: A Microservice Reference Application
Jóakim von Kistowski, Simon Eismann, Norbert Schmitt, André Bauer,
Johannes Grohmann, and Samuel Kounev

Modern distributed applications have complex performance characteristics, as their
constituent components and services feature different bottlenecks that may change
over time. However, these applications also offer many degrees of freedom, which are
intended to help deal with this challenge. For example, they can be deployed in various
ways and configured using different settings and software stacks. These degrees of
freedom can be used at design time, deployment time, and at run time for continuous
system optimization. Current research employs many methods of modeling, analysis,
and optimization that utilize these degrees of freedom at different points of the
software life cycle to tackle the challenging performance behavior (Becker et al.,
2009; Brunnert et al., 2015; Ilyushkin et al., 2017). More generally, the goal of such
research is the improvement of a system’s quality attributes such as performance,
availability, reliability, or energy efficiency (see Section 1.2 in Chapter 1).

Verifying, comparing, and evaluating the results of such research is difficult. To
enable practical evaluation, researchers need a distributed application that can be
deployed as a reference and that offers realistic degrees of freedom. The reference
application must also feature sufficient complexity regarding performance behavior.
Finding such an application and performing the necessary experiments are often dif-
ficult. The software in question should be open-source, lend itself to instrumentation,
and should produce results that enable analysis and comparison of research findings,
all while being indicative of how the evaluated research would affect applications
in production use. In the context of this book, such a reference application shares
many of the requirements and properties for a benchmarking workload. Thus, it must
address many of the issues discussed in Chapter 8 in the context of workloads.

Among others, a reference application workload should lend itself to instrumenta-
tion, and it should generally meet the workload quality criteria described in Chapter 8
including reproducibility and relevance. Many older test and reference applications
in the research community lack relevance, as they are usually created for specific test-
ing scenarios (Happe et al., 2011). Such applications are often designed specifically
for evaluating a single contribution, making comparisons difficult. Other existing
and broadly used test software does not offer the necessary degrees of freedom
and often is manually customized, reducing comparability (Willnecker et al., 2015).
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Some of the most widely used test and reference applications, such as RUBiS or
Dell DVD Store, are outdated and therefore not representative of modern real-world
applications.

In this chapter, we introduce TeaStore1 (Kistowski, Eismann, et al., 2018), a
microservice-based test and reference application that can be used as a benchmark-
ing framework by researchers. It is designed to provide multiple degrees of freedom
that users can vary depending on their target use case. TeaStore consists of five dif-
ferent services, each featuring unique performance characteristics. Due to its varying
performance characteristics and its distributed nature, TeaStore may also be used as
a software for testing and evaluation of software performance models and model ex-
traction techniques. It is designed to be scalable and to support both distributed and
centralized deployments. In addition, its architecture supports run-time scalability,
as services and service instances can be added, removed, and replicated at run time.
The services’ different resource usage profiles enable performance and efficiency
optimization with nontrivial service placement and resource provisioning decisions.

TeaStore was originally designed with the following research areas in mind:

1. Evaluation of software performance modeling approaches and model extrac-
tion (learning) techniques,

2. Evaluation of run-time performance management techniques (e.g., service place-
ment and autoscaling),

3. Evaluation of server energy efficiency, power consumption modeling techniques,
and optimization techniques.

This chapter demonstrates the application of TeaStore as a test and benchmarking
workload by using it as a reference application showing its use in an energy-efficiency
benchmarking context to evaluate the energy efficiency of service placements. To
keep the example simple, we evaluate several specific placement options for TeaStore
and show how placement decisions lead to different power consumption and energy
efficiency.

14.1 Requirements on TeaStore

When designing a workload, one must ensure that the workload’s design meets the
criteria for workloads described in Chapter 8. The TeaStore application itself is an
executable application workload. It is an artificial workload, as it is an application
specifically designed to be used as part of a benchmark. TeaStore was developed
because natural workloads (i.e., existing real-world, microservice applications) do
not meet all requirements on a microservice workload for research use. Broadly, these
requirements boil down to reproducibility and relevance. In the concrete context of
a microservice workload for researchers, they can be formulated as more specific
requirements.

1 TeaStore on GitHub: https://github.com/DescartesResearch/TeaStore
TeaStore on Docker Hub: https://hub.docker.com/u/descartesresearch

https://hub.docker.com/u/descartesresearch
https://github.com/DescartesResearch/TeaStore
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Aderaldo et al. (2017) identify 15 requirements for microservice research bench-
marks. Table 14.1 lists 12 of these requirements (relevant for our work) and checks
common benchmark applications for compliance. These 12 criteria suit microservice
benchmarks, yet they do not cover the ability of an application to be used as a refer-
ence research benchmark application in performance modeling and resource man-
agement. Kistowski, Eismann, et al. (2018) therefore extended the requirements by
four additional research benchmark requirements shown in Table 14.1. A benchmark
must stress the system under test (B1) and should not be focused only on a single-
server component like memory or CPU (B2). The benchmark should lend itself to be
exercised by different load generators in order to fit a wide variety of benchmarking
environments and non-executable workload descriptions (B3). Finally, the used load
profiles should be made publicly available to ensure reproducibility (B4).

In terms of compliance to these requirements, TeaStore satisfies all require-
ments except for the requirement Alternate Versions (R11), which requires al-
ternate implementations of at least some services to be provided. ACME Air,2
Spring Cloud Demo,3 Sock Shop,4 and MusicStore,5 also compared in Table 14.1,
satisfy fewer requirements. In addition, TeaStore satisfies all of the research bench-
mark requirements, whereas the next best application (ACME Air) does not satisfy
the requirement for publicly available load profiles.

14.2 Workload

TeaStore’s executable application workload is an online store for tea and tea-related
utilities. Being a web store, it offers and displays products on web pages. The general
usage scenario for TeaStore is that virtual users, described by the non-executable
workload description, access these pages and perform actions on them. This, in turn,
causes TeaStore’s different microservices to perform computational work, which
puts the system under test (SUT) under load.

TeaStore offers tea-related products, which are sorted into categories. For online
shopping, the store supports an overview of products including preview images for
each category and featuring a configurable number of products per page. All pages
of TeaStore show an overview header bar and include the category menu and page
footer. As main content, it shows the products for the selected category including
short product information and the preview image. Depending on the number of
products shown per page, users have the option to navigate through multiple pages
of the category view.

Each product can be viewed on a separate product page containing detailed
information, a large image, and advertisements for other store items. Besides the

2 ACME Air: https://github.com/acmeair/acmeair
3 Spring Cloud Demo: https://github.com/kbastani/spring-cloud-microservice-example
4 Sock Shop: https://github.com/microservices-demo/microservices-demo
5 MusicStore: https://github.com/aspnet/MusicStore

https://github.com/aspnet/MusicStore
https://github.com/microservices-demo/microservices-demo
https://github.com/kbastani/spring-cloud-microservice-example
https://github.com/acmeair/acmeair
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regular header, footer, and category list, this page includes a detailed image of the
product (provided by the Image Provider service), a description, and a price. The
page also contains an advertisement panel suggesting three products the user might
be interested in. The advertised products are provided by the Recommender service
and are selected depending on the viewed product.

All products can be placed in a shopping cart and users can proceed to order the
current contents of the shopping cart. The user can choose to modify the shopping
cart at any time. The shopping cart page lists all products currently included in the
cart together with some product information and the quantity. The shopping cart
view also displays product advertisements provided by the Recommender service
and selected depending on the shopping cart’s contents.

To order, a user must supply personal information about the billing address and
payment details. After confirmation by the user, the current shopping cart is stored in
the order history database utilizing the Persistence service. The store also supports
user authentication and login. Registered users can view their order history after
login.

In addition to regular operations, TeaStore’s user interface provides some admin-
istrative functions for the benchmark operator. These functions are not part of the
executable workload but are necessary for running the workload. For example, they
provide an overview of all running service instances and an option to regenerate
the database. In case a specific database setup or size is necessary, the database can
be regenerated with user-defined parameters, such as the number of categories, the
number of products per category, the number of users, and the maximum number of
orders per user history.

14.3 Architecture

TeaStore consists of five distinct services and a Registry service as shown in Fig-
ure 14.1. All services communicate with the Registry. Additionally, the WebUI ser-
vice issues calls to the Image Provider, Authentication (Auth), Persistence, and
Recommender services.

The Image Provider and Recommender both connect to an interface provided by
the Persistence service. However, this is only necessary on startup (dashed lines). The
Image Provider must generate an image for each product, whereas the Recommender
needs the current order history as training data. Once running, only the Authentication
and the WebUI services access, modify, and create data using the Persistence service.

All services communicate via representational state transfer (REST) calls, as
REST has established itself as the de-facto industry standard in the microservice
domain. The services are deployed as web services on the Apache Tomcat Java
Servlet container. Yet, the services can be deployed on any Java application server
able to run web services packaged as war files. As an alternative to deploying the war
files, TeaStore can also be deployed using Docker container images containing the
entire Tomcat stack. Each service is packaged in its own war file or Docker image.
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Fig. 14.1: TeaStore’s architecture

TeaStore uses the client-side load balancer Ribbon6 to support replication of
service instances. Ribbon distributes REST calls among running instances of a
service. Instead of using the popular Netflix Eureka7 registry, TeaStore uses its own
registry that supplies service instances with target instances of a specified target-
specific service type. To enable this, all running instances register and unregister at
the registry, which can be queried for all running instances of a service. This allows
for dynamic addition and removal of service instances at run time. Each service
also sends heartbeats to the registry. In case a service is overloaded or crashed and
therefore fails to send heartbeat messages, it is removed from the list of available
instances. This mechanism ensures good error recovery and minimizes the amount of
requests sent to unavailable service instances that would otherwise generate timeouts.

TeaStore is open-source and lends itself to instrumentation using available mon-
itoring solutions. These solutions are not part of the workload itself, but they are
necessary to facilitate detailed measurements depending on the benchmark built
around TeaStore. Pre-instrumented Docker images for each service that include the
Kieker8 monitoring application (Hoorn, Rohr, et al., 2009; Hoorn, Waller, et al.,
2012), as well as a central trace repository service, are already available.

Generally, all requests to the WebUI by a user or load generator are handled
in a similar fashion. The WebUI always retrieves information from the Persistence
service. If all information is available, images for presentation are fetched from the
Image Provider and embedded into the page. Finally, a Java Server Page (JSP) is
compiled and returned. This behavior ensures that even non-graphical browsers and
simple load generators that otherwise would not fetch images from a regular site
cause image I/O in TeaStore, which ensures comparability regardless of the load
generation method.

6 Netflix Ribbon: https://github.com/Netflix/ribbon
7 Netflix Eureka: https://github.com/Netflix/eureka
8 Kieker APM: http://kieker-monitoring.net

http://kieker-monitoring.net
https://github.com/Netflix/eureka
https://github.com/Netflix/ribbon
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Figure 14.2 shows the service calls for a user request to open a product information
page. After receiving the HTTP request, the WebUI checks the user’s login status by
calling the Authentication service. Next, it queries the Persistence service for the cor-
responding product information based on a unique identifier. Afterwards, the WebUI
requests advertisement options for the current product from the Recommender ser-
vice, which generates a recommendation based on the learned historical order data.
The call to the Recommender service takes the current login status into account.
Specifically, a logged-in user receives personalized recommendations, whereas an
anonymous user is served recommendations based on general item popularity. Hav-
ing received all product information, the WebUI queries the Image Provider to supply
a full-size image of the product shown in detail and preview images for the recom-
mendations. The image data is embedded in the HTML response represented in the
form of base-64 encoded strings.

14.4 Services

TeaStore’s executable workload consists of five services in addition to a registry
necessary for service discovery and load balancing. In case monitoring is enabled, a
trace repository service can be used to collect the monitoring traces centrally.

14.4.1 WebUI

The WebUI service provides the user interface, compiling and serving Java Server
Pages (JSPs). All data, available categories, their products, product recommendations
and images, are retrieved from the Image Provider and Persistence service instances.
The WebUI service performs preliminary validity checks on user inputs before
passing inputs to the Persistence service. It focuses purely on presentation and web
front-end operations. However, the performance of WebUI depends on the page that
has to be rendered, as each page contains at least one picture in different formats.

14.4.2 Image Provider

The Image Provider serves images of different image sizes to the WebUI service
when being queried. It optimizes image sizes depending on the target size in the
presentation view. The Image Provider uses an internal cache and returns the image
with the target size from the cache if available. If an image of this size is not available,
the Image Provider uses the largest available image for the category or product, scales
it to the target size, and loads it into the cache. It uses a least frequently used cache,
which optimizes performance for frequently accessed data. The response time for
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an image depends on whether the image is in the cache or not. This service queries
the Persistence service once on startup to generate all product images with a fixed
random seed.

14.4.3 Authentication

This service is responsible for the verification of both the login and the session data
of a user. The session data is validated using SHA-512 hashes. For login verification,
the BCrypt algorithm is used. The session data includes information about the
current shopping cart contents, the user’s login status, and previous orders. Thus, the
performance of the hashing for the session data depends on the number of articles
in the cart and the number of previous orders. Furthermore, as all session data is
passed to the client, the Authentication service itself remains stateless and does not
need additional information on startup.

14.4.4 Recommender

The Recommender service uses a rating algorithm to recommend products for the
user to purchase. The recommendations are based on items other customers bought,
on the products in a user’s current shopping cart, and on the product the user is cur-
rently viewing. The initial Recommender instance uses an automatically generated
dataset for training, which is provided by the Persistence service at initial startup.
Further Recommender instances query existing instances for their training dataset
and they use only that data for training. This way, all Recommender instances stay
coherent, recommending identical products for the same input. In addition, using
identical training input also ensures that different instances of the Recommender
service exhibit the same performance characteristics, which is important for many
benchmarking and modeling contexts. The Recommender service queries the Per-
sistence service only once on startup.

Different recommendation algorithms exhibiting different performance are avail-
able. In addition to a fallback algorithm based on overall item popularity, two variants
of Slope One (Lemire and Maclachlan, 2005) and one order-based nearest-neighbor
approach are currently implemented. One variant of Slope One calculates the pre-
dicted rating matrix beforehand and keeps it in memory (memory-intensive), whereas
the other one calculates every row if needed but discards all results after each rec-
ommendation step (CPU-intensive).
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14.4.5 Persistence

The Persistence service provides access and caching for the store’s database. Prod-
ucts, their categories, purchases, and registered store users are stored in a relational
SQL database. The Persistence service uses caching to improve response times and
to reduce the load on the database itself for improved scalability. The cache is
kept coherent across multiple Persistence service instances. The service uses the
EclipseLink JPA implementation as a black-box cache. All data inside the database
itself is generated at the launching of the initial persistence instance. Using a persis-
tence service separated from the actual database improves scalability by providing
a caching service. However, the performance of database access operations depends
on the content in the database that can change during the operation of the store.

14.4.6 Registry

The Registry service is not part of the TeaStore application under test but is a
necessary support service. It keeps track of all running service instances, their IP
addresses or host names, and port numbers under which the services are accessible.
All service instances send heartbeat messages to the registry after registration. If a
service unregisters or no heartbeat message is received within a fixed time frame,
the service is removed from the list of available service instances. All services can
query the list of service instances for a specified service type in order to distribute
their outgoing requests (on a round-robin basis) between running target instances.

14.5 Workload Descriptions for TeaStore

TeaStore itself is an executable application workload. It thus covers only one part
of a workload and needs a fully specified non-executable workload description to
be used in a benchmark. TeaStore ships two types of non-executable workload
descriptions (which may be combined with one another): user profiles and load-
intensity specifications. The content of requests arriving at TeaStore (i.e., the user
actions) are defined using a stateful user profile. TeaStore uses a cyclical user profile,
in which users browse the store. Figure 14.3 shows this profile. Users log in, browse
the store for products, add these products to the shopping cart, and then log out. This
profile can be used both in closed or open workloads. To use it in closed workloads,
one only needs to specify the number of concurrent users. For use in open workloads,
a load-intensity specification is required.

TeaStore ships load-intensity specifications and an HTTP load generator, first
introduced by Kistowski, Deffner, et al. (2018), which can utilize these specifications
to send requests based on an open workload model. The load-intensity specifications
(load profiles) can be defined such that request rates may vary over time.
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Load profiles can be combined with the user profiles. In this case, each time a
request should be sent, the load generator picks an idle user from the pool of users.
This user then executes a single action on the store. It performs this action and returns
to the pool. This means that the user state and actions are chosen as described in
Chapter 8 for a closed workload model, whereas the arrival times of the individual
requests are chosen according to an open workload model.

14.6 Case Study: TeaStore in Action

This section presents a case study showing how TeaStore can be used as a workload in
an energy-efficiency benchmarking context. Specifically, it demonstrates TeaStore’s
use for testing the energy efficiency of service placements. To keep the example
simple, it tests multiple different placement options for TeaStore and shows that
placement decisions lead to different power consumption and energy efficiency.

Energy efficiency of placements is a research area focusing on predicting and op-
timizing the power consumption and energy efficiency of service instances running
on different servers in distributed systems, for example, Beloglazov et al. (2012) and
Basmadjian et al. (2011). The underlying challenge is that different distributions of
application services among physical hosts may result not only in different perfor-
mance behavior but also in differences in the overall power consumption. The case
study we present in the following demonstrates this effect using TeaStore. It shows
that different placements of TeaStore’s services can result in different performance
and in different power consumption both on homogeneous and heterogeneous sys-
tems. Thus, we demonstrate that TeaStore can be used as a workload to compare
and test the quality of placement methods aiming to minimize power consumption
or maximize energy efficiency.

The presented experiments use an increasing load intensity profile as part of the
workload description discussed in the previous section. The load profile starts at
eight requests per second and increases to 2,000 requests per second over the time of
4 min. The request content is specified using the user browse profile for the 128 users
accessing the store. Depending on the current SUT configuration, some of the 4 min
are spent in a state in which the load intensity exceeds the capacity of the SUT.
The power consumption of the physical servers and the throughput of TeaStore are
measured during the entire run. However, only measurements made during the time
in which workload arrives at the system are taken into account. Each measurement
is taken on a per-second basis and thus tightly coupled to the current load intensity.

In this case study, TeaStore’s primary services are placed on several HPE ProLiant
DL160 servers, each equipped with a Xeon E5-2640 v3 processor with 16 logical
cores at 2.6 GHz and 32 GB RAM. The Registry service is deployed on a separate
physical host.

The following metrics are computed based on the measured throughput and power
consumption:
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1. Energy Efficiency: In line with SPEC’s Power Methodology (SPECpower Com-
mittee, 2014) and Chapter 11, energy efficiency is defined as the ratio of through-
put and power consumption:

Efficiency[J−1] =
Throughput[s−1]

Power[W ]
.

Multiple energy-efficiency scores can be aggregated using a geometric mean.
2. Estimated Capacity: The throughput capacity of each configuration is estimated

by averaging the last 50 s of the executed load profile; note that all configurations
are operating at maximum load (capacity) at this time.

3. Maximum Power Consumption: The maximum measured power consumption
(in Watts) indicates the power load that the configuration can put on the SUT.

14.6.1 Energy Efficiency on Homogeneous Systems

In the first set of experiments, TeaStore is run in Docker containers on up to two
servers. Table 14.2 shows the estimated capacity (with confidence intervals), maxi-
mum power, and mean energy efficiency for different TeaStore deployments (service
names in the table are abbreviated to their first letters). The table confirms our previ-
ous assertion that TeaStore performs differently depending on the service placement.
Capacity (maximum throughput) varies significantly for the different deployments,
with some two-server deployments barely exceeding the capacity of the single-server
deployment and others, almost doubling it.

Table 14.2: Energy efficiency on homogeneous servers

# Server 1 Server 2 Capacity Max. power Energy
efficiency

1 Web., Auth., Rec.,
Img., Per.

– 779.7 ±[29.7] 114.4 W 5.3

2 Web., Img. Auth., Rec., Per. 1,177.5 ±[31.5] 193.6 W 4.2
3 Web., Auth., Img. Rec., Per. 883.4 ±[39.4] 175.8 W 3.8

4 Web., Auth., Rec.,
Img., Per.

Img., Per. 863.0 ±[40.5] 173.5 W 3.9

5 Web., Auth., Rec.,
Img., Per.

Auth., Img., Per. 1,228.7 ±[18.9] 208.4 W 4.2

6 Web., Auth., Img.,
Per.

Web., Auth., Rec.,
Per.

1,231.8 ±[18.7] 203.7 W 4.3

7 Web., Auth., Rec.,
Img., Per.

Web., Auth., Img.,
Per.

1,404.1 ±[14.5] 217.9 W 4.3

8 Web., Auth., Rec.,
Img., Per.

Web., Auth., Rec.,
Img., Per.

1,413.2 ±[14.7] 217.7 W 4.3
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The single-server deployment (deployment #1) exhibits the lowest performance,
but also the lowest power consumption resulting in the highest energy efficiency
among all tested configurations. This is mostly due to the increasing stress test profile.
At low load, as the load increases, the single system is still capable of handling all
requests while consuming less power. At high load, it operates at full capacity but still
consumes less power than the two-server setups. Figure 14.4 visualizes the energy
efficiency over time for the single-server and two selected two-server deployments.
The figure shows that an efficient two-server deployment can reach a similar energy
efficiency as the single-server deployment at maximum load. However, some low
performance deployments are incapable of reaching this efficiency and are overall

Fig. 14.4: Energy efficiency for linearly increasing loads (services are abbreviated
to their first letters)

Among the two-server deployments, the maximum power consumption is usually
greater for those deployments with greater capacity, but some notable differences
exist. This indicates that there is room for power and efficiency optimization even on
homogeneous systems. Comparing deployments #2 and #3 shows that deployment #2
(which deploys the WebUI and Image Provider services on one server and the
Authentication, Recommender, and Persistence services on the other server) exhibits
both better performance and smaller power footprint than deployment #3 (which
deploys the WebUI, Authentication, and Image Provider services on one server
and the Recommender and Persistence services on the other server). Consequently,
deployment #2 features better energy efficiency. In this example, one deployment is
obviously better than the others, and TeaStore can be used to evaluate if a prediction
method or a management mechanism actually selects the better option. However,
in some cases, power does not scale in the same way as performance. An example
of this can be seen when comparing deployment #5 and #6. Both deliver equal
performance, but deployment #6 consumes slightly less power and is therefore a bit
more efficient.

less efficient due to the power overhead of the second server.
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14.6.2 Energy Efficiency on Heterogeneous Systems

For the measurements on heterogeneous systems, the second server is replaced
with an HP ProLiant DL20 system featuring an Intel Xeon E3-1230 v5 processor
with four cores at 3.5 GHz and 16 GB RAM. This second server does not offer as
much performance and consumes less power compared to its eight-core counterpart.
Naturally, when deploying on this heterogeneous system, the order of deployment
matters, as servers differ in power and performance.

Table 14.3 presents the measurement results for the heterogeneous system. It
shows the performance capacity (with confidence intervals), power, and energy ef-
ficiency for selected deployments. It illustrates the effect the deployment order has
on the heterogeneous system especially regarding deployments #2 and #3, which
are equivalent with exception that they deploy each respective stack on a different
server. Deployment #2 deploys the full stack on the smaller server and replicates
some components on the larger machine, whereas deployment #3 does the reverse.
Although deployment #3 consumes more power than #2, it has far better performance
and greater overall efficiency. It should also be noted that deployments with fewer
services on the smaller machine seem to be more efficient in the heterogeneous envi-
ronment compared to the respective deployments in the homogeneous environment.
Deployment #5 corresponds to deployment #7 on the homogeneous system (see
Table 14.2), which is the most efficient system in that context. However, on the het-
erogeneous system, it is exceeded in performance and efficiency by deployment #3,
which places fewer services on the smaller machine.

Table 14.3: Energy efficiency on heterogeneous servers

# 8-Core server 4-Core server Capacity Max. power Energy
efficiency

1 Web., Auth., Rec.,
Img., Per.

– 779.7 ±[29.7] 114.4 W 5.3

2 Auth., Img., Per. Web., Auth., Rec.,
Img., Per.

781.1 ±[11.1] 163.1 W 3.9

3 Web., Auth., Rec.,
Img., Per.

Auth., Img., Per. 1,207.3 ±[23.4] 189.5 W 4.6

4 Web., Auth., Img.,
Per.

Web., Auth., Rec.,
Img., Per.

1,011.9 ±[24.7] 179.6 W 4.4

5 Web., Auth., Rec.,
Img., Per.

Web., Auth., Img.,
Per.

1,067.7 ±[26.7] 187.0 W 4.3

6 Web., Auth., Rec.,
Img., Per.

Web., Auth., Rec.,
Img., Per.

1,003.9 ±[24.9] 179.7 W 4.1

In addition, the heterogeneous system demonstrates a trade-off between energy
efficiency and performance when compared to the homogeneous system. The most
efficient heterogeneous deployment has a slightly lower performance capacity than
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the best homogeneous one, yet consumes less power and has a better energy effi-
ciency.

Overall, the experiments show that TeaStore exhibits different performance and
power behavior depending on the service placement, both on heterogeneous and ho-
mogeneous systems. Thus, TeaStore can be used as a basis for evaluating the predic-
tion accuracy of performance and power modeling techniques. In addition, some of
the considered configurations feature a performance versus energy-efficiency trade-
off, which demonstrates TeaStore’s suitability for evaluating run-time performance
and power management techniques.

14.7 Concluding Remarks

This chapter introduced TeaStore, a test and reference application intended to serve
as a benchmarking framework for researchers evaluating their work.9 TeaStore is
designed to offer the degrees of freedom and performance characteristics required
by software performance modeling and management research. Specifically, TeaStore
is designed to be used in one of the three target domains: (1) evaluation of software
performance modeling approaches and model extraction techniques; (2) evaluation
of run-time performance management techniques such as autoscalers; and (3) eval-
uation of server energy efficiency, power models, and optimization techniques.

TeaStore is designed as a distributed microservice-based application, consisting
of five separate services, each of which can be replicated, added, and removed
at run time. TeaStore’s services are available both as Docker containers and as
manually deployable components. TeaStore’s use was demonstrated by analyzing
the energy efficiency of different deployments for TeaStore showing the nontrivial
power and performance effects that placement decisions can have. In addition, the
presented case study showed that some TeaStore configurations offer a trade-off
between energy efficiency and performance, which provides a basis for evaluating
run-time performance and power management mechanisms.
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Chapter 15
Elasticity of Cloud Platforms
Nikolas R. Herbst, André Bauer, and Samuel Kounev

Infrastructure-as-a-Service (IaaS) cloud platforms provide the benefit of utility com-
puting and pay-per-use. Accordingly, many providers offer tools that allow customers
to configure automated adaptation processes and thus benefit from the increased flexi-
bility and the ability to react on variations in the load intensity. Predicting and manag-
ing the performance impact of such adaptation processes is a challenging task. How-
ever, customers require that performance-related Service-Level-Objectives (SLOs)
for their applications are continuously met.

As defined in Chapter 1 (Section 1.2), the ability of a system to automatically adapt
to workload changes by provisioning and deprovisioning resources at run time to
continuously match the actual demand is captured by the system attribute of elasticity.
The elasticity of cloud platforms is influenced by the employed adaptation processes,
as well as by other factors, such as the underlying hardware, the virtualization
technology, or the cloud management software. These factors vary across providers
and often remain unknown to the cloud customer. Even if they were known, the effect
of specific configurations on the performance of an application is hard to quantify
and compare. Furthermore, the available adaptation processes are quite different in
their methods and complexity as shown in the surveys by Lorido-Botran et al. (2014),
by Galante and Bona (2012), and by Jennings and Stadler (2015).

Traditional approaches to designing elasticity metrics and benchmarks evaluate
this quality attribute only indirectly and to a limited extent. The focus of early
metrics lies either on the technical provisioning time (e.g., in the work of Chandler
et al. (2012)), on the response time variability (e.g., in the work of Almeida et
al. (2013)), or on the impact on business costs (e.g., in the work of Islam et al.
(2012)). Traditional evaluation approaches do not account for differences in the
efficiency of the underlying physical resources, and they employ load profiles that
are rarely representative of modern real-life workloads with variable load intensities
over time. However, the quality of an adaptation mechanism, in terms of its ability
to maintain SLOs, depends both on the specific deployment scenario and on the
workload characteristics.

In this chapter, we present a set of intuitively understandable metrics for char-
acterizing the elasticity of a cloud platform including ways to aggregate them. The
focus is on IaaS clouds; however, the presented approach can also be applied in the
context of other types of cloud platforms. The metrics support evaluating both the
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accuracy and the timing aspects of elastic behavior. We discuss how the metrics can
be aggregated and used to compare the elasticity of cloud platforms. The metrics are
designed to support human interpretation and to ease decision making by comparing
resource supply and demand curves. Furthermore, the chapter outlines an elastic-
ity benchmarking approach—called Bungee1—that explicitly takes into account the
performance of the underlying hardware infrastructure and its influence on the elas-
tic behavior. In combination with the proposed metrics, this enables an independent
quantitative evaluation of the actual achieved system elasticity.

15.1 Defining Elasticity

Elasticity has been originally defined in physics as a material property capturing the
capability of returning to its original state after a deformation. In economic theory,
informally, elasticity denotes the sensitivity of a dependent variable to changes in
one or more other variables. In both cases, elasticity is an intuitive concept that can
be precisely described using mathematical formulas.

The concept of elasticity has been transferred to the context of cloud computing,
and it is commonly considered to be one of the central attributes of the cloud
paradigm. In this book, we use the following widely adopted definition of elasticity
in the context of cloud computing:2

Definition 15.1 (Elasticity in Cloud Computing) Elasticity is the degree to which
a system is able to adapt to workload changes by provisioning and deprovisioning
resources in an autonomic manner, such that, at each point in time, the available
resources match the current demand as closely as possible (Herbst, Kounev, and
Reussner, 2013).

In the following, we first describe some important prerequisites in order to be
able to speak of elasticity, and then we analyze its core aspects and dimensions.
Finally, we discuss the difference between elasticity and its related terms, scalability
and efficiency.

The scalability of a system, including all hardware, virtualization, and software
layers within its boundaries, is a prerequisite for elasticity. Scalability is the ability
of a system to sustain increasing workloads with adequate performance, provided
that hardware resources are added. In the context of distributed systems, it has been
defined in the work of Jogalekar and Woodside (2000), as well as in the works
of Duboc et al. (2007), where also a measurement methodology is proposed.

Given that elasticity is related to the ability of a system to adapt to changes in
workloads and demanded resource units, the existence of at least one adaptation
process is typically assumed. The process is normally automated, but it may contain
manual steps. Without a defined adaptation process, a scalable system cannot scale

1 Bungee cloud elasticity benchmark: http://descartes.tools/bungee
2 https://en.wikipedia.org/wiki/Elasticity_(cloud_computing)

https://en.wikipedia.org/wiki/Elasticity_(cloud_computing)
http://descartes.tools/bungee


15.1 Defining Elasticity 321

in an elastic manner, as scalability on its own does not include temporal aspects. For
assessing the quality of elasticity, the following points need to be checked beforehand:

• Automated Scaling: What adaptation process is used for automated scaling?
• Elasticity Dimensions: What is the set of resource types scaled as part of the

adaptation process?
• Resource Scaling Units: For each resource type, in what unit is the amount of

allocated resources varied?
• Scalability Bounds: For each resource type, what is the upper bound on the

resources that can be allocated?

Any given adaptation process is defined in the context of at least one or possibly
multiple types of resources that can be scaled up or down as part of the adaptation.
Each resource type can be seen as a separate dimension of the adaptation process with
its own elasticity properties. If a resource type comprises other resource types, like in
the case of a virtual machine (VM) having assigned CPU cores and memory, elasticity
can be considered at multiple levels. Normally, resources of a given resource type
can only be provisioned in discrete units like CPU cores, VMs, or physical nodes.
For each dimension of the adaptation process with respect to a specific resource type,
elasticity captures the following core aspects of the adaptation:

• Timing: The timing aspect reflects the time shares in which a system is in an
underprovisioned, overprovisioned, or optimal state as well as the stability of
adaptations (including the presence of oscillations).

• Accuracy: The accuracy aspect reflects the relative deviation of the amount of
allocated resources from the actual resource demand, on average.

A direct comparison between two systems in terms of elasticity is only possible
if the same resource types, measured in identical units, are scaled. To evaluate the
actual elasticity in a given scenario, one must define the criterion based on which
the amount of provisioned resources is considered to match the actual demand
needed to satisfy the application SLOs. Based on such a matching criterion, specific
metrics that quantify the above mentioned core aspects, as discussed in more detail
in Section 15.2, can be defined, enabling comparison of the practically achieved
elasticity with the hypothetical optimal elasticity. The latter corresponds to the
hypothetical case where the system is scalable with respect to all considered elasticity
dimensions (without any upper bounds on the amount of resources that can be
provisioned) and where resources are provisioned and deprovisioned immediately
as needed while exactly matching the actual demand at any point in time. Optimal
elasticity, as defined here, would be limited only by the granularity of the resource
scaling units.

The conceptual differences between elasticity and the related terms scalability
and efficiency can be summarized as follows:

Scalability is a prerequisite for elasticity, but it does not consider the temporal
aspects of how fast, how often, and at what granularity scaling actions can be
performed. Scalability is the ability of the system to sustain increasing workloads
by making use of additional resources, and therefore, in contrast to elasticity, it is
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not directly related to how well the actual resource demands are matched by the
provisioned resources at any point in time.

Efficiency expresses the amount of resources consumed for processing a given
amount of work. In contrast to elasticity, efficiency is directly linked to the resource
types that are scaled as part of the system’s adaptation mechanisms. Normally, better
elasticity results in higher efficiency. This implication does not apply in the other
direction, as efficiency can be influenced by other factors (e.g., different implemen-
tations of the same operation).

15.2 Elasticity Metrics

In order to compare and quantify the performance of different mechanisms for elastic
scaling, commonly referred to as autoscalers, we use a set of system-level and user-
oriented metrics (Herbst, Bauer, et al., 2018). The set of metrics we present in
this section has been endorsed by the Research Group of the Standard Performance
Evaluation Corporation (SPEC) as documented in Herbst, Krebs, et al. (2016). The
metrics have been designed in a way oriented around the generic metric quality
criteria discussed in Chapter 3, Section 3.4.2. They have been successfully applied
to evaluate and compare the elasticity of modern autoscaling mechanisms on a level
playing field (Bauer et al., 2019).

We distinguish between three different types of elasticity metrics:

• Provisioning accuracy metrics that explicitly distinguish between overprovision-
ing and underprovisioning states and quantify the (relative) amount of resources
supplied in excess or below the actual demand, on average,

• Wrong provisioning time share metrics that again explicitly distinguish between
overprovisioning and underprovisioning states and quantify the percentage of
time spent in each of these states, and

• Instability and jitter metrics that quantify the degree of convergence of the demand
and supply. Instability captures the percentage of time in which the demand and
supply change in opposite directions; jitter accounts for the relative amount of
superfluous (positive) or missed (negative) adaptations in the supply.

Since underprovisioning results in violating SLOs, a customer might want to
use a system that minimizes underprovisioning while at the same time minimizing
the amount of overprovisioned resources. The accuracy and time share metrics that
we present in this section enable providers to better communicate their autoscaling
capabilities, and they enable customers to select an autoscaler that best matches their
needs.

In addition to system-oriented metrics, we highlight the importance of user-
oriented metrics in this context. We consider important indicators to be: the frequency
of adaptations, the average number of virtual machine (VM) instances, the accounted
instance minutes, and the average and median service response time, in combination
with the percentage of SLO violations. When considering cost-based metrics, one
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should keep in mind that they normally depend directly on the employed cost model
of the provider and are thus inherently biased.

When using only individual metrics to evaluate the performance of autoscalers,
the results can be ambiguous. Therefore, we consider different approaches to derive
aggregate metrics (cf. Sections 3.5.2 and 3.5.3 in Chapter 3) from the individual
metrics: (1) metrics based on the deviation of each autoscaler from the theoret-
ically optimal autoscaler, (2) metrics based on pairwise comparisons among the
autoscalers, and (3) metrics based on quantifying the gain from using an autoscaler
via an elastic speedup metric.

We will use the following notation to introduce the various metrics in the rest of
this section:

• T denotes the experiment duration with the time t varying in the interval [0,T],
• st denotes the resource supply at time t, and
• dt denotes the resource demand at time t.

For illustration, we will assume that the type of resource scaled is virtual ma-
chines (VMs) and the unit of scaling is defined as the number of running VMs.

The resource demand dt is the minimum amount of resources (i.e., number of
VMs) required to meet a predefined SLO under the load at time t. The demand curve
is derived based on systematic load measurements as part of the Bungee elasticity
measurement methodology, which we present in Section 15.4. The resource supply st
is the monitored number of running VMs at time t.

Figure 15.1 illustrates the time spans in under-/overprovisioned states as Ai, Bi and
respective areas Ui,Oi derived by comparing the supply curve st with the demand
curve dt .
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Fig. 15.1: Exemplary supply and demand curves illustrating the intention of the
accuracy metrics (see Ui , Oi areas) and time share metrics (see Ai , Bi

intervals)—red/orange areas indicate under-/overprovisioning
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15.2.1 Provisioning Accuracy

The provisioning accuracy metrics θU and θO capture the (relative) amount of
resources that are underprovisioned and overprovisioned, respectively, during the
measurement interval. The underprovisioning accuracy θU is the amount of missing
resources required to meet the SLOs in relation to the current demand, normalized
by the length of the experiment. Similarly, the overprovisioning accuracy θO is the
amount of resources that the autoscaler supplies in excess of the current demand,
normalized by the length of the experiment. The values of these metrics lie in the
interval [0,∞), where 0 is the best value indicating that there is no underprovisioning
or overprovisioning during the entire measurement interval. The two metrics θU
and θO are formally defined as follows:

θU [%] :=
100
T
·
∫ T

t=0

max(dt − st, 0)
max(dt, ε)

dt, (15.1)

θO[%] :=
100
T
·
∫ T

t=0

max(st − dt, 0)
max(dt, ε)

dt, (15.2)

with ε > 0; we selected ε = 1. The role of ε in the above equations is to avoid
division by zero in intervals where the actual resource demand is zero.

These normalized accuracy metrics are particularly useful when the resource
demand varies significantly over time and it can assume both large and small values.
Indeed, underprovisioning one resource unit when two resource units are required is
much more harmful than in the case when hundreds of resource units are required.
Therefore, this type of normalization allows a more fair evaluation of the achievable
performance.

For an intuitive interpretation when comparing results in experiments with low
variation in the resource demand, we define the unscaled provisioning accuracy
metrics aU and aO as the average amount of resource units by which the demand ex-
ceeds the supply for aU , and analogously, the average amount of excessive resources
during overprovisioned periods for aO. The two metrics aU and aO are formally
defined as follows:

aU [#res] :=
1
T
·
∫ T

t=0
max(dt − st, 0)dt, (15.3)

aO[#res] :=
1
T
·
∫ T

t=0
max(st − dt, 0)dt . (15.4)

Figure 15.1 illustrates the meaning of the accuracy metrics. The underprovision-
ing accuracy aU is equivalent to summing up the areas U where the resource demand
exceeds the supply, normalized by the duration of the measurement period T . Sim-
ilarly, the overprovisioning accuracy metric aO is based on the sum of the areas O
where the resource supply exceeds the demand.
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15.2.2 Wrong Provisioning Time Share

The wrong provisioning time share metrics τU and τO capture the (relative) portion
of time in which the system is underprovisioned and overprovisioned, respectively,
during the measurement interval. The underprovisioning time share τU is the portion
of time relative to the measurement duration, in which the system has insufficient
resources. Similarly, the overprovisioning time share τO is the portion of time relative
to the measurement duration, in which the system has more resources than required.
The values of these metrics lie in the interval [0, 100]. The best values (i.e., τU = 0
and τO = 0) are achieved when no underprovisioning and no overprovisioning,
respectively, is detected within the measurement period. The two metrics τU and τO
are formally defined as follows:

τU [%] :=
100
T
·
∫ T

t=0
max (sgn(dt − st ), 0) dt, (15.5)

τO[%] :=
100
T
·
∫ T

t=0
max (sgn(st − dt ), 0) dt . (15.6)

Figure 15.1 illustrates the meaning of the wrong provisioning time share metrics.
The underprovisioning time share τU is equivalent to summing up the lengths of
the intervals A where the resource demand exceeds the supply, normalized by the
duration of the measurement period T . Similarly, the overprovisioning time share τO
is based on the sum of the lengths of the intervals B where the resource supply
exceeds the demand.

15.2.3 Instability

The accuracy and time share metrics quantify the core aspects of elasticity. Still,
systems can behave differently while exhibiting the same metric values for the accu-
racy and time share metrics. An example of such a situation is shown in Figure 15.2.
System A and System B exhibit the same accuracy and spend the same amount of
time in the underprovisioned and overprovisioned states. However, System A triggers
four resource supply adaptations, whereas System B triggers eight. This results in a
different fraction of time in which the system is in stable phases. To take this into
account, we introduce a further metric called instability, which aims to capture basic
unstable behavior (e.g., oscillations) as typically considered in the context of control
theory (Janert, 2013).

We define the instability metric υ as the fraction of time in which the supply
curve and the demand curve change in opposite directions. As a requirement for
the calculation of this metric, the average provisioning and deprovisioning time per
resource unit have to be determined experimentally before or during the measurement
period. The step functions of demanded and supplied resource units are transformed
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Fig. 15.2: Systems with different elastic behavior exhibiting equal accuracy and
timeshare metrics

to ramps based on the average provisioning and deprovisioning time as depicted in
Figure 15.2a. Without this transformation, the resulting value would either become
zero or it would depend on the sampling granularity of the demand and supply
curves dt and st . In summary, υ captures the fraction of time in which the demanded
resource units and the supplied units change in different directions. The metric υ is
formally defined as follows:

υ[%] =
100
T
·
∫ T

t=0
min
(�����sgn

(
d
dt

st

)
− sgn

(
d
dt

dt

) ����� , 1
)

dt. (15.7)
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An instability value close to zero indicates that the system adapts closely to
changes in the demand. A high value indicates that the system oscillates heavily and
does not converge to the demand. In contrast to the accuracy and time share metrics,
a υ value of zero is a necessary but not sufficient requirement for a perfectly elastic
system. For example, continuously allocating too few resources in parallel to the
demand curve would result in a value of zero. Instability is a useful indicator for
reasoning about the cost overhead of instance-time-based pricing models as well as
for assessing the resource adaptation overhead from the cloud operator’s perspective.

Although the instability metric υ comes with a complex computation process, it
has the benefit of having a finite positive value range [0, 100]. As will be seen later,
this is an important aspect for integration into an aggregated metric.

15.2.4 Jitter

The jitter metric j compares the number of adaptations in the supply curve ES with
the number of adaptations in the demand curve ED . The difference is normalized
by the length of the measurement period T . If a system de-/allocates more than one
resource unit at a time, the adaptations are counted individually per resource unit.
The jitter metric is formally defined as follows:

j
[
#
t

]
=

ES − ED

T
. (15.8)

A negative j value indicates that the system adapts rather sluggishly to changes
in the demand. A positive j value means that the system tends to oscillate like
System A (slightly) and B (heavily) as illustrated in Figure 15.2. In general, high
absolute values of the jitter metric indicate that the system is not able to react to
demand changes appropriately. In other words, the jitter metric denotes the average
amount of missed (negative) or superfluous (positive) adaptations per time unit. In
contrast to the accuracy and time share metrics, and as for the instability metric υ, a
jitter value of zero is a necessary but not sufficient requirement for a perfect elastic
system. The jitter metric j is easier to compute compared to the instability metric and
also comes with an intuitive interpretation. It has a theoretically unbounded value
range, but it is capable of distinguishing between oscillating/instable elasticity and
elasticity with inertia to adapt timely to the workload changes.

15.3 Aggregating Elasticity Metrics

In this section, we present three different ways to aggregate the introduced elasticity
metrics into a single composite metric providing a consistent ranking of autoscaling
mechanisms.
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15.3.1 Autoscaling Deviation

One approach to evaluate the performance of a set of autoscalers and rank them is to
compute the autoscaling deviationσ of each autoscaler compared to the theoretically
optimal autoscaler. For computing the deviation σ between two autoscalers, we use
the Minkowski distance dp:

Let x, y ∈ Rn and 1 ≤ p ≤ ∞:

dp (x, y) = ‖x − y‖p := �
n∑
i=1
|xi − yi |p��

1
p

. (15.9)

Here, the vectors consist of a subset of the aforementioned system-oriented eval-
uation metrics. We take the provisioning accuracy metric θ, the wrong provisioning
time share metric τ, and the instability metric υ. The metrics are specified as percent-
ages. The closer the value of a metric is to zero, the better the autoscaler performs
with respect to the aspect characterized by the given metric. Therefore, the closer
the autoscaling deviation is to zero, the closer the behavior of the autoscaler would
be compared to the theoretically optimal autoscaler.

The first step is to calculate the elasticity metrics. Then, we calculate the overall
provisioning accuracy θ and the overall wrong provisioning time share τ. Hereby,
we use a weighted sum for both metrics consisting of their components weighted
based on a penalty factor 0 < γ < 1. This penalty can be set individually to reflect
custom requirements, with γ > 0.5 indicating that underprovisioning is worse than
overprovisioning, γ = 0.5 indicating that underprovisioning and overprovisioning
are equally bad, and γ < 0.5 indicating that overprovisioning is worse than under-
provisioning. In the case study presented later in this chapter, we always set γ to 0.5.
The metrics θ and τ are formally defined as follows:

θ[%] := γ · θU + (1 − γ) · θO, (15.10)
τ[%] := γ · τU + (1 − γ) · τO . (15.11)

In the next step, the Minkowski distance dp between the autoscaler and the
theoretically optimal autoscaler is calculated. As the theoretically optimal autoscaler
is assumed to know when and how much the demanded resources change, the
values for the provisioning accuracy θ, the wrong provisioning time share τ, and
the instability υ are equal to zero. In other words, if an autoscaler is compared to
the theoretically optimal autoscaler, the Lp-norm can be used as ‖x − 0‖p = ‖x‖p
with x = (θ, τ, υ). In our case, the autoscaling deviationσ between a given autoscaler
and the theoretically optimal autoscaler is defined as follows:

σ[%] := ‖x‖3 =
(
θ3 + τ3 + υ3

) 1
3 (15.12)

given that we have three dimensions: the overall provisioning accuracy, the overall
wrong provisioning time share, and the instability.
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The smaller the value of the autoscaling deviation σ, the better the autoscaler is
rated in the given context.

15.3.2 Pairwise Comparison

Another approach to ranking—given a fixed set of autoscaler experiments—is to
use the pairwise comparison method (David, 1987). Here, for every autoscaler, the
value of each metric is pairwise compared with the value of the same metric for
all other autoscalers. As values closer to zero are better, an autoscaler is given one
point for every metric where it manages to achieve the lowest value compared to
the other considered autoscalers. If a metric has equal value for two autoscalers, the
autoscalers each get half a point. In addition, we divide the achieved score of each
autoscaler by the maximum achievable score. The pairwise comparison metric κ
shows the fraction of the achievable points an autoscaler manages to collect. For
the comparison, we take the metrics x = (θ, τ, υ) into account. Mathematically, the
metric κ for an autoscaler a ∈ [1, n], where n is the number of autoscalers, can be
expressed as:

κa[%] :=
100

(n − 1) · |x | ·
n∑

i=1;i�a

|x |∑
j=1
ω(i, j), where ω(i, j) :=

⎧⎪⎪⎨⎪⎪⎩
0, xa ( j) > xi ( j)
0.5, xa ( j) = xi ( j)
1, xa ( j) < xi ( j)

(15.13)

The closer the value of the pairwise comparison metric κ is to 100%, the better
the autoscaler is rated in the given context compared to the other autoscalers in
competition.

15.3.3 Elastic Speedup Score

The elastic speedup score ε is computed in a way similar to the aggregation and
ranking of results in established benchmarks, for example, SPEC CPU2017 (cf. Chap-
ter 10, Section 10.6.3). Here, the use of the geometric mean to aggregate speedups
in relation to a defined baseline scenario is a common approach.

As discussed in Chapter 3 (Section 3.5.3.2), the geometric mean produces consis-
tent rankings, and it is suitable for normalized measurements. The resulting elastic
speedup score allows one to compare autoscaler elasticity without having to compare
each elasticity metric separately. It is also possible to add a new result to the ranking
at a later point in time (in contrast to using a fixed set as in the pairwise comparison).

A drawback of the elastic speedup score is its high sensitivity to values close to
zero and the fact that it is undefined if one or more of the metrics are zero. To minimize
the probability of zero-valued metrics, we aggregate the normalized accuracy and
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time share metrics into an overall accuracy θ and an overall wrong provisioning time
share τ, respectively; see Section 15.3.1, Equations (15.10) and (15.11). This way,
θ and τ become zero only for the theoretical optimal autoscaler.

We compute the elastic speedup score ε based on the accuracy, time share, and
instability metrics for an elasticity measurement k and the respective values from a
shared baseline scenario base as follows:

εk =

(
θbase
θk

)wθ

·
(
τbase
τk

)wτ

·
(
υbase
υk

)wυ

,

where wθ , wτ , wυ ∈ [0, 1], wθ + wτ + wυ = 1.

(15.14)

The weights can be used to implement user-defined preferences, for example,
to increase the influence of the accuracy and time share aspects compared to the
instability aspect if desired. We assume here that a baseline measurement is available
with the same application and workload profile executed within the same predefined
range of resource units. The higher the value of the elastic speedup score εk , the
better the autoscaler is rated in the given context compared to the baseline scenario.

15.4 Elasticity Benchmarking Framework

The elasticity of a cloud platform is influenced by many factors including the un-
derlying hardware, the used virtualization technology, and the cloud management
software. These factors vary across providers and often remain unknown to the
cloud customer. Even if they were known, the effect of specific configurations on the
performance of an application is hard to quantify and compare. In this section, we
present an elasticity benchmarking framework, called Bungee,3 that takes these fac-
tors into account and addresses generic and cloud-specific benchmark requirements
(cf. Chapter 1, Section 1.5).

15.4.1 Overview of Bungee

We provide a brief overview of the benchmark components and the benchmarking
workflow. An implementation of Bungee is available as an open-source tool. More
details on the design of Bungee can be found in Herbst, Kounev, Weber, et al. (2015).

3 Bungee cloud elasticity benchmark: http://descartes.tools/bungee

http://descartes.tools/bungee
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Fig. 15.3: Bungee experimental environment

Figure 15.3 illustrates a Bungee experimental environment comprised of the sys-
tem under test (SUT)—the elastic IaaS cloud platform—and the Bungee Benchmark
Controller, which runs the benchmark. Bungee automates the process of benchmark-
ing resource elasticity in four sequential steps:

1. System Analysis: The cloud platform is analyzed with respect to the performance
of its underlying resources and its scaling behavior. A discrete mapping function
is generated that determines for each load-intensity level the associated minimum
amount of resources required to meet the Service-Level Objectives (SLOs).

2. Benchmark Calibration: The results of the analysis are used to adjust the
varying load profile injected on the system in a way to induce the same resource
demand on all compared systems.

3. Measurement: The load generator exposes the cloud platform to a varying work-
load according to the adjusted load profile. The benchmark controller monitors
the amount of supplied resources at each point in time during the measurement
interval as well as the performance of the system with respect to the SLOs.

4. Elasticity Evaluation: The elasticity metrics introduced in the previous two
sections are computed and used to compare the resource demand and resource
supply curves with respect to different elasticity aspects.

In the following, we will use the term resource demand4 to refer to the minimum
resource amount that is necessary to handle the load intensity without violating
the SLOs (e.g., response times). The resource demand of a platform for a given
load intensity depends on two factors: (1) the efficiency of a single underlying
resource unit and (2) the overhead caused by combining multiple resource units.

4 Note that this notion of resource demand, in the context of elasticity benchmarking, is different
than the more general concept of resource demand (also referred to as service demand) discussed
in Chapter 17.



332 15 Elasticity of Cloud Platforms

Both aspects can vary from platform to platform, and they correspond to two distinct
properties, namely efficiency and scalability. Figure 15.4 shows an example of three
platforms with different resource demand for the same load intensity. The difference
in the resource demand is due to different scaling behaviors and different levels of
efficiency of the underlying resources. When comparing elasticity, it is important
to consider workloads that induce the same resource demand variations on each
compared platform. To this end, the load intensity profile executed on each platform
is calibrated as described below.

Fig. 15.4: Platforms with different resource demands for the same load intensity

The first step (system analysis) is to derive a function for each platform that maps
a given load intensity to the corresponding resource demand. The analysis works
by exposing the system to a specific load intensity and checking whether the SLOs

(a) Platform A (b) Platform B

(c) Platform C
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are fulfilled. For each amount of allocated resources, the maximum sustainable load
intensity for which the SLOs are fulfilled is measured. The search starts with one
resource unit and increases the number of resources, until the maximum sustainable
load stops to increase or until the maximum number of available resources is reached.

In the second step (benchmark calibration), the load profile injected on each
tested platform is adjusted in a way to induce the same resource demand at each
point in time during the measurement period. The target resource demand is derived
by considering the scaling behavior of a baseline system serving as a reference
for comparisons. To achieve this, Bungee adapts the load intensity curve for every
platform to compensate for different levels of efficiency of the underlying resources
and for different scaling behavior. The calibration uses the mapping function from
the system analysis step, which is specific for every platform. Figure 15.5 shows
the induced load demand for the three example platforms using the adjusted load
profiles. Although the platforms have underlying resources with different levels of
efficiency and different scaling behavior (see Figure 15.4), the induced resource
demand variations are now equal for all compared platforms. With this adjustment,
it is now possible to directly compare the quality of the adaptation process and thus
evaluate the platform elasticity in a fair manner.

15.5 Case Study

In this section, we present a case study showing that the scaling behavior (i.e., elas-
ticity) of a standard, reactive, CPU utilization-rule-based autoscaler depends on the
specific environment (cloud platform) in which it is deployed and used. The pre-
sented experiment results adhere to the established principles and best practices for
conducting reproducible experiments in cloud computing environments as described
in Papadopoulos et al. (2019a,b).

The case study evaluates the scaling behavior of the autoscaler when scaling
a CPU-intensive application—an implementation of the LU worklet (lower–upper
decomposition of an n × n matrix) from the SPEC SERT 2 suite (cf. Chapter 11,
Section 11.3)—in three different deployment environments:

• a CloudStack-based private cloud (CSPC),
• Amazon Elastic Compute Cloud (AWS EC2), and
• the DAS-4 IaaS cloud of a medium-scale, multi-cluster experimental environ-

ment (MMEE) used for computer science research.

The implemented autoscaler and experiment data are available online.5 We use
a real-life trace from the FIFA championship 1998.6 We apply the analysis of vari-
ance (ANOVA) technique (cf. Chapter 5, Section 5.1) to determine the impact of the
deployment environment on the scaling behavior (i.e., elasticity) of the autoscaler.

5 Autoscaler and experiment data: https://doi.org/10.5281/zenodo.1169900
6 FIFA Source: ftp://ita.ee.lbl.gov/html/contrib/WorldCup.html

ftp://ita.ee.lbl.gov/html/contrib/WorldCup.html
https://doi.org/10.5281/zenodo.1169900
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Fig. 15.5: Resource demands for adjusted, platform-specific load profiles

Using the Bungee measurement methodology, the ideal resource supply is derived
based on repeated and systematic load tests for each scaling level in the considered
three environments.

We extract a sub-trace containing three similar days for internal repetitions, and
we run each trace in each environment. To cover setups with background noise,
the application is deployed both in the public AWS EC2 IaaS cloud and in an
OpenNebula-based7 IaaS cloud of a medium-scale multi-cluster experimental en-
vironment (MMEE) used exclusively for these experiments. Each experiment was
run for 9.5 h—a duration that covers seasonal patterns, for example, the daily peaks.

7 OpenNebula: https://opennebula.org

(a) Platform A (b) Platform B

(c) Platform C

https://opennebula.org
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For compactness of the presentation, we skip the analysis of further application
workloads including other load traces.

Table 15.1: Specification of the VMs

Component CSPC EC2 (m4.large) MMEE
Operating system CentOS 6.5 CentOS 6.5 Debian 8

vCPU 2 cores 2 cores 2 cores

Memory 4 GB 8 GB 2 GB

In the CSPC scenario, the application is deployed in a private Apache CloudStack8
cloud that manages 8 identical virtualized Xen-Server (v6.5) hosts (HP DL160 Gen9
with eight physical cores @2.4 Ghz Intel E5-2630 v3). We deactivate hyperthreading
to limit VM overbooking and rely on a constantly stable performance per VM.
Dynamic frequency scaling is enabled by default and also further CPU-oriented
features are not changed. The hosts each have 2 × 16 GB RAM (DIMM DDR4
RAM operated @ 1866 MHz). The specification of each VM in all setups is listed
in Table 15.1. For all scenarios, Tomcat 7 is used as an application server. As the
LU worklet of the SERT 2 suite is CPU-bound, there is no disk I/O during the
experiments and only low utilization of the Gigabit Ethernet of the hosts is observed.
In all three deployments, the autoscaler is configured identically to scale up VMs
when an average CPU utilization threshold of 90% is exceeded for 1 min and to
scale down VMs when the average CPU utilization falls below 60% for 1 min. CPU
utilization is measured inside the VMs using the top9 command and averaged across
all concurrently running VMs.

Figure 15.6 shows the scaling behavior of the reactive autoscaler in each envi-
ronment. The horizontal axis shows the time of the measurement (in minutes) since
the beginning of the experiment; the vertical axis shows the number of concurrently
running VMs. The blue line shows the ideal number of supplied VMs; the green
dashed line represents the supplied VMs in MMEE; the red line shows the supplied
VMs in EC2; and the black dashed line shows the supplied VMs in CSPC.

8 Apache CloudStack: https://cloudstack.apache.org
9 top command manual: http://man7.org/linux/man-pages/man1/top.1.html

http://man7.org/linux/man-pages/man1/top.1.html
https://cloudstack.apache.org
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Figures 15.7 and 15.8 show the distributions of the response times and the allo-
cated VMs, respectively. In both figures, the dotted black line represents the first day,
the dashed red line the second day, and the solid green line the last day. Whereas
the distributions in CSPC and EC2 are similar, they differ from the distributions
in MMEE. This can be explained by the scaling behavior depicted in Figure 15.6:
during the first day, the autoscaler allocates too few instances; during the second day,
it almost satisfies the demand; and during the third day, it overprovisions the system.
Table 15.2 shows the average metrics and their standard deviation.

Table 15.2: Average metric (and standard deviation) for a day in each scenario

Metric CSPC EC2 MMEE
θU (accuracyU ) [%] 2.39 (1.54) 14.05 (1.82) 19.42 (5.04)

θO (accuracyO) [%] 43.22 (4.38) 10.09 (1.75) 54.98 (11.87)

τU (time shareU ) [%] 9.76 (4.77) 57.20 (2.60) 42.16 (1.76)

τO (time shareO) [%] 82.95 (5.46) 27.53 (4.42) 53.06 (3.08)

υ (instability) [%] 14.00 (0.66) 18.12 (0.66) 13.01 (1.43)

ψ (SLO violations) [%] 2.70 (3.68) 49.30 (1.71) 53.02 (7.11)

Avg. response time [s] 0.60 (0.17) 2.68 (0.08) 2.32 (0.68)

# Adaptations 25.67 (1.88) 80.66 (3.40) 39.67 (7.54)

Avg. #VMs [VMs] 10.53 (0.44) 8.84 (0.07) 11.01 (0.12)

We now apply the one-factor ANOVA technique (cf. Chapter 5, Section 5.1) to
evaluate the impact of the environment on the elasticity of the autoscaler. Table 15.3
shows for each elasticity metric the proportion of observed variation explained by the
impact of varying the environment as well as the respective p-value. The p-value is the
minimum significance level (with 1 − p corresponding to the maximum confidence
level) for which the observed variation due to actual differences in the environment is
statistically significant. Given that each p-value is less than 1%, and a high proportion
of the observed variation is due to the environment, we conclude that the scaling
behavior of a standard, reactive, CPU utilization-rule-based autoscaler is significantly
impacted by the environment in which the autoscaler is deployed.

Table 15.3: ANOVA results per metric

Statistic θU θO τU τO

p-value 0.006 0.001 0.003 0.003

Prop. of variation due to env. [%] 82 84 98 97
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15.6 Concluding Remarks

This chapter started with defining elasticity as an important attribute of cloud comput-
ing platforms and presented a comprehensive set of elasticity metrics. We introduced
a set of intuitive metrics enabling detailed assessment of the elastic behavior of au-
toscalers based on the Bungee benchmarking methodology. We illustrated the use of
the metrics in a compact case study investigating the question of whether standard
reactive autoscalers behave differently in different infrastructure cloud environments.
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Chapter 16
Performance Isolation
Rouven Krebs and Samuel Kounev

Cloud computing enables resource sharing at different levels of a data center infras-
tructure. Hardware and software resources in a data center can be shared based on
server virtualization, application containerization, or multi-tenant software architec-
tures.

Multi-tenancy is an approach to share one application instance among multiple
customers by providing each of them with a dedicated view. Tenants expect to be
isolated in terms of the application performance they observe; therefore, a provider’s
inability to offer performance guarantees can be a major obstacle for potential cloud
customers. A tenant is a group of users sharing the same view onto an application.
This view includes the data they access, the application configuration, the user man-
agement, application-specific functionality, and related non-functional properties.
Usually, the tenants are members of different legal entities. This comes with restric-
tions (e.g., concerning data security and privacy). In this chapter, multi-tenancy is
understood as an approach to share an application instance between multiple tenants
by providing every tenant with a dedicated share of the instance isolated from other
shares with regard to performance, appearance, configuration, user management,
and data privacy (Krebs et al., 2012). Some publications use a broader definition
of the term multi-tenancy; however, in this chapter, we focus on the case of shared
application instances as described above.

Hypervisors and virtual machines provide another way of sharing resources be-
tween customers. In contrast to multi-tenant applications, a hypervisor runs multiple
virtual machines (VMs) on the same hardware. By leveraging virtualization tech-
nology, the VMs can run in parallel and share the underlying physical resources.
This technology is used to provide multiple customers access to Software-as-a-
Service (SaaS) offerings whereby several instances of an application are used
to serve user requests. Furthermore, virtualization is an enabling technology for
Infrastructure-as-a-Service (IaaS) where customers rent VMs from cloud providers.

Despite the use of shared resources, users expect to have the feeling of con-
trol over their own and separate environment, with their own Service-Level Agree-
ments (SLAs) and regulations as known from private data centers, both in virtualized
and multi-tenant application scenarios. In addition, they expect to be isolated from
other customers with regard to functional and non-functional aspects. However, due
to the sharing of resources, performance-related issues may appear when a customer
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sends a high number of requests generating load on the system. This is because the
load generated by one customer competes for resources also used by others. Espe-
cially in the cloud context, where resources are shared intensively among customers,
it is not easy to maintain reliable performance. This is a serious obstacle for cloud
customers, especially for users of multi-tenant applications.

This chapter presents metrics to quantify the degree of performance isolation a
system provides. The metrics are based on Krebs et al. (2014), Krebs (2015), and
Herbst, Bauer, et al. (2018), and they have been endorsed by the SPEC Research
Group (Herbst, Krebs, et al., 2016). In an ideal case, one should be able to measure
performance isolation externally, that is, by running benchmarks from the outside
and treating the system as a black box. This enables their use for a broad set of
applications given that no internal knowledge of the system is required. The metrics
and the thought process to create them serve as a practical example illustrating the
metric attributes and principles introduced in Chapter 3.

The metrics presented in this chapter are applicable for use in performance bench-
marks that measure the performance without requiring internal knowledge. They are
preferable in situations where different request sources use the functions of a shared
system with a similar call probability and demand per request but with a different
load intensity. These characteristics are typical for multi-tenant applications but can
also occur in other shared resource systems. This chapter introduces the metrics and
provides a case study showing how they can be used in a real-life environment.

16.1 Definition of Performance Isolation

To avoid distrust in a multi-tenant application provider, it is necessary to ensure fair
behavior of the system with respect to its different tenants. It is assumed that each
tenant is assigned a quota that specifies the maximum load the tenant is allowed to
place on the system, for example, the maximum number of service requests that can
be sent per second. In this chapter, the following definition of fairness is used:

Definition 16.1 (Fairness) A system is considered to be fair if all of the following
conditions are met:

1. Tenants working within their assigned quotas must not suffer performance degra-
dation due to other tenants exceeding their quotas.

2. Tenants exceeding their quotas may suffer performance degradation; tenants ex-
ceeding their quotas more should suffer higher performance degradation than
tenants exceeding their quotas less.

3. Tenants exceeding their quotas may suffer performance degradation only if other
tenants that comply with their quotas would otherwise be affected.

The term quota refers to the amount of workload a tenant is allowed to execute
(e.g., number of user requests or transactions per second).
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Tenants working within their quotas will be referred to as abiding tenants, whereas
tenants that exceed their quotas will be referred to as disruptive tenants. The term
guarantee refers to the negotiated performance level as part of SLAs with the
provider. The main focus of this chapter is on the first fairness criterion, which
is achieved by performance isolation.

Definition 16.2 (Performance Isolation) Performance isolation is the ability of a
system to ensure that tenants working within their assigned quotas (i.e., abiding
tenants) will not suffer performance degradation due to other tenants exceeding their
quotas (i.e., disruptive tenants).

A system is usually expected to be somewhere in between being completely
performance isolated and non-isolated. A system where the influence of a tenant
on other tenants is lower is considered to provide a better performance isolation
compared to a system where the influence is higher.

SLAs are of major importance for shared services. Therefore, it may be useful
to reflect this in the previous definitions. This would imply that the performance
of tenants working within their quotas is allowed to be reduced as long as the
guaranteed level of performance is maintained. The latter is essential in order to allow
overcommitment of resources. Note that, in a non-isolated system, the guaranteed
performance for abiding tenants eventually will be violated if the disruptive tenants
continue to increase their workload. In contrast, an isolated system will maintain the
guaranteed performance independent of the disruptive tenants’ workload.

16.2 Performance Isolation Metrics

The performance isolation metrics we present in this chapter are not necessarily
coupled to performance and they do not express the system’s capability to accomplish
useful work. They rather express the influence a tenant has on the ability of another
tenant to accomplish useful work.

Existing benchmarks and metrics in the field of shared resources and cloud
computing focus on specific aspects like database performance (Cooper et al., 2010).
Some works discuss metrics for cloud features like elasticity (Herbst, Kounev, et al.,
2013; Islam et al., 2012; Kupperberg et al., 2011), as discussed in Chapter 15,
or performance variability (Iosup, Ostermann, et al., 2011; Schad et al., 2010).
Performance variability characterizes the changes in performance over time while
the workload is assumed to be constant. However, these changes are not set in relation
to the workload induced by others and thus a new approach is required.

In the following, the goals and requirements for the new isolation metrics are
discussed. After that, the definitions of the metrics are presented. A case study
measuring performance isolation in virtualized environments serves as an example
showing the metrics in action. Based on the practical experiences from the case study,
we then perform a final assessment of the usability of the metrics before concluding
this chapter.
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16.2.1 Metrics Goals and Requirements

To improve an existing performance isolation mechanism, application developers
need isolation metrics in order to compare different variants of an isolation approach.
For stakeholders involved in operations, the impact an increasing workload has on
other tenants can be of interest in order to define SLAs or to manage the system’s
capacity.

As per our definition, a system is performance isolated if each tenant working
within his quota is not negatively affected in terms of performance when other
tenants increase their workloads beyond their quotas. A decreased performance for
the tenants exceeding their quotas is fair with regard to the second fairness property
(see Section 16.1). Moreover, as mentioned earlier, it is possible to link the definition
of performance isolation to the assumed performance guarantees using SLAs. As
a result, a decreased performance for tenants working within their quotas would be
acceptable as long as it is within their SLA-defined guarantees. These aspects have
to be reflected by performance isolation metrics.

The metrics should be designed to support answering the following questions:

Q1 How much can a tenant’s workload influence the performance of other tenants?
Q2 How much potential exists for improving a system’s performance isolation?
Q3 Which performance isolation technique is better?

Besides these metric-specific requirements, several general quality attributes and
criteria for good metrics were introduced in Chapter 3 (Section 3.4.2): ease of
measurement, repeatability, reliability, linearity, consistency, and independence.

For the measurement of performance isolation, one has to distinguish between
groups of disruptive and abiding tenants as defined in Section 16.1. The presented
metrics are based on the influence of the disruptive tenants on the abiding tenants.
Thus, the influence on one group as a function of the workload of the other group must
be evaluated. This is a major difference to traditional performance benchmarking.
For the definition of the metrics, a set of symbols is defined in Table 16.1.

The metrics presented in the rest of this chapter can be applied to quantify
isolation with respect to any measurable QoS-related property of a system that is
shared between different entities. As such, the metrics are not limited to performance
isolation in multi-tenant applications, although the latter are used as an example in
this chapter.

Assume a non-isolated system and the situation illustrated in Figure 16.1 where
disruptive tenants increase their workload over time. Assuming that the system is
not isolated, the response time for the abiding tenants and their users would increase
in the same way as if these users would belong to the disruptive tenants.
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Table 16.1: Overview of variables and symbols for performance isolation metrics

Symbol Meaning
D Set of disruptive tenants exceeding their quotas (i.e., tenants inducing

more than the allowed maximum requests per second); in the context
of measuring performance isolation, we assume that |D | > 0

A Set of abiding tenants not exceeding their quotas (i.e., tenants inducing
less than the allowed maximum requests per second); in the context of
measuring performance isolation, we assume that |A| > 0

t A tenant in the system; we assume that t ∈ D or t ∈ A
wt The workload caused by tenant t represented as a numeric value in

R
+
0 ; the value is considered to increase with higher loads on the system

(e.g., request rate or job size); wt ∈ W
W The total system workload as a set of the workloads induced by all

individual tenants
zt (W ) A numeric value describing the Quality-of-Service (QoS) (e.g., re-

quest response time) provided to tenant t; the individual QoS a tenant
observes depends on the aggregate workload W of all tenants; QoS met-
rics with lower values of zt (W ) correspond to better QoS (e.g., faster
response time); zt : W → R+0

I The degree of isolation provided by the system; an index is added to
distinguish different types of isolation metrics (the various indices are
introduced later; a numeric suffix to the index is used in some places
to express the load level under which the isolation is measured)
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Fig. 16.1: Influence of disruptive tenants on the response time of abiding tenants in
a non-isolated system

16.2.2 QoS-Impact-Based Isolation Metrics

QoS-impact-based isolation metrics depend on at least two measurements: First,
the observed QoS for every abiding tenant t ∈ A at an application-wide reference
workload Wre f ; second, the QoS for every abiding tenant t ∈ A at a modified
workload Wdisr where a subset of the tenants have increased their load to challenge
the system’s isolation mechanisms. Wre f and Wdisr are composed of the aggregate
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workload of the same set of tenants, that is, the union of A and D. In Wdisr , the
workload of the disruptive tenants is increased.

The relative difference in the QoS for abiding tenants at the reference workload
compared to the disruptive tenant workload can be computed as

ΔzA =

∑
t∈A

[
zt (Wdisr ) − zt (Wre f )

]
∑
t∈A

zt (Wre f )
. (16.1)

The relative difference of the load induced by the two workloads is given by

Δw =

∑
wt ∈Wdisr

wt − ∑
wt ∈Wre f

wt

∑
wt ∈Wre f

wt

. (16.2)

Based on these two quantities, the influence of the increased workload on the
QoS of the abiding tenants is expressed as follows:

IQoS :=
ΔzA
Δw
. (16.3)

A low value of this metric represents a good isolation, as the impact on the QoS
of abiding tenants in relation to the increased workload is low. If the value is 0, the
isolation is perfect. Accordingly, a high value of the metric indicates a bad isolation
of the system. In principle, the upper bound of the metric is unlimited. A negative
value may occur if a mechanism reduces the performance of the disruptive tenants
more than expected, thus providing the abiding tenants an even better performance.

The metric provides a result for two specified workloads (Wre f and Wdisr ), and
thus the selection of the workloads plays an important role. However, only one
measurement for a given workload tuple (Wre f ,Wdisr ) is not sufficient if the exact
workloads of interest are unknown or variable. To address this, one can consider the
arithmetic mean of IQoS for m different disruptive tenant workloads as follows:

Iavg :=

m∑
i=1

IQoSm

m
. (16.4)

This metric provides an average isolation value for the entire considered space
of workloads and provides one representative numeric value. The disruptive tenant
workload is increased in equidistant steps within a lower and upper bound. However,
the curve’s shape is not reflected in the average value and it may thus lead to
misleading results for some ranges of disruptive tenant workload.

It is conceivable that a provider might be interested in the relative difference
of disruptive tenant workload Δw at which abiding tenants receive a predefined
proportion ΔzA of the promised QoS. This is conceptually similar to the already
described metrics and could be used to extend them with further metrics.
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16.2.3 Workload-Ratio-Based Isolation Metrics

The metrics we introduce in the following are not directly associated with the QoS
impact resulting from an increased workload of disruptive tenants. Instead, the idea
is to compensate for the increased workload of disruptive tenants by decreasing the
workload of the abiding ones such that the QoS for abiding tenants can remain un-
affected. Figure 16.2 illustrates this. For simplicity, we assume that in a non-isolated
system, resources are equally shared among the tenants; therefore, the response time
would maintain a constant value if abiding tenants decrease their workload by the
same amount as the amount by which disruptive tenants increase theirs. The better
the performance isolation, the less abiding tenants would have to reduce their work-
load. Naturally, this is only possible with the support of the abiding tenants and such
a behavior would not be expected in productive systems. Thus, these metrics are
planned to be applied in benchmarks with artificial workloads where a load driver
simulates the tenants and can be programmed to follow the described behavior.
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Fig. 16.2: Influence of disruptive tenants when abiding tenants adapt their workload
accordingly

In the following, the idea is described in more detail. We start by measuring the
isolation behavior of a non-isolated system by continuously increasing the disruptive
tenant workload Wd . In such a situation, zt (W ) remains unaffected if the workload
of the abiding tenants Wa is adjusted accordingly to compensate for the increase in
the disruptive tenant workload.

The x-axis in Figure 16.3 shows the amount of workload Wd caused by the
disruptive tenants, whereas the y-axis shows the amount of the workload Wa caused
by the abiding tenants. The Non-Isolated line depicts how Wa has to decrease
in order to maintain the same QoS as in the beginning. In a non-isolated system
this function decreases linearly; that is, for every additional unit of work added
to the disruptive tenant workload, one has to remove the same amount from the
abiding tenant workload. In a perfectly isolated system, the increased disruptive
tenant workload Wd would have no influence on zt (W ) for all t ∈ A. Thus, Wa would
be constant in this case as reflected by the Isolated line in the figure. The Isolated
and Non-Isolated lines provide exact upper and lower bounds, which correspond to
a perfectly isolated and a non-isolated system, respectively. Figure 16.3 shows some
important data points, which are described in Table 16.2.



348 16 Performance Isolation

Wdbase
Wdend

Wdre f

Wabase

Ware f
Isolated

Possible Measurement

Non-Isolated

Fig. 16.3: Fictitious isolation curve including upper and lower bounds

Table 16.2: Description of relevant data points in Figure 16.3

Symbol Meaning
Wd The total workload induced by the disruptive tenants; Wd =

∑
t∈D

wt

Wdbase
The level of the disruptive tenant workload at which the abiding tenant
workload in a non-isolated system must be reduced to 0 in order to
avoid SLA violations

Wdend
The level of the disruptive tenant workload at which the abiding tenant
workload in the system under test (SUT) must be reduced to 0 in order
to avoid SLA violations

Wdre f The value of the disruptive tenant workload at the reference point in
the SUT with respect to which the degree of isolation is quantified; it
is defined as the disruptive tenant workload at which, in a non-isolated
system, the abiding tenant workload would have to start being reduced
to avoid SLA violations

Wa The total workload induced by the abiding tenants; Wa =
∑
t∈A

wt

Ware f The value of the abiding tenant workload at the reference point Wdre f

in the SUT; Ware f = Wdbase
−Wdre f

Wabase
The value of the abiding tenant workload corresponding to Wdbase

in
the SUT

Based on this approach, several metrics are defined in the following. As dis-
cussed before, the workload scenarios play an important role and it may therefore be
necessary to consider multiple different scenarios.
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16.2.3.1 Metrics Based on Edge Points

The edge points Wdend
, Wdbase

, Ware f , and Wabase
in Figure 16.3 provide several

ways to define an isolation metric by themselves. Iend is a metric derived from
the point at which the workloads of abiding tenants have to be reduced to 0 to
compensate for the disruptive tenant workload. The metric describes a relationship
between Wdend

and Ware f . Due to the discussed relationship of the workloads
in a non-isolated system and the definition of the various points, the condition
Ware f = Wdbase

−Wdre f holds. This relation helps to simplify the formulas. With
Figure 16.3 in mind, the metric Iend is defined as follows:

Iend :=
Wdend

−Wdbase

Ware f

. (16.5)

A value of 0 for Iend reflects a non-isolated system. Higher values reflect better
isolated systems. A value of 1 is interpreted as being twice as good as a non-isolated
system. In case of a perfectly isolated system, the metric value tends to infinity. This
makes it hard to interpret the value of the metric for a given system. A negative value
may occur if, for some reason, the performance of the abiding tenants is reduced
more than the disruptive tenant workload is increased. This may happen in case the
system runs into an overloaded and trashing state.

Another approach to define an isolation metric uses Wabase
as a reference. Setting

this value and Ware f in relation results in the following isolation metric having a
value in the interval [0, 1]:

Ibase :=
Wabase

Ware f

. (16.6)

A value of 0 for Ibase reflects a non-isolated system, while a value of 1 corresponds
to perfect isolation. Both metrics have some drawbacks resulting from the fact that
they do not take the curve’s form into account. Consider a system that behaves like
a perfectly isolated system until a short distance from Wdbase

and then suddenly
drops to Wa = 0. In such a system, both metrics would have the same value as for a
completely non-isolated system, which obviously is unfair in this case. Moreover, a
well-isolated system requires a very high disruptive tenant workload before Wa drops
to 0, which makes it hard to measure the metric in an experimental environment.
Ibase has some further disadvantages given that it is only representative for the
behavior of the system within the range between Wdre f and Wdbase

. Given that the
metric does not reflect what happens after Wdbase

, it may lead to misleading results
in the case of well-isolated systems for which the respective Wdend

points differ
significantly.

For systems that exhibit a linear degradation of the abiding tenant workload, it
is also possible to use isolation metrics based on the angle between the observed
abiding tenant workload’s line segment and the line segment representing a non-
isolated system. However, typically, a linear behavior cannot be assumed.



350 16 Performance Isolation

16.2.3.2 Metrics Based on Integrals

Next, we define two metrics addressing the discussed disadvantages of the above
metrics. They are based on the area under the curve derived for the measured
system Ameasured set in relation to the area under the curve corresponding to a
non-isolated system Anon−isolated . The area under the curve corresponding to a
non-isolated system is calculated as W2

are f
/2.

Integral Limited to Wdbase The first metric IintBase represents the isolation
as the ratio of Ameasured and Anon−isolated within the interval [Wdre f ,Wdbase

].
fm : Wd → Wa is defined as a function that returns the residual workload for the
abiding tenants based on the workload of the disruptive tenants. Based on this
function, we define the metric IintBase as follows:

IintBase :=

��
Wdbase∫
Wdre f

fm(Wd)dWd
��� −W2

are f
/2

W2
are f
/2

. (16.7)

IintBase has a value of 0 in case the system is not isolated and a value of 1 if the
system is perfectly isolated within the interval [Wdre f ,Wdbase

]. The metric’s major
advantage is that it helps to set the system directly in relation to an isolated and
non-isolated system. This metric, again, has the drawback that it only captures the
system behavior within [Wdre f ,Wdbase

]. Again, a negative value may occur if, for
some reason, the performance of the abiding tenants is reduced to a greater degree
than the disruptive tenant workload is increased.
Integral Without Predefined Intervals In a well-isolated system, it would be
of interest to measure the system behavior beyond the point Wdbase

. The following
metric IintFree allows the use of any predefined artificial upper bound pend > Wdbase

representing the highest value of Wd that was measured in the SUT. The metric is
defined as follows:

IintFree :=

��
pend∫

Wdre f

fm(Wd)dWd
��� −W2

are f
/2

Ware f · (pend −Wdre f ) −W2
are f
/2
. (16.8)

This metric quantifies the degree of isolation provided by the system for a specified
maximum level of injected disruptive tenant workload pend . A value of 1 represents
a perfect isolation; a value of 0 represents a non-isolated system. Negative values
for IintFree have the same interpretation as negative values for IintBase.
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16.2.4 Further Isolation Quality Aspects

Although the metrics described in Sections 16.2.2 and 16.2.3 allow one to quantify
isolation, they do not adequately describe the behavior of a system over time. Several
methods for performance isolation employ an adaptive approach that dynamically
adapts the system configuration to ensure isolation often based on a closed control
loop—see, for example, Krebs, Spinner, et al. (2014). Consequently, one can assume
the existence of situations where the system requires a certain amount of time to
adapt to changes in the workload. Therefore, two additional metrics allowing one to
quantify the dynamic aspects of performance isolation mechanisms are discussed.

Some commonly discussed issues in the context of system control theory in the
literature are stability/oscillation, settling time/performance, and accuracy/steady-
state error (Janert, 2013, pp. 19–21). In our context, the accuracy (steady-state error)
is already covered by the metrics in Sections 16.2.2 and 16.2.3. The other two issues
are discussed in the following two sections.

16.2.4.1 Settling Time

The settling time describes the time a system needs to achieve an output value within
a defined error range after a sudden change in input levels. A system with a faster
settling time is generally considered to be better.

Ideally, a Dirac impulse would be used for the input. In our context, the input value
is the workload of the tenants, whereas the output value is the observed value of the
QoS metric under investigation (e.g., response time). Naturally, it is not possible to
generate a Dirac impulse for such a system; therefore, a step function must be used.
However, a significant increase of the workload to a constant value in a very short
time may not be feasible. Therefore, the start event for measuring the settling time
is defined as the point in time at which the workload again achieves stability. An
observation of the QoS metric reaching a stable value can then be used as the trigger
to stop the measurement of the settling time. In these measurements, a certain error
is acceptable. It is possible to relate the start and stop events to the QoS guarantee
provided to a tenant. In this case, the start event is triggered if the observed QoS
is worse than the guarantee, whereas the end event is triggered when it meets the
guarantee again.

However, a different approach would be required should the considered QoS
metric not be related to any QoS guarantees. The proposed metric considers the
average response time of the sample of next m to n observations in the future and
compares it with the current one. The values of m and n should be selected in a
way to fulfill the following conditions: (1) there should be enough sample data in
the floating window to compute a stable average value; (2) m should be far enough
in the future to ensure that the average value is already stable before the impulse
is triggered; and (3) in cases of an online calculation, m should not be too far in
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the future in order to be able to obtain a timely result for the metric.1 If the load
increases, one can expect a higher response time, which will decrease as the method
tries to compensate this problem. At some point in time, this value will be close to
the computed average or even cross this line, which marks the end event.

Figure 16.4a,b shows an example throughput over time for an abiding tenant.
The two vertical lines mark the beginning and the end of the time span where the
workload changed. Note that the workload-related lines are based on the amount
of simulated users in the benchmark, and it takes a few seconds to start them. The
throughput itself needs even longer before adapting to the new workload.
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Fig. 16.4: Examples of measuring settling times

1 Note that in the case of offline analysis with just one single impulse (e.g., benchmarking), the
selection of m and n is less important and the threshold may even be computed by a separate
measurement run.
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Metrics similar to settling time were already used in the past for adaptive IT
systems in the context of QoS metrics. One example is the CloudScale consor-
tium (Brataas, 2014), which uses a metric referred to as MTTQR to describe the
time an elastic system needs to become SLA-compliant after the occurrence of an
SLA violation. Although MTTQR focuses on different scenarios, it is comparable
to the interpretation of settling time presented here.

16.2.4.2 Oscillation

Oscillation can happen if feedback from the system is used to adapt it to chang-
ing scenarios. Figure 16.5 shows an example of oscillating throughput for abiding
tenants.
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Fig. 16.5: Example of oscillation

Oscillation is the repetitive variation of the system between two or more different
states. It is a common phenomenon in control theory (Janert, 2013, pp. 19–21). For
this reason, controllers are usually designed to damp the oscillation and ensure that
the amplitude converges to zero. If this is the case, the settling time is a useful metric.
Otherwise, the controller maintains an unstable state.

Discrete systems with random inputs, like an interactive web application, can be
in a steady state concerning the average values of QoS metrics, while the input is
still subject to random processes. Furthermore, in closed systems, the output may
influence the input. This increases the risk that the isolation method never converges
to a steady state. The amplitude and the frequency of resulting oscillations are
indicators to compare different methods. For the purpose of performance isolation
mechanisms, the amplitude would be based on the average relative change of the QoS
metric of interest. An average value for all tenants can be considered. Although this
seems intuitively correct, such a metric would lack in objectivity. This is because
in real systems, oscillation is mixed with noise in the measurements and a clear
oscillation might not be visible at all. Furthermore, if the system reacts very fast to
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minor and possibly random changes, no repeatable pattern may occur. Thus, it is
likely that a precise identification of the highest and lowest point of the oscillation
is not possible. Consequently, it may be difficult to clearly identify patterns caused
by the active control mechanisms as opposed to normal random processes. Thus, a
human would have to define which signals are relevant and which are not, raising the
question of objectivity and reliability of the metric. Furthermore, the distribution of
the measured data would be unknown and potentially different for different isolation
mechanisms.

Therefore, we consider the length of the interval between the 25% and 75%
percentiles set in relation to the observed arithmetic mean or median value of the
QoS metric of interest. In case of high oscillation or high variability of the metric, the
length of the interval would be higher in comparison to scenarios with low oscillation.
This approach does not rely on the assessment of a human. The drawback is that very
strong noise may be classified wrongly as oscillation. This metric is closely related
to an existing approach for quantifying performance variability (Iosup, Yigitbasi,
et al., 2011).

16.3 Case Study

We now present a case study—the initial version of which was published in Krebs et
al. (2014)—showing the metrics in action by applying them to virtualization-based
systems. The case study demonstrates the applicability of the metrics in real-life
environments and provides some insights on the isolation capabilities of the widely
used hypervisor Xen. Furthermore, it is an example of how the metrics can be
employed by system operators to make decisions in a deployment scenario.

Beside multi-tenancy, the sharing of hardware resources by running several op-
erating systems on the same physical host is a widely adopted technology providing
the foundation for IaaS clouds. Xen2 is a widely used hypervisor for Linux environ-
ments enabling resource sharing at the hardware level. The goal of the case study we
present in this section is to stress Xen in order to evaluate its performance isolation
capabilities. More precisely, we quantify the degree of isolation for various Xen con-
figurations and deployments based on a black-box measurement approach employing
the isolation metrics introduced in the previous section. We deploy several instances
of the TPC-W benchmark on different virtual machines (VMs) hosted by one Xen
hypervisor and measure how they influence each other. The case study demonstrates
the wide range of scenarios supported by the metrics and how the latter can be used
to reason about the isolation capabilities of IaaS clouds running on Xen.

In the following, we describe some details on the Xen hypervisor, the chosen
benchmark, and the system landscape we consider in our case study. We then present
and discuss the evaluation results.

2 Xen hypervisor: https://xenproject.org

https://xenproject.org
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16.3.1 Xen Hypervisor

A hypervisor is a software enabling the execution of several virtual machines (VM)
as guests on one physical host. Xen is one of the most popular hypervisors for
Linux environments. The operating systems installed within VMs are decoupled
from each other and have no permission for administrative tasks on the hardware or
the hypervisor’s configuration. In order to configure the hypervisor and to execute
administrative tasks, the first VM started in Xen (referred to as domain-0 or dom0) has
special privileges. Furthermore, dom0 provides a driver abstraction for the different
guest systems. The drivers in Xen are divided into two parts. The drivers actually
accessing the hardware are installed in dom0; the guest systems (referred to as domU
domains) communicate with dom0 to access the hardware. Consequently, dom0
might become a bottleneck for various activities. Especially I/O-intensive tasks are
known to produce high overhead in dom0; thus, the independent guest VMs are likely
to influence each other when executing such tasks. Such a behavior was observed
by Huber et al. (2011) and Gupta et al. (2006). By default, VMs have access to all
existing resources on the host. To increase performance and isolation, it is possible
to pin a core exclusively to a domain. It is worth mentioning that dom0 usually does
not host any services for end users due to its special administrative role.

16.3.2 TPC-W Benchmark

The TPC-W benchmark was introduced in Chapter 9, Section 9.3.3. In the specific
setup of this chapter, TPC-W’s bookshop consists of a Java Servlet-based application
and an SQL database. Instead of using the usual performance metric, which is the
number of web interactions processed per second, we consider the average response
time of the requests for TPC-W’s three profiles. The load can be varied by the amount
of emulated browsers (EB) accessing the system. One EB simulates one user calling
various web transactions in a closed workload. Based on the benchmark’s heavy I/O
demands, we expect to observe the influence of the different VMs on each other.

16.3.3 Experimental Environment

The experimental environment in our case study comprises two servers with two
physical quad core CPUs (2,133 MHz with two threads per core) and 16 GB of
main memory. On both servers, Xen 4.1 is installed and Suse Linux Enterprise
Server (SLES) 11 SP2 is used as a guest operating system. The servers are con-
nected with a 1 Gbit Ethernet link. One server hosts the load driver for the TPC-W
benchmark. The various domains of the second server are described below as part of
the scenario-specific configuration. The database schema is refreshed before every
measurement and filled with 100,000 items and 300,000 customers.
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In total, we study three different configuration scenarios in our case study. In the
pinned scenario, the server hosts four guest systems (dom1, dom2, dom3, dom4)
and dom0. Every domU domain has a fixed memory allocation of 3,096 MB and
hosts a MySQL 5.0 database and an SAP-specific customized Tomcat web server. The
various domains were pinned exclusively to the existing cores. Thus, no competition
for the same CPU resources was possible. Based on this run-time environment, four
separate instances of the TPC-W bookshop application were deployed.

In the unpinned scenario, all domU domains and dom0 were not pinned to a
specific CPU and were thus free to use all available hardware resources. Xen’s credit
scheduler was chosen to allocate resources to the various domains.

In addition to this, we investigated an unpinned two-tier scenario, which also does
not have a fixed CPU pinning and likewise uses the Xen credit scheduler. However, the
database and the application server in this case were deployed in separate domains.
Every domU domain with an application server has a fixed memory allocation of
2,024 MB and the database domain uses 1,024 MB. This memory setup was chosen
because of the small database size.

Table 16.3 shows the values we used to define the reference and disruptive tenant
workloads for the three scenarios. The number of emulated browsers (EBs) at the
maximum aggregated throughput of all domains is presented in the second column;
the corresponding throughput per domain and the average response time are listed
next. The last column shows the disruptive domain’s amount of EBs at which we
observed a high proportion of failed requests. In the unpinned two-tier scenario,
we observed different values for the QoS-impact-based and workload-ratio-based
metrics. The relevant QoS for our analysis is the average response time of the tenants.
The additional information is shown only for the sake of better system understanding.

Table 16.3: Scenario setup and configuration

Scenario EBs per
domU

Total
throughput

Throughput
per domU

Avg. resp.
time

Max. load disruptive

Pinned 3,000 1,195 r/s 299 1,104 ms 15,000

Unpinned 1,600 721 r/s 180 843 ms 13,500

Unpinned
two-tier

1,300 617 r/s 154 833 ms 8,000 (QoS-based),
11,050 (ratio-based)

In the pinned scenario, the highest difference in throughput for one domain
compared to the mean was around 4.5% and the highest difference in response
time was around 6.5%. In the unpinned scenario, we observed 2.2% (one-tier)
and 2.7% (two-tier) difference in throughput. The difference in response time was
at 8.2% (one-tier) and 9.4% (two-tier).

As a consequence of these observations pend is set to 15,000 for the pinned
scenario and to 13,500 for the unpinned. In the unpinned two-tier scenario, we had
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to set pend to 11,050 and stop our test for the IQoS metrics at 8,000 users. It is worth
mentioning that in both unpinned scenarios, pend is very close to nine times the load
of the maximum throughput for one domain.

In all presented examples, one tenant has been used to generate the disruptive
load. All other tenants have been classified as abiding tenants.

16.3.4 Performance Isolation Metrics in Action

We now provide an overview of the measurement results and the observed isolation
metrics. Figure 16.6 combines the results for both unpinned scenarios based on nor-
malized values for the abiding and disruptive tenant workloads. Table 16.4 presents
the QoS-impact-based metrics based on the same values for Δw. Thus, the results
provide a comparable view for the two deployments.

Fig. 16.6: Normalized reduction of abiding tenant workload in the unpinned and the
unpinned two-tier scenario

Table 16.4 contains the values of IQoS for all three scenarios. The first column
of Table 16.4 shows the scenario, the second column shows the number of users in
the disruptive domain, and the third column shows the average response time of all
abiding domains followed by the results for Δw, Δz, IQoS , and Iavg. For the pinned
scenario, we collected only one measurement due to the very good isolation. The Iavg
values were calculated based on interpolation of the depicted measurements in the
table as supporting points including the reference workload (Δw = 0 with Δz = 0).
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For the pinned scenario, we assume a behavior of the isolation between Δw = 0
and Δw = 1.

Table 16.4: Results of IQoS in the different scenarios

Scenario Disruptive load Response time Δw Δz IQoS Iavg
Pinned 15,000 1,317 ms 1.00 0.19 0.19 0.10

Unpinned

3,200 927 ms 0.25 0.10 0.40

0.214,800 942 ms 0.50 0.12 0.24
7,500 914 ms 0.92 0.09 0.09

10,000 1,173 ms 1.31 0.39 0.30

Unpinned two-tier
3,000 1,011 ms 0.33 0.21 0.64

3.064,400 3,784 ms 0.60 3.54 5.90
6,750 4,354 ms 1.05 4.22 4.02

16.3.4.1 Pinned Scenario

Overall, this scenario presented a nearly perfect isolation throughout the whole range.
The IQoS metric presented in Table 16.4 at a disruptive tenant workload of 15,000
users was below 0.2 and the Iavg resulted in 0.1. The workload-ratio-based metric
decreased for the abiding tenant workload only once at 12,000 disruptive tenant users.
The related metrics IintFree15000 and IintBase resulted in a value slightly below 1.

16.3.4.2 Unpinned Scenario

For the metrics based on the QoS impact, we determined the isolation at vari-
ous disruptive tenant workloads shown in Table 16.4. We observed two significant
characteristics. The first one is the increasing response time when the disruptive
tenant workload is set to 3,200 users. The second one is the increasing response
time at 10,000 users. Accordingly, the isolation becomes better between 3,200 users
and 10,000 users. This is due to the widely stable response times at increasing load,
which changes the ratio of Δz/Δw. On average, the isolation Iavg is 0.21.

Figure 16.6 presents the total abiding tenant workload Wa based on the disrup-
tive tenant users. Similar to the IQoS-based results, two significant points can be
observed at the same position. In both cases, Wa decreased because of an increasing
response time of the abiding tenants. At a disruptive tenant workload of 13,500 users
(corresponding to 9 in the figure), the disruptive domain failed to successfully handle
incoming requests. Therefore, the results are not valid for higher disruptive tenant
workloads. The overall isolation values are IintFree13500 = 0.89 and IintBase = 0.86.
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16.3.4.3 Unpinned Two-Tier Scenario

Table 16.4 shows the various disruptive tenant workloads used to evaluate IQoS .
We configured the disruptive tenant workloads in a way to result in the same Δw
as in the unpinned single-tier scenarios. Due to the increasing number of timeouts
and exceptions in the disruptive domain, we had to stop at 6,750 users. For this
workload range, we observed continuously increasing response times. Nevertheless,
from 4,400 to 6,750 users, the isolation improved, as Δw increased more than Δz.
Over the entire range of measurements, the average isolation Iavg was 3.06.

Figure 16.6 presents the total abiding tenant workload Wa based on the disruptive
tenant users for the workload-ratio-based metrics. Analogous to the response times in
Table 16.4, we can see a continuously decreasing amount of abiding tenant workload
in Figure 16.6. At a disruptive tenant workload of 2, we can see the observed
isolation curve crossing the respective curve for a non-isolated system. This is due to
the selected step width for reducing the number of users in the disruptive domain. At
a disruptive tenant workload of 11,050 users (corresponding to 8.5 in Figure 16.6),
the disruptive domain failed to successfully handle incoming requests. The results are
no longer valid for higher disruptive tenant workloads and are therefore illustrated
using a dashed line. The overall isolation values were IintFree1105 = 0.42 and
IintBase = 0.36.

16.3.5 Effectiveness of the Deployment Options

Overall, the pinned scenario exhibited the best results, whereas the unpinned two-tier
scenario exhibited the worst ones. The selected size of the database was small enough
for data to be mostly cached. The memory was not overcommitted in our setup and
the network I/O did not reach the critical point at which the CPUs for dom0 became
a bottleneck in the one-tier scenarios. Therefore, the isolation was nearly perfect
with pinned CPUs. In the unpinned scenario, the resources of the domU domain
were shared with those for dom0; therefore, the slightly increased I/O overhead for
dom0 was competing for resources and had some minor effect. The credit scheduler
was not able to compensate completely for this. By splitting the domU domain into
application server and database server, we noticeably increased the network I/O. In
this setup, we observed a significant impact of the disruptive domain on the others,
whereby the handling of the network I/O in dom0 led to a bottleneck and/or it
requested additional processing resources from the guest domains.

When an administrator has to decide for one of the mentioned deployments,
various considerations might be of importance. In a pinned setup, the overall perfor-
mance and isolation is the best. However, unused resources of one domain cannot
be used by other domains and thus this setup might lack in terms of efficiency.
The unpinned scenario overcomes this drawback at the expense of performance
and isolation. From a separation-of-concerns point of view, it might be beneficial
to separate the database and application server. On the other hand, as can be seen
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from Table 16.3, a distributed deployment provides less performance and the worst
isolation. These example measurements show how the isolation metrics provide the
opportunity to quantify one more dimension in the framework of multiple trade-off
decisions a system provider has to make. An additional result is that an administrator
can increase isolation by hard resource allocations, which also lead to reduced I/O.

16.4 Assessment of the Metrics

For the assessment of the metrics, we concentrate on the following aspects: First,
the practical usability of the metrics for the target group of system owners/providers
or developers/researchers; and second, the expressiveness of the metrics in terms of
the type of evidence they provide; third, the number of measurements required to
obtain a valid value; fourth, situations in which the metrics are not meaningful. In
the following, we evaluate the metrics of each category with respect to these aspects.

16.4.1 QoS-Impact-Based Metrics

These metrics show the influence of disruptive tenant workloads on the QoS of abid-
ing tenants. This helps system owners to manage their systems, because it indicates
the influence of disruptive tenant workloads on the QoS, which is important for
capacity planning. QoS-impact-based metrics can show that a system is perfectly
isolated; however, they fail in ranking a system’s isolation capabilities in the range
between perfectly isolated and non-isolated. Thus, it is hard to estimate the potential
of an isolation method. A single IQoS metric can be derived with only two measure-
ments to obtain evidence for one point of increased workload. However, to obtain
some more detailed information on the system’s performance isolation capabilities,
more measurements are required. Therefore, Iavg describes the average isolation
value for multiple different scenarios of interest. Nevertheless, the metric is not suit-
able to describe a system’s impact of different disruptive tenant workloads on the
abiding tenants, because these workloads cannot be set into relation for a concrete
scenario.

16.4.2 Edge-Point-Based Metrics

The metric Iend might not be practically usable for quantifying isolation in well-
isolated systems. Furthermore, it is not possible to directly deduce from it relevant
system behaviors such as response time behavior. If this metric is provided, it could
help to compare two systems regarding the maximum disruptive tenant workload



16.4 Assessment of the Metrics 361

they can handle. However, to quantify Iend , more measurements are required than
would be the case for the QoS-impact-based metrics.

Ibase orders a system within the range of perfectly isolated and non-isolated
systems for one specific point in the diagram. Nevertheless, it does not provide
information about the behavior of the system before that point. It is limited to
comparing the isolation behavior of the systems at one selected load level and it is
also inadequate to derive direct QoS-related metrics. The usefulness of this metric
is limited compared to the integral-based metrics.

16.4.3 Integral-Based Metrics

IintBase and IintFree are widely comparable metrics. IintBase has the advantage to
be measured at a predefined point. For IintFree, the endpoint of the interval must be
additionally specified in order to have a fully defined metric. Both metrics provide
good evidence of the isolation within the considered interval ordered between the
magnitudes of perfectly isolated and non-isolated systems. However, they lack in
providing information concerning the degree of SLA violations. For example, the
SLA violations could be very low and acceptable or critically high in each iteration
as we reduce Wa. However, in both cases, the results of the metrics would be
similar. This limits the value of IintBase and IintFree for system owners/providers.
Nevertheless, for comparison of systems and analyzing their behavior, the metrics
are very useful and can be exploited by developers or researchers. Finally, on the
negative side, a disadvantage of these metrics is that their measurement may be a
time-consuming task. In our Xen-based case study, we had experiment series of
around 15 h.

16.4.4 Discussion

The various metrics show their advantages in different fields of applications and
express various semantics. The IQoS and Iavg metrics capture the reduced QoS due
to disruptive tenant workload. They cannot provide a ranking within the range of
fully isolated and non-isolated systems. However, for a system operator this might
be helpful to estimate the impact of disruptive tenant workloads on the system.
The Iend metric shows how many times a system is better than a non-isolated one.
This information may be helpful to compare different systems if one has to decide for
one. The integral-based metrics rank a system within the range of fully isolated and
non-isolated. This knowledge is beneficial for the developer of a system to estimate
the potential for improvements.

The presented isolation metrics are not limited to multi-tenant environments.
They are also applicable in other scenarios where a system is shared, for example,
a web service triggered by other components, virtual machines hosted on the same
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hypervisor instance (as shown in our case study), or network devices serving packets
from various sources. However, practical limitations might appear, for example, due
to non-uniform workload behavior with work arriving from different sources.

16.5 Concluding Remarks

This chapter presented metrics to quantify the degree of performance isolation a
system provides. The metrics are applicable for use in performance benchmarks that
measure the performance without requiring internal knowledge. They are preferable
in situations where different request sources use the functions of a shared system with
similar demands per request but with a different load intensity. These characteristics
are typical for multi-tenant applications but can also occur in other shared resource
systems. The presented metrics are based on observing the influence of disruptive
tenants (i.e., tenants exceeding their assigned quotas) on the abiding tenants (i.e.,
tenants working within their quotas). Thus, the influence on one group as a function
of the workload of the other group must be evaluated. This is a major difference
to traditional performance benchmarking. We presented a case study showing the
metrics in action by applying them to evaluate the performance isolation of virtual
machines running on a shared physical host. The case study demonstrated the appli-
cability of the metrics in real-life environments and provided some insights on the
isolation capabilities of the widely used virtualization platform Xen. Furthermore, it
showed an example of how the metrics can be employed by system operators to make
decisions in a deployment scenario. The performance isolation metrics presented in
this chapter can be applied to quantify isolation with respect to any measurable
QoS-related property of a system shared between different entities.
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Chapter 17
Resource Demand Estimation
Simon Spinner and Samuel Kounev

As discussed in Chapter 7, resource demands, also referred to as service demands,
play a key role in operational analysis and queueing theory. Most generally, the re-
source demand or service demand of a unit of work (e.g., request, job, or transaction)
at a given resource in a system refers to the average time the respective unit of work
spends obtaining service from the resource over all visits to the latter, excluding
any waiting times (cf. Chapter 7, Section 7.1.2). Resource demands are normally
quantified based on measurements taken on the system under consideration; how-
ever, the accurate quantification of resource demands poses many challenges. The
resource demand for processing a request in a computing system is influenced by
different factors, for example: (1) the application logic, which specifies the sequence
of instructions to process a request; (2) the hardware platform, which determines
how fast individual instructions are executed; and (3) platform layers (hypervisor,
operating system, containers, or middleware systems), which may introduce addi-
tional processing overhead. While the direct measurement of resource demands is
feasible in some systems, it requires an extensive instrumentation of the application,
and it typically introduces significant overheads that may distort measurements. For
instance, performance profiling tools (cf. Section 6.3 in Chapter 6) can be used to
obtain execution times of individual application functions when processing a re-
quest. However, the resulting execution times are not broken down into processing
times at individual resources, and profiling tools typically introduce high overheads,
influencing the system performance.

In this chapter, we survey, systematize, and evaluate different approaches to
the statistical estimation of resource demands based on easy to measure system-
level and application-level metrics. We consider resource demands in the context of
computing systems; however, the methods we present are also applicable to other
types of systems. We focus on generic methods to approximate resource demands
without relying on dedicated instrumentation of the application. The goal is to
estimate the resource demands based on indirect measurements (cf. Section 6.1 in
Chapter 6) derived from commonly available metrics (e.g., end-to-end response time
or resource utilization).
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The methods we consider face the following challenges:

• The value of a resource demand is platform-specific (i.e., only valid for a spe-
cific combination of application, operating system, hardware platform, etc.). The
hardware platform determines how fast a piece of code executes in general. Fur-
thermore, each platform layer on top (e.g., hypervisor, operating system, and
middleware systems) may add additional overheads, influencing the resource de-
mands of an application.

• Applications often serve a mix of different types of requests (e.g., read or write
transactions), which also differ in their resource demands. For resource man-
agement purposes, it is beneficial to be able to distinguish between different
types of requests. Quantifying resource demands separately for each type of re-
quest (i.e., workload class) often poses technical challenges due to the lack of
fine-granular monitoring data.

• Modern operating systems can provide only aggregate resource usage statistics
on a per-process level. Many applications, especially the ones running in data
centers, serve different requests with one or more operating system processes
(e.g., HTTP web servers). The operating system is unaware of the requests served
by an application and therefore cannot attribute the resource usage to individual
requests.

• Many applications allow only the collection of time-aggregated request statistics
(e.g., throughput or response time) while they are serving production workloads.
A tracing of individual requests is often considered too expensive for a production
system, as it may influence the application performance negatively.

• Resource demands may change over time due to platform reconfigurations
(e.g., operating system updates) or dynamic changes in the application state
(e.g., increasing database size). Therefore, resource demands need to be updated
continuously at system run time based on up-to-date measurement data.

In the rest of this chapter, we survey the state of the art in resource demand
estimation and provide a systematization of existing estimation methods discussing
their pros and cons with respect to how well they deal with the above challenges.
The goal of the systematization is to help performance engineers select an estimation
method that best fits their specific requirements. We first survey existing estimation
methods and describe their modeling assumptions and their underlying statistical
techniques. Then, we introduce three dimensions for systematization: (1) input pa-
rameters, (2) output metrics, and (3) robustness to anomalies in the input data. For
each dimension, we first describe its features and then categorize the estimation
methods accordingly. In addition to the systematization, we compare and evaluate
the different estimation methods in terms of their accuracy and execution time. The
presented systematization and comparison of estimation methods are based on Spin-
ner et al. (2015) and Spinner (2017). Finally, we briefly discuss a recent approach to
resource demand estimation that relies on multiple statistical techniques for improved
robustness and uses a cross-validation scheme to dynamically select the technique
that performs best for the concrete scenario (Spinner, 2017).
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In the following, we use a consistent notation for the description of the dif-
ferent approaches to resource demand estimation. We denote resources with the
index i = 1 . . . I and workload classes with the index c = 1 . . .C. The variables used
in the description are listed in Table 17.1, which are consistent with the notation
we used in Chapter 7 (Section 7.2.2) in the context of queueing networks. As usual,
we assume that the considered system is in operational equilibrium (i.e., over a suf-
ficiently long period of time, the number of request completions is approximately
equal to the number of request arrivals). As a result, the arrival rate λc is assumed
to be equal to the throughput Xc . Furthermore, as mentioned earlier, we use the term
resource demand as a synonym for service demand, and for simplicity of exposition,
we assume Vi,c = 1; that is, no distinction is made between service demand and
service time.

Table 17.1: Notation used in resource demand estimation

Symbol Meaning
Di,c Average resource demand of requests of workload class c at resource i
Ui,c Average utilization of resource i due to requests of workload class c
Ui Average total utilization of resource i
λi,c Average arrival rate of workload class c at resource i
Xi,c Average throughput of workload class c at resource i
Ri,c Average response time of workload class c at resource i
Rc Average end-to-end response time of workload class c
Ai,c Average queue length of requests of workload class c seen upon arrival

at resource i (excluding the arriving job)
Vi,c Average number of visits of a request of workload class c at resource i
I Total number of resources
C Total number of workload classes

17.1 Estimation Methods

In this section, we describe the most common methods for resource demand es-
timation that exist in the literature. Table 17.2 gives an overview of the different
methods.
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Table 17.2: Overview of estimation methods categorized according to the
underlying statistical techniques

Technique Variant References

Approximation with response times
Urgaonkar et al. (2007)
Nou et al. (2009)
Brosig et al. (2009)

Service demand law Lazowska et al. (1984)
Brosig et al. (2009)

Linear regression Least squares Bard and Shatzoff (1978)
Rolia and Vetland (1995)
Pacifici et al. (2008)
Kraft et al. (2009); Pérez,
Pacheco-Sanchez, et al. (2013)

Least absolute differences Stewart et al. (2007); Q. Zhang
et al. (2007)

Least trimmed squares Casale et al. (2008); Casale et al.
(2007)

Kalman filter Zheng et al. (2008)
Kumar, Tantawi, et al. (2009)
Wang, Huang, Qin, et al. (2012);
Wang, Huang, Song, et al. (2011)

Optimization Non-linear constrained
optimization

L. Zhang et al. (2002)
Menascé (2008)

Quadratic programming Liu et al. (2006); Wynter et al.
(2004)
Kumar, L. Zhang, et al. (2009)

Machine learning Clusterwise linear regression Cremonesi, Dhyani, et al. (2010)

Independent component analysis Sharma et al. (2008)

Support vector machine Kalbasi, Krishnamurthy, Rolia,
and Richter (2011)

Pattern matching Cremonesi and Sansottera (2012,
2014)

Maximum likelihood estimation Kraft et al. (2009)
Pérez, Pacheco-Sanchez, et al.
(2013)

Gibbs sampling Sutton and Jordan (2011)
Wang and Casale (2013)

Demand estimation with confidence (DEC) Kalbasi, Krishnamurthy, Rolia,
and Dawson (2012); Rolia,
Kalbasi, et al. (2010)
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17.1.1 Approximation with Response Times

Assuming a single queue and insignificant queueing delays compared to the resource
demands, we can approximate the resource demands with the observed response
times. However, this trivial approximation only works with systems under light load
where a single resource dominates the observed response time. This approximation
is used by Nou et al. (2009), Urgaonkar et al. (2007), and Brosig et al. (2009).

17.1.2 Service Demand Law

The service demand law (cf. Chapter 7, Sections 7.1.2 and 7.2.3) is an operational law
that can be used to directly calculate the demand Di,c given the utilization Ui,c and
the throughput Xi,c . However, modern operating systems can report the utilization
only on a per-process level. Therefore, we usually cannot observe the per-class
utilization Ui,c directly, given that single processes may serve requests of different
workload classes. Given a system serving requests of multiple workload classes,
Lazowska et al. (1984) and Menascé et al. (2004) recommend to use additional per-
class metrics if available (e.g., in the operating system) to apportion the aggregate
utilization Ui of a resource between workload classes. Brosig et al. (2009) use
an approximate apportioning scheme based on the assumption that the observed
response times are proportional to the resource demands.

17.1.3 Linear Regression

Given a linear model Y = Xβ + ε , where β (cf. Chapter 2, Section 2.7.1) is a vector
of resource demands Di,r and Y, X contain observations of performance metrics
of a system, we can use linear regression to estimate the resource demands. Two
alternative formulations of such a linear model have been proposed in the literature:

• The utilization law (cf. Chapter 7, Sections 7.1.1 and 7.2.3) requires observations
of the aggregate utilization Ui and the throughputs λi,c . This is a classical model
used by different authors (Bard and Shatzoff, 1978; Casale et al., 2007; Kraft
et al., 2009; Pacifici et al., 2008; Rolia and Vetland, 1995; Stewart et al., 2007;
Q. Zhang et al., 2007). Some of the authors include a constant term Ui,0 in the
model in order to estimate the utilization caused by background work.

• Kraft et al. (2009) and Pérez, Pacheco-Sanchez, et al. (2013) propose a linear
model based on a multi-class version of the response time equation Ri = Di (1+Ai)
requiring observations of the queue length Ai seen by a newly arriving job and
its response time Ri . In their initial work, Kraft et al. (2009) assume a FCFS
scheduling strategy; Pérez, Pacheco-Sanchez, et al. (2013) generalize the model
to PS queueing stations.
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Bard and Shatzoff (1978), Rolia and Vetland (1995), Pacifici et al. (2008), and
Kraft et al. (2009) use nonnegative least squares regression for solving the lin-
ear model. Other regression techniques, such as least absolute differences regres-
sion (Stewart et al., 2007; Q. Zhang et al., 2007) or least trimmed squares (Casale et
al., 2008; Casale et al., 2007), were proposed to increase the robustness of regression-
based estimation techniques to multi-collinearities, outliers, or abrupt changes in the
demand values.

17.1.4 Kalman Filter

The resource demands of a system may vary over time, for example, due to changing
system states or changing user behavior. These variations may be abrupt or contin-
uous. In order to track time-varying resource demands, Zheng et al. (2008), Kumar,
Tantawi, et al. (2009), and Wang, Huang, Qin, et al. (2012) use a Kalman filter
(cf. Chapter 2, Section 2.7.2). The authors assume a dynamic system where the state
vector x consists of the hidden resource demands Di,c that need to be estimated.
Given that no prior knowledge about the dynamic behavior of the system state exists,
they assume a constant state model; that is, Equation (2.49) on page 40 is reduced to
xk = xk−1 + wk .

The observation model z = h(x) requires a functional description of the relation-
ship between the observations z and the system state x. Wang, Huang, Qin, et al.
(2012) use the observed utilization Ui as vector z and define h(x) based on the uti-
lization law (cf. Equation 7.38 on page 167). Given the linear model, a conventional
Kalman filter is sufficient. Zheng et al. (2008) and Kumar, Tantawi, et al. (2009) use
an observation vector consisting of the observed response time Ri,c of each workload
class and the utilization Ui of each resource. The function h(x) is defined based on
the solution of a M/M/1 queue (cf. Equation 7.43 on page 168) and the utilization
law. Due to the non-linear nature, it requires an extended Kalman filter design—see
Equation (2.51) on page 40.

17.1.5 Optimization

Given a general queueing network, we can formulate an optimization problem to
search for values of the resource demands so that the differences between per-
formance metrics observed on the real system and the ones calculated using the
queueing network are minimized. The main challenge is the solution of the queue-
ing network. Depending on the structure of the queueing network, its solution may
be computationally expensive and the optimization algorithm may need to evaluate
the queueing network with many different resource demand values in order to find
an optimal solution. Existing approaches (Kumar, L. Zhang, et al., 2009; Liu et al.,
2006; Menascé, 2008; Wynter et al., 2004) assume a product-form queueing network
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with an open workload. Then, the equations in Chapter 7, Section 7.2.4, can be used
to calculate the end-to-end response times.

Given N observations of the end-to-end response time R̃c and the utilization Ũi ,
Liu et al. (2006) propose the following objective function:

min
D

N∑
n=1

�
C∑
c=1

pc
(
Rc (D) − R̃(n)

c

)2
+

I∑
i=1

(
Ui (D) − Ũ (n)

i

)2�� . (17.1)

The function Rc (D) is based on the solution of a M/M/1 queue—see Equation (7.43)
on page 168—and Ui (D) on the utilization law.

The factor pc introduces a weighting according to the arrival rates of workload
classes pc = λc/

∑C
d=1 λd . The resulting optimization problem can be solved using

quadratic programming techniques.
Kumar, L. Zhang, et al. (2009) extend this optimization approach to estimate

load-dependent resource demands. Their approach requires prior knowledge of the
type of function (e.g., polynomial, exponential, or logarithmic) that best describes
the relation between arriving workloads and resource demands.

Menascé (2008) formulates an alternative optimization problem that depends only
on response time and arrival rate measurements:

min
D

C∑
c=1

(
Rc (D) − R̃c

)2
with Rc (D) =

I∑
i=1

Di,c

1 −∑C
d=1 λi,dDi,d

(17.2)

subject to Di,c ≥ 0 ∀i, c and
C∑
c=1
λi,cDi,c < 1 ∀i.

In contrast to Liu et al. (2006), this formulation is based on a single sample of the
observed response times. Menascé (2008) proposes to repeat the optimization for
each new sample using the previous resource demand estimate as the initial point. To
solve this optimization problem we depend on a non-linear constrained optimization
algorithm.

17.1.6 Machine Learning

Cremonesi, Dhyani, et al. (2010) use clusterwise regression techniques to improve the
robustness to discontinuities in the resource demands due to system configuration
changes. The observations are clustered into groups where the resource demands
can be assumed constant, and the demands are then estimated for each cluster
separately. In Cremonesi and Sansottera (2012) and Cremonesi and Sansottera (2014)
an algorithm is proposed based on a combination of change-point regression methods
and pattern matching to address the same challenge.

Independent Component Analysis (ICA) is a method to solve the blind source
separation problem (i.e., to estimate the individual signals from a set of aggregate
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measurements). Sharma et al. (2008) describe a way to use ICA for resource de-
mand estimation using a linear model based on the utilization law. ICA can provide
estimates solely based on utilization measurements when the following constraints
hold (Sharma et al., 2008): (1) the number of workload classes is limited by the
number of observed resources, (2) the arrival rate measurements are statistically
independent, and (3) the inter-arrival times have a non-Gaussian distribution while
the measurement noise is assumed to be zero-mean Gaussian. ICA not only pro-
vides estimates of resource demands, but also automatically categorizes requests
into workload classes.

Kalbasi, Krishnamurthy, Rolia, and Richter (2011) consider the use of Support
Vector Machines (SVM) (Smola and Schölkopf, 2004) for estimating resource de-
mands. They compare it with results from LSQ and LAD regression and show that
it can provide better resource demand estimates depending on the characteristics of
the workload.

17.1.7 Maximum Likelihood Estimation (MLE)

Kraft et al. (2009) and Pérez, Pacheco-Sanchez, et al. (2013) use Maximum Likeli-
hood Estimation (MLE) (cf. Chapter 2, Section 2.7.3) to estimate resource demands
based on observed response times and queue lengths seen upon arrival of requests.
Given N response time measurements R1

i , . . . , R
N
i of individual requests, the esti-

mated resource demands Di,1, . . . , Di,C are the values that maximize the likelihood
function L(Di,1, . . . , Di,C ) defined as follows:

maxL(Di,1, . . . , Di,C ) =
N∑
k=1

log f (Rk
i | Di,1, . . . , Di,C ). (17.3)

The density function f is obtained by constructing a phase-type distribution. The
phase-type distribution describes the time to absorption in a Markov chain represent-
ing the current state of the system. Observations of the queue lengths are necessary
in order to be able to construct the corresponding phase-type distribution. Kraft et al.
(2009) describe the likelihood function for queueing stations with FCFS scheduling.
Pérez, Pacheco-Sanchez, et al. (2013) generalize this approach to PS scheduling.

17.1.8 Gibbs Sampling

Sutton and Jordan (2011) and Wang and Casale (2013) both propose approaches
to resource demand estimation based on Bayesian inference techniques (cf. Sec-
tion 2.7.4). Sutton and Jordan (2011) assume an open, single-class queueing net-
work. They develop a deterministic mathematical model allowing for the calculation
of service times and waiting times of individual requests given the arrival times,
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departure times, and the path of queues of all requests in a queueing network. They
assume that this information can be only observed for a subset of requests. Therefore,
they propose a Gibbs sampler to sample the missing departure times of requests that
were not observed. Given the posterior distribution of the departure times of all
requests, they then derive the expected resource demands at the individual queues.

Wang and Casale (2013) assume a multi-class, closed queueing network that
fulfills the BCMP theorem (cf. Chapter 7, Section 7.2.2). Under this assumption,
the probability distribution of the queue lengths for given resource demands is well-
known (see Equation 7.36 on page 166). They assume the availability of queue-length
samples from a real system and construct a Gibbs sampler for the posterior distri-
bution f (D|A), where D is a vector of resource demands Di,c and A is a vector of
observed queue lengths Ai,c . They propose an approximation for the conditionals
of the posterior distribution as required by the Gibbs sampling algorithm. A main
challenge is the calculation of the normalization constant G for the steady-state prob-
abilities (cf. Equation 7.36 on page 166), which is nontrivial for a closed queueing
network. Wang and Casale (2013) propose a Taylor expansion of G and apply an
algorithm based on mean-value analysis (MVA) to determine its value.

17.1.9 Other Approaches

Rolia, Kalbasi, et al. (2010) and Kalbasi, Krishnamurthy, Rolia, and Dawson (2012)
propose a technique called Demand Estimation with Confidence (DEC) for estimat-
ing the aggregate resource demand of a given workload mix. This technique assumes
that a set of benchmarks is available for the system under study. Each benchmark
utilizes a subset of the different functions of an application. DEC expects the mea-
sured demands of the individual benchmarks as input and then derives the aggregate
resource demand of a given workload mix as a linear combination of the demands
of the individual benchmarks. DEC is able to provide confidence intervals of the ag-
gregate resource demand (Kalbasi, Krishnamurthy, Rolia, and Dawson, 2012; Rolia,
Kalbasi, et al., 2010).

17.2 Input Parameters

Methods for resource demand estimation often differ in terms of the set of input data
they require. We do not consider parameters of the underlying statistical techniques
(e.g., parameters controlling an optimization algorithm) because they normally are
specific to the concrete implementation of an estimation method.

Figure 17.1 depicts the main types of input parameters for demand estimation
algorithms. The parameters are categorized into model parameters and measure-
ments. In general, parameters of both types are required. Model parameters capture
information about the performance model for which we estimate resource demands.
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Input Parameters
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Fig. 17.1: Types of input parameters

Measurements consist of samples of relevant performance metrics obtained from a
running system, either a live production system or a test system.

Before estimating resource demands, it is necessary to decide on certain modeling
assumptions. As a first step, resources and workload classes need to be identified.
This is typically done as part of the workload characterization activity when modeling
a system. It is important to note that the observability of performance metrics may
influence the selection of resources and workload classes for the system under study.
In order to be able to distinguish between individual resources or workload classes,
observations of certain per-resource or per-class performance metrics are necessary.
At a minimum, information about the number of workload classes and the resources
for which the demands should be determined is required as input to the estimation.
Depending on the estimation method, more detailed information on resources and
workload classes may be expected as input (e.g., scheduling strategies, number of
servers, or think times).

Measurements can be further grouped on a per-request or aggregate basis. Com-
mon per-request measurements used in the literature include response times, arrival
rates, visit counts, and queue lengths seen upon arrival. Aggregate measurements
can be further distinguished in class-aggregate and time-aggregate measurements.
Class-aggregate measurements are collected as totals over all workload classes pro-
cessed at a resource. For instance, utilization is usually reported as an aggregate value
because the operating system is agnostic of the application internal logic and is not
aware of different request types in the application. Time-aggregate measurements
(e.g., average response times or average throughput) are aggregated over a sampling
period. The sampling period can be evenly or unevenly spaced.

Categorization of Existing Methods

We consider the methods for resource demand estimation listed in Table 17.2 and
examine their input parameters. Table 17.3 shows an overview of the input param-
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Table 17.3: Input parameters of estimation methods

Estimation method Measurements Parameters
Ui Rc Xc /λc Ai,c Vi,c Di,c Z P

Approximation with response times
Urgaonkar et al. (2007) �1 �
Nou et al. (2009) � �
Brosig et al. (2009) �

Service demand law
Lazowska et al. (1984) � �2

Brosig et al. (2009) � � �

Linear regression
Bard and Shatzoff (1978)
Rolia and Vetland (1995)
Pacifici et al. (2008) � �
Q. Zhang et al. (2007)
Stewart et al. (2007) � �
Kraft et al. (2009); Pérez, Casale, et al. (2015) � � �
Casale et al. (2008); Casale et al. (2007) � �

Kalman filter
Zheng et al. (2008) � � �
Kumar, Tantawi, et al. (2009) � � �
Wang, Huang, Qin, et al. (2012) � �

Optimization
L. Zhang et al. (2002) � � � (�)5 �
Liu et al. (2006); Wynter et al. (2004) � � � � �

Menascé (2008) � � �3

Kumar, L. Zhang, et al. (2009) � � � �

Machine learning
Cremonesi, Dhyani, et al. (2010) � �
Sharma et al. (2008) �
Kalbasi, Krishnamurthy, Rolia, and Richter (2011) � �
Cremonesi and Sansottera (2012, 2014) � �

Maximum likelihood estimation
Kraft et al. (2009) �4 �4 � �

Pérez, Casale, et al. (2015) �4 �4 � �

Gibbs sampling
Sutton and Jordan (2011) �4 �4 �

Wang and Casale (2013) �4 �

Kalbasi, Krishnamurthy, Rolia, and Dawson
(2012); Rolia, Kalbasi, et al. (2010)

� �

1 Response time per resource
2 Measured with accounting monitor—system overhead not included
3 A selected set of resource demands is known a priori
4 Non-aggregated measurements of individual requests
5 Requires coefficient of variation of resource demands in case of FCFS scheduling
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eters of each estimation method (utilization Ui , response time Rc , throughput Xc ,
arrival rate λc , queue length Ai,c , visit counts Vi,c , resource demands Di,c , think
time Z , and scheduling policy P). Parameters common to all estimation methods,
such as the number of workload classes and the number of resources, are not in-
cluded in this table. The required input parameters vary widely between different
estimation methods. Depending on the system under study and on the available per-
formance metrics, one can choose a suitable estimation method from Table 17.3.
Furthermore, approaches based on optimization can be adapted by incorporating
additional constraints into the mathematical model capturing the knowledge about
the system under study. For example, the optimization approach by Menascé (2008)
allows one to specify additional known resource demand values as input parameters.
These a priori resource demands may be obtained from the results of other estimation
methods or from direct measurements.

Another approach that requires resource demand data is described by Lazowska et
al. (1984, Chapter 12) who assume that the resource demands are approximated based
on measurements provided by an accounting monitor; however, such an accounting
monitor does not include the system overhead caused by each workload class. The
system overhead is defined as the work done by the operating system for processing a
request. Lazowska et al. (1984) describe a way to distribute unattributed computing
time among the different workload classes, providing more realistic estimates of the
actual resource demands.

Approaches based on response time measurements, such as those proposed by
L. Zhang et al. (2002), Liu et al. (2006), Wynter et al. (2004), and Kumar, L. Zhang,
et al. (2009), require information about the scheduling strategies of the involved
resources abstracted as queueing stations. This information is used to construct the
correct problem definition for the optimization technique. The estimation methods
proposed by Kraft et al. (2009), Pérez, Pacheco-Sanchez, et al. (2013), and Wang
and Casale (2013) assume a closed queueing network. Therefore, they also require
the average think time and the number of users as input.

In addition to requiring a set of specific input parameters, some approaches also
provide a rule of thumb regarding the number of required measurement samples.
Approaches based on linear regression (Kraft et al., 2009; Pacifici et al., 2008; Rolia
and Vetland, 1995) need at least K + 1 linear independent equations to estimate
K resource demands. When using robust regression methods, significantly more
measurements might be necessary (Casale et al., 2008; Casale et al., 2007). Kumar,
L. Zhang, et al. (2009) provide a formula to calculate the number of measurements
required by their optimization-based approach. The formula provides only a mini-
mum bound on the number of measurements and more measurements are normally
required to obtain good estimates (Stewart et al., 2007).
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17.3 Output Metrics

Approaches to resource demand estimation are typically used to determine the mean
resource demand of requests of a given workload class at a given resource. However,
in many situations, the estimated mean value may not be sufficient. Often, more
information about the confidence of estimates and the distribution of the resource
demands is required. The set of output metrics an estimation method provides can
influence the decision to adopt a specific method.

Generally, resource demands cannot be assumed to be deterministic (Rolia,
Kalbasi, et al., 2010); for example, they may depend on the data processed by
an application or on the current state of the system (Rolia and Vetland, 1995). There-
fore, resource demands are described as random variables. Estimates of the mean
resource demand should be provided by every estimation method. If the distribution
of the resource demands is not known beforehand, estimates of higher moments of
the resource demands may be useful to determine the shape of their distribution.

We distinguish between point and interval estimators of the real resource demands.
Generally, confidence intervals would be preferable; however, it is often a challenge
to ensure that the statistical assumptions underlying a confidence interval calculation
hold for a system under study (e.g., distribution of the regression errors).

In certain scenarios, for example, if DVFS or hyperthreading techniques are
used (Kumar, L. Zhang, et al., 2009), the resource demands are load-dependent. In
such cases, the resource demands are not constant; they are rather a function that
may depend, for example, on the arrival rates of the workload classes (Kumar, L.
Zhang, et al., 2009).

Categorization of Existing Methods

Table 17.4 provides an overview of the output metrics of the considered estima-
tion methods. Point estimates of the mean resource demand are provided by all
approaches. Confidence intervals can be determined for linear regression using stan-
dard statistical techniques as mentioned by Rolia and Vetland (1995) and Kraft et al.
(2009). These techniques are based on the Central Limit Theorem (cf. Section 2.5 in
Chapter 2), assuming an error term with a Normal distribution. Resource demands
are typically not deterministic, violating the assumptions underlying linear regres-
sion. The influence of the distribution of the resource demands on the accuracy of
the confidence intervals is not evaluated for any of the approaches based on linear
regression. DEC (Kalbasi, Krishnamurthy, Rolia, and Dawson, 2012; Rolia, Kalbasi,
et al., 2010) is the only approach for which the confidence intervals have been eval-
uated in the literature. The MLE approach (Kraft et al., 2009) and the optimization
approach described by L. Zhang et al. (2002) are capable of providing estimates of
higher moments. This additional information comes at the cost of a higher amount
of required measurements.
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Table 17.4: Output metrics of estimation methods

Estimation method Resource demands
Point Confidence Higher Load-

estimates interval moments dependent
Response time approximation
Urgaonkar et al. (2007) �
Nou et al. (2009) �
Brosig et al. (2009) �

Service demand law
Lazowska et al. (1984) �
Brosig et al. (2009) �

Linear regression
Bard and Shatzoff (1978)
Rolia and Vetland (1995),
Pacifici et al. (2008) � �2

Q. Zhang et al. (2007) � �2

Kraft et al. (2009); Pérez, Casale, et al. (2015);
Pérez, Pacheco-Sanchez, et al. (2013)

� �2

Casale et al. (2008); Casale et al. (2007) � �2

Kalman filter
Zheng et al. (2008) �
Kumar, Tantawi, et al. (2009) �
Wang, Huang, Qin, et al. (2012) �

Optimization
L. Zhang et al. (2002) � �1

Liu et al. (2006); Wynter et al. (2004) �
Menascé (2008) �
Kumar, L. Zhang, et al. (2009) � �

Machine learning
Cremonesi, Dhyani, et al. (2010) �
Sharma et al. (2008) �
Kalbasi, Krishnamurthy, Rolia, and Richter
(2011)

�

Cremonesi and Sansottera (2012, 2014) �

Maximum likelihood estimation
Kraft et al. (2009) � �
Pérez, Casale, et al. (2015) � �

Gibbs sampling
Sutton and Jordan (2011) �
Wang and Casale (2013) �

Kalbasi, Krishnamurthy, Rolia, and Dawson
(2012); Rolia, Kalbasi, et al. (2010) (DEC)

� �

1 Only feasible if a priori knowledge of the resource demand variance is available.
2 The accuracy of the confidence intervals is not evaluated.
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All of the estimation methods in Table 17.2 can estimate load-independent mean
resource demands. Additionally, the enhanced inferencing approach (Kumar, L.
Zhang, et al., 2009) also supports the estimation of load-dependent resource de-
mands, assuming a given type of function.

17.4 Robustness

Usually, it is not possible to control every aspect of a system while collecting
measurements. This can lead to anomalous behavior in the measurements. Casale
et al. (2007), Casale et al. (2008), and Pacifici et al. (2008) identified the following
issues with real measurement data:

• presence of outliers,
• background noise,
• non-stationary resource demands,
• collinear workload, and
• insignificant flows.

Background activities can have two effects on measurements: the presence of
outliers and background noise. Background noise is created by secondary activi-
ties that utilize a resource only lightly over a long period of time. Outliers result
from secondary activities that stress a resource at high utilization levels for a short
period of time. Outliers can have a significant impact on the parameter estimation
resulting in biased estimates (Casale et al., 2007). Different strategies are possible
to cope with outliers. It is possible to use special filtering techniques in an upstream
processing step or to use parameter estimation techniques that are inherently robust
to outliers. However, tails in measurement data from real systems might belong to
bursts (e.g., resulting from rare but computationally complex requests). The trade-off
decision as to when an observation is to be considered an outlier has to be made on
a case-by-case basis, taking into account the characteristics of the specific scenario
and application.

The resource demands of a system may be non-stationary over time (i.e., not only
the arrival process may change over time, but also the resource demands, which,
for example, can be described by a Mt/Mt/1 queue). Different types of changes are
observed in production systems. Discontinuous changes in the resource demands can
be caused by software and hardware reconfigurations, for example, the installation
of an operating system update (Casale et al., 2007). Continuous changes in the
resource demands may happen over different time scales. Short-term variations
can often be observed in cloud computing environments where different workloads
experience mutual influences due to the underlying shared infrastructure. Changes in
the application state (e.g., database size) or the user behavior (e.g., increased number
of items in a shopping cart in an online shop during Christmas season) may result in
long-term trends and seasonal patterns (over days, weeks, and months). When using
the estimated resource demands to forecast the required resources of an application



380 17 Resource Demand Estimation

over a longer time period, these non-stationary effects need to be considered in order
to obtain accurate predictions. In order to detect such trends and seasonal patterns,
it is possible to apply forecasting techniques on a time series resulting from the
repeated execution of one considered estimation method over a certain time period.
An overview of such forecasting approaches based on time series analysis can be
found in Box et al. (2015).

Another challenge for estimation methods is the existence of collinearities in
the arrival rates of different workload classes. There are two possible reasons for
collinearities in the workload: low variation in the throughput of a workload class
or dependencies between workload classes (Pacifici et al., 2008). For example, if we
model login and logout requests each with a separate workload class, the resulting
classes would normally be correlated. The number of logins usually approximately
matches the number of logouts. Collinearities in the workload may have negative
effects on resource demand estimates. A way to avoid these problems is to detect
and combine workload classes that are correlated.

Insignificant flows are caused by workload classes with very small arrival rates
in relation to the arrival rates of the other classes. Pacifici et al. (2008) experience
numerical stability problems with their linear regression approach when insignificant
flows exist. However, it is noteworthy that there might be a dependency between
insignificant flows and the length of the sampling time intervals. If the sampling
time interval is too short, the variance in arrival rates might be high.

Categorization of Existing Methods

Ordinary least-squares regression is often sensitive to outliers. Stewart et al. (2007)
come to the conclusion that least-absolute-differences regression is more robust to
outliers. Robust regression techniques, as described in Casale et al. (2007) and Casale
et al. (2008), try to detect outliers and ignore measurement samples that cannot be
explained by the regression model. Liu et al. (2006) also include an outlier detection
mechanism in their estimation method based on optimization.

In general, sliding window or data aging techniques can be applied to the input
data to improve the robustness to non-stationary resource demands (Pacifici et al.,
2008). In order to detect software and hardware configuration discontinuities, robust
and clusterwise regression approaches are proposed by Casale et al. (2007), Casale et
al. (2008), and Cremonesi, Dhyani, et al. (2010). If such discontinuities are detected,
the resource demands are estimated separately before and after the configuration
change. Approaches based on Kalman filters (Kumar, Tantawi, et al., 2009; Zheng
et al., 2008) are designed to estimate time-varying parameters. Therefore, they
automatically adapt to changes in the resource demands after a software or hardware
discontinuity. None of the considered estimation methods is able to learn long-term
trends or seasonal patterns (over days, weeks, or months).

Collinearities are one of the major issues when using linear regression (Chatterjee
and Price, 1995). A common method to cope with this issue is to check the workload
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classes for collinear dependencies before applying linear regression. If collinearities
are detected, the involved workload classes are merged into one class. This is pro-
posed by Pacifici et al. (2008) and Casale et al. (2007). The DEC approach (Rolia,
Kalbasi, et al., 2010) mitigates collinear dependencies, since it estimates the resource
demands only for mixes of workload classes.

Pacifici et al. (2008) also consider insignificant flows. They call a workload
class insignificant if the ratio between the throughput of the workload class and
the throughput of all workload classes is below a given threshold. They completely
exclude insignificant workload classes from the regression in order to avoid numerical
instabilities.

17.5 Estimation Accuracy and Execution Time

Depending on the concrete application scenario, the presented methods for resource
demand estimation can differ significantly in terms of their accuracy and execution
time. Spinner et al. (2015) present a comprehensive experimental comparison, eval-
uating the different estimation methods in terms of their accuracy and overhead. The
aim of the evaluation is to answer the following questions:

• How do the different methods compare in terms of estimation accuracy and
execution time?

• Which factors influence the estimation accuracy of the different methods?
• How to automatically decide which set of estimation methods to apply in a given

scenario?

To address these questions, the influence of the following factors on the estimation
accuracy is evaluated: length of sampling interval, number of samples, number of
workload classes, load level, collinearity of workload classes, missing workload
classes for background activities, and presence of delays during processing at a
resource. Table 17.5 lists the estimation methods considered in the experimental
evaluation.

Table 17.5: Estimation methods considered in the experimental evaluation

Abbreviation Estimation method
SDL Service demand law (Brosig et al., 2009)
UR Utilization regression (Rolia and Vetland, 1995)
KF Kalman filter (Kumar, Tantawi, et al., 2009)
MO Menascé optimization (Menascé, 2008)
LO Liu optimization (Liu et al., 2006)
RR Response time regression (Kraft et al., 2009)
GS Gibbs sampling (Wang, Huang, Qin, et al., 2012)
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In the following, we summarize the results of the experimental comparison
by Spinner et al. (2015):

• When using estimation methods based on time-aggregated observations (e.g., UR,
KF, MO, or LO), the length of the sampling interval is an important parameter
that needs to be adjusted to the system under study. A good sampling interval
length depends on the response times of requests and the number of requests
observed in one interval. The sampling interval should be significantly larger
than the response times of requests to avoid end effects, and it should be long
enough to be able to calculate the aggregate value based on the observations of a
significant number of requests (more than 60 requests per sampling interval has
proven to provide good results).

• Most estimation methods (except MO and LO) are negatively influenced when
reducing the experiment length to 10 min (i.e., 10 samples). However, they still
yield results with acceptable accuracy (relative demand error below 8%).

• All estimation methods are sensitive to the number of workload classes. The linear
regression method UR, which uses only utilization and throughput observations,
generally yields a degraded accuracy in scenarios with several workload classes.
Observations of the response times of requests can help to improve the estimation
accuracy significantly even in situations with a very high number of workload
classes. However, it is crucial to ensure that the modeling assumptions of the
estimation methods using response times are fulfilled as they are highly sensitive
to violated assumptions (e.g., incorrect scheduling strategies). Furthermore, in-
significant flows can impair resource demand estimation. Workload classes with
a small contribution to the total resource demand of a system should therefore be
excluded from resource demand estimation.

• When a system operates at a high utilization level (80% or higher), the estimation
methods KF, MO, LO, and GS may yield inaccurate results.

• Collinearities in throughput observations of different workload classes impair the
estimation accuracy of UR. While it correctly estimates the total resource de-
mand, the apportioning between workload classes is wrong. The other estimation
methods are much less sensitive to collinearities in throughput observations.

• Methods that rely on response time observations (e.g., MO, RR, and GS) are
more robust to missing workload classes than methods based on utilization.

• Delays due to non-captured software or hardware resources have a strong influence
on the estimation accuracy of estimation methods based on observed response
times. While some estimation methods (e.g., L. Zhang et al. (2002), Liu et al.
(2006), and Menascé (2008)) consider scenarios where multiple resources con-
tribute to the observed end-to-end response time, only Pérez, Pacheco-Sanchez,
et al. (2013) consider contention due to software resources.

• There are significant differences in the computational complexity of the different
estimation methods. In the considered datasets, the estimation takes between
under 1 ms and up to 20 s depending on the estimation method. When using
resource demand estimation techniques on a production system (e.g., for online
performance and resource management), the computational effort needs to be
taken into account (especially in data centers with a large number of systems).



17.6 Library for Resource Demand Estimation (LibReDE) 383

In summary, the evaluation shows that using response times can improve the
accuracy of the estimated resource demands significantly compared to the traditional
approach based on the utilization law using linear regression, especially in cases with
multiple workload classes. However, estimation methods employing response time
measurements are very sensitive if assumptions of the underlying mathematical
model are violated (e.g., incorrect scheduling strategy).

17.6 Library for Resource Demand Estimation (LibReDE)

While the presented systematization and experimental comparison provide a solid
basis for selecting the right resource demand estimation method for a given scenario,
the selection is still not trivial and requires expertise on the underlying statistical
techniques and their assumptions. Also, in many cases, it may be infeasible to
determine the right method in advance, as the respective input data may only be
available at system run time and the decision would have to be made on-the-fly.
Furthermore, the system and its workload may change over time requiring a dynamic
switchover to a different estimation method.

Spinner (2017) presents an approach to resource demand estimation that relies on
multiple statistical techniques for improved robustness and uses a cross-validation
scheme to dynamically select the technique that performs best for the concrete
scenario. This simplifies the usage of resource demand estimation methods for per-
formance engineers. Furthermore, it is a crucial building block for Application
Performance Management (APM) techniques that automatically estimate resource
demands at system run time and use them for online resource management. The
approach has been implemented as an open-source tool called LibReDE.1 The tool
includes a library for resource demand estimation, providing ready-to-use imple-
mentations of eight common estimation methods.

The main idea of LibReDE is to leverage multiple statistical techniques combined
with a feedback loop to improve the accuracy of the resource demand estimation by
iteratively: (1) adapting the estimation problem, (2) selecting suitable statistical
methods to be applied, and (3) optimizing the configuration parameters of each
method. LibReDE uses cross-validation techniques with an error metric based on
the deviation between the observed response times and utilization, on the one hand,
and the respective predicted metrics using the resource demand estimates, on the
other hand.

LibReDE applies multiple statistical techniques in an online setting, automatically
combining, weighting, and iteratively refining their results (in a feedback loop) to
produce as accurate estimates as possible. Further details on LibReDE and the
respective estimation approach it implements can be found in Spinner (2017).

1 http://descartes.tools/librede

http://descartes.tools/librede
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17.7 Concluding Remarks

In this chapter, we surveyed, systematized, and evaluated different approaches to the
statistical estimation of resource demands based on easy to measure system-level
and application-level metrics. The goal of the presented systematization is to help
performance engineers select an estimation method that best fits their specific re-
quirements. We first surveyed existing estimation methods and described their mod-
eling assumptions and their underlying statistical techniques. Then, we introduced
three dimensions for systematization: (1) input parameters, (2) output metrics, and
(3) robustness to anomalies in the input data. For each dimension, we first described
its features and then categorized the estimation methods accordingly. We considered
resource demands in the context of computing systems; however, the methods we
presented are also applicable to other types of systems. We focused on generic meth-
ods to determine resource demands without relying on dedicated instrumentation of
the application. The goal was to estimate the resource demands based on indirect
measurements derived from commonly available metrics (e.g., end-to-end response
time or resource utilization). We summarized the results of a comprehensive exper-
imental comparison evaluating the different estimation methods in terms of their
accuracy and overhead. The evaluation revealed that using response times can im-
prove the accuracy of the estimated resource demands significantly compared to the
traditional approach based on the utilization law using linear regression, especially
in cases with multiple workload classes. However, estimation methods employing
response time measurements are very sensitive if assumptions of the underlying
mathematical model are violated.
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Chapter 18
Software and System Security
Aleksandar Milenkoski and Samuel Kounev

Evaluation of computer security mechanisms is an active research area with many un-
resolved issues. The research community has produced many results that contribute
towards addressing these issues. In this chapter, we systematize the accumulated
knowledge and current practices in the area of evaluating computer security mech-
anisms. We define a design space structured into three parts: workload, metrics,
and measurement methodology. We provide an overview of the current practices by
surveying and comparing evaluation approaches and methods related to each part of
the design space.

Computer security mechanisms—referred to as security mechanisms—are crucial
for enforcing the properties of confidentiality, integrity, and availability of system
data and services. A common security mechanism is an intrusion detection sys-
tem (IDS). IDSes monitor on-going activities in the protected networks or hosts,
detecting potentially malicious activities. The detection of malicious activities en-
ables the timely reaction in order to stop an on-going attack or to mitigate the
impact of a security breach. Other common security mechanisms include firewalls
and access control (AC) systems.

To minimize the risk of security breaches, methods and techniques for evaluating
security mechanisms in a realistic and reliable manner are needed. The benefits of
evaluating security mechanisms are manifold. For instance, in the case of IDSes, one
may compare different IDSes in terms of their attack detection accuracy in order to
deploy an IDS that operates optimally in a given environment, thus reducing the risks
of a security breach. Further, one may tune an already deployed security mechanism
by varying its configuration parameters and investigating their influence through
evaluation tests. This enables a comparison of the evaluation results with respect
to the configuration space of the mechanism and can help to identify an optimal
configuration.

The evaluation of security mechanisms is of interest to many different types of
users and professionals in the field of information security. This includes researchers,
who typically evaluate novel security solutions; industrial software architects, who
typically evaluate security mechanisms by carrying out internationally standardized
large-scale tests; and IT security officers, who evaluate security mechanisms in
order to select a mechanism that is optimal for protecting a given environment, or to
optimize the configuration of an already deployed mechanism.
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In this chapter, we survey existing knowledge on the evaluation of security mech-
anisms by defining an evaluation design space that puts existing work into a common
context. Given the significant amount of existing practical and theoretical work, the
presented systematization is beneficial for improving the general understanding of
the topic by providing an overview of the current state of the field. The evaluation
design space that we present is structured into three parts, that is, workload, metrics,
and measurement methodology—the standard components of any system evaluation
scenario. The discussions in this chapter are relevant for the evaluation of a wide
spectrum of security mechanisms, such as firewalls and AC systems.

This chapter is structured as follows: in Section 18.1, we provide the background
knowledge essential for understanding the topic of evaluating security mechanisms;
in Section 18.1.1, we discuss different types of attacks and put the different security
mechanisms into a common context; in Section 18.1.2, we demonstrate the wide
applicability of evaluation of security mechanisms; and in Sections 18.2.1–18.2.3, we
compare multiple approaches and methods that evaluation practitioners can employ.

The chapter is a compact summary of Milenkoski, Vieira, et al. (2015), Milenkoski,
Payne, et al. (2015), and Milenkoski (2016). These publications provide more details
on the topics discussed in this chapter.

18.1 Essential Background

We start with some background relevant for understanding the context of the content
presented in the rest of the chapter. We first introduce attacks and common secu-
rity mechanisms used to protect against them. Following this, we describe real-life
practical scenarios where techniques for evaluating security mechanisms are needed,
demonstrating the wide applicability of such techniques and their broad relevance.

18.1.1 Attacks and Common Security Mechanisms

A given system (i.e., a host) is considered secure if it has the properties of confi-
dentiality, integrity, and availability of its data and services (Stallings, 2002). Con-
fidentiality means the protection of data against its release to unauthorized parties.
Integrity means the protection of data or services against modifications by unautho-
rized parties. Finally, availability means the protection of services such that they
are ready to be used when needed. Attacks are deliberate attempts to violate the
previously mentioned security properties (Shirey, 1999).

There are many security mechanisms used to enforce the properties of confiden-
tiality, integrity, and availability of system data and services. Kruegel et al. (2005)
classify security mechanisms by taking an attack-centric approach distinguishing be-
tween attack prevention, attack avoidance, and attack detection mechanisms. Based
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on this classification, we put the different security mechanisms into a common
context, as depicted in Figure 18.1.

Confidentiality

Integrity

Availability

Fig. 18.1: Common security mechanisms

The attack prevention class includes security mechanisms that prevent attackers
from reaching, or gaining access to, the targeted system. A representative mechanism
that belongs to this class is access control, which uses the concept of identity to
distinguish between authorized and unauthorized parties. For instance, firewalls
distinguish between different parties trying to reach a given system over a network
connection based, for example, on their IP addresses. According to access control
policies, firewalls may allow or deny access to the system.

The attack avoidance class includes security mechanisms that modify the data
stored in the targeted system such that it would be of no use to an attacker in
case of an intrusion. A representative mechanism that belongs to this class is data
encryption, which is typically implemented using encryption algorithms, such as
RSA (Rivest–Shamir–Adleman) and DES (Data Encryption Standard).

The attack detection class includes security mechanisms that detect on-going
attacks under the assumption that an attacker can reach, or gain access to, the targeted
system and interact with it. A representative security mechanism that belongs to this
class is intrusion detection. There are several different types of IDSes. For example,
according to the target platform that IDSes monitor, they can be categorized into
host-based (IDSes that monitor the activities of the users of the host where they are
deployed), network-based (IDSes that monitor the network traffic that is destined



392 18 Software and System Security

for, and/or originates from, a single host or a set of hosts that constitute a network
environment), or hybrid IDSes. According to the employed attack detection method,
IDSes can be categorized into misuse-based (IDSes that evaluate system and/or
network activities against a set of signatures of known attacks), anomaly-based
(trained IDSes that use a profile of regular network and/or system activities as a
reference to distinguish between regular activities and anomalous activities, the
latter being treated as attacks), or hybrid IDSes.

This chapter surveys existing knowledge on the evaluation of security mechanisms
that belong to the attack prevention and attack detection class. It treats the topic of
IDS evaluation as a single sub-domain of evaluation of security mechanisms.

18.1.2 Application Scenarios

We now present various application scenarios of evaluation of security mechanisms
in order to demonstrate its wide applicability and broad relevance. This evaluation
helps to determine how well a security mechanism performs and how well it performs
when compared to other mechanisms. The answer to this question is of interest to
many different types of professionals in the field of information security. These
include designers of security mechanisms, both researchers and industrial software
architects, as well as users of security mechanisms, such as IT security officers.

Researchers design novel security mechanisms. They typically focus on design-
ing mechanisms that are superior in terms of given properties that are subject of
research, for example, attack detection accuracy or workload processing capacity.
To demonstrate the value of the research outcome, researchers typically perform
small-scale evaluation studies comparing the proposed security mechanisms with
other mechanisms in terms of the considered properties. For instance, Meng and Li
(2012) measure workload processing throughput, Mohammed et al. (2011) measure
power consumption, and Sinha et al. (2006) measure memory consumption. Fur-
ther, in order to demonstrate that the proposed security mechanisms are practically
useful, researchers also evaluate properties that are not necessarily in the focus of
their research but are relevant from a practical perspective. For example, Lombardi
and Di Pietro (2011) measure the performance overhead incurred by the IDS they
propose.

Industrial software architects design security mechanisms with an extensive set
of features according to their demand on the market. Security mechanisms, in this
context, are typically evaluated by carrying out tests of a large scale. The latter
are part of regular quality assurance procedures. They normally use internationally
standardized tests for evaluating security mechanisms in a standard and compre-
hensive manner. For instance, Microsoft’s Internet Security and Acceleration (ISA)
Server 2004 has been evaluated according to the Common Criteria international
standard for evaluating IT security products.1 Standardized tests are performed in

1 https://www.iso.org/standard/50341.html

https://www.iso.org/standard/50341.html
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strictly controlled environments and normally by independent testing laboratories,
such as NSS Labs,2 to ensure credibility of the results.

In contrast to evaluation studies performed by researchers, evaluation studies in
industry normally include the evaluation of mechanism properties that are relevant
from a marketing perspective. An example of such a property is the financial cost
of deploying and maintaining an IDS or a firewall, which is evaluated as part of the
tests performed by NSS Labs (NSS Labs, 2010).

IT security officers use security mechanisms to protect environments of which
they are in charge from malicious activities. They may evaluate mechanisms, for
example, when designing security architectures in order to select a mechanism that
is considered optimal for protecting a given environment. Further, if a security
architecture is already in place, an IT security officer may evaluate the performance
of the selected mechanism for different configurations in order to identify its optimal
configuration. The performance is typically very sensitive to the way the mechanism
is configured.

In addition to security and performance-related aspects, as part of evaluation
studies, further usability-related aspects may also be considered. This is to be ex-
pected since IT security officers deal with security mechanisms on a daily basis.
For instance, security officers in charge of protecting large-scale environments may
be cognitively overloaded by the output produced by the deployed security mecha-
nisms (Komlodi et al., 2004). Thus, the ability to produce structured output that can
be analyzed efficiently is an important property often considered when evaluating
security mechanisms.

18.2 Current State

In this section, we put the existing practical and research work related to the eval-
uation of security mechanisms into a common context. Since such an evaluation
is a highly complex task, any evaluation experiment requires careful planning in
terms of the selection of workloads, tools, metrics, and measurement methodology.
We provide a comprehensive systematization of knowledge in the respective areas
providing a basis for the efficient and accurate planning of evaluation studies. We
define an evaluation design space structured into three parts: workloads, metrics, and
measurement methodology, considered to be standard components of any evaluation
experiment.

The proposed design space structures the evaluation components and features they
may possess with respect to different properties expressed as variability points in the
design space. Note that we do not claim complete coverage of all variability points
in the design space. We instead focus on the typical variability points of evaluation
approaches putting existing work related to the evaluation of security mechanisms

2 https://www.nsslabs.com

https://www.nsslabs.com
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into a common context. We illustrate the defined design space categories by referring
to evaluation experiments that fit each of the considered categories.

18.2.1 Workloads

In Figure 18.2, we depict the workload part of the design space. In order to evaluate
a security mechanism, one needs both malicious and benign workloads. One can
use them separately, for example, as pure malicious and pure benign workloads for
measuring the capacity of the mechanism (Bharadwaja et al., 2011; Jin, Xiang, Zou,
et al., 2013) or its attack coverage. Alternatively, one can use mixed workloads to
subject the mechanism to realistic attack scenarios. A more detailed overview of
typical use cases of different workload forms is provided in Section 18.2.3 in the
context of measurement methodologies.

Fig. 18.2: Design space—workloads
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Workloads for evaluating security mechanisms normally take an executable form
for live testing, or a recorded form (i.e., a trace) generated by recording a live
execution of workloads for later replay. A major advantage of using workloads in
executable form is that they closely resemble a real workload as monitored by a
security mechanism during operation. However, a malicious workload in executable
form requires a specific victim environment, which can be expensive and time-
consuming to setup.3 In contrast, such an environment is not always required for
replaying workload traces. Further, replicating evaluation experiments when using
executable malicious workloads is usually a challenge since the execution of attack
scripts might crash the victim environment or render it in an unstable state. The
process of restoring the environment to an identical state as before the execution
of the attack scripts may be time-consuming. At the same time, multiple evaluation
runs would be typically required to ensure statistical significance of the observed
system behavior. We refer the reader to Mell et al. (2003) for further comparison
of workloads in executable and trace form. In the following, we discuss different
methods for generating benign and malicious workloads in executable form: use of
workload drivers and manual generation approaches for generation of pure benign
workloads and use of an exploit database and vulnerability and attack injection
techniques for generating pure malicious workloads (Figure 18.2).

18.2.1.1 Workload Drivers

For the purpose of live testing, a common practice is to use benign workload drivers
in order to generate pure benign workloads with different characteristics. We sur-
veyed evaluation experiments (e.g., Jin, Xiang, Zhao, et al. (2009), Lombardi and
Di Pietro (2011), Jin, Xiang, Zou, et al. (2013), Griffin et al. (2003), Patil et al.
(2004), Riley et al. (2008), Reeves et al. (2012), and Zhang et al. (2008)) con-
cluding that some of the commonly used workload drivers are the following (and
alike): SPEC CPU20004 for generation of CPU-intensive workloads; IOzone5 and
Postmark (Katcher, 1997) for generation of file I/O-intensive workloads; httpbench,6
dkftpbench,7 and ApacheBench for generation of network-intensive workloads; and
UnixBench8 for generation of system-wide workloads that exercise not only the hard-
ware but also the operating system. A major advantage of using benign workload
drivers is the ability to customize the workload in terms of its temporal and inten-
sity characteristics. For instance, one may configure a workload driver to gradually

3 While setting up their workbench for evaluation of IDSes, Debar et al. (1998) concluded that
“Transforming exploit scripts found in our database into attack scripts requires some work but
setting up a reliable and vulnerable server has also proved to be a difficult task!”
4 https://www.spec.org/cpu2000
5 http://www.iozone.org
6 http://freecode.com/projects/httpbench
7 http://www.kegel.com/dkftpbench
8 http://code.google.com/p/byte-unixbench

http://code.google.com/p/byte-unixbench
http://www.kegel.com/dkftpbench
http://freecode.com/projects/httpbench
http://www.iozone.org
https://www.spec.org/cpu2000
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increase the workload intensity over time, as typically done when evaluating the
capacity of a security mechanism.

18.2.1.2 Manual Generation

An alternative approach to using workload drivers is to manually execute tasks that
are known to exercise specific system resources. For example, a common approach
is to use file encoding or tracing tasks to emulate CPU-intensive tasks (e.g., Dunlap
et al. (2002) perform ray tracing, while Lombardi and Di Pietro (2011) perform
encoding of a .mp3 file); file conversion and copying of large files to emulate
file I/O-intensive tasks (e.g., Lombardi and Di Pietro (2011) and Allalouf et al.
(2010) use the UNIX command dd to perform file copy operations), and kernel
compilation to emulate mixed (i.e., both CPU-intensive and file I/O-intensive) tasks
(e.g., performed by Wright et al. (2002), Lombardi and Di Pietro (2011), Riley et al.
(2008), Reeves et al. (2012), and Dunlap et al. (2002)). This approach of benign
workload generation enables the generation of workloads with behavior as observed
by the security mechanism under test during regular system operation; however, it
does not support workload customization and might require substantial human effort.

18.2.1.3 Exploit Database

As pure malicious workloads in executable form, security researchers typically use an
exploit database. They have a choice of assembling an exploit database by themselves
or using a readily available one.

A major disadvantage of the manual assembly is the high cost of the attack script
collection process. For instance, when collecting publicly available attack scripts,
the latter typically have to be adapted to exploit vulnerabilities of a specific victim
environment. This includes modification of shell codes, adaptation of employed
buffer overflow techniques, and similar. Depending on the number of collected
attack scripts, this process may be extremely time-consuming. Mell et al. (2003)
report that in 2001 the average number of attack scripts in common exploit databases
was in the range of 9–66, whereas some later works, such as the one of Lombardi
and Di Pietro (2011), use as low as four attack scripts as a malicious workload.

To alleviate the above-mentioned issues, many researchers employ penetration
testing tools to use a readily available exploit database. The Metasploit frame-
work (Maynor et al., 2007) is a popular penetration testing tool that has been used
in evaluation experiments (Görnitz et al., 2009). The interest of security researchers
in Metasploit (and in penetration testing tools in general) is not surprising since
Metasploit enables customizable and automated platform exploitation by using an
exploit database that is maintained up-to-date and is freely available. Metasploit
is very well accepted by the security community not only due to the large exploit
database it provides but also because it enables rapid development of new exploits.
However, although penetration testing frameworks might seem like an ideal solution
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for generating malicious workloads, they have some critical limitations. Gad El Rab
(2008) analyzes the Metasploit’s exploit database to discover that most of the ex-
ploits are executed from remote sources and exploit only implementation and design
vulnerabilities, neglecting operation and management vulnerabilities (Shirey, 1999).
Such characteristics are common for many penetration testing tools, which indicates
their limited usefulness in evaluating security mechanisms.

An effort to provide an extensive collection of exploits to security researchers
has been driven by Symantec. Dumitras and Shou (2011) present Symantec’s WINE
datasets, which contain a collection of malware samples that exploit various novel
vulnerabilities. The large scale of this project is indicated by the fact that Symantec’s
sensors continuously collect malware samples from 240,000 sensors deployed in
200 countries worldwide. Due to the continuous nature of the malware collection
process, this malware database is useful not only as a basis for generating extensive
malicious workloads but also for providing an up-to-date overview of the security
threat landscape. However, since the malware samples are collected from real plat-
forms and contain user data, Symantec’s malware samples can be accessed only
on-site at the Symantec Research Lab to avoid legal issues.

18.2.1.4 Vulnerability and Attack Injection

An alternative approach to the use of an exploit database is the use of vulnerability
and attack injection techniques.

Vulnerability injection enables live testing by artificially injecting exploitable
vulnerable code in a target platform. Thus, this technique is useful in cases where
the collection of attack scripts that exploit vulnerabilities is unfeasible. However,
this method for generation of malicious workloads is still in an early phase of
research and development. Vulnerability injection relies on the basic principles of
the more general research area of fault injection. Since it enables estimation of fault-
tolerant system measures (e.g., fault coverage, error latency) (Arlat et al., 1993), fault
injection is an attractive approach to validate specific fault handling mechanisms and
to assess the impact of faults in actual systems. In the past decades, research on fault
injection has been focused on the emulation of hardware faults. Carreira et al. (1998)
and Rodríguez et al. (1999) have shown that it is possible to emulate these faults in
a realistic manner. The interest in software fault injection has been increasing and
has been a foundation for many research works on the emulation of software faults
(e.g., Durães and Madeira (2003)). In practice, software fault injection deliberately
introduces faults into a software system in a way that emulates real software faults. A
reference technique, proposed by Durães and Madeira (2006), is G-SWFI (Generic
Software Fault Injection Technique), which enables injection of realistic software
faults using educated code mutation. The injected faults are specified in a library
derived from an extensive field study aimed at identifying the types of bugs that are
usually found in many software systems.

A specific application of software fault injection is a security assessment in
which of central importance are software faults that represent security vulnerabili-
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ties. Fonseca and Vieira (2008) analyzed 655 security patches of 6 web applications
to discover that only 12 generic software faults are responsible for all security prob-
lems of the applications. This finding has motivated further research in software fault
injection as a method for security evaluation. Fonseca, Vieira, and Madeira (2009)
proposed a procedure that enables automatic vulnerability injection and attack of
web applications. To accurately emulate real-world web vulnerabilities, this work
relies on results obtained from a field study on real security vulnerabilities (Fonseca
and Vieira, 2008). Fonseca, Vieira, and Madeira (2009) built a Vulnerability and
Attack Injector, a mechanism that automatically exploits injected vulnerabilities. In
order to inject vulnerabilities in the source code of web applications, first the appli-
cation source code is analyzed searching for locations where vulnerabilities can be
injected. Once a possible location is found, a vulnerability is injected by performing
a code mutation. The code mutation is performed by vulnerability operators that
leverage a realistic field data of vulnerable code segments. For more details on the
vulnerability injection procedure, we refer the reader to Fonseca, Vieira, and Madeira
(2009). Aware of the injected vulnerability, the Attack Injector interacts with the web
application in order to deliver attack payloads.

Attack 
Injector 

Web 
application 

Database 
proxy Database 

2. Attack!

IDS 

1. Inject vulnerability!

4. Notify! 5. Process output!

3. Identify signature!

Fig. 18.3: Use of vulnerability injection to evaluate a security mechanism (an IDS)

Fonseca, Vieira, and Madeira (2009) also demonstrated a preliminary approach for
automated (i.e., without human intervention) evaluation of a security mechanism that
detects SQL (Structured Query Language) injection attacks. We depict a procedure
that follows this approach in Figure 18.3. First, the Vulnerability Injector injects a
vulnerability in the web application, followed by the Attack Injector that delivers an
attack payload with a given signature, that is, an attack identifier. Fonseca, Vieira,
and Madeira (2009) developed a database proxy that monitors the communication
between the application and the database in order to identify the presence of an
attack signature. In case it identifies such signature, it notifies the Attack Injector that
the injected vulnerability is successfully exploited. In this way, the Attack Injector
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builds a ground truth knowledge. Given that Fonseca, Vieira, and Madeira (2009)
customized the Attack Injector to process the output of the security mechanism that
monitors the traffic to the database, the Attack Injector can automatically calculate
values of attack detection accuracy metrics (see Section 18.2.2).

Attack injection, as an approach separate from vulnerability injection, enables the
generation of workloads for evaluating security mechanisms that contain benign and
malicious activities such that attacks, crafted with respect to representative attack
models, are injected during regular operation of a given system. Same as vulnerability
injection, this technique is useful in cases where the collection of attack scripts that
exploit vulnerabilities is unfeasible.

In Milenkoski, Payne, et al. (2015), we proposed an approach for the accurate,
rigorous, and representative evaluation of hypercall security mechanisms designed
to mitigate or detect hypercall attacks. Hypercalls are software traps from the kernel
of a virtual machine (VM) to the hypervisor. For instance, the execution of an attack
triggering a vulnerability of a hypervisor’s hypercall handler may lead to a crash
of the hypervisor or to altering the hypervisor’s memory. The latter may enable the
execution of malicious code with hypervisor privilege. In Milenkoski, Payne, et al.
(2015), we presented HInjector, a customizable framework for injecting hypercall
attacks during regular operation of a guest VM in a Xen-based environment.9 The
goal of HInjector is to exercise the sensors of a security mechanism that monitors the
execution of hypercalls. The attacks injected by HInjector conform to attack models
based on existing Xen vulnerabilities. We distinguish the following attack models:

• Invoking hypercalls from irregular call sites. Some hypercall security mechanisms
(e.g., Bharadwaja et al. (2011)) may consider hypercalls invoked from call sites
unknown to them, for example, an attacker’s loadable kernel module (LKM), as
malicious.

• Invoking hypercalls with anomalous parameter values (a) outside the valid value
domains or (b) crafted for exploiting specific vulnerabilities not necessarily out-
side the valid value domains. This attack model is based on the Xen vulner-
abilities described in CVE-2008-3687, CVE-2012-3516, CVE-2012-5513, and
CVE-2012-6035.

• Invoking a series of hypercalls in irregular order, including repetitive execution of
a single or multiple hypercalls. This attack model is based on the Xen vulnerability
described in CVE-2013-1920. The repetitive execution of hypercalls, for example,
requesting system resources, is an easily feasible attack that may lead to resource
exhaustion of collocated VMs.

In Figure 18.4, we depict the architecture of HInjector, which consists of the
components Injector, LKM, Identificator, Configuration, and Logs. We refer to the
VM injecting hypercall attacks as malicious VM (MVM). The security mechanism
under test (an IDS) is deployed in a secured VM (SVM) collocated with MVM.

The Injector, deployed in the hypercall interface of MVM’s kernel, intercepts
hypercalls invoked by the kernel during regular operation and modifies hypercall pa-

9 https://xenproject.org

https://xenproject.org
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Fig. 18.4: Architecture of HInjector

rameter values on-the-fly, making them anomalous. The Injector is used for injecting
hypercalls invoked from a regular call site.

The loadable kernel module (LKM), a module of MVM’s kernel, invokes regular
hypercalls, hypercalls with anomalous parameter values, or hypercalls in irregular
order. The LKM is used for injecting hypercalls invoked from an irregular call site.

The Identificator, deployed in Xen’s hypercall interrupt handler (i.e., 0x82 inter-
rupt), identifies hypercalls injected by the Injector or the LKM, blocks their execution,
and returns a valid error code. The latter is important for preventing MVM crashes
by allowing the control flow of MVM’s kernel to handle failed hypercalls that have
been invoked by it. The Identificator blocks the execution of Xen’s hypercall han-
dlers to prevent Xen crashes. The Identificator identifies injected hypercalls based
on information stored by the Injector/LKM in the shared_info structure, a memory
region shared between a guest VM and Xen. To this end, we extended shared_info
with a string field named hid (hypercall identification).

The configuration is a set of user files containing configuration parameters for
managing the operation of the Injector and the LKM. Currently, it allows for spec-
ifying the duration of an injection campaign, valid parameter value domains and/or
specifically crafted parameter values for a given hypercall (relevant to the Injector
and the LKM), and valid order of a series of hypercalls (relevant to the LKM).

The logs are user files containing records about injected hypercalls—that is,
hypercall IDs (hypercall identification numbers assigned by Xen) and parameter
values as well as timestamps. The logged data serves as reference data (i.e., as
“ground truth”) used for calculating attack detection accuracy metrics.

In Figure 18.4, we depict the steps involved in injecting a single hypercall by the
Injector/LKM. An illustrative example of the Injector injecting a hypercall with a
parameter value outside of its valid domain is as follows: (1) The Injector intercepts
a hypercall invoked by MVM’s kernel and replaces the value, for example, of the
first parameter, with a generated value outside the parameter’s valid value domain
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specified in the configuration; (2) The Injector stores the ID of the hypercall, the
number of the parameter with anomalous value (i.e., one), and the parameter value
itself in hid; (3) The Injector passes the hypercall to MVM’s virtual CPU, which
then issues a 0x82 interrupt and passes control to Xen; (4) The Identificator, using
the data stored in hid, identifies the injected hypercall when it arrives at Xen’s 0x82
interrupt handler; (5) The Identificator returns a valid error code without invoking
the hypercall’s handler; and (6) After the return code arrives at MVM’s kernel, the
Injector stores in the log files, the ID and parameter values of the injected hypercall,
and a timestamp.

We now discuss methods for obtaining pure benign, pure malicious, or mixed
workloads in trace form. We distinguish between trace acquisition and trace gener-
ation.

18.2.1.5 Trace Acquisition

Under trace acquisition, we understand the process of obtaining trace files from
an industrial organization, that is, real-world traces, or obtaining publicly available
traces.

Real-world traces subject a security mechanism under test to a workload as ob-
served during operation in a real deployment environment. However, they are usually
very difficult to obtain mainly due to the unwillingness of industrial organizations
to share operational traces with security researchers because of privacy and similar
legal concerns. Thus, real-world traces are usually anonymized by using various
techniques, which are known to introduce inconsistencies in the anonymized trace
files. Another challenge is that the attacks in real-world traces are usually not labeled
and may contain unknown attacks, making the construction of the “ground truth”
challenging. Lack of ground truth information severely limits the usability of trace
files; for example, one could not quantify the false negative detection rate. To quote
from Sommer and Paxson (2010): “If one cannot find a sound way to obtain ground-
truth for the evaluation, then it becomes questionable to pursue the work at all, even if
it otherwise appears on a solid foundation.” Among many other things, the labeling
accuracy and feasibility depend on the capturing method used to record the traces,
that is, on the richness of the information regarding the recorded activity itself (e.g.,
network packet timestamps, system call arguments). For instance, Sperotto et al.
(2009) argue that when it comes to evaluating a network-based IDS that differenti-
ates between network flows, traces captured in honeypots enable much more efficient
labeling than traces captured in real-world environments, since honeypots are able
to record relevant activity information that is not usually provided with real-world
production traces. An interesting derived observation is that one may tend to priori-
tize trace generation in an isolated and a specialized environment (e.g., a honeypot).
This is due to the increased feasibility of trace labeling, overusing real-world traces
that are representative of the real world, even in the hardly achievable case when
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real-world production traces are available.10 We discuss more on honeypots and on
trace generation approaches in general in Section 18.2.1.6.

In contrast to proprietary real-world traces, one can obtain publicly available traces
without any legal constraints. However, the use of such traces has certain risks. For
instance, publicly available traces often contain errors, and they quickly become
outdated after their public release; that is, attacks have limited shelf-life, and further,
the characteristics of the benign background activities and the mix of malicious and
benign activities change significantly over time. Since such activities are recorded
permanently in trace files for later reuse, traces lose on representativeness over time.
Some of the most frequently used publicly available traces include the DARPA (MIT
Lincoln Laboratory, 1999) and the KDD Cup’99 (University of California, 1998)
datasets, which are currently considered outdated (Sommer and Paxson, 2010).11
However, these traces have been used in many evaluation experiments over the last
two decades (e.g., Alserhani et al. (2010), Yu and Dasgupta (2011), and Raja et al.
(2012)). We also conclude that the trend of overusing these datasets continues up
to the current date despite the past criticism of their poor representativeness. For
instance, Sommer and Paxson (2010) referred to the DARPA dataset as “no longer
adequate for any current study” and “wholly uninteresting if a network-based IDS
detects the attacks it [the DARPA dataset] contains,” stressing the overuse of these
datasets due to lack of alternative publicly available datasets for security research.
The DARPA and the KDD Cup’99 datasets have also been extensively criticized. For
instance, McHugh (2000) criticizes the DARPA dataset for unrealistic distribution
of probe/surveillance attacks in the benign background activity. The KDD Cup’99
dataset is known for lack of precise temporal information on the attacks recorded
in the trace files, which is crucial for attack detection to many IDSes. Despite all
criticism, some researchers are still looking for usage scenarios of these datasets.
For instance, Engen et al. (2011) identify the KDD Cup’99 dataset as useful in the
evaluation of the learning process of anomaly-based IDSes (e.g., learning from a
very large dataset, incremental learning, and similar).

18.2.1.6 Trace Generation

Under trace generation, we understand the process of generating traces by the eval-
uator himself. In order to avoid the previously mentioned issues related to acquiring

10 A worthy point to mention is that real-world traces of a “small” size may still be labeled
in a reasonable time; however, such traces would contain a small amount of attacks. To quote
from Sperotto et al. (2009): “... labeling is a time-consuming process: it could easily be achieved on
short traces, but these traces could present only a limited amount of security events.” The amount
of (human) resources that one has available for labeling plays a central role in determining the
acceptable size of real-world traces that can be labeled in a time-efficient manner.
11 We focus on the DARPA and the KDD Cup’99 datasets because of their popularity. However, we
stress that the risk of a dataset to become outdated soon after its public release is not a characteristic
of the DARPA and the KDD Cup’99 datasets in particular, but to the contrary, of all datasets in
general.
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traces, researchers generate traces in a testbed environment or deploy a honeypot in
order to capture malicious activities.

The generation of traces in a testbed environment is challenged by several con-
cerns. For instance, the cost of the resources needed to build a testbed that scales
to realistic production environment may be high. Further, the approach for the gen-
eration of traces may produce faulty or simplistic workloads. For instance, Sommer
and Paxson (2010) warn that activities captured in small testbed environments may
differ fundamentally from activities in a real-world platform. Finally, the methods
used to generate traces are not flexible enough to timely follow the current attack
and benign activity trends. This issue, in particular, has motivated one of the ma-
jor current research directions that deals with the generation of traces in a testbed
environment in a customizable and scientifically rigorous manner. Such research is
mainly motivated by the fact that the characteristics of attacks and of benign work-
loads are rapidly changing over time, making the one-time datasets inappropriate for
evaluation on a long-term basis. To this end, Shiravi et al. (2012) proposed the use of
workload profiles that enable customization of both malicious and benign network
traffic. This includes customization of the distribution of network traffic from specific
applications and protocols as well as customization of intrusive activities.

Honeypots enable recording of malicious activities performed by an attacker
without revealing their purpose. By mimicking real operating systems and vulnera-
ble services, honeypots record the interaction between the attack target and the attack
itself. Security researchers often use honeyd,12 a low-interaction honeypot that can
emulate a network of an arbitrary number of hosts, where each host may run multiple
services. Honeyd is attractive to security researchers since it is open-source and is
well equipped with many logging and log processing utilities. Maybe the most ex-
tensive deployment of honeyd up-to-date is in the frame of the Leurre.com project,13
which at the time of writing consists of 50 active honeyd instances in 30 countries
worldwide. Since honeypots are usually isolated from production platforms, almost
all of the interactions that they observe are malicious, making honeypots ideal for
generation of pure malicious traces. However, since low-interaction honeypots use
complex scripts to interact with attacks, they are often unable to interact with and
record zero-day attacks. Under a zero-day attack, we understand an attack that ex-
ploits a vulnerability that has not been publicly disclosed before the execution of the
attack. The notion “zero-day” indicates that such an attack occurs on “day zero” of
public awareness of the exploited vulnerability. A promising solution of this issue
is the work of Leita et al. (2006) where they incorporate unsupervised learning
mechanism in the interaction state machine of ScriptGen, a framework for automatic
generation of honeyd scripts with the benefit to capture zero-day attacks. ScriptGen
was later enhanced and implemented in the honeyd instances of the Leurre.com
project.

12 http://www.honeyd.org
13 http://www.leurrecom.org

http://www.leurrecom.org
http://www.honeyd.org
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18.2.2 Metrics

In Figure 18.5, we depict the metrics part of the design space. We distinguish between
two metric categories: (1) performance-related and (2) security-related.

Metrics 

Security-
related 

Performance-
related 

Basic Composite 

Cost-based Information-
theoretic 

<derived from> 

[aspect] 

[approach] 

[form] 

<ROC curve> 

Fig. 18.5: Design space—metrics

Under performance-related metrics, we consider metrics that quantify the non-
functional properties of a security mechanism under test, such as capacity, per-
formance overhead, resource consumption, and similar. The metrics that apply to
these properties, such as processing throughput and CPU utilization, are typical
for traditional performance benchmarks. The practice in the area of evaluating se-
curity mechanisms has shown that they are also applicable to security evaluation.
For instance, Meng and Li (2012) measure workload processing throughput, Lom-
bardi and Di Pietro (2011) measure performance overhead, Mohammed et al. (2011)
measure energy consumption, and Sinha et al. (2006) measure memory consump-
tion. In the context of this chapter, we focus on the systematization and analysis of
security-related metrics.

Under security-related metrics, we assume metrics that are used exclusively in
security evaluation. In this chapter, we focus on metrics that quantify attack detection
accuracy. These are relevant for evaluating security mechanisms that feature attack
detection and issue attack alerts, such as IDSes. We distinguish between basic and
composite security-related metrics. We provide an overview of these metrics in
Table 18.1, where we annotate an attack (or an intrusion) with I and an attack alert
with A.
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Basic Security-Related Metrics The basic metrics are most common, and they
quantify various individual attack detection properties. For instance, the true positive
rate P(A|I) quantifies the probability that an alert is really an intrusion. The false
positive rate P(A|¬I) quantifies the probability that an alert is not an intrusion but a
regular benign activity. Alternatively, one can use the respective complementary met-
rics, that is, the true negative rate P(¬A|¬I) and the false negative rate P(¬A|I). In
evaluation experiments, the output of the security mechanism under test is compared
with a ground truth information in order to calculate the above-mentioned probabil-
ities. Other basic metrics are the positive predictive value (PPV), P(I |A), and the
negative predictive value (NPV), P(¬I |¬A). The former quantifies the probability
that there is an intrusion when an alert is generated, whereas the latter quantifies the
probability that there is no intrusion when an alert is not generated. These metrics are
normally calculated once one has already calculated P(A|I), P(A|¬I), P(¬A|¬I),
and P(¬A|I) by using the Bayesian theorem for calculating the conditional probabil-
ity (Table 18.1). Thus, PPV and NPV are also known as Bayesian positive detection
rate and Bayesian negative detection rate, respectively. PPV and NPV are useful
from a usability perspective, for example, in situations when an alert automatically
triggers an attack response. In such situations, low values of PPV and NPV indicate
that the considered security mechanism is not optimal for deployment. For example,
a low value of PPV (therefore a high value of its complement 1−P(I |A) = P(¬I |A))
indicates that the considered IDS may often cause the triggering of attack response
actions when no real attacks have actually occurred.

Composite Security-Related Metrics Security researchers often combine the
above presented basic metrics in order to analyze relationships between them. Such
analysis is used to discover an optimal operating point (e.g., a configuration of the
mechanism under test that yields optimal values of both the true and the false pos-
itive detection rate) or to compare multiple security mechanisms. It is a common
practice to use a Receiver Operating Characteristic (ROC) curve in order to investi-
gate the relationship between the true positive and the false positive detection rate.
However, some argue that a ROC curve analysis is often misleading (e.g., Gu et al.
(2006), Gaffney and Ulvila (2001), and Stolfo et al. (2000)) and propose alterna-
tive approaches based on (1) metrics that use cost-based measurement methods or
(2) metrics that use information-theory measurement methods. In the following, we
briefly analyze two of the most prominent metrics that belong to these categories—
that is, the expected cost metric (Gaffney and Ulvila, 2001) and the intrusion detection
capability metric (Gu et al., 2006)—presented in Table 18.1. We focus on comparing
the applicability of ROC curves and these metrics for the purpose of comparison of
multiple IDSes. We assume as a goal the comparison of two IDSes: IDS1 and IDS2.
For that purpose, we analyze the relationship between the true positive and the false
positive detection rate denoted by 1− β and α, respectively (Table 18.1). We assume
that for IDS1, 1 − β is related to α with a power function; that is, 1 − β = αk such
that k = 0.002182. Further, we assume that for IDS2, 1 − β is related to α with an
exponential function; that is, 1− β = 1− 0.00765e−208.32α. We take the values of k,
α, and the coefficients of the exponential function from Gaffney and Ulvila (2001).
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We calculate the values of 1− β for IDS1 and IDS2 for α = {0.005, 0.010, 0.015}.
We depict the values of 1 − β for IDS1 and IDS2 in Table 18.2.

Table 18.2: Values of 1 − β, Cexp , and CID for IDS1 and IDS2

IDS1 IDS2

α 1 − β Cexp CID 1 − β Cexp CID

0.005 0.9885 0.016 0.9159 0.973 0.032 0.8867
0.010 0.99 0.019 0.8807 0.99047 0.019 0.8817
0.015 0.9909 0.022 0.8509 0.99664 0.017 0.8635

In Figure 18.6a, we depict the ROC curves that express the relationship between
1 − β and α for IDS1 and IDS2. One may notice that the ROC curves intersect
approximately at 1 − β = 0.99 and α = 0.01. Thus, one could not identify the
better IDS in a straightforward manner. Note that an IDS is considered better than
another if it features higher positive detection rate (1 − β) than the other IDS at
all operating points along the ROC curve. An intuitive solution to this problem,
as suggested by Durst et al. (1999), is to compare the area under the ROC curves,
that is, AUC1 :

∫ α=0.015
α=0.005 α

0.002182dα and AUC2 :
∫ α=0.015
α=0.005 (1−0.00765e−208.32α)dα.

However, Gu et al. (2006) consider such a comparison as unfair, since it is based
on all operating points of the compared IDSes, while in reality, a given IDS is
configured according to a single operating point. Moreover, ROC curves do not
express the impact of the rate of occurrence of intrusion events (B = P(I)), known
as the base rate, on α and 1− β. As suggested by Axelsson (2000), the attack detection
performance of an IDS should be interpreted with respect to a base rate measure due
to the base-rate fallacy phenomenon.

In order to overcome the above-mentioned issues related to ROC curve analysis,
Gaffney and Ulvila (2001) propose the measure of cost as an additional comparison
parameter. They combine ROC curve analysis with cost estimation by associating
an estimated cost with an operating point (i.e., with a measure of false negative
and false positive rates); that is, they introduce a cost ratio C = Cβ/Cα, where Cα

is the cost of an alert when an attack has not occurred, and Cβ is the cost of not
detecting an attack when it has occurred. Gaffney and Ulvila (2001) use the cost ratio
to calculate the expected cost Cexp of a security mechanism operating at a given
operating point (see Table 18.1). For further explanation of the analytical formula
of Cexp , we refer the reader to Gaffney and Ulvila (2001). By using Cexp , one
can determine which mechanism performs better by comparing the estimated costs
when each mechanism operates at its optimal operating point. The mechanism that
has lower Cexp associated with its optimal operating point is considered to be better.
A given operating point of a single mechanism is considered optimal if it has the
lowest Cexp associated with it when compared with the other operating points.
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To determine the optimal operating points of IDS1 and IDS2, we calculate the
values of Cexp for each operating point of the two IDSes. Note that Cexp depends
on the base rate B as well as the cost ratio C (Table 18.1). Thus, to calculate the
values of Cexp , we assume that C = 10, that is, the cost of not responding to an
attack is 10 times higher than the cost of responding to a false alert, and B = 0.10.
We present the values of Cexp in Table 18.2. One may conclude that the optimal
operating point of IDS1 is (0.005, 0.9885) and of IDS2 is (0.015, 0.99664); that is,
the associated expected cost with these points is minimal. Since the minimal Cexp of
IDS1 (0.016) is smaller than the minimal Cexp of IDS2 (0.017), one may conclude
that IDS1 performs better. We depict the ROC curves annotated with the minimal
Cexp of IDS1 and of IDS2 in Figure 18.6b.

Although the discussed cost-based metric enables straightforward comparison of
multiple security mechanisms, it strongly depends on the cost ratio C. To calculate
the cost ratio, one would need a cost-analysis model that can estimate Cα and
Cβ . We argue that in reality, it might be extremely difficult to construct such a
model. Cost-analysis models normally take multiple parameters into consideration
that often might not be easy to measure or might not be measurable at all (e.g.,
man-hours, system downtime, and similar). Further, if the cost model is not precise,
the calculation of Cexp would be inaccurate. Finally, Cexp provides a comparison
of security mechanisms based on a strongly subjective measure (i.e., cost), making
the metric unsuitable for objective comparisons. This issue is also acknowledged
by Gu et al. (2006). We argue that the above-mentioned issues apply not only to the
considered cost-based metric but also to all metrics of similar nature.

Another approach for quantification of attack detection performance is the
information-theoretic approach. In this direction, Gu et al. (2006) propose a metric
called intrusion detection capability (denoted by CID , Table 18.1). Gu et al. (2006)
model the input to an IDS as a stream of a random variable X (X = 1 denotes an
intrusion, X = 0 denotes benign activity) and the IDS output as a stream of a random
variable Y (Y = 1 denotes IDS alert, Y = 0 denotes no alert). It is assumed that both
the input and the output stream have a certain degree of uncertainty reflected by the
entropies H (X ) and H (Y ), respectively. Thus, Gu et al. (2006) model the number of
correct guesses by an IDS (i.e., I (X ;Y )) as a piece of mutually shared information
between the random variables X and Y ; that is, I (X ;Y ) = H (X ) − H (X |Y ). An
alternative interpretation is that the accuracy of an IDS is modeled as a reduction of
the uncertainty of the IDS input, H (X ), after the IDS output Y is known. Finally, by
normalizing the shared information I (X ;Y ) with the entropy of the input variable
H (X ), the intrusion detection capability metric CID is obtained (Table 18.1). Note
that CID incorporates the uncertainty of the input stream H (X ) (i.e., the distribution
of intrusions in the IDS input) and the accuracy of an IDS under test I (X ;Y ). Thus,
one may conclude that CID incorporates the base rate B and many basic metrics,
such as the true positive rate (1 − β), the false positive rate (α), and similar. For the
definition of the relationship between CID and B, 1 − β, and α, we refer the reader
to Gu et al. (2006). Given this relationship, a value of CID may be assigned to any
operating point of an IDS in a ROC curve. With this assignment, one obtains a new
curve, that is, a CID curve. Assuming a base rate of B = 0.10, we calculated CID
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for various operating points of IDS1 and IDS2 (Table 18.2). In Figure 18.6c, we
depict the CID curves of IDS1 and IDS2. A CID curve provides a straightforward
identification of the optimal operating point of an IDS, that is, the point that marks
the highest CID . Further, one can compare IDSes by comparing the maximum CID

of each IDS. An IDS is considered to perform better if its optimal operating point
has a higher CID associated with it. From Table 18.2, one would consider the IDS1
as a better performing IDS since it has greater maximum CID (0.9159) than the
maximum CID of IDS2 (0.8867).

Note that, in contrast to the expected cost metric, the intrusion detection capability
metric is not based on subjective measures such as cost, which makes it suitable for
objective comparisons. However, this also implies that this metric lacks expressive-
ness with respect to subjective measures such as the cost of not detecting an attack,
which may also be of interest. For instance, the IDS evaluation methodology of NSS
labs (NSS Labs, 2010) advocates the comparison of IDSes by taking into account
the costs associated with IDS operation at a given operating point.

18.2.3 Measurement Methodology

Under measurement methodology, we understand the specification of the security
mechanism properties that are of interest (e.g., attack detection accuracy, capacity)
as well as the specification of the employed workloads and metrics for evaluating a
given property. In Sections 18.2.1 and 18.2.2, we presented a workload and metric
systematization with respect to their characteristics (e.g., workload content, metric
aspect, metric form). In this section, we systematize different, commonly evaluated
security mechanism properties. We also indicate the applicability of different work-
load and metric types with respect to their inherent characteristics. Thus, we round
up and finalize the evaluation design space.

We identify the following security mechanism properties as most commonly
evaluated in studies: attack detection, resource consumption, capacity, and perfor-
mance overhead. In Table 18.3, we provide a more fine-granular systematization of
these properties. Next, we briefly discuss current methodologies for evaluating the
properties listed in Table 18.3.

18.2.3.1 Attack Detection

This property is relevant for evaluating IDSes since these security mechanisms
feature attack detection. We classify the attack detection property of IDSes into four
relevant categories: (1) attack detection accuracy (attack detection accuracy under
normal working conditions, that is, in presence of mixed workloads); (2) attack
coverage (attack detection accuracy under ideal conditions, that is, in the presence of
attacks without any benign background activity); (3) resistance to evasion techniques;
and (4) attack detection speed. In Table 18.3, we provide an overview of the workload
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Table 18.3: Design space—measurement methodology

Measurement methodology Workloads Metrics
Variability point Variability point Variability point

[Property] [Content] [Aspect] [Form]

Attack detection
Attack detection accuracy Mixed Security-related Basic, composite

Attack coverage Pure malicious Security-related Basic
Resistance to evasion techniques Pure malicious, mixed Security-related Basic, composite

Attack detection speed Mixed Performance related /

Resource consumption
CPU consumption

Pure benign Performance-related /
Memory consumption
Network consumption
Hard disk consumption

Performance overhead Pure benign Performance-related /

Capacity
Workload processing capacity Pure benign Performance-related /

and metric requirements for evaluating these properties. For instance, in contrast to
the case of evaluating the attack detection accuracy, if one is interested in evaluating
the attack coverage of an IDS, only pure malicious workloads and (basic) metrics
that do not contain measures of false alerts would be required.

When it comes to evaluating the attack detection ability of an IDS, the detection
of novel, unseen attacks is of central interest. Thus, the security research community
has invested efforts in designing various anomaly-based detection techniques, a
process that is still underway (e.g., Avritzer et al. (2010) in 2010 designed system
for intrusion detection that uses performance signatures, Raja et al. (2012) in 2012
leveraged statistical patterns for detection of network traffic abnormalities). Since it
is practically unfeasible to execute a workload that contains unseen attacks in order
to train anomaly-based IDSes, in such cases, researchers use benign workloads that
are considered normal whereby any deviation from such workloads is assumed as
malicious. This assumption, denoted as “closed world” assumption, is considered
unrealistic by Witten et al. (2011). They argue that real-life situations rarely involve
“closed worlds.” Thus, measurement methodologies that follow this assumption
might yield unrealistic results. Furthermore, the prioritization of the attack detection
properties of IDSes, with respect to their importance in case of limited available
resources, is gaining increasing attention. Due to limited resources (e.g., lack of
various malicious workloads), security researchers currently tend to evaluate only
one or two of the attack detection properties (Table 18.3). Thus, to obtain the highest
benefits from evaluation efforts, a proper prioritization of these properties is in order.
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Sommer and Paxson (2010) provide an interesting insight on this matter, stating
that resistance to evasion techniques is a stimulating research topic, but of limited
importance from a practical perspective since most of the real-life attacks perform
mass exploitation instead of targeting particular IDS flaws in handpicked target
platforms. We tend to agree with this statement, which is also supported by many
reports. As an example, an IBM X-Force report, that is, the 2012 Mid-Year Trend
and Risk Report (IBM, 2012), states that the greatest portion of system exploitations
are due to automated SQL injection attacks. Thus, similarly to Sommer and Paxson
(2010), we argue that a representative workload on a global scale would contain
a very small amount of evasive attacks, which decreases the priority of evaluating
resistance to evasion techniques in case of limited resources.

18.2.3.2 Resource Consumption

Resource consumption is evaluated by using workloads that are considered normal for
the environment in which the evaluated security mechanism is deployed; that is, such
workloads should not exhibit extreme behavior in terms of intensity or in terms of
the exercised hardware components (i.e., CPU-intensive, memory-intensive). Dreger
et al. (2008) show that the resource consumption of many IDSes is often sensitive
to the workload behavior. Thus, in order to avoid unrealistic and irrelevant resource
consumption observations, one must be assured that the workloads used in evaluation
experiments are representative of the target deployment environment.

There are mainly two approaches for evaluating resource consumption: black-box
testing and white-box testing. The black-box testing is fairly simplistic since one
measures the resource consumption of the evaluated security mechanism as resource
consumption of a single entity that operates in a given environment (e.g., the resource
consumption of the process of a host-based IDS in an operating system). Although
practical, this approach does not provide insight into the resource consumption of
the individual components of the security mechanism under test. Such insight is
important for optimizing the configuration of the mechanism. To the contrary, the
white-box testing usually assumes the use of a model that decomposes the mechanism
under test; that is, it abstracts individual mechanism components and estimates the
respective resource consumption. Dreger et al. (2008) construct an IDS model that
can estimate CPU and memory consumption of an IDS with a relative error of 3.5%.
Maybe the greatest benefit of the model-based white-box testing approach is that
it can be used to predict resource consumption for varying workloads. The model
of Dreger et al. (2008) assumes orthogonal IDS decomposition; that is, it does not
model the relations between individual IDS components. Although it would be of
great scientific interest to devise a model of a security mechanism that supports
inter-component relations, it would require extensive modeling due to the great
architectural complexity of modern mechanisms. Alternatively, one may opt for
instrumentation of the code of the evaluated security mechanism, making it possible
to capture the resource demands of the individual mechanism components. However,
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this approach might be unfeasible in case the mechanism under test is not open-source
or if it has a complex codebase.

18.2.3.3 Performance Overhead

Performance overhead is evaluated by using workloads that do not exhibit extreme
behavior in terms of intensity but are extreme in terms of the exercised set of
hardware resources; that is, depending on the evaluated security mechanism, an
overhead evaluation experiment may consist of five independent experiments, where
in each experiment, one executes a task whose workload is CPU-intensive, memory-
intensive, disk I/O-intensive, network-intensive, or mixed. We provided an overview
of such tasks in Section 18.2.1. The execution of these tasks is performed twice,
once with the mechanism under test being inactive and once with it being active.
The differences between the measured task execution times reveal the performance
overhead caused by the operation of the mechanism.

18.2.3.4 Capacity

Workload processing capacity is evaluated by using workloads that exhibit extreme
behavior in terms of intensity; that is, their intensity increases over time. The goal
is to identify a specific workload intensity after which the workload processing
performance of the evaluated security mechanism degrades. Similar to resource
consumption, capacity may be evaluated using a black-box or a white-box testing
approach. With white-box testing, typically multiple live tests that target specific
components of the evaluated security mechanism are used. Hall and Wiley (2002)
propose a methodology consisting of individual tests for measuring the packet flow,
the packet capture, the state tracking, and the alert reporting components of network
IDSes. Although such tests enable identification of workload processing bottlenecks
in a security mechanism, they require time-consuming experimentation.

In addition to investigating the individual properties of security mechanisms
listed in Table 18.3, security researchers are often interested in evaluating trade-offs
between these properties. For instance, Hassanzadeh and Stoleru (2011) propose an
IDS for resource-constrained wireless networks with a focus on achieving an optimal
trade-off between network performance, power consumption, and attack detection
effectiveness. Also, Doddapaneni et al. (2012) analyze the trade-off between the
attack detection efficiency and the energy consumption of security mechanisms for
wireless networks. Due to the increasing complexity and the enhanced detection
abilities of modern security mechanisms, the set of requirements considered to be
crucial for an effective mechanism operation (e.g., low resource consumption, low
performance overhead) is also growing. Thus, simple measurement methodologies,
such as the evaluation of a single mechanism property in isolation, are normally
insufficient. We observe that currently many research efforts, such as the ones that
we previously mentioned, are focusing on evaluating relationships between a small
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set of properties. This trend is justified given the various evaluation requirements
and the great number of (often insurmountable) challenges to satisfy them.

18.3 Concluding Remarks

There are three inter-related points in the planning of every evaluation study: (1) goals
of the study; (2) existing approaches to realize the set goals (i.e., approaches for
generating workloads and for measuring performance metrics, see Section 18.2);
and (3) requirements that need to be met. Under the goals of an evaluation study,
we understand the properties of a security mechanism that one aims to evaluate.
Besides the desired extensiveness of an evaluation study, the selection of mechanism
properties for evaluation is normally done by considering the design objectives and
the target deployment environments of the mechanisms under test.

We now discuss the requirements that have to be met for the different approaches
for evaluating security mechanisms discussed in Section 18.2. We emphasize that the
ability of an evaluator to satisfy the requirements that we present significantly affects
both the planning and the execution of an evaluation experiment. We systematize
requirements for evaluating security mechanisms as follows:

• Availability of required resources, mainly related to the generation or adaptation
of workloads. There are three major types of resources:

– Financial resources: For instance, the financial costs of building a testbed
that scales to realistic production environments are typically significant (Sec-
tion 18.2.1.6);

– Time resources: For instance, when an exploit database is manually assembled,
the attack script collection process and the adaptation of collected attack scripts
to exploit vulnerabilities of the target victim environment may be very time-
consuming (Section 18.2.1.3); and

– Human resources: For instance, the amount of human resources that one has
available for labeling attacks in traces is a key deciding factor whether the
traces can be labeled in a time-efficient manner (Section 18.2.1.5).

• Access to confidential data: This requirement applies when real-world production
traces are used. Organizations are often unwilling to share operational traces with
security researchers, or with the public in general, because of privacy concerns
and legal issues (Section 18.2.1.5).

• Availability of knowledge about:

– The architecture and inner working mechanisms of the security mechanism un-
der test: For instance, when the IDS property resistance to evasion techniques
is evaluated, the decision about which evasion techniques should be applied
is based on knowledge of the workload processing mechanism of the tested
IDS and of the decision-making process of the IDS for labeling an activity as
benign or malicious (Section 18.2.3.1);
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– The characteristics of the employed workloads: For instance, information about
the attacks used as malicious workloads (e.g., time of execution of the at-
tacks) must be known in order to calculate any security-related metric (Sec-
tion 18.2.2); and

– The implications of different behavior exhibited by the security mechanism
under test: For instance, the cost of the IDS missing an attack must be known
in order to calculate the expected cost metric (Section 18.2.2).

The requirements mentioned above often cannot be fully satisfied. This is under-
standable given the big investment of resources that typically needs to be made. We
observed that in case of limited resources, sacrifices are often made in:

• The representativeness or scale of the employed workloads: An example is the
typically low number of attack scripts used in evaluation studies (Section 18.2.1.3)
and

• The number of evaluated properties of security mechanisms (Section 18.2.3).

Trade-offs made between the quality of evaluations and the invested resources
should be clearly stated when reporting results from evaluation studies so that the
results can be interpreted in a fair and accurate manner. We emphasize that robust
techniques for evaluating security mechanisms are essential not only to evaluate
specific mechanisms but also as a driver of innovation in the field of computer
security by enabling the identification of issues and the improvement of existing
security mechanisms.
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benchmarks
Kit-based benchmarks, see Benchmark—kit-

based benchmarks

LINPACK benchmark, 204
Little’s law, 154, 167
Load intensity, 195
Log-normal distribution, see Distribution—

Log-normal distribution

Malicious workloads, see Workload—
malicious workloads

Mathematical optimization, 42, 370



Index 425

Maximum likelihood estimation, 41, 372
Mean, 27, 72

arithmetic mean, 58, 60
confidence interval for, 80, 82
estimating, 79
geometric mean, 53, 58, 60, 67–69, 207,

245, 261–263, 275, 282, 313, 329
properties, 53, 67–69, 246

harmonic mean, 58, 60
sample mean, 31, 72, 79
weighted means, 59

Mean value analysis (MVA), 169
Measure, 46, 71
Measurement, 46, 72

accuracy, 75, 135–137
errors

quantization error, see Timer—
quantization error

random errors, 74, 76, 103
systematic errors, 74

of short intervals, 137
overhead, 132, 136, 141
precision, 74, 75, 135–137
resolution, 75, 135
scales, 46–48
strategies, 131–133
variability, 72

Median, 58, 72
Method of contrasts, 107
Metric, see also Performance—metrics,

Elasticity—metrics, Energy efficiency—
metrics, Performance isolation—metrics,
and Security—metrics

aggregation, 62–69, 327–330
composite metrics, 46, 60, 406
defined, 4, 46
from measurements to metrics, 57
quality attributes, 51–57
ratio metrics, 63

MFLOPS, 56, 206
Microbenchmarks, see Benchmark—

microbenchmarks
Microservices, 301
Minkowski distance, 328
MIPS, 56, 63, 206
Mode, 59, 72
Monitoring

call path, control flow, 141
overhead, 141
techniques, 131, 138–145
throttling, 141
tools, 144

Multi-tenancy, 341

Natural benchmarks, see Benchmark—natural
benchmarks

Natural workloads, see Workload—natural
workloads

Negative predictive value, 405
Nominal scale, 46
Non-corresponding measurements, 92–95
Non-executable workloads, see Workload—

non-executable workloads
Normal distribution, see Distribution—Normal

distribution

Open workloads, see Workload—open
workloads

Operational analysis, 150–160, 167
Operational equilibrium, 150, 166, 196
Operational laws, 150–157, 167
Ordinal scale, 46
Oscillation, 327, 353
Overhead, see Measurement—overhead,

Timer—overhead, Monitoring—
overhead

p-value, 337
Paired observations, see before-and-after

comparisons
Pairwise comparison method, 329
Performance

defined, 3, 6
metrics, 49–51

price/costs, 215, 220
relative change, 50
response time, 50, 151, 161, 163, 167
speedup, 50, 66
system speed, 9, 50
throughput, 50, 151, 163
utilization, 50, 151, 163

monitoring, 138–145
tools, 144

profiling, 138–140
tracing, 140–145

Performance bounds, 157–160
Performance isolation, 341–362

metrics, 343–354
Perturbation, 132
Plackett-Burman design, 117–121, 124
Point estimate, 31, 79
Poisson process, 197
Positive predictive value, 405
Power measurement, 209, 246–247, 252–255,

287
Precision, see Measurement—precision
Price/performance, see Performance—

metrics—price/costs
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Probability, 24
Probability density function (PDF), 25
Probability mass function (PMF), 25
Processor-Sharing (PS) queue, 162, 174
Profiling

application profiling, 138
systems profiling, 138

Quality-of-Service (QoS), 216, 269, 279, 283,
345

Quantization error, see Timer—quantization
error

Queue (in queueing theory), 161
Queueing delay, 161
Queueing network (QN), 163

modeling tools, 169, 177
product-form, 166
solution techniques, 168, 177
state space explosion, 166

Queueing theory, 160–181
tools, 169, 177

Random measurement errors, see
Measurement—errors—random
errors

Random sample, 30
Random variable, 24, 71
Rating tools, see Benchmark—rating tools
Ratio scale, 47
Receiver Operating Characteristic (ROC), 406
Regression analysis, 38, 369
Relative change, see Performance—metrics—

relative change
Reliability, 6
Repeatability, 55
Reproducibility, see Benchmark—quality

criteria—reproducibility
Request (as unit of work), 150, 161
Request classes, 163, 171
Research benchmarks, see Benchmark—

research benchmarks
Resilience, 7
Resolution, see Measurement—resolution
Resource demand, 144, 152, 164, 331

estimation, 365–384
Response time, see Performance—metrics—

response time
ROC curve, 406
Run and reporting rules (R&RR), 213

Sample mean, see Mean—sample mean
Sampling, 132
Scalability, 6, 321
Scheduling strategies, 161

Security, 6
benchmarking, 389–415
metrics, 404–410

SERT: Server Efficiency Rating Tool, 189, 205,
258–263

Service demand, 144, 151, 152, 164, 171
estimation, 365–384

Service demand law, 152, 167, 173, 369
Service rate, 161
Service station, see queue
Service time, 151, 161
Settling time, 351
Significance level, 80
Software contention, 177
SPEC, 206–214

GWPG, 210
HPG, 211
OSG, 209
power and performance benchmark

methodology, 247, 252–257
RG, 211

SPEC CPU benchmarks, 231–249
metrics, 67

SPEC SFS, 286–287
SPEC VIRT, 268–276
Specification-based benchmarks, see

Benchmark—specification-based
benchmarks

SPECmark score, 232
SPECpower_ssj2008, 188, 209, 257–258
SPECrate

metrics, 243
suites, 241

SPECratio, 68
SPECspeed

metrics, 243
suites, 241

Speedup, see Performance—metrics—speedup
Standard deviation, 28

sample standard deviation, 31, 72
Standard error (of the mean), 81
Standard Performance Evaluation Corporation,

see SPEC
Standardization, see Benchmark—

standardization
Statistical significance, 91
Steady state, 150, 163, 166, 196–197
Storage benchmarks, 285–300
STREAM benchmark, 205
SUT (system under test), 4, 18
Synthetic benchmarks, see Benchmark—

synthetic benchmarks
Synthetic workloads, see Workload—synthetic

workloads
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System quality, 5
external quality attributes, 5
internal quality attributes, 5

System speed, see Performance—metrics—
system speed

Systematic measurement errors, see
Measurement—errors—systematic
errors

t-distribution, see Distribution—t-distribution
t-test, 94
Think time, 155, 173, 194
Thrashing, 51
Throttling, see Monitoring—throttling
Throughput, see Performance—metrics—

throughput
Time series (as load profile), 198
Timer, 133

accuracy, 135–137
overhead, 136
quantization error, 135
resolution, 134, 135

TPC, 214–224
benchmarks, 217–219, 223, 224, 355

Trace, 140, 186, 189
acquisition, 401
generation, 402

Tracing, 132
event tracing, call path tracing, 140–145
tools, 144

Transaction (as unit of work), 150, 191, 259
Transaction Processing Performance Council,

see TPC
Transactional workloads, see Workload—

transactional workloads
Transient phase, 163
True negative rate, 405
True positive rate, 405

Unpaired observations, see non-corresponding
measurements

Utilization, see Performance—metrics—
utilization

Utilization law, 152, 167

Variable-work and variable-time benchmarks,
see Benchmark—variable-work and
variable-time benchmarks

Variance, 27
sample variance, 31, 72

comparing two sample variances, 105
Verifiability, see Benchmark—quality

criteria—verifiability
Virtualization benchmarks, 223, 267–284,

354–360
Visit ratios, 151, 153
VMmark, 276–283
Vulnerability injection, 397

Warm-up period/phase, 163, 254
Whetstone benchmark, 204
Worklets, 189, 258–260
Workload, 4, 166, 185–200, 259–260

application workloads, 186–188, 257, 287,
301–316

artificial workloads, 186
batch workloads, 191
benign workloads, 394
characterization, 171, 374
closed workloads, 166, 192–195, 254
descriptions, 186, 189, 191, 310
executable workloads, 186, 187
generation, 185, 197, 310, 395–403
malicious workloads, 394
model, 186
natural workloads, 186
non-executable workloads, 186, 189, 310
open workloads, 166, 192, 195–199, 254
steady state, 196–197
synthetic workloads, 8, 186, 188, 204, 205,

258, 274, 285
traces, 186, 189

acquisition, 401
generation, 402

transaction, 191
transactional workloads, 191
varying load, 198

Workload classes, 163
Workload intensity, 166, 171, 195
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