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Abstract. It is a challenging problem to delegate the computation of a
polynomial on encrypted data to a server in an oblivious and verifiable
way. In this paper, we formally define Verifiable and Private Oblivious
Polynomial Evaluation (VPOPE) scheme. We design a scheme called Ver-
ifiable IND-CFA Paillier based Private Oblivious Polynomial Evaluation
(VIP-POPE). Using security properties of Private Polynomial Evaluation
(PPE) schemes and Oblivious Polynomial Evaluation (OPE) schemes, we
prove that our scheme is proof unforgeability, indistinguishability against
chosen function attack, and client privacy-secure under the Decisional
Composite Residuosity assumption in the random oracle model.
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1 Introduction

Fromharmless smart gardening [19] to critical applications such as forest fire detec-
tion [17], data monitoring through sensors is becoming pervasive. In particular,
sensors for monitoring health-related data are more and more widely adopted, be
it through smartwatches that track the heart rate, or sensors implemented in the
patient’s body [2]. This medical data can sometimes be used to assess the health
status of an individual, by applying a single variable polynomial prediction func-
tion on it [7]. However, when it comes to medical data, extreme care must be taken
to avoid any leakage. Recently, the leak of medical data of 1.5 million SingHealth
users in Singapore strongly incentivized to improve the security and privacy sur-
rounding medical data [1]. In this context, we consider the following problem:

How can a company use medical data recorded by clients to give them predic-
tions about their health status in a private way?

For instance, this company may collect Fitbit data from its customers, and use
it to predict things such as a risk factor for certain diseases. For economic reasons,
this company keeps the polynomial secret: it invested time to build it and required

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Laurent and T. Giannetsos (Eds.): WISTP 2019, LNCS 12024, pp. 49–65, 2020.
https://doi.org/10.1007/978-3-030-41702-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41702-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-41702-4_4


50 H. Gajera et al.

to collect lots of data. Its economic model is based on the secrecy of the polynomial:
the clients pay the company to obtain the polynomial’s output on their medical
data. If the polynomial was public, then the clients would directly compute it, and
the company would cease to exist. However, as the company grows, it becomes dif-
ficult to treat all the computation requests, so that the company needs to delegate
this computation to a cloud service. The company trusts the cloud service provider
and gives the secret polynomial; however, the clients may not trust the server to
produce correct results, so that the company would like the server to be able to
prove the correctness of each prediction to the client, i.e., prove that its output is
correct with regards to the secret prediction function.
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Fig. 1. Illustration of a PPE scheme.
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Fig. 2. Illustration of a VPOPE scheme.

In this scenario, the problem is how to delegate computations on a secret
polynomial function to an external server in a verifiable way. This problem is
solved by Private Polynomial Evaluation (PPE) schemes [4,12,14,25] illustrated
in Fig. 1. In a PPE scheme, the company outsources the secret polynomial func-
tion f(·) to an external server. Moreover, the company provides some public
information vkf called verification key. This verification key is used with the
proof π generated by the server during the delegated computation of f(x) to
allow clients to verify the correctness of the result returned by the server.

However, PPE schemes do not protect the privacy of the clients: their data
is handled in clear by the server. After the SingHealth hack, the company wants
to be sure that even if an intruder hacks the server, he will not be able to steal
the medical data of its clients. To solve this problem, we propose a new prim-
itive called Verifiable and Private Oblivious Polynomial Evaluation (VPOPE).
A VPOPE scheme is a private polynomial evaluation scheme, in which the data
of the client cannot be read by the cloud server. More precisely, the client sends
his encrypted data to the server, and the server never learns anything about x.
We illustrate this new primitive in Fig. 2.
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1.1 Related Works

VPOPE schemes are related to several research domains. The first one is the
Verifiable Computation (VC) introduced by Gennaro et al. [13]. VC aims to
delegate a costly computation to an untrusted third party. This third party
returns the result of the computation and proof of correctness, which is easier to
verify. Primitives, where everyone can check the correctness of the computation,
are said to be publicly verifiable [23]. VC has given rise to a bunch of protocols
[5,6,9,21,22]. Although VC is related to our paper; the difference is that in these
works, the polynomial used by the server is not secret.

Another similar primitive is Oblivious Polynomial Evaluation (OPE) intro-
duced by Naor and Pinkas [18]. OPE protocols are constituted of two parties.
The first party, A, knows a secret function f(·) and the other one, B, has a
secret element x. The aim of OPE is that B receives f(x) in such a way A
learns nothing about the value x sent by B, and that B learns nothing about
the function f(·). OPE are used to solve different cryptographic problems as set
membership, oblivious keyword search, and set intersection [10,11,16]. Although
OPE and VPOPE are very similar; their difference lies in the fact that OPE do
not consider the verifiability of the computation of f(x), whereas it is a crucial
point in VPOPE since the client does not trust the server.

Finally, the nature of VPOPE is very close to those of Private Polynomial
Evaluation (PPE). To the best of our knowledge, only five papers [4,12,14,15,25]
propose to hide a polynomial used by the server and allow a client to verify the
returned results. Kate et al. [15] formally define a primitive called commitments
to polynomials that can be used as a PPE scheme and propose the PolyCommitPed
scheme. In this primitive, the committer publishes some points (x, y) of the
secret polynomial together with a proof that y = f(x). Then, she can open the
commitment a posteriori to reveal the secret polynomial. This primitive is close
to PPE and VPOPE schemes since the verification key used in PPE and VPOPE
can be viewed as a commitment. However, this verification key is computed by a
trusted party (the company) and computations are performed by an untrusted
party (the server). Although the verification cost is in constant-time, it uses
three pairing computations, and we show that, in practice, the verification cost
of our VPOPE scheme is more efficient (see Sect. 5.2).

Independently of Kate et al. [15], Guo et al. [14] propose a scheme with
similar security properties to delegate the computation of a secret health-related
function on the users’ health record. The polynomials are explicitly assumed to
have low coefficients and degree, which significantly reduces their randomness.
However, the authors give neither security models nor proofs. Later, Gajera
et al. [12] show that any user can guess the polynomial using the Lagrange’s
interpolation on several points. They propose a scheme where the degree k is
hidden and claim that it does not suffer from this kind of attack.

Following this work, Bultel et al. [4] show that hiding the degree k is useless
and that no scheme can be secure when the user query more than k points to
the server. Moreover, they give cryptanalysis of Guo et al. [14] PPE scheme and
of Gajera et al. [12] PPE scheme which requires only one query to the server
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and present the first security model for PPE schemes. A PPE scheme must
satisfy the following properties: (i) proof unforgeability (UNF) requires that the
server cannot provide a valid proof to the client for a point that is not a point
of the secret polynomial; (ii) indistinguishability against chosen function attack
(IND-CFA) requires that the client cannot distinguish which of two polynomials of
her choice has been evaluated by the server. Bultel et al. show that PolyCommitPed
scheme from Kate et al. [15] satisfies these security properties. Moreover, Bultel
et al.design a PPE scheme called PIPE that is IND-CFA secure and solves an
open problem described by Kate et al. concerning the design of a scheme with a
weaker assumption than t-SDH. Despite having the additional property that it
protects the privacy of the client, we show that the verification of our VPOPE
scheme is more efficient than for PIPE.

More recently, Xia et al. [25] proposed a new efficient PPE scheme. As PIPE,
their scheme satisfies the required security properties defined in [4]. Their scheme
is based on the Pedersen’s Verifiable Secret Sharing [24] and does not depend on
NIZKP to allow the client to verify the correctness of the result contrary to Bultel
et al. [4]. Besides, to have computational advantages over previous PPE schemes,
Xia et al. ’s scheme relies only on the Discrete Logarithm assumption. However,
the verification cost of Xia et al. ’s scheme also requires k exponentiations where
k is the degree of the secret polynomial, which makes it costlier than our scheme
that needs only three exponentiations, one Paillier decryption, and k.

1.2 Contributions

The contributions of this paper are summarized as follows:

– We formally define the VPOPE schemes and give a security framework based
on those of PPE and Oblivious Polynomial Evaluation (OPE) schemes.

– We design VIP-POPE (for Verifiable IND-CFA Paillier based Private Obliv-
ious Polynomial Evaluation), an efficient and secure VPOPE scheme. This
scheme uses the homomorphic properties of Paillier’s encryption scheme [20]
to achieve encrypted polynomial evaluation.

– We also formally prove its security in the random oracle model and compare
its efficiency for the verification cost with the existing PPE schemes. We show
that VIP-POPE is more efficient for the verification part than PPE schemes
presented in [4,15,25].

1.3 Outline

In the next section, we recall the cryptographic notions used in this paper. In
Sect. 3, we give the PPE and OPE security model for VPOPE schemes. Then,
we present in Sect. 4, our VPOPE scheme called VIP-POPE. Before to con-
clude, we prove in Sect. 5 that VIP-POPE satisfies the security properties for
VPOPE schemes and compares its verification cost with other PPE schemes of
the literature.
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2 Preliminaries

We start by recalling the definition of the cryptographic tools used in this paper.
In the rest of the paper, we denote by poly(η) the set of probabilistic polynomial-
time algorithms with respect to the security parameter η.

2.1 Paillier Cryptosystem

We now recall the generation, the encryption and decryption algorithms of the
Paillier’s public key encryption scheme [20] used in our scheme.

Key Generation. We denote by Zn, the ring of integers modulo n and by Z
�
n

the set of invertible elements of Zn. The public key pk of Paillier’s encryption
scheme is (n, g), where g ∈ Z

�
n2 and n = pq is the product of two prime numbers.

The corresponding secret key sk is (λ, μ), where λ is the least common mul-
tiple of p − 1 and q − 1 and μ = (L(gλ mod n2))−1 mod n, where L(x) = x−1

n .

Encryption Algorithm. Let m be a message such that m ∈ Zn. Let r be a
random element of Z�

n. We denote by Epk the encryption algorithm that produces
the ciphertext c from a given plaintext m with the public key pk = (n, g) as
follows: c = Epk(m) = gmrn mod n2.

Decryption Algorithm. Let c be the ciphertext such that c ∈ Zn2 . We denote
by Dsk the decryption function of the plaintext c with the secret key sk = (λ, μ)
defined as follows: m = Dsk(c) = L

(
cλ mod n2

) · μ mod n.
Paillier’s cryptosystem is a partial homomorphic encryption scheme. Let m1

and m2 be two plaintexts in Zn. The product of the two associated ciphertexts
with the public key pk = (n, g), denoted c1 = Epk(m1) = gm1rn

1 mod n2 and
c2 = Epk(m2) = gm2rn

2 mod n2, is the encryption of the sum of m1 and m2.
We also remark that: Epk(m1) · Epk(m2)−1 = Epk(m1 − m2) and Epk(m1)m2 =
Epk(m1m2).

Theorem 1. Paillier’s cryptosystem is IND-CPA-secure if and only if the Deci-
sional Composite Residuosity (DCR) Assumption holds [20].

To present our scheme, we first claim the following property on Paillier cipher-
texts.

Property 1. Let n be the product of two prime numbers, x ∈ Zn, and g ∈ Z
�
n2 . We

set pk = (n, g) a Paillier public key. Let {ti}k
i=1 such that for all i ∈ {1, . . . , k},

we have ti = txi−1 · rn
i with t0 = g, and ri ∈ Z

�
n2 . Then for all i ∈ {1, . . . , k},

ti = Epk(xi).

2.2 Zero-Knowledge Proof

We use the ZKP given by Baudron et al. [3] to prove the plaintexts equality
of k ∈ N Paillier ciphertexts. Let Z

�
n2 be a multiplicative group where n is the

product of two prime numbers p and q. The language is the set of all statements
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(t1, . . . , tk) ∈ (Z�
n2)k for k ∈ Z≥2 such that for all i ∈ {1, . . . , k}, ti = txi−1 · rn

i

mod n2 where t0 ∈ Z
�
n2 and ri ∈ Z

�
n2 .

Since the ZKP given by Baudron et al. [3] is a sigma protocol, we can use
the Fiat-Shamir Transformation [8] to obtain a NIZKP. We formally define this
NIZKP called DecPaillierEq.

Definition 1 (DecPaillierEq [3]). Let n be the product of two prime numbers p
and q and H be a hash function, L be the set of all (t1, . . . , tk) ∈ (Z�

n2)k such
that for all i ∈ {1, . . . , k}, ti = txi−1 · rn

i mod n2 where t0 ∈ Z
�
n2 and ri ∈ Z

�
n2 .

We define the NIZKP DecPaillierEq = (Prove,Verify) for L as follow:

– Prove((t1, . . . , tk), ω): Using the witness ω = (x, t0, {ri}k
i=1), it picks ρ

$←
[0, 2log(n)] and si ∈ Z

∗
n for 1 ≤ i ≤ k, and computes ui = tρi−1 · sn

i mod n2

for 1 ≤ i ≤ k. Moreover, it computes w = ρ + x · H(t) and sets vi = si · rH(t)
i

mod n for 1 ≤ i ≤ k. Finally, it outputs πt = (w, {ui}k
i=1, {vi}k

i=1).
– Verify((t1, . . . , tk), πt): Using πt = (w, {ui}k

i=1, {vi}k
i=1), it verifies if w ∈

[0, 2log(n)], and if twi−1 · vn
i = ui · tH(t)

i mod n2 for 1 ≤ i ≤ k. Then it outputs
1, else 0.

Moreover, Baudron et al. [3] prove the following theorem.

Theorem 2. DecPaillierEq is unconditionally complete, sound and zero-
knowledge in the random oracle model.

3 Definition and Security Model

Before we present our security model, we first formally define a Private Oblivious
Polynomial Evaluation scheme.

Definition 2. A Verifiable and Private Oblivious Polynomial Evaluation
(VPOPE) scheme is composed of eight algorithms (setup, init, keyGen, queryGen,
queryDec, compute, decrypt, verif) defined as follows:

– setup(η) : Using the security parameter η, this algorithm generates a ring F ,
public parameters pub and secret parameters sec. It returns (pub, F, sec).

– init(F, f, sec) : Using F , the secret polynomial f , and parameters sec, this
algorithm returns a verification key vkf and a server key skf associated to
the secret polynomial f .

– keyGen(η, pub, k) : Using the security parameter η and public parameters pub,
this algorithm generates and returns a client’s key pair (pkc, skc).

– queryGen(pkc, x) : Using a public key pkc and an input x, this algorithm gen-
erates an encrypted query t associated to x, a proof πt proving that t is a valid
encrypted query, and returns (t, πt).
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– queryDec(skc, t) : Using a secret key skc and an encrypted request t, this algo-
rithm outputs x if t is a valid request of x, ⊥ otherwise.

– compute(t, πt, f, skf , F ) : Using t, πt, f , skf , and F , this algorithm returns
an encrypted value d along with a proof πd proving that d is an encryption of
f(x) if the proof πt is “accepted”. Else it returns ⊥.

– decrypt(skc, d) : Using a secret key skc and the encrypted value d, this algo-
rithm returns y, the decryption of d.

– verif(x, skc, pub, y, πd, vkf ) : This algorithm returns 1 if the proof πd is
“accepted”, 0 otherwise.

3.1 Security Models

ExpCPIΠ,A(η):
b

$← {0, 1} ;
(pub, F, sec) ← setup(η) ;
f

$← F [X]k ;
(vkf , skf ) ← init(F, f, sec) ;
(pkc, skc) ← keyGen(η, pub, k) ;
(x0, x1, st) ← A1(pkc, pub, F ) ;
(t, πt) ← queryGen(pkc, xb) ;
b∗ ← ACOCPI(·)

2 (t, f, skf , F, st) ;
return (b = b∗) .
COCPI(x):
(t, πt) ← queryGen(pkc, x) ;
return t .

Fig. 3. CPI experiment.

We use security notions of PPE
schemes formalized by Bultel et al. [4],
namely Unforgeability (UNF), and Indis-
tinguishability against Chosen Function
Attack (IND-CFA), and adapt them to
VPOPE schemes. The security model
IND-CFA ensure secrecy of the polyno-
mial, the security model UNF ensures the
validity of the verification process. Since
VPOPE schemes consider encrypted
data on the client-side, we recall the
Client’s Privacy - Indistinguishability
(CPI) security property defined by Naor
and Pinkas [18] to include the privacy of
the client’s data. Moreover, we define the
Query Soundness (QS) notion to prove
that a client cannot have other informa-
tion than points that she queried. In all the security models, we denote by F [x]k,
the set of all polynomials of degree k over a finite field F .

Client’s Privacy - Indistinguishability

We first recall the Client’s Privacy - Indistinguishability (CPI) security for VPOPE
schemes introduced by Naor and Pinkas [18]. In this model, the adversary chooses
two queries (x0, x1) and tries to guess the evaluation xb asked by the client. The
adversary has access to the ciphertext oracleCOCPI(·) taking x as input and returns
the encrypted query t. A VPOPE scheme is CPI-secure if no adversary can output
the query chosen by the client with a better probability than by guessing.

Definition 3 (Client’s privacy - indistinguishability.). Let Π be a
VPOPE, A = (A1,A2) ∈ poly(η)2 be a two-party adversary. The client’s pri-
vacy - indistinguishability (CPI) experiment for A against Π is defined in Fig. 3,
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where A has access to the oracle COCPI(·). The advantage of the adversary A
against the CPI experiment is given by:

AdvCPIΠ,A(η) =
∣
∣
∣
∣
1
2

− Pr
[
1 ← ExpCPIΠ,A(η)

]∣∣
∣
∣ .

A scheme Π is CPI-secure if this advantage is negligible for any A ∈ poly(η)2.

Chosen Function Attack
Expk-IND-CFA

Π,A (η):

b
$← {0, 1} ;

(pub, F, sec) ← setup(η) ;
(pkc, skc) ← keyGen(η, pub, k) ;
(f0, f1, st2) ← A1(pkc, pub, F, k) ;
(vkf , skf ) ← init(F, fb, sec) ;
b∗ ← ACOCFA(·)

2 (pkc, skcpub, F, vkf , k, st) ;
if f0 �∈ F [X]k or f1 �∈ F [X]k:
then return ⊥ ;
else return (b = b∗) .

Fig. 4. IND-CFA experiment.

We recall the model for k-Indistingui-
shability against Chosen Function
Attack (k- IND-CFA). In this model,
the adversary chooses two polynomi-
als (f0, f1) and tries to guess the poly-
nomial fb used by the server, where
b ∈ {0, 1}. The adversary has access
to a server oracle COCFA(·) and sends
to her an encrypted query t associated
to her data x along with a proof πt.
The oracle decrypts the query t and
obtains x if t is valid. If f0(x) = f1(x),
the oracle returns d i.e. the encrypted value of fb(x), along with a proof πd.

If f0(x) �= f1(x), then the server returns nothing. In practice, an adver-
sary chooses (f0, f1) such that f0 �= f1, but with k points (xi, yi) such that
f0(xi) = f1(xi). It allows the adversary to maximize his oracle calls in order to
increase his chances of success.

COCFA(t, πt):
(d, πd) ← compute(t, πt, fb, skf , F ) ;
if x ← queryDec(t, skc) and x �= ⊥ and
f0(x) = f1(x):
then return (d, πd) ;
else return ⊥ .

Fig. 5. Server oracle for IND-CFA.

Definition 4. (k-IND-CFA). Let Π
be a VPOPE, A = (A1,A2) ∈
poly(η) be a two-party adversary
and k be an integer. The k-IND-CFA
experiment for A against Π is defined
in Fig. 4, where A has access to the
server oracle COCFA(·). The advan-
tage of the adversary A against the
k-IND-CFA experiment is given by:

Advk-IND-CFA
Π,A (η) =

∣
∣
∣
∣
1
2

− Pr
[
1 ← Expk-IND-CFA

Π,A (η)
]∣∣
∣
∣ .

A scheme Π is k-IND-CFA-secure if this advantage is negligible for any A ∈
poly(η)2.
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Query Soundness
ExpQS

Π,A(η):
(pub, F, sec) ← setup(η) ;
f

$← F [X]k ;
(vkf , skf ) ← init(F, f, sec) ;
(pkc, skc) ← keyGen(η, pub, k) ;
(t, πt) ← A((pkc, skc), pub, F, vkf ) ;
if queryDec(t) �= ⊥ and compute(t, πt, f, skf , F ) �= ⊥

and f(queryDec(skc, t)) �= decrypt(skc, d) such that
(d, πd) ← compute(t, πt, f, skf , F ):

then return 1 ;
else return 0 .

Fig. 6. QS experiment.

We now define a model
for Query Soundness
(QS). In this model, the
adversary tries to learn
other information than
points of the secret poly-
nomial that she queried
by sending a particular
query t along with a
proof πt to the server.

Definition 5 (Query Soundness). Let Π be a VPOPE, and A ∈ poly(η) be
an adversary. The Query Soundness (QS) experiment for A against Π is defined
in Fig. 6. The advantage of the adversary A against the QS experiment is given
by:

AdvQS
Π,A(η) = Pr

[
1 ← ExpQS

Π,A(η)
]

.

A scheme Π is QS-secure if this advantage is negligible for any A ∈ poly(η).

Unforgeability

Finally, we recall the unforgeability property. A VPOPE is unforgeable when
a dishonest server cannot produce a valid proof for a point (x, y) such that
y �= f(x). In this model, the secret polynomial f is chosen by the server.

ExpUNF
Π,A(η):

(pub, F, sec) ← setup(η) ;
(pkc, skc) ← keyGen(η, pub, k) ;
(f, st) ← A1(pkc, sec) ;
(vkf , skf ) ← init(F, f, sec) ;
(x∗, y∗, π∗) ← A2(pub, skf , vkf , F, f, st) ;
if f(x∗) �= y∗ and
verif(x∗, skc, pub, y∗, π∗, vkf ) = 1:
then return 1 ;
else return 0 .

Fig. 7. UNF experiment.

Definition 6. (Unforgeability).
Let Π be a VPOPE, A =
(A1,A2) ∈ poly(η) be a two-
party adversary. The unforge-
ability (UNF) experiment for
A against Π is defined in
Fig. 7. We define the advan-
tage of the adversary A
against the UNF experiment
by:

AdvUNFΠ,A(η) = Pr
[
1 ← ExpUNFΠ,A(η)

]
.

A scheme Π is UNF-secure if this advantage is negligible for any A ∈ poly(η)2.
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3.2 Security Against Collusion Attacks

There are two possible collusion scenarios: the collusion of a client and the server,
and collusion of two or more clients.

Scenario 1: In a collusion of a client and the server, the server can provide the
secret polynomial to the client. This is an inherent problem and cannot be
prevented. The client can share public parameters and verification keys with
the server but these parameters are already public and known to the server.
The collusion does not give any advantage to the server to forge fake proof
of computation.

Scenario 2: In a collusion of two or more clients, sharing Paillier secret keys with
each other does not provide any information about the secret polynomial. All
the verification keys and public parameters are the same for each client. The
inherent limitation is that the collusion of clients can share their evaluated
points and if the total number of points is more than k, where k is the degree
of the secret polynomial, then clients can derive the polynomial. This problem
exists in any polynomial computation and cannot be prevented.

4 VIP-POPE Description

In our scheme, we assume that the server is not trusted with the computation
result and clients are curious to learn about the secret polynomial. A client may
forge an encrypted query to gain more information about the secret polynomial.
We first give the intuition of our scheme VIP-POPE and then give its formal
definition.

We use the homomorphic properties of Paillier’s cryptosystem to design our
scheme called VIP-POPE. The key idea is to use the fact that a client can
generate an encrypted query t = {ti}k

i=1 where ti = Epk(xi) and k is the degree
of the secret polynomial f(·) to allow the server to compute Epk(f(x)). Since the
server knows coefficients {ai}k

i=0 of f(·), it computes Epk(f(x)) as follows:

Epk(a0) ·
i=k∏

i=1

Epk(xi)ai =
i=k∏

i=0

Epk(aix
i) = Epk

(
i=k∑

i=0

aix
i

)

= Epk(f(x)) .

The client may forges an untrustworthy encrypted query to learn more than
a point on the polynomial. To avoid this kind of attack, the client must provide
a proof of validity πt for each query t = {ti}k

i=1 that she sends to the server,
i.e., a proof that ti = Epk(xi) for all i ∈ {1, . . . , k}. Based on Property 1, such a
proof can be built using the NIZKP DecPaillierEq presented in Definition 1.

4.1 Formal Definition of VIP-POPE

We now give the formal definition of our scheme VIP-POPE. The algorithms
setup and init are run by the company, the algorithm compute is run by the server
and the algorithms keyGen, queryGen, decrypt and verif are run by a client.
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Definition 7. Let VIP-POPE = (setup, init, keyGen, queryGen, queryDec,
compute, decrypt, verif) be a scheme defined by:

– setup(η) : Using the security parameter η, this algorithm first generates a
prime number q. It selects a multiplicative group G of order q and generated
by h. It picks (s1, s2) ← (Z�

q)
2 and sets pub = (hs1 , hs2 , h, q), sec = (s1, s2),

and F = Zq. Finally, it outputs pub, F , and sec.
– init(F, f, sec) : We set f(x) =

∑i=k
i=0 ai·xi where ai ∈ Zq. For all i ∈ {0, . . . , k},

it picks ri ∈ Z
�
q and computes αi = (ai + ri) · s1 and γi = s1 · s−1

2 · ri. Finally,
it sets vkf = {γi}k

i=0, skf = {αi}k
i=0, and returns (vkf , skf ).

– keyGen(η, pub, k) : For a client c, it picks two primes pc and qc such that
(k + 1)q2 < pcqc and pc ≈ qc. It sets nc = pcqc. According to nc, it generates
a Paillier key pair such that pkc = (nc, gc) and skc = (λc, μc) as described in
Sect. 2. It outputs (pkc, skc).

– queryGen(pkc, x) : Using x and the Paillier public key pkc, this algorithm
computes, for all i ∈ {1, . . . , k}, ti = Epk(xi) and returns the encrypted
query t = (pkc, {ti}k

i=1) along with a proof πt of equality of plaintexts using
proofPaillierEq.

– queryDec(skc, t) : First this algorithm parses t as (pkc, {ti}k
i=1). Using the

Paillier secret key skc, this algorithm sets x = Dskc(t1). If Dskc(ti) = xi for
2 ≤ i ≤ k, it outputs x, ⊥ otherwise.

– compute(t, πt, f, skf , F ) : If πt is accepted by verifyPaillierEq, this algorithm
uses {ti}k

i=1 from t, coefficients {ai}k
i=0 of the polynomial function f(·), and

{αi}k
i=0 from the server secret key skf to compute:

d = Epkc(a0) ·
i=k∏

i=1

tai
i and πd = Epkc(α0) ·

i=k∏

i=1

tαi
i ,

and returns (d, πd), else it returns ⊥.
– decrypt(skc, d) : Using the Paillier secret key skc which is equal to (λc, μc),

this algorithm returns y = Dskc(d) mod q.
– verif(x, skc, pub, y, πd, vkf ) : Using x, skc, vkf , and the proof πd, this algorithm

computes:

y′ = Dskc(πd) mod q and z =
i=k∑

i=0

γi · xi .

If (hs1)y · (hs2)z = hy′
, then the algorithm returns 1, else it returns 0.

Parameter Selection. We need to have
∑i=k

i=0 ai ·xi < nc = pc ·qc for successful
decryption due to Paillier cryptosystem properties. Since 0 ≤ ai < q and 0 ≤
xi < q, we have ai · xi < q2 for each i ∈ {0, . . . , k} that gives us a0 + a1 · x +
· · · + ak · xk < (k + 1) · q2. Hence, we need to have (k + 1) · q2 < nc to always
have successful decryption. Moreover, we recommend the size of each prime pc

and qc to be at least 1024 bits to make the factorization of nc hard.
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5 Security and Performance Analysis

We first give a theorem on the security of VIP-POPE. Then we provide some
comparisons with PPE schemes of the literature [4,15,25].

5.1 Security Proofs

We present the security proofs of VIP-POPE in our security model.

Theorem 3. VIP-POPE is a CPI-secure scheme under the DCR assumption.

Proof. We assume there exists A ∈ poly(η)2 such that AdvCPIVIP-POPE,A(η) is
non-negligible and we show there exists an algorithm B ∈ poly(η) such that
AdvIND-CPA

Paillier,B(η) is non-negligible. We build B as follows:

– B receives Zq, sec from setup(η) and pkc from keyGen(η, pub, k).
– B runs (x0, x1, st) ← A1(pkc).
– B picks f

$← Zq[X]k and runs init(Zq, f, sec) to obtain vkf and skf .
– B runs the oracle Epk(LRb(·, ·)) on (xi

0, x
i
1) for i ∈ {1, . . . , k} and obtains

t = {ti}k
i=1, Paillier ciphertexts of xi

b.
– B runs b∗ ← A2(t, f, skf ,Zq, st). To simulate the oracle COCPI(·) on x to A,

B computes t = {Epkc
(xi)}k

i=1.
– Finally, B outputs b∗.

We remark that:

1. The experiment CPI is perfectly simulated for A.
2. B wins the IND-CPA experiment if and only if A wins the CPI experiment.

Since AdvCPIVIP-POPE,A(η) is non-negligible, then AdvIND-CPA
Paillier,B(η) is non-negligible.

However, Paillier cryptosystem is IND-CPA under the DCR assumption, then B
can be used to break the DCR assumption, which contradicts our hypothesis and
concludes the proof. �	
Theorem 4. For any k ∈ N, VIP-POPE is a k-IND-CFA-secure scheme.

Proof. Let A ∈ poly(η) be an algorithm. We show that there exists an algorithm
B ∈ poly(η) simulating the experiment Expk-IND-CFA

VIP-POPE,A(η) to A. We build B as
follows:

– B picks b
$← {0, 1}.

– B generates (pub,Zq, sec) ← setup(η), where pub = (hs1 , hs2 , h), and sec =
(s1, s2) ∈ Z

�
q .

– B runs (f0, f1, st) ← A1(Zq, k), and it sets f0(x) =
∑i=k

i=0 a0,i · xi and f1(x) =
∑i=k

i=0 a1,i · xi.
– B picks r

$← Z
�
q . For all i ∈ {0, . . . , k}, it picks ri

$← Z
�
q , and sets αi =

(ab,i + ri) · s1, and γi = s1 · s−1
2 · ri. Finally, it sets f ′(x) =

∑i=k
i=0 αi · xi, and

returns vkf = {γi}k
i=0.
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– B generates (pkc, skc) ← keyGen(η, pub, k).
– B runs b∗ ← A2((pkc, skc), pub,Z�

q , vkf , k, st). To simulate the oracle
COCFA(·) to A on t = {Epk(xi)}k

i=1, B first verifies if f0(Dskc(Epkc(x))) =
f1(Dskc(Epkc(x)) then computes:

d = Epkc(ab,0) ·
i=k∏

i=1

Epk(xi
j)

ab,i , πd = Epkc(α0) ·
i=k∏

i=1

Epk(xi
j)

αi ,

and returns (d, πd). Else, it returns ⊥.
– Finally, B outputs b∗.

We remark that r and ri (for 0 ≤ i ≤ k) are chosen in the uniform distribution of
Z

�
q , then each element of vkf comes from the uniform distribution on Z

�
q . Finally,

we have:

(hs1)f(x) · (hs2)Z(x) = hf ′(x).

We deduce that the experiment k-IND-CFA is perfectly simulated for A. Then
A cannot do better than the random to guess the value of the chosen b. Hence,
Advk-IND-CFA

VIP-POPE,A(η) is negligible which concludes the proof. �	
Theorem 5. For any k ∈ N, VIP-POPE is QS-secure in the random oracle
model.

Proof. The proof πt is computed as in DecPaillierEq (Definition 1). This NIZKP
is unconditionally sound, then there exists no probabilistic polynomial time algo-
rithm that forges a valid proof on a false statement with non-negligible prob-
ability, i.e., a statement (t1, . . . , tk) where there exists 1 ≤ i ≤ k such that
ti �= txi−1 · rn

i where n = p · q and p, q are two prime numbers, t0 ∈ Z
∗
n2 ri ∈ Z

∗
n2 ,

and x ∈ Z
∗
n2 .

We show that if there exists A ∈ poly(η)2 such that AdvQS
VIP-POPE,A(η) is

non-negligible, then there exists B ∈ poly(η) that forges a valid proof of an
instance where ti �= txi−1 · rn

i . It contradicts the soundness of DecPaillierEq which
concludes the proof. B works as follows:

– B runs (pub, F, sec) ← setup(η), (pkc, skc) ← keyGen(η, pub, k), f
$← F [x]k,

(vkf , skf ) ← init(F, f, sec), and (t, πt) ← A((pkc, skc), pub, F, vkf ) where πt =
(w, {ui}k

i=1, {vi}k
i=1).

– B returns t as a statement together with the proof πt.

We observe that since AdvQS
VIP-POPE,A(η) is non-negligible, then the probability

that f(queryDec(skc, t)) �= decrypt(skc, d) and compute(t, πt, f, skf , F ) �= ⊥ is
non-negligible. Moreover:

– f(queryDec(skc, t)) �= decrypt(skc, d) ⇒ f(x) �= y, that means there exists
1 ≤ i0 ≤ k such that Dskc(ti) �= xi.

– compute(t, πt, f, skf , F ) �= ⊥ ⇒ twi−1 · vn
i = ui · t

H(t)
i mod n2 for 1 ≤ i ≤ k.

Then πt is a valid proof.
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B returns a valid proof of a false instance with non-negligible probability. �	
Theorem 6. For any k ∈ N, VIP-POPE is UNF-secure under the DL assump-
tion.

Proof. We assume there exists A ∈ poly(η)2 such that AdvUNFVIP-POPE,A(η) is
non-negligible. We show that A can be used to construct an algorithm B that
computes logh(hs1).

First, we note that if y∗ �= f(x∗), then we also have y′
∗ �= y′ where we denote

y′
∗ = Dskc(π∗) and y′ =

∑i=k
i=0 αi ·xi

∗. It is easy to check this condition. Therefore,
we must have both inequalities y∗ �= f(x∗) and y′

∗ �= y′ hold. We show that there
exists an algorithm B ∈ poly(η) that breaks the DL assumption by computing
logh(hs1) using A. B works as follows:

– B obtains (pub, F, sec) ← setup(η) and (pkc, skc) ← keyGen(η, pub, k).
– B receives (f, st) ← A1(pkc, pub, F ).
– B runs (vkf , skf ) ← init(F, f, sec) where skf = {αi}k

i=0, then obtains
(x∗, y∗, π∗) ← A2(pubc, skf , vkf , F, f, st).

– B computes:

logh(hs1) =
Dskc(π∗) − ∑i=k

i=0 αi · xi
∗

y∗ − f(x∗)
.

Since we have proved that y∗ �= f(x∗), the discrete logarithm logh(hs1) can be
computed with the same probability as A wins the UNF experiment. There-
fore, based on the DL assumption, there cannot exist an adversary A such that
AdvUNFVIP-POPE,A(η) is non-negligible. �	

5.2 Comparison with Other PPE Schemes

Table 1. Comparison of VIP-POPE with other PPE schemes. We denote by D the
constant cost of one Paillier decryption.

Schemes Setup size Key size Verif. cost Pairing Assumption Model Privacy

PolyCommitPed [15] O(k) O(1) O(1) Yes t-SDH Standard No

PIPE [4] O(1) O(k) O(k · log(q)) No DDH ROM No

Xia et al. ’s [25] O(1) O(k) O(k · log(q)) No DL Standard No

VIP-POPE O(1) O(k) O(3 · log(q) + k) + D No DL/DCR ROM Yes

In Table 1, we provide comparison of our scheme with PolyCommitPed [15],
PIPE [4] and Xia et al. ’s scheme [25]. We observe that the verification key size
and verification cost are constant in PolyCommitPed while in all other schemes
it depends on the degree k. The verification equation in PolyCommitPed involves
several bilinear pairing which is costly compared to other operations. The ver-
ification key size and verification cost are not constant in our scheme but our
scheme is pairing free and efficient as compared to other pairing free schemes.
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Moreover, our scheme VIP-POPE provides the client’s data privacy while the
other three schemes do not provide any privacy. To support our claim about
efficiency, we implement all these schemes for different values of degrees with
realistic parameters.

In our scheme, the verification of the result obtained from the server is done
by a client. In such a case, the verification cost becomes an important aspect
of the scheme. We claim that our scheme is most efficient so far in terms of
verification cost. We implement VIP-POPE, PIPE and Xia’s scheme in SageMath
8.1 on 64-bit PC with Intel Core i5 - 6500 CPU @ 3.2 GHz and 4 GiB RAM.
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Fig. 8. Verification cost comparison.

The new scheme, VIP-POPE,
provides privacy of the client’s
data while the other two schemes,
PIPE, and Xia’s scheme, do not
provide privacy of the client’s
data. To keep the comparison as
fair as possible, we implement all
three schemes with the same real-
istic parameters. For our scheme,
we choose a 1024 bit prime q
and 160 bit prime q1 such that
q′ = 2q1q + 1 is a prime. We
choose another 1024 bit prime
p and set n = pq′. The coeffi-
cients of the polynomial f(x), the
secret values (s1, s2) and {ri}k

i=0

are all selected uniformly at ran-
dom from Z

�
q . For Xia’s scheme

and PIPE, we keep the value of q, the polynomial f(x) and {ri}k
i=0 same as

in VIP-POPE. We compare the cost of only the verification equation in all three
schemes.

For different values of the degree of the polynomial f(x), we ran each scheme
for 100 new instances and each instance for 10 times. We then averaged out the
total time for the verification equation in each scheme. In Fig. 8, we observe that
VIP-POPE takes almost constant time while the cost of verification equation in
PIPE and Xia’s scheme increases linearly with respect to the degree k. Moreover,
our scheme takes only around 5–6 ms for verification equation even for k = 100
which makes it practically feasible for real applications.

6 Conclusion

In this paper, we gave a formal definition of new primitive called VPOPE (for
Verifiable and Private Oblivious Polynomial Evaluation). This primitive allows a
company to delegate the computation of a secret polynomial f(·) to an external
server on the client’s encrypted data in a verifiable way. In other terms, a client
sends an encrypted query to a server associated with her secret data x using
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her public key pk. Then, the client receives d with proof that d = Epk(f(x)).
We design the first VPOPE scheme called VIP-POPE (for Verifiable IND-CFA
Paillier based Private Oblivious IND-CFA Polynomial Evaluation) and prove that
it satisfies the required security properties, i.e., VIP-POPE is CPI-, IND-CFA-,
QS-, UNF-secure in the random oracle model. Moreover, we compare our scheme
to other existing PPE schemes of the literature and show that its computational
verification cost is less as compared to others.
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