
Maryline Laurent
Thanassis Giannetsos (Eds.)

LN
CS

 1
20

24

13th IFIP WG 11.2 International Conference, WISTP 2019
Paris, France, December 11–12, 2019
Proceedings

Information Security
Theory and Practice

Lecture Notes in Computer Science 12024

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Maryline Laurent • Thanassis Giannetsos (Eds.)

Information Security
Theory and Practice
13th IFIP WG 11.2 International Conference, WISTP 2019
Paris, France, December 11–12, 2019
Proceedings

123

Editors
Maryline Laurent
Telecom SudParis
Evry, France

Thanassis Giannetsos
Technical University of Denmark
Lyngby, Denmark

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-41701-7 ISBN 978-3-030-41702-4 (eBook)
https://doi.org/10.1007/978-3-030-41702-4

LNCS Sublibrary: SL4 – Security and Cryptology

© IFIP International Federation for Information Processing 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-7256-3721
https://orcid.org/0000-0003-0663-2263
https://doi.org/10.1007/978-3-030-41702-4

Preface

It was our great pleasure to organize the 13th International Conference on Information
Security Theory and Practice (WISTP 2019), held December 2019 at Conservatoire
National des Arts et Métiers (CNAM) in Paris, France. This year marked the 13th
edition of the conference, and we were thrilled to continue fostering collaboration
among researchers and practitioners to discuss the various facets of cyber- and
information-security. WISTP covers a wide range of topics on theoretical and practical
aspects of security and privacy, as well as experimental studies of fielded systems, and
thus benefits the cyber-security community by encouraging the emergence of novel
research avenues of the aforementioned areas. The conference considered all complex
facets and double-edged sword aspects of the cyber-security ecosystem, in particular,
how new security algorithms and technologies can impact the security posture of
existing and future ICT systems.

The WISTP 2019 call for papers attracted submissions from 24 countries, from a
wide variety of academic and corporate institutions. In total, we received 42 valid
submissions, of which 12 papers were selected as full papers and 2 were accepted as
short papers after a double-blind review by our Program Committee comprised of
44 members, leading to a full acceptance rate of 28.5% and an overall acceptance rate
of 33.3%. These papers cover a wide range of topics on the pressing challenges of
security and privacy, including authentication, software security, threats and attacks,
post-quantum cryptography, security analysis and proofs, and combining theoretical
expertise and practical experiments that rely on emerging technologies (like
Blockchain) with direct application of and impact on emerging domains of Internet of
Things.

Two papers received extra praise: “Fault Injection Characterization on modern
CPUs - From the ISA to the Micro-Architecture” by Thomas Trouchkine, Guillaume
Bouffard, and Jessy Clediere received the Best Student Paper Award; and “Threat
Analysis of Poisoning Attack against Ethereum Blockchain” by Teppei Sato,
Mitsuyoshi Imamura, and Kazumasa Omote received the Best Paper Award.

The program also included two invited talks by David Naccache (ENS, France) on
“How to Compartment Secrets - Trust Everybody, but Cut the Cards -” and Pascal
Paillier (CryptoExperts, France) on “Homomorphic encryption for deep learning: a
revolution in the making.”

Putting together WISTP 2019 was a team effort. We first thank all the authors for the
quality of their submissions. We are grateful to the Program Committee who worked
very hard in reviewing papers and providing valuable feedback to authors. In addition,
we would like to thank the General Chairs, Wojciech Mazurczyk from Warsaw
University of Technology (WUT), Poland, and Samia Bouzefrane from Conservatoire
National des Arts et Métiers (CNAM), France, for their valuable support and help with
the planning and organization of the conference, as well as the Steering Committee,
especially Damien Sauveron from the University of Limoges, France, for their

continuous efforts in making the event evolve throughout the years. Finally, special
thanks to the Local Organizing Committee, Yulliwas Ameur (CNAM, France),
Abou-Bakr Djaker (University of Oran, Algeria), Xiaotian Fu (CNAM, France), Thiziri
Saad (CNAM, France), and Mamoudou Sangaré (CNAM, France) for hosting the
conference in a beautiful and historical location.

We also want to thank the IDfix project, whose support helped to keep registration
fees as low as possible and for providing great prizes to the best paper awards winners,
as well as the IFIP WG 11.2: Pervasive Systems Security for their continued confidence
in the organization of the WISTP editions.

January 2020 Maryline Laurent
Thanassis Giannetsos

vi Preface

Organization

Program Committee Chairs

Maryline Laurent Télécom SudParis, France
Thanassis Giannetsos Danmarks Tekniske Universitet, Denmark

Steering Committee

Angelos Bilas University of Crete, Greece
Olivier Blazy University of Limoges, France
Konstantinos

Markantonakis
Royal Holloway University of London, UK

Joachim Posegga University of Passau, Germany
Jean-Jacques Quisquater Catholic University of Louvain, Belgium
Damien Sauveron University of Limoges, France
Chan Yeob Yeun Khalifa University, UAE

Program Committee

Raja Naeem Akram Royal Holloway University of London, UK
Claudio Ardagna University of Milan, Italy
Kadri Benamar University of Tlemcen, Algeria
Olivier Blazy University of Limoges, France
Samia Bouzefrane Conservatoire National des Arts et Métiers, France
Xavier Bultel University of Auvergne, France
Serge Chaumette University of Bordeaux, France
Liqun Chen University of Surrey, UK
Céline Chevalier University of Pantheon-Assas Paris II, France
Emmanuel Conchon University of Limoges, France
Mauro Conti University of Padua, Italy
Gabriele Costa IMT Lucca, Italy
Tassos Dimitriou Computer Technology Institute, Greece
Ruggero Donida Labati University of Milan, Italy
Sara Foresti University of Milan, Italy
Thanassis Giannetsos Danmarks Tekniske Universitet, Denmark
Johann Groszschaedl University of Luxembourg, Luxembourg
Yong Guan Iowa State University, USA
Nesrine Kaaniche The University of Sheffield, UK
Süleyman Karda Batman University, Turkey
Mehmet Sabir Kiraz De Montfort University, UK
Ioannis Krontiris Huawei Technologies, Germany
Andrea Lanzi University of Milan, Italy
Albert Levi Sabanci University, Turkey

Olivier Levillain Télécom SudParis, France
Javier Lopez NICS Lab, Spain
Sjouke Mauw University of Luxembourg, Luxembourg
Keith Mayes Royal Holloway University of London, UK
Alessio Merlo University of Genoa, Italy
Antonios Michalas Tampere University of Technology, Finland
Jiaxin Pan Norwegian University of Science and Technology,

Norway
Joachim Posegga University of Passau, Germany
Kouichi Sakurai Kyushu University, Japan
Pierangela Samarati University of Milan, Italy
Siraj A. Shaikh Coventry University, UK
Dave Singelee Catholic University of Louvain, Belgium
Denis Trcek University of Ljubljana, Slovenia
Umut Uludag TUBITAK-BILGEM-UEKAE, Turkey
Paulo Verissimo University of Luxembourg, Luxembourg
Anjia Yang Jinan University, China
Stefano Zanero Politecnico di Milano, Italy
Gongxuan Zhang Nanjing University of Science and Technology, China

Additional Reviewers

Angèle Bossuat
Stefano Cecconello
Luca Demetrio
Atif Hussain
Elif Bilge Kavun
Rhys Kirk
Felix Klement
Huimin Lao
Yuxian Li
Stefano Longari

Eleonora Losiouk
Shahid Mahmood
Ameer Mohammed
Paolo Montesel
Enrico Russo
Korbinian Spielvogel
Federico Turrin
Andrea Valenza
Axin Wu
Yuriy Zacchia Lun

Sponsor

viii Organization

Contents

Invited Paper

How to Compartment Secrets: Trust Everybody, but Cut the Cards 3
Gaëlle Candel, Rémi Géraud-Stewart, and David Naccache

Authentication

A Lattice-Based Enhanced Privacy ID . 15
Nada EL Kassem, Luís Fiolhais, Paulo Martins, Liqun Chen,
and Leonel Sousa

A Generic View on the Unified Zero-Knowledge Protocol
and Its Applications. 32

Diana Maimuţ and George Teşeleanu

Cryptography

Verifiable and Private Oblivious Polynomial Evaluation. 49
Hardik Gajera, Matthieu Giraud, David Gérault, Manik Lal Das,
and Pascal Lafourcade

Monomial Evaluation of Polynomial Functions Protected by Threshold
Implementations: With an Illustration on AES . 66

Simon Landry, Yanis Linge, and Emmanuel Prouff

Strong Designated Verifier Signature Based on the Rank Metric 85
Hafsa Assidi and El Mamoun Souidi

A Lightweight Implementation of NTRU Prime for the Post-quantum
Internet of Things . 103

Hao Cheng, Daniel Dinu, Johann Großschädl, Peter B. Rønne,
and Peter Y. A. Ryan

Threats

Fault Injection Characterization on Modern CPUs: From the ISA
to the Micro-Architecture . 123

Thomas Trouchkine, Guillaume Bouffard, and Jessy Clédière

Threat Analysis of Poisoning Attack Against Ethereum Blockchain 139
Teppei Sato, Mitsuyoshi Imamura, and Kazumasa Omote

A Template-Based Method for the Generation of Attack Trees 155
Jeremy Bryans, Lin Shen Liew, Hoang Nga Nguyen,
Giedre Sabaliauskaite, Siraj Shaikh, and Fengjun Zhou

Cybersecurity

Analysis of QUIC Session Establishment and Its Implementations. 169
Eva Gagliardi and Olivier Levillain

CompactFlow: A Hybrid Binary Format for Network Flow Data. 185
Michal Piskozub, Riccardo Spolaor, and Ivan Martinovic

SSI-AWARE: Self-sovereign Identity Authenticated Backup
with Auditing by Remote Entities . 202

Philipp Jakubeit, Albert Dercksen, and Andreas Peter

Internet of Things

Automated Security Analysis of IoT Software Updates 223
Nicolas Dejon, Davide Caputo, Luca Verderame, Alessandro Armando,
and Alessio Merlo

Towards a Context-Aware Security and Privacy as a Service
in the Internet of Things . 240

Tidiane Sylla, Mohamed Aymen Chalouf, Francine Krief,
and Karim Samaké

Author Index . 253

x Contents

Invited Paper

How to Compartment Secrets

Trust Everybody, but Cut the Cards

Gaëlle Candel1,3, Rémi Géraud-Stewart2,3(B), and David Naccache3

1 Ingenico Labs, 28 boulevard Grenelle, 75015 Paris, France
gaelle.candel@ingenico.com

2 Ingenico Labs, 9 Avenue de la Gare, 26300 Alixan, France
remi.geraud@ingenico.com

3 DIENS, ENS, CNRS, PSL University, 45 rue d’Ulm, 75230 Paris cedex 05, France
{gaelle.candel,remi.geraud,david.naccache}@ens.fr

Abstract. Secret sharing splits a secret s into � shares in such a way
that k ≤ � shares suffice to reconstruct s. Let ρi,j be the probability that
shareholder i disclose their share to shareholder j, with 0 ≤ i, j < n.

Given k ≤ � ≤ n, to whom � individuals should we hand shares, if we
wish to minimize the probability that one of them reconstitutes s?

1 Introduction

Queen Elizabeth I stated “Do not tell secrets to those whose faith and silence
you have not already tested”. Given the relative faith in the audience, how can
we calculate the overall disclosure risk? This paper provides an answer to this
question.

Secret sharing splits a secret s into “shares”, distributed among n partici-
pants. Under certain conditions – the sharing scheme’s access structure – this
secret s can be reconstructed (e.g. from enough shares). In the simplest case,
we may require all shares to be combined [Sha79,Mig82,Bla79]. A more inter-
esting access structure requires that at least k shares among n are required.
Constructions for different access structures are known [DD94].

In this paper we are given a table:

ρ = {ρi,j}0≤i,j<n

where ρi,j is the probability that shareholder i will leak their share to shareholder
j. Because of this leakage mechanism, it is possible that eventually one of the
shareholders gets enough shares to reconstruct s. Our goal is to evaluate the
probability pcol that any third party’s reconstructs s, an event called “collapse”.

The most general setting, where we can produce exactly � shares, is motivated
by a real-life data escrow scenario: given n data centers we wish to select � of
them to hold shares of a k-out-of-� secret sharing, so that collapse probability is
minimal. However, as we will discuss below this is a challenging problem, that
is best approached in several steps. We therefore discuss two simplified versions
of the problem first:
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Laurent and T. Giannetsos (Eds.): WISTP 2019, LNCS 12024, pp. 3–11, 2020.
https://doi.org/10.1007/978-3-030-41702-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41702-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-41702-4_1

4 G. Candel et al.

• � = k = n and 0 ≤ ρi,j ≤ 1: Given n,ρ, compute pcol.

The optimal strategy resides in the access structure. To see why, consider the
simplest n-out-of-n setting in which all shares are necessary recover s.

The optimal choice in this situation (assuming 0 < ρi,j < 1) is to give a share
to everyone. The proof is immediate: adding a share to the game multiplies
collapse probability by a factor < 1; pcol can be computed with the tools of
Sect. 2.

• ρi,j ∈ {0, 1}: Given n,ρ, compute pcol and potentially avoid giving shares to
participants not affecting pcol.

The case ρi,j ∈ {0, 1} allows a more parsimonious distribution of shares: we
distribute a share per strongly-connected component of the graph defined by
ρi,j . Thus the general problem can be solved by condensing the graph (this is
done in linear time) and handing a share to each representative of a strongly-
connected component. If there are fewer shares than connected components, we
have pcol = 0. If there are more, then depending on k we can have pcol = 0 or 1.
This process is detailed in Sect. 3.

1.1 Notations and Hypotheses

Let n > 2 be the number of possible shareholders. Let [n] denote the set
{0, . . . , n − 1}. The cardinality of a set X is denoted |X|. If p is a probabil-
ity, we write p = 1 − p. Ui will denote shareholder i.

For any i, j ∈ [n] we denote by ρi,j the probability that Ui shares all he knows
with Uj . We say in that case that Ui and Uj collude. Collusion is transitive: Ui

can send its share xi to Uj , who then transmits it (along with xj) to U� — even
if Ui and U� abstain from direct interactions. Note that ρi,j may differ from ρj,i.

2 Collapse Probability

In this section we explain how to compute the collapse probability, defined as
the probability that at least one shareholder can reconstruct the secret (e.g. by
gathering enough shares).

Definition 1 (Saturation, G±). A labeled directed graph G is saturated if all
labels are equal to 1. Saturated graphs are in one-to-one correspondence with
unlabeled directed graphs. We say that an edge is saturated if it is labeled 1, and
is unsaturated otherwise. Unsaturated edges of G can be ordered (e.g. by lexico-
graphic order), and we denote by G+(i→j) (resp. G−(i→j)) the graph obtained by
saturating (resp. removing) the first unsaturated edge of G, denoted i → j.

Definition 2 (Evaluation at a Random Graph). Let f be a function taking
as input a directed graph and returning an element in some (fixed) vector space.

How to Compartment Secrets 5

Let G be a labeled directed graph, with edges labels in [0, 1]. We define

̂f(G) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

f(G)
if G is saturated

�i,j
̂f
(

G+(i→j)
)

+ �i,j
̂f
(

G−(i→j)
)

for the unsaturated edge i → j labeled �i,j

which we call the evaluation of f at G.

Definition 3 (Root-Directed Spanning Tree). Let G be a directed graph.
G has a Root-Directed Spanning Tree (RDST) if there is a vertex R such that,
for every other vertex S, G has a directed path from S vertex to R.

Remark 1. Note that if G has an RDST, then G is connected, so that connectiv-
ity is a necessary condition. Note also that if G is strongly connected, then it has
an RDST, so that strong-connectivity is a sufficient condition. Both properties
can be established in linear time.

Note that G has this property if and only if G• has it, so that without loss of
generality we may assume we are working on a condensed graph. Such a graph is
acyclic which makes it possible to logarithmically check efficiently the presence
of an RDST.

Example 1 ((n, n)-secret sharing). The (n, n)-collapse function L(n,n) takes a
directed acyclic graph G as input, and returns 1 if G has a root-directed
spanning tree, and 0 otherwise. Therefore, collapse probability for this access
structure only depends on the graph ρ defined by the values of ρi,j , and is
p
(n,n)
col = ̂L(n,n)(G).

Example 2 ((n, n)-secret sharing, n = 3). Consider n = 3 and write a = ρ0,1,
b = ρ1,2, c = ρ2,0 all other probabilities being 0. The collapse probability is
pcol = ab + bc + ca − 2abc. Note that the expression is symmetric in a, b, c, and
0 ≤ pcol ≤ 1. A worked-out computation is given in AppendixA.

The following remark gives a computer-friendly representation of pcol:

Remark 2. Let e1, e2, . . . , e� be the edges’ labels in G, and for any �-bit string
x = (x1, . . . , x�), let ui(xi) = (1 − xi)ei + (1 − ei)xi and u(x) =

∏

i ui(ei). Then
any collapse probability is of the form

pcol =
∑

x∈X

u(x)

where X is a set of �-bit strings, corresponding to edge saturations asso-
ciated with an RDST graph. In Eq. 2, with ei = (a, b, c), we have X =
{011, 101, 110, 111}.

Example 3 ((n, n)-secret sharing, n = 4). (Same as above, but with an
additional edge in the reverse direction). X = {1111, 1101, 1011, 1010, 1001,
0111, 0101, 0011}.

6 G. Candel et al.

3 Optimal Solution When ρ ∈ {0, 1}
The minimal collapse probability is achieved when every participant has a share.
It is possible to be slightly more efficient using the following notion:

Definition 4 (Condensation). Let G be a directed graph. A strongly con-
nected component of G is a sub-graph in which there is a path in each direction
between each pair of vertices. The condensation of G is the directed acyclic graph
G• obtained by contracting strongly connected components.

We apply condensation to the graph G whose vertices are [n] and whose edges
are those edges (i → j) such that ρi,j = 1. Tarjan’s algorithm [Tar72] computes
the condensation of a graph in O(n + e), where n is the number of vertices and
e the number of edges, i.e. e = |{i, j ∈ [n] | i �= j, ρi,j = 1}|. By design, all
elements in an equivalence class have exactly the same knowledge (they share
their knowledge with probability 1).

Thus it suffices to give a share per representative of each equivalence class,
and the optimal solution is attained by giving a share to every vertex in G•

(which is at most n). Henceforth, we denote by n the number of vertices in the
condensed graph, unless stated otherwise.

If there are fewer shares than connected components, we have pcol = 0. If
there are more, then we attempt to distribute them uniformly. Let g denote
the number of strongly-connected components in G•, then if �/g < k we have
pcol = 0. Otherwise pcol = 1.

4 Optimal Solution for Monotone Secret Sharing

In threshold secret sharing, the secret is recovered as soon as any k shares among
n are known. Recent work [BDIR18] shows that high-threshold instances of
Shamir’s secret sharing scheme are secure against local leakage when the under-
lying field is of a large prime order and the number of parties is sufficiently
large.1

As mentioned in the introduction, the minimal collapse probability is
achieved when k = n; in some settings there exists a value k < n with the
same leakage probability.

Definition 5 (Access Structure). An access structure on [n] is a predicate
on subsets of [n].

A secret sharing scheme has access structure P if it allows reconstructing s
for any subset of [n] satisfying P , and does not allow reconstruction for any
subset not satisfying P . This generalizes the threshold construction discussed
previously, which corresponds to P : S �→ (|S| ≤ k).

1 Contrast this with the fact that for some protocols full recovery of a multi-bit secret
is possible by leaking only one bit from each share [GW17].

How to Compartment Secrets 7

Definition 6 (Monotone Access Structure). An access structure P is
monotone [Toc15] if ∀A ≥ B, P (A) = 1 ⇒ P (B) = 1.

In particular, threshold access structures are monotone; the argument made that
a minimal leakage probability is achieved by handing shares to all participants
applies immediately to monotone access structures.

5 Finding Optimal Strategies

Exact computation of pcol. The algorithmic complexity of computing ̂L on a
graph with n vertices is O

(

2n2
)

using a direct implementation of the recursive
algorithm corresponding to Definition 2. Indeed there are n(n − 1)/2 edges to
consider and each of them leads to a twofold branch in the evaluation of ̂L.
Using classical memorization techniques is it possible to reduce this cost. This
is illustrated in the explicit computation of AppendixA.

Optimal Strategy. The previous algorithm gives a computable (if inefficient) way
to find optimal strategies for small graphs, by exhausting subsets of {1, . . . , n} of
size � and computing the collapse probability for each of them. In the simplest
case, k = � = n, there are n such subsets to be tested, whereas in the worst
case, k ≈ n/2 there are of the order of 22n. As a result, in practice it becomes
intractable to compute general solutions for n > 6.

6 Heuristic Solutions

Sampling heuristic. One heuristic argument consists in replacing all probabilities
in ρ by the nearest integer (0 or 1), so that the efficient algorithm in that case
can be used. We propose a slightly more refined approach: let 0 < η < 1 and hη

the function that sends x to 0 if x ≤ η and 1 otherwise. Applying hη entrywise
to ρ with η = 0.5 we fall back on the previous heuristic. For every value of
η, we get a certain partition of the resulting graph G into strongly connected
components. We are then interested in those components that are stable as we
vary η. Indeed, any chose of η corresponds to an over- or an underestimation of
the true leakage probabilities. We may assume η ∈ {i/m | i = 1, 2, . . . ,m − 1}
for some integer m, consider the graphs Gη resulting from applying hη to ρ,
and rank the vertices in G by the number of strongly-connected components that
they belong to as we vary η. A vertex that remained in a single component all
along (“stable”) will be given many shares, whereas a vertex that often switched
components (“unstable”) will be given fewer shares, if any.

Furthermore, for every value of η, we get a collapse probability pη ∈ {0, 1}:
by averaging these values we can hope to obtain an approximation p≈ = Eη[pη]
of the true collapse probability pcol.

8 G. Candel et al.

7 Numerical Example

Consider the following (completely arbitrary) leakage matrix:

ρi,j =

{

1 if i = j
∣

∣cos(1 − 2i + 3j2) sin(−4 + 5i2 − 6j3)
∣

∣ otherwise

We can compute optimal strategies exactly for n = � = 4 and k = 1, 2, 3, 4 shares.
The results are given in Table 1 and confirm that the scenario minimizing pcol
corresponds to k = � = n. The heuristic algorithm finds that U3 is the most
stable vertex, followed by U1, U2, and U0 in that order. It therefore produces the
same strategy on this example.

Table 1. Optimal strategies, given as a list of i such that Ui gets a share, for n = � = 4
as a function of k.

k Winning strategy pcol p≈ Number of strategies

1 None 1.0 1.0 4

2 [1, 3] 0.79695 0.79695 10

3 [1, 2, 3] 0.73182 0.73182 20

4 [0, 1, 2, 3] 0.71852 0.71852 35

However, it seems out of reach to perform exact computations for graphs
larger than n = 6. Instead, we turn to the heuristic algorithm discussed in the
previous section to address larger scenarios. Note that for small values of n, the
exact and heuristic algorithms produce identical results.

Taking n = 1000, � = 100, k = 15 and the same ρ as above, we get
p≈ = 0.9859. Using k = � = 100 instead, we get p≈ = 0.9839. The heuristic
algorithm’s running time grows roughly quadratically with respect to n, so we
expect instances of size n ≈ 100,000 to be within reach.

8 Conclusion

The problem of distributing a secret amongst leaking shareholders is defined,
along with the “collapse probability” which measures how likely it is that at least
one shareholder reconstructs the secret. We show that this probability measures
the likelihood of having a root-directed spanning tree (RDST) in a realisation
of the underlying graph’s condensation, and provide an algorithm to compute
this probability. Unfortunately a direct implementation of this exact algorithm
is computationally expensive; we therefore provide an efficient (but unproven)
heuristic to find optimal distribution strategies (i.e. that minimises the collapse
probability).

Given n potential shareholders, a leakage matrix ρ, and � shares of which k
suffice for reconstruction, these algorithm tell us whom to hand the shares.

How to Compartment Secrets 9

Future Work. The problem as stated is motivated by a distributed storage sce-
nario; a “non-monotone” access structure [LMC15] may allow for a thriftier
distribution of shares, assuming it is computationally difficult for the adversary
to test all subsets of the shares they have collected.

Complementary to our work, but beyond the scope considered here, is the
question of obtaining a reasonable estimate for the matrix ρ — what does this
matrix look like in the real world? — as well as the consequences of having
imperfect knowledge of this matrix on the predicted results. For instance, in the
explicit computation of AppendixA, an uncertainty δ in the values of (a, b, c)
results in an uncertainty O(δ2) in pcol. Can this be treated in more generality?

There are also several interesting directions in which it would make sense to
extend our model, which may lead to simplifications. For instance, restrictions to
some families of structured graphs (e.g. grids) may allow for more efficient algo-
rithms (or even closed-form expressions, although that seems unlikely). Alterna-
tively, rather than minimising secret reconstruction, we may wish to maximise
it, maybe only for a selected subset of shareholders.

Finally, precise bounds on the heuristic algorithm’s errors (or maybe, better
approximation algorithms) are needed.

A Detailed Computation For (3, 3)

We denote [XYZ] = ̂L(graph[XYZ]) for the following graphs:

= 000 = V01 = 1VV

= 00V = 101 = 11V

= 001 = VVV = VV1

= V0V = V1V = V11

= 10V = 111 = 1V1

10 G. Candel et al.

The collapse probability is:

p = ̂L(ρ) = [000] = a[00V] + a[001]

= a(b[V0V] + b[10V]) + a(b[V01] + b[101])

= a(b(c[VVV] + c[V1V]) + b[10V]) + a(b[V01] + b[101])

= ab[10V] + ab[V01] + ab[101])

= ab(c[1VV] + c[11V]) + ab[V01] + ab[101]

= abc + ab(c[VV1] + c[V11])) + ab[101]

= abc + abc + ab[101]

= abc + abc + ab(c[1V1] + c[111])

= abc + abc + ab

= ab + bc + ca − 2abc

B Detailed Computation With The Heuristic Algorithm

We apply the heuristic algorithm to the same graph as in the previous section.
The collapse probability is 1 whenever any two edges are saturated, and 0

otherwise. In other terms, using that Pr[A∨B] = Pr[A]+Pr[B]−Pr[A∧B] and
Pr[A ∧ B] = Pr[A] Pr[B | A], we have:

pη = Pr[(a < η ∧ b < η) ∨ (a < η ∧ c < η) ∨ (c < η ∧ b < η)]
= Pr[a < η] Pr[b < η] + Pr[a < η] Pr[c < η] + Pr[c < η] Pr[b < η]

− Pr[a < η] Pr[b < η] Pr[c < η]
− Pr[(a < η ∧ b < η) ∧ ((a < η ∧ c < η) ∨ (c < η ∧ b < η))]

= Pr[a < η] Pr[b < η] + Pr[a < η] Pr[c < η] + Pr[c < η] Pr[b < η]
− Pr[a < η] Pr[b < η] Pr[c < η]
− Pr[a < η ∧ b < η] Pr[(a < η ∧ c < η) ∨ (c < η ∧ b < η) | a < η ∧ b < η]

= Pr[a < η] Pr[b < η] + Pr[a < η] Pr[c < η] + Pr[c < η] Pr[b < η]
− 2Pr[a < η] Pr[b < η] Pr[c < η]

Sampling over η this gives:

p≈ = Eη[pη] = ab + ac + bc − 2abc

matching the result obtained in the previous section.

References

[BDIR18] Benhamouda, F., Degwekar, A., Ishai, Y., Rabin, T.: On the local leakage
resilience of linear secret sharing schemes. In: Shacham, H., Boldyreva, A.
(eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 531–561. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96884-1 18

https://doi.org/10.1007/978-3-319-96884-1_18

How to Compartment Secrets 11

[Bla79] Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the
National Computer Conference, vol. 48, (1979)

[DD94] Dawson, Ed., Donovan, D.M.: The breadth of Shamir’s secret-sharing
scheme. Comput. Secur. 13(1), 69–78 (1994)

[GW17] Guruswami, V., Wootters, M.: Repairing Reed-Solomon codes. IEEE
Trans. Inf. Theory 63(9), 5684–5698 (2017)

[LMC15] Liu, J., Mesnager, S., Chen, L.: Secret sharing schemes with general access
structures. In: Lin, D., Wang, X.F., Yung, M. (eds.) Inscrypt 2015. LNCS,
vol. 9589, pp. 341–360. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-38898-4 20

[Mig82] Mignotte, M.: How to share a secret. In: Beth, T. (ed.) EUROCRYPT
1982. LNCS, vol. 149, pp. 371–375. Springer, Heidelberg (1983). https://
doi.org/10.1007/3-540-39466-4 27

[Sha79] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
[Tar72] Robert Endre Tarjan: Depth-first search and linear graph algorithms.

SIAM J. Comput. 1(2), 146–160 (1972)
[Toc15] Tochikubo, K.: New secret sharing schemes realizing general access struc-

tures. JIP 23(5), 570–578 (2015)

https://doi.org/10.1007/978-3-319-38898-4_20
https://doi.org/10.1007/978-3-319-38898-4_20
https://doi.org/10.1007/3-540-39466-4_27
https://doi.org/10.1007/3-540-39466-4_27

Authentication

A Lattice-Based Enhanced Privacy ID

Nada EL Kassem1(B), Lúıs Fiolhais2, Paulo Martins2, Liqun Chen1,
and Leonel Sousa2

1 University of Surrey, Guildford, UK
{n.elkassem,liqun.chen}@surrey.ac.uk

2 INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
luis.azenhas.fiolhais@tecnico.ulisboa.pt, paulo.sergio@ist.utl.pt,

las@inesc-id.pt

Abstract. The Enhanced Privacy ID (EPID) scheme is currently used
for hardware enclave attestation by an increasingly large number of plat-
forms that implement Intel Software Guard Extensions (SGX). However,
the scheme currently deployed by Intel is supported on Elliptic Curve
Cryptography (ECC), and will become insecure should a large quan-
tum computer become available. As part of National Institute of Stan-
dards and Technology (NIST)’s effort for the standardisation of post-
quantum cryptography, there has been a great boost in research on lattice-
based cryptography. As this type of cryptography is more widely used,
one expects that hardware platforms start integrating specific instruc-
tions that accelerate its execution. In this article, a new EPID scheme
is proposed, supported on lattice primitives, that may benefit not only
from future research developments in post-quantum cryptography, but
also from instructions that may extend Intel’s Instruction Set Architec-
ture (ISA) in the future. This paper presents a new security model for
EPID in the Universal Composability (UC) framework. The proposed
Lattice-based EPID (LEPID) scheme is proved secure under the new
model. Experimentally compared with a closely related Lattice-based
Direct Anonymous Attestation (DAA) (LDAA) scheme from related art,
it is shown that the private-key size is reduced 1.5 times, and that signa-
ture and verification times are sped up up to 1.4 and 1.1 times, respec-
tively, for the considered parameters, when LEPID is compared with
LDAA. Moreover, the signature size compares favourably to LDAA for
small and medium-sized communities.

1 Introduction

The Enhanced Privacy ID (EPID) scheme is a fundamental part of the security
model underpinning Software Guard Extensions (SGX)’s functioning [9]. It gives
the ability to attest that a hardware enclave was successfully established on an
Intel platform.

EPID can be seen as Direct Anonymous Attestation (DAA) with different
linkability requirements [5]. The DAA scheme was built having the Trusted Plat-

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Laurent and T. Giannetsos (Eds.): WISTP 2019, LNCS 12024, pp. 15–31, 2020.
https://doi.org/10.1007/978-3-030-41702-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41702-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-41702-4_2

16 N. EL Kassem et al.

form Module (TPM) standard in mind. In this context, the TPM holds a rep-
resentation of the host machine state, and wishes to provide a verifier with a
signature of the state representation, without revealing their identity. During
an offline phase, an issuer provisions the TPM and the host with membership
credentials. Based on this cryptographic material, the TPM and the host jointly
prove that they belong to the DAA community in zero-knowledge, while produc-
ing the above-mentioned signature. Unlike other privacy-preserving systems, like
group signatures, DAA does not support the property of traceability, wherein a
group manager can identify the signer from a given signature.

Alternatively, the DAA provides two approaches to prevent a malicious signer
from abusing their anonymity. Firstly, when a private-key is leaked, anyone can
check whether a specific DAA signature was created under this key or not. Sec-
ondly, two DAA signatures created by the same signer may or may not be linked
from a verifier’s point of view. The linkability is controlled by a parameter called
basename. When the same basename is used by the same signer for two signa-
tures, they are linked; otherwise they are not. However, there are situations
where this model does not suffice to prevent malicious actions. For instance,
should an attacker corrupt a TPM and obtain the private-key without ever pub-
lishing it, there is no way to revoke it. While this latter problem can be mitigated
by having TPMs use the same basename whenever they access a certain service,
this option removes the anonymity for all uses with the same basename.

EPID is a more general scheme than DAA and thus does not split signers
into TPMs and hosts, but also targets the creation of anonymous signatures. An
EPID scheme consists of an issuer, signers, verifiers and a revocation manager.
Like with DAA, one can check whether a certain signature was generated by
a leaked private-key. Nonetheless, the ability to link signatures with the same
basename is removed. Instead, whenever a signer is corrupted, they may be
revoked by including one of their signatures as part of a revocation list. As a
result, EPID is capable of revoking corrupted signers from the system, even
when their private-key is kept hidden, whilst providing maximum privacy for
the platforms. Enhanced Privacy ID signatures can also be constructed on the
top of group signatures that allow members of a group to anonymously sign
messages on behalf of the group, with the added property that a group manager
can revoke the credentials of a misbehaving or compromised group member.

A post-quantum EPID scheme has been proposed in [3] built on hash and
pseudorandom functions. More concretely, the EPID credential corresponds to a
hash-based signature generated by the issuer, and proofs-of-knowledge are con-
structed from the Multi-Party Computation (MPC) in the head technique from
Ishai et al. [8]. While [3] achieves signature sizes in the order of MBs, execution
times are not considered. The main goal of this article is not to outperform [8],
but rather to ignite research on lattice-based EPID partially propelled by the
National Institute of Standards and Technology (NIST)’s effort on post-quantum
cryptography standardisation [16]. By basing our construction on lattices, future
versions of EPID might leverage the research resulting from this standardisation
process to improve their efficiency. Moreover, since post-quantum cryptography

A Lattice-Based Enhanced Privacy ID 17

is still in its infancy, it might be useful for implementers to consider multiple
security assumptions, to mitigate the effects of cryptanalysis against one of them.

Lattices have proven to be a flexible tool in constructing cryptographic
schemes, with applications ranging from digital signatures to public-key encryp-
tion and zero-knowledge proofs, while offering post-quantum security [1,2,13].
One expects that as this type of cryptography matures, an increasing num-
ber of platforms exploiting EPID ship with accelerators for lattice-based con-
structs [15]. Herein, by building from a recently proposed DAA scheme [10], the
range of cryptographic constructs supported by lattice-based cryptography is
extended to EPID. The LEPID signature size compares favourably to Lattice-
based DAA (LDAA) for small and medium-sized communities.

Organisation: The next section introduces the lattice-based hard problems
and the two building blocks that support the proposed LEPID scheme, namely
the LDAA scheme from [10] and the Zero Knowledge Proof of Knowledge
(ZKPoK) of Ring-Learning With Errors (Ring-LWE) secrets from [2]. Section 3
presents a new security model for EPID in the UC framework. The novel LEPID
scheme is proposed in Sect. 4 and proven secure in Sect. 5. The performance of
the LEPID scheme is discussed in Sect. 6. Finally, Sect. 7 concludes the paper.

2 Preliminaries

Throughout this paper we will use the polynomial rings Rq = Zq[X]/〈Xn + 1〉,
where Zq is the quotient ring Z/qZ and n a power of 2. We use names in bold,
like a, both to denote elements of Rq and their coefficient embeddings in Z

n
q .

‖a‖∞ represents the infinity norm of a polynomial a, ‖a‖∞ = maxi |ai|, and

‖a‖ =
√∑n

i=1(ai)2 where the ai are the coefficients of a. Â = (a1, . . . ,am)
denotes a vector where m is a positive integer and a1, . . . ,am are polynomials.
‖Â‖∞ denotes the infinity norm of Â, defined as ‖Â‖∞ = maxi ‖ai‖∞. B3d

represents the set of vectors u ∈ {−1, 0, 1}3d having exactly d coordinates equal
to −1, d coordinates equal to 0, and d coordinates equal to 1. We represent a
challenge set by C =

{
Xcv , |cv ∈ {0, 1, . . . 2n − 1}

}
, where C̄ denotes the set of

differences C − C except 0. Dh
s represents the discrete Gaussian distribution of

standard deviation s, s.t. Prx←Dh
s
[‖x‖ >

√
2hs] ≤ 2−h/4. We define the following

rejection sampling algorithm from [14] to avoid the dependency of z on the secret
b, rej(z, b, ξ) : Let u ← [0, 1); if u > 1/3 exp

(
−2〈z ,b〉+‖b‖2

2ξ2

)
return 0, else return

1, with ξ representing a standard deviation of some distribution.

Definition 1. (The Ring Short Integer Solution Problem
(Ring-SISn,m,q,β)[17]). Given m uniformly random elements ai ∈ Rq defin-
ing a vector Â = (a1,a2, . . . ,am), find a nonzero vector of polynomials Ẑ ∈ Rm

q

of norm ‖Ẑ‖∞ ≤ β such that: fÂ(Ẑ) =
∑

i∈[m] aizi = 0 ∈ Rq. The Ring Inho-
mogeneous Short Integer Solution (Ring − ISISn,m,q,β) problem asks to find Ẑ

of norm ‖Ẑ‖∞ ≤ β, and such that:fÂ(Ẑ) = y ∈ Rq for some uniform random
polynomial y.

18 N. EL Kassem et al.

Definition 2. (The Ring Learning With Error Problem (Ring-LWE)
[18]). Let χ be an error distribution defined over R and s ← Rq a uniformly
random ring element, the Ring-LWE distribution As,χ over Rq × Rq is sampled
by choosing a ∈ Rq uniformly at random, randomly choosing the noise e ← χ
and outputting (a, b) = (a, sa + e mod q) ∈ Rq × Rq. Let u be uniformly
sampled from Rq. The decision problem of Ring-LWE asks to distinguish between
(a, b) ← As,χ and (a,u) for a uniformly sampled secret s ← Rq. The search
Ring-LWE problem asks to return the secret vector s ∈ Rq given a Ring-LWE
sample (a, b) ← As,χ.

2.1 Lattice-Based Direct Anonymous Attestation

The DAA scheme proposed in [10] can be split at a high level into three parts. In a
first part, a TPM-host pair with identifier id = (id1, ..., id�) ∈ {0, 1}� joins a DAA
community. This consists of the TPM sampling small X̂t = (x1, . . . ,xm) ∈ Rm

q ,
and sending ut = ÂtX̂t to the issuer, where Ât ∈ Rm

q is part of the issuer’s
public-key. A signature proof of knowledge based on [12], showing that u is
well formed is also sent, along with a link token that prevents two TPMs from
having the same secret-key. Using its private-key, the issuer then samples small
X̂h = (xm+1, . . . , x3m) ∈ R2m

q such that ÂhX̂h = u − ut, where Âh = [ÂI |Â0 +∑l
i=1 idiÂi] ∈ R2m

q , and u ∈ Rq, ÂI ∈ Rm
q and Âi ∈ Rm

q ∀i ∈ {0, . . . , l} are
part of the issuer’s public-key. The vector X̂h is sent back to the host. After this
process, the TPM and host own small key-shares satisfying

[Xt|Xh][Ât|Âh] = u. (1)

In a second part, the TPM and the host jointly generate a signature with
respect to a message μ. The signature corresponds to a tuple (nym, bsn, π), where
nym is a link token, bsn is the basename, and π is a signature-based proof:

π = SPK
{
public := {pp, nym, bsn},witness := {X̂ = (x1, . . . ,x3m), id, e} :

u = X̂[Ât|Âh] mod q ∧ ‖X̂‖∞ ≤ β ∧ nym = H(bsn)x1 + e mod q ∧ ‖e‖∞ ≤ β
}

(μ)

demonstrating not only (1) but also that nym = H(bsn)x1 +e mod q, where H
is a random oracle mapping bsn to a polynomial and e is small.

A final part deals with signature verification. First, π is verified. Then, the ver-
ifier iterates over the list of revoked private-keys, consisting of the elements x(i)

1

of the X̂
(i)
t in (1) of the corrupt signers. In the case that ‖nym− H(bsn)x(i)

1 ‖∞ is
small, the signature has been generated by the i-th revoked user and is rejected.
Similarly, two signatures (nym, bsn, π) and (nym′, bsn, π′) having the same base-
name are linked when ‖nym − nym′‖∞ is small.

2.2 Zero Knowledge Proof of the Ring-LWE Secrets

The technique presented in [2] will herein be used to modify the LDAA and
support the more effective revocation method of EPID. This techniques allows

A Lattice-Based Enhanced Privacy ID 19

one to efficiently prove in zero-knowledge possession of s and e, with 2s and 2e
being short, such that 2y = 2as + 2e, for public a and y. Random rs, re ← Ds

are initially produced, and t = ars + re is computed. A challenge c = H(t) ∈
{0, 1, . . . , 2n − 1} is generated and ss = rs + Xcs, se = re + Xce are outputted
in response with probability P(ss, se), where P is chosen in a way that prevents
ss and se from depending on the prover’s secret inputs.

3 UC Based Security Model for EPID

The security model for the DAA [7] has been modified by replacing linkability
with a revocation interface, adding the signature revocation check from [6], and
introducing other modifications that results in a new EPID security model in
the UC framework. Our new security definition is given in the UC model with
respect to an ideal functionality F l

EPID. In UC, an environment E should not be
able to distinguish with a non-negligible probability between two worlds: the real
world, where each party in the EPID protocol Π executes its assigned part of
the protocol and the network is controlled by an adversary A that communicates
with E ; and the ideal world, in which all parties forward their inputs to F l

EPID,
which internally performs all the required tasks and creates the party’s outputs.
A protocol Π is said to securely realise F l

EPID if, for every adversary A performing
an attack in the real world, there is an ideal world adversary S that performs
the same attack in the ideal world.

An EPID scheme should satisfy: (i) unforgeability, i.e. no adversary can out-
put a valid signature on a message μ without knowing the signer’s secret key;
(ii) correctness, i.e. honestly generated signatures are always valid; and (iii)
anonymity, i.e. even for a corrupt issuer, no adversary can tell whether two hon-
estly generated signatures were produced by the same signer. The UC frame-
work allows us to focus on the analysis of a single protocol instance with a
globally unique session identifier sid . F l

EPID uses session identifiers of the form
sid = (I, sid ′) for some issuer I and a unique string sid ′. In the procedures,
functions CheckTtdHonest and CheckTtdCorrupt are used that return ‘1’ when a
key belongs to a honest signer that has produced no signature, and when a key
belongs to a corrupt user such that there is no signature simultaneously linking
back to the inputted key and another one, respectively; and return ‘0’ otherwise.
We label the checks that are done by the ideal functionality in roman numerals.

F l
EPID Setup: On input (SETUP, sid) from the issuer I, F l

EPID verifies that
(I, sid ′) = sid and outputs (SETUP, sid) to S. F l

EPID receives from the simula-
tor S the algorithms Kgen, sig, ver, identify and revoke. These algorithms are
responsible for generating keys for honest signers, creating signatures for honest
signers, verifying the validity of signatures, checking whether a signature was
generated by a given key, and updating the revocation lists respectively. F l

EPID

stores the algorithms, checks that the algorithms ver, identify and revoke are
deterministic [Check-I], and outputs (SETUPDONE, sid) to I.

20 N. EL Kassem et al.

F l
EPID Join:

1. JOIN REQUEST: On input (JOIN, sid , jsid) from a signer Mi, create a join
session 〈jsid,Mi, request〉. Output (JOINSTART, sid , jsid,Mi) to S.

2. JOIN REQUEST DELIVERY: Proceed upon receiving delivery notification
from S by updating the session record to 〈jsid,Mi,delivery〉. If I or Mi

is honest and 〈Mi, �, �〉 is already in Member List ML, output ⊥ [Check II].
Otherwise, output (JOINPROCEED, sid , jsid,Mi) to I.

3. JOIN PROCEED: Upon receiving an approval from I, F l
EPID updates the ses-

sion record to 〈jsid, sid ,Mi, complete〉. Then it outputs (JOINCOMPLETE,
sid, jsid) to S.

4. KEY GENERATION: On input (JOINCOMPLETE, sid , jsid, tsk) from S.
– If the signer is honest, set tsk = ⊥, else verify that the provided tsk is

eligible by performing the following two checks that are described above:
CheckTtdHonest(tsk)=1 [Check III]; CheckTtdCorrupt(tsk)=1 [Check IV].

– Insert 〈Mi, tsk〉 into Member List ML, and output JOINED.

F l
EPID Sign:

1. SIGN REQUEST: On input (SIGN, sid , ssid,Mi, μ,p) from the signer on a
message μ with respect to p, the ideal functionality aborts if I is honest
and no entry 〈Mi, �〉 exists in ML, else creates a sign session 〈ssid,Mi, μ,p,
request〉 and outputs (SIGNSTART, sid, ssid,Mi, l(μ,p)) to S.

2. SIGN REQUEST DELIVERY: On input (SIGNSTART, sid , ssid) from S,
update the session to 〈ssid,Mi, μ,p, delivered〉, and output (SIGNPROCEED,
sid , ssid, μ,p) to Mi.

3. SIGN PROCEED: On input (SIGNPROCEED, sid, ssid) from Mi,
F l

EPID updates the records 〈ssid,Mi, μ,p,delivered〉, and outputs
(SIGNCOMPLETE, sid, ssid, KRL, SRL) to S, where KRL and SRL represent the
key and the signature revocation lists respectively.

4. SIGNATURE GENERATION: On input (SIGNCOMPLETE, sid , ssid, σ,
KRL, SRL) from S, if Mi is honest then F l

EPID will:
– Ignore an adversary’s signature σ, and generate the signature for a fresh

or established tsk .
– Check CheckTtdHonest(tsk) =1 [Check V], and store 〈Mi, tsk〉 in

DomainKeys.
– Generate the signature σ ← sig(tsk , μ,p).
– Check ver(σ, μ,p, KRL, SRL)=1 [Check VI], and check identify(σ, μ,p,

tsk) = 1 [Check VII].
– Check that there is no signer other than Mi with key tsk ′ registered in

Members or DomainKeys such that identify(σ, μ,p, tsk ′)=1 [Check VIII].
– For all (σ∗, μ∗,p∗) ∈ SRL, find all (tsk∗,M∗) from Members and

DomainKeys such that identify(σ∗, μ∗,p∗, �, tsk∗) = 1
• Check that no two distinct keys tsk∗ trace back to σ∗.
• Check that no pair (tsk∗,Mi) was found.

– If Mi is honest, then store 〈σ, μ,Mi,p〉 in Signed and output
(SIGNATURE, sid , ssid, σ, KRL, SRL).

A Lattice-Based Enhanced Privacy ID 21

F l
EPID Verify: On input (VERIFY, sid , μ,p, σ, KRL, SRL), from a party V to check

whether σ is a valid signature on a message μ with respect to p, KRL and SRL,
the ideal functionality does the following:

– Extract all pairs (tsk i,Mi) from the DomainKeys and ML, for which
identify(σ, μ,p, tsk i) = 1. Set b = 0 if any of the following holds:

• More than one key tsk i was found [Check IX].
• I is honest and no pair (tsk i,Mi) was found [Check X].
• An honest Mi was found, but no entry 〈�, μ,Mi,p〉 was found in Signed

[Check XI].
• There is a key tsk∗ ∈ KRL, such that identify(σ, μ,p, tsk∗) = 1 and no pair

(tsk ,Mi) for an honest Mi was found [Check XII].
• For matching tsk i and (σ∗, μ∗,p∗) ∈ SRL, identify(σ∗, μ∗,p∗, tsk i) = 1.

– If b �= 0, set b ←ver(σ, μ,p, SRL, KRL). [Check XIII]
– Add 〈σ, μ,p, KRL, SRL, b〉 to VerResults, and output (VERIFIED, sid, b) to V.

F l
EPID Revoke: On input (tsk∗, KRL), the ideal functionality replaces KRL with

KRL ∪ tsk∗. On input (σ∗, μ∗, SRL), the ideal functionality replaces SRL with
SRL ∪ σ∗ after verifying σ∗.

4 The Proposed LEPID Scheme

The DAA scheme proposed in [10] is herein modified so as to support the security
model described in Sect. 3. We give a general overview of the proposed Lattice-
based EPID (LEPID) scheme in Subsect. 4.1 before proceeding with the details
in Subsect. 4.2.

4.1 High Level Description of the LEPID Scheme

The first part of the DAA protocol described in Subsect. 2.1 is herein mirrored,
with the exception that the TPM and the host are fused into a single signer. In
particular, the issuer makes one further polynomial b available in Procedure 1.
When requesting to join a DAA community in Procedure 2, the signer with
identifier id = (id1, ..., id�) ∈ {0, 1}� samples a small X̂t = (x1, . . . ,xm+1) ∈
Rm+1

q and sends ut = [b|ÂI]X̂t mod q to the issuer, along with a link token
nymI = H(bsnI)x1 +eI and a zero-knowledge proof πut

from [10] showing that
ut is well formed. Upon receiving this message, the issuer uses nymI to check
that no other signer has the same x1, verifies πut

and samples small X̂h =
[X̂h1 |X̂h2] = (y2, . . . ,y2m+1) ∈ Rm

q ×Rm
q such that ÂhX̂h = u−ut mod q, with

Âh = [ÂI |Â0 +
∑l

i=1 idiÂi] ∈ R2m
q . X̂h is sent back to the signer, that updates

their key as X̂ = (x1,∀i=(2,...,m+1)xi := xi + yi,∀i=(m+2,...,2m+1)xi := yi) in
Procedure 3.

Signatures are generated in Procedures 4 and 5 as in Subsect. 2.1 for the
DAA, but the basename is always chosen at random, generating link tokens
nym = px1 + e mod q for a uniformly random p, and the proof-of-knowledge π

22 N. EL Kassem et al.

is as described in the Appendix of the full version of this paper [11]. In partic-
ular, this allows one to maintain linkability in the case of leaked private-keys,
whilst maintaining full anonymity. In addition, when signing a message, the
signer is presented with a list of signatures from revoked users and proves in
zero-knowledge that their underlying x1 was not used to produce any of those
signatures. We achieve this by firstly randomising the (nym∗

i = p∗
i fi+li,p

∗
i) pairs

from the list of revoked signatures, where fi corresponds to the x1 polynomial
of the i-th revoked user and li has small norm, as

di = nym∗
i qi + l

′′′
i (2)

oi = p∗
i qi + l

′
i (3)

for small qi, l
′′′
i and l

′
i sampled from a Gaussian distribution. Note that di =

oi · fi + ei for a small ei. The signature includes not only di and oi, but also
ki = oix1 + l

′′
i along with a zero-knowledge proof of the construction of di,

oi and ki. This zero-knowledge proof is an adaptation of the one described in
Subsect. 2.2, the details of which can be found in the Appendix of the full version
of this paper [11].

Signature verification in Procedure 6 is similar to that of the DAA, with
the difference that now the proof of the shape of di, oi and ki is verified, and
the norm of di − ki is assessed to ascertain whether the x1 used to produce
the signature under verification is the same as the one used to produce the i-th
revoked signature. Finally, the community revocation manager may revoke users
by updating the list of revoked private-keys (KRL) or the list of signatures of
revoked users (SRL) using Procedure 7.

4.2 Detailed Description of the LEPID Scheme

We now present our LEPID scheme in detail. We start by recalling some standard
functionalities that are used in the UC model of the DAA [7]:

– FCA is a common certificate authority functionality that is available to all
parties.

– FCRS is a common reference string functionality that provides participants
with all system parameters.

– F∗
auth is a special authenticated communication functionality that provides an

authenticated channel between the issuer and the signer.

The LEPID scheme includes the Setup, Join, Sign, Verify and Revoke pro-
cedures that are as follows.

Procedure 1 (Setup). FCRS creates the system parameters: sp =
(λ, t, q, n,m,Rq, β,
, r, s, ξ), where λ, t are positive integer security parameters,
β is a positive real number such that β < q,
 is the length of the users’ identifiers,
and r, s and ξ represent standard deviations of Gaussian distributions.

A Lattice-Based Enhanced Privacy ID 23

Upon input (SETUP, sid), where sid is a unique session identifier, the
issuer first checks that sid = (I, sid ′) for some sid ′, then creates its key
pair. The Issuer’s public key is pp = (sp, b, ÂI , Â0, Â1, . . . , Â�,u,H0,H,H),
where ÂI , Âi(i = 0, 1, . . . ,
) ∈ Rm

q , b,u ∈ Rq, H0 : {0, 1}∗ → {1, 2, 3}t,
H : {0, 1}∗ → Rq, and H : {0, 1}∗ → {0, 1, 2, . . . , 2n − 1}. The Issuer’s pri-
vate key is T̂I , which is the trapdoor of ÂI with ‖T̂I‖∞ ≤ β.

The issuer initialises the Member List ML ← ∅. The issuer proves that his
secret key is well formed in πI , and registers the key (T̂I , πI) with FCA and
outputs (SETUPDONE, sid).

Procedure 2 (Join Request). On input query (JOIN, sid , jsid,M), the
signer M forwards (JOIN, sid , jsid) to I, who replies by sending
(sid , jsid, ρ, bsnI) back to the signer, where ρ is a uniform random nonce
ρ ← {0, 1}λ, and bsnI is the issuer’s base name. The signer M proceeds as
follows:

1. It checks that no such entry exists in its storage.
2. It samples a private key: x1 ← Ds and (x2, . . . ,xm+1) ← Dm

r . Let
X̂t = (x1, . . . ,xm+1) correspond to M’s secret key with the condition
‖(x2, . . . ,xm+1)‖∞ ≤ β/2 and ‖x1‖∞ ≤ β. M stores its key as (sid , X̂t),
and computes the corresponding public key ut = [b|ÂI]X̂t mod q, a link
token nymI = H(bsnI)x1 + eI mod q for some error eI ← Ds such that
‖eI‖∞ ≤ β, and generates a signature based proof:

πut
= SPK

{
public := {pp,ut, bsnI , nymI},witness := {X̂t = (x1, . . . ,xm+1),

eI}, ut = [b|ÂI]X̂t mod q ∧ ‖X̂t/x1‖∞ ≤ β/2 ∧ ‖x1‖ ≤ β

∧nymI = H(bsnI)x1 + eI mod q ∧ ‖eI‖∞ ≤ β
}

(ρ).

3. It sends (nymI ,ut, πut
) to the issuer by giving F∗

auth an input (SEND, nymI ,
πut

, sid , jsid).

I, upon receiving (SENT, nymI , πut
, sid , jsid,M) from F∗

auth, verifies the proof
πut

and makes sure that the signer M /∈ ML. I stores (jsid, nymI , πut
,M),

and generates the message (JOINPROCEED, sid , jsid, id, πut
), for some identity

id ∈ {0, 1}� assigned to M, and not used before by any joined member.

Procedure 3 (Join Proceed). If the signer chooses to proceed with the Join
session, the message (JOINPROCEED, sid , jsid) is sent to the issuer, who per-
forms as follows:

1. It checks the record (jsid, nymI , id,M, πut
). For all nym′

I from the previous
Join records, the issuer checks whether ‖nymI − nym′

I‖∞ ≤ 2β holds; if yes,
the issuer further checks if ut = u′

t. If the equality ut = u′
t holds, the issuer

will jump to Step 4 returning X̂h = X̂ ′
h, if not the issuer will abort. Note

that this double check will make sure that no two EPID keys will include the
same x1 value.

24 N. EL Kassem et al.

2. For all nym∗
I in the Issuer’s Revocation record IR, the issuer checks whether

the equation
‖nymI − nym∗

I‖∞ ≤ 2β

holds, if yes the issuer aborts.
3. It calculates the vector of polynomials Âh = [ÂI |Â0 +

∑�
i=1 idiÂi] ∈ R2m

q .
4. It samples, using the issuer’s private key T̂I , a preimage X̂h = [X̂h1 |X̂h2] =

(y2, ..., y2m+1) ∈ Dm
r ×Dm

s of u−ut such that ÂhX̂h = uh = u−ut mod q
and ‖X̂h1‖∞ ≤ β/2 and ‖X̂h2‖∞ ≤ β.

5. The issuer adds (nymI , id,M, πut
) to his data base, and sends (sid , jsid, X̂h)

to M via F∗
auth.

When M receives the message (sid , jsid, X̂h), it checks that the equations
ÂhX̂h = uh mod q and u = ut + uh are satisfied with ‖X̂h1‖∞ ≤ β/2 and
‖X̂h2‖∞ ≤ β. It stores (sid ,M, id, X̂h,ut) and outputs (JOINED, sid , jsid). M
then computes X̂ = (x1,∀i=(2,...,m+1)xi := xi + yi,∀i=(m+2,...,2m+1)xi := yi),
where ‖X̂‖∞ ≤ β.

Procedure 4 (Sign Request). Upon input (SIGN, sid , ssid,M, μ), the signer
does the following:

1. It makes sure to have a Join record (sid , id, X̂,M).
2. It generates a sign entry (sid , ssid, μ) in its record.
3. Finally it outputs (SIGNPROCEED, sid , ssid, μ).

Procedure 5 (Sign Proceed). When M gets permission to proceed for ssid,
the signer proceeds as follows:

1. It retrieves the records (sid , id, πut
) and (sid , ssid, μ).

2. M samples a random polynomial p and computes the polynomial nym =
px1 + e mod q, for an error term e ← Ds such that ‖e‖∞ ≤ β. M then
generates a signature based knowledge proof π.

π = SPK
{
public := {pp, nym,p},

witness := {X̂ = (x1, ...,x2m+1), id,e} :

[b|Âh]X̂ = u ∧ ‖X̂‖∞ ≤ β ∧ nym = px1 + e ∧ ‖e‖∞ ≤ β
}

(μ).

The details of the proof π are presented in the Appendix of the full version
of this paper [11].

3. The signer proves that it is not using any of the keys that produced a revoked
signature (σ∗

i ,p∗
i , nym

∗
i) in the signature revocation list (more details about

the proof can be found in the Appendix of the full version of this paper [11]).
– Let nym∗

i = p∗
i fi + li, where (fi, li) were used before to create nym∗

i by
some Mi

∗ that generated a revoked signature σ∗
i ∈ SRL. M proceeds as

follows:
• qi, l

′
i, l

′′
i , l′′′i ← Ds

A Lattice-Based Enhanced Privacy ID 25

• oi = p∗
i qi + l′i, ki = oix1 + l′′i , di = nym∗

i qi + l′′′i

• rx1 , re, rqi , rl′i , rl′′i , rl′′′i
← Ds

• tnym = prx1 + re, toi
= p∗

i rqi + rl′i ,
tki

= oirx1 + rl′′i , tdi
= nym∗

i rqi + rl′′′i
.

– Calculates the challenge cv = H(tnym|toi
|tki

|tdi
|μ) ∈ {0, 1, 2, . . . , 2n − 1}.

– The following responses are computed:
• sx1 = rx1 + Xcvx1, se = re + Xcve, sqi = rqi + Xcvqi,
sl′i = rl′i + Xcv l′i, sl′′i = rl′′i + Xcv l′′i , sl′′′i

= rl′′′i
+ Xcv l′′′i .

Abort if any of these rejection samples outputs 1:
• rej(sx1 ,X

cvx1, ξ), rej(se,X
cve, ξ), rej(sqi ,X

cvqi, ξ),
rej(sl′i ,X

cv l′i, ξ), rej(sl′′i ,Xcv l′′i , ξ) or rej(sl′′′i
,Xcv l′′′i , ξ).

4. Finally, M outputs σ = (π, nym,oi,ki,di, sx1 , se, sqi , sl′i , sl′′i , sl′′′i
, cv, KRL,

SRL).

Procedure 6 (Verify). Let KRL denotes the revocation list with all the rogue
signer’s secret keys x∗

1. Upon input (VERIFY, sid , σ, μ, KRL, SRL), the verifier
proceeds as follows:

1. It checks the zero-knowledge proof regarding the statement: {[b|Âh]X̂ =
u ∧ ‖X̂‖∞ ≤ β ∧ nym = px1 + e mod q ∧ ‖e‖∞ ≤ β.}

2. For all x∗
1 ∈ KRL, if ‖px∗

1 − nym‖∞ ≤ β the verifier outputs 0.
3. For all σ∗

i = (πnym∗
i
, nym∗

i ,p
∗
i) ∈ SRL, the verifier

(a) computes:
– t′ki

=oisx1 + sl′′i − Xcvki, t′di
= nym∗

i sqi + sl′′′i
− Xcvdi,

t′oi
=p∗

i sqi + sl′i − Xcvoi, t′nym =psx1 + se − Xcvnym.

(b) checks cv
?= H(t′nym|t′oi

|t′ki
|t′di

|μ) and that all the following norms sat-
isfy ‖sx1‖∞, ‖se‖∞, ‖sqi‖∞, ‖sl′i‖∞, ‖sl′′i ‖∞, ‖sl′′′i

‖∞ ≤ β +
√

nβ.
4. For all σ∗

i = (πnym∗
i
, nym∗

i ,p
∗
i), the verifier checks 2‖di − ki‖ < Γ , where Γ is

a function of β. If 2‖di − ki‖ < Γ the verifier outputs 0, otherwise 1.

Procedure 7 (Revoke). On input (Revoke, sid,x∗
1, KRL) or (Revoke, sid, σ∗,

μ∗, SRL), the revocation manager adds x∗
1 to KRL or σ∗ to SRL after verifying σ∗.

5 A Sketched Security Proof for LEPID

In this section, we provide a sketch of the security proof of the LEPID scheme.
A detailed security proof is presented in the Appendix of the full version of this
paper [11]. A variant of the sequence of games of [7] is presented, showing that
no environment E can distinguish the real world protocol Π with an adversary
A, from the ideal world F l

EPID with a simulator S. Starting with the real world
protocol game, we change the protocol game by game in a computationally
indistinguishable way, finally ending with the ideal world protocol.

Game 1. This is the real world protocol.

Game 2. An entity C is introduced, that receives all inputs from the honest
parties and simulates Π for them. This is equivalent to Game 1.

26 N. EL Kassem et al.

Game 3. C is split into F and S. F behaves as an ideal functionality, receiving
all inputs and forwarding them to S, who simulates the real world protocol for
honest parties. S sends the outputs to F , who forwards them to E . This game
is similar to Game 2, but with a different structure.

Game 4. F now behaves differently in the setup interface. It stores the algo-
rithms for the issuer I, and checks that the structure of sid is correct for an
honest I, aborting if not. In case I is corrupt, S extracts the secret key for
I and proceeds in the setup interface on behalf of I. Clearly E will notice no
change.

Game 5. F now performs the verification and key revokation checks instead
of forwarding them to S. There are no protocol messages and the outputs are
exactly as the real world protocol. However, the verification algorithm that F
uses does not contain any key or signature revocation checks. F can perform
this check separately, so the outcomes are equal.

Game 6. F stores in its records the members that have joined. If I is honest, F
stores the secret key tsk, extracted from S, for corrupt platforms. S always has
enough information to simulate the real world protocol except when the issuer is
the only honest party. In this case, S does not know who initiated the join, and
so cannot make a join query with F on the signer’s behalf. Thus, to deal with
this case, F can safely choose any corrupt signer and put it into Members. The
identities of signers are only used for creating signatures for honest signers, so
corrupted signers do not matter. In the case that the signer is already registered
in Members, F would abort the protocol, but I will have already tested this
case before continuing with the query JOINPROCEED. Hence F will not abort.
Thus in all cases, F and S can interact to simulate the real world protocol.

Game 7. (Anonymity). In this game, F creates anonymous signatures for hon-
est platforms by running the algorithms defined in the setup interface. Let us
start by defining Game 7.k.k′. In this game F handles the first k′ signing inputs
of Mi for i < k using algorithms, and subsequent inputs are forwarded to S who
creates signatures as before. We note that Game 7.0.0=Game 6. For increasing
k′, Game 7.k.k′ will be at some stage equal to Game 7.k + 1.0, this is because
there can only be a polynomial number of signing queries to be processed. There-
fore, for large enough k and k′, F handles all the signing queries of all signers,
and Game 7 is indistinguishable from Game 7.k.k′. To prove that Game 7.k.k′+1
is indistinguishable from Game 7.k.k′, suppose that there exists an environment
that can distinguish a signature of an honest party using tsk = x1 from a sig-
nature using a different tsk j = xj

1, then the environment can solve the Decision
Ring -LWE Problem.

The first j ≤ k′ signing queries on behalf of Mk are handled by F using the
algorithms, and subsequent inputs are then forwarded to S as before. Now suppose
thatF outputs the tuples (nymj ,pj ,oj

i ,k
j
i ,d

j
i , s

j
x1

, sj
e, s

j
qi , s

j
l′i
, sj

l′′i
, sj

l′′′i
, cj

v, SRL) for
j ≤ k′, with nymj = pjx1 + ej , for an error term ej ← Ds, and the remain-
ing proofs are honestly generated. The j = k′ + 1-th query for Mk is as fol-
lows: (nymS ,pS ,oS

i ,ks
i ,d

S
i , sS

x1
, sS

e , sS
qi , s

S
l′i
, sS

l′′i
, sS

l′′′i
, cS

v , μS , SRL). S is challenged

A Lattice-Based Enhanced Privacy ID 27

to decide if (nymS ,pS ,oS
i ,ks

i ,d
S
i , sS

x1
, sS

e , sS
qi , s

S
l′i
, sS

l′′i
, sS

l′′′i
, cS

v , μS , SRL) is chosen
from a Ring LWE distribution for some secret x1 or uniformly at random. S pro-
ceeds in simulating the signerwithout knowing the secretx1.S can answer all theH

queries, as S is controlling FCRS. S sets: tSki
=oS

i s
S
x1

+sS
l′′i

−XcS
v kS

i ; tSdi
=nym∗

i s
S
qi +

sS
l′′′i

− XcS
v dS

i ; tSoi
=p∗

i s
S
qi + sS

l′i
− XcS

v oS
i ; tSnym=pSsS

x1
+ sS

e − XcS
v nymS ; and,

finally, cS
v : =H(tSnym|tSoi

|tSki
|tSdi

|μS). For i > k′ + 1, S outputs the tuples
(nymj ,pj ,oj

i ,k
j
i ,d

j
i , s

j
x1

, sj
e, s

j
qi , s

j
l′i
, sj

l′′i
, sj

l′′′i
, cj

v, μj , SRL), with nymj = pjxj
1 + ej

mod q, for some freshly generated secret xj
1 and error term ej ← Ds. For each

case, Mk can provide a simulated proof as follows. S sets tjki
=oj

is
j
x1

+sj
l′′i

−Xcjvkj
i ;

tjdi
=nym∗

i s
j
qi +sj

l′′′i
−Xcjvdj

i ; t
j
oi

=p∗
i s

j
qi +sj

l′i
−Xcjvoj

i ; t
j
nym=pjsj

x1
+sj

e−Xcjvnymj ;

and, finally, cj
v : =H(tjnym|tjoi

|tjki
|tjdi

|μj).
Thus, any distinguisher between Game 7.k.k′ and Game 7.k.k′ + 1 can solve

the Decision Ring LWE Problem.

Game 8. F now no longer informs S about the message and p that are being
signed. If the signer M is honest, then S can learn nothing about the message
μ and p. Instead, S knows only the leakage l(μ,p). To simulate the real world,
S chooses a pair (μ′,p′) such that l(μ′,p′)=l(μ,p). An environment E observes
no difference, and thus Game 8 = Game 7.

Game 9. If I is honest, then F now only allows members that joined to sign.
An honest signer will always check whether it has joined before signing in the
real world protocol, so there is no difference for honest signers. Therefore Game
9 = Game 8.

Game 10. When storing a new tsk = x1, F checks CheckTskCorrupt(tsk)=1 or
CheckTskHonest(tsk)=1. We want to show that these checks will always pass.
In fact, valid signatures always satisfy nym = px1 + e where ‖x1‖∞ ≤ β
and ‖e‖∞ ≤ β. By the unique Shortest Vector Problem, there exists only one
tuple (x1,e) such that ‖x1‖∞ ≤ β and ‖e‖∞ ≤ β for small enough β. Thus,
CheckTskCorrupt(tsk) will always give the correct output. Also, due to the large
min-entropy of discrete Gaussians the probability of sampling x′

1 = x1, and
thus of having a signature already using the same tsk = x1, is negligible, which
implies that CheckTskHonest(tsk) will give the correct output with overwhelming
probability. Hence Game 10 = Game 9.

Game 11. (Completeness). In this game, F checks that honestly gener-
ated signatures are always valid. This is true as sig algorithm always pro-
duces signatures passing through verification checks. Those signatures satisfy
identify(tsk, σ, μ,p) = 1, which is checked via nym. F also makes sure, using its
internal records Members and DomainKeys that honest users are not sharing the
same secret key tsk . If there exists a key tsk ′ = x′

1 in Members and DomainKeys
such that ‖nym − px′

1‖∞ ≤ β, then this breaks search Ring-LWE.

28 N. EL Kassem et al.

Game 12. Check-IX is added to ensure that there are no multiple tsk tracing
back to the same signature. Since there exists only one pair (x1,eI), ‖x1‖∞ ≤ β,
‖eI‖∞ ≤ β, satisfying nymI = H(bsnI)x1 + eI , two different signers cannot
share the same x1, thus any valid signature traces back to a single tsk .

Game 13. (Unforgeability). To prevent accepting signatures that were issued
by the use of join credentials not issued by an honest issuer, F further adds
Check-X. This is due to the unforgeability of Boyen signatures [4].

Game 14. (Unforgeability). Check-XI is added to F , preventing the forging of
signatures with honest tsk and credentials. If a valid signature is given on a mes-
sage that the signer has never signed, the proof could not have been simulated. x1

would be extracted and Ring-LWE would be broken. So Game 14 = Game 13.

Game 15. Check-XII is added to F , ensuring that honest signers keys are not
being revoked. If an honest signer is simulated by means of the Ring-LWE prob-
lem instance and a proper key KRL is found, it must be the secret key of the
target instance. This is equivalent to solving the search Ring-LWE problem.

Game 16. F now performs signature based revocation when verifying signa-
tures. F checks that there is no (σ∗, nym∗,p∗) ∈ SRL such that for some matching
tsk i and (σ∗, μ∗,p∗) ∈ SRL, we have identify(σ∗, μ∗,p∗, tsk i) = 1. By the sound-
ness of the proof presented in the Appendix of the full version of this paper [11],
this check will always pass with overwhelming probability. �

6 Experimental Results

Let q ≥ 2 represents an integer modulus such that q = poly(n). For correctness,
we require the main hardness parameter n, to be large enough (e.g., n ≥ 100) and
q > β as both being at least a small polynomial in n. We also let m = O(log q) as
in [17]. A concrete choice of parameters can be as follows: n = 512, l = 32, q =
8380417, m = 24, and β = 275.

Both LDAA and LEPID were implemented in C, emulating all entities in
a single machine. The code was compiled with gcc 4.8.5 with the -O3 and
-march=native flags and executed on an Intel i9 7900X CPU with 64 GB run-
ning at 3.3 GHz operated by CentOS 7.5. The obtained experimental results can
be found in Table 1. Note that the measured times for signing and verification
do not take into account transfer times between the entities or object creation
and destruction.

By construing the signer as a single entity instead of two as in the LDAA,
the proposed LEPID scheme achieves a reduction of the private-key size of 1.5
times. While the comparison in signatures sizes between both schemes yields
favourably for the proposed LEPID scheme with a small amount of rejected
users, as the number of users in the SRL increases, its signature size increases
linearly at a rate of 18 kB per rejected user (9 polynomials and an integer). When
the SRL contains 500 users, the LEPID signature size closely matches that of the

A Lattice-Based Enhanced Privacy ID 29

Table 1. Experimental results for the proposed LEPID and LDAA [10] for n = 512,
q = 8380417, l = 32, m = 24 and β = 256 obtained on an Intel i9 7900X

Scheme Private-key
(kB)

Signature
(MB)

Signing
Time (s)

Verification
Time (s)

LDAA 147 847 541 129

LEPID (no revoked users) 100 836 361 114

LEPID (100 users in SRL) 100 838 371 117

LEPID (500 users in SRL) 100 845 372 119

LEPID (1000 users in SRL) 100 854 374 121

LDAA scheme. Should LEPID signing be implemented on a device with limited
computational resources like the TPM, its constrained memory resources and
the cost of data transfer might limit its application to small and medium-sized
communities. In particular, if one considers a revocation rate of 0.1%, LEPID
signatures will compare favourably in size to LDAA signatures for communities
with fewer than 500,000 users.

The signing time in the LEPID scheme is dominated by the signature based
knowledge proof π. The addition of the SRL , and consequently of 13 polyno-
mial multiplications per rejected user, shows no meaningful impact in the final
signing time, where LEPID maintains a speedup of 1.4 over the LDAA scheme.
Likewise, in the verification time, the additional 2 polynomial multiplications
per rejected user incurred by the SRL are negligible compared to the verifica-
tion of π. Hence, the proposed LEPID scheme achieves a speedup of 1.1 when
compared with the LDAA scheme across both small and medium rejection lists.
For the computational complexity introduced by the SRL to be meaningful, the
number of rejected users must be in the order of millions. Once more, the pro-
posed LEPID scheme shows improved signature and verification times for small
and medium communities when compared with the LDAA.

7 Conclusion

While EPID plays a determinant role in the security of SGX, the scheme cur-
rently deployed by Intel will become insecure in the event that a large-scale
quantum-computer is produced. Herein, a novel EPID scheme is proposed, sup-
ported on lattice-based security assumptions, and achieving presumed quantum
resistance. A security model for EPID is presented for the first time in the UC
framework, and the proposed scheme is proven secure under this model. When
compared with a closely related LDAA scheme from related art, the proposed
LEPID achieves a reduction in the private-key size of 1.5 times, and of the signa-
ture and verification times of 1.4 and 1.1 times, respectively, when no users have
been revoked. It is furthermore shown, experimentally, that the overhead intro-
duced by the more effective revocation method of LEPID is minimal for small
to medium-sized communities. Finally, it is expected that the proposed LEPID

30 N. EL Kassem et al.

may benefit from theoretical developments and hardware accelerators that result
from the increased interest that lattice-based cryptography has gathered in the
last few years.

Acknowledgements. This research was supported by European Unions Horizon 2020
research and innovation programme under grant agreement No. 779391 (FutureTPM),
and by national funds through Fundação para a Ciência e a Tecnologia (FCT) with
references UID/CEC/50021/2019 and FCT Grant No. SFRH/BD/145477/2019.

References

1. Baum, C., Damg̊ard, I., Oechsner, S., Peikert, C.: Efficient commitments and zero-
knowledge protocols from ring-sis with applications to lattice-based threshold cryp-
tosystems. IACR Cryptol. ePrint Arch. 2016, 997 (2016)

2. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better
zero-knowledge proofs for lattice encryption and their application to group sig-
natures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol.
8873, pp. 551–572. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45611-8 29

3. Boneh, D., Eskandarian, S., Fisch, B.: Post-quantum EPID signatures from sym-
metric primitives. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 251–
271. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 13

4. Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully secure
short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13013-7 29

5. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceed-
ings of the 11th ACM Conference on Computer and Communications Security,
CCS 2004, New York, NY, USA, pp. 132–145. ACM (2004)

6. Camenisch, J., Chen, L., Drijvers, M., Lehmann, A., Novick, D., Urian, R.: One
TPM to bind them all: fixing TPM 2. 0 for provably secure anonymous attestation.
In: Proceedings of IEEE S&P 2017 (2017)

7. Camenisch, J., Drijvers, M., Lehmann, A.: Universally composable direct anony-
mous attestation. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.)
PKC 2016, Part II. LNCS, vol. 9615, pp. 234–264. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49387-8 10

8. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Proceedings of the Thirty-ninth Annual ACM Sym-
posium on Theory of Computing, pp. 21–30. ACM (2007)

9. Johnson, S., Scarlata, V., Rozas, C., Brickell, E., Mckeen, F.: Intel R© software guard
extensions: EPID provisioning and attestation services. White Pap. 1, 1–10 (2016)

10. Kassem, N., et al.: More efficient, provably-secure direct anonymous attestation
from lattices. Future Gener. Comput. Syst. 99, 425–458 (2019)

11. EL Kassem, N., Fiolhais, L., Martins, P., Chen, L., Sousa, L.: A lattice-based
enhanced privacy ID. Cryptology ePrint Archive, Report 2019/1366 (2019).
https://eprint.iacr.org/2019/1366

12. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36362-7 8

https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-030-12612-4_13
https://doi.org/10.1007/978-3-642-13013-7_29
https://doi.org/10.1007/978-3-642-13013-7_29
https://doi.org/10.1007/978-3-662-49387-8_10
https://eprint.iacr.org/2019/1366
https://doi.org/10.1007/978-3-642-36362-7_8

A Lattice-Based Enhanced Privacy ID 31

13. Lyubashevsky, V.: Towards Practical Lattice-based Cryptography. University of
California, San Diego (2008)

14. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

15. Nejatollahi, H., Dutt, N.D., Banerjee, I., Cammarota, R.: Domain-specific accel-
erators for ideal lattice-based public key protocols. IACR Cryptol. ePrint Arch.
2018, 608 (2018)

16. National Institute of Standards and Technology. Post-quantum cryptogra-
phy standardization, 1 (2017). https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography/Post-Quantum-Cryptography-Standardization

17. Peikert, C., et al.: A decade of lattice cryptography. Found. Trends R© Theor. Com-
put. Sci. 10(4), 283–424 (2016)

18. Regev, O.: The learning with errors problem (invited survey). In: 2010 IEEE 25th
Annual Conference on Computational Complexity, pp. 191–204. IEEE (2010)

https://doi.org/10.1007/978-3-642-29011-4_43
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization

A Generic View on the Unified
Zero-Knowledge Protocol and Its

Applications

Diana Maimuţ1(B) and George Teşeleanu1,2

1 Advanced Technologies Institute, 10 Dinu Vintilă, Bucharest, Romania
{diana.maimut,tgeorge}@dcti.ro

2 Simion Stoilow Institute of Mathematics of the Romanian Academy,
21 Calea Grivitei, Bucharest, Romania

Abstract. We present a generalization of Maurer’s unified zero-
knowledge (UZK) protocol, namely a unified generic zero-knowledge
(UGZK) construction. We prove the security of our UGZK protocol and
discuss special cases. Compared to UZK, the new protocol allows to prove
knowledge of a vector of secrets instead of only one secret. We also pro-
vide the reader with a hash variant of UGZK and the corresponding secu-
rity analysis. Last but not least, we extend Cogliani et al.’s lightweight
authentication protocol by describing a new distributed unified authenti-
cation scheme suitable for wireless sensor networks and, more generally,
the Internet of Things.

1 Introduction

Zero knowledge proofs (ZKPs) are closely related with one of the main cryp-
tographic goals, entity authentication. Applying ZKPs, researchers are able to
propose clever solutions to a variety of practical problems mainly in the fields of
digital cash, auctioning, Internet of Things (IoT), password authentication and
so on.

A standard zero knowledge protocol involves a prover Peggy possessing a
piece of secret information x associated with her identity and a verifier V ictor
which has to check that Peggy indeed owns x. Two classical examples of such
constructions are the Schnorr [18] and the Guillou-Quisquater [11] protocols.
Raising the level of abstraction, Maurer shows in [13] that the previously men-
tioned protocols are actually instantiations of the same one.

Building on Maurer’s result, we considered of great interest providing the
reader with a generalized perspective of the Unified Zero-Knowledge (UZK) pro-
tocol as well as a hash variant of it. An important consequence of our generic
approach is the unification of Maurer’s [13], Feige-Fiat-Shamir’s [3] and Chaum-
Everste-Van De Graaf’s [1] protocols. Moreover, a special case of our protocol’s
hash version is the h-variant of the Fiat-Shamir scheme [7,9].

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Laurent and T. Giannetsos (Eds.): WISTP 2019, LNCS 12024, pp. 32–46, 2020.
https://doi.org/10.1007/978-3-030-41702-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41702-4_3&domain=pdf
http://orcid.org/0000-0002-9541-5705
http://orcid.org/0000-0003-3953-2744
https://doi.org/10.1007/978-3-030-41702-4_3

A Generic View on the Unified Zero-Knowledge Protocol 33

Practical Implications Which Motivated Our Research. As the IoT paradigm
arised, lightweight devices1 became more and more popular. Due to the open
and distributed nature of the IoT, proper security is needed for the entire net-
work to operate accordingly. Now let us consider the case of online wireless sen-
sor networks (WSNs). The lightweight nature of sensor nodes heavily restricts
cryptographic operations. Thus, the need for specific cryptographic solutions
becomes obvious. The Fiat-Shamir-like distributed authentication protocol pre-
sented in [2] represents such an example. Based on this previous construction we
propose a unified generic zero-knowledge protocol. Just as the result described
in [2], our protocol can be applied for securing WSNs and, more generally, IoT-
related solutions. Nonetheless, our construction offers flexibility when choosing
the assumptions on which its security relies. A secondary feature of our scheme is
the possibility of reusing existing certificates when implementing the distributed
authentication protocol.

Structure of the Paper. We establish notations and recall zero-knowledge con-
cepts in Sect. 2. Inspired by Maurer’s UZK construction, in Sect. 3 we present
our main result, a Unified Generic Zero-Knowledge (UGZK) protocol, and prove
it secure. We provide the reader with various special cases of UGZK in Sect. 4. A
hash variant of our core protocol is tackled in Sect. 5 together with its security
analysis. Following Cogliani et al.’s lightweight authentication protocol ideas,
in Sect. 6 we describe a distributed unified Fiat-Shamir-based protocol, discuss
security and complexity aspects and present implementation trade-offs which
arise from small variations of the proposed result. We conclude in Sect. 7 and
underline future work proposals.

2 Preliminaries

Notations. Throughout the paper, the notation |S| denotes the cardinality of a
set S. The subset {0, . . . , s} ∈ N is denoted by [0, s]. The action of selecting a

random element x from a sample space X is represented by x
$←− X, while x ← y

indicates the assignment of value y to variable x.

2.1 Groups

Let (G, �) and (H,⊗) be two groups. We assume that the group operations �
and ⊗ are efficiently computable.

Let f : G → H be a function (not necessarily one-to-one). We say that f is
a homomorphism if f(x � y) = f(x) ⊗ f(y). Throughout the paper we consider
f to be a one-way function, i.e. it is infeasible to compute x from f(x). To be
consistent with [13], we denote by [x] the value f(x). Note that given [x] and
[y] we can efficiently compute [x � y] = [x] ⊗ [y], due to the fact that f is a
homomorphism.
1 Low-cost devices with limited resources, be it computational or physical.

34 D. Maimuţ and G. Teşeleanu

2.2 Zero-Knowledge Protocols

Let Q : {0, 1}∗ ×{0, 1}∗ → {true, false} be a predicate. Given a value z, Peggy
will try to convince Victor that she knows a value x such that Q(z, x) = true.

We further base our reasoning on both a definition from [3,13] and a definition
from [10,13] which we recall next.

Definition 1 (Proof of Knowledge Protocol). An interactive protocol
(P, V) is a proof of knowledge protocol for predicate Q if the following properties
hold

– Completeness: V accepts the proof when P has as input a value x with
Q(z, x) = true;

– Soundness: there exists an efficient program K (called knowledge extractor)
such that for any P̄ (possibly dishonest) with non-negligible probability of mak-
ing V accept the proof, K can interact with P̄ and output (with overwhelming
probability) an x such that Q(z, x) = true.

Definition 2 (Zero Knowledge Protocol). A protocol (P, V) is zero-
knowledge if for every efficient program V̄ there exists an efficient program S,
the simulator, such that the output of S is indistinguishable from a transcript of
the protocol execution between P and V̄ . If the indistinguishability is perfect2,
then the protocol is called perfect zero-knowledge.

Fig. 1. Maurer’s Unified Zero-Knowledge (UZK) Protocol.

According to [13], the UZK protocol presented in Fig. 1 is a zero-knowledge
protocol if the conditions mentioned in Theorem 1 are satisfied.

2 i.e. the probability distribution of the simulated and the actual transcript are iden-
tical.

A Generic View on the Unified Zero-Knowledge Protocol 35

Theorem 1. Let C be the challenge space. If values � ∈ Z and u ∈ G are known
such that

– gcd(c0 − c1, �) = 1 for all c0, c1 ∈ C with c0 �= c1,
– [u] = z�,

then by running the protocol described in Fig. 1 for m rounds we obtain a proof
of knowledge protocol if 1/|C|m is negligible, and a zero-knowledge protocol if |C|
is polynomially bounded.

Remark 1. If C is small, then several 3-move rounds are needed to make the
soundness error negligible.

2.3 Hash Functions

In the following, we consider the definitions from [9]. These concepts are further
applied in Sect. 5 within the security proof of our proposed generalization of the
h-variant protocol [7].

Definition 3. Let λ ≥ 2 be an integer. An λ-collision for a hash function h is
an λ-tuple {mi}i∈[1,λ] such that h(m1) = h(m2) = . . . = h(mλ).

Definition 4. Let λ ≥ 2 be an integer. A hash function is λ-collision resistant
if it is computationally infeasible to find an λ-collision.

3 The Main Protocol

Inspired by Maurer’s UZK protocol [13], we describe a UGZK protocol (Fig. 2).
Note that the UZK scheme is a special case of the UGZK construction. We also
prove the security of our proposed construction in a Feige-Fiat-Shamir man-
ner [3].

3.1 Description

Let n be a positive integer. The protocol in Fig. 2 is a proof of knowledge of
a vector {[xi]}i∈[1,n] such that zi = [xi], for all i ∈ [1, n], where the vector
{zi}i∈[1,n] is given, provided that the conditions of Theorem 2 are satisfied. The
challenge spaces Ci for the elements ci are chosen as arbitrary subsets of N, for
all i ∈ [1, n]. For the sake of uniformity, we assume that all the challenge spaces
Ci are equal and we denote them by C. If |C| is chosen to be small, then several
rounds are needed in order to reduce the soundness error up to the point of being
negligible.

When n = 1 we obtain the UZK protocol introduced in [13]. Note that in
this case G and H need not be commutative.

36 D. Maimuţ and G. Teşeleanu

Fig. 2. A Unified Generic Zero-Knowledge (UGZK) Protocol.

3.2 Security Analysis

Theorem 2. Let H be a commutative group. If for all j values �j ∈ Z and
uj ∈ G are known such that

– gcd(c′′
j − c′

j , �j) = 1 for all c′
j , c

′′
j ∈ C with c′

j �= c′′
j ,

– [uj] = z
�j

j ,

then by running the protocol described in Fig. 2 for m rounds we obtain a proof
of knowledge protocol if 1/|C|nm is negligible, and a zero-knowledge protocol if
|C|n is polynomially bounded.

Proof. Let s = |C|. To prove that P ’s proof always convinces V , we evaluate the
verification condition:

[r] = [k � (�n
i=1x

ci
i)] = [k] ⊗ (⊗n

i=1[xi]ci) = t ⊗ (⊗n
i=1z

ci
i) .

Note that a corrupt P̄ can cheat V with a negligible probability s−nm per iter-
ation by guessing the {ci}i∈[1,n] vector, preparing t = [k] ⊗

(
⊗n

i=1z
−ci
i

)
in the

first step, and providing r = k in the last step.
Next, we show that whenever V accepts P̄ ’s proof with non-negligible prob-

ability, there exists a knowledge extractor K that can print out all the xis with
overwhelming probability. Let T be the truncated execution tree of (P̄ , V) for
input I and random tape RA. As in [3, Theorem 3], the algorithm we construct
explores this tree by repeatedly resetting P̄ to the root, providing the necessary
steering requests and verifying which one of the s sons of each explored vertex
corresponds to a correct answer. V may ask sn possible questions at each stage
and, thus, the vertices in T may have polynomially many sons in terms of |I|.
A vertex is called heavy if its degree is larger than sn−1 (i.e. if more than sn−1

executions of (P̄ , V) at this state are successful). Our goal in this part of the
proof is to show that all the xis can be computed from the sons of a heavy vertex
and that a PPT K can find a heavy vertex in T with overwhelming probability.

A Generic View on the Unified Zero-Knowledge Protocol 37

Let H be any heavy vertex in T and let Q be the set of queries in the form
of vectors {ci}i∈[1,n] which are properly answered by P̄ . It is easy to show that
for any 1 ≤ j ≤ n a set Q of more than sn−1 vectors (having the length n) must
contain two vectors {c′

i}i∈[1,n] and {c′′
i }i∈[1,n] in which c′

j �= c′′
j and c′

i = c′′
i for all

i �= j. Since both queries were properly answered, the two verification conditions
imply

[r′
j] = t′j ⊗

(
⊗n

i=1z
c′

i
i

)
and [r′′

j] = t′′j ⊗
(
⊗n

i=1z
c′′

i
i

)
.

However, P̄ must choose t before he obtains V ’s query and, thus, t′j = t′′j .
From r′

j and r′′
j we can obtain x̃j such that [x̃j] = zj , as

x̃j = u
aj

j � (r′′−1
j � r′

j)
bj ,

where aj and bj are computed using Euclid’s extended gcd algorithm such that
�jaj + (c′′

j − c′
j)bj = 1.

By rewriting the equations we get

[r′′−1
j � r′

j] = [r′′−1
j] ⊗ [r′

j]

=
(
⊗1

i=nz
−c′′

i
i

)
⊗ t′′−1

j ⊗ t′j ⊗
(
⊗n

i=1z
c′

i
i

)

=
(
⊗j

i=nz
−c′′

i
i

)
⊗

(
⊗n

i=jz
c′

i
i

)

= z
c′

j−c′′
j

j ,

where for obtaining the last equality we used the commutative property of H.
Thus,

[x̃j] = [uaj

j � (r′′−1
j � r′

j)
bj]

= [uj]aj ⊗ ([r′′−1
j � r′

j])
bj

= (z�j

j)aj ⊗ (z
c′

j−c′′
j

j)bj

= z
�jaj+(c′

j−c′′
j)bj

j

= zj .

Now we show that at least half the vertices in at least one of the levels in T
must be heavy. Let αi be the ratio between the number of vertices at level i + 1
and the number of vertices at level i in T . If αi ≤ (1/2s)sn for all 1 ≤ i ≤ m,
then the total number of leaves in T (which is the product of all these αi) is
bounded by (1/2s)msnm, which is a negligible fraction of the snm possible leaves.
Since we assume that this fraction is polynomial, αi > (1/2s)sn for at least one
i, and thus at least half the vertices at this level must contain more than sn/s
sons.

38 D. Maimuţ and G. Teşeleanu

To find a heavy vertex in T , K chooses polynomially many random vertices
at each level, and determines their degrees by repeated resets and executions of
P̄ . To ensure a uniform probability distribution in spite of the uneven degrees
of the vertices, M should explore random paths in the untruncated tree, and
restart from the root whenever the path encounters an improperly answered
query. Since a non-negligible fraction of the leaves is assumed to survive the
truncation, this blind exploration of T can be carried out in polynomial time.

The last part of the proof deals with the zero-knowledge aspect of the proto-
col. By using resettable simulation in the sense of [10], the simulator S described
in Algorithm 1 can mimic the communication in (P, V̄) with an indistinguishable
probability distribution in O(msn) expected time, which is polynomial by our
assumptions on sn.

Algorithm 1. The simulator S.
Input: The public key {zi}i∈[1,n]

Output: A transcript L
1 foreach j ∈ [1, m] do
2 Choose c = {ci}i∈[1,n] at random from Cn

3 Select a random number r
$←− G

4 Compute t ← [r] ⊗ (⊗1
i=nz−ci

i

)

5 Call V̄ with input t and obtain a challenge c′

6 if c = c′ then
7 L ← L ∪ {(t, c, r)}
8 end
9 else

10 Reset V̄ ’s state and repeat this round with new random choices
11 end

12 end
13 return L

	

4 Special Cases of the UGZK Protocol

In this section we describe a number of protocols as instantiations of our main
UGZK construction. Note that when n = 1 we obtain the UZK protocol from
[13]. Thus, some schemes described in [13] are further reconsidered, while some
examples are specific to our UGZK protocol. Although in the original paper [13]
Maurer shows how to use UZK to prove the knowledge of a vector of secrets, our
protocol UGZK is better in terms of transcript size.

A Generic View on the Unified Zero-Knowledge Protocol 39

4.1 Proofs of Knowledge of a Multiple Discrete Logarithm

Let p = 2q + 1 be a prime number such that q is also prime. Select an element
h ∈ Hp of order q in some multiplicative group of order p. The multiple discrete
logarithm of a vector {zi}i∈[1,n] ∈ H

n
p is a vector of exponents {xi}i∈[1,n] such

that zi = hxi , for all i ∈ [1, n]. We further describe a protocol for proving the
knowledge of a multiple discrete logarithm.

A protocol for proving knowledge of a multiple discrete logarithm can be
obtained as a special case of UGZK where (G, �) = (Zq,+) and H = 〈h〉. The
one-way group homomorphism is defined by [x] = hx, while the challenge space
C can be any arbitrary subset of [0, q − 1]. The conditions of Theorem 2 are
satisfied for �j = q and uj = 0, where j ∈ [1, n]. When n = 1 we obtain the
Schnorr protocol [18]3. In the case n ≥ 1 and C = {0, 1} we obtain the multiple
logarithm protocol described in [1].

Next we discuss a variation5 of the previously presented protocol. Let p =
2fp′ + 1 and q = 2fq′ + 1 be prime numbers such that f , p′ and q′ are distinct
primes. Select an element h ∈ Z

∗
N of order f , where N = pq. Note that p and q

are secret.
Using the UGZK notations we have (G, �) = (Zf ,+) and H = 〈h〉. The

one-way group homomorphism is defined by [x] = hx and the challenge space C
can be any arbitrary subset of [0, f − 1]. We can observe that the conditions of
Theorem 2 are satisfied for �j = f and uj = 0, where j ∈ [1, n]. When n = 1 we
obtain the Girault protocol [8].

4.2 Proofs of Knowledge of a Multiple eth-root

Let p and q be two large prime numbers. Compute N = pq and choose a prime e
such that gcd(e, ϕ(N)) = 1. A multiple eth-root of a vector {zi}i∈[1,n] ∈ (Z∗

N)n is
a base vector {xi}i∈[1,n] such that zi = xe

i . Note that the multiple eth-root is not
unique. We further describe a protocol for proving the knowledge of a multiple
eth-root.

Such a protocol can be obtained from UGZK with (G, �) = (H,⊗) = (Z∗
N , ·).

The one-way group homomorphism is defined by [x] = xe and the challenge
space C can be any arbitrary subset of [0, e − 1]. The conditions of Theorem 2
are satisfied for �j = e and uj = z, where j ∈ [1, n]. We stress that when e = 2
we obtain the protocol introduced by Feige, Fiat and Shamir [3]. In the case
n = 1 we obtain the Guillou-Quisquater protocol [11]4.

4.3 Proofs of Knowledge of a Multiple Discrete Logarithm
Representation

Let p = 2q + 1 be a prime number such that q is also prime. Select α elements
{hj}j∈[1,α] ∈ H

α
p of order q in some multiplicative group of order p. A mul-

tiple discrete logarithm representation of a vector {zi}i∈[1,n] ∈ (〈h1, . . . , hα〉)n

3 This proof can be seen as a more efficient version of a proposal made by Chaum
et al. [1].

4 This proof is a generalization of a protocol introduced by Fiat and Shamir [7].

40 D. Maimuţ and G. Teşeleanu

is a vector of exponent vectors ({x1,j}j∈[1,α], . . . , {xn,j}j∈[1,α]) such that zi =
h

xi,1
1 . . . h

xi,α
α , for all i ∈ [1, n]. Note that multiple discrete logarithm representa-

tions are not unique. We further describe a protocol for proving the knowledge
of a multiple discrete logarithm representation.

A protocol for proving the knowledge of a multiple representation can be
instantiated from UGZK by setting G = Z

α
q with � defined as a component-wise

addition operation and H = 〈h1, . . . , hα〉. The one-way group homomorphism
is defined by [(x1, . . . , xα)] = hx1

1 . . . hxα
α and the challenge space C can be any

arbitrary subset of [0, q−1]. The conditions of Theorem 2 are satisfied for �j = q
and uj = (0, . . . , 0), where j ∈ [1, n]. When n = 1 we obtain a protocol proposed
by Maurer in [13] which is a generalization of the protocols presented by Okamoto
in [15] and Chaum et al. in [1].

Chaum et al. [1] also provide a protocol variant for a composite n. Thus,
by adapting the protocol presented in Sect. 4.1 and tweaking the previously
described one, we can obtain a similar version for composite numbers. Using the
notations from the protocol in Sect. 4.1, we set G = Z

α
f and H = 〈h1, . . . , hm〉,

where h1, . . . , hα ∈ Z
∗
n are elements of order f . The one-way group homomor-

phism is defined by [(x1, . . . , xα)] = hx1
1 . . . hxα

α and the challenge space C can
be any arbitrary subset of Zf . It is easy to see that �j = f and uj = (0, . . . , 0),
where j ∈ [1, n].

4.4 Proofs of Knowledge of a Multiple eth-root Representation

Let p and q be two large prime numbers. Compute N = pq and choose
primes e1, . . . , eα such that gcd(ei, ϕ(N)) = 1, for i ∈ [1, α]. A multiple eth-
root representation of a vector {zi}i∈[1,n] ∈ (Z∗

N)n is a vector of bases vector
({x1,j}j∈[1,α], . . . , {xn,j}j∈[1,α]) such that zi = xe1

i,1 . . . xeα
i,α, for all i ∈ [1, n].

Note that multiple eth-root representations are not unique. We further describe
a protocol for proving the knowledge of a multiple eth-root representation.

A protocol for proving the knowledge of a multiple eth-root representation can
be obtained from UGZK if we set G = (Z∗

N)α with � defined as multiplication
applied component-wise and (H,⊗) = (Z∗

N , ·). The one-way group homomor-
phism is defined by [(x1, . . . , xα)] = xe1

1 . . . xeα
α and the challenge space C can be

any arbitrary subset of [0, e − 1], where e is a prime such that gcd(e, φ(N)) = 1.
It is easy to see that �j = e and uj = (xe

1, . . . , x
e
α), where j ∈ [1, n]. When n = 1

we obtain a protocol introduced in [19].

5 Hash Protocol Variant

In order to decrease the number of communication bits, Peggy can hash t and
send Victor the result. This method was proposed by Fiat and Shamir [7] and
later analyzed in [9]. We employ the same technique for the protocol presented
in Fig. 2 and analyze its security.

A Generic View on the Unified Zero-Knowledge Protocol 41

5.1 Description

Let H be a hash function that maps elements from H into bit streams. The hash
variant of the protocol works as follows: in the first step Peggy sends H(t) to
Victor (instead of t) and the last step becomes

If H(t) = H
(
[r] ⊗

(
⊗n

i=1z
−ci
i

))
return true.

Else return false.

5.2 Security Analysis

Theorem 3. Let s = |C|. If there exists a PPT algorithm P̄ such that the prob-
ability that P̄ is accepted by an honest verifier is greater than (λ − 1)|C|−n + ε,
where ε > 0, then there exists a PPT algorithm P̃ which, with overwhelming
probability, either inverts [·] or finds a λ-collision for h.

Proof. Let Ω be the set of p̃ elements in which P̃ picks its random values and E
be the set Cn, both of them characterized by the uniform distribution. For each
value (ω, e) ∈ Ω × E, P̃ passes the protocol (and we say it is a success) or not.
Let S be the subset Ω × E composed of all possible successes. Our assumption
is that

|S|
|Ω × E| > (r − 1)|C|−n + ε

with ε > 0 and |Ω × E| = p̃ · sn.
Let Er = {e ∈ E | (ω, e) is a success} and Ωr = {ω ∈ Ω | |Er| ≥ r}. We have

that

|S| ≤ |Ωr| · sn + (r − 1) · (p̃ − |Ωr|).

Thus,

|S|
|Ω × E| ≤

[
|Ωr|
|Ω| + (r − 1) ·

(
s−n − |Ωr|

|Ω × E|

)]
≤ |Ωr|

|Ω| + (r − 1) · s−n

which implies

|Ωr|
|Ω| ≥ ε.

Let P̂ be the PPT algorithm obtained by resetting P̃ ε−1 times. With con-
stant probability, P̂ picks ω in Ωr and the probability can be made close to 1
by repeating the execution of P̂ . At the end, λ values {ri}i∈[1,λ] are found such
that, for distinct challenges {ci}i∈[1,λ] ∈ (Cn)λ

H
(
[r1] ⊗

(
⊗n

i=1z
−ci,1
i

))
= H

(
[r2] ⊗

(
⊗n

i=1z
−ci,2
i

))

= . . .

= H
(
[rλ] ⊗

(
⊗n

i=1z
−ci,λ

i

))
.

42 D. Maimuţ and G. Teşeleanu

Now, we have two possibilities. In the first case, two of the values, say [r1] ⊗(
⊗n

i=1z
−ci,1
i

)
and [r2] ⊗

(
⊗n

i=1z
−ci,2
i

)
, are equal before hashing. Let C− = {−c |

c ∈ C}. Then, [r1r−1
2] =

(
⊗n

i=1z
c′

i
i

)
, where c′ ∈ C− ∪ C. This contradicts the

intractability of [·]. In the second case, all these values are pairwise distinct and
a λ-collision for H has been found. This contradicts our assumption regarding
H. 	

Remark 2. This result suggests the use of hash-functions which are only resistant
to λ-collisions (with λ > 2), such that the hash values computed in the first
pass can be made much shorter. Indeed, the decrease of the security level can
be balanced by sending a slightly larger value of c in the second pass. More
precisely, if λ = sn′

, we choose c ∈ Cn+n′
instead of c ∈ Cn.

6 A Distributed Unified Protocol

A Fiat-Shamir-like distributed authentication protocol was proposed in [2].
Given our UGZK construction, we describe a generic collective authentication
protocol which can be seen as a natural follow up of the main result in [2].

6.1 Description

Let us consider an n-node network consisting of N1, ...,Nn. The nodes Ni can be
seen as users and the base station T as a trusted center. To achieve the authenti-
cation of the entire network, we propose a unified Fiat-Shamir-like construction
which we detail next.

1. Let xi be a secret piece of information given to node Ni. First, the network
topology has to converge and a spanning tree needs to be constructed (e.g.
with an algorithm similar with the one presented in [14]). Then, T sends
an authentication request message to all the Ni directly connected to it, a
message which contains a commitment to c (see 3.) to ensure the protocol’s
zero-knowledge property even against dishonest verifiers.

2. After receiving an authentication request message:
– Each Ni generates a private ki and computes ti ← [ki];
– The Nis send authentication messages to all their (existing) children;
– After the children respond, nodes Ni compute ti ← ti ⊗ (⊗jtj) and send

the result up to their parents. Note that the tjs are sent by the nodes’
children.

Such a construction permits the network to compute the ⊗ operation of all the
tis and send the result tc to the top of the tree in d steps, where d represents
the degree of the spanning tree. We refer the reader to Fig. 3 for a toy example
of this step.

A Generic View on the Unified Zero-Knowledge Protocol 43

3. T sends a random c ∈ Cn as an authentication challenge to the Ni directly
connected to it.

4. After receiving an authentication challenge c:
– Each Ni computes ri ← ki � xci

i ;
– The Nis then send the authentication challenge to all their (existing)

children;
– After the children respond, the Nis compute ri ← ri � (�jrj) and send the

result to their parents. Note that the rjs are sent by the nodes’ children.
The network therefore computes collectively the � operation of all the ri’s
and transmits the result rc to T . Again, we refer the reader to Fig. 3 for a
toy example of this step.

5. After receiving rc, T checks that [rc] = tc ⊗ (⊗n
i=1z

ci
i), where z1, . . . , zn are

the public keys corresponding to x1, . . . , xn respectively.

Fig. 3. The proposed algorithm running on a network consisting of 4 nodes: computa-
tion of tc (left) and of rc (right).

Remark 3. The protocol we have just described may be interrupted at any step
and such an action results in a failed authentication.

6.2 Security Analysis

Theorem 4. Let H be a commutative group. If an adversary corrupts n′ < n
nodes and if for all j values �j ∈ Z and uj ∈ G are known such that

– gcd(c′′
j − c′

j , �j) = 1 for all c′
j , c

′′
j ∈ C with c′

j �= c′′
j ,

– [uj] = z
�j

j ,

then by running the protocol described in Sect. 6.1 for m rounds we obtain a proof
of knowledge protocol if 1/|C|(n−n′)m is negligible, and a zero-knowledge protocol
if |C|(n−n′) is polynomially bounded.

Proof. If an adversary corrupts n′ nodes, then n′ secret keys xi are known to
him. Thus, the protocol is equivalent with a UGZK protocol with n−n′ secrets.
Hence, using Theorem 2 we obtain our statement. 	

44 D. Maimuţ and G. Teşeleanu

6.3 Complexity Analysis

The number of operations necessary for authenticating the whole network
depends on the topology. Precise complexity evaluations are given in Table 1.
Note that each node performs in average only a few operations (a constant num-
ber).

Let d be the degree of the minimum spanning tree of the network. Then, only
O(d) messages are sent and, if we do not consider atypical cases, d = O(log n).
Put differently, throughout the authentication process only a logarithmic number
of messages is sent.

6.4 Variations

When implementing the distributed zero knowledge protocol several trade-offs
are possible. Note that when doing so any combination of the trade-offs described
below may be used.

Hash Based Variant. A distributed version of the UGZK protocol’s hash
variant (presented in Sect. 5) can be constructed. Using this “short commitment”
version reduces somewhat the number of communicated bits, at the expense of
a reduced security.

Short Challenges Variant. In our protocol, the challenge c is sent throughout
the network to all nodes. Assuming the use of an ideal hash function h, we may
use shorter challenge without affecting security.

– A short c is sent to the nodes Ni;
– Each Ni computes ci ← h(c‖i), and uses ci as a challenge;
– The base station T computes ci and uses it to check authentication.

Multiple-Secret Variant. Each node Ni could use a set of secret values
{xi,j}j∈[1,�] instead of only one xi. For the algorithm to be as efficient as possible
the supplementary secrets can be expanded from a concealed seed. For clarity
purposes we describe the multiple secret variant for a single node.

When receiving a challenge ci, each node computes a response

ri ← ki �
(
��

j=1x
ci,j

i,j

)
.

Table 1. Complexity computations.

Operation Number of computations

[·] (n + 1)m

Exponentiation nm

⊗ ≤ 2 nm

� ≤ nm

A Generic View on the Unified Zero-Knowledge Protocol 45

This result be checked by the verifier by applying the next formula:

[ri] = ti ⊗
(
⊗�

i=1z
ci,j

i,j

)
.

In the case of multiple nodes, the modified protocol we obtain is a proof
of knowledge if 1/|C|(n−n′)�m is negligible and a zero-knowledge protocol if
|C|(n−n′)� is polynomially bounded.

Practical aspects. Applying the multiple-secret variant, the trade-off between
memory and communication can be adjusted, as the security level is �m (single-
node compromission). Let μ be an integer. Therefore, if � = μ it suffices to
authenticate once to get the same security as t = μ authentications with � = 15.
It is obvious that such an approach significantly reduces bandwidth usage, a
clearly desirable fact in the IoT context.

7 Conclusions and Further Development

We proposed a UGZK protocol and analyzed its security. We provided vari-
ous special cases of our core protocol, described a hash variant of UGZK and
discussed security details. We also presented a distributed unified Fiat-Shamir-
based protocol, tackled security and complexity aspects and presented imple-
mentation trade-offs.

Future work. In order to take advantage of our main protocol’s characteristics,
we suggest applying it for obtaining generic versions of digital signature schemes
[12,16,17] and legally fair contract signing protocols [4,12]. More generally, our
proposal could be useful for future works on cryptographic protocol design. In
the case of failed network authentication an interesting research direction would
be to devise new batch verification algorithms or adapt the ones constructed for
digital signatures [5,6] for finding compromised nodes.

References

1. Chaum, D., Evertse, J.-H., van de Graaf, J.: An improved protocol for demon-
strating possession of discrete logarithms and some generalizations. In: Chaum,
D., Price, W.L. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 127–141. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-39118-5 13

2. Cogliani, S., et al.: Public key-based lightweight swarm authentication. In: Koç,
Ç.K. (ed.) Cyber-Physical Systems Security, pp. 255–267. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98935-8 12

3. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. J. Cryptol. 1(2),
77–94 (1988)

4. Ferradi, H., Géraud, R., Maimuţ, D., Naccache, D., Pointcheval, D.: Legally fair
contract signing without keystones. In: Manulis, M., Sadeghi, A.-R., Schneider, S.
(eds.) ACNS 2016. LNCS, vol. 9696, pp. 175–190. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-39555-5 10

5 This corresponds to the protocol presented in Sect. 6.1.

https://doi.org/10.1007/3-540-39118-5_13
https://doi.org/10.1007/978-3-319-98935-8_12
https://doi.org/10.1007/978-3-319-39555-5_10
https://doi.org/10.1007/978-3-319-39555-5_10

46 D. Maimuţ and G. Teşeleanu

5. Fiat, A.: Batch RSA. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp.
175–185. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0 17

6. Fiat, A.: Batch RSA. J. Cryptol. 10(2), 75–88 (1997)
7. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and

signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

8. Girault, M.: An identity-based identification scheme based on discrete logarithms
modulo a composite number. In: Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS,
vol. 473, pp. 481–486. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-
46877-3 44

9. Girault, M., Stern, J.: On the length of cryptographic hash-values used in iden-
tification schemes. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp.
202–215. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5 21

10. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

11. Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to secu-
rity microprocessor minimizing both transmission and memory. In: Barstow, D.,
et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg
(1988). https://doi.org/10.1007/3-540-45961-8 11

12. Maimuţ, D., Teşeleanu, G.: A unified security perspective on legally fair contract
signing protocols. In: Lanet, J.-L., Toma, C. (eds.) SECITC 2018. LNCS, vol.
11359, pp. 477–491. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
12942-2 35

13. Maurer, U.: Zero-knowledge proofs of knowledge for group homomorphisms.
Designs Codes Cryptogr. 77(2–3), 663–676 (2015)

14. Mooij, A.J., Goga, N., Wesselink, J.W.: A distributed spanning tree algorithm
for topology-aware networks. Technische Universiteit Eindhoven, Department of
Mathematics and Computer Science (2003)

15. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
31–53. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 3

16. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-68339-9 33

17. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361–396 (2000)

18. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

19. Teşeleanu, G.: Unifying kleptographic attacks. In: Gruschka, N. (ed.) NordSec 2018.
LNCS, vol. 11252, pp. 73–87. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-03638-6 5

https://doi.org/10.1007/0-387-34805-0_17
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-46877-3_44
https://doi.org/10.1007/3-540-46877-3_44
https://doi.org/10.1007/3-540-48658-5_21
https://doi.org/10.1007/3-540-45961-8_11
https://doi.org/10.1007/978-3-030-12942-2_35
https://doi.org/10.1007/978-3-030-12942-2_35
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/978-3-030-03638-6_5
https://doi.org/10.1007/978-3-030-03638-6_5

Cryptography

Verifiable and Private Oblivious
Polynomial Evaluation

Hardik Gajera1(B), Matthieu Giraud2, David Gérault2, Manik Lal Das1,
and Pascal Lafourcade2

1 DA-IICT, Gandhinagar, India
{hardik gajera,maniklal das}@daiict.ac.in

2 Université Clermont Auvergne, LIMOS UMR 6158, Aubière, France
{matthieu.giraud,david.gerault,pascal.lafourcade}@uca.fr

Abstract. It is a challenging problem to delegate the computation of a
polynomial on encrypted data to a server in an oblivious and verifiable
way. In this paper, we formally define Verifiable and Private Oblivious
Polynomial Evaluation (VPOPE) scheme. We design a scheme called Ver-
ifiable IND-CFA Paillier based Private Oblivious Polynomial Evaluation
(VIP-POPE). Using security properties of Private Polynomial Evaluation
(PPE) schemes and Oblivious Polynomial Evaluation (OPE) schemes, we
prove that our scheme is proof unforgeability, indistinguishability against
chosen function attack, and client privacy-secure under the Decisional
Composite Residuosity assumption in the random oracle model.

Keywords: Delegation of computation · Verifiable computation ·
Private Polynomial Evaluation · Oblivious evaluation · Privacy

1 Introduction

Fromharmless smart gardening [19] to critical applications such as forest fire detec-
tion [17], data monitoring through sensors is becoming pervasive. In particular,
sensors for monitoring health-related data are more and more widely adopted, be
it through smartwatches that track the heart rate, or sensors implemented in the
patient’s body [2]. This medical data can sometimes be used to assess the health
status of an individual, by applying a single variable polynomial prediction func-
tion on it [7]. However, when it comes to medical data, extreme care must be taken
to avoid any leakage. Recently, the leak of medical data of 1.5 million SingHealth
users in Singapore strongly incentivized to improve the security and privacy sur-
rounding medical data [1]. In this context, we consider the following problem:

How can a company use medical data recorded by clients to give them predic-
tions about their health status in a private way?

For instance, this company may collect Fitbit data from its customers, and use
it to predict things such as a risk factor for certain diseases. For economic reasons,
this company keeps the polynomial secret: it invested time to build it and required

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Laurent and T. Giannetsos (Eds.): WISTP 2019, LNCS 12024, pp. 49–65, 2020.
https://doi.org/10.1007/978-3-030-41702-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41702-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-41702-4_4

50 H. Gajera et al.

to collect lots of data. Its economic model is based on the secrecy of the polynomial:
the clients pay the company to obtain the polynomial’s output on their medical
data. If the polynomial was public, then the clients would directly compute it, and
the company would cease to exist. However, as the company grows, it becomes dif-
ficult to treat all the computation requests, so that the company needs to delegate
this computation to a cloud service. The company trusts the cloud service provider
and gives the secret polynomial; however, the clients may not trust the server to
produce correct results, so that the company would like the server to be able to
prove the correctness of each prediction to the client, i.e., prove that its output is
correct with regards to the secret prediction function.

Client

Server

Company

(f(x), π)
x

f(·)

vkf

Fig. 1. Illustration of a PPE scheme.

Client

Server

Company

(Epk(f(x)), π)

Epk(x)
f(·)

vkf

Fig. 2. Illustration of a VPOPE scheme.

In this scenario, the problem is how to delegate computations on a secret
polynomial function to an external server in a verifiable way. This problem is
solved by Private Polynomial Evaluation (PPE) schemes [4,12,14,25] illustrated
in Fig. 1. In a PPE scheme, the company outsources the secret polynomial func-
tion f(·) to an external server. Moreover, the company provides some public
information vkf called verification key. This verification key is used with the
proof π generated by the server during the delegated computation of f(x) to
allow clients to verify the correctness of the result returned by the server.

However, PPE schemes do not protect the privacy of the clients: their data
is handled in clear by the server. After the SingHealth hack, the company wants
to be sure that even if an intruder hacks the server, he will not be able to steal
the medical data of its clients. To solve this problem, we propose a new prim-
itive called Verifiable and Private Oblivious Polynomial Evaluation (VPOPE).
A VPOPE scheme is a private polynomial evaluation scheme, in which the data
of the client cannot be read by the cloud server. More precisely, the client sends
his encrypted data to the server, and the server never learns anything about x.
We illustrate this new primitive in Fig. 2.

Verifiable and Private Oblivious Polynomial Evaluation 51

1.1 Related Works

VPOPE schemes are related to several research domains. The first one is the
Verifiable Computation (VC) introduced by Gennaro et al. [13]. VC aims to
delegate a costly computation to an untrusted third party. This third party
returns the result of the computation and proof of correctness, which is easier to
verify. Primitives, where everyone can check the correctness of the computation,
are said to be publicly verifiable [23]. VC has given rise to a bunch of protocols
[5,6,9,21,22]. Although VC is related to our paper; the difference is that in these
works, the polynomial used by the server is not secret.

Another similar primitive is Oblivious Polynomial Evaluation (OPE) intro-
duced by Naor and Pinkas [18]. OPE protocols are constituted of two parties.
The first party, A, knows a secret function f(·) and the other one, B, has a
secret element x. The aim of OPE is that B receives f(x) in such a way A
learns nothing about the value x sent by B, and that B learns nothing about
the function f(·). OPE are used to solve different cryptographic problems as set
membership, oblivious keyword search, and set intersection [10,11,16]. Although
OPE and VPOPE are very similar; their difference lies in the fact that OPE do
not consider the verifiability of the computation of f(x), whereas it is a crucial
point in VPOPE since the client does not trust the server.

Finally, the nature of VPOPE is very close to those of Private Polynomial
Evaluation (PPE). To the best of our knowledge, only five papers [4,12,14,15,25]
propose to hide a polynomial used by the server and allow a client to verify the
returned results. Kate et al. [15] formally define a primitive called commitments
to polynomials that can be used as a PPE scheme and propose the PolyCommitPed
scheme. In this primitive, the committer publishes some points (x, y) of the
secret polynomial together with a proof that y = f(x). Then, she can open the
commitment a posteriori to reveal the secret polynomial. This primitive is close
to PPE and VPOPE schemes since the verification key used in PPE and VPOPE
can be viewed as a commitment. However, this verification key is computed by a
trusted party (the company) and computations are performed by an untrusted
party (the server). Although the verification cost is in constant-time, it uses
three pairing computations, and we show that, in practice, the verification cost
of our VPOPE scheme is more efficient (see Sect. 5.2).

Independently of Kate et al. [15], Guo et al. [14] propose a scheme with
similar security properties to delegate the computation of a secret health-related
function on the users’ health record. The polynomials are explicitly assumed to
have low coefficients and degree, which significantly reduces their randomness.
However, the authors give neither security models nor proofs. Later, Gajera
et al. [12] show that any user can guess the polynomial using the Lagrange’s
interpolation on several points. They propose a scheme where the degree k is
hidden and claim that it does not suffer from this kind of attack.

Following this work, Bultel et al. [4] show that hiding the degree k is useless
and that no scheme can be secure when the user query more than k points to
the server. Moreover, they give cryptanalysis of Guo et al. [14] PPE scheme and
of Gajera et al. [12] PPE scheme which requires only one query to the server

52 H. Gajera et al.

and present the first security model for PPE schemes. A PPE scheme must
satisfy the following properties: (i) proof unforgeability (UNF) requires that the
server cannot provide a valid proof to the client for a point that is not a point
of the secret polynomial; (ii) indistinguishability against chosen function attack
(IND-CFA) requires that the client cannot distinguish which of two polynomials of
her choice has been evaluated by the server. Bultel et al. show that PolyCommitPed
scheme from Kate et al. [15] satisfies these security properties. Moreover, Bultel
et al.design a PPE scheme called PIPE that is IND-CFA secure and solves an
open problem described by Kate et al. concerning the design of a scheme with a
weaker assumption than t-SDH. Despite having the additional property that it
protects the privacy of the client, we show that the verification of our VPOPE
scheme is more efficient than for PIPE.

More recently, Xia et al. [25] proposed a new efficient PPE scheme. As PIPE,
their scheme satisfies the required security properties defined in [4]. Their scheme
is based on the Pedersen’s Verifiable Secret Sharing [24] and does not depend on
NIZKP to allow the client to verify the correctness of the result contrary to Bultel
et al. [4]. Besides, to have computational advantages over previous PPE schemes,
Xia et al. ’s scheme relies only on the Discrete Logarithm assumption. However,
the verification cost of Xia et al. ’s scheme also requires k exponentiations where
k is the degree of the secret polynomial, which makes it costlier than our scheme
that needs only three exponentiations, one Paillier decryption, and k.

1.2 Contributions

The contributions of this paper are summarized as follows:

– We formally define the VPOPE schemes and give a security framework based
on those of PPE and Oblivious Polynomial Evaluation (OPE) schemes.

– We design VIP-POPE (for Verifiable IND-CFA Paillier based Private Obliv-
ious Polynomial Evaluation), an efficient and secure VPOPE scheme. This
scheme uses the homomorphic properties of Paillier’s encryption scheme [20]
to achieve encrypted polynomial evaluation.

– We also formally prove its security in the random oracle model and compare
its efficiency for the verification cost with the existing PPE schemes. We show
that VIP-POPE is more efficient for the verification part than PPE schemes
presented in [4,15,25].

1.3 Outline

In the next section, we recall the cryptographic notions used in this paper. In
Sect. 3, we give the PPE and OPE security model for VPOPE schemes. Then,
we present in Sect. 4, our VPOPE scheme called VIP-POPE. Before to con-
clude, we prove in Sect. 5 that VIP-POPE satisfies the security properties for
VPOPE schemes and compares its verification cost with other PPE schemes of
the literature.

Verifiable and Private Oblivious Polynomial Evaluation 53

2 Preliminaries

We start by recalling the definition of the cryptographic tools used in this paper.
In the rest of the paper, we denote by poly(η) the set of probabilistic polynomial-
time algorithms with respect to the security parameter η.

2.1 Paillier Cryptosystem

We now recall the generation, the encryption and decryption algorithms of the
Paillier’s public key encryption scheme [20] used in our scheme.

Key Generation. We denote by Zn, the ring of integers modulo n and by Z
�
n

the set of invertible elements of Zn. The public key pk of Paillier’s encryption
scheme is (n, g), where g ∈ Z

�
n2 and n = pq is the product of two prime numbers.

The corresponding secret key sk is (λ, μ), where λ is the least common mul-
tiple of p − 1 and q − 1 and μ = (L(gλ mod n2))−1 mod n, where L(x) = x−1

n .

Encryption Algorithm. Let m be a message such that m ∈ Zn. Let r be a
random element of Z�

n. We denote by Epk the encryption algorithm that produces
the ciphertext c from a given plaintext m with the public key pk = (n, g) as
follows: c = Epk(m) = gmrn mod n2.

Decryption Algorithm. Let c be the ciphertext such that c ∈ Zn2 . We denote
by Dsk the decryption function of the plaintext c with the secret key sk = (λ, μ)
defined as follows: m = Dsk(c) = L

(
cλ mod n2

) · μ mod n.
Paillier’s cryptosystem is a partial homomorphic encryption scheme. Let m1

and m2 be two plaintexts in Zn. The product of the two associated ciphertexts
with the public key pk = (n, g), denoted c1 = Epk(m1) = gm1rn

1 mod n2 and
c2 = Epk(m2) = gm2rn

2 mod n2, is the encryption of the sum of m1 and m2.
We also remark that: Epk(m1) · Epk(m2)−1 = Epk(m1 − m2) and Epk(m1)m2 =
Epk(m1m2).

Theorem 1. Paillier’s cryptosystem is IND-CPA-secure if and only if the Deci-
sional Composite Residuosity (DCR) Assumption holds [20].

To present our scheme, we first claim the following property on Paillier cipher-
texts.

Property 1. Let n be the product of two prime numbers, x ∈ Zn, and g ∈ Z
�
n2 . We

set pk = (n, g) a Paillier public key. Let {ti}k
i=1 such that for all i ∈ {1, . . . , k},

we have ti = txi−1 · rn
i with t0 = g, and ri ∈ Z

�
n2 . Then for all i ∈ {1, . . . , k},

ti = Epk(xi).

2.2 Zero-Knowledge Proof

We use the ZKP given by Baudron et al. [3] to prove the plaintexts equality
of k ∈ N Paillier ciphertexts. Let Z

�
n2 be a multiplicative group where n is the

product of two prime numbers p and q. The language is the set of all statements

54 H. Gajera et al.

(t1, . . . , tk) ∈ (Z�
n2)k for k ∈ Z≥2 such that for all i ∈ {1, . . . , k}, ti = txi−1 · rn

i

mod n2 where t0 ∈ Z
�
n2 and ri ∈ Z

�
n2 .

Since the ZKP given by Baudron et al. [3] is a sigma protocol, we can use
the Fiat-Shamir Transformation [8] to obtain a NIZKP. We formally define this
NIZKP called DecPaillierEq.

Definition 1 (DecPaillierEq [3]). Let n be the product of two prime numbers p
and q and H be a hash function, L be the set of all (t1, . . . , tk) ∈ (Z�

n2)k such
that for all i ∈ {1, . . . , k}, ti = txi−1 · rn

i mod n2 where t0 ∈ Z
�
n2 and ri ∈ Z

�
n2 .

We define the NIZKP DecPaillierEq = (Prove,Verify) for L as follow:

– Prove((t1, . . . , tk), ω): Using the witness ω = (x, t0, {ri}k
i=1), it picks ρ

$←
[0, 2log(n)] and si ∈ Z

∗
n for 1 ≤ i ≤ k, and computes ui = tρi−1 · sn

i mod n2

for 1 ≤ i ≤ k. Moreover, it computes w = ρ + x · H(t) and sets vi = si · rH(t)
i

mod n for 1 ≤ i ≤ k. Finally, it outputs πt = (w, {ui}k
i=1, {vi}k

i=1).
– Verify((t1, . . . , tk), πt): Using πt = (w, {ui}k

i=1, {vi}k
i=1), it verifies if w ∈

[0, 2log(n)], and if twi−1 · vn
i = ui · tH(t)

i mod n2 for 1 ≤ i ≤ k. Then it outputs
1, else 0.

Moreover, Baudron et al. [3] prove the following theorem.

Theorem 2. DecPaillierEq is unconditionally complete, sound and zero-
knowledge in the random oracle model.

3 Definition and Security Model

Before we present our security model, we first formally define a Private Oblivious
Polynomial Evaluation scheme.

Definition 2. A Verifiable and Private Oblivious Polynomial Evaluation
(VPOPE) scheme is composed of eight algorithms (setup, init, keyGen, queryGen,
queryDec, compute, decrypt, verif) defined as follows:

– setup(η) : Using the security parameter η, this algorithm generates a ring F ,
public parameters pub and secret parameters sec. It returns (pub, F, sec).

– init(F, f, sec) : Using F , the secret polynomial f , and parameters sec, this
algorithm returns a verification key vkf and a server key skf associated to
the secret polynomial f .

– keyGen(η, pub, k) : Using the security parameter η and public parameters pub,
this algorithm generates and returns a client’s key pair (pkc, skc).

– queryGen(pkc, x) : Using a public key pkc and an input x, this algorithm gen-
erates an encrypted query t associated to x, a proof πt proving that t is a valid
encrypted query, and returns (t, πt).

Verifiable and Private Oblivious Polynomial Evaluation 55

– queryDec(skc, t) : Using a secret key skc and an encrypted request t, this algo-
rithm outputs x if t is a valid request of x, ⊥ otherwise.

– compute(t, πt, f, skf , F) : Using t, πt, f , skf , and F , this algorithm returns
an encrypted value d along with a proof πd proving that d is an encryption of
f(x) if the proof πt is “accepted”. Else it returns ⊥.

– decrypt(skc, d) : Using a secret key skc and the encrypted value d, this algo-
rithm returns y, the decryption of d.

– verif(x, skc, pub, y, πd, vkf) : This algorithm returns 1 if the proof πd is
“accepted”, 0 otherwise.

3.1 Security Models

ExpCPIΠ,A(η):
b

$← {0, 1} ;
(pub, F, sec) ← setup(η) ;
f

$← F [X]k ;
(vkf , skf) ← init(F, f, sec) ;
(pkc, skc) ← keyGen(η, pub, k) ;
(x0, x1, st) ← A1(pkc, pub, F) ;
(t, πt) ← queryGen(pkc, xb) ;
b∗ ← ACOCPI(·)

2 (t, f, skf , F, st) ;
return (b = b∗) .
COCPI(x):
(t, πt) ← queryGen(pkc, x) ;
return t .

Fig. 3. CPI experiment.

We use security notions of PPE
schemes formalized by Bultel et al. [4],
namely Unforgeability (UNF), and Indis-
tinguishability against Chosen Function
Attack (IND-CFA), and adapt them to
VPOPE schemes. The security model
IND-CFA ensure secrecy of the polyno-
mial, the security model UNF ensures the
validity of the verification process. Since
VPOPE schemes consider encrypted
data on the client-side, we recall the
Client’s Privacy - Indistinguishability
(CPI) security property defined by Naor
and Pinkas [18] to include the privacy of
the client’s data. Moreover, we define the
Query Soundness (QS) notion to prove
that a client cannot have other informa-
tion than points that she queried. In all the security models, we denote by F [x]k,
the set of all polynomials of degree k over a finite field F .

Client’s Privacy - Indistinguishability

We first recall the Client’s Privacy - Indistinguishability (CPI) security for VPOPE
schemes introduced by Naor and Pinkas [18]. In this model, the adversary chooses
two queries (x0, x1) and tries to guess the evaluation xb asked by the client. The
adversary has access to the ciphertext oracleCOCPI(·) taking x as input and returns
the encrypted query t. A VPOPE scheme is CPI-secure if no adversary can output
the query chosen by the client with a better probability than by guessing.

Definition 3 (Client’s privacy - indistinguishability.). Let Π be a
VPOPE, A = (A1,A2) ∈ poly(η)2 be a two-party adversary. The client’s pri-
vacy - indistinguishability (CPI) experiment for A against Π is defined in Fig. 3,

56 H. Gajera et al.

where A has access to the oracle COCPI(·). The advantage of the adversary A
against the CPI experiment is given by:

AdvCPIΠ,A(η) =
∣
∣
∣
∣
1
2

− Pr
[
1 ← ExpCPIΠ,A(η)

]∣∣
∣
∣ .

A scheme Π is CPI-secure if this advantage is negligible for any A ∈ poly(η)2.

Chosen Function Attack
Expk-IND-CFA

Π,A (η):

b
$← {0, 1} ;

(pub, F, sec) ← setup(η) ;
(pkc, skc) ← keyGen(η, pub, k) ;
(f0, f1, st2) ← A1(pkc, pub, F, k) ;
(vkf , skf) ← init(F, fb, sec) ;
b∗ ← ACOCFA(·)

2 (pkc, skcpub, F, vkf , k, st) ;
if f0 �∈ F [X]k or f1 �∈ F [X]k:
then return ⊥ ;
else return (b = b∗) .

Fig. 4. IND-CFA experiment.

We recall the model for k-Indistingui-
shability against Chosen Function
Attack (k- IND-CFA). In this model,
the adversary chooses two polynomi-
als (f0, f1) and tries to guess the poly-
nomial fb used by the server, where
b ∈ {0, 1}. The adversary has access
to a server oracle COCFA(·) and sends
to her an encrypted query t associated
to her data x along with a proof πt.
The oracle decrypts the query t and
obtains x if t is valid. If f0(x) = f1(x),
the oracle returns d i.e. the encrypted value of fb(x), along with a proof πd.

If f0(x) �= f1(x), then the server returns nothing. In practice, an adver-
sary chooses (f0, f1) such that f0 �= f1, but with k points (xi, yi) such that
f0(xi) = f1(xi). It allows the adversary to maximize his oracle calls in order to
increase his chances of success.

COCFA(t, πt):
(d, πd) ← compute(t, πt, fb, skf , F) ;
if x ← queryDec(t, skc) and x �= ⊥ and
f0(x) = f1(x):
then return (d, πd) ;
else return ⊥ .

Fig. 5. Server oracle for IND-CFA.

Definition 4. (k-IND-CFA). Let Π
be a VPOPE, A = (A1,A2) ∈
poly(η) be a two-party adversary
and k be an integer. The k-IND-CFA
experiment for A against Π is defined
in Fig. 4, where A has access to the
server oracle COCFA(·). The advan-
tage of the adversary A against the
k-IND-CFA experiment is given by:

Advk-IND-CFA
Π,A (η) =

∣
∣
∣
∣
1
2

− Pr
[
1 ← Expk-IND-CFA

Π,A (η)
]∣∣
∣
∣ .

A scheme Π is k-IND-CFA-secure if this advantage is negligible for any A ∈
poly(η)2.

Verifiable and Private Oblivious Polynomial Evaluation 57

Query Soundness
ExpQS

Π,A(η):
(pub, F, sec) ← setup(η) ;
f

$← F [X]k ;
(vkf , skf) ← init(F, f, sec) ;
(pkc, skc) ← keyGen(η, pub, k) ;
(t, πt) ← A((pkc, skc), pub, F, vkf) ;
if queryDec(t) �= ⊥ and compute(t, πt, f, skf , F) �= ⊥

and f(queryDec(skc, t)) �= decrypt(skc, d) such that
(d, πd) ← compute(t, πt, f, skf , F):

then return 1 ;
else return 0 .

Fig. 6. QS experiment.

We now define a model
for Query Soundness
(QS). In this model, the
adversary tries to learn
other information than
points of the secret poly-
nomial that she queried
by sending a particular
query t along with a
proof πt to the server.

Definition 5 (Query Soundness). Let Π be a VPOPE, and A ∈ poly(η) be
an adversary. The Query Soundness (QS) experiment for A against Π is defined
in Fig. 6. The advantage of the adversary A against the QS experiment is given
by:

AdvQS
Π,A(η) = Pr

[
1 ← ExpQS

Π,A(η)
]

.

A scheme Π is QS-secure if this advantage is negligible for any A ∈ poly(η).

Unforgeability

Finally, we recall the unforgeability property. A VPOPE is unforgeable when
a dishonest server cannot produce a valid proof for a point (x, y) such that
y �= f(x). In this model, the secret polynomial f is chosen by the server.

ExpUNF
Π,A(η):

(pub, F, sec) ← setup(η) ;
(pkc, skc) ← keyGen(η, pub, k) ;
(f, st) ← A1(pkc, sec) ;
(vkf , skf) ← init(F, f, sec) ;
(x∗, y∗, π∗) ← A2(pub, skf , vkf , F, f, st) ;
if f(x∗) �= y∗ and
verif(x∗, skc, pub, y∗, π∗, vkf) = 1:
then return 1 ;
else return 0 .

Fig. 7. UNF experiment.

Definition 6. (Unforgeability).
Let Π be a VPOPE, A =
(A1,A2) ∈ poly(η) be a two-
party adversary. The unforge-
ability (UNF) experiment for
A against Π is defined in
Fig. 7. We define the advan-
tage of the adversary A
against the UNF experiment
by:

AdvUNFΠ,A(η) = Pr
[
1 ← ExpUNFΠ,A(η)

]
.

A scheme Π is UNF-secure if this advantage is negligible for any A ∈ poly(η)2.

58 H. Gajera et al.

3.2 Security Against Collusion Attacks

There are two possible collusion scenarios: the collusion of a client and the server,
and collusion of two or more clients.

Scenario 1: In a collusion of a client and the server, the server can provide the
secret polynomial to the client. This is an inherent problem and cannot be
prevented. The client can share public parameters and verification keys with
the server but these parameters are already public and known to the server.
The collusion does not give any advantage to the server to forge fake proof
of computation.

Scenario 2: In a collusion of two or more clients, sharing Paillier secret keys with
each other does not provide any information about the secret polynomial. All
the verification keys and public parameters are the same for each client. The
inherent limitation is that the collusion of clients can share their evaluated
points and if the total number of points is more than k, where k is the degree
of the secret polynomial, then clients can derive the polynomial. This problem
exists in any polynomial computation and cannot be prevented.

4 VIP-POPE Description

In our scheme, we assume that the server is not trusted with the computation
result and clients are curious to learn about the secret polynomial. A client may
forge an encrypted query to gain more information about the secret polynomial.
We first give the intuition of our scheme VIP-POPE and then give its formal
definition.

We use the homomorphic properties of Paillier’s cryptosystem to design our
scheme called VIP-POPE. The key idea is to use the fact that a client can
generate an encrypted query t = {ti}k

i=1 where ti = Epk(xi) and k is the degree
of the secret polynomial f(·) to allow the server to compute Epk(f(x)). Since the
server knows coefficients {ai}k

i=0 of f(·), it computes Epk(f(x)) as follows:

Epk(a0) ·
i=k∏

i=1

Epk(xi)ai =
i=k∏

i=0

Epk(aix
i) = Epk

(
i=k∑

i=0

aix
i

)

= Epk(f(x)) .

The client may forges an untrustworthy encrypted query to learn more than
a point on the polynomial. To avoid this kind of attack, the client must provide
a proof of validity πt for each query t = {ti}k

i=1 that she sends to the server,
i.e., a proof that ti = Epk(xi) for all i ∈ {1, . . . , k}. Based on Property 1, such a
proof can be built using the NIZKP DecPaillierEq presented in Definition 1.

4.1 Formal Definition of VIP-POPE

We now give the formal definition of our scheme VIP-POPE. The algorithms
setup and init are run by the company, the algorithm compute is run by the server
and the algorithms keyGen, queryGen, decrypt and verif are run by a client.

Verifiable and Private Oblivious Polynomial Evaluation 59

Definition 7. Let VIP-POPE = (setup, init, keyGen, queryGen, queryDec,
compute, decrypt, verif) be a scheme defined by:

– setup(η) : Using the security parameter η, this algorithm first generates a
prime number q. It selects a multiplicative group G of order q and generated
by h. It picks (s1, s2) ← (Z�

q)
2 and sets pub = (hs1 , hs2 , h, q), sec = (s1, s2),

and F = Zq. Finally, it outputs pub, F , and sec.
– init(F, f, sec) : We set f(x) =

∑i=k
i=0 ai·xi where ai ∈ Zq. For all i ∈ {0, . . . , k},

it picks ri ∈ Z
�
q and computes αi = (ai + ri) · s1 and γi = s1 · s−1

2 · ri. Finally,
it sets vkf = {γi}k

i=0, skf = {αi}k
i=0, and returns (vkf , skf).

– keyGen(η, pub, k) : For a client c, it picks two primes pc and qc such that
(k + 1)q2 < pcqc and pc ≈ qc. It sets nc = pcqc. According to nc, it generates
a Paillier key pair such that pkc = (nc, gc) and skc = (λc, μc) as described in
Sect. 2. It outputs (pkc, skc).

– queryGen(pkc, x) : Using x and the Paillier public key pkc, this algorithm
computes, for all i ∈ {1, . . . , k}, ti = Epk(xi) and returns the encrypted
query t = (pkc, {ti}k

i=1) along with a proof πt of equality of plaintexts using
proofPaillierEq.

– queryDec(skc, t) : First this algorithm parses t as (pkc, {ti}k
i=1). Using the

Paillier secret key skc, this algorithm sets x = Dskc(t1). If Dskc(ti) = xi for
2 ≤ i ≤ k, it outputs x, ⊥ otherwise.

– compute(t, πt, f, skf , F) : If πt is accepted by verifyPaillierEq, this algorithm
uses {ti}k

i=1 from t, coefficients {ai}k
i=0 of the polynomial function f(·), and

{αi}k
i=0 from the server secret key skf to compute:

d = Epkc(a0) ·
i=k∏

i=1

tai
i and πd = Epkc(α0) ·

i=k∏

i=1

tαi
i ,

and returns (d, πd), else it returns ⊥.
– decrypt(skc, d) : Using the Paillier secret key skc which is equal to (λc, μc),

this algorithm returns y = Dskc(d) mod q.
– verif(x, skc, pub, y, πd, vkf) : Using x, skc, vkf , and the proof πd, this algorithm

computes:

y′ = Dskc(πd) mod q and z =
i=k∑

i=0

γi · xi .

If (hs1)y · (hs2)z = hy′
, then the algorithm returns 1, else it returns 0.

Parameter Selection. We need to have
∑i=k

i=0 ai ·xi < nc = pc ·qc for successful
decryption due to Paillier cryptosystem properties. Since 0 ≤ ai < q and 0 ≤
xi < q, we have ai · xi < q2 for each i ∈ {0, . . . , k} that gives us a0 + a1 · x +
· · · + ak · xk < (k + 1) · q2. Hence, we need to have (k + 1) · q2 < nc to always
have successful decryption. Moreover, we recommend the size of each prime pc

and qc to be at least 1024 bits to make the factorization of nc hard.

60 H. Gajera et al.

5 Security and Performance Analysis

We first give a theorem on the security of VIP-POPE. Then we provide some
comparisons with PPE schemes of the literature [4,15,25].

5.1 Security Proofs

We present the security proofs of VIP-POPE in our security model.

Theorem 3. VIP-POPE is a CPI-secure scheme under the DCR assumption.

Proof. We assume there exists A ∈ poly(η)2 such that AdvCPIVIP-POPE,A(η) is
non-negligible and we show there exists an algorithm B ∈ poly(η) such that
AdvIND-CPA

Paillier,B(η) is non-negligible. We build B as follows:

– B receives Zq, sec from setup(η) and pkc from keyGen(η, pub, k).
– B runs (x0, x1, st) ← A1(pkc).
– B picks f

$← Zq[X]k and runs init(Zq, f, sec) to obtain vkf and skf .
– B runs the oracle Epk(LRb(·, ·)) on (xi

0, x
i
1) for i ∈ {1, . . . , k} and obtains

t = {ti}k
i=1, Paillier ciphertexts of xi

b.
– B runs b∗ ← A2(t, f, skf ,Zq, st). To simulate the oracle COCPI(·) on x to A,

B computes t = {Epkc
(xi)}k

i=1.
– Finally, B outputs b∗.

We remark that:

1. The experiment CPI is perfectly simulated for A.
2. B wins the IND-CPA experiment if and only if A wins the CPI experiment.

Since AdvCPIVIP-POPE,A(η) is non-negligible, then AdvIND-CPA
Paillier,B(η) is non-negligible.

However, Paillier cryptosystem is IND-CPA under the DCR assumption, then B
can be used to break the DCR assumption, which contradicts our hypothesis and
concludes the proof. �	
Theorem 4. For any k ∈ N, VIP-POPE is a k-IND-CFA-secure scheme.

Proof. Let A ∈ poly(η) be an algorithm. We show that there exists an algorithm
B ∈ poly(η) simulating the experiment Expk-IND-CFA

VIP-POPE,A(η) to A. We build B as
follows:

– B picks b
$← {0, 1}.

– B generates (pub,Zq, sec) ← setup(η), where pub = (hs1 , hs2 , h), and sec =
(s1, s2) ∈ Z

�
q .

– B runs (f0, f1, st) ← A1(Zq, k), and it sets f0(x) =
∑i=k

i=0 a0,i · xi and f1(x) =
∑i=k

i=0 a1,i · xi.
– B picks r

$← Z
�
q . For all i ∈ {0, . . . , k}, it picks ri

$← Z
�
q , and sets αi =

(ab,i + ri) · s1, and γi = s1 · s−1
2 · ri. Finally, it sets f ′(x) =

∑i=k
i=0 αi · xi, and

returns vkf = {γi}k
i=0.

Verifiable and Private Oblivious Polynomial Evaluation 61

– B generates (pkc, skc) ← keyGen(η, pub, k).
– B runs b∗ ← A2((pkc, skc), pub,Z�

q , vkf , k, st). To simulate the oracle
COCFA(·) to A on t = {Epk(xi)}k

i=1, B first verifies if f0(Dskc(Epkc(x))) =
f1(Dskc(Epkc(x)) then computes:

d = Epkc(ab,0) ·
i=k∏

i=1

Epk(xi
j)

ab,i , πd = Epkc(α0) ·
i=k∏

i=1

Epk(xi
j)

αi ,

and returns (d, πd). Else, it returns ⊥.
– Finally, B outputs b∗.

We remark that r and ri (for 0 ≤ i ≤ k) are chosen in the uniform distribution of
Z

�
q , then each element of vkf comes from the uniform distribution on Z

�
q . Finally,

we have:

(hs1)f(x) · (hs2)Z(x) = hf ′(x).

We deduce that the experiment k-IND-CFA is perfectly simulated for A. Then
A cannot do better than the random to guess the value of the chosen b. Hence,
Advk-IND-CFA

VIP-POPE,A(η) is negligible which concludes the proof. �	
Theorem 5. For any k ∈ N, VIP-POPE is QS-secure in the random oracle
model.

Proof. The proof πt is computed as in DecPaillierEq (Definition 1). This NIZKP
is unconditionally sound, then there exists no probabilistic polynomial time algo-
rithm that forges a valid proof on a false statement with non-negligible prob-
ability, i.e., a statement (t1, . . . , tk) where there exists 1 ≤ i ≤ k such that
ti �= txi−1 · rn

i where n = p · q and p, q are two prime numbers, t0 ∈ Z
∗
n2 ri ∈ Z

∗
n2 ,

and x ∈ Z
∗
n2 .

We show that if there exists A ∈ poly(η)2 such that AdvQS
VIP-POPE,A(η) is

non-negligible, then there exists B ∈ poly(η) that forges a valid proof of an
instance where ti �= txi−1 · rn

i . It contradicts the soundness of DecPaillierEq which
concludes the proof. B works as follows:

– B runs (pub, F, sec) ← setup(η), (pkc, skc) ← keyGen(η, pub, k), f
$← F [x]k,

(vkf , skf) ← init(F, f, sec), and (t, πt) ← A((pkc, skc), pub, F, vkf) where πt =
(w, {ui}k

i=1, {vi}k
i=1).

– B returns t as a statement together with the proof πt.

We observe that since AdvQS
VIP-POPE,A(η) is non-negligible, then the probability

that f(queryDec(skc, t)) �= decrypt(skc, d) and compute(t, πt, f, skf , F) �= ⊥ is
non-negligible. Moreover:

– f(queryDec(skc, t)) �= decrypt(skc, d) ⇒ f(x) �= y, that means there exists
1 ≤ i0 ≤ k such that Dskc(ti) �= xi.

– compute(t, πt, f, skf , F) �= ⊥ ⇒ twi−1 · vn
i = ui · t

H(t)
i mod n2 for 1 ≤ i ≤ k.

Then πt is a valid proof.

62 H. Gajera et al.

B returns a valid proof of a false instance with non-negligible probability. �	
Theorem 6. For any k ∈ N, VIP-POPE is UNF-secure under the DL assump-
tion.

Proof. We assume there exists A ∈ poly(η)2 such that AdvUNFVIP-POPE,A(η) is
non-negligible. We show that A can be used to construct an algorithm B that
computes logh(hs1).

First, we note that if y∗ �= f(x∗), then we also have y′
∗ �= y′ where we denote

y′
∗ = Dskc(π∗) and y′ =

∑i=k
i=0 αi ·xi

∗. It is easy to check this condition. Therefore,
we must have both inequalities y∗ �= f(x∗) and y′

∗ �= y′ hold. We show that there
exists an algorithm B ∈ poly(η) that breaks the DL assumption by computing
logh(hs1) using A. B works as follows:

– B obtains (pub, F, sec) ← setup(η) and (pkc, skc) ← keyGen(η, pub, k).
– B receives (f, st) ← A1(pkc, pub, F).
– B runs (vkf , skf) ← init(F, f, sec) where skf = {αi}k

i=0, then obtains
(x∗, y∗, π∗) ← A2(pubc, skf , vkf , F, f, st).

– B computes:

logh(hs1) =
Dskc(π∗) − ∑i=k

i=0 αi · xi
∗

y∗ − f(x∗)
.

Since we have proved that y∗ �= f(x∗), the discrete logarithm logh(hs1) can be
computed with the same probability as A wins the UNF experiment. There-
fore, based on the DL assumption, there cannot exist an adversary A such that
AdvUNFVIP-POPE,A(η) is non-negligible. �	

5.2 Comparison with Other PPE Schemes

Table 1. Comparison of VIP-POPE with other PPE schemes. We denote by D the
constant cost of one Paillier decryption.

Schemes Setup size Key size Verif. cost Pairing Assumption Model Privacy

PolyCommitPed [15] O(k) O(1) O(1) Yes t-SDH Standard No

PIPE [4] O(1) O(k) O(k · log(q)) No DDH ROM No

Xia et al. ’s [25] O(1) O(k) O(k · log(q)) No DL Standard No

VIP-POPE O(1) O(k) O(3 · log(q) + k) + D No DL/DCR ROM Yes

In Table 1, we provide comparison of our scheme with PolyCommitPed [15],
PIPE [4] and Xia et al. ’s scheme [25]. We observe that the verification key size
and verification cost are constant in PolyCommitPed while in all other schemes
it depends on the degree k. The verification equation in PolyCommitPed involves
several bilinear pairing which is costly compared to other operations. The ver-
ification key size and verification cost are not constant in our scheme but our
scheme is pairing free and efficient as compared to other pairing free schemes.

Verifiable and Private Oblivious Polynomial Evaluation 63

Moreover, our scheme VIP-POPE provides the client’s data privacy while the
other three schemes do not provide any privacy. To support our claim about
efficiency, we implement all these schemes for different values of degrees with
realistic parameters.

In our scheme, the verification of the result obtained from the server is done
by a client. In such a case, the verification cost becomes an important aspect
of the scheme. We claim that our scheme is most efficient so far in terms of
verification cost. We implement VIP-POPE, PIPE and Xia’s scheme in SageMath
8.1 on 64-bit PC with Intel Core i5 - 6500 CPU @ 3.2 GHz and 4 GiB RAM.

0
20
40
60
80
100
120
140
160
180
200
220

0 20 40 60 80 100

T
im

e
in

m
ill
is
ec
on

ds

Degree of the polynomial f(x)

VIP-POPE

PIPE
Xia’s scheme

PolyCommitped

Fig. 8. Verification cost comparison.

The new scheme, VIP-POPE,
provides privacy of the client’s
data while the other two schemes,
PIPE, and Xia’s scheme, do not
provide privacy of the client’s
data. To keep the comparison as
fair as possible, we implement all
three schemes with the same real-
istic parameters. For our scheme,
we choose a 1024 bit prime q
and 160 bit prime q1 such that
q′ = 2q1q + 1 is a prime. We
choose another 1024 bit prime
p and set n = pq′. The coeffi-
cients of the polynomial f(x), the
secret values (s1, s2) and {ri}k

i=0

are all selected uniformly at ran-
dom from Z

�
q . For Xia’s scheme

and PIPE, we keep the value of q, the polynomial f(x) and {ri}k
i=0 same as

in VIP-POPE. We compare the cost of only the verification equation in all three
schemes.

For different values of the degree of the polynomial f(x), we ran each scheme
for 100 new instances and each instance for 10 times. We then averaged out the
total time for the verification equation in each scheme. In Fig. 8, we observe that
VIP-POPE takes almost constant time while the cost of verification equation in
PIPE and Xia’s scheme increases linearly with respect to the degree k. Moreover,
our scheme takes only around 5–6 ms for verification equation even for k = 100
which makes it practically feasible for real applications.

6 Conclusion

In this paper, we gave a formal definition of new primitive called VPOPE (for
Verifiable and Private Oblivious Polynomial Evaluation). This primitive allows a
company to delegate the computation of a secret polynomial f(·) to an external
server on the client’s encrypted data in a verifiable way. In other terms, a client
sends an encrypted query to a server associated with her secret data x using

64 H. Gajera et al.

her public key pk. Then, the client receives d with proof that d = Epk(f(x)).
We design the first VPOPE scheme called VIP-POPE (for Verifiable IND-CFA
Paillier based Private Oblivious IND-CFA Polynomial Evaluation) and prove that
it satisfies the required security properties, i.e., VIP-POPE is CPI-, IND-CFA-,
QS-, UNF-secure in the random oracle model. Moreover, we compare our scheme
to other existing PPE schemes of the literature and show that its computational
verification cost is less as compared to others.

Acknowledgements. This research was conducted with the support of the FEDER
program of 2014–2020, the region council of Auvergne-Rhône-Alpes, the support of the
“Digital Trust” Chair from the University of Auvergne Foundation, the Indo-French
Centre for the Promotion of Advanced Research (IFCPAR) and the Center Franco-
Indien Pour La Promotion De La Recherche Avancée (CEFIPRA) through the project
DST/CNRS 2015-03 under DST-INRIA-CNRS Targeted Programme.

References

1. Personal info of 1.5m SingHealth patients, including PM Lee, stolen in Singa-
pore’s worst cyber attack. https://www.straitstimes.com/singapore/personal-info-
of-15m-singhealth-patients-including-pm-lee-stolen-in-singapores-most. Accessed
20 Agu 2019

2. Amin, R., Islam, S.H., Biswas, G., Khan, M.K., Kumar, N.: A robust and anony-
mous patient monitoring system using wireless medical sensor networks. Future
Gener. Comput. Syst. 80, 483–495 (2018)

3. Baudron, O., Fouque, P., Pointcheval, D., Stern, J., Poupard, G.: Practical multi-
candidate election system. In: Proceedings of the Twentieth Annual ACM Sym-
posium on Principles of Distributed Computing, PODC 2001, Newport, Rhode
Island, USA, pp. 274–283 (2001)

4. Bultel, X., Das, M.L., Gajera, H., Gérault, D., Giraud, M., Lafourcade, P.: Verifi-
able private polynomial evaluation. In: Okamoto, T., Yu, Y., Au, M.H., Li, Y. (eds.)
ProvSec 2017. LNCS, vol. 10592, pp. 487–506. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-68637-0 29

5. Canetti, R., Riva, B., Rothblum, G.N.: Two protocols for delegation of computa-
tion. In: Proceedings of Information Theoretic Security - 6th International Confer-
ence, ICITS, Montreal, QC, Canada, pp. 37–61 (2012)

6. Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifi-
able computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 28

7. De Muth, J.E.: Basic Statistics and Pharmaceutical Statistical Applications. Chap-
man and Hall/CRC, Danvers (2014)

8. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

9. Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and
matrix computations, with applications. In: Proceedings of the ACM Conference
on Computer and Communications Security, Raleigh, NC, USA, pp. 501–512 (2012)

10. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 17

https://www.straitstimes.com/singapore/personal-info-of-15m-singhealth-patients-including-pm-lee-stolen-in-singapores-most
https://www.straitstimes.com/singapore/personal-info-of-15m-singhealth-patients-including-pm-lee-stolen-in-singapores-most
https://doi.org/10.1007/978-3-319-68637-0_29
https://doi.org/10.1007/978-3-319-68637-0_29
https://doi.org/10.1007/978-3-642-36594-2_28
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-540-30576-7_17

Verifiable and Private Oblivious Polynomial Evaluation 65

11. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24676-3 1

12. Gajera, H., Naik, S., Das, M.L.: On the security of “verifiable privacy-preserving
monitoring for cloud-assisted mHealth systems”. In: Ray, I., Gaur, M.S., Conti,
M., Sanghi, D., Kamakoti, V. (eds.) ICISS 2016. LNCS, vol. 10063, pp. 324–335.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49806-5 17

13. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 25

14. Guo, L., Fang, Y., Li, M., Li, P.: Verifiable privacy-preserving monitoring for cloud-
assisted mHealth systems. In: Proceedings of IEEE Conference on Computer Com-
munications, INFOCOM, Kowloon, Hong Kong, pp. 1026–1034 (2015)

15. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 11

16. Lindell, Y., Pinkas, B.: Privacy preserving data mining. J. Cryptol. 15(3), 177–206
(2002)

17. Lloret, J., Garcia, M., Bri, D., Sendra, S.: A wireless sensor network deployment
for rural and forest fire detection and verification. Sensors 9(11), 8722–8747 (2009)

18. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proceedings
of the Thirty-First Annual ACM Symposium on Theory of Computing, Atlanta,
Georgia, USA, pp. 245–254 (1999)

19. Okayama, T.: Future gardening system-smart garden. J. Dev. Sustain. Agric. 9(1),
47–50 (2014)

20. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

21. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36594-2 13

22. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: Proceedings of IEEE Symposium on Security and Privacy,
SP 2013, Berkeley, CA, USA, pp. 238–252 (2013)

23. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public:
verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-28914-9 24

24. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

25. Xia, Z., Yang, B., Zhang, M., Mu, Y.: An efficient and provably secure private
polynomial evaluation scheme. In: Su, C., Kikuchi, H. (eds.) ISPEC 2018. LNCS,
vol. 11125, pp. 595–609. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-99807-7 38

https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-319-49806-5_17
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-642-36594-2_13
https://doi.org/10.1007/978-3-642-28914-9_24
https://doi.org/10.1007/978-3-642-28914-9_24
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-319-99807-7_38
https://doi.org/10.1007/978-3-319-99807-7_38

Monomial Evaluation of Polynomial
Functions Protected by Threshold

Implementations
With an Illustration on AES

Simon Landry1,2(B) , Yanis Linge1 , and Emmanuel Prouff2,3

1 STMicroelectronics, Zone Industrielle, 190 Avenue Coq, 13106 Rousset, France
{simon.landry,yanis.linge}@st.com

2 Sorbonne Universités, UPMC Univ Paris 06, POLSYS, UMR 7606, LIP6,
75005 Paris, France

emmanuel.prouff@ssi.gouv.fr
3 ANSSI, Paris, France

Abstract. In the context of side-channel countermeasures, threshold
implementations (TI) have been introduced in 2006 by Nikova et al. to
defeat attacks in presence of hardware effects called glitches. On several
aspects, TI may be seen as an extension of another classical side-channel
countermeasure, called masking, which is essentially based on the sharing
of any internal state of the processing into independent parts (or shares).
Among the properties of TI, uniform distribution of input and output
shares is generally the most complicated to satisfy. Usually, this property
is achieved by generating fresh randomness throughout the execution of
the protected algorithm (e.g. the AES block cipher). In this paper, we
combine the changing of the guards technique published by Daemen at
CHES 2017 (which reduces the need for fresh randomness) with the
work of Genelle et al. at CHES 2011 (which combines Boolean masking
and multiplicative one) to propose a new TI without fresh randomness
well suited to Substitution-Permutation Networks. As an illustration, we
develop our proposal for the AES block cipher, and more specifically its
non-linear part implemented thanks to a field inversion. In this particu-
lar context, we argue that our proposal is a valuable alternative to the
state of the art solutions. More generally, it has the advantage of being
easily applicable to the evaluation of any polynomial function, which was
usually not the case of previous solutions.

Keywords: SCA · Threshold implementations · AES · Masking ·
Sharing · Secure polynomial evaluation

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Laurent and T. Giannetsos (Eds.): WISTP 2019, LNCS 12024, pp. 66–84, 2020.
https://doi.org/10.1007/978-3-030-41702-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41702-4_5&domain=pdf
http://orcid.org/0000-0002-8964-9126
http://orcid.org/0000-0002-8667-7471
http://orcid.org/0000-0002-3998-0478
https://doi.org/10.1007/978-3-030-41702-4_5

Polynomial Functions Evaluation Protected by TI 67

1 Introduction

1.1 Problematic and State of the Art

Introduced by Kocher [23] in the late nineties, Side Channel Analysis (SCA) is a
serious threat in our connected world. Cryptography indeed evolves in a hostile
environment, where an attacker can obtain information that leak from algorithms
running on embedded devices. This information relate to intermediate variables
and some of them are sensitive in the sense that they are linked to the secret
key and can be exploited to mount a key-recovery attack [5].

The SCA threat [23] led to the increasing need for countermeasures. A solu-
tion is provided by the so-called secret sharing [9,20,34]. In the context of SCA,
we talk about masking [23]. The idea is to randomly split the sensitive variable
into (d + 1) shares. The number d is refered as the masking order. A dth-order
masking can be broken by a (d+1)th-order SCA, namely an adversary that tar-
gets d+1 intermediate variables at the same time [27,30,36]. However, masking
countermeasure is vulnerable to glitches when the algorithm is embedded on a
device. Glitches refer here switching variations of logic gates that are caused by
interconnection delays between two consecutive register updates. Due to glitches,
it has been shown in [26] that an attack can be mounted by exploiting side-
channel information leakage at the output of some logic gates. In 2006, Nikova
et al. [29] proposed a special case of masking, called threshold implementations
(TI) such that the security holds even in the presence of glitches. This coun-
termeasure combines secret sharing and multi-party computation (MPC). MPC
creates methods for parties to jointly compute a public function over their inputs
while keeping those inputs private (see [40] and [2] for more details).

By property of threshold implementations, it is known that at least 3 shares
per internal state element are required to achieve security against first-order
attacks in the presence of glitches [29]. The construction of such an implementa-
tion (with 3 shares only) for the AES algorithm has been an important research
topic [3,10,21,28]. The first difficulty is to achieve uniformity efficiently. The
common technique to fix this issue is called remasking. It consists in adding fresh
randomness to the implementation during the execution. However, remasking is
very time and space consuming since the random bits have to be generated and
stored in registers. To fix this constraint, Daemen proposed in [12] a technique
called changing of the guards to assure uniformity of a function without fresh
randomness (see its description in the extended version of this paper [24]). Based
on this technique, Sugawara presented in [37] a provably 3-sharing uniform TI of
the Canright’s AES Sbox [6] without remasking. Then, the second challenge is
the efficiency, and more precisely the number of cycles that are required to imple-
ment a threshold implementation of the AES Sbox resistant against first-order
SCA attacks.

1.2 Our Contributions

In this paper, we propose a 3-sharing TI scheme that can be applied to secure
the processing of any monomial. Our technique can be extended to secure the

68 S. Landry et al.

evaluation of polynomial functions in a generic manner and the proposed scheme
is proved to be resistant against first-order SCA in the presence of glitches. In the
latter case, the number of cycles taken by the secure evaluation is independent of
the support of the polynomial while the number of gates and registers essentially
increases linearly. Eventually, the design principles can be extended to higher-
order security. As an illustration, we apply our method on the AES algorithm
to design a 3-sharing TI of the AES Sbox without fresh randomness. It is an
alternative to Sugawara’s work [37].1

1.3 Overview of the Paper

In Sect. 2 we first introduce notations related to the masking schemes in finite
fields that we use in our paper. We present then the threshold implementations,
the related security models and their properties. Based on [12], we also describe
in the extended version of this paper [24] another technique than remasking to
get uniformity in a construction. In Sect. 3 we present our generic TI for secure
evaluation of polynomial functions in GF (2n) and we argue that it is resistant
against first-order SCA in the presence of glitches. Our proposal is built upon a
primitive that must securely process the function mapping x ∈ GF (2n) into 1 if
x = 0 and into 0 otherwise. In Sect. 4, we describe a 3-TI implementation of this
primitive called here Dirac function. We argue that it is secure against first-order
SCA in presence of glitches. For completeness, we present in the extended version
of this paper [24] another original TI construction of the Dirac function, based
on Sugawara’s work [37] and on Ishäı et al. multiplications [22]. The proofs of
our lemmas and properties are given in the extended version of this paper [24].
We give an application of our technique to the AES algorithm in Sect. 5. Our
first-order TI-masked 3-sharing implementation of the AES SBox is argued to
be secure against SCA attacks in the presence of glitches. Finally, in Sect. 6, we
discuss the performances of our construction compared to the prior state of the
art.

2 Preliminaries

2.1 Basics on Sharing

In this paper, we discuss on the sharing of both field elements defined in GF (2n)
for some n and (n,m)-functions defined from GF (2n) into GF (2m) for some n
and m.

1 In the extended version of this paper [24], we give a second possible scheme of a 3-
sharing TI of the AES Sbox without fresh randomness. It takes two more cycles than
our main proposal but it does not require pre-processing and additionnal memory
space.

Polynomial Functions Evaluation Protected by TI 69

Sharing of Internal Variables. When masking is applied to secure block cipher
implementations, each sensitive variable x occurring during the computation is
split into d random shares following a chosen group operation. We define the
tuple x = (x1, . . . , xd) as the d-sharing of x while the xi’s are called the masks.
Also, the value of d plays the role of a secure parameter. We also introduce
the function s() that recovers x from its d-sharing x and will be refered as the
reconstruction function. It is defined by s(x) = x. For example, if the group
operation is the addition ⊕ in GF (2n), we have:

x = x1 ⊕ x2 ⊕ ... ⊕ xd and s(x) =
d⊕

i=1

xi = x.

In this paper, we shall work with three types of masking for d = 3. We shall
refer to the above example as a 3-Boolean sharing. If the group operation is the
multiplication ⊗ in GF (2n)�, we shall refer to it as a 3-multiplicative sharing
[1,4]. To mask additive functions we usually use a Boolean masking. Since the
propagation of Boolean masks through a multiplication is tricky to deal with,
the multiplicative masking is more suitable to mask multiplicative functions (as
e.g. power functions). Eventually, by combining a Boolean with a multiplicative
one, we obtain a 3-affine sharing that we describe in the following definition.

Definition 1 (3-affine sharing) [15]. Let x, x̃, β ∈ GF (2n) and α ∈ GF (2n)�

be four elements such that x = (x̃⊗α−1)⊕β. Then, x = (x̃, α, β) is called 3-affine
sharing of x, and β (resp. α) is called the Boolean mask (resp. multiplicative
mask).

Sharing of Functions. In the sequel, we shall express the input of a function F
by a small letter x and its corresponding output by a large letter X. A mapping
from x to X can be defined by F (x) = X.

A mask realization of an (n,m)-function F is a vector F = (F1, ..., Fd) of
(dn,m)-functions. The notion of reconstruction function can then be extended
to mask realizations by setting:

s(F(x)) = F (x) = X

2.2 Basic Notions

To formally describe the security notions involved in this paper and to explain
the different countermeasures, it is classical to use an abstraction of the imple-
mentation called circuit. We recall hereafter the definition of circuit given in [35].

Definition 2 [35] (Circuit CF & wire). Let F be a function and let O be
a set of elementary operations. An ideal circuit CF implementing F thanks to
operations in O is an oriented graph where each cell ci defines an element of O
and each edge corresponds to an intermediate value Vi that is called a wire. Vi

corresponds to an output to the operation ci and an input of the operation cj.

70 S. Landry et al.

The performance of a circuit can be measured in terms of registers and clock
cycles that we define as follows.

Definition 3 (Register & clock cycle). A register is a circuit component
which can store one wire Vi. A set of more than one register is called a registers
layer. A clock cycle corresponds to the longest path between a state register A to
the next state register B.

In our context, the set O contains field operations ⊕,⊗ and the inverse
multiplication ⊗−1 in field of characteristic 2, and more generally any power
function. The capabilities of a SCA attacker against a circuit CF are usually
defined by adversary models. Among them, the Probing Adversary Model [22] is
the most popular one. We give its formal definition as follows.

Definition 4 (tth-order Probing Adversary Model). [35] Let CF be a cir-
cuit composed with (Vi)i∈I wires and let t be a positive integer. Let L be a set of
noisy leakage functions. A tth-order Probing Adversary against CF is an adver-
sary that can choose a subset J of I with #J = t and can observe the random
variable (L(Vj))j∈J where (Lj(.))j is a t-tuple of functions in L.

An attack performed by the adversary in Definition 4 conducts to the notion
of tth-order probing security of a circuit. We give formal definition hereafter.

Definition 5 (tth-order probing security). [8] A circuit CF is said to be
tth-order probing secure if for a d-sharing (x1, x2, ..., xd) of some variable x in
input, a tth-order Probing Adversary against CF does not observe a dependence
between t (or less) wires and x.

An algorithm achieving t-probing security is resistant to the class of tth-order
side-channel attacks. Some masking schemes have been proposed with formal
security proof in the Probing Adversary Model [22,32,33]. However, Mangard
et al. [25] showed the vulnerability of this model when the circuit evolves in
the presence of glitches. Glitches occur because the signals of a combinational
circuit can switch more than once per clock cycle if an input changes. The reason
why most masking schemes can be attacked is that they process on the same
wire masks and masked values. Since there is a link between them, the power
consumption is not independent of the masks and masked values. Then the tth-
Probing Adversary Model is no longer suffisant for security.

The first provably secure masking scheme with resistance to glitches was the
threshold implementation scheme of Nikova et al. [29]. Then, based on the work
in [38], Roche and Prouff [35] introduced the tth-order Glitches Adversary Model
to formalize the security of masked hardware implementations in the presence
of glitches. We call this new adversary model the tth-order TI Adversary Model
and describe it in Definition 6.

In the presence of glitches, the ideal circuit without signal propagation
delay (Definition 2) can be extended to a more realistic circuit wherein a tran-
sient hazard is generated due to the delay ΔT between two elementary opera-
tions (i.e. logic gate transitions during a cycle between two registers updates).

Polynomial Functions Evaluation Protected by TI 71

For a circuit CF the internal state at a time T for a circuit CF refers to all the
values taken by the Vi’s at time T . It is denoted by CF (T).

Definition 6 (tth-order TI Adversary Model). [35] Let CF be a circuit and
let t be a positive integer. Let L be a set of leakage functions. A tth-order TI
Adversary against CF is an adversary that can choose t times T1, T2, ..., Tt and
can observe the internal state transition at the t selected times (Li(CF (Ti)))i≤t

where, for each i ≤ t, Li(.) is a function in L.

For example, in Fig. 1, let CF be a circuit implementing a function F from
a state register A to a state register B, and let β, β′ be two Boolean masks.
We hereafter focus on the capabilities of an adversary looking at the wire V3

and we denote by br a Gaussian independent noise. For the 1st-order Probing
Adversary Model of Definition 4, the attacker can observe noisy leakage functions
L3(V3) = x ⊕ β′ + br that gives no information on x. In comparison, for the
1st-order TI Adversary Model of Definition 6, due to glitches between the two
previous gates ⊕, it might exist a time T such that L3(V3(T)) = x + br. This
can happen if the first Xor gate is transiently evaluated with x⊕β at first input
and nothing at second input (for instance because the signal on β′ takes more
time to be delivered).

Fig. 1. Example of circuit for a 1st-order Probing (or TI) Adversary Model

Finally, an attack performed by the adversary in Definition 6 leads to the
notion of tth-order TI security of a circuit. We give a formal definition hereafter.

Definition 7 (tth-order TI security). A circuit CF is said to be tth-order
TI secure in the presence of glitches if for a d-sharing (x1, x2, ..., xd) of some
variable x in input, a tth-order TI Adversary against CF does not observe a
dependence between any set t wires and x.

An algorithm achieving t-TI security implies a t-probing security (the con-
verse is false). In the presence of glitches, a circuit CF implementing a function
F is split into several parts CFi

such that the observation of t or fewer parts gives
no information on the original circuit input. Nikova et al. [29] achieved this goal
by combining secret sharing technique and secure MPC protocols. Their coun-
termeasure, wich can be applied to any F , is called threshold implementations
and was originally secure in the first-order TI Adversary Model.

72 S. Landry et al.

To be first-order TI-secure, a TI must satisfy the three following properties.

Property 1 (Correctness). Let a masked function F : GF (2dn) �→ GF (2dm) be
a TI F = (F1, ..., Fd). The TI F is correct if and only if x = s(x) implies that
X = F (x) = s(F(x)).

This property ensures that the obtained output F(x) effectively corresponds
to the sharing of the output of the initial input x by the function F . The recon-
struction function s of the output X does not need to be necessarily the same
than for the input x.

Property 2 (Non-completeness). A TI F = (F1, ..., Fd) mapping a shar-
ing (x1, ..., xd) into a new sharing (y1, ..., yd) is non-complete if for every
j � d, there exists i �= j such that Fj is functionally independent of xi (i.e.
F (x1, ..., xi, ..., xd) = F (x1, ..., xi−1, xi+1, ..., xd)).

Since we have insufficient knowledge from each Fj to reconstruct the secret
x, this property guarantees security in the first-order TI Adversary Model.

Property 3 (Uniformity). [7] For every b = (b1, b2, ..., bd) in GF (2dm), the
number of x in GF (2dn) for which F(x) = b is equal to 2(d−1)(n−m) times the
number of x in GF (2n) for which F (x) = s(b).

This property ensures that, if the masking of the input to F is uniform, then
the output of F is also a uniform masking of the output of F . It is important
when the output of the TI is the input of another function. The design of TI
achieving this property has been the core of many works and most of them were
based on the idea of remasking where fresh randomness is used to uniformize the
output sharing. In the extended version of this paper [24], we describe another
technique to get uniformity within an implementation.

3 Our TI Generic Evaluation Technique

We describe in this section our main contribution, that is a TI-masked generic
evaluation method that can be applied to any polynomial function f(x) =∑2n−2

i=0 aix
i in GF (2n), contrary to the state of the art. According to our security

model (see Definition 6), it is assumed that an attacker cannot see more than
one intermediate result during the processing, but glitches are possible. Our con-
struction is inspired from the ideas of affine masking and multiplicative masking,
developped in [18] and [15]. However, to gain in execution time compared with
[18], we try to minimize the number of conversions from Boolean masking to
multiplicative masking and vice-versa. Through each cycle, the sensitive value is
either masked thanks to a Boolean mask or a multiplicative mask, or both. Our
construction is first-order TI-secure (i.e. resistant against first-order SCA in the
presence of glitches). All the following lemmas and properties are proved in the
extended version of this paper [24].

Polynomial Functions Evaluation Protected by TI 73

3.1 Our First-Order TI-secure Monomial Evaluation

To construct a first-order TI for any polynomial function defined in GF (2n),
our generic proposal is essentially built upon a same masking scheme which will
be separately applied to the evaluation of each monomial of f with non-zero
coefficient. Let Qpower denotes one of those monomials and let us assume that is
defined by Qpower(x) = xq. In our proposed-scheme, the processing of Qpower is
multiplicatively masked. Multiplicative masking needs to be implemented care-
fully not to be vulnerable to first-order SCA with a zero value power model,
namely the zero-problem [16,19]. In the litterature [14], it has been proposed to
map the zero value in GF (2n) to a non-zero value in GF (2n)� using the Dirac
function in order to take care of the zero-problem.

Definition 8 (Dirac function). The Dirac function is defined such that
δ(x) = 1 if x = 0 and δ(x) = 0 otherwise.

In order to compute Qpower(x), we use the following property:

Property 4. For every integer q, we have:

(x ⊕ δ(x))q = xq ⊕ δ(x).

If we consider an input x of 8 bits, the Dirac function can be calculated by
processing 7 AND gates on the bit-wise complemented bits of x such that:

δ(x) = x1 ⊗ x2 ⊗ ... ⊗ x8. (1)

We propose another secure implementations of the Dirac function based on
a lookup-table (LUT) in Sect. 4. We obtain a 3-Boolean sharing (δ1, δ2, δ3) of
δ(x). The advantage of this second implementation is that it can be executed in
a single cycle (see Definition 3).

The full processing of our first-order TI-secure monomial evaluation can be
done in 4 cycles. At input, the value x is assumed to be split into three parts
following Definition 1. We denote the 3-affine sharing of x by x = ((x ⊕ β) ⊗
α, α, β) such that s(x) = (x⊕β)⊗α⊗α−1⊕β = x. Then, to get a multiplicative
masking of Qpower(x) = xq we first remove the Boolean mask β of x and replace it
by δ(x), while satisfying all the properties of TI. It can be achieved in two cycles.
Due to Property 4, we obtain a new 2-multiplicative TI sharing of xq ⊕ δ(x):
((xq ⊕ δ(x)) ⊗ αq, αq). We extend this sharing by adding a third share (β ⊗ αq)
that will be used later. Finally, we obtain xδ = ((xq ⊕ δ(x)) ⊗ αq, αq, β ⊗ αq).

Lemma 1. The implementation of xδ is correct, non-complete and uniform. It
is first-order TI-secure against SCA.

Finally, the last two cycles allow us to replace in a secure way the Boolean
mask δ(x) of xq by a new one β′. We obtain at the end a new TI 3-affine sharing
xq = ((xq ⊕ β′) ⊗ αq, αq, β′) of xq.

Lemma 2. The implementation of xq is correct, non-complete and uniform. It
is first-order TI-secure against SCA.

The generalized scheme of our monomial evaluation is illustrated in Fig. 2.

74 S. Landry et al.

Fig. 2. First-order TI-masked monomial evaluation of xq in 4 cycles

3.2 Extension of Our Technique for Any Polynomial Function

The concurrent application of the secure monomial evaluation described in pre-
vious section straightforwardly leads to a first-order secure TI for any polynomial
function f . We describe hereafter the main steps of our proposal which, from a
3-sharing (x̃, α, β) of x, outputs a 3-sharing (˜f(x), αf , βf) of f(x) in 6 cycles:

– Step 1: firstly, a 3-Boolean sharing of the Dirac δ(x) is computed in 1 cycle
from the 3-affine sharing of x (for details on the construction see Sect. 4).
Note that this computation is done only once to secure the whole polynomial
function evaluation.

– Step 2: secondly, each monomial of f can be evaluated thanks to our TI
depicted in Fig. 2. This step takes 4 cycles.

– Step 3: finally, the last step consists in combining the 3-affine sharings of all
the monomial evaluations to get the 3-affine sharing ((f(x)⊕βf)⊗αf , αf , βf)
of f(x). It takes 1 cycle.

For example, let us assume that we want to securely process the 3-affine
sharing of the function f(x) = x5 ⊕ x33 from the 3-affine sharing (x̃, α, β) of
x. With the method described in Sect. 4, we first securely compute a 3-Boolean
sharing of δ(x) in 1 cycle. Then we apply our scheme in Fig. 2 to the monomials
x5 and x33. These two computations can be done in parallel in 4 cycles and give
two new 3-affine sharings of x5 and x33. Finally, the last step takes 1 cycle and
is split as follows:

– the multiplication of the second shares of both x5 and x33 to construct a
new multiplicative mask αf = α5 ⊗ α33.

– the xor between the third shares of x5 and x33 to get βf = βx5 ⊕ βx33 .
– the xor between the first share of x5 multiplied by α33 and the first share of
x33 multiplied by α5 to get (x5 ⊕x33 ⊕βx5 ⊕βx33)⊗ (α5 ⊗α33) and thus the
new 3-affine sharing f = ((f(x) ⊕ βf) ⊗ αf , αf , βf) of f .

Polynomial Functions Evaluation Protected by TI 75

Fig. 3. First-order TI-masked evaluation of f(x) = x5 ⊕ x33

The whole example is depicted in Fig. 3.

Remark. The secure monomials’ evaluation is done in parallel, leading to an
increase of the implementation area which is roughly linear in the number of
monomials to evaluate. Using the ideas developed in [11], it is possible to improve
the area complexity by using cyclotomic classes and the fact that some powers
are linear (those in the form x �→ x2j).

The next section explains the implementation of the Dirac function used in
step 1 of Fig. 3.

4 Construction of the Dirac Function as a Lookup Table
(LUT)

In our first-order TI-secure evaluation of polynomial functions of the form f(x) =∑2n−2
i=0 aix

i, we need to securely compute a 3-Boolean sharing of the Dirac of
x from the 3-affine sharing of x (see Step 1 in Fig. 3 in Sect. 3). For such a
purpose, we propose below to represent the Dirac function as a lookup table.
We also propose an alternative secure construction in the extended version of
this paper [24].

We recall that, for each 3-affine sharing x of x, we know the value of its
corresponding multiplicative and Boolean masks α and β, respectively. A possible
implementation for the 3-Boolean sharing (δ1, δ2, δ3) of the Dirac δ(x) is to
precompute a table T of 256 bits from a 3-affine sharing (x̃, α, β) of x. We first
have to know the value of the mask β and the masked value (x ⊕ β), which is
given by processing x̃⊗α−1. Then, thanks to a random bit r ∈ GF (2), the table
is constructed such that T [x ⊕ β] takes the value r + 1 if x = 0 and r otherwise.
During the execution of the AES algorithm, the mask r stays unchanged while
the mask β evolves. In order to be in coherence with our second construction of
the Dirac function in the extended version of this paper [24], we choose to split

76 S. Landry et al.

r into two parts such that r = r1 ⊕ r2. Algorithm 1 describes the way how the
LUT is created. This LUT is fully computed once for the first Dirac request and
is then modified at each execution of the Dirac such that the values at positions
β and β′ are xored with 1, where β′ denotes the next Boolean mask of the next
value x′ for which we would like to securely evaluate the Dirac function. The
modification of the table is explained in Algorithm 2. This processing, which
takes one cycle can be done during other operations between two Qpower layers.

Hence, to obtain a 3-Boolean sharing of the Dirac value of x, we will store in
our construction three bits δ1 = δ(x) ⊕ r1 ⊕ r2, δ2 = r2 and δ3 = r1 (see Fig. 2)
and 256 bits for the LUT. To conclude, this computation takes one cycle and
store 259 bits.

Algorithm 1. Compute once a 3-Boolean sharing of δ(x)
Require: r = r1 ⊕ r2 ∈ GF (2), (x) ⊕ β, β
Ensure: (δ1, δ2, δ3) s.t. δ1 ⊕ δ2 ⊕ δ3 = δ(x)

T ← [0] ∗ 256
T [β] ← T [β] ⊕ 1
T ← T ⊕ [r, ..., r]
return T [(x) ⊕ β], r1, r2

Algorithm 2. Updating of the LUT T

Require: T, β, β′

Ensure: modified table T
T [β] ← T [β] ⊕ 1
T [β′] ← T [β′] ⊕ 1
return T

To conclude, Sects. 3 and 4 describe our generic first-order TI-secure polyno-
mial evaluation. To be able to compare this proposal with the TI of the state of
the art, we give an illustration of it on the well-studied AES algorithm in the
next section.

5 An Illustration on the AES Algorithm

5.1 AES Algorithm

The AES block cipher [13] operates on an 4×4 array of 16 bytes called a state. An
AES plaintext value is modified thanks to additive and multiplicative operations
in order to obtain the corresponding ciphertext at the end of the encryption.
Each round of the AES is composed of four stages: AddRoundKey, SubBytes,
ShiftRows and MixColumns. The AES SBox is defined as the composition of an
affine transformation called AT over GF (28) and the multiplicative inverse Inv

Polynomial Functions Evaluation Protected by TI 77

over the field GF (2)[x]/(x8 + x4 + x3 + x + 1). The SubBytes operation consists
in applying the SBox on each byte of the state. Moreover, the last round ommits
the MixColumns operation and add a final AddRoundKey stage. The processus
is composed of either 10, 12 or 14 rounds, depending on the key size. Based
on the secret key, a key expansion process defines all the round keys that are
involved in the different rounds.

5.2 Strategy

Substitutions-Permutation Network (SPN) based block ciphers (as AES) design
involve additive and multiplicative operations defined on a finite field. To effi-
ciently mask the sensitive value through each operation, Genelle et al. proposed
a scheme to securely transform an additive sharing into a multiplicative one
[18] (Boolean masking being dedicated to Boolean operations while multiplica-
tive masking being dedicated to multiplicative operation). In order to reduce
the number of cycles for our implementation, we improved their work by using a
3-affine sharing which is constructed such that it contains both Boolean and mul-
tiplicative masks. As the existing papers [3,10,21,28] proposed a masked design
of the AES Sbox processing, we describe in the followed sections a TI-masked
implementation of this SPN algorithm.

Through each AES operation, we denote the different 3-affine sharings Si as
in Fig. 4. All of them are obtained by the meaning of one or more intermediate
3-sharing Si,j . Each Si,j represents a computation done in one cycle as defined in
Definition 3. Moreover, our scheme is first-order TI-secure. The demonstration
of this security is based on lemmas that are proved in the extended version of
this paper [24].

Fig. 4. 3-sharings Si of our TI-masked AES

We first show how to apply our TI-masked monomial evaluation on the AES
SBox. Then, we complete our presentation with a TI of all other steps of the
AES.

5.3 Application of Our Monomial Evaluation Technique on the
AES SBox

In this section we highlight our generic method by adapting it to the AES SBox
processing. This step comes after the AddRoundKey operation and so takes the
3-affine sharing of x⊕k, where x is the plaintext byte and k the round-key byte.

78 S. Landry et al.

As discuss before, the SBox operation can be decomposed such that SB(x) =
AT (Inv(x)), where AT represents the affine transformation and Inv the mul-
tiplicative inversion in GF (28). In this case, this inversion is equivalent to our
operation Qpower(x) with q = 254 meaning x254 = x−1 in GF (2)[x]/(x8 +x4 +
x3 + x + 1).

To mask the SubBytes step, AT is masked additively whereas Inv denotes is
multiplicatively protected. By implementing the Dirac function as a LUT, the
masking processing of an AES SBox takes five cycles.2 The scheme is illustrated
in Fig. 5. It gives the new following 3-multiplicative sharing S3 of (x ⊕ k)−1 ⊕
δ(x ⊕ k) and the new 3-Boolean sharing S4 of SB(x ⊕ k):

S3 = ([(x ⊕ k)−1 ⊕ δ(x ⊕ k)] ⊗ α−1, α−1, β ⊗ α−1),
S4 = (SB(x ⊕ k) ⊕ β′, α, β′),

with β′ = AT (β) ⊕ AT (δ(x ⊕ k)) ⊕ 0x63.

Lemma 3. The implementations of S3 and S4 are correct, non-complete and
uniform. It is first-order TI-secure against SCA.

Fig. 5. First-order TI-masked SubBytes operation in 4 cycles

Remark. We made the choice to obtain a 3-Boolean sharing of SB(x⊕k) instead
of a 3-affine sharing (as in our generic method in Fig. 2) because it is more suit-
able for the input of the next AES operation, namely the MixColumns operation.
This last is detailled in the next section with other AES steps.
2 As an observation, the scheme can also be implemented in seven cycles if the Dirac

function δ is computed in three cycles with TI ISW multiplications (see in the
extended version of this paper [24].

Polynomial Functions Evaluation Protected by TI 79

5.4 Presentation of the Other TI-masked AES Operations

Step 1: AddRoundKey (ARK). At the beginning of the computation, the
sixteen plaintext bytes x and the sixteen round keys k are splitted into three
parts following Definition 1. Let α be a multiplicative non-zero mask and let βx

and βk be two Boolean masks for the plaintext and the round key, respectively.
Without loss of generality, we define the first 3-affine sharing S1 of one plaintext
byte as:

(x̃, α, β) = ((x ⊕ βx) ⊗ α, α, βx)

In the same way, the 3-affine sharing of one round key k is:

(k̃, α, β) = ((k ⊕ βk) ⊗ α, α, βk)

Note that we choose the same multiplicative mask. Then, the ARK operation
can be performed by xoring the first shares x̃ and k̃ in one hand and the third
shares βx and βk on the other hand. We obtain in one cycle a new 3-sharing
S2 = ((x ⊕ k ⊕ β) ⊗ α, α, β = βx ⊕ βk). This computation can be performed on
all of the sixteen bytes in parallel.

Lemma 4. The implementation of S2 is correct, non-complete and uniform. It
is first-order TI-secure against SCA.

Step 2: SubBytes. This operation is detailled in Sect. 5.3.

Step 3: ShiftRows (SR). This operation is here combines with MixColumns
operation and consists a shift on the left of 1, 2, 3 bytes of the AES state. It is a
reindexing of the state and it does not require any cycle.

Step 4: MixColumns (MC). Then, the MixColumns operation consit in a
multiplication of each column of the AES state by the matrix MC (see c(x) in
Eq. 3.12 in [13]). This step takes one cycle. The jth line of MC is denoted by
MCj . Each byte xi at input of the MC processing is represented as a 3-sharing
S4 = (SB(xi ⊕ k) ⊕ β′

i, α
−1, β′

i). MixColumns operation will give new values yi.
Without loss of generality, we obtain the following new 3-sharing for the byte
y1: S5 = ((y1 ⊕ β′′) ⊗ α′, α′, β′′), with y1 = MC1 ⊗ (SB(xi ⊕ k)1≤i≤4), α′ = α−1

and β′′ = MC1 ⊗ (β′
i)1≤i≤4.

Lemma 5. The implementation of S5 is correct, non-complete and uniform. It
is first-order TI-secure against SCA.

In this section, we obtain a first-order TI-secure version of the whole AES.
In the next section, we compare performances of our SBox TI AES proposal
regarding other TI propositions of the state of the art.

80 S. Landry et al.

6 Performances of Our Proposition

6.1 Comparison of Our Proposal for AES SBox Regarding the
Prior State of the Art

In order to compare our work with the state of the art regarding the number of
cycle and the number of random bits per SBox, we will use [37]. Table 1 shows
theses performances evaluation. Our proposal is better or equivalent in terms
of number of cycles than [3,10,21,28], and does not require fresh randomness.
Compare to [37], our proposal takes one more cycle but it can be easily extended
to evaluate any polynomial function as shown in Sect. 3. Moreover, our scheme
is applicable to any cryptographic algorithm based on a power computation.

6.2 Performances of Our Proposal for the Complete AES

As an illustration, our first-order TI-secure implementation can be adapted to
the AES algorithm as shown in Sect. 5. In this case, the construction takes 70
cycles for each byte of the AES state. Table 2 gives the number of required cycles
for each AES operation in bold characters in the last column. It also gives the
number of cycles that are needed to compute a byte of the AES state through
all the 10 rounds. Note that the ShiftRows operation is missing in the table
because it is combined with the MixColumns operation. This number of cycles
could be optimized by parallelizing some computation with respect to the non-
completeness property.

Table 1. Comparison of our proposal for AES SBox regarding the prior state of the
art

Design Random bits/Sbox Nb cycles Generalizable

[28] 44 7 No

[3] 16 5 No

[10] 54 5 No

[21] 18 6 No

[37] 0 4 No

This work 0 5 Yes

Table 2. Number of cycles for a byte of an AES state during the whole TI-masked
processing

Operations 9 first rounds Last round Nb cycles

ARK � �(×2) 1 × 11

SB � � 5 × 10

MC � × 1 × 9

Total 70

Polynomial Functions Evaluation Protected by TI 81

7 Conclusion

In this paper, we have introduced a new threshold implementation allowing to
evaluate any power function in 6 cycles (while the area increases linearly with
the number of powers which must be processed for the polynomial evaluation).
It is provably first-order TI-secure against SCA in the presence of glitches. We
have argued that this technique can be straightforwardly extended to securely
process any polynomial function. Finally, we gave an illustration of our method
to the AES SBox. In this case, we got a TI running in 5 cycles without fresh
randomness. Our proposal is better or equivalent in terms of number of cycles
than [3,10,21,28], but does not require fresh randomness. Regarding [37], our
proposal takes one more cycle but it can be easily extended to evaluate any
polynomial function in a generic manner. For completeness, we also proposed
a full TI-masked AES. This scheme is inspired by [17] and is based on affine
masking. Our construction takes 1120 cycles for the whole AES computation
and does not require fresh randomness.

As a future work, it will be interesting to see how our technique can be
applied to secure other algorithms. For instance, we could evaluate our method
on a sponge construction-based algorithm. Moreover, it will be also interesting
to compare the area required to implement our technique and to experimentally
validate our theoretical performance estimations. We could improve the AES
scheme by parallelizing some computations with respect to the non-completeness
TI property.

References

1. Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against
some attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 309–318. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44709-1 26

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
Simon, J. (ed.) Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, Chicago, Illinois, USA, 2–4 May 1988, pp. 1–10. ACM (1988). https://
doi.org/10.1145/62212.62213

3. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Trade-offs for threshold
implementations illustrated on AES. IEEE Trans. CAD Integr. Circ. Syst. 34(7),
1188–1200 (2015). https://doi.org/10.1109/TCAD.2015.2419623

4. Blömer, J., Guajardo, J., Krummel, V.: Provably secure masking of AES. In: Hand-
schuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-4 5

5. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

6. Canright, D.: A very compact s-box for AES. In: Rao and Sunar [31], pp. 441–455.
https://doi.org/10.1007/11545262 32

https://doi.org/10.1007/3-540-44709-1_26
https://doi.org/10.1007/3-540-44709-1_26
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1109/TCAD.2015.2419623
https://doi.org/10.1007/978-3-540-30564-4_5
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/11545262_32

82 S. Landry et al.

7. Carlet, C.: Boolean functions for cryptography and error-correcting codes. In:
Encyclopedia of Mathematics and Its Applications, pp. 257–397. Cambridge Uni-
versity Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511780448.011

8. Carlet, C., Prouff, E., Rivain, M., Roche, T.: Algebraic decomposition for probing
security. IACR Cryptology ePrint Archive 2016, 321 (2016). http://eprint.iacr.org/
2016/321

9. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to
counteract power-analysis attacks. In: Wiener [39], pp. 398–412. https://doi.org/
10.1007/3-540-48405-1 26. https://link.springer.com/content/pdf/10.1007%2F3-
540-48405-1 26.pdf

10. Cnudde, T.D., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Masking
AES with d+1 shares in hardware. In: Bilgin, B., Nikova, S., Rijmen, V. (eds.) Pro-
ceedings of the ACM Workshop on Theory of Implementation Security, TIS@CCS
2016, Vienna, Austria, October 2016, p. 43. ACM (2016). https://doi.org/10.1145/
2996366.2996428

11. Coron, J., Roy, A., Vivek, S.: Fast evaluation of polynomials over binary finite
fields and application to side-channel countermeasures. J. Cryptogr. Eng. 5(2),
73–83 (2015). https://doi.org/10.1007/s13389-015-0099-9

12. Daemen, J.: Changing of the guards: a simple and efficient method for achieving
uniformity in threshold sharing. In: Fischer, W., Homma, N. (eds.) CHES 2017.
LNCS, vol. 10529, pp. 137–153. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66787-4 7

13. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryp-
tion Standard. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-
04722-4

14. Damg̊ard, I., Keller, M.: Secure multiparty AES. In: Sion, R. (ed.) FC 2010. LNCS,
vol. 6052, pp. 367–374. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14577-3 31

15. Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine masking against higher-
order side channel analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC
2010. LNCS, vol. 6544, pp. 262–280. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19574-7 18

16. Fumaroli, G., Mayer, E., Dubois, R.: First-order differential power analysis
on the duplication method. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 210–223. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-77026-8 16

17. Genelle, L., Prouff, E., Quisquater, M.: Montgomery’s trick and fast implementa-
tion of masked AES. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011.
LNCS, vol. 6737, pp. 153–169. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-21969-6 10

18. Genelle, L., Prouff, E., Quisquater, M.: Thwarting higher-order side channel anal-
ysis with additive and multiplicative maskings. In: Preneel, B., Takagi, T. (eds.)
CHES 2011. LNCS, vol. 6917, pp. 240–255. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-23951-9 16

19. Golić, J.D., Tymen, C.: Multiplicative masking and power analysis of AES. In:
Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 198–212.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 16

20. Goubin, L., Patarin, J.: DES and differential power analysis the “Duplication”
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5 15

https://doi.org/10.1017/CBO9780511780448.011
http://eprint.iacr.org/2016/321
http://eprint.iacr.org/2016/321
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://springerlink.bibliotecabuap.elogim.com/content/pdf/10.1007%2F3-540-48405-1_26.pdf
https://springerlink.bibliotecabuap.elogim.com/content/pdf/10.1007%2F3-540-48405-1_26.pdf
https://doi.org/10.1145/2996366.2996428
https://doi.org/10.1145/2996366.2996428
https://doi.org/10.1007/s13389-015-0099-9
https://doi.org/10.1007/978-3-319-66787-4_7
https://doi.org/10.1007/978-3-319-66787-4_7
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-642-14577-3_31
https://doi.org/10.1007/978-3-642-14577-3_31
https://doi.org/10.1007/978-3-642-19574-7_18
https://doi.org/10.1007/978-3-642-19574-7_18
https://doi.org/10.1007/978-3-540-77026-8_16
https://doi.org/10.1007/978-3-642-21969-6_10
https://doi.org/10.1007/978-3-642-21969-6_10
https://doi.org/10.1007/978-3-642-23951-9_16
https://doi.org/10.1007/978-3-642-23951-9_16
https://doi.org/10.1007/3-540-36400-5_16
https://doi.org/10.1007/3-540-48059-5_15

Polynomial Functions Evaluation Protected by TI 83

21. Gross, H., Mangard, S., Korak, T.: An efficient side-channel protected AES imple-
mentation with arbitrary protection order. In: Handschuh, H. (ed.) CT-RSA 2017.
LNCS, vol. 10159, pp. 95–112. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-52153-4 6

22. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

23. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener [39], pp.
388–397. https://doi.org/10.1007/3-540-48405-1 25

24. Landry, S., Linge, Y., Prouff, E.: Monomial Evaluation of Polynomial Functions
Protected by Threshold Implementations – With an Illustration on AES. Extended
Version (to appear)

25. Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS
gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 24

26. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hard-
ware implementations. In: Rao and Sunar [31], pp. 157–171. https://doi.org/10.
1007/11545262 12

27. Messerges, T.S.: Using second-order power analysis to attack DPA resistant soft-
ware. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8 19

28. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20465-4 6

29. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptol. 24(2), 292–321 (2011). https://
doi.org/10.1007/s00145-010-9085-7

30. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential
power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009). https://doi.org/10.
1109/TC.2009.15

31. Rao, J.R., Sunar, B. (eds.): CHES 2005. LNCS, vol. 3659. Springer, Heidelberg
(2005). https://doi.org/10.1007/11545262

32. Rivain, M., Dottax, E., Prouff, E.: Block ciphers implementations provably secure
against second order side channel analysis. In: Nyberg, K. (ed.) FSE 2008. LNCS,
vol. 5086, pp. 127–143. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-71039-4 8

33. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 28

34. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

35. Roche, T., Prouff, E.: Higher-order glitch free implementation of the AES using
secure multi-party computation protocols - extended version. J. Cryptogr. Eng.
2(2), 111–127 (2012). https://doi.org/10.1007/s13389-012-0033-3

36. Schramm, K., Paar, C.: Higher order masking of the AES. In: Pointcheval, D. (ed.)
CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006). https://
doi.org/10.1007/11605805 14

https://doi.org/10.1007/978-3-319-52153-4_6
https://doi.org/10.1007/978-3-319-52153-4_6
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-540-30574-3_24
https://doi.org/10.1007/11545262_12
https://doi.org/10.1007/11545262_12
https://doi.org/10.1007/3-540-44499-8_19
https://doi.org/10.1007/978-3-642-20465-4_6
https://doi.org/10.1007/s00145-010-9085-7
https://doi.org/10.1007/s00145-010-9085-7
https://doi.org/10.1109/TC.2009.15
https://doi.org/10.1109/TC.2009.15
https://doi.org/10.1007/11545262
https://doi.org/10.1007/978-3-540-71039-4_8
https://doi.org/10.1007/978-3-540-71039-4_8
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/s13389-012-0033-3
https://doi.org/10.1007/11605805_14
https://doi.org/10.1007/11605805_14

84 S. Landry et al.

37. Sugawara, T.: 3-share threshold implementation of AES s-box without fresh ran-
domness. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(1), 123–145 (2019).
https://doi.org/10.13154/tches.v2019.i1.123-145

38. Suzuki, D., Saeki, M., Ichikawa, T.: DPA leakage models for CMOS logic circuits.
In: Rao and Sunar [31], pp. 366–382. https://doi.org/10.1007/11545262 27

39. Wiener, M. (ed.): CRYPTO 1999. LNCS, vol. 1666. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1

40. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: 27th
Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27–29
October 1986, pp. 162–167. IEEE Computer Society (1986). https://doi.org/10.
1109/SFCS.1986.25

https://doi.org/10.13154/tches.v2019.i1.123-145
https://doi.org/10.1007/11545262_27
https://doi.org/10.1007/3-540-48405-1
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25

Strong Designated Verifier Signature
Based on the Rank Metric

Hafsa Assidi(B) and El Mamoun Souidi

Faculty of Sciences, Laboratory of Mathematics, Computer Science,
Applications and Information Security, Mohammed V University in Rabat,

BP 1014 RP, 10000 Rabat, Morocco
assidihafsa@gmail.com, emsouidi@gmail.com

Abstract. Strong designated verifier signatures (SDVS) allows users to
produce signatures that are not publicly verifiable, such that no one
other than the signer and the designated verifier can check the valid-
ity of a given signature, which preserves the privacy of the signer. This
cryptographic primitive is very useful in different real life scenarios such
as e-voting and e-bidding. In this paper, we propose a strong designated
verifier signature scheme (SDVS) based on rank metric error correcting
codes. Our construction makes a trade-off between efficiency and secu-
rity requirements, for instance we achieve a signature of size 3510 bits
and a public key of size equal to 23088 bits for the 80 security level. Fur-
thermore, our proposal is quantum computer resistant since it is based
on coding theory.

Keywords: Strong designated verifier signature · Digital signature ·
Code-based cryptography · LRPC codes · Rank metric · Post-quantum

1 Introduction

A classical digital signature scheme is publicly verifiable where everyone can
check the validity of a given signature. In some applications, such as e-voting
and e-bidding, the signer wants to prove the validity of his signature to a specific
user but not for others. As a consequence, the public verifiability of the signature
is considered as an undesired feature.

To overcome this problem, Chaum and Antwerpen proposed the concept of
undeniable signature [8] where the signer has a control over his signatures. In
such a signature scheme, the verification is done in an interactive way between
the signer and the verifier. However, the signer is able to decide when to prove
but not whom verifying. Thereafter, Jakobsson et al. in [13] introduced the
designated verifier signature (DVS). In a DVS scheme, the designated verifier is
convinced by the validity of a signature but cannot transfer this conviction to
others. Due to the non-transferability of DVS, the signature generated by the
signer himself is indistinguishable from one simulated by the designated verifier.

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Laurent and T. Giannetsos (Eds.): WISTP 2019, LNCS 12024, pp. 85–102, 2020.
https://doi.org/10.1007/978-3-030-41702-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41702-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-41702-4_6

86 H. Assidi and E. M. Souidi

Jacobsson et al. [13] proposed a variant of DVS called strong designated verifier
signature (SDVS). SDVS differs from DVS in the fact that the private key of a
designated verifier is involved in the verification process and consequently there
is no requirement for a third part to prove the validity of the designated verifier
signature. The first formalisation of SDVS was presented by Saeednia et al.
in [21] where an efficient construction of SDVS based on discrete logarithm
problem is proposed. The authors in [21] introduced also the notion of signer
ambiguity where it is infeasible to guess if a signature is produced by the signer
or simulated by the designated verifier. Thereafter, the work in [21] was extended
by Laguillaumie et al. in [16] using a number theory construction of SDVS.

Later, many proposals of SDVS have been presented and are based on bilin-
ear pairing like [11,14,15,17], these schemes are identity based strong designated
verifier signature where the private keys of both the signer and the designated
verifier are generated trough a key generator center. In 2013 Yang et al. [25]
proposed a novel construction of SDVS with secure disavowability. In addition,
Tian et al. [24] presented a systematic method to design strong designated veri-
fier signature but without random oracles. The schemes in [24,25] are both based
on computational Diffie-Hellman Problem. A recent work by Hu et al. in [12] has
consisted of an SDVS scheme that supports the undeniability property besides
the classical security requirements. In 2018, Lin et al. [18] proposed a new certifi-
cateless strong designated verifier signature scheme that is non-delegatable and
verifies SSA-KCA security. Furthermore, Pereira de Almeida et al. presented in
[1] a novel Dos defense mechanism based on strong designated verifier signatures.

The first provably secure code based SDVS was presented by Shooshtari
et al. [22] presented. Then Asaar et al. proved in [2] that the scheme in [22]
presents some weakness in the sense that it does not verify the signer ambiguity
or non-transferability that is the main feature of strong designated verifier sig-
natures. The authors of [2] showed also that the scheme in [22] is not strongly
unforgeable if it does not preserve the non-transferability and they proposed in
[2] a novel construction to overcome the aforementioned weakness. In the litera-
ture, we recognise also some constructions of SDVS that are derived from lattice
assumptions such as [20].

Given that the number theoretic cryptography will not resist to the quantum
computer as shown by Shor in his paper [23], the research for alternative solutions
is very active. Code based cryptography, lattice based cryptography, multivari-
ate cryptography and isogeny based cryptography are considered as an attractive
and prominent alternative to classical cryptography in the era of quantum com-
puters. In the literature, many cryptographic primitives are derived from coding
theory assumptions such as group signature [3,5], ring and threshold ring sig-
nature [7,19] and also for authentication in RFID systems such as [4] where the
authors proposed two mutual Zero-Knowledge authentication protocols based
on error correcting code assumptions.

Strong Designated Verifier Signature Based on the Rank Metric 87

In the present paper, we propose a code based strong designated verifier
signature using the LRPC codes. We use the signature scheme of Gaborit et al.
[9] as the cryptographic primitive in our SDVS scheme. Our construction is
resistant to quantum computer and fulfills the security requirements of an SDVS
scheme. Namely, the correctness, the unforgeability, the non-transferability and
the privacy of signer’s identity. The practical results show that our proposal is
practical, for instance, we achieve a signature of size equal to 3510 bits and a
public key of size equal to 23088 bits for an 80 bits security level.

The organisation of the current paper is as follows: In Sect. 2, we recall some
definitions from error correcting codes in rank metric, we recall also the algo-
rithms that define a strong designated verifier signature and we give formal def-
initions of the security requirements. In Sect. 3, we present our proposed strong
designated verifier signature. Section 4 is devoted to the security analysis of our
SDVS proposal. In Sect. 5, we analyse the performance of the proposed SDVS
scheme in terms of public key and signature sizes. We also analyse the results and
we make a comparison with some recent related works. We conclude in Sect. 6.

2 Backgrounds and Definitions

In this section, we define some general notations and we recall definitions related
to error correcting codes with rank metric as well as the hard problems on codes
that are used for cryptographic constructions.

– By a
$← A we note an element a chosen uniformly at random from the set A.

– AdvC
B,A: the advantage (the probability) that an adversary A breaks the prop-

erty C of the scheme B.
– ExpC

B,A: is the experiment (the game) that describes how an adversary A can
break the security property C of the scheme B.

– a|b: refers to the concatenation of two matrices or vectors a and b.
– ε: a value that is considered as negligible.
– xT : refers to the transpose of the vector x.

2.1 Error Correcting Codes in Hamming Metric

Linear Codes. Let GF (q) be the finite field of q = ps elements (p prime, and
s > 0), n and k be non-negative integers with k ≤ n. A linear code C of length
n and dimension k over GF (q) is a subspace of dimension k of the full space
GF (q)n.

A linear [n, k] code can be defined either by its generator matrix or parity
check matrix defined as follows:

Let C be an [n, k] linear code over GF (q). A matrix G ∈ Mk,n(GF (q)) is a
generator matrix of C if its rows form a basis of C. That is to say C = {mG,m ∈
GF (q)k}.

A parity-check matrix H ∈ Mn−k,n(Fq) of a linear [n, k]-code C is defined
as: C = {HcT = 0|c ∈ GF (q)n}.

88 H. Assidi and E. M. Souidi

Let H be a parity check matrix of an [n, k] code C on GF (q) and y belonging
to GF (q)n. The syndrome s ∈ GF (q)n−k of y associated to C is given by sT =
HyT (Where w is an integer that represent a small Hamming weight).

Code-based cryptography relies on the assumption of the hardness of
syndrome decoding problem, this problem is proved to be NP-complete by
Berlekamp in [6]:

Problem 1 (Syndrome Decoding problem (SD)). The SD(n, k, ω) problem is for-
mulated as follows: let n, k and ω be integers, given uniformly a random matrix
H ∈ Mk×n(GF (2)) and an uniformly random syndrome y ∈ GF (2)k, find a
vector s ∈ GF (2)n such that wt(s) ≤ ω and H · s� = y�.

2.2 Error Correcting Codes in the Rank Metric

Let q be a power of a prime p and GF (q) be the finite field with q elements. For
an integer m, we define GF (qm) as a finite field of cardinality qm. We consider
GF (qm) as an m-dimensional vector space over GF (q) and we denote by β =
(β1, · · · , βm) an arbitrary basis of GF (qm) over GF (q). Let x = (x1, · · · , xn) ∈
GF (qm)n where each xj can be decomposed in the basis β as xj =

∑m
i=1 aijβi.

We associate to the vector x the m × n matrix A(x) = (aij)1≤i≤m,1≤j≤n. We
denote by rank(x) the rank weight of x which is the rank of the associated
matrix A(x).

rank(x) = RankA(x)

We define the distance between two vectors (x, y) ∈ (GF (qm))2 by

dr(x, y) = rank(x − y)

A rank code C of length n and dimension k over GF (qm) is a subspace of
dimension k of GF (qm)n with the rank metric dr.

By analogy to Hamming metric, the minimum rank distance of a code C can
be defined as the minimum rank of non-zero vectors of the code C.

Definition 1. Let x = (x1, · · · , xn) ∈ GF (qm)n be a vector of rank r. We
denote by E =<x1, x2, · · · , xn> the GF (q)-linear subspace of GF (qm) generated
by x1, x2, · · · , xn. The vector space E is called the support of x.

Definition 2. Let e be an error vector of rank r and error support E. We denote
by the erasure of dimension t of an error e a subspace T of dimension t of its
error support E.

Low Rank Parity Check (LRPC) Codes

Definition 3 ([9]). A Low Rank Parity Check (LRPC) code of rank d, length n
and dimension k over GF (qm) is a code defined by an (n − k) × n parity check
matrix H = (hij) (where 1 ≤ i ≤ n − k, 1 ≤ j ≤ n), such that all its coordinates
hij belong to the same GF (q)-subspace F of dimension d of GF (qm).

Strong Designated Verifier Signature Based on the Rank Metric 89

The definition of syndrome decoding problem for the Hamming metric is
extended to the rank metric which gives rise to the following hard problems [9].

Problem 2 (Approximate - Rank Syndrome Decoding problem). Let H be an
(n − k) × n matrix over GF (qm) with k ≤ n, s ∈ GF (qm)n−k and r ∈ N∗. The
problem is to find x ∈ GF (qm)n such that Hxt = s and rank(x) = r.

The Approximate RSD problem has been proven to be hard in [10] by Gaborit
et al. where the proof is based on probabilistic reduction.

Problem 3 Approximate - Rank Syndrome Decoding problem for augmented
LRPC codes).] Given a masked parity-check matrix H ′ = A(R|H)P of an aug-
mented LRPC codes and a random syndrome s, find a vector x of rank d such
that H ′xT = s (where P and A are invertible matrices in GF (q) and GF (qm)
respectively. The matrix R is chosen randomly in GF (qm) and H is a parity
check matrix of an LRPC code).

The Approximate RSD for LRPC codes is a particular case of the Approximate
RSD. The problem on itself is not proved to be hard, however it is difficult
to resolve such problem under the assumption that is difficult to distinguish
between the augmented LRPC codes and random codes [9]. On one hand, it is
obvious that the family augmented LRPC codes is not a family of random codes,
but they are weakly structured codes: the main point being that they have a
parity-check matrix one part of which consists only in low rank coordinates the
other part consisting in random entries. The attacker never has direct access
to the LRPC matrix H, which is hidden by the augmented part. On the other
hand, the minimum weight of augmented LRPC codes is smaller than the Gilbert
Varshamov bound, hence natural attacks consist in trying to use their special
structure to attack them. There exist general attacks for recovering the minimum
weight of a code but these attacks have a fast increasing complexity especially
when the size of the base field GF (q) increases. More details on this attacks are
discussed in [9].

2.3 Strong Designated Verifier Signature

In this subsection, we recall from [2] the building blocks that compose an SDVS
scheme with their corresponding security properties.

Definition 4 (Strong Designated Verifier Signature). A Strong Des-
ignated Verifier Signature is a sequence of five algorithms SDV S =
(Setup,KeyGen, Sign, V erify, Sim) such that:

– Setup(1λ) is a probabilistic algorithm that takes as input a security param-
eter λ and outputs U the set of users, M the message space and the public
parameters of the scheme pp.

– KeyGen(pp) is a deterministic algorithm that outputs (sks, pks) a secret and
a public key of the signer S and (skv, pkv) a private and a public key of the
designated verifier V.

90 H. Assidi and E. M. Souidi

– Sign(pp, sks, pks, pkv,M) is a probabilistic algorithm. Given the public
parameters pp, the secret and public keys of the sign (sks, pks), the public
key of the designated verifier pkv and the message M , this algorithm outputs
a signature σ = Sign(pp, sks, pks, pkv,M).

– V erify(pp, pks, skv, pkv,M, σ) is a deterministic algorithm. It takes as input
the public parameters pp, the secret key of the signer sks the secret and public
key of the designated verifier (skv, pkv), the message M and a signature σ on
M . It outputs b = 1 if σ is a valid signature on M and b = 0 otherwise.

– Sim(pp, skv, pkv, pks,M): is a probabilistic algorithm. Given the public
parameters pp, the secret and public keys of the signer (skv, pkv), the public
key of the designated verifier pks and the message M , this algorithm outputs a
signature σ = Sign(pp, skv, pkv, pks,M) indistinguishable from one produced
by the Sign algorithm.

2.4 Security Model of SDVS

There are four security requirements that must be verified by a strong desig-
nated verifier signature namely: correctness, unforgeability, non-transferability
and privacy of signer’s identity [2].

Correctness: An SDVS is correct if for every valid secret key and public key of
the signer and the designated verifier (sks, pks), (skv, pkv) generated by KeyGen
algorithm and every message M we have:

V erify(pp, pks, skv, pkv,M, σ) = 1

and
V erify(pp, pks, skv, pkv,M, σ′) = 1

Where σ = Sign(pp, sks, pks, pkv,M) and σ′ = Sim(pp, skv, pkv, pks,M).

Unforgeability (UF): means that it is infeasible for an adversary A to produce
a valid strong designated verifier signature without possessing the signer secret
key sks or the designated verifier secret key skv. We consider the experiment
between an adversary A and a challenger C as described in Algorithm 1. An
SDVS scheme is existentially unforgeable if the advantage AdvUF

SDV S,A(λ) (which
is the probability that the adversary A breaks the existential unforgeability for
the SDVS scheme) of the experiment in Algorithm 1 is negligible. A formal
description of the unforgeability is given as it follows.

Strong Designated Verifier Signature Based on the Rank Metric 91

Algorithm 1. Unforgeability: Experiment ExpUF
SDV S,A(λ)

1. A challenger C runs the Setup algorithm to get the public parameters pp, runs the
KeyGen algorithm to get the signer’s key pair (sks, pks) and the verifier’s key pair
(skv, pkv). The triple (pp, pks, pkv) are given to A.

2. An adversary A is given access to the following oracles:
– Osign: This oracle uses sks to produce a signature σ on a given message M ,

that is valid with regard to pks, pkv and sends it to A.
– Osim: This oracle uses skv to produce a signature σ on a given message M ,

that is valid with regard to pks, pkv and sends it to A.
– Over: This oracle takes (m, σ) as a query and gives a bit that is 1 when σ is

valid with regard to pks and pkv, and 0 otherwise.
3. The adversary A returns a forged signature σ∗ on a message M∗ where the two

conditions hold:
– a) V erify(pp, pks, skv, pkv, M

∗, σ∗) = 1 and
– b) The adversary A did not query the sign oracle Osign and the sim oracle

Osim on the message M∗.

AdvUF
SDV S,A(λ) = Pr[a and b occur]

Definition 5. An SDVS scheme is unforgeable if adversary A with at most
qv queries to Over, qs queries to Osign, qsim to Osim and qro random oracle
queries has negligible success probability, that is, AdvUF

SDV S,A(λ) ≤ ε (Where ε is
negligible).

Non-transferability: it means that the signature σ0 generated by a signer S
is indistinguishable from σ1 the signature simulated by the designated verifier
V. We present forward a formal definition of non-transferability.

Definition 6. An SDVS scheme is non-transferable if for all (sks, pks),
(skv, pkv), distinguisher A and message M we have:

∣
∣
∣
∣pr [b′ = b] − 1

2

∣
∣
∣
∣ < ε

where σ0 = Sign(pp, sks, pks, pkv,M), σ1 = Sim(pp, skv, pkv, pks,M), b ∈
{0, 1}, b′ = A(pks, pkv, sks, skv, σb) and ε is negligible.

Privacy of Signer’s Identity (PSI): An SDVS scheme preserves the privacy
of signer identity (PSI) if it is infeasible for an adversary A to guess the signer
behind a given signature in the case when we have two or more potential signers.
Formally, we define this property between a challenger C and an adversary A as
in the experiment bellow in Algorithm 2.

92 H. Assidi and E. M. Souidi

Algorithm 2. Privacy of Signer Identity ExpPSI
SDV S,A(λ)

1. A challenger C runs the Setup algorithm to get a public parameters pp, runs the
KeyGen algorithm to get tow signer’s key pair (sks0, pks0), (sks1, pks1) and the
verifier’s key pair (skv, pkv). Then (pp, pks0, pks1, pkv) are given to an adversary
A.

2. The adversary A is given access to the same oracles as in the unforgeability game
(Algorithm 1).

3. The challenger C chooses randomly b ∈ {0, 1} and returns a signature σb =
Sign(pp, sksb, pksb, pkv, M) to A where M is the signed message.

4. The adversary A outputs a bit b′ ∈ {0, 1} and wins the experiment if b = b′ and
A has not made Over query on input (b, σb, pkv, M).

Definition 7. An SDVS scheme preserves the privacy of signer’s identity if the
advantage of an adversary A to win the experiment in Algorithm 2 is negligi-
ble i.e.

AdvPSI
SDV S,A(λ) =

∣
∣
∣
∣Pr[b = b′] − 1

2

∣
∣
∣
∣ ≤ ε

where ε is negligible.

3 The Proposed Strong Designated Verifier Signature

In this section, we present our proposal according to SDVS scheme based on error
correcting codes. We explain in details the components used in our construction
namely Algorithms 3, 4, 5, 6 and 7.

Setup: Given the security parameter λ, this algorithm outputs the public param-
eters pp, the secret and public keys of signer and designated verifier respectively
(sks, pks) and (skv, pkv) as described in Algorithm 3.

Algorithm 3. Setup(1λ)
Input: a security parameter λ
Output: a public parameters pp

– The public parameters are pp = {n, k, m, q, f, Ψ, h} where h : {0, 1}∗ → {0, 1}n−k,
f : GF (qm)∗ → GF (qm)n−k are random oracles, Ψh(M),i : GF (qm)n−k →
GF (qm)n−k is a random permutation with keys h(M) for i ∈ {signer, verifier}
and (n, k, m, q,) are the parameters of the code.

KeyGen: Given the security parameter λ and public parameters pp, it outputs
the secret and public keys of signer and designated verifier respectively (sks, pks)
and (skv, pkv) as described in Algorithm 4.

Strong Designated Verifier Signature Based on the Rank Metric 93

Algorithm 4. KeyGen(1λ, pp)
Input: λ a security parameter, pp the public parameters produced by Algorithm 3
Output: (sks, pks) and (skv, pkv)

– The public key of the signer is pks = H ′
s = (As(Rs|Hs)Ps, ls) where Ps is an

(n+ t)×(n+ t) invertible matrix in GF (q), As is (n−k)×(n−k) invertible matrix
in GF (qm), Rs is an (n − k) × t random matrix in GF (qm), Hs is a parity check
matrix of an LRPC code and ls is an integer.

– The secret key of the user is sks = ((Rs|Hs), Ps, As).
– The designated verifier public key is pkv = H ′

v = (Av(Rv|Hv)Pv, lv) where Pv is
an (n+ t)× (n+ t) invertible matrix in GF (q), Av is an (n−k)× (n−k) invertible
matrix in GF (qm), Rv is an (n− k)× t random matrix in GF (qm), lv is an integer
and Hv is a parity check matrix of an LRPC code.

– The secret key of the user is skv = ((Rv|Hv), Pv, Av).

Sign: The signature algorithm takes as input the public parameters pp, the secret
and public keys of the signer (sks, pks), the verifier’s public key pkv generated in
the Setup and the KeyGen Algorithms and a message M . The signature process
is explained in Algorithm 5. We denote by Ω the general errors/erasures decoding
algorithm for LRPC codes used in [9].

Algorithm 5. Sign(pp, sks, pks, pkv,M)
Input: pp, sks, pks, pkv, M
Output: σ

1. The signer chooses α
$← GF (qm)n+t and pick t random elements (e1, · · · , et) in

GF (qm) and xv
$← GF (qm)n+t such that rank(α) ≤ d , rank(xv) ≤ d and com-

putes y = H ′
vα

T .
2. The signer computes s = Ψ−1

h(M),s(f(α, y, H ′
s, H

′
v, M) − Ψh(M),v(H

′
vx

T
v)).

3. Decodes by the LRPC matrix Hs the syndrome s′ = A−1
s sT −Rs(e1, · · · , et)

T with
erasure space T = <e1, · · · , et > and r′ errors by the decoding algorithm Ω.

4. If the decoding algorithm returns a word (et+1, · · · , en+t) of weight r = t + r′, the
signature is σ = [xs = (e1, · · · , en+t)(P

T
s)−1, xv, y] else return to step 1.

V erify: The verification step consists of checking the validity of a given signa-
ture, it returns True if the verification succeed and False otherwise.

94 H. Assidi and E. M. Souidi

Algorithm 6. V erify(pp, pks, skv, pkv,M, σ)
Input: pp, pks, skv, pkv, M, σ
Output: True or False

– The designated verifier receives a signature σ = [xs = (e1, · · · , en+t)(P
T
s)−1, xv, y].

– He/she uses the decoding algorithm Ω to recover α from y using (Rv|Hv), Pv, Av.
– He/she computes a = f(α, y, H ′

s, H
′
v, M),

if Ψh(M),s(H
′
sx

T
s) + Ψh(M),v(H

′
vx

T
v) = a, rank(e) = r = t + r′, rank(α) ≤ d and

rank(xv) ≤ d then
return True

else
return False

end if

Sim: The simulation algorithm takes as input the public parameters pp, the
secret and public keys of the designated verifier (skv, pkv), the signer’s public
key pks generated in the Setup Algorithm 3 and a message M . The simulated
signature is explained in Algorithm 7.

Algorithm 7. Sim(pp, skv, pkv, pks,M)
Input: pp, skv, pkv, pks, M
Output: σ′.
To simulate a signature on the message M , the designated verifier proceeds as follow:

1. Chooses randomly α′ $← GF (qm)n+t and pick t random elements (e′
1, · · · , e′

t) of

GF (qm) and x′
s

$← GF (qm)n+t such that rank(α′) ≤ d , rank(x′
s) ≤ d and com-

putes y′ = H ′
vα

′T .
2. The designated verifier computes

s = Ψ−1
h(M),v(f(α′, y′, H ′

s, H
′
v, M) − Ψh(M),s(H

′
sx

′T
s)).

3. The designated verifier, decodes by the LRPC matrix Hv the syndrome s′ =
A−1

v sT − Rv(e
′
1, · · · , e′

t)
T with errasure space T = <e′

1, · · · , e′
t> and r′ errors by

the decoding algorithm Ω.
4. If the decoding algorithm returns a word (e′

t+1, · · · , e′
n+t) of weight r = t + r′, the

signature is σ′ = [x′
s, x

′
v = (e′

1, · · · , e′
n+t)(P

T
v)−1, y′] else return to step 1.

4 Security Analysis

In this section, we analyse the security properties using the Random Oracle
model of the proposed strong designated verifier signature scheme by proving,
respectively, the correctness, the unforgeability, the non-transferability and the
privacy of signer’s identity.

Strong Designated Verifier Signature Based on the Rank Metric 95

Correctness: Let σ = Sign(pp, sks, pks, pkv,M) be a signature generated by
the signer on a message M and σ′ = Sim(pp, skv, pkv, pks,M) be a simulated
signature produced by the designated verifier, the scheme is correct if

V erify(pp, pks, skv, pkv,M, σ) = 1

and
V erify(pp, pks, skv, pkv,M, σ′) = 1

We prove only the correctness for signature generated by the signer because the
proof for simulated signature is similar.

Let σ = [xs = (e1, · · · , en+t)(PT
s)−1, xv, y] be a signature generated as

described in Algorithm 5, we have to prove the following: Ψh(M),s(H ′
sx

T
s) +

Ψh(M),v(H ′
vxT

v) = a, rank(e) = r = t + r′, rank(α) ≤ d and rank(xv) ≤ d
where a = f(α, y,H ′

s,H
′
v,M) (Ψ , H ′

s and H ′
v are defined in Algorithms 3 and 4).

We have on one hand:

H ′
sx

T
s = H ′

s(P
T
s)−1T (e1, · · · , en+t)T

= As(Rs|Hs)Ps(PT
s)−1T (e1, · · · , en+t)T

= As(Rs|Hs)(e1, · · · , en+t)T

= s

And on the other hand:

Ψh(M),s(H ′
sx

T
s) + Ψh(M),v(H ′

vxT
v) = Ψh(M),s(s) + Ψh(M),v(H ′

vxT
v)

= f(α, y,H ′
s,H

′
v,M) − Ψh(M),v(H ′

vxT
v)

+Ψh(M),v(H ′
vxT

v)
= f(α, y,H ′

s,H
′
v,M)

= a

The verifier can check easily that rank(e) = r = t + r′, rank(α) ≤ d and
rank(xv) ≤ d.

Unforgeability: We recall that this property means that it is infeasible for an
adversary A to produce a valid SDVS without the knowledge of the signer secret
key sks or the designated verifier secret key skv.

Theorem 1. If there is an adversary A against the unforgeability of the scheme
with non negligible probability then, there exists an adversary C that can solve
the Problem 3 with non negligible probability.

Proof. We assume that there exists an adversary A who can produce a forged
signature with success probability at most ε1. Let C be an adversary who can
solve an instance of the Problem 3 with probability equal to ε2 i.e. the adversary
C returns a vector x∗ of rank less or equal to d such that H ′∗x∗ = s∗ where
H ′∗ = A∗(R∗|H∗)P ∗, A∗ ∈ GLn−k(GF (qm)), P ∗ ∈ GLn+t(GF (q)), R∗ is a
random (n − k) × t matrix in GF (qm) and H∗ is a parity check matrix of

96 H. Assidi and E. M. Souidi

an LRPC code. The challenger C runs the Setup algorithm to get the public
parameters, runs the KeyGen algorithm to get signer’s and designated verifier’s
key pair (sks, pks) and (skv, pkv) respectively. The adversary C provides A with
public parameters pp, signer’s public key pks = H ′

s and designated verifier public
key pkv = H ′

v. The adversary A asks qf , qΨ , qsign, qsim and qv queries for the
following oracles f(.), Ψ(.), Osign, Osim and Over respectively.

– f(.) queries: if Tf [.] is defined for query (α, y,H ′
s,H

′
v,M), then C returns its

value else, C returns a random value Tf [α, y,H ′
s,H

′
v, ,M] $← GF (qm)n−k.

– Ψ(.) or Ψ−1(.) queries: for a query under the form Ψ−1
h(M),i = H ′

ix
T
i or

under the form Ψh(M),i = (f(α, y,H ′
s,H

′
v,M) − Ψh(M),i(H

′
i
xT

i
) (where i ∈

{signer, verifier}), the adversary C searches in TΨ [.] and returns its value if
it exists otherwise, it returns a random value from GF (qm)n−k and send it
to the adversary A.

– Osign: for query (H ′
s,H

′
v,M), C chooses randomly α

$← GF (qm)(n+t), xv
$←

GF (qm)(n+t) and xs
$← GF (qm)n+t such that rank(α) ≤ d and rank(xv) ≤

d. The challenger C computes y = H ′
vαT and a = Ψ−1

h(M),s(H
′
sx

T
s) +

Ψh(M),s(H ′
vxT

v). If Tf [α, y,H ′
s,H

′
v,M] have been already defined, then C

aborts, otherwise we make Tf [α, y,H ′
s,H

′
v,M] ← a and an SDVS signature

on the message M under H ′
s, H ′

v is equal to σ = (xs, xv, y). The adversary C
sends σ to A.

– Osim: for query (H ′
v,H ′

s,M), this oracle is programmed as the Osign oracle.
– Over queries: for a query (xs, xv, y,H ′

v,H ′
s,M), the challenger C searches in

table Tf [.] for the tuple (α, y,H ′
v,H ′

s,M) such that y = H ′
vαT and

rank(α) ≤ d and also in table TΨ [.] for queries in form of H ′
sx

T
s and H ′

vxT
v

in order to have Ψh(M),s = Ψh(M),s(H ′
sx

T
s) and Ψh(M),v = Ψh(M),v(H ′

vxT
v)

and verifies if Ψh(M),s(H ′
sx

T
s) + Ψh(M),v(H ′

vxT
v) = f(α, y,H ′

v,H ′
s,M) and

rank(xx) ≤ d.
– Finally, the adversary A outputs a forged signature σ∗ = (x∗

s, x
∗
v, y∗) on a

message M∗ under signer’s and designated verifier’s public keys pks, pkv

such that V erify(pp, pks, pkv, skv, σ∗,M∗) = 1 and A has never questioned
the Sign Algorithm for input (pkv, pks,M

∗).

The adversary A wins the unforgeability game with probability equal to

Pr[Event1] × Pr[Event2|Event1]

where Event1 and Event2 are defined as follows:

– Event 1: The adversary C does not abort in Sign and Sim oracles.
– Event 2: The adversary A breaks the unforgeability of the scheme.

In order to compute the probability of the Event1, we distinguish two cases:

– Case 1: if (αy,H ′
s,H

′
v,M) produced in one Sign or Sim oracles has occurred

by chance in a previous query to the oracle f(.), then bad ← True (The event

Strong Designated Verifier Signature Based on the Rank Metric 97

bad refers to the adversary C aborts in Sign and Sim algorithms). Given that
there exist at most (qf + qsign + qsim) entries in table Tf [.] and the number
of elements α chosen randomly in GF (qm)n+t such that rank(α) ≤ d is equal
to ξ. As a consequence, the probability of this event for (qsign + qsim) queries
is at most

(qsign + qsim)(qf + qsign + qsim)
ξ

(1)

– Case 2: if the adversary C used the same random elements α ∈ GF (qm)n such
that rank(α) ≤ d in one Osign or Osim oracles, we have bad = true and C
makes at most (qsign + qsim) queries to Sign and Sim oracles. Therefore, the
probability is at most (qsign+qsim)2

ξ Consequently,

Pr[Event1] = 1 − Pr[bad] ≥ 1 − (qsign + qsim)(qf + 2(qsign + qsim))
ξ

However, we have Pr[Event2|Event1] ≥ ε1.

As a consequence, the adversary A outputs a tuple (x∗
s, x

∗
v, y∗, f, Ψ−1

h(M),s,

Ψh(M),v) with probability at least

ε1 − (qsign + qsim)(qf + 2(qsign + qsim))
ξ

The challenger C employs A, guesses an index 1 ≤ γ ≤ qΨ and wishes that
γ is the index of the query Ψh(M),s = (f(α∗, y∗,H ′

s,H
′
v,M) − Ψh(M),v(H ′

vx∗
v)

to the oracle Ψ−1
h(M),i. The algorithm C outputs s∗ as a response to this query

with probability 1
qΨ

. The tuple (x∗
s , , x

∗
v, y∗, f, Ψ−1

h(M),s, Ψh(M),v) is a valid SDVS
signature and as a consequence we have: rank(x∗

s) ≤ d, rank(x∗
v) ≤ d and

H ′
sx

∗T
s = Ψ∗

h(M∗),s(Ψh(M∗),v(Hvx∗T
v) − f(α∗, y∗,H

′∗
s ,H

′∗
v))

We take s∗ = Ψ∗
h(M∗),s(Ψh(M∗),v(Hvx∗T

v)−f(α∗, y∗,H
′∗
s ,H

′∗
v)) and then C solves

the following instance of Problem 3 H ′
sx

∗T
s = s∗ with probability at least

ε1
qΨ

− (qsign + qsim)(qf + 2(qsign + qsim))
ξ · qΨ

Thus, we conclude the proof. �

Non-transferability. Hereafter we discuss about the non transferability of the
proposed SDVS scheme.

Theorem 2. The proposed SDVS scheme is non-transferable.

98 H. Assidi and E. M. Souidi

Proof. We keep the same notations as before, then, we have to prove that the
signature produced by the signer and the one simulated by the designated verifier
are indistinguishable. For this reason, we prove that the following distributions
are the same

σsigner = (xs, xv, y) :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

α
$← GF (qm)n+t, rank(α) ≤ d

xv
$← GF (qm)n+t, rank(xv) ≤ d

y = H ′
vαT

s1 = Ψ−1
h(M),s(f(α, y,H ′

s,H
′
v,M) − Ψh(M),v(H ′

vxT
v))

xs = (e1, · · · , en+t)(PT
s)−1

σsim = (x′
s, x

′
v, y′) :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

α′ $← GF (qm)n+t, rank(α′) ≤ d

x′
s

$← GF (qm)n+t, rank(x′
v) ≤ d

y′ = H ′
vα′T

s2 = Ψ−1
h(M),s(f(α′, y′,H ′

s,H
′
v,M) − Ψh(M),v(H ′

vx
′T
v))

x′
v = (e′

1, · · · , e′
n+t)(P

T
v)−1

We suppose that σ is a valid signature selected from the set of all the valid
signature of the signer and we compute the following probabilities:

Prσsigner
= Prα,xv

[σ = σsigner] = (Pr{α
$← GF (qm)n+t, rank(α) ≤ d})2

and

Prσsim
= Prα′,x′

v
[σ = σsim] = (Pr{α′ $← GF (qm)n+t, rank(α′) ≤ d})2

As a consequence, we have Prσsigner
= Prσsim

�

Privacy of Signer Identity (PSI)

Theorem 3. If there exist an adversary A who can break the PSI property of
the scheme with non-negligible probability, then there exists an adversary C that
can solve Problem 3 with non negligible probability.

Proof. We suppose that there exists an adversary A who can break the PSI of
the scheme with success probability at most ε1. We consider C as an adversary
who can solve an instance of Problem 3 with probability equal to ε2 i.e. the
adversary C returns a vector x∗ of rank less or equal to d such that H ′∗x∗ = s∗

where H ′∗ = A∗(R∗|H∗)P ∗, A∗ ∈ GLn−k(GF (qm)), P ∗ ∈ GLn+t(GF (q)) and
R∗ is a random (n − k) × t matrix in GF (qm). The adversary C runs the Setup
algorithm in order to get the public parameters pp, runs the KeyGen algorithm
(Algorithm 4) to get the public keys of the two signers H ′

s0
and H ′

s1
with their

corresponding secret keys. The adversary C sets the designated verifier’s public

Strong Designated Verifier Signature Based on the Rank Metric 99

key H ′
v = H ′∗ and the adversary A makes qf query to the f(.) oracle, qΨ query

to Ψh(M),i oracle, qsign query to the sign oracle Osign, qsim query to the sim
oracle Osim and qv query to the verification oracle Over. The oracles f(.) and
Ψh(M),i(.) are programmed as in the proof of Theorem 1 [unforgeability], at the
beginning we take empty tables Tf [.], TΨ [.] and Ts[.] (in which we store the issued
signatures). The oracle queries are as follows:

– Sign query Osign: for a query (b,H ′
sb

,Hv,M) where b ∈ {0, 1}, the adversary
C returns a signature σb = (xsb

, xv, y) on a message M by running the sign
algorithm since C has the signer’s secret key and then transfers σb to A.

– Verify queries Over: for a query (b, σb,H
′
v,H ′

sb
,M) where b ∈ {0, 1}. This

oracle returns 1 if σb is in Ts[.] and σb was never returned by C and 0 otherwise.
– The adversary C chooses randomly b ∈ {0, 1}, xv ∈ GF (qm)(n+t) with

rank(xv) ≤ d, puts y = s∗, makes query to the oracle f(.) on the tuple
(T, s∗,H ′

sb
,H ′∗,M), computes xs as in Algorithm 5 (Step 2, 3 and 4) and

returns to the adversary A the signature σb, the public keys H ′
s0

, H ′
s1

and
the designated verifier public key H ′

v.
– After making a number of queries to the aforementioned oracles, the adver-

sary changes the answers of the oracles adequately. In the case of queries of
the form (x∗, y,H ′

s,H
′
v,M) where y �= s∗, it returns a random value from

GF (qm)n−k. If y = s∗ and rank(x∗) ≤ d it returns a random value from
GF (qm)n−k and changes T by x.

– The adversary A returns b′ = b.

To succeed in the PSI attack, the adversary A has to make query to the f(.)
oracle on the tuple (x∗, s∗,H ′

sb
,H ′∗,M) where s∗ = H ′∗x∗T . Since f(.) is a

random oracle, A can guess its value with probability 1
(qm)n−k . In addition,

the probability that Ψh(M),sb
= Ψh(M),sb

(H ′
sb

xT
sb

) and Ψh(M),v = Ψh(M),v(H ′
vxT

v)
is less than 2

(qm)n−k . Consequently, x∗ is a solution to the following instance
H ′∗x∗T = s∗ where rank(x∗) ≤ d of Problem 3 with probability ε2 such that:

ε2 ≥ ε1 − 3
(qm)n−k

�

5 Parameters and Results

In this section, we give parameters for the proposed strong designated verifier
signature scheme in Table 1 for different security levels. We also compare our
results with some related works in Tables 2 and 3, in particular with the post-
quantum constructions of SDVS namely [2,22]. The comparison is done in terms
of security properties, public key and signature sizes.

– The signer’s and designated verifier’s public key size:

size(pks) = size(pkv)

= (n − k)(n + t)mlog2(q) − bits

100 H. Assidi and E. M. Souidi

– The signature size is computed as follows:

size(sig) = size(xs) + size(xv) + size(y)
= [2(n + t) + (n − k)]mlog2(q) − bits

Table 1. Parameters for different security levels.

Security level n k t m q Public key size (bits) Signature size (bits)

80 bits 32 16 5 39 2 23088 3510

110 bit 40 20 5 45 2 40000 4950

120 bit 16 8 2 18 28 16000 6336

130 bit 16 8 2 18 240 96000 31680

Table 2. Comparison in terms of security properties with some related works.

Scheme Correctness Non-transferability Unforgeability Privacy of
signer identity

Scheme of [22] Yes No No Yes

Scheme of [2] Yes Yes Yes Yes

Our scheme Yes Yes Yes Yes

Table 3. Comparison in terms of public key and signature sizes.

Scheme Hard problem Security model Signature
size (bit)

Public key
size (bit)

Scheme of [22] Syndrome Decoding Random oracle 624 57.75

Scheme of [2] Syndrome Decoding Random oracle 530 99

Our scheme Rank Syndrome Decoding Random oracle 3510 0.003

6 Conclusion

In this paper, we have proposed an efficient strong designated verifier signa-
ture scheme from coding theory assumptions that is supposed to be resistant
to quantum computers. Our approach relies on using rank metric codes rather
than classical Hamming codes; indeed we proposed to use LRPC codes. Our
construction combines efficiency and security requirements, as we have achieved
a reasonable size for the public key length and for the signature size. In addition,
the security properties required for an SDVS scheme are fulfilled. As a perspec-
tive to the present paper, we consider to propose in a future work an SDVS
scheme that combines between efficiency and security especially in the era of
post quantum cryptography.

Strong Designated Verifier Signature Based on the Rank Metric 101

References

1. de Almeida, M.P., de Sousa Júnior, R.T., Garćıa-Villalba, L.J., Kim, T.: New dos
defense method based on strong designated verifier signatures. Sensors 18(9), 2813
(2018). https://doi.org/10.3390/s18092813

2. Asaar, M.R., Salmasizadeh, M., Aref, M.R.: Code-based strong designated veri-
fier signatures: security analysis and a new construction. IACR Cryptology ePrint
Archive 2016, 779 (2016)

3. Assidi, H., Ayebie, E.B., Souidi, E.M.: A code-based group signature scheme with
shorter public key length. In: Proceedings of the 13th International Joint Confer-
ence on e-Business and Telecommunications (ICETE 2016) - Volume 4: SECRYPT,
Lisbon, Portugal, 26–28 July 2016, pp. 432–439 (2016). https://doi.org/10.5220/
0005969204320439

4. Assidi, H., Ayebie, E.B., Souidi, E.M.: Two mutual authentication protocols based
on zero-knowledge proofs for RFID systems. In: Kim, H., Kim, D.-C. (eds.) ICISC
2017. LNCS, vol. 10779, pp. 267–283. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78556-1 15

5. Ayebie, B.E., Assidi, H., Souidi, E.M.: A new dynamic code-based group signature
scheme. In: El Hajji, S., Nitaj, A., Souidi, E.M. (eds.) C2SI 2017. LNCS, vol.
10194, pp. 346–364. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
55589-8 23

6. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.: On the inherent intractability
of certaincoding problems (Corresp.). IEEE Trans. Inf. Theory 24(3), 384–386
(1978). https://doi.org/10.1109/TIT.1978.1055873

7. Cayrel, P.-L., El Yousfi Alaoui, S.M., Hoffmann, G., Véron, P.: An improved
threshold ring signature scheme based on error correcting codes. In: Özbudak, F.,
Rodŕıguez-Henŕıquez, F. (eds.) WAIFI 2012. LNCS, vol. 7369, pp. 45–63. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31662-3 4

8. Chaum, D., van Antwerpen, H.: Undeniable signatures. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 20

9. Gaborit, P., Ruatta, O., Schrek, J., Zémor, G.: RankSign: an efficient signature
algorithm based on the rank metric. In: Mosca, M. (ed.) PQCrypto 2014. LNCS,
vol. 8772, pp. 88–107. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11659-4 6

10. Gaborit, P., Zémor, G.: On the hardness of the decoding and the minimum dis-
tance problems for rank codes. IEEE Trans. Inf. Theory 62(12), 7245–7252 (2016).
https://doi.org/10.1109/TIT.2016.2616127

11. Gorantla, M.C., Boyd, C., Nieto, J.M.G.: Strong designated verifier signature in
a multi-user setting. In: Seventh Australasian Information Security Conference,
AISC 2009, Wellington, New Zealand, January 2009, pp. 21–31 (2009)

12. Hu, X., Tan, W., Xu, H., Wang, J., Ma, C.: Strong designated verifier signature
schemes with undeniable property and their applications. Secur. Commun. Netw.
2017, 7921782:1–7921782:9 (2017). https://doi.org/10.1155/2017/7921782

13. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–
154. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 13

14. Kancharla, P.K., Gummadidala, S., Saxena, A.: Identity based strong designated
verifier signature scheme. Informatica Lith. Acad. Sci. 18(2), 239–252 (2007)

https://doi.org/10.3390/s18092813
https://doi.org/10.5220/0005969204320439
https://doi.org/10.5220/0005969204320439
https://doi.org/10.1007/978-3-319-78556-1_15
https://doi.org/10.1007/978-3-319-78556-1_15
https://doi.org/10.1007/978-3-319-55589-8_23
https://doi.org/10.1007/978-3-319-55589-8_23
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1007/978-3-642-31662-3_4
https://doi.org/10.1007/0-387-34805-0_20
https://doi.org/10.1007/0-387-34805-0_20
https://doi.org/10.1007/978-3-319-11659-4_6
https://doi.org/10.1007/978-3-319-11659-4_6
https://doi.org/10.1109/TIT.2016.2616127
https://doi.org/10.1155/2017/7921782
https://doi.org/10.1007/3-540-68339-9_13

102 H. Assidi and E. M. Souidi

15. Kang, B., Boyd, C., Dawson, E.: A novel identity-based strong designated verifier
signature scheme. J. Syst. Softw. 82(2), 270–273 (2009). https://doi.org/10.1016/
j.jss.2008.06.014

16. Laguillaumie, F., Vergnaud, D.: Designated verifier signatures: anonymity and effi-
cient construction from Any bilinear map. In: Blundo, C., Cimato, S. (eds.) SCN
2004. LNCS, vol. 3352, pp. 105–119. Springer, Heidelberg (2005). https://doi.org/
10.1007/978-3-540-30598-9 8

17. Lal, S., Verma, V.: Identity based strong designated verifier proxy signature
schemes. IACR Cryptology ePrint Archive 2006, 394 (2006)

18. Lin, H.: A new certificateless strong designated verifier signature scheme: non-
delegatable and SSA-KCA secure. IEEE Access 6, 50765–50775 (2018). https://
doi.org/10.1109/ACCESS.2018.2809437

19. Melchor, C.A., Cayrel, P., Gaborit, P.: A new efficient threshold ring signature
scheme based on coding theory. In: Post-Quantum Cryptography, Second Inter-
national Workshop, PQCrypto 2008, Cincinnati, OH, USA, 17–19 October 2008,
Proceedings, pp. 1–16 (2008). https://doi.org/10.1007/978-3-540-88403-3 1

20. Noh, G., Jeong, I.R.: Strong designated verifier signature scheme from lattices in
the standard model. Secur. Commun. Netw. 9(18), 6202–6214 (2016). https://doi.
org/10.1002/sec.1766

21. Saeednia, S., Kremer, S., Markowitch, O.: An efficient strong designated verifier
signature scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971,
pp. 40–54. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24691-
6 4

22. Shooshtari, M.K., Ahmadian-Attari, M., Aref, M.R.: Provably secure strong des-
ignated verifier signature scheme based on coding theory. Int. J. Commun. Syst.
30(7), e3162 (2017). https://doi.org/10.1002/dac.3162

23. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: 35th Annual Symposium on Foundations of Computer Science, Santa Fe,
New Mexico, USA, 20–22 November 1994, pp. 124–134 (1994). https://doi.org/10.
1109/SFCS.1994.365700

24. Tian, H., Jiang, Z., Liu, Y., Wei, B.: A systematic method to design strong desig-
nated verifier signature without random oracles. Cluster Comput. 16(4), 817–827
(2013). https://doi.org/10.1007/s10586-013-0255-x

25. Yang, B., Yu, Y., Sun, Y.: A novel construction of SDVS with secure disavowabil-
ity. Cluster Comput. 16(4), 807–815 (2013). https://doi.org/10.1007/s10586-013-
0254-y

https://doi.org/10.1016/j.jss.2008.06.014
https://doi.org/10.1016/j.jss.2008.06.014
https://doi.org/10.1007/978-3-540-30598-9_8
https://doi.org/10.1007/978-3-540-30598-9_8
https://doi.org/10.1109/ACCESS.2018.2809437
https://doi.org/10.1109/ACCESS.2018.2809437
https://doi.org/10.1007/978-3-540-88403-3_1
https://doi.org/10.1002/sec.1766
https://doi.org/10.1002/sec.1766
https://doi.org/10.1007/978-3-540-24691-6_4
https://doi.org/10.1007/978-3-540-24691-6_4
https://doi.org/10.1002/dac.3162
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1007/s10586-013-0255-x
https://doi.org/10.1007/s10586-013-0254-y
https://doi.org/10.1007/s10586-013-0254-y

A Lightweight Implementation of NTRU
Prime for the Post-quantum

Internet of Things

Hao Cheng1(B), Daniel Dinu2, Johann Großschädl1, Peter B. Rønne1,
and Peter Y. A. Ryan1

1 SnT and CSC, University of Luxembourg, 6, Avenue de la Fonte,
4364 Esch-sur-Alzette, Luxembourg

{hao.cheng,johann.groszschaedl,peter.roenne,peter.ryan}@uni.lu
2 IPAS, Intel, Chandler, AZ 85226, USA

daniel.dinu@intel.com

Abstract. The dawning era of quantum computing has initiated var-
ious initiatives for the standardization of post-quantum cryptosystems
with the goal of (eventually) replacing RSA and ECC. NTRU Prime is
a variant of the classical NTRU cryptosystem that comes with a couple
of tweaks to minimize the attack surface; most notably, it avoids rings
with “worrisome” structure. This paper presents, to our knowledge, the
first assembler-optimized implementation of Streamlined NTRU Prime
for an 8-bit AVR microcontroller and shows that high-security lattice-
based cryptography is feasible for small IoT devices. An encapsulation
operation using parameters for 128-bit post-quantum security requires
8.2 million clock cycles when executed on an 8-bit ATmega1284 micro-
controller. The decapsulation is approximately twice as costly and has
an execution time of 15.6 million cycles. We achieved this performance
through (i) new low-level software optimization techniques to accelerate
Karatsuba-based polynomial multiplication on the 8-bit AVR platform
and (ii) an efficient implementation of the coefficient modular reduction
written in assembly language. The execution time of encapsulation and
decapsulation is independent of secret data, which makes our software
resistant against timing attacks. Finally, we assess the performance one
could theoretically gain by using a so-called product-form polynomial as
part of the secret key and discuss potential security implications.

Keywords: Lightweight cryptography · Post-Quantum
Cryptography · Key Encapsulation Mechanism · NTRU Prime ·
Efficient implementation

1 Introduction

The advent of quantum computing is a technological revolution that will
soon have a massive impact on our daily life and may even disrupt whole

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Laurent and T. Giannetsos (Eds.): WISTP 2019, LNCS 12024, pp. 103–119, 2020.
https://doi.org/10.1007/978-3-030-41702-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41702-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-41702-4_7

104 H. Cheng et al.

industries [19]. In short, a quantum computer operates on so-called qubits (the
“quantum analog” of bits), which can not only take the two states 0 and 1, but
also be in a superposition of both states. A quantum computer with n qubits
can be in an arbitrary superposition of up to 2n states simultaneously, enabling
it to process 2n values in parallel or to store 2n values in one step. For example,
a quantum computer with about 50 logical qubits could solve certain complex
optimization problems a lot faster than the most advanced classical supercom-
puter today. In the not-so-distant future, our daily life will start to get affected
by large-scale quantum computers that are powerful enough to aid the discovery
of new drugs or materials, organize the routes of millions of self-driving cars
in metropolitan areas without introducing traffic jams, and improve the effi-
ciency of national power grids [19]. Unfortunately, quantum computing has also
a destructive side because a large-scale quantum computer with a few thousand
qubits would be able to break essentially every public-key cryptosystem in use
today. This was discovered in the mid-90s by Peter Shor, who also developed a
polynomial-time quantum algorithm to factor large integers, which could break
the widely-used RSA cryptosystem [25]. Later, it was also found that a general-
ization of Shor’s algorithm would enable one to take discrete logarithms in a large
elliptic curve groups, thereby breaking Elliptic Curve Cryptography (ECC).

Estimates as to when the first large-scale quantum computer might become
available vary significantly, but optimistic predictions suggest it could happen
before the end of the 2020s [21]. Given the real-world threat posed by quantum
computing, it is little surprising that research in the domain of Post-Quantum
Cryptography (PQC), i.e. cryptography that is able to withstand cryptanalytic
attacks carried out using a large quantum computer [3], has gained momentum
over the past few years. In 2016, the U.S. National Institute of Standards and
Technology (NIST) announced a process to “solicit, evaluate, and standardize
quantum-resistant public-key cryptographic algorithms” and published a call to
submit proposals [22]. This call, whose submission deadline passed at the end
of November 2017, covered the complete spectrum of public-key functionalities
considered by the NIST, i.e. public-key encryption, key agreement, and digital
signatures. A total of 72 candidates were submitted, of which 69 satisfied the
minimum requirements for acceptability and entered the first round of a multi-
year evaluation process. In early 2019, the NIST selected 26 of the submissions
as candidates for the second round; among these are 17 public-key encryption
or key-establishment algorithms and nine signature schemes. The 17 algorithms
for encryption (resp. key establishment) include nine that are based on certain
hard problems in lattices, seven whose security rests upon classical problems in
coding theory, and one that claims security from the presumed hardness of the
(supersingular) isogeny walk problem on elliptic curves [22].

NTRU Prime is a family of lattice-based cryptosystems developed by
Bernstein, Chuengsatiansup, Lange, and van Vredendaal [4], who drew inspi-
ration from the 20-year old classical NTRU cryptosystem [12]. There are two
variants of NTRU Prime; one is the so-called Streamlined NTRU Prime, which
uses the quotient h = g/(3f) of two secret polynomials g, f as public key
(similar to the classical NTRU), while the other, NTRU LPRime, has public

A Lightweight Implementation of NTRU Prime for the Post-quantum IoT 105

keys of the form h = e + Af , where e, f are secret and A is public (like in cryp-
tosystems based on the Ring Learning With Errors (RLWE) problem [20], e.g.
NewHope [1]). In essence, NTRU Prime can be seen as an attempt to improve
the security of the classical NTRU encryption algorithm (and other lattice-based
cryptosystems) by avoiding rings with “worrisome” structure and using exten-
sion fields of the form R/q = (Z/q)[x]/(xp − x − 1) instead, where p is prime.
Multiplication in such fields can be efficiently implemented through several lay-
ers of Karatsuba’s technique [17], which makes NTRU Prime relatively fast on
64-bit processors with vector instructions. Concretely, the designers of NTRU
Prime describe in [4] a highly-optimized implementation of the field multiplica-
tion using Intel’s AVX2 vector instructions that executes 16 separate multipli-
cations of integers modulo 216 in a SIMD-parallel way. NTRU Prime is among
the 26 candidates in the second round of NIST’s evaluation process. This second
round will focus on evaluating the candidates’ performance across a wide variety
of systems and platforms, which includes “not only big computers and smart
phones, but also devices that have limited processor power” [22].

Research on software optimization techniques that enable fast implementa-
tions of (Streamlined) NTRU Prime has, until now, been limited to 64-bit Intel
processors with AVX2 vector engine. When using a parameter set for 128 bits
of post-quantum security, the AVX2 implementation introduced in [4] requires
59,600 clock cycles for encryption (i.e. “encapsulation” of a 256-bit key) on an
Intel Haswell processor, while the decryption (“decapsulation”) is 63.5% more
costly and takes 97,452 cycles. The only performance figures for NTRU Prime
on small platforms (e.g. 8, 16, or 32-bit microcontrollers) we are aware of were
reported in a recent paper on pqm4 [16], a testing and benchmarking toolsuite
for NIST PQC candidates on ARM Cortex-M4 devices. Due to the lack of an
optimized ARM implementation, the authors of [16] resorted to the reference
C code provided by the designers of NTRU Prime, which requires 54.9 million
clock cycles for encapsulation and 166.5 million cycles for decapsulation (these
cycle counts were determined with Streamlined NTRU Prime and parameters
for 128-bit post-quantum security). However, both results do not allow one to
reason about the actual performance of NTRU Prime on microcontrollers since
the aim of a reference C implementation is to promote the understanding of an
algorithm rather than achieving high speed. Therefore, not much is known on
how to optimize NTRU Prime for a small microcontroller and what execution
time a carefully-tuned assembler implementation could achieve.

In this paper we present a highly-optimized implementation of Streamlined
NTRU Prime for 8-bit AVR microcontrollers that we developed from scratch to
reach high speed and resistance against timing attacks. We chose 8-bit AVR as
evaluation platform for two reasons. First, the 8-bit AVR architecture remains
very popular in devices with increased security requirements, e.g. smart cards
and (wireless) sensor nodes. Second, 8-bit AVR microcontrollers are among the
most resource-limited of all currently used computing platforms, which implies
that if NTRU Prime can be implemented to run with acceptable speed on an
AVR device, it can also be implemented to run satisfactorily on more powerful
16 and 32-bit microcontrollers (e.g. an ARM Cortex-M), whereas the opposite

106 H. Cheng et al.

is not necessarily true. The implementation we describe in the next sections is
not purely optimized for speed, but strives for a balance between performance
and other metrics of interest for low-end devices used in the Internet of Things
(IoT), in particular binary code size. Therefore, we decided to refrain from full
loop unrolling and other optimization techniques that are likely to increase the
code size significantly (especially on an 8-bit device) for marginal performance
benefits. We also restrict our arsenal of polynomial multiplication algorithms to
the basic (i.e. recursive) Karatsuba variant and the schoolbook method for the
same reason. Recent results by Kannwischer et al. [15] show that a combination
of Karatsuba’s technique with the asymptotically faster Toom-Cook algorithm
[27] can slightly reduce the multiplication time, e.g. by 17.4% for polynomials
of degree 701 (excluding the reduction of coefficients), but only at the expense
of almost doubled stack usage and significantly increased implementation com-
plexity. On the other hand, our Karatsuba/schoolbook multiplication is simple
to implement and has the further advantage of enabling compact code size (see
Sect. 4) while remaining competitive in terms of performance.

Instead of potential speed-ups due to the Toom-Cook algorithm, we analyze
the performance benefits one could achieve by utilizing so-called product-form
polynomials, which were first proposed in [13,14] to reduce the computational
cost of the classical NTRU scheme. We show that representing the secret key in
product form would cut the decapsulation time by 30%, but we also emphasize
that the security implications of product-form secret keys in NTRU Prime are
yet to be carefully analyzed. Furthermore, we present efficient implementations
of the fast reduction of coefficient products of a length of up to 29 bits modulo
a 13-bit prime q. Finally, we demonstrate that, for some 8-bit AVR models like
the ATtiny45, the modulo-3 reduction code generated by optimizing compilers
may have operand-dependent execution time and enable timing attacks.

2 A Brief Overview of NTRU Prime

NTRU Prime is introduced in [4] as a high-security prime-degree large-Galois-
group inert-modulus ideal-lattice-based cryptosystem. A distinguishing feature
of NTRU Prime is the use of an irreducible non-cyclotomic polynomial P ; the
designers recommend to choose a polynomial P of prime degree p with a large
Galois group. More specifically, they suggest P = xp − x − 1 and recommend to
take a prime modulus q such that P is irreducible modulo q, which means q is
inert in the ring R = Z[x]/P and R/q = (Z/q)[x]/P is actually a field. Due to
the prime degree of P , the only subfields of (Z/q)[x]/P are Z/q and the entire
field (Z/q)[x]/P . Furthermore, the requirement of a large Galois group implies
that P has, at most, a few roots in any field of reasonable degree, which makes
automorphism computations hard. Finally, since q is an inert prime, there are
no ring homomorphisms from (Z/q)[x]/P to any smaller non-0 ring.

The NTRU Prime family of Key Encapsulation Mechanisms (KEMs) spec-
ified in [4,5] consists of Streamlined NTRU Prime and NTRU LPrime, but we
only consider the former since it is more implementation-friendly. Streamlined

A Lightweight Implementation of NTRU Prime for the Post-quantum IoT 107

NTRU Prime is similar to classical NTRU, but adopts a rounding technique in
the encapsulation and, as explained above, uses a field instead of a ring.

Notation and Parameters. A parameter set for Streamlined NTRU Prime
consists of the triple (p, q, w), which defines the main algebraic structures. The
parameter p is the degree of the irreducible polynomial P = xp − x − 1 and is
prime; the parameter sets given in [5] use 653, 761, and 857. Also the modulus
q, which represents the characteristic of the field R/q = (Z/q)[x]/P , is a prime
with typical values of 4621, 4591, and 5167, respectively, for the three degrees
considered in [5]. The weight parameter w is a positive integer that defines the
number of non-0 coefficients of certain polynomials. A valid parameter set has
to satisfy 2p ≥ 3w and q ≥ 16w + 1. Reusing the notation of [5], we abbreviate
the ring Z[x]/P , the ring (Z/3)[x]/P , and the field (Z/q)[x]/P as R, R/3, and
R/q, respectively. An element of the ring R is small if all its coefficients are
in {−1, 0, 1}. Short is defined as the set of small weight-w elements of R, while
Rounded is the set of polynomials r(x) ∈ R where each coefficient ri lies is the
range [−(q − 1)/2, (q − 1)/2] and is rounded to the nearest multiple of 3.

Key Generation. To generate a key pair for Streamlined NTRU Prime, the
following operations have to be performed (note that, for brevity, we skip some
operations such as the encoding of polynomials to strings).

1. Generate a uniform random small polynomial g(x) ∈ R. Repeat this step
until g(x) is invertible in R/3.

2. Compute v(x) = 1/g(x) in R/3.
3. Generate a uniform random polynomial f(x) ∈ Short.
4. Compute h(x) = g(x)/(3f(x)) in R/q.
5. Generate a uniform random polynomial ρ(x) ∈ Short.
6. Output h(x) as public key and (f(x), v(x), h(x), ρ(x)) as private key.

Encapsulation. The encapsulation operation gets a public key as input and
produces a ciphertext and session key as output (again, for brevity, we skip all
encoding and decoding operations).

1. Generate a uniform random polynomial r(x) ∈ Short.
2. Compute c(x) = h(x)r(x) ∈ Rounded.
3. Compute C = (c(x),Hash(r(x), h(x))).
4. Output C as ciphertext and Hash(1, r(x), C) as session key.

Decapsulation. The decapsulation gets a key pair and a ciphertext as input
and produces a session key as output (encodings and decodings are skipped).

1. Compute e(x) = 3f(x)c(x) ∈ R/q and represent each coefficient ei of e(x) as
an integer between −(q − 1)/2 and (q − 1)/2.

2. Compute e(x) = e(x) mod 3 ∈ R/3 (i.e. reduce each ei modulo 3).
3. Compute r′(x) = e(x)v(x) ∈ R/3.
4. Lift r′(x) ∈ R/3 to a small polynomial r′(x) ∈ R.

108 H. Cheng et al.

5. If the weight of r′(x) is not w then set r′(x) = (1, 1, . . . , 1, 0, 0, . . . , 0).
6. Compute c′(x) = h(x)r′(x) ∈ Rounded.
7. Compute C ′ = (c′(x),Hash(r′(x), h(x))).
8. If C ′ equals C then output Hash(1, r′(x), C) else output Hash(0, ρ(x), C) as

session key.

3 Polynomial Multiplication

Since Streamlined NTRU Prime is closely related to the classical NTRU scheme
(i.e. NTRUEncrypt), it is not surprising that they share many implementation
aspects; in particular, they have in common that their performance depends to
a large extent on the polynomial arithmetic. However, the underlying algebraic
structures are (slightly) different: NTRUEncrypt is based on the residue class
ring R = (Z/q)[x]/(xN − 1) where q is a power of two, while NTRU Prime uses
the extension field (Z/q)[x]/(xp − x − 1) where q is a prime, e.g. q = 4621. The
reduction modulo q is basically free in the former case, but relatively expensive
for NTRU Prime, especially when constant execution time is required so as to
foil timing attacks. Furthermore, the irreducible polynomial P of NTRU Prime
contains an additional non-0 coefficient, which makes the reduction operation
more costly. Finally, most performance-optimized implementations of classical
NTRU for constrained IoT devices use a parameter set with so-called product-
form polynomials [14] to minimize the execution time of the ring multiplication
(see e.g. [2,7]). However, product-form parameter sets were not included in the
NTRU Prime specification. For all these reasons, one can expect the arithmetic
part of NTRU Prime, when implemented for an 8-bit AVR microcontroller, to
be significantly slower than that of the classical NTRU cryptosystem.

The encapsulation operation of NTRU Prime includes a single polynomial
multiplication where one operand is an element of R/q (i.e. its coefficients are
bounded by q) and the other operand is an element of Short, which means it is
a ternary polynomial with exactly w non-0 coefficients. Hence, the polynomial
multiplication carried out in NTRU Prime encapsulation is very similar to the
ring multiplication in the encryption operation of classical NTRU [12]. On the
other hand, the decapsulation of NTRU Prime involves three polynomial mul-
tiplications, which is one more than the number of multiplications that have to
be executed in classical NTRU decryption. The first polynomial multiplication
in the decapsulation gets an element of Rounded (i.e. an element of R/q) and
an element of Short as input. In contrast, the second polynomial multiplication
(Step 3 of the decapsulation as presented in the previous section) is performed
on two elements of R/3, i.e. two ternary polynomials. The third multiplication
of the decapsulation is exactly the same as the polynomial multiplication in the
encapsulation, which means the operands are elements of R/q and Short.

3.1 Karatsuba-Based Polynomial Multiplication

Most algorithms for high-speed polynomial multiplication have their origins in
well-known algorithms for multiple-precision multiplication of integers, such as

A Lightweight Implementation of NTRU Prime for the Post-quantum IoT 109

needed for common public-key cryptosystems like RSA and ECC [8,11]. From
a high-level perspective, polynomial multiplication algorithms can be split into
two main categories, namely basic techniques that require n2 coefficient multi-
plications to obtain the product of two polynomials consisting of n coefficients
each, and advanced techniques with sub-quadratic complexity, e.g. Karatsuba’s
algorithm [17]. Examples of the former category are the operand-scanning and
product-scanning method, which produce the coefficient-products in a row-wise
or column-wise fashion and differ with respect of the number of load and store
instructions they need to execute [11]. The so-called hybrid technique proposed
in [10] is beneficial on microcontrollers with a large number of general-purpose
registers (e.g. AVR ATmega) and combines the individual strengths of operand
scanning and product scanning. It has a “nested loop” structure and computes
d ≥ 2 coefficient-products in each iteration of the inner loop, which reduces the
number of load instructions by a factor of d compared to product scanning.

Multiplication algorithms with sub-quadratic complexity have been known
since the 1960s when Karatsuba published his seminal paper [17]. Karatsuba’s
method reduces a multiplication of two operands consisting of n coefficients to
three multiplications of (n/2)-coefficient polynomials and a few additions. The
half-size multiplications, in turn, can be implemented using any multiplication
technique, including conventional operand and product scanning, as well as the
hybrid method. Alternatively, it is possible to apply the Karatsuba algorithm
recursively until the operands consist of just a single coefficient, in which case
the asymptotic complexity becomes Θ(nlog2(3)). Yet another option is the so-
called Arbitrary Degree Karatsuba (ADK) variant described and analyzed in
detail in [24]. Also a few multiplication algorithms with even better asymptotic
complexity have been studied; an example is the Toom-Cook multiplication we
mentioned in Sect. 1 in the context of Kannwischer et al.’s work on polynomial
multiplication for ARM Cortex-M4 processors [15]. An efficient implementation
of a 4-way Toom-Cook algorithm for multiplication of degree-256 polynomials
on a Cortex-M4 device is described in [18].

Finding the optimal multiplication strategy for the two forms of polynomial
multiplication mentioned at the beginning of this section (i.e. R/q × Short and
R/3 × R/3) is a difficult task. Intuitively, one may assume that a combination
of multiplication techniques with sub-quadratic and quadratic complexity will
yield peak performance. Yet, the concrete implementation of such a combined
strategy raises a few non-trivial questions. Asymptotic complexity bounds are
not always meaningful in the real world, especially when the involved operands
are relatively short. Therefore, it is necessary to find out which sub-quadratic
algorithms are most efficient ones for the multiplications in NTRU Prime (this
depends besides the lengths of the polynomials also on certain characteristics
of the target architecture). For constrained platforms like 8-bit AVR, it makes
sense to base this decision not solely on speed but also on RAM requirements
and code size. A second important question is how many recursions of Karat-
suba’s and/or Toom-Cook’s algorithm should be performed before switching to
a multiplication method with quadratic complexity, i.e. what operand length is
the “crossover” point? Finally, a third question is which of the basic algorithms

110 H. Cheng et al.

should be used: operand scanning, product scanning, or the hybrid method? In
order to answer all these questions, we conducted a multitude of experiments
with different sub-quadratic algorithms1, different numbers of recursions of the
sub-quadratic algorithms (i.e. different “crossover” points), and different basic
multiplication techniques with quadratic complexity.

The results of these experiments show that for a polynomial multiplication
of the form R/q × Short (carried out in Step 2 of encapsulation as well as Step
1 and 6 of decapsulation), five recursions of Karatsuba’s algorithm provide the
best performance across all parameter sets specified in [5]. Below the five levels
of Karatsuba, the normal product-scanning technique is used since, due to the
bitlength of the coefficient-products and the limited register space, the hybrid
multiplication is not efficient. Also alternative Karatsuba variants, such as the
ADK algorithm from [24], did not yield superior performance. The situation is
different for the polynomial multiplication of the form R/3×R/3, which has to be
carried out in Step 3 of the decapsulation. For this multiplication, a combination
of the (recursive) Karatsuba algorithm and hybrid method achieves the best
results. To be precise, we reached peak performance with four recursions of
Karatsuba and using the hybrid method with d = 4 at the “lower level” (this
is possible because the coefficient-products are relatively small and, thus, more
free registers are available). We implemented Karatsuba’s algorithm in C and
the hybrid multiplication method in both C and AVR assembler, whereby the
latter is very similar to the implementations described in [8,10].

A multiplication of two polynomials of degree p − 1 through a combination
of Karatsuba’s algorithm and the hybrid method (or any other multiplication
technique) yields a product-polynomial r(x) of degree 2p − 2, which has to be
reduced modulo the irreducible polynomial P = xp − x − 1 to get a polynomial
of degree p − 1. Thanks to the relation xp ≡ x + 1 mod P , this reduction can
be performed by simply substituting each term rix

i with i ≥ p in r(x) by the
sum rix

i−p+1 + rix
i−p [5]. These substitutions are nothing else than additions

of the p − 1 higher coefficients ri to ri−p+1 and ri−p, which reduces the degree
of r(x) to (at most) p so that two further coefficient additions suffice to obtain
a result of degree p − 1. Thus, the cost of the reduction modulo P amounts to
2p additions of (unreduced) coefficients. The final step of the multiplication is
the reduction of the p − 1 remaining coefficients modulo q or modulo 3.

Coefficient-Reduction Modulo q . As explained above, we implemented the
multiplication of the form R/q × Short using five recursions of Karatsuba as
“higher level” algorithm and product scanning at the “lower level.” Taking the
parameter set sntrup653 as example, we have p = 653, which means the hybrid
method is executed with operands of degree �653/25� = 21. Furthermore, since
q = 4621 and we represent the −1 coefficients of a ternary polynomial (i.e. an
element of Short) as q − 1 = 4620, a single coefficient-product has a maximum

1 As stated in Sect. 1, we do not consider the Toom-Cook multiplication algorithm
due to its high RAM consumption. The AVR device we use for benchmarking, an
ATmega1284 microcontroller, has only 16 kB SRAM, which makes a strong case to
take memory requirements into account in the algorithm exploration.

A Lightweight Implementation of NTRU Prime for the Post-quantum IoT 111

Algorithm 1. Table-based constant-time modular reduction
Input: Integer s of a length of (up to) 29 bits, modulus q of a fixed length of 13 bits
Output: r = s mod q
1: b ← (s28, . . . , s24) � extract the five bits b = (s28, . . . , s24) from s
2: r ← RT1[b] � reduce b224 modulo q via look-up table RT1
3: b ← (s23, . . . , s16) � extract the eight bits b = (s23, . . . , s16) from s
4: r ← r + RT2[b] � reduce b216 modulo q via look-up table RT2
5: r ← r + s & 0xffff � add 16 least-significant bits of s to r
6: b ← (r16, . . . , r12) � extract the five bits b = (r16, . . . , r12) from r
7: r ← (r & 0xfff) + RT3[b] � reduce b212 modulo q via look-up table RT3
8: r ← r − q · (r � q) � conditionally subtract q from r
9: return r

length of 24 bits. The column sum to which the 24-bit coefficient-products are
accumulated can become up to 29 bits long, i.e. we need an efficient algorithm
for reducing a 29-bit integer modulo a 13-bit integer.

Algorithm 1 shows a generic technique for reducing a 29-bit integer modulo
an arbitrary 13-bit integer q using three look-up tables, which we call reduction
tables. It is assumed that the input s (representing a column sum of the hybrid
method described above) is held in four 8-bit registers, i.e. the individual bytes
of s can be conveniently accessed. At first, the five most-significant bits of s are
assigned to b and then b224 mod q is computed with the help of reduction table
RT1, which contains 32 entries. Next, the second-most significant byte of s is
processed in a similar way, whereby the 256-entry table RT2 is used to obtain
its residue modulo q. The two residues are added up and form the intermediate
result r. Then, we extract the 16 least-significant bits from s and add them to
r, which has now a length of at most 17 bits. Similar as before, we assign the
five most-significant bits of r to b, reduce it using RT3, and add the residue to
the 12 least-significant bits of r. Because r is now always less than 2q, a single
subtraction of q is sufficient to have a fully reduced result. However, to ensure
constant execution time, we first compare r with the modulus q, which returns
1 if r ≥ q and 0 otherwise. This comparison-result is multiplied by q and the
product (either q or 0) is then subtracted from r. Note that Algorithm 1 works
for any 13-bit modulus q, though each q requires its own set of tables.

Coefficient-Reduction Modulo 3. The reduction modulo 3 can exploit the
fact that some multiples of 3 (e.g. 15, 255) have the form 2k ± 1, which allows
for a particularly efficient implementation. Thus, the reduction modulo 3 is less
costly (in terms of look-up tables) than the modulo-q case, but requires special
attention regarding timing attacks. Namely, as described in Sect. 2, one of the
operands of the R/3 × R/3 multiplication in the decapsulation is v(x), which is
a part of the private key. Therefore, an implementer has to take care that this
multiplication, including the reduction of all coefficient-products modulo 3, has
constant execution time. When using C or C++, a modulo-3 reduction can be
implemented by an operation of the form y = x % 3, whereby in our case x is
a 16-bit integer. However, in the course of our work we found out that one can

112 H. Cheng et al.

Table 1. Execution time (in cycles) of the udivmodhi4 function for all 216 possible
16-bit unsigned integers. Columns labeled with “Frequ” and “%” give the frequency (in
absolute numbers) and probability (in per cent) of the occurrence of the cycle count.

Cycles Frequ. % Cycles Frequ. % Cycles Frequ. %

193 3 0.005 198 7956 12.140 203 3825 5.836

194 45 0.069 199 12243 18.681 204 1323 2.019

195 312 0.476 200 14121 21.547 205 312 0.476

196 1323 2.019 201 12244 18.683 206 45 0.069

197 3825 5.836 202 7956 12.140 207 3 0.005

not take it for granted that a C compiler generates constant-time code for this
operation. Concretely, we discovered that certain versions of avr-gcc generate
code with operand-dependent execution time for some AVR models, which can
leak information about the secret polynomial v(x).

Fig. 1. Frequency of the occurrence (in absolute numbers) of a certain execution time
(in cycles) of the udivmodhi4 function for all 216 possible 16-bit unsigned integers.

For example, we determined the execution time of the modulo-3 reduction
compiled with avr-gcc 4.8.2 for an ATtiny45 microcontroller with help of the
cycle-accurate simulator Avrora [26]. For target devices that have no hardware
multiplier, e.g. ATtiny microcontrollers, avr-gcc uses the udivmodhi4 func-
tion from the runtime library libgcc to perform the reduction modulo 3. The
same function was also used for devices with hardware multiplier, including the
ATmega1284 (our benchmarking device, see Sect. 4), until version 4.7.0 of the
avr-gcc compiler; thereafter it was replaced with umulhisi3 [9]. While the
latter function has a constant execution time (i.e. 54 cycles) for all 216 possible
inputs, the time required by the former depends on the value of the operand to
be reduced. Concretely, the execution time of udivmodhi4 varies between 193
clock cycles (for input values 0, 1, and 2) and 207 cycles (for 49149, 49150, and
49151). Thus, the time difference between the longest and shortest execution is
14 cycles. Further details are provided in Table 1 and Fig. 1.

A Lightweight Implementation of NTRU Prime for the Post-quantum IoT 113

In order to ensure that the resistance against timing attacks does not depend
on the compiler, we implemented the modulo-3 reduction in assembly language
following the approach described in [7].

3.2 Product-Form Polynomial Multiplication

A well-known way to improve the execution time of the original NTRU scheme
(i.e. NTRUEncrypt) is to use ternary polynomials in product form, which was
originally proposed some 20 years ago [13,14]. In essence, a ternary polynomial
f(x) in product form can be expressed as f(x) = f1(x) � f2(x) + f3(x), where
f1(x), f2(x), f3(x) are three extremely sparsely populated ternary polynomials
and � symbolizes a “convolution,” i.e. a polynomial multiplication modulo the
irreducible polynomial P = xN − 1 of NTRUEncrypt [12]. For example, when
using parameters for 128-bit security (based on a ring of degree N = 443), the
given number of +1 and −1 coefficients of f1(x), f2(x), and f3(x) is 9, 8, and
5, respectively, which means that a convolution requires just a bit over 15,000
coefficient additions or subtractions. Despite the extremely low weight of these
“sub-polynomials,” it is possible to maintain security against all known attacks
since the terms of f1(x) and f2(x) cross-multiply and the polynomial f(x) has
a weight of about 2N/3. However, product-form parameters are rarely used in
practice because the necessary index-based sparse polynomial multiplication is
difficult to implement in a timing-attack-resistant fashion. Only recently it was
shown that on AVR (and other microcontrollers without cache), product-form
convolution can be fast and have constant execution time [7].

The designers of NTRU Prime decided not to support product-form param-
eters, claiming that product-form arithmetic “saves time for non-constant-time
sparse-polynomial-multiplication algorithms, but loses time for constant-time
algorithms” [4, Sect. T.3]. However, as recently demonstrated in [7], this claim
is not necessarily true for microcontrollers without data cache. The advantages
and disadvantages of the product form for NTRU Prime were also discussed on
the official mailing list of NIST’s PQC standardization project2. In light of the
interest in product-form polynomials, we decided to assess how much they can
accelerate NTRU Prime. Concretely, we evaluated the performance gain for the
decapsulation when the ternary polynomial f(x) ∈ Short, which is a part of the
private key, is represented in product form. However, our work should not be
seen as a recommendation to use the product form in practice.

A product-form parameter set for the classical NTRU cryptosystem includes
the parameters d1, d2, d3 specifying the number of +1 coefficients of the sub-
polynomials f1(x), f2(x), f3(x), whereby the number of +1 coefficients equals
the number of −1 coefficients (i.e. polynomial fi(x) has weight wi = 2di). On
the other hand, a set of parameters for NTRU Prime comes with just a single
weight parameter w that specifies the number of non-0 coefficients of elements
of Short. Hence, in order to use the product form for NTRU Prime, we have to

2 https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/fh2xGahC4LE/
NycdEhTHAgAJ.

https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/fh2xGahC4LE/NycdEhTHAgAJ
https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/fh2xGahC4LE/NycdEhTHAgAJ

114 H. Cheng et al.

determine the weights w1, w2, w3 of the sub-polynomials a ternary polynomial
f(x) ∈ Short is composed of. The parameter generation approach we follow in
this paper is derived from [23, Sect. 3.4.2] and assumes an equal split between
+1 and −1 coefficients, though this requirement was dropped in NTRU Prime
to allow for more choices of polynomials [4, Sect. 3.6]. Hoffstein and Silverman
observed in one of the first papers about product-form polynomials that, when
f1(x) and f2(x) are binary polynomials with d1 and d2 ones, respectively, the
number of ones in the product f1(x)f2(x) is essentially d1d2 [13]. Based on this
observation, the weight of f(x) = f1(x) � f2(x) + f3(x) can be estimated to be
roughly 4d1d2 + 2d3 (see [23] for details). However, the weight of f(x) depends
not only on d1, d2, and d3, but also on the irreducible polynomial used in the
convolution. Since the irreducible polynomial P of NTRU Prime has the form
xp − x − 1, the reduction of the product f1(x)f2(x) modulo P introduces more
non-0 coefficients than a reduction modulo xp − 1, the irreducible polynomial
of NTRU. For example, any term of the form anxn with n ≥ p gets reduced to
anxn−p+1 + anxn−p in NTRU Prime, but to just anxn−p in classical NTRU.

Our approach to calculate (d1, d2, d3) for the NTRU Prime parameter sets
(which require f(x) to have a weight of w = 288, 286, and 322, respectively) is
based on [23, Sect. 3.4.2], but takes the difference in the irreducible polynomial
into account. For example, for the parameter set sntrup653 (i.e. w = 288) we
obtained (d1, d2, d3) = (9, 8, 4), i.e. the three sub-polynomials f1(x), f2(x), and
f3(x) should have a weight of 18, 16, and 8, respectively. We conducted a large
number of experiments for all three parameter sets of NTRU Prime to ensure
that our approach to generate product-form polynomials is correct. In the case
of sntrup653, the weight of f(x) was always between 280 and 300.

While the security implications of using the product form have been studied
in detail for classical NTRU [14], we are not aware of a similar security analysis
for NTRU Prime. In the course of our work we discovered that the polynomial
f(x) = f1(x) � f2(x) + f3(x) has a linear distribution of non-0 terms (instead
of a uniform distribution like in classical NTRU) if the non-0 coefficients of the
sparse polynomials f1(x), f2(x), f3(x) are uniformly distributed. However, this
effect can be compensated by choosing the distribution of the non-0 coefficients
of f3(x) accordingly. We leave a full-fledged security analysis of product-form
polynomials in NTRU Prime as part of our future work.

We implemented a product-form variant of NTRU Prime by re-using parts
of the NTRU software for 8-bit AVR microcontrollers from [7], in particular
the ring arithmetic. This software contains a ring multiplication function where
one operand is an element of R/q (i.e. a polynomial with coefficients in the
range [0, q − 1]) and the second operand is a ternary polynomial in product
form. We adapted this function to suit the requirements of NTRU Prime, which
uses the field Z[x]/P with P = xp − x − 1 as underlying algebraic structure.
In concrete terms, this means we modified the reduction modulo the irreducible
polynomial and the reduction of coefficient-sums modulo the prime q. The latter
reduction can be performed in a similar way as described in Subsect. 3.1, except
that the maximum length of a coefficient sum before modulo-q reduction is

A Lightweight Implementation of NTRU Prime for the Post-quantum IoT 115

Table 2. Execution time (in clock cycles) and code size (in bytes) of the main arith-
metic operations and full encapsulation and decapsulation of NTRU Prime using the
parameter set sntrup653 on an ATmega1284 microcontroller. Operations annotated
with “PF” use the product-form technique described in Subsect. 3.2.

Operation Time Size

R/q × Short multiplication 5,604,929 2,230

R/q × Short multiplication (PF) 740,980 2,812

R/3 × R/3 multiplication 1,277,675 1,510

Full encapsulation 8,160,665 8,694

Full decapsulation 15,602,748 11,478

Full decapsulation (PF) 10,754,219 14,370

only 17 bits (for all three parameter sets of Streamlined NTRU Prime), i.e.
Algorithm 1 can be slightly optimized. We refer to [7] for an in-depth description
of the original product-form multiplication for 8-bit AVR. As explained in Sect. 2,
the decapsulation of NTRU Prime includes as first step a multiplication of a
polynomial that is an element of R/q by a ternary polynomial of fixed weight,
namely the polynomial f(x) ∈ Short. This multiplication can be accelerated
by using the product-form technique described above when f(x) is generated
accordingly.

4 Results and Comparison

The 8-bit AVR device we used to test and benchmark our NTRU Prime imple-
mentation is an ATmega1284 microcontroller, which features 16 kB SRAM and
128 kB flash memory for storing program code. Our software consists of a mix
of C and assembly language; we implement the main arithmetic operations in
assembly to achieve fast and operand-independent execution time, whereas all
functions that are neither performance-critical nor security-critical are written
in C to maximize portability. We use the optimized Assembler implementation
of the SHA-512 hash function introduced in [6] to minimize the execution time
of certain auxiliary functions that are performance-critical. When executed on
our target device, the compression function of SHA-512 takes slightly less than
60 k clock cycles, which corresponds to a compression rate of about 467 cycles
per byte. Our implementation of (Streamlined) NTRU Prime can be compiled
with Atmel Studio v7.0 under the -O2 optimization option, which produces an
executable that, according to our experiments, does not leak secret information
through execution time and can, therefore, withstand timing attacks.

Table 2 summarizes the execution time and code size of the core arithmetic
operations (i.e. polynomial multiplications) as well as a full encapsulation and
decapsulation of our NTRU Prime software. The table shows the results of two
implementations of the polynomial multiplication of the form R/q × Short; the
first uses a combination of Karatsuba’s algorithm and product scanning at the

116 H. Cheng et al.

Table 3. Comparison of our NTRU Prime implementation with other post-quantum
key-establishment algorithms and ECC (all of which target 128 bits of security).

Implementation Algorithm Platform Encaps. Decaps.

This work NTRU Prime ATmega1284 8,160,665 15,602,748

Cheng et al. [7] NTRU (PF) ATmega1281 847,973 1,051,871

Düll et al. [8] ECC-255 ATmega2560 13,900,397 13,900,397

Kannwischer et al. [16] NTRU Prime Cortex M4 54,942,173 166, 481, 625

Kannwischer et al. [16] Frodo Cortex M4 45,883,334 45,366,065

Kannwischer et al. [16] NewHope Cortex M4 1,903,231 1,927,505

Kannwischer et al. [16] Kyber Cortex M4 652,769 621,245

Kannwischer et al. [16] NTRU Cortex M4 645,329 542,439

lower level (see Subsect. 3.1), whereas the second is based on the product-form
approach (see Subsect. 3.2). The results in Table 2 show that the product-form
multiplication is significantly faster; it outperforms the Karatsuba-based mul-
tiplication by a factor of 7.56. On the other hand, these two implementations
differ only marginally in terms of binary code size. The implementation of the
R/3 × R/3 polynomial multiplication combines Karatsuba’s method with the
hybrid technique and is much faster than the polynomial multiplication of the
form R/q × Short. This reduced running time is due to the smaller coefficients
(enabling faster coefficient multiplication), smaller intermediate results (requir-
ing fewer registers) and faster reduction (modulo 3 vs. modulo q). Also given in
Table 2 are the execution times of encapsulation and decapsulation, which are
primarily dominated by the polynomial arithmetic. The encapsulation includes
just a single multiplication, namely a multiplication of an element of R/q by an
element of Short (i.e. R/q × Short) that accounts for roughly two thirds of the
overall execution time. On the other hand, the decapsulation operation has to
perform three polynomial multiplications (two of the form R/q × Short and one
of the form R/3 × R/3); together they contribute 80% to the overall execution
time. The first R/q × Short multiplication, i.e. the multiplication of c(x) by the
ternary polynomial f(x) ∈ Short, can be accelerated through the product-form
technique, which reduces the execution time from 15.6 to 10.8 million cycles. In
other words, product-form multiplication makes a decapsulation 31% faster.

Our software is, to the best of our knowledge, the first optimized implemen-
tation of Streamlined NTRU Prime for constrained devices. The only previous
implementation of NTRU Prime for microcontrollers published in the literature
is the implementation from pqm4 [16], which is essentially the reference C code
without any assembler optimizations. Compared with the pqm4 timings on an
ARM Cortex-M4, our implementation is 6.7 times faster for encapsulation and
10.7 times faster for decapsulation (see Table 3). However, it needs to be taken
into account that a 32-bit ARM Cortex-M4 is significantly more powerful than
an 8-bit AVR microcontroller. The AVR assembler implementation of classical

A Lightweight Implementation of NTRU Prime for the Post-quantum IoT 117

NTRU (i.e. NTRUEncrypt with ees443ep1 parameters) introduced in [7] uses
a highly efficient product-form convolution and outperforms our NTRU Prime
software by roughly an order of magnitude. On the other hand, when compared
with ECC, our NTRU Prime encapsulation is much faster than a variable-base
scalar multiplication on Curve25519, while the decapsulation is a bit slower. Due
to the limited number of state-of-the-art implementations of other NIST PQC
candidates for 8-bit AVR, we give in Table 3 also a few recent results from the
pqm4 library for 32-bit ARM Cortex-M4 microcontrollers.

5 Conclusions

We presented the first highly-optimized implementation of NTRU Prime for an
8-bit microcontroller that is capable to resist timing attacks. When executed on
an ATmega1284 device, the encapsulation takes about 8.2 million cycles, while
the decapsulation has an execution time of 15.6 million cycles (both results are
based on the parameter set sntrup653). For comparison, the reference C code
from the designers requires 54.9 and 166.5 million cycles for encapsulation and
decapsulation, respectively, on a much more powerful 32-bit Cortex-M4 micro-
controller. To achieve these results, we implemented all expensive operations in
AVR assembly language, most notably the polynomial arithmetic, whereby we
strived for a balance between execution time and code size. We also discussed
how the concept of product-form polynomials to speed up classical NTRU can
be applied to NTRU Prime and demonstrated that product-form multiplication
would make the decapsulation 30% faster. However, since a thorough analysis
of the security implications of the product form in NTRU Prime is lacking, we
do (currently) not recommend to use product-form polynomials in a real-world
application. Furthermore, we showed that one cannot count on a C compiler to
generate constant-time code for the modulo-3 reduction, which generally raises
concerns about the security (i.e. resistance against timing attacks) of C imple-
mentations of NTRU Prime. In summary, our results show that NTRU Prime
can be well optimized to run efficiently on small microcontrollers, which makes
it an interesting candidate for securing the post-quantum IoT.

Acknowledgements. This work was supported by the European Union’s Hori-
zon 2020 research and innovation program under grant agreement No. 779391
(FutureTPM). The authors thank John Schanck for answering questions on the gen-
eration of product-form parameters for NTRU Prime. The research described in this
paper was conducted before Daniel Dinu joined Intel and may not reflect the views of
his current or previous employers.

References

1. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: Holz, T., Savage, S. (eds.) Proceedings of the 25th USENIX
Security Symposium (USS 2016), pp. 327–343. USENIX Association (2016)

118 H. Cheng et al.

2. Bailey, D.V., Coffin, D., Elbirt, A., Silverman, J.H., Woodbury, A.D.: NTRU in
constrained devices. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001.
LNCS, vol. 2162, pp. 262–272. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44709-1 22

3. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-Quantum Cryptography.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7

4. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime:
reducing attack surface at low cost. In: Adams, C., Camenisch, J. (eds.) SAC 2017.
LNCS, vol. 10719, pp. 235–260. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-72565-9 12

5. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU
Prime: Round 2 specification (2019). http://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions

6. Cheng, H., Dinu, D., Großschädl, J.: Efficient implementation of the SHA-512 hash
function for 8-Bit AVR microcontrollers. In: Lanet, J.-L., Toma, C. (eds.) SECITC
2018. LNCS, vol. 11359, pp. 273–287. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-12942-2 21

7. Cheng, H., Großschädl, J., Rønne, P.B., Ryan, P.Y.: A lightweight implementa-
tion of NTRUEncrypt for 8-bit AVR microcontrollers. In: Proceedings of the 2nd
NIST PQC Standardization Conference (2019). http://csrc.nist.gov/Events/2019/
second-pqc-standardization-conference

8. Düll, M., et al.: High-speed Curve25519 on 8-bit, 16-bit and 32-bit microcontrollers.
Des. Codes Crypt. 77(2–3), 493–514 (2015)

9. GCC Team: AVR-GCC Wiki (2017). http://gcc.gnu.org/wiki/avr-gcc#
Exceptions to the Calling Convention

10. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve
cryptography and RSA on 8-bit CPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-28632-5 9

11. Hankerson, D.R., Menezes, A.J., Vanstone, S.A.: Guide to Elliptic Curve Cryptog-
raphy. Springer, New York (2004). https://doi.org/10.1007/b97644

12. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

13. Hoffstein, J., Silverman, J.H.: Optimizations for NTRU. In: Alster, K., Urbanowicz,
J., Williams, H.C. (eds.) Public-Key Cryptography and Computational Number
Theory, De Gruyter Proceedings in Mathematics, pp. 77–88. Walter de Gruyter
(2001)

14. Hoffstein, J., Silverman, J.H.: Random small Hamming weight products with appli-
cations to cryptography. Discret. Appl. Math. 130(1), 37–49 (2003)

15. Kannwischer, M.J., Rijneveld, J., Schwabe, P.: Faster multiplication in Z2m [x] on
Cortex-M4 to speed up NIST PQC candidates. In: Deng, R.H., Gauthier-Umaña,
V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 281–301.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2 14

16. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: pqm4: testing and
benchmarking NIST PQC on ARM Cortex-M4. Cryptology ePrint Archive, Report
2019/844 (2019). http://eprint.iacr.org

17. Karatsuba, A.A., Ofman, Y.P.: Multiplication of multidigit numbers on automata.
In: Soviet Physics - Doklady, vol. 7, no. 7, pp. 595–596 (1963)

https://doi.org/10.1007/3-540-44709-1_22
https://doi.org/10.1007/3-540-44709-1_22
https://doi.org/10.1007/978-3-540-88702-7
https://doi.org/10.1007/978-3-319-72565-9_12
https://doi.org/10.1007/978-3-319-72565-9_12
http://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
http://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-030-12942-2_21
https://doi.org/10.1007/978-3-030-12942-2_21
http://csrc.nist.gov/Events/2019/second-pqc-standardization-conference
http://csrc.nist.gov/Events/2019/second-pqc-standardization-conference
http://gcc.gnu.org/wiki/avr-gcc#Exceptions_to_the_Calling_Convention
http://gcc.gnu.org/wiki/avr-gcc#Exceptions_to_the_Calling_Convention
https://doi.org/10.1007/978-3-540-28632-5_9
https://doi.org/10.1007/978-3-540-28632-5_9
https://doi.org/10.1007/b97644
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-030-21568-2_14
http://eprint.iacr.org

A Lightweight Implementation of NTRU Prime for the Post-quantum IoT 119

18. Karmakar, A., Bermudo Mera, J.M., Roy, S.S., Verbauwhede, I.: Saber on ARM:
CCA-secure module lattice-based key encapsulation on ARM. IACR Trans. Cryp-
togr. Hardw. Embed. Syst. 2018(3), 243–266 (2018)

19. Kaye, P.R., Laflamme, R., Mosca, M.: An Introduction to Quantum Computing.
Oxford University Press, Oxford (2007)

20. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. Commun. ACM 60(6), 43:1–43:35 (2013)

21. Mariantoni, M.: Building a superconducting quantum computer. Invited presen-
tation given at the 6th International Conference on Post-Quantum Cryptography
(PQCrypto 2014), Waterloo, ON, Canada, October 2014. http://www.youtube.
com/watch?v=wWHAs-HA1c

22. National Institute of Standards and Technology (NIST): NIST reveals
26 algorithms advancing to the post-quantum crypto ‘semifinals’. Press
release (2019). http://www.nist.gov/news-events/news/2019/01/nist-reveals-26-
algorithms-advancing-post-quantum-crypto-semifinals

23. Schanck, J.M.: Practical Lattice Cryptosystems: NTRUEncrypt and NTRUMLS.
M.Sc. thesis, University of Waterloo, Waterloo, ON, Canada (2015)

24. Scott, M.: Missing a trick: Karatsuba variations. Cryptogr. Commun. 10(1), 5–15
(2018)

25. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings of the 35th Annual Symposium on Foundations of Computer
Science (FOCS 1994), pp. 124–134. IEEE Computer Society Press (1994)

26. Titzer, B.L., Lee, D.K., Palsberg, J.: Avrora: scalable sensor network simulation
with precise timing. In: Proceedings of the 4th International Symposium on Infor-
mation Processing in Sensor Networks (IPSN 2005), pp. 477–482. IEEE (2005)

27. Toom, A.L.: The complexity of a scheme of functional elements realizing the mul-
tiplication of integers. Soviet Math. - Doklady 4(3), 714–716 (1963)

http://www.youtube.com/watch?v=wWHAs-HA1c
http://www.youtube.com/watch?v=wWHAs-HA1c
http://www.nist.gov/news-events/news/2019/01/nist-reveals-26-algorithms-advancing-post-quantum-crypto-semifinals
http://www.nist.gov/news-events/news/2019/01/nist-reveals-26-algorithms-advancing-post-quantum-crypto-semifinals

Threats

Fault Injection Characterization
on Modern CPUs

From the ISA to the Micro-Architecture

Thomas Trouchkine1, Guillaume Bouffard1,2(B) , and Jessy Clédière3

1 National Cybersecurity Agency of France (ANSSI),
51, boulevard de La Tour-Maubourg, 75700 Paris 07, SP, France

thomas.trouchkine@ssi.gouv.fr
2 Information Security Group, École Normale Supérieure, 46 rue d’Ulm,

75230 Paris Cedex 05, France
guillaume.bouffard@ens.fr

3 CEA, LETI, MINATEC Campus, 38054 Grenoble, France
jessy.clediere@cea.fr

Abstract. Recently, several Fault Attacks (FAs) which target modern
Central Processing Units (CPUs) have emerged. These attacks are stud-
ied from a practical point of view and, due to the modern CPUs com-
plexity, the underlying fault effect is usually unknown.

In this article, we focus on the characterization of a perturbation (the
fault model) on modern CPU. For that, we introduce the first approach
to characterize the fault model on modern CPU from the Instruction
Set Architecture (ISA) level to the micro-architectural level. This fault
model helps at determining which micro-architecture elements are dis-
rupted and how. Our fault model aims at finding original attack paths
and design efficient countermeasures. To confront our approach to real
modern CPUs, we apply our approach on ARM and x86 architectures
CPUs, mainly on the BCM2837 and an Intel Core i3.

1 Introduction

Nowadays, mobile devices are widely used. They are based on high performance
System on Chips (SoCs) which embed performance oriented Central Processing
Units (CPUs). With all their optimizations, these modern CPUs have shown
flaws in their security [8,11].

Since 2015, several Fault Attacks (FAs) on modern CPUs have been pre-
sented, some are new and some others already applied on Micro-Controller Units
(MCUs) CPUs [12]. These attacks are very practical and, due to the complex-
ity of modern CPUs, the underlying fault effect is usually unknown. The fault
effect knowledge is mandatory for building efficient countermeasures and eval-
uating the impact of an attack. Therefore, we think that fault characterization
on modern CPUs is an important work for the future.

Many fault model characterizations have been done on MCUs but only few
on modern CPUs. For determining the fault model on such targets and for
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Laurent and T. Giannetsos (Eds.): WISTP 2019, LNCS 12024, pp. 123–138, 2020.
https://doi.org/10.1007/978-3-030-41702-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41702-4_8&domain=pdf
http://orcid.org/0000-0002-2046-369X
https://doi.org/10.1007/978-3-030-41702-4_8

124 T. Trouchkine et al.

making it reproducible, we propose a characterization method and we show
its applicability on modern CPUs, based on ARM or x86 cores. The proposed
method is inspired by all the works done on MCUs and integrates the different
approaches introduced in these different works.

This article is organized as follows. The Sect. 1 presents the background about
fault model characterization, our motivations and the modern CPUs specifici-
ties. Section 2 introduces a model for CPUs on which we base our method,
Sect. 3 describes our method and Sect. 4 presents its application with experi-
mental results. The Sect. 5 concludes and opens on future works.

1.1 Related Works

Practical fault attacks emerged on 2002 with an optical fault attack [23]. Since
then, several practical attacks have been applied on cryptographic implementa-
tions [20–22] or on secure softwares [4,5,29]. These attacks aim at breaking the
implemented algorithm and therefore focus on obtaining a precise fault. There-
fore, only few information is given about the characterization process.

The seminal work on the fault model characterization of a CPU was published
in 2011 and focus on the clock glitch effects on an ATMega163 MCU [3]. During
the next years, many works have been done on the fault model characteriza-
tion of MCUs CPU and memory [6,9,10,13–15,19,31]. These works gave useful
information about the fault effect on CPUs micro-architecture. This knowledge
helped in building countermeasures. However, in 2015 and 2016, several software
countermeasures have been shown to be ineffective against certain class of FAs
[16,30].

Since 2015, researchers had started to focus on modern CPUs. Their works
aim at breaking complex security features like secure boot [26,27], Trusted Exe-
cution Environments (TEEs) [24] or kernel security mechanisms [25,28] via fault
injection. All these works focus on the mobile devices security area, where mod-
ern CPUs run a complex Operating System (OS) like Linux, Android or iOS.

These articles focus on the attacks practicality and do not present any
methodology about the fault characterization. In 2019, Proy et al. [18] pro-
pose the first fault characterization work on ARM Cortex-A9 based CPU for
evaluating their countermeasures against FAs. This work is a first step for fault
characterization on modern CPUs. However, the applied method is not clearly
described. The authors realize several classical tests to determine how the pro-
gram execution is modified by the fault. They mainly focus on the Instruction Set
Architecture (ISA) layer whereas we propose to determine micro-architectural
effects from the ISA fault model.

1.2 Motivations

Regarding the state of the art presented in Sect. 1.1, we think that a fault char-
acterization method on modern CPUs is needed to design efficient countermea-
sures. Also, these systems are widely used in mobile devices which tend to be

Fault Injection Characterization on Modern CPUs 125

integrated almost everywhere in the future and used for critical usage as banking,
healthcare, etc., enforcing their need in security and reliability.

1.3 Contribution

We propose a method that would allow us to characterize fault model on a mod-
ern CPU. This method is based on an ISA fault model determination but is
oriented to also provide information about the micro-architectural fault effect.
Therefore, we have two contributions, a modern CPU model and then a fault
characterization method built on this model. The introduced modern CPU model
is easily adaptable to match with MCU CPUs. This makes our approach adapt-
able to any type of CPU matching this model, even most MCU CPUs.

2 Modern CPU Modeling

2.1 Modern CPUs Specificities

The previous works on fault characterization on MCUs give information about
what we can expect from a characterization and how to do it. Unfortunately,
modern CPUs are different from MCU CPUs as shown on Fig. 1. Indeed, they
are more complex and embed several cores with optimizations like out-of-order
execution, speculative execution, branch prediction, etc. They also have multi-
ple levels of caches and a Memory Management Unit (MMU) abstracting their
memory.

Core MPU
2 to 8
Cores

Cache
L1/L2 MMU

Fig. 1. Micro-controller and modern architectures

Even if their specification is public, another issue with CPUs is that their
implementation is not available. Moreover, most of the time, debug tools for
these platforms are either only partially open or not available. Therefore, the
only way to retrieve information is through the ISA layer. In other words, as
we do not have access to the physical layout, we aim at characterizing the fault
model at the program level. This is a real issue as for building efficient counter-
measures, a software knowledge is not enough, but a micro-architectural fault
effect knowledge is also necessary. Therefore, a method that enables to retrieve
information on the micro-architectural CPU behavior, based on the ISA fault
model, is required.

126 T. Trouchkine et al.

2.2 Modern CPU Model

This section aims at offering a complete and comprehensive description of mod-
ern CPUs. We start from the observation that any CPUs can be modeled with
three functional elements.

– A pipeline which fetches, decodes and executes instructions.
– The registers where the manipulated data are stored.
– A memory storing the instructions and some data.

Actually, the memory is external to the CPU. However, there is an internal one,
called cache, where a part of the external memory is copied. The three func-
tional elements are based on Micro-Architectural Blocks (MABs) as introduced
in Fig. 2.

Fig. 2. CPU model

The pipeline fetches and decodes the instructions then the execute stage real-
izes the operation. In modern CPUs, these blocks have several optimizations that
we do not consider in our model. The memory relies on several cache level and
a MMU. Usually, CPUs have a mixed architecture where the data path and
the instruction path are separated only at the lowest cache level. The instruc-
tions and the data are not differentiated in the high cache level (L2/L3) and

Fault Injection Characterization on Modern CPUs 127

the external memory, this is a Von Neumann architecture. But, in the lowest
level of cache (L1) the instructions and data are separated, this is an Harvard
architecture. As modern CPUs have both organizations, they are said to have a
mixed architecture.

Physically, a core corresponds to the registers, the pipeline, the MMU and the
cache. The CPU is composed of one or more cores, but in the end, its behavior
corresponds to this model.

This model is usually used for fault characterization on MCUs as all fault
models are explained by a MAB perturbation presented in Fig. 2. As most of the
MCUs have only one core in their CPU, this model fits them well. The question
is to know whether this model is still relevant for a multi-core optimized CPU.
We will show that, on average, it is enough for determining more than 80% of
the fault effects.

3 Fault Effect Analysis on CPU

During a Fault Injection (FI), one or several CPU MABs are disturbed. As they
can all be perturbed during a fault injection, the full fault effect characteriza-
tion can be a complicated process. However, according to the previous works,
in most cases, the fault affects only a single MAB [9,19]. We actually verified
this assumption on modern CPUs. Under this simplified paradigm, the fault
characterization problem aims at determining which MAB is faulted and how.

To reach our objective, the proposed method consists in realizing a fault dur-
ing the test program execution and in determining the micro-architectural fault
that can explain the observed misbehavior. An underlying assumption is that the
fault affects the same MABs in the same way independently of the executed pro-
gram. This has been experimentally verified; depending on the processor state
some new effects can appear, but a set of usual effects remains.

3.1 Determining the Faulted Element

The method general idea is to apply a top-down approach. We start by deter-
mining whether the fault affects the registers, the pipeline or the memory. Once
we know which element is affected, we determine which of its MABs is faulted.

To achieve this, we rely on the available registers observation and the exe-
cuted instructions knowledge. The way they are faulted gives information about
the faulted element. To discriminate which element is faulted, we repeatedly exe-
cute the same instruction as introduced in Listing 1.1 (for ARM) and Listing 1.2
(for x86) on a known state CPU.

Listing 1.1. mov r0, r0 (ARM)

mov r0, r0 // Several times

Listing 1.2. mov rax, rax (x86)

mov rax , rax // Several times

These instructions are given as examples but have two important properties.
First, they do not fetch any data from the memory, which means that a fault

128 T. Trouchkine et al.

in the memory can only affect the instructions, which simplifies the analysis.
Secondly, the instructions do nothing and are therefore semantically equivalent
to nop. This is helpful since a modification of the registers state can only be
caused by a fault1 and its effect is not drowned within a complex program.

Disturbing the program execution will give a distribution of faulted values in
the registers. The next step consists in determining whether these faulted values
come from a fault on the manipulated data or on the instructions. Indeed, the
execution of the nth program instruction by the CPU can be modeled such as
in (1):

sn+1 = insn(sn), (1)

where sn+1 is the CPU state after the execution of the nth instruction insn.
The CPU state corresponds to all its registers and is usually named the data.
An instruction is composed of three elements: an opcode encoding the operation
to do, a reference to the destination register and reference(s) to the operand(s).
These operands can be registers or immediate values. Depending on the archi-
tecture, the encoding of this information may vary but they are always present.

When there is a fault during an instruction execution, we assume here that it
either applies on the data or on the instruction. We experimentally verified this
assumption. Therefore, the faulted instruction execution can be modeled such
as in (2).

˜sn+1 = ˜ins(s̃n), (2)

where x̃ denotes the faulted representation of x. From this representation, we
can define the fault model fdata on the data as introduced in (3), and the fault
model fins on the instruction as presented in (4).

s̃n = fdata(sn), (3)

˜ins = fins(ins). (4)

These fault models can have different descriptions to match with the different
underlying fault causes. The data fault types and their corresponding MABs are
presented in Table 1.

Based on the Fig. 2 and Table 1, it is possible, from these fault types, to
determine which MABs have been faulted. In the case of a register corruption, it
is straightforward that the registers are faulted. If there is a memory corruption,

Table 1. Data fault models

Faulted element Data

Fault type Register corruption Memory corruption Bad fetch

Faulted MAB Registers Cache Data bus Cache MMU

1 This assumption must be carefully studied as some registers like the Program
Counter (PC) are always modified independently of the executed instruction.

Fault Injection Characterization on Modern CPUs 129

the cache storing the data or the data bus is faulted. In the bad fetch case,
either the cache has loaded the wrong data or the MMU has failed the address
translation.

For the instructions, the fault types, presented in Table 2, are corruption and
bad fetch.

Table 2. Instruction fault models

Faulted element Instruction

Fault type Corruption Bad fetch

Faulted MAB Pipeline Cache Bus Cache MMU

If an instruction corruption is observed, the fault affects either one of the
pipeline MABs or the cache or the instruction bus. In the case of a bad fetch,
either the instruction cache has loaded the wrong instruction or the address
translation has failed.

Regarding the test code presented in Listings 1.1 and 1.2, the data fault mod-
els memory corruption and bad fetch cannot appear as there is no data fetched
from the memory. Therefore, we can focus on the remaining fault models and
this is enough for determining which element among the registers, the pipeline
or the memory has been faulted.

4 Experimental Analysis

This section aims at applying the approach introduced in Sect. 2. We present the
experimental protocol and the corresponding results on two targets, a BCM2837
from a Raspberry Pi 3 model B board and an Intel Core i3 from a classical
computer.

4.1 BCM2837

Now that we introduced a method which determines the affected element, we
decide to apply our approach on an experimental work. The presented work
comes from an attack campaign realized on a BCM2837 SoC from a Raspberry Pi
3 model B board. The tested code is the repetition of the orr r3, r3 instruction
and the observed registers initial values are presented in Table 3. These values
are chosen to be identifiable and hard to compute from each others with simple
operations (or, xor, etc.).

This setup has been disturbed using ElectroMagnetic Pulse (EMP). The
obtained faulted values are presented with their probability of appearance in
Fig. 3.

Several values appear with different probabilities, however there are always
some outstanding values that are frequently obtained. Here, these values are

130 T. Trouchkine et al.

Table 3. Observed registers initial values

Register Initial value Register Initial value

r0 0x80000001 r5 0x04000020

r1 0x40000002 r6 0x02000040

r2 0x20000004 r7 0x01000080

r3 0x10000008 r8 0x00800100

r4 0x08000010 r9 0x00400200

Fig. 3. Faulted values distribution with their occurrence probability obtained from an
ElectroMagnetic Fault Injection (EMFI) campaign on a BCM2837.

0x3000000c (86.45%), 0xffffffff (5.83%) and 0x80000001 (3.79%). We ignore
the other values as the latter ones are sufficient for demonstrating the method
relevance.

Register Corruption Analysis. According to the method presented in Sect. 2,
we want to check if the perturbation corrupted the registers. To do so, we need
to know the registers initial content. In our experiment, the only faulted registers
are r0, r1 and r3.

Giving the faulted and the initial values, it is possible to determine the fault
model on the registers. The fault model we consider for register corruption is
the masking fault model, this defines the fault as a logical mask applied to the
initial value. In other words, the random variable fdata is one of the following
functions2:

fxor,e : x → x xor e,

2 It is possible to consider fdata as the combination of these functions with different
errors, but this do not change the way to apply our methodology.

Fault Injection Characterization on Modern CPUs 131

fand,e : x → x and e,

for,e : x → x or e,

with e the error viewed as a logical word with the same size as x.
As several fault models can explain the obtained faulted value, we consider

that a fault model is relevant if it explains the obtained faulted value for at least
two different experiments. In our context, the only observed register corruption
fault model is when the faulted value is 0xffffffff and the corresponding
function is for,0xffffffff. This fault model appears in around 5% of the cases.

Instruction Corruption Analysis. As the register corruption analysis was
inconsistent for some faulted values, the next step consisted in checking if a
faulted instruction can explain them. The idea here is to first determine the
instructions that, from the registers initial state, explain the faulted value.

Regarding the faulted values and the registers initial state we observe
that 0x3000000c can be obtained with the or between r2 and r3 and that
0x80000001 can be obtained by moving the value in r1 into the faulted register.
The corresponding faulted instructions are orr r3, r2 and mov r3, r1.

Because the initial instruction is known, we can determine the fault model
fins. We decided to consider a fault model that modifies the elements (opcode,
operands, etc.) constituting the instruction. The faulted instruction ˜ins is
derived from the initial instruction ins. Determining the fault model consists
in determining which part of the instruction was corrupted and how.

In this experiment, the fault model corresponding to the 0x3000000c faulted
value is that the instruction second operand is set to r2 and correspond to
the orr r3, r2 faulted instruction. This happens in around 85% of the cases
and was tested with other instructions. The fault model corresponding to the
0x80000001 faulted value is that the opcode is set to a mov and the second
operand to r1, it happens in around 3.5% of the cases.

Conclusion. During this experiment, the faults may affect the pipeline or the
registers. We have determined the faulted element with their corresponding fault
model for the three main cases (i.e. those with greatest occurrence probability in
Fig. 3). This covers 96.07% of the observed faults and it experimentally validates
that the model is relevant for this CPU.

4.2 Intel Core I3

After having tested our method on an ARM architecture, we want to test it on
an x86 architecture. Therefore, we realized an attack campaign on an Intel Core
i3 CPU using the repetition of the mov rbx, rbx instruction as a test code.

As the x86 architecture is different from the ARM architecture, the available
registers for observation are not the same. Also, the tested architecture is a 64
bits architecture. It appears that these differences do not impact our methodol-
ogy and we were able to determine the fault model for almost 80% of the cases.
The faulted values distribution is presented in Fig. 4.

132 T. Trouchkine et al.

Fig. 4. Faulted values distribution with their occurrence probability obtained from an
EMFI campaign on an Intel Core i3.

Using our method, we are able to determine that the faulted register is always
rbx. There is a register corruption which sets the register to 0x0 in 8.7% of the
cases corresponding to the fault model fand,0x000000000000000. In 56.53% of the
cases, the faulted value comes from another register, these faulted values are 0x1
(register rax), 0x3 (register rdi) and 0x00007fXXXXXXXXXX (register rci with
a different value for every execution of the tested program). The corresponding
fault model is to set the instruction second operand to either 0x0, 0x2 or 0x5.

The last identified fault model is for the faulted value 0x2 and corresponds
to the logical AND between rbx and r11. This happens in 13% of the cases and
corresponds to set the opcode to 0x21 and the second operand to 0xb.

The remaining faults (21.78%) could not be determined with our method.
However, the observed faulted values seems to correspond to values manipulated
by the Linux OS layer. However, this investigation is out of the scope of this
work and therefore not further explained.

Conclusion. With these results, we demonstrated that our method is reliable
independently of the target architecture. However, on targets implementing opti-
mizations (like the Intel Core i3), this approach is not exhaustive.

The analysis presented in Sects. 4.1 and 4.2 enable to model the fault at
the Instruction Set Architecture (ISA) level. In other words, we can use this
model to explain how the program execution is affected by our faults. With
this knowledge it is possible to build some software countermeasures. But, as
explained in Sect. 1.1, software countermeasures may become irrelevant because
the faulted MAB is not clearly identified.

Fault Injection Characterization on Modern CPUs 133

4.3 Determining the Faulted MAB

After having determined which CPU element (cf. Tables 1 and 2) is faulted, it is
interesting to check which of its MAB is affected. Usually, this determination is
done using debug tools. However, as we mentioned, these tools are, most of the
time, not available on our targets. In this section, we then present how we can
determine which MAB is faulted using different test programs.

Pipeline Characterization. As presented in Fig. 2 the pipeline has three main
functions. The fetch function is mainly linked to the memory system. Then, for
the pipeline characterization, it is more relevant to consider only the instruction
decoding and its execution.

The first step consists in determining whether the fault affects the instruction
before it was decoded or not. If the fault appears before the decoding, then either
the instruction bus or the decoding are faulted. In the other case, the fault targets
the execute stage. To determine if the instruction is faulted before its decoding,
we check if the fault perturbs similarly instructions with different encoding. The
proposed method can be applied on every encoded part of the instruction.

As this is instruction targeted part dependent, we present an example with
the fault campaign realized on the BCM2837 where we were able to fault the
instruction second operand. To determine if the fault appears before the instruc-
tion decoding, we aim at faulting an instruction which encodes a different infor-
mation where the second operand is usually encoded.

The determined fault model is that the instruction second operand is set
to r2. According to the ARM instruction encoding, this corresponds to set the
eleven instruction Least Significant Bits (LSBs) to 0x002. If the fault corrupts
the instruction before its decoding, then the fault effect must be independent of
the information encoded on these bits. In the tested case (mov r3, r3), these
bits encode a register. Therefore, we can fault another instruction which uses the
same bits to encode another information, an immediate value for example. If the
fault corrupts the instruction and the obtained immediate value is 0x02, then
we conclude that the instruction has been perturbed before its decoding. Other-
wise, we conclude that the instruction is faulted during its execution. Listing 1.3
introduces a code example for realizing this test.

This test code is a bit different from the previous ones as it uses several
types of instructions. However, thanks to our own analysis reported in Sect. 4.1
(or Sect. 4.2), the ISA fault model is here assumed to be known and it can hence
be applied to anticipate the fault effects at this level. As we intent to fault the
mov r3, #0x03 instruction, we will repeat the first three instructions to be sure
to fault only one of them. These instructions are needed as the program must
terminate as soon as a fault is detected. Otherwise, the next mov r3, #0x03 will
overwrite the fault.

134 T. Trouchkine et al.

The ISA fault model determined in Sect. 4.1 (or Sect. 4.2) implies that if the
first instruction second operand is set to 0x02, then a fault is obtained. If it
occurs on the second instruction, then there is no error since the second operand
is already set to 0x02. Eventually, if it occurs on the third instruction, then
we observe a modification of the instruction offset. Moreover, this offset can be
manipulated using nop3 instructions to have its eleven LSBs set to 0x002. In
this case, the fault has no impact.

This example was done with a fault model that modifies the second operand.
However, some other instructions parts may be affected, such as the opcode. In
this case, the demonstrated test can still be done but with different instructions.
This requires the Instruction Set Format (ISF) knowledge implemented by the
target. For instance, the ARM ISF is available on their website4.

Memory Characterization. The memory relies on three main elements: the
buses, the MMU and the cache. If an instruction corruption is detected and has
occurred before the decoding stage, two MABs can have been faulted: the buses
or the cache. Distinguishing between these two cases is difficult but it is possible
to determine if it happens on the mixed cache and buses or on the dedicated one.
Indeed, as the highest level of cache memory is both dedicated to the data and
the instructions, a fault targeting this part of the memory subsystem corrupts
the instruction and the data similarly. If not, then the dedicated part of the
memory subsystem is corrupted. For this characterization step, we propose a
method we applied on the BCM2837.

The method consists in (1) initializing a page of memory (4 kB), then (2)
setting the observed registers values to addresses in this page and fault a code
such as introduced in Listing 1.4.

This code realizes memory loads and stores at/from the address stored in r9
to/from the register r8. As the memory page is initialized with known values,
the expected value in r8 are known. The ISA fault model built in Sect. 4.1 (or
Sect. 4.2) implies that the perturbation should set the second operand to 0x2
and the faulted instructions should become str r8, [r2] or ldr r8, [r2].

3 Using mov r2, r2 to be fault resistant for instance.
4 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0210c/

CACCCHGF.html.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0210c/CACCCHGF.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0210c/CACCCHGF.html

Fault Injection Characterization on Modern CPUs 135

Listing 1.4. Memory test code (ARM)

str r8, [r9] // Several
ldr r8, [r9] // times

An unanticipated fault is that with probability 25%, the faulted value is the
ldr r8, [r9] instruction encoded value. In this case, the faulted instruction is
ldr r8, [PC] which corresponds to set the first operand to 0xff.

For the other faults (74.4% exactly), the observed faulted value is always
bad + 50 where bad the page memory base address. This is the value stored in
r2. In this case, the faulted instruction is mov r8, r2. This is consistent with
the previously determined fault model (see Sects. 4.1 and 4.2). Moreover, the
fault does not only modify the second operand but also the opcode, forcing
the instruction into a data processing instruction instead of memory loading
instruction. As we already tested data processing instructions, we did not see this
fault effect. This shows the importance of testing different types of instructions
for determining the complete fault effect.

During this experiment, we did not observe faults on the fetched data. There-
fore, we conclude that the fault targets the dedicated to the instruction part of
the memory subsystems. In Fig. 2, it corresponds to the instruction cache, its
connected buses and the fetch MAB.

Regarding the tested codes presented in Listing 1.1, in the case the fault
does not fit neither a fault model on the registers nor a fault model on the
instructions we conclude that the fault provokes an instruction bad fetch. Usually,
the corresponding fault models are either instruction skipping [9,21], instruction
replay [18,19] or instruction replacement [3,14]. The literature proposes a large
panel of fault models on the cache with different characterization methods but
only on MCUs (except [18]). As MCUs do not embed MMU, the failed translation
of the address fault does not appears simplifying the analysis.

We could characterize the fault on the MMU but only using debug tools.
In order to remain in the scope of this work, we consider that if no cache fault
model is consistent, the fault affects the MMU.

5 Conclusion and Future Works

In this paper, we introduced for the first time a general method for characterizing
the fault model of perturbations on a CPU and demonstrated its applicability on
modern CPUs embedded in a BCM2837 and an Intel Core i3 SoC. This method
focuses on determining the faults effect at the ISA level and then at the micro-
architectural level using only simple tests programs. As the method works for
modern CPUs with many features, we strongly believe that it can been applied
on MCUs CPU as well by not considering unimplemented MABs.

This approach gives us a better understanding of faults effect and therefore
exploit them or mitigate them. This is a useful tool especially for evaluations
where we need to determine the fault model, use it to find attack paths and

136 T. Trouchkine et al.

build efficient countermeasures. As both a knowledge at the ISA level and micro-
architectural level are determined using our method, it is possible to build both
software and hardware countermeasures.

Based on this result, the future works consist in applying this method to
characterize the faults effects on popular systems. Such as mobile devices, deter-
mining how these systems can be faulted will help in understanding the impact
of physical attacks targeting them and build efficient countermeasures.

Another future work is to improve the CPU model and adapt the method to
match with some new optimization mechanisms that are implemented in modern
CPUs. Indeed, even if the presented work on the BCM2837 shows that we are
able, in more than 95% of the cases, to determine the fault model, on some other
targets, like an Intel Core i3, this model able to recover only 80% of the cases.
We think that some complex optimization mechanisms that are not considered
in our model are involved in the faulty behavior and it is interesting to work on
how to model them and to characterize a fault considering them.

References

1. Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2016, Santa
Barbara, CA, USA, 16 August 2016. IEEE Computer Society (2016)

2. Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2017, Taipei,
Taiwan, 25 September 2017. IEEE Computer Society (2017)

3. Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-depth and black-box characteri-
zation of the effects of clock glitches on 8-bit MCUs. In: Breveglieri et al. [7], pp.
105–114

4. Barbu, G., Duc, G., Hoogvorst, P.: Java card operand stack: fault attacks, combined
attacks and countermeasures. In: Prouff [17], pp. 297–313

5. Bouffard, G., Iguchi-Cartigny, J., Lanet, J.: Combined software and hardware
attacks on the Java card control flow. In: Prouff [17], pp. 283–296

6. Bozzato, C., Focardi, R., Palmarini, F.: Shaping the glitch: optimizing voltage fault
injection attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(2), 199–224
(2019)

7. Breveglieri, L., Guilley, S., Koren, I., Naccache, D., Takahashi, J. (eds.): Workshop
on Fault Diagnosis and Tolerance in Cryptography, FDTC 2011, Tokyo, Japan, 29
September 2011. IEEE Computer Society (2011)

8. Kocher, P., et al.: Spectre attacks: exploiting speculative execution, pp. 1–19 (2019)
9. Korak, T., Hoefler, M.: On the effects of clock and power supply tampering on

two microcontroller platforms. In: Tria, A., Choi, D. (eds.) Workshop on Fault
Diagnosis and Tolerance in Cryptography, FDTC 2014, Busan, South Korea, 23
September 2014, pp. 8–17. IEEE Computer Society (2014)

10. Kumar, D.S.V., Beckers, A., Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-
depth and black-box characterization of the effects of laser pulses on ATmega328P.
In: Bilgin, B., Fischer, J.-B. (eds.) CARDIS 2018. LNCS, vol. 11389, pp. 156–170.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15462-2 11

11. Lipp, M., et al.: Meltdown: reading kernel memory from user space. In: Enck, W.,
Felt, A.P. (eds.) 27th USENIX Security Symposium, USENIX Security 2018, Bal-
timore, MD, USA, 15–17 August 2018, pp. 973–990. USENIX Association (2018)

https://doi.org/10.1007/978-3-030-15462-2_11

Fault Injection Characterization on Modern CPUs 137

12. Majéric, F., Bourbao, E., Bossuet, L.: Electromagnetic security tests for SoC. In:
2016 IEEE International Conference on Electronics, Circuits and Systems, ICECS
2016, Monte Carlo, Monaco, 11–14 December 2016, pp. 265–268. IEEE (2016)

13. Menu, A., Bhasin, S., Dutertre, J., Rigaud, J., Danger, J.: Precise spatio-temporal
electromagnetic fault injections on data transfers. In: Workshop on Fault Diagnosis
and Tolerance in Cryptography, FDTC 2019, Atlanta, GA, USA, 24 August 2019,
pp. 1–8. IEEE (2019)

14. Moro, N., Dehbaoui, A., Heydemann, K., Robisson, B., Encrenaz, E.: Electromag-
netic fault injection: towards a fault model on a 32-bit microcontroller. In: Fischer,
W., Schmidt, J. (eds.) Workshop on Fault Diagnosis and Tolerance in Cryptogra-
phy, Los Alamitos, CA, USA, 20 August 2013, pp. 77–88. IEEE Computer Society
(2013)

15. Obermaier, J., Tatschner, S.: Shedding too much light on a microcontroller’s
firmware protection. In: Enck, W., Mulliner, C. (eds.) 11th USENIX Workshop
on Offensive Technologies, WOOT 2017, Vancouver, BC, Canada, 14–15 August
2017. USENIX Association (2017)

16. Patranabis, S., Chakraborty, A., Nguyen, P.H., Mukhopadhyay, D.: A biased
fault attack on the time redundancy countermeasure for AES. In: Mangard, S.,
Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 189–203. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21476-4 13

17. Prouff, E. (ed.): CARDIS 2011. LNCS, vol. 7079. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-27257-8

18. Proy, J., Heydemann, K., Berzati, A., Majéric, F., Cohen, A.: A first ISA-level char-
acterization of EM pulse effects on superscalar microarchitectures: a secure software
perspective. In: Proceedings of the 14th International Conference on Availability,
Reliability and Security, ARES 2019, Canterbury, UK, 26–29 August 2019, pp.
7:1–7:10. ACM (2019)

19. Rivière, L., Najm, Z., Rauzy, P., Danger, J., Bringer, J., Sauvage, L.: High preci-
sion fault injections on the instruction cache of ARMv7-M architectures. In: IEEE
International Symposium on Hardware Oriented Security and Trust, HOST 2015,
Washington, DC, USA, 5–7 May, 2015, pp. 62–67. IEEE Computer Society (2015)

20. Schmidt, J.M., Hutter, M.: Optical and EM Fault-Attacks on CRT-based RSA:
Concrete Results (2007)

21. Schmidt, J., Herbst, C.: A practical fault attack on square and multiply. In: Breveg-
lieri, L., Gueron, S., Koren, I., Naccache, D., Seifert, J. (eds.) Fifth International
Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2008, Wash-
ington, DC, USA, 10 August 2008, pp. 53–58. IEEE Computer Society (2008)

22. Schmidt, J., Hutter, M., Plos, T.: Optical fault attacks on AES: a threat in vio-
let. In: Breveglieri, L., Koren, I., Naccache, D., Oswald, E., Seifert, J. (eds.) Sixth
International Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC
2009, Lausanne, Switzerland, 6 September 2009, pp. 13–22. IEEE Computer Soci-
ety (2009)

23. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski Jr.,
B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 2

24. Tang, A., Sethumadhavan, S., Stolfo, S.J.: CLKSCREW: exposing the perils of
security-oblivious energy management. In: Kirda, E., Ristenpart, T. (eds.) 26th
USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada,
16–18 August 2017, pp. 1057–1074. USENIX Association (2017)

https://doi.org/10.1007/978-3-319-21476-4_13
https://doi.org/10.1007/978-3-642-27257-8
https://doi.org/10.1007/3-540-36400-5_2

138 T. Trouchkine et al.

25. Timmers, N., Mune, C.: Escalating Privileges in linux using voltage fault injection.
In: Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2017,
Taipei, Taiwan, 25 September 2017 [2], pp. 1–8

26. Timmers, N., Spruyt, A., Witteman, M.: Controlling PC on ARM using fault
injection. In: 2016 Workshop on Fault Diagnosis and Tolerance in Cryptography,
FDTC 2016, Santa Barbara, CA, USA, 16 August 2016 [1], pp. 25–35

27. Vasselle, A., Thiebeauld, H., Maouhoub, Q., Morisset, A., Ermeneux, S.: Laser-
induced fault injection on smartphone bypassing the secure boot. In: Workshop on
Fault Diagnosis and Tolerance in Cryptography, FDTC 2017, Taipei, Taiwan, 25
September 2017 [2], pp. 41–48

28. van der Veen, V., et al.: Drammer: deterministic rowhammer attacks on mobile
platforms. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi,
S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, 24–28 October 2016, pp. 1675–1689.
ACM (2016)

29. van Woudenberg, J.G.J., Witteman, M.F., Menarini, F.: Practical optical fault
injection on secure microcontrollers. In: Breveglieri et al. [7], pp. 91–99

30. Yuce, B., Ghalaty, N.F., Santapuri, H., Deshpande, C., Patrick, C., Schaumont,
P.: Software fault resistance is futile: effective single-glitch attacks. In: Workshop
on Fault Diagnosis and Tolerance in Cryptography, FDTC 2016, Santa Barbara,
CA, USA, 16 August 2016 [1], pp. 47–58

31. Yuce, B., Ghalaty, N.F., Schaumont, P.: Improving fault attacks on embedded
software using RISC pipeline characterization. In: Homma, N., Lomné, V. (eds.)
Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2015, Saint
Malo, France, 13 September 2015, pp. 97–108. IEEE Computer Society (2015)

Threat Analysis of Poisoning Attack
Against Ethereum Blockchain

Teppei Sato1(B), Mitsuyoshi Imamura1, and Kazumasa Omote1,2

1 University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-8573, Japan
s1820583@s.tsukuba.ac.jp, ic140tg528@gmail.com, omote@risk.tsukuba.ac.jp

2 National Institute of Information and Communications Technology,

4-2-1, Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan

Abstract. In recent years, blockchain technology has witnessed remark-
able developments in its application to crypto assets (cryptocurrency)
considering not only function storing values but also extension of the
smart contract and anonymity improvement. Ethereum is a blockchain
that features the smart contract and there is a data space, where pro-
grams can be freely stored, on the blockchain. However, pollution of such
data space can jeopardize the existence of Ethereum.

In this study, we analyze the fact that the malicious files that are
stored in the data space of Ethereum and discuss “blockchain poisoning
attacks” that significantly contaminate the blockchains by embedding
malicious data at a relatively lower cost. We try to tackle Ethereum-
specific risks which are not mentioned in previous study. In addition, we
empirically examine the possibility of a poisoning attack on a private
blockchain network.

Keywords: Blockchain · Crypto assets · Security · Poisoning attack

1 Introduction

Blockchain is a distributed ledger technology that is a part of Bitcoin [16]. It
was introduced in 2008. While the technology is well known as the base tech-
nology of crypto assets (cryptocurrency), it also acts as not only the function
to store values, extending into industrial fields. The technology has some advan-
tages. It provides a certain degree of anonymity, ensures that the network is
not shut down, and manipulation-resistance to the data on it. Some researchers
proposed its applications in various fields such as IoT security [7], PKI [8], and
management of medical data [4]. However, the blockchain technology faces cer-
tain security problems and challenges, including typical attacks [9,13] such as
the majority attack (51% Attacks), double-spending and cryptojacking, and new
types of attacks such as the “blockchain poisoning attack”, which can be a crit-
ical treat to the blockchain system (Fig. 1).

Blockchains can be attacked by embedding malicious or illegal files in the
flexible space of blockchain [15]. We define this type of attack as a blockchain
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Laurent and T. Giannetsos (Eds.): WISTP 2019, LNCS 12024, pp. 139–154, 2020.
https://doi.org/10.1007/978-3-030-41702-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41702-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-41702-4_9

140 T. Sato et al.

poisoning attack. Such poisoning attacks are considered to be more malicious
than conventional poisoning attacks, such as DNS cache poisoning, against public
databases because repairing a poisoned blockchain without hard fork is not feasi-
ble owing to the feature of blockchains where the transactions inside a blockchain
cannot be modified or cancelled by anyone. In addition, because the data con-
tained in the blockchain are synchronized by each node, attackers can force the
nodes to download any malicious files by embedding them into the blockchain.

Smart contract, which was first proposed by Szabo [20], is a computer proto-
col designed to digitally facilitate, verify, or enforce the negotiation of a transac-
tion without any trusted third parties. Ethereum is well known as a implemen-
tation of smart contract which is turing-complete.

Unlike Bitcoin blockchain, Ethereum has a legitimate and flexible space that
contains the bytecodes of smart contracts. Anyone can officially embed any data
into Ethereum blockchain. Unfortunately, this indicates that this feature also
provides flexibility to attackers. Hence, the poisoning attacks against Ethereum
blockchain (and blockchains that have a flexible space like Ethereum) are easier.

In this study, we analyze the Ethereum blockchain to examine blockchain
poisoning, and further verify the ease of blockchain poisoning attack using our
experimental blockchain environment.

The contributions of this paper are following:

– We analyzed the Ethereum blockchain to examine the actual situation of
blockchain poisoning (until December 31, 2018 UTC), and found 154 files
including some malicious files.

– Using experimental blockchain environments, we demonstrated that
blockchain poisoning can be easily done through web browsers and one-liner
shell command. This risk is specific to Ethereum, not discussed in previous
study [15].

– We indicate the new C&C technique using the Ethereum blockchain, which is
different from methods [1,2]. Existing malwares can easily use such technique,
since the malwares using the method use HTTP/HTTPS protocol to get
commands from botmaster.

2 Background

2.1 Ethereum

“Ethereum is a decentralized platform that runs smart contracts: applications
that run exactly as programmed without any possibility of downtime, censorship,
fraud or third-party interference.”1

Two Types of Accounts. Ethereum has two types of accounts: Externally
Owned Account (EOA) and Contract account. EOA is used to send Ether to
another account, make contracts, and execute the contract. It is controlled by a
1 Ethereum: https://www.ethereum.org/.

https://www.ethereum.org/

Threat Analysis of Poisoning Attack Against Ethereum Blockchain 141

Fig. 1. Threat of blockchain poisoning attack: When performing the poisoning attack,
attackers embed malicious files into the targeted blockchain. We examined the actual
situation of blockchain poisoning as stated in Sect. 5. In addition, when abusing
the blockchain in C&C, botmasters embed commands into the blockchain, then the
Explorer website downloads blockchain information with the commands. The malware
obtains the commands by accessing the Explorer. We analyzed the feasibility of C&C
technique with blockchain poisoning in Sect. 6.

private key2. In contrast, a Contract represents an account of smart contract on
Ethereum itself. In other words, EOA sends a transaction to a Contract account
to execute the contract.

Smart Contract and Flexible Space on Ethereum. Smart contract on
Ethereum is written in bytecode, known as EVM code, and is executed on a
virtual machine called Ethereum Virtual Machine (EVM), which runs on a node
in the Ethereum network. Ethereum transactions have spaces that are used for
the smart contract: init and data areas. Init area contains EVM code and is used
to deploy the smart contract. In contrast, data area is used to call a function
of a contract and give arguments to the function. This area can be freely used
irrespective of smart contract.

Because both init and data areas are arrays of unlimited bytes (according to
Ethereum yellow paper [22]), there are no theoretical upper limits to the size
of data. However, because a transaction fee cannot exceed the block fee limit
determined by miner voting, there is a practical upper limit for the data size. In
addition, Go Ethereum, which is the official Go implementation of Ethereum, has
another limitation. With its comment “Heuristic limit, reject transactions over
32 KB to prevent DOS attacks”, a filter was added to the application to reject
transactions containing more than 32 kB data in its init/data area. This limita-
tion has been added since version v1.6.6. According to ethernodes.org3, which
2 Ethereum Development Tutorial https://github.com/ethereum/wiki/wiki/

Ethereum-Development-Tutorial.
3 ethernodes.org: https://www.ethernodes.org/.

https://github.com/ethereum/wiki/wiki/Ethereum-Development-Tutorial
https://github.com/ethereum/wiki/wiki/Ethereum-Development-Tutorial
https://www.ethernodes.org/

142 T. Sato et al.

contains information about the nodes in the Ethereum network, Go Ethereum
runs on approximately 50% of all nodes in the Ethereum network. To the best of
our knowledge, there is no limitation to the data size in other Ethereum client
applications.

METAMASK. It is an Ethereum wallet implemented as an extension of web
browsers: Chrome, Firefox, and Opera4. It supports connecting to not only
Ethereum mainnet but also private net, and transferring ERC20 token.

Explorer. It is a web services that provides information about blockchain
through web browsers without special software or running blockchain nodes.
The services are important for transparency in blockchain.

Etherscan5 is a well-known explorer in Ethereum. It provides information
related to the Ethereum blockchain such as source code of contract, data in init
and data areas, block hash, and transaction hash.

2.2 How to Use Smart Contract on Ethereum

We can use smart contract on Ethereum by the following two steps.

Deploy a Contract. We define a contract using high-level programming lan-
guages. A well-known language to define contracts on Ethereum is Solidity6,
which looks like JavaScript. The contract is compiled into byte-code called EVM
code.

Next, the EVM code is deployed on the Ethereum network to use the con-
tract. The input EVM code is returned by the compiler as output to init of a
new transaction, without an Integrated Development Environment (IDE), the
recipient address of the transaction is set to null. At this time, a contract account
associated with the contract has not been generated yet. After the transaction
is sent using the Ethereum wallet, it is broadcasted in the network and miners
in the Ethereum network put the transactions into the new block to generate
the next block. In the mining process, the Contract account is generated.

Execute the Contract. To execute a contract, a transaction must be made.
You input byte-array to specify which function is called and give arguments to
the function to data area for new transaction.

The transaction is then sent from EOA to the Contract account. In the mining
process, the result of the contract execution is reflected in the blockchain.

Furthermore, in order to send a transaction containing EVM code, certain
Ethereum wallet applications have functions that receive data in hex string and
write it into a transaction.
4 METAMASK: https://metamask.io.
5 Etherscan: https://etherscan.io.
6 Solidity: https://github.com/ethereum/solidity.

https://metamask.io
https://etherscan.io
https://github.com/ethereum/solidity

Threat Analysis of Poisoning Attack Against Ethereum Blockchain 143

3 Related Work

Smart contract extends the function of blockchain and provides a programmable
logic platform for all users on the blockchain network. However, when consid-
ering the security risks, it is reasonable to not allow programmable operations
to untrusted users. So far, researchers have studied security and attacks regard-
ing blockchain, crypto assets, and smart contract [9,13,21]. In this section, we
introduce the attacks in programs and stored data related to smart contract and
poisoning attacks related to crypto assets.

3.1 Data Stored Space Attack

Matzutt et al. studied the data inserted into the Bitcoin blockchain [15] and
proposed countermeasures for undesirable data [14]. They discussed the bene-
fits and risks of arbitrary blockchain contents and summarized some methods
for data insertion into the Bitcoin blockchain. In addition, they found several
types of undesirable content, including child pornography and violate another
individual’s privacy on the Bitcoin blockchain.

However, the spaces designed for data insertion on the Bitcoin blockchain
are caused by OP RETURN and Coinbase transaction and only the miner can
insert data into Coinbase transaction. Hence, usual network participants can
insert only 80 bytes of data to OP RETURN at once. In contrast, Ethereum has
more flexible space than Bitcoin. If a blockchain has designed flexible spaces,
the poisoning attack becomes easier. Thus, we examine the possibility of the
poisoning attack in Ethereum.

3.2 Programs Attack

Atzei et al. [3] reported a series of security vulnerabilities in Ethereum smart
contracts. They categorized the vulnerabilities into three levels (Solidity, EVM,
Blockchain) based on the causes of vulnerability and explained them by exam-
ining the source codes written in Solidity. The attacks work against the users
and administrators of the smart contracts with vulnerabilities. In contrast, the
poisoning attack, explained in this paper and [14,15], affects all users of a sys-
tem which contains blockchain. This indicates that poisoning attack is a direct
attack against blockchain.

3.3 C&C Technique Using Blockchain Network

Ali et al. [1,2] proposed C&C mechanism that leveraged the Bitcoin network.
They indicated methods to insert C&C payload to Bitcoin transactions, except
our method, which are reported in Sect. 3.1. Furthermore, they explained the
advantages of C&C using Bitcoin network including the difficulty of takedown
without causing any harmful effects to legitimate Bitcoin users and the cost
for maintaining a C&C network. They also built a botnet on the Bitcoin main

144 T. Sato et al.

network and measured response time, which is the time period from when the
botmaster issues an instruction and it is successfully received by the bot, to
evaluate the method.

If a blockchain has a designed flexible space, attacker can embed C&C pay-
load on the blockchain and bots can access the payload on the blockchain more
easily using web service called Explorer.

4 Blockchain Poisoning Attack

4.1 What Is Blockchain Poisoning Attack

Blockchain poisoning attack is an attack against blockchain by embedding mali-
cious or illegal files in the flexible space of blockchain. Attackers can force nodes
in the blockchain network to download the files. This causes DoS attacks against
blockchain. The attack target can be the blockchain and its users.

Attackers perform the attack as follows:

1. An attacker prepares a malicious or illegal file.
2. The attacker embeds the file into the flexible space of transaction, and broad-

casts the transaction in the blockchain network.
3. The malicious file is embedded into the blockchain through the mining process

and then shared among the network participants.

Files used for blockchain poisoning attack can be privacy information, mal-
wares, and any illegal contents. Such files are also described in [15].

4.2 Why Blockchain Poisoning Attack Is Critical/Impact
of Blockchain Poisoning Attack

The reasons why the attack is critical are as follows:

– Blockchain is shared among participants of blockchain P2P network.
– Transactions contained blockchain are hard to be modified or cancelled.

In a blockchain system, each full node needs to store block data synchro-
nized by the P2P network. It means that attackers force the nodes to download
and store malicious or illegal files by embedding such files into the blockchain.
Certainly, nodes which don’t store full blockchain data, like SPV nodes in the
network, are not damaged directly by the attack as much as full nodes. However,
since blockchain network is backed mainly by full nodes, the attack affects all
users of the blockchain indirectly.

Immutability is one of the important features of blockchain. Because of this
feature, transactions contained blockchain are hard to be modified or cancelled.
Hence, blockchain poisoning attack is considered to be more persistent than
conventional poisoning attacks, such as DNS cache poisoning, against public
database, because repairing a poisoned blockchain without hard fork is not fea-
sible. In contrast, once a transaction fee is paid, it is easy to send transaction
with malicious data. It means that blockchain is heavily damaged by the attack
while attackers can perform the attack in a low degree of dificulty.

Threat Analysis of Poisoning Attack Against Ethereum Blockchain 145

4.3 Application of Blockchain Poisoning

C&C Using Blockchain. In a blockchain system, each node needs to store
block data synchronized by the P2P network. Anyone can access the blockchain
data by connecting to the network. These features can be used for C&C.

The mechanism of C&C using blockchain has already been presented by Ali
et al. [1,2]. In this technique, bots are implemented by modifying bitcoin node
software (freely available), and the bots connect to the bitcoin P2P network and
use the network for C&C.

The methods that malware gets commands from bot master via blockchain.
These methods are different from the ones described in previous studies [1,2].

– Get commands from blockchain on victim node.
– Access Explorer website to get command.

The first one can be used only when the victim server is running as a node
of the blockchain network. Because each node synchronizes blockchain and the
blockchain data is stored on itself, a malware can easily access the commands by
reading the blockchain data, which are embedded into blockchain by bot master,
data which stored on the server. Using this technique, malwares can hide their
C&C communications in P2P communications of the blockchain network. For
example, a malware aims at the nodes of crypto assets to steal their private keys
and then, can get commands without direct communications with bot master
and C&C server.

In the second method, the malware accesses the Explorer website to receive
commands. It is difficult to detect and prevent this attack technique because
most companies allow HTTP/HTTPS protocols and the content of HTTPS com-
munication is encrypted.

Note that such attack techniques, including the method presented by Ali et al.
[1,2], are also disadvantageous for attackers. Data in blockchain are unchangeable
and unremovable. Once the malware is found by security researchers, they can
get information about C&C from the blockchain and analyze it.

Hash Rate Decreasing of Blockchain/Price Manipulation of Crypto
Assets. After performing blockchain poisoning, publishing information such as
“The blockchain contains illegal files!!” can produce a negative impression on the
users that uses the blockchain and they might leave the system. This is a DoS
attack against blockchain because the hash rate of a network is very important
for security in the blockchain system.

If a crypto asset encounters the attack mentioned above, its price can be
declined. Thus, the attacker can reduce the price and benefit from the price
difference between before and after attacking.

5 Evaluation of Flexible Space

We investigated the programmable space on the Ethereum main network (from
0 to 6,988,614 in block height) (July 30, 2015–December 31, 2018 UTC).

146 T. Sato et al.

5.1 Methodology

We detected the transactions embedded files using the file carving method. This
method is used to recover files from the unallocated spaces of a storage, for
instance, in digital forensics. It can identify files embedded in unknown binary
data by techniques such as searching file headers and using file structures [12].
We used Foremost7 in this evaluation because it is used in general and open
source program.

The procedure of our investigation is as follows:

1. Convert data extracted from a transaction from a byte-array to a binary file
and then save the file.

2. Input the binary file to a file carving tool.
3. If the tool detects some files in the binary file, record the information of the

transaction

Eighteen file types were used in this study for detection: jpg, gif, png, bmp,
avi, exe, mpg, wav, riff, wmv, mov, pdf, ole, doc, zip, rar, html, and cpp.

In this evaluation, we did not cover files divided and embedded into the
blockchain separately and encoded in some way. Attackers need certain burden
(e.g., management of files, gas, etc.) to hide the embedded files or data on a
blockchain by dividing or encoding.

5.2 Files Embedded in Transactions

Our investigation of data extracted from the transactions showed that 154 files
were embedded in the Ethereum blockchain.

Figure 2 shows the file-types of the extracted files. As evident from Fig. 2,
approximately 80% of extracted files were image files (jpg, png, and gif). Most
of the image content were not problematic as they were group pictures and land-
scape. However, some pictures consisted of undesirable content. In addition, the
pictures, appearing at first glance to be normal, may be malicious because they
can violate the privacy of others, and be abused by steganography techniques [5].

We found three exe files in the Ethereum blockchain. The MD5 hashes of
these three exe files are shown below;

(1) c9a31ea148232b201fe7cb7db5c75f5e
(2) c1e5dae72a51a7b7219346c4a360d867
(3) c9a31ea148232b201fe7cb7db5c75f5e

The two files are evidently the same. We inputted these hashes to VirusTotal
to evaluate the files and concluded that the three exe files are malware because
the analysis result of file (1) and file (3) indicated that their rates of detection
by anti-virus software are 56/70 and the result of file (2) indicated that its rate
of detection is 58/66. Moreover, according to a report [19], a malware called
W32.Duqu has the same hash value as the file (1) and file (3).

7 Foremost: http://foremost.sourceforge.net/.

http://foremost.sourceforge.net/

Threat Analysis of Poisoning Attack Against Ethereum Blockchain 147

Fig. 2. The type of the embedded file Fig. 3. Time-series histogram of file-
embedded transactions

Table 1. Numbers of relation between sender and recipient accounts

(a) sender and recipient are the same 79

(b) sender and recipient are the different 70

(c) recipient is null (contract creation transaction) 5

Furthermore, we found that these three exe files were embedded by one
account and the account sent three file-embedded transactions in approximately
6 min. Figure 3 shows time-series histogram of file-embedded transactions. We
show when such transactions were contained by the Ethereum blockchain.

We demonstrate the relation the between sender and recipient of the trans-
actions embedded files. The number of sender accounts was 113 and that of
file-embedded transactions is 154. It indicates that some accounts embedded a
file to the Ethereum blockchain several times. The maximum number of file-
embedded transactions sent by one account is 10.

Table 1 presents the numbers of relation between sender and recipient
accounts. There are three types of relations: (a) sender and recipient are the
same, (b) sender and recipient are the different, and (c) recipient is null (i.e.,
contract creation transaction). Most accounts with file-embedded transactions
send the transaction to any recipient except null. Some accounts embedded a
file into a contract creation transaction.

6 Feasibility Experiment of Poisoning Attack

Determining the feasibility of an attack is important to assess the risk of
the attack. We constructed an experimental environment, which imitates the
actual environment of Ethereum blockchain, to assess the possibility of poison-
ing attack. In the environment, we attempted to embed files into our private
Ethereum blockchain and extracted the same files from the Explorer using a
web browser. We extracted and embedded the files to verify the usability of

148 T. Sato et al.

Fig. 4. Our experimental environment

blockchain poisoning as C&C infrastructure using web browsers and one-liner
shell commands. This indicates ease of the attack.

6.1 Experimental Environment

Our experimental environment was constructed using two servers (Server A and
Server B) and a laptop, as shown in Fig. 4. The components of the experimental
environment are as follows:

Server A (Ethereum Privatenet). Go Ethereum is installed on this server
that is configured to mine a private blockchain. This server plays the role of
Ethereum mainnet in the actual environment.

Server B (Explorer). On this server, we set up a web server to display infor-
mation about the Ethereum private blockchain on Server A using EthExplorer8.
This web server plays the role of blockchain explorer, such as Etherscan in the
actual environment.

Laptop. We used MacBook Pro to execute shell commands and Google Chrome
(with METAMASK installed) for the experiment. These enabled the embedding
and extracting of files in the same process as performing a poisoning attack
against Ethereum main net.

6.2 Experiment

We explain the experiment procedure in three steps (preparation, embedding a
file, and extracting the file). Because Go Ethereum rejects the transactions that
contain data over 32 kB (as stated in Sect. 2.1), we used image files under 32 kB
to embed into our private blockchain.
8 EthExplorer: https://github.com/etherparty/explorer.

https://github.com/etherparty/explorer

Threat Analysis of Poisoning Attack Against Ethereum Blockchain 149

Preparation. This is the setting on Server A.

1. Start mining on Server A.
2. Connect METAMASK to Ethereum private net on Server A.
3. Create an account on METAMASK and send Ether to that account from the

Coinbase account on Server A.
4. In the setting of METAMASK, turn on the “Show Hex Data” toggle switch.

Embed File. In this section, we describe the process to embed file on the
blockchain.

1. To obtain the hexdump of a file (e.g., pic.jpg), the following command is
executed and the result is copied to the clipboard.

xxd -p pic.png | perl -pe ’s/\ n//g’

2. Click “SEND” on METAMASK.
3. Select any account to send a transaction and paste the hexdump of the file

to the field “Hex Data”.
4. Click “NEXT” and “CONFIRM” to send transaction.
5. After the blockchain receives the transaction, we can confirm that the

blockchain contains the hexdump in the web application on Server B.

Extract File. The process to extract a file from the blockchain is given below.
It should be noted that the name of the extracted file is “pic extracted.png”.

1. Copy a hex string showed on the web application of Server B.
2. Replace <hex> by the following command on the hex string and execute it.

echo <hex> | xxd -p -r > pic extracted.png

6.3 Ease of Poisoning Attack

Section 6.2 demonstrates that files can be embedded into the Ethereum
blockchain using only METAMASK and one-liner shell command. We used shell
command to obtain the hexdump of files in this experiment, there is web ser-
vice which provides conversion from binary file to a hex string. It is substantially
possible to embed files into the Ethereum blockchain only using the web browser.

Section 6.2 demonstrates that the embedded data can be accessed using
explorer website and extracted using a one-liner shell command.

In this experiment, we used a image file, which is about 28 KB, to embed.
The transaction embedded the file costs 1952132 of gas.

150 T. Sato et al.

7 Discussion

7.1 Behavior of a Suspicious Account

As stated in Sect. 5.2, we found that three exe files, judged as malware by Virus-
Total, were embedded into the Ethereum blockchain by a single account.

Heuristic analysis, which detects malwares analyzing suspicious behavior, is a
popular malware detection technique [11,18,23]. Considering the possibility that
heuristic analysis can be implemented against blockchain poisoning, we observed
the behavior of the suspicious account.

We found in our evaluation that the suspicious account sent and received ten
transactions in total. These transactions are given below. Assume that “account
X ” denotes the suspicious account and account A, B, and C denotes the normal
accounts.

(1) “An Ether transfer transaction” from account A to account X
(2) “An Ether transfer transaction” from account X to account B
(3) ∼ (8) Self-sent transactions with data in their data area

(3) 4.1 kB random-like data
(4) 20.5 kB random-like data
(5) broken PNG image
(6) malware EXE file (1)
(7) malware EXE file (2)
(8) malware EXE file (3)

(9) “An Ether transfer transaction” from account X to account C
(10) Empty transaction from account C to account X

This series of transactions indicates an attempt by an attacker to check if
malicious files can be embedded into the blockchain. This attempt can be inter-
preted as follows.

First, this suspicious account received some Ether (1) required to send trans-
actions and embed data into transactions. To check the data size that can be
embedded into the blockchain, this account sent two transactions of different
sizes (3)(4). Next, the account sent a transaction embedded PNG file to check if
it can be embedded into the blockchain (5). The account then sent three transac-
tions containing malware binary file to check if malicious files can be embedded
into the blockchain (6)(7)(8).

We found suspicious behavior by a single account. However, there is a clear
difference between malware and such suspicious accounts. Malwares have a series
of actions. In contrast, attackers can also create unlimited accounts (say, address)
on a blockchain. Although a single account sent the transactions in this case,
they could be divided and sent by multiple accounts. Therefore, owing to the
difference between malwares and accounts on blockchains, performing heuristic
analysis on each account is ineffective and countermeasures against blockchain
poisoning should be made by observing each transaction instead of account.

Threat Analysis of Poisoning Attack Against Ethereum Blockchain 151

7.2 Risk of Flexible Space of Blockchain

We discuss the risks due to the flexible space of Ethereum blockchain, considering
our evaluation of programmable space and our experiments on poisoning attack.
Following are the reasons for increasing the risks.

Functions for Embedding Data Are Officially Provided. Techniques
to embedding arbitrary data into the Bitcoin blockchain [15] are not officially
allowed except for OP RETURN and Coinbase transaction. Therefore, when
embedding any data into the blockchain that does not have flexible space, it is
necessary to use difficult way like “coding Bitcoin script” because general wallets
of such blockchains do not have embedding functions.

However, in the case of blockchains that have flexible space, including
Ethereum, some functions for writing data to the space are officially provided. As
stated in Sect. 6, attackers can use wallet apps, which can be also used by benign
users, to perform a poisoning attack through the same procedure. Therefore, a
flexible space in blockchain facilitate poisoning attack.

Explorer Exists. As described in Sect. 2.1, there are websites called Explorer
in each blockchain, which provide information related to the blockchain. The
content of these websites are different according to the structure and functions
of each blockchain. If a blockchain has flexible space, the embedded data can be
easily obtained in any form such as ascii and hexadecimal.

Ali et al. [1,2] proposed the C&C technique using Bitcoin blockchain. As
mentioned before, Explorer websites can be used in C&C on both Bitcoin and
Ethereum. We can get data embedded into blockchain via explorer using a web
browser, according to the experiment in Sect. 6. It means that it is possible
to get embedded data via HTTP/HTTPS, whose communication is allowed in
many companies. For an attacker using C&C, blockchain with flexible space is
an advantage.

In the study [1,2], they built a botnet using the Bitcoin network by Bitcoin
SPV client. As mentioned above, the technique that uses Explorer website can
use HTTP/HTTPS to communicate with C&C server. In the past, malwares
that use blogs and social media [6] and those that use GitHub [17] for C&C have
been reported. The techniques that use Explorer can be easily implemented on
such malwares.

It is important for attackers to not be involved in the migration of data from
the blockchain to the Explorer website. As stated in Sect. 6, attackers access
the blockchain network while embedding data into the blockchain. However,
when bots receive the data, they independently access the Explorer website.
This implies that C&C technique using blockchain Explorer is effective for an
attack because it is difficult to link a bot to an attacker.

152 T. Sato et al.

Listing 1.1. Example of contract with hexdump of a file

1 pragma solidity ^0.5.0;
2

3 contract Test {
4 function testfunc() public pure returns(bytes memory){
5 bytes memory data = hex"<hexdump of a file>";
6 return data;
7 }
8 }

7.3 Possibility of Wrapping Arbitrary Binary in a Contract

Unfavorable data can be embedded into blockchain owing to flexibility. Hence,
as a simple countermeasure for unfavorable transactions in blockchain network,
we can decrease the flexibility of the space used for embedding data.

Most files found in the studies described in Sect. 5 are embedded in form
of hexdump. In Ethereum, transactions that have hexdump of files in their init
area can be rejected by allowing only valid data as EVM code.

However, the source code can be successfully compiled into an EVM code
even if it is embedded hexdump, like the Solidity source code showed in Listing
1.1. This implied that we can make a valid EVM code containing arbitrary
hexdump of files. Therefore, it is difficult to take measures against embedding
malicious data into a blockchain.

7.4 Countermeasure Against Blockchain Poisoning

As one of the countermeasures against content insertion, mandatory minimal
fees to penalize large transactions is proposed [14]. Certainly, economic costs are
effective because Proof of Work has never been broken except for some specific
situations such as the decrease of hash rate. However, the proposed method [14]
has a drawback due to a lack of correlation between the size and maliciousness
of the data.

The following can be considered as a new naive countermeasure against
blockchain poisoning attack. The countermeasure adopt mandatory minimal fee
determined by its similarity with other contracts. The fee is calculated using
all contracts which are deployed on the blockchain in the past and it becomes
larger when there are no similar contracts. As the number of similar contracts
increases, the minimal fee decreases.

In this mechanism, the cost for sending a transaction depends on the number
of similar contracts instead of the size of transactions. Because the number of
such malicious transactions is small in the blockchain, the attacker can be forced
to pay large costs.

Previous study [10] demonstrated that there are similar contracts that are
actually used owing to some reasons such as reusing source codes of contracts. In
a blockchain network, the content of blocks are determined by consensus between

Threat Analysis of Poisoning Attack Against Ethereum Blockchain 153

the network participants. However, it is generally difficult to take a consensus if
a file is benign or malicious. Therefore, we demonstrated the important approach
to obtain consensus using the similarity of contracts as one of the solutions to
the problem.

8 Conclusions

To assess the risk of blockchain poisoning attack, we analyzed the Ethereum
blockchain to examine the actual situation, verified the ease of attack using our
experimental blockchain environments.

We confirmed that 154 files were embedded on the Ethereum blockchain,
including some malicious files. Furthermore, we showed that blockchain poison-
ing can be easily performed using web browsers and one-liner shell command.
We indicated the possibility of C&C technique using the Ethereum blockchain,
which is different from previous methods [1,2]. The method can be easily applied
to existing malwares because they use HTTP/HTTPS protocol to receive com-
mands from botmaster.

Acknowledgement. This work was partly supported by the Grant-in-Aid for Scien-
tific Research (B) (19H04107).

References

1. Ali, S.T., McCorry, P., Lee, P.H.-J., Hao, F.: ZombieCoin: powering next-
generation botnets with bitcoin. In: Brenner, M., Christin, N., Johnson, B., Rohloff,
K. (eds.) FC 2015. LNCS, vol. 8976, pp. 34–48. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48051-9 3

2. Ali, S.T., McCorry, P., Lee, P.H.J., Hao, F.: ZombieCoin 2.0: managing next-
generation botnets using bitcoin. Int. J. Inf. Secur. 17(4), 411–422 (2018)

3. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart con-
tracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6 8

4. Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: MedRec: using blockchain for
medical data access and permission management. In: 2016 2nd International Con-
ference on Open and Big Data (OBD), pp. 25–30. IEEE (2016)

5. Cheddad, A., Condell, J., Curran, K., Mc Kevitt, P.: Digital image steganography:
survey and analysis of current methods. Sig. Process. 90(3), 727–752 (2010)

6. Chen, J.: Blackgear cyberespionage campaign resurfaces, abuses social media
for c&c communication (2018). https://blog.trendmicro.com/trendlabs-security-
intelligence/blackgear-cyberespionage-campaign-resurfaces-abuses-social-media-
for-cc-communication/. Accessed 13 Dec 2018

7. Dorri, A., Kanhere, S.S., Jurdak, R., Gauravaram, P.: Blockchain for IoT secu-
rity and privacy: the case study of a smart home. In: 2017 IEEE International
Conference on Pervasive Computing and Communications Workshops (PerCom
Workshops), pp. 618–623. IEEE (2017)

https://doi.org/10.1007/978-3-662-48051-9_3
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://blog.trendmicro.com/trendlabs-security-intelligence/blackgear-cyberespionage-campaign-resurfaces-abuses-social-media-for-cc-communication/
https://blog.trendmicro.com/trendlabs-security-intelligence/blackgear-cyberespionage-campaign-resurfaces-abuses-social-media-for-cc-communication/
https://blog.trendmicro.com/trendlabs-security-intelligence/blackgear-cyberespionage-campaign-resurfaces-abuses-social-media-for-cc-communication/

154 T. Sato et al.

8. Fromknecht, C., Velicanu, D.: CertCoin: a NameCoin based decentralized authen-
tication system 6. 857 class project (2014)

9. Hasanova, H., Baek, U., Shin, M.G., Cho, K., Kim, M.S.: A survey on blockchain
cybersecurity vulnerabilities and possible countermeasures. Int. J. Netw. Manage.
29(2), 2060 (2019)

10. Kiffer, L., Levin, D., Mislove, A.: Analyzing ethereum’s contract topology. In: Pro-
ceedings of the Internet Measurement Conference 2018, pp. 494–499. ACM (2018)

11. Kolbitsch, C., Comparetti, P.M., Kruegel, C., Kirda, E., Zhou, X.y., Wang, X.:
Effective and efficient malware detection at the end host. In: USENIX Security
Symposium, vol. 4, pp. 351–366 (2009)

12. Laurenson, T.: Performance analysis of file carving tools. In: Janczewski, L.J.,
Wolfe, H.B., Shenoi, S. (eds.) SEC 2013. IAICT, vol. 405, pp. 419–433. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39218-4 31

13. Li, X., Jiang, P., Chen, T., Luo, X., Wen, Q.: A survey on the security of blockchain
systems. Future Gener. Comput. Syst. (2017)

14. Matzutt, R., Henze, M., Ziegeldorf, J.H., Hiller, J., Wehrle, K.: Thwarting
unwanted blockchain content insertion. In: 2018 IEEE International Conference
on Cloud Engineering (IC2E), pp. 364–370, April 2018

15. Matzutt, R., et al.: A quantitative analysis of the impact of arbitrary blockchain
content on bitcoin. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol.
10957, pp. 420–438. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-
662-58387-6 23

16. Nakamoto, S., et al.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
17. Pernet, C.: Winnti abuses GitHub for C&C communications (2017). https://blog.

trendmicro.com/trendlabs-security-intelligence/winnti-abuses-github/. Accessed
13 Dec 2018

18. Song, D., et al.: BitBlaze: a new approach to computer security via binary analysis.
In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS, vol. 5352, pp. 1–25. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89862-7 1

19. Symantec: W32.duqu the precursor to the next stuxnet (2011). https://www.
symantec.com/content/en/us/enterprise/media/security response/whitepapers/
w32 duqu the precursor to the next stuxnet.pdf

20. Szabo, N.: Smart contracts: building blocks for digital free markets. Extropy, no. 16
(1996). http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/
Literature/LOTwinterschool2006/szabo.best.vwh.net/smart contracts 2.html

21. Wohrer, M., Zdun, U.: Smart contracts: security patterns in the ethereum ecosys-
tem and solidity. In: 2018 International Workshop on Blockchain Oriented Software
Engineering (IWBOSE), pp. 2–8. IEEE (2018)

22. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Byzan-
tium version (2018). https://ethereum.github.io/yellowpaper/paper.pdf. Accessed
3 Dec 2018

23. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: capturing system-
wide information flow for malware detection and analysis. In: Proceedings of the
14th ACM Conference on Computer and Communications Security, pp. 116–127.
ACM (2007)

https://doi.org/10.1007/978-3-642-39218-4_31
https://doi.org/10.1007/978-3-662-58387-6_23
https://doi.org/10.1007/978-3-662-58387-6_23
https://blog.trendmicro.com/trendlabs-security-intelligence/winnti-abuses-github/
https://blog.trendmicro.com/trendlabs-security-intelligence/winnti-abuses-github/
https://doi.org/10.1007/978-3-540-89862-7_1
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_duqu_the_precursor_to_the_next_stuxnet.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_duqu_the_precursor_to_the_next_stuxnet.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_duqu_the_precursor_to_the_next_stuxnet.pdf
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://ethereum.github.io/yellowpaper/paper.pdf

A Template-Based Method
for the Generation of Attack Trees

Jeremy Bryans1, Lin Shen Liew2, Hoang Nga Nguyen1(B),
Giedre Sabaliauskaite2, Siraj Shaikh1, and Fengjun Zhou2

1 Coventry University, Coventry, UK
{ac1126,ac1222,aa8135}@coventry.ac.uk

2 Singapore University of Technology and Design, Singapore, Singapore
{linshen liew,giedre,fengjun zhou}@sutd.edu.sg

Abstract. Attack trees are used in cybersecurity analysis to give an
analyst a view of all the ways in which an attack can be carried out.
Attack trees can become large, and developing them by hand can be
tedious and error-prone. In this paper the automated generation of attack
trees is considered. The method proposed is based on a library of attack
templates – parameterisable patterns of attacks such as denial of service
or eavesdropping – and that also uses an abstract model of the network
architecture under attack. A pseudocode implementation of the method
is also presented. The example application given is from the automotive
domain and using an architecture consisting of linked CAN networks –
a network configuration found in virtually every current vehicle.

Keywords: Attack trees · Generation · Automotive · Cybersecurity

1 Introduction

Attack trees are a well-known graphical model for capturing and analysing
attacks on a system [12]. Their intuitive simplicity and ability to succinctly cap-
ture all attacks on a system have made them popular in many domains, including
SCADA systems [2], ATM security [4], the analysis of insider attacks [11] and
the automotive domain [1]. They give an analyst an overview of all the known
ways in which an attack can be carried out, and show how single attack steps
combine and build into complex attacks.

Attack trees are directed acyclic graphs with a single end node, which is the
goal of the attack. To construct an attack an analyst considers all the steps
which would immediately lead to the goal of the attack being realised. These
become the subgoals, or intermediate leaves of the tree. Each of these leaves is
now considered as a (sub)goal, and the steps that would lead to it’s realisation
are identified. The process is recursively repeated until the branches of the tree
cannot be further expanded. This process can be time-consuming, especially
for large attack trees [4] and several researchers have therefore investigated the
automatic generation of the trees [5,6,10,13].
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Laurent and T. Giannetsos (Eds.): WISTP 2019, LNCS 12024, pp. 155–165, 2020.
https://doi.org/10.1007/978-3-030-41702-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41702-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-41702-4_10

156 J. Bryans et al.

Within the literature, two main approaches to automating the generation
or synthesis of attack trees have developed: (i) model transformation and (ii)
semantic-based construction. In the model transformation approach, a target
system and attackers are modelled using either graphical [6] or formal [13] pre-
sentations as input. The desired target of the attackers is identified, and from
this the tree root from which the tree construction starts is established. In [6],
system models contain actors, processes, items and locations, and connections
between these elements to the desired target are utilised to develop the attack
tree. Similarly, systems and attackers in [13] are modelled in a process calculus
as input. They are first transformed into propositional formulae. Given a tar-
get location, these formulae are utilised to construct attack trees by means of
backwards-chaining search. While techniques in the model transformation app-
roach are automated, they suffer from lacking a basis for correctness. There is
no rigorous relation between generated attack trees and the attacks implicitly
implied from input models. In order to fill this gap, [10] proposed ATSyRA, an
interactive tool for synthesising attack trees from attack graphs. First, ATSyRA
generates all attack paths from the input graphs by model checking. Then, users
are required to specify a refinement relation between a set of actions to recur-
sively refine attack paths to eventually construct an attack tree. While ATSyRA
establishes the semantic connection between the constructed tree and the input
model via attack paths, it is not fully automated. To overcome this shortcoming,
[8] introduced an approach to extending an existing attack tree by means of a
library of attack trees. The extension is enabled by adding logical preconditions
and assertions to tree nodes. Then an attack tree from the library can be attached
to a node of the attack tree to be extended if certain relations between the pre-
conditions and assertions are satisfied. To this end, logical reasoning must be
employed. Similarly, [5] has proposed a different approach which is based on the
formal semantics of attack trees [7]. To this end, the synthesis problem becomes
that of generating attack trees from a given semantics, i.e., a set of attack traces.
It is reduced to a biclique problem, which is known to be NP-complete, and a
heuristic algorithm is suggested for the construction.

In this paper we propose a method for the generation of attack trees based
on templates: abstracted and parameterizable known patterns of attack, and
represent steps such as spoofing of one node by another, or eavesdropping on
traffic between two nodes, which together can be built up into an attack. The
method takes as input a description of the architecture of the network that is
being attacked and the set of templates.

These networks are modelled by graphs consisting of nodes and connectivity
information. Each node represents a component of the network. The network
information required includes the access points. These are the nodes within the
network that are exposed to attackers outside the network. We present a method
that applies each element from the library of attack patterns to the graphical
network model in order to form attack trees. We give as well an algorithm for
our method. Given a network and a set of templates, the algorithm can generate
all possible attacks conforming to the template library.

A Template-Based Method for the Generation of Attack Trees 157

The contributions in this paper are the template-based method for the gener-
ation of attack trees and it’s algorithm, and the automotive example demonstrat-
ing the method. The paper proceeds as follows: Sect. 2 begins with an introduc-
tion to automotive communication networks and attack trees. In Sect. 3 we give
the description of the template-based methodology for generating attack trees,
and in Sect. 4 we give the pseudo-code description of the generation algorithm
and briefly present the results of our automotive example.

2 Background

2.1 Automotive Communication Network

An automotive communication network facilitates the communication between
electronic control units (ECUs) within a vehicle. It is usually divided into sub-
networks of related ECUs. Depending on the communication requirements of
each subnetwork (such as bandwidth, time, etc.), different network types can
be employed such as CAN, CANFD, FLEXRAY, LIN, ETHERNET, etc. These
networks can be interconnected via Gateway ECUs which will coordinate the
traffic between them.

Fig. 1. An automotive internal network.

In this paper, we model an automotive communication network as a tuple
(NET,ECU,AP,net) where NET is a finite set of subnetworks, ECU is a finite
set of ECUs, AP ⊆ ECU identifies ECUs that are accessible to attackers (such
as OBD-II or TBOX), and net : NET → ℘(ECU) is a mapping to determine
to which subnetwork an ECU belongs. For example, the network in Fig. 1 is
modelled by Mf = (NETf ,ECUf ,APf ,netf) where:

158 J. Bryans et al.

– NETf = {CAN1,CAN2,CAN3,CAN4};
– ECUf = {ECM, TCU, ESC, SBW, SRS, ADS, Gateway, OBD-II, TBOX,

BCM, PEPS, AVM};
– APf = { OBD-II, TBOX};
– netf = {CAN1 �→ {ECM, TCU, ESC, SBW, SRS, Gateway},CAN2 �→{

TBOX, BCM, PEPS, AVM, Gateway
}
,CAN3 �→ {ADS, Gateway},

CAN4 �→ {OBD-II, Gateway}}.

2.2 Attack Trees

Attack trees contain a goal (the root of the tree), a set of sub-goals, structured
using the operators conjunction (AND) and disjunction (OR), and leaf nodes,
which represent atomic attacker actions. The AND nodes are complete when
all child nodes are carried out and the OR nodes are complete when at least
one child node is complete.

Extensions have been proposed using Sequential AND (or SAND) [7].
We follow the formalisation of attack trees given in [7,9]. If A is the set of
possible atomic attacker actions, the elements of the attack tree T are A ∪
{OR,AND,SAND}, and an attack tree is generated by the following grammar,
where a ∈ A:

t ::= a | OR(t, . . . , t) | AND(t, . . . , t) | SAND(t, . . . , t)

Attack tree semantics have been defined by interpreting the attack tree as a
set of series-parallel (SP) graphs [7].

3 Methodology

We develop a method to generate attack trees from a network model and a
library of attack tree templates. Attack tree templates are building-blocks to
assemble an attack tree. Each template from the library represents an attack
step within the network which can be applied to different subnetworks and/or
ECUs. The adaptability of the attack to various subnetworks and ECUs can be
captured by using variables within the template. When the templates are fully
instantiated with concrete values from the sets of the network model, it provides
a concrete example of an attack on the network.

For example, attacks on a communication network can be categorised into
two passive or active attacks; eavesdropping and traffic analysis are two exam-
ples of passive attacks, while spoofing, replay and DoS (Denial of Service) are
active attacks. This is captured in Fig. 2. Variables are used in all the leaves
of this template which can be replaced by concrete values. Let us consider the
leaf Eavesdrop X:NET. The variables X can be replaced by any value from the
component NET of the network model. If we consider the network model Mf as
depicted in Fig. 1, X can be replaced by CAN1, CAN2, CAN3 or CAN4.

The connectivity between ECUs within the network will be represented in
attack tree templates using lists. When instantiated, a list of ECUs corresponds

A Template-Based Method for the Generation of Attack Trees 159

Attack

Passive

Eavesdrop
X:NET

TrafficAnalysis
X:NET

Active

Spoof
X:ECU

Replay
X:ECU

DoS
X:NET

Fig. 2. An initial attack template tree.

to the ability to send data from the first ECU in the list to next one, then the
next one, and so on until the data reaches the last ECU in the list. This means
consecutive ECUs in the list must belong to the same subnetwork. Gateway
ECUs may appear in the list to capture the connectivity between ECUs of dif-
ferent subnetworks. For example, if we consider the model Mf , a list of ECUs is
[ECM, TCU, Gateway, TBOX] where ECM is connected to TCU and TCU to
Gateway in CAN1, and Gateway to TBOX in CAN2.

The generation of attack trees starts with a specified template from the
library. This template has no closed variables. The generation is carried out
recursively. At each recursion, a leaf which may contain open variables is con-
sidered for expansion. When there are n > 0 assignments for the open variables,
this leaf node is converted into an OR node with n children with each child cor-
responding to one assignment. The assignments are copies of the leaf node where
the open variables are replaced by values. Each child is then replaced by a tem-
plate from the library where the name of the template root matches the name
of the child and the parameters of the root can be unified with the parameters
of the child. The unification of the parameters will give rise to an assignment of
closed variables of the template. The replacement of the child with the template
will also replace all closed variables with the values from the assignment. This
process is illustrated in Fig. 3. A white circle represents a node with variables
while a black one states that its variables have been replaced with values by
some assignment.

A special case of assignments is for unassigned lists. An assignment for an
unassigned list [X .. Y] is a list of constants from NET and ECU. The start and
the end of the list must satisfy any condition for X and Y. For example, consider
the network Mf . An unassigned list [ECM..Y:AP] must be assigned to a list of
ECUs from ECM to an ECU that is an access point, i.e, in APf . There are two
ECUs that Y can be assigned to: OBD-II and TBOX. Then, one of the list of
connected ECUs that [ECM..Y:AP] can be assigned to is [ECM, TCM, Gateway,
TBOX] where they are consecutively connected and the last ECU (TBOX) is an
access point. Obviously, this is not the only assignment. Two of other candidates
to assign this list to are [ECM, Gateway, TBOX] and [ECM, TCM, Gateway,
OBD-II].

160 J. Bryans et al.

Assigned lists [X|Y] recursively describe a list with X as the head of the list
and Y as the remaining elements, i.e., the tail of the list. [] stands for an empty
list. An assigned list [X|Y] normally appears at the root of some templates. When
it is unified with a list of elements, X will be unified with the head and Y will
be unified with the tail. For example, if the list [ECM, TCM, Gateway, TBOX]
is unified with [X|Y], then X = ECM and Y = [TCM, Gateway, TBOX].

Fig. 3. Methodology.

3.1 Attack Tree Templates

More formally, nodes in an attack tree template may contain parameters which
are made of variables, list terms or constants (i.e., elements of NET and ECU
of a network model). Variables can be instantiated with node names. Let N be
a set of names for tree nodes, V a set of variables and C = NET ∪ ECU a set of
constants. The syntax of an attack tree template is defined below:

tree ::= leaf-node |
tree-nodeAND(tree, . . . , tree) |
tree-nodeSAND(tree, . . . , tree) |
tree-nodeOR(tree, . . . , tree)

leaf-node ::= n parameter∗

tree-node ::= n parameter∗

parameter ::= variable | list | c
variable ::= X[“ : ”type][/Y [“ : ”NET]][#Z[“ : ”ECU]]

type ::= NET | ECU | AP
list ::= unassigned-list | assigned-list

unassigned-list ::= [variable “..” variable]
assigned-list ::= [variable “|” variable]

where X,Y ∈ V , n ∈ N and c ∈ C.
Informally, an attack tree template is an attack tree in which each node

contains a name and possibly a list of parameters. A parameter can be a variable,
a constant (node names) or a list of variables and constants. Variables occurring
in the root node of an attack tree template are called closed variables. They may
reoccur in the descendants of the root. Once root variables are instantiated, their
values are propagated down to the descendant nodes correspondingly. In contrast
to closed variables, variables in a template that do not appear in its root are
called open.

A Template-Based Method for the Generation of Attack Trees 161

We postulate the following conditions on the occurrence of variables on an
attack tree template:

– Assigned lists can only appear at the root;
– Open variables can only appear at the leaves;
– Unassigned lists can only appear at the leaves.

The assignment of values to variables can be restricted with types, by using
the condition “: type”. This condition restricts a variable to be instantiated
with a constant of type NET, ECU or AP. For example, consider the network in
Fig. 1. Given X:NET, X can only be assigned to CAN1, CAN2, CAN3 or CAN4.
Given X:ECU, X can only be assigned to ECM, TCU, Gateway, OBD-II, BCM
or TBOX. AP stands for access points OBD-II and TBOX, i.e., places where
attackers can have cyber access to the network. Then, X:AP says that X can
only be assigned to OBD-II or TBOX. A further restriction can be introduced
to the assignment by “/ Y : NET”. Once Y is instantiated with a constant of
type NET, “X / Y:NET” states that X can only be assigned to an ECU within
the subnetwork Y. For example, “ X / Y:NET” where Y is CAN1 means that X
can only be assigned to ECM, TCU, or Gateway. Finally, one can require that X
is not assigned to an ECU by using the restriction #Z where Z is of type ECU.
Once Z is instantiated with an ECU, X cannot be assigned to that ECU.

3.2 A Simple Example

We illustrate our method on an automotive network, depicted in Fig. 4(a). It
contains two CAN buses: the powertrain, consisting of three ECUs: ECM (Engine
Control Module), TCU (Transmission Control Unit) and GW (the Gateway) and
the telematics bus, containing two ECUs: TBox (Telematics Box) accessible to
attackers and the same GW, which connects the two buses.

This network is modelled by a tuple (NETm,ECUm, APm,netf) where:

– NETm = {CAN1,CAN2};
– ECUm = {ECM,TCU,GW,TBOX};
– APm = {TBOX}; and
– net = {CAN1 �→ {ECM,TCU,GW},CAN2 �→ {GW,TBOX}}.

We then consider a library of attack tree templates that focus on how to
compromise ECM. The library consists of two templates, depicted in Fig. 4(b)
and (c). The template (b) describes a compromise attack on ECM. Essentially,
this attack can be realised by starting compromising an ECU to which attackers
have access to (Z:AP). Then, the compromise attack can be propagated to the
next ECU connected to a compromised one until we reach ECM. This is described
by the unassigned list [Z:AP .. ECM]. The template (b) is also specified as the
start tree of the generation process. The template (c) describes how compromise
attack can be carried out from the first ECU to the last in the list [Z|L]. Note
that Z is the head of the list and L is the tail. On Fig. 4(c) the arrow between
the edges leading to the two nodes indicates that both nodes must be carried

162 J. Bryans et al.

Gateway

ECM TCU

BCM

(a)

Compromise
ECM

CompromiseFromTo
[Z:AP .. ECM]

(b)

CompromiseFromTo
[Z | L]

TakeControl
Z

Reflash
Z

GainRoot
Z

CompromiseFromTo
L

(c)

Fig. 4. The compromise attack template tree.

out in order (a SAND node). Not joining the edges in Fig. 4(c) signifies an OR
node, and joining edges with a line (rather than an arrow) signifies that the root
node is an AND node.

This is done by taking control of the ECU Z at the head of the list and then
recursively taking control of the rest of the list. Taking control can be done by
either re-flashing or gaining root access to Z.

Initially, the construction starts with the template (b) in Fig. 4. The leaf of
this expanded tree “CompromiseFromTo [Z:AP .. ECM]” is now considered for
further expansion. It has an open parameter which is an unassigned-list. There
are two possible assignments for it; one is [ECM,GW,TBOX] and the other
is [ECM,TCU,GW,TBOX]. However, the second list is considered redundant
as ECM is directly connected and can communicate with GW without using
TCU. This is derived from the nature of CAN bus communication where ECUs
on the same bus are directly connected with each other. Therefore, the leaf is
appended with one child corresponding to the assignment of [Z:AP .. ECM] to
[ECM,GW,TBOX]. This child is then expanded by the template (c) in Fig. 4.
This template is used several times depending on the length of the list. Finally,
we obtain the tree1 which has height 9 and contains 17 nodes.

4 Implementation

We now present the algorithm used to implement our generation method (Algo-
rithm 1.) The inputs are (1) a model of the network structured as in Sect. 2
and (2) a library of attack tree templates and it produces an attack tree as the
output.

The algorithm starts with the initial tree InitTree from the input library in
line 2. It then loops as long as there is a leaf on the constructed tree and a

1 The tree can be viewed at https://tinyurl.com/s55u7qh.

https://tinyurl.com/s55u7qh

A Template-Based Method for the Generation of Attack Trees 163

Algorithm 1. Generating attack trees
1: function BuildTree(Model, Library)
2: tree ← InitTree ∈ Library
3: while ∃leaf ∈ tree, subtree ∈ Library: leaf matches subtree do
4: assignments ← getAssignments(leaf, Model)
5: Turn leaf into an “or” nodes
6: for each assignment of assignments do
7: assignedLeaf ← apply(assignment, leaf)
8: unification ← unify(subtree, assignedLeaf)
9: add apply(unification, subtree) as a child of leaf

10: end for
11: end while
12: return tree
13: end function

template, namely subtree, from the library that can be matched. In this loop,
all assignments for the variables of the leaf are first computed in line 4. Then
for each of the assignments, a unification of subtree and the application of the
assignment to the leaf is calculated in line 8. Then the subtree to which the
unification is applied is added as a child of the leaf in line 9. Note that the leaf
is now converted into an “or” node in line 5. The loop at line 3 will continue
until no more leaves and matching templates can be found.

The function apply replaces attack tree template variables with the corre-
sponding values in the input assignment, from the root to the leaves recursively.
unify in line 8 is a standard unification procedure. It tries to unify the root of
subtree with the leaf to which the considered assignment is applied. It yields a
unifier which can be considered as an assignment to the whole subtree.

getVarAssignments generates Cartesian product of all assignments for the
variables and unassigned lists in the input leaf.

Experiment
We briefly present the experimental result of our implementation on two exam-
ples, implemented in Python2 and carried out on a PC with a processor Intel
Core i5-4590 3.3 GHz with 8GB of memory.

We first rerun the mini example described in Sect. 3.2 which confirms the
output tree obtained in Sect. 3.2. Using Python “cProfile” module, the run-
time of this experiment is 0.025s and uses 19739 function calls. The second
experiment4 is to generate an attack tree for the automotive network Mf as
depicted in Fig. 1. It consists of 4 CAN bus networks with 12 ECUs. The template
library contains 21 attack tree templates, including the initial tree as depicted in
Fig. 2. In total, the run-time is 0.292s, using 574133 function calls. The generated
attack tree3 has 3756 nodes and of height 19. An attack example extracted
from the tree is an eavesdropping attack carried out at a compromised TCU.

2 The source code can be downloaded from https://tinyurl.com/uoptgfb.
3 The tree can be viewed at https://tinyurl.com/vzscydf.

https://tinyurl.com/uoptgfb
https://tinyurl.com/vzscydf

164 J. Bryans et al.

Access was gained at the TBOX, then the gateway was compromised followed
by the TCU:
GainRoot(TBOX) → Reflash(GW)→ Reflash(TCU) → CollectDataFrom(TCU).

5 Conclusion

In this paper, we have proposed a practical method for identifying all the possible
attacks on a known system. We use a library of templates of the atomic attack
steps that can be taken against components in the system and give an algorithm
for building these into a tree capturing all the attacks. Future steps will include
adapting to other types of networks including wireless and ethernet, and also
mixed networks which include networks running under different protocols. We
also plan to integrate the automated attack tree generation work presented here
into work on model-based security test-case generation which currently assumes
the existence of the attack tree such as [3].

References

1. Bryans, J., Nguyen, H., Shaikh, S.: Attack defense trees with sequential conjunc-
tion. In: 19th IEEE HASE, pp. 247–252 (2019)

2. Byres, E.J., Franz, M., Miller, D.: The use of attack trees in assessing vulnerabilities
in SCADA systems. In: IEEE Conference IISW (2004)

3. Cheah, M., Nguyen, H.N., Bryans, J., Shaikh, S.A.: Formalising systematic secu-
rity evaluations using attack trees for automotive applications. In: Hancke, G.P.,
Damiani, E. (eds.) WISTP 2017. LNCS, vol. 10741, pp. 113–129. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-93524-9 7

4. Fraile, M., Ford, M., Gadyatskaya, O., Kumar, R., Stoelinga, M., Trujillo-Rasua,
R.: Using attack-defense trees to analyze threats and countermeasures in an ATM:
a case study. In: Horkoff, J., Jeusfeld, M.A., Persson, A. (eds.) PoEM 2016. LNBIP,
vol. 267, pp. 326–334. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48393-1 24

5. Gadyatskaya, O., Jhawar, R., Mauw, S., Trujillo-Rasua, R., Willemse, T.A.C.:
Refinement-aware generation of attack trees. In: Livraga, G., Mitchell, C. (eds.)
STM 2017. LNCS, vol. 10547, pp. 164–179. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-68063-7 11

6. Ivanova, M.G., Probst, C.W., Hansen, R.R., Kammüller, F.: Transforming graphi-
cal system models to graphical attack models. In: Mauw, S., Kordy, B., Jajodia, S.
(eds.) GraMSec 2015. LNCS, vol. 9390, pp. 82–96. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-29968-6 6

7. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack trees
with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) SEC 2015.
IAICT, vol. 455, pp. 339–353. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18467-8 23

8. Jhawar, R., Lounis, K., Mauw, S., Ramı́rez-Cruz, Y.: Semi-automatically augment-
ing attack trees using an annotated attack tree library. In: Katsikas, S.K., Alcaraz,
C. (eds.) STM 2018. LNCS, vol. 11091, pp. 85–101. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-01141-3 6

https://doi.org/10.1007/978-3-319-93524-9_7
https://doi.org/10.1007/978-3-319-48393-1_24
https://doi.org/10.1007/978-3-319-48393-1_24
https://doi.org/10.1007/978-3-319-68063-7_11
https://doi.org/10.1007/978-3-319-68063-7_11
https://doi.org/10.1007/978-3-319-29968-6_6
https://doi.org/10.1007/978-3-319-29968-6_6
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-030-01141-3_6
https://doi.org/10.1007/978-3-030-01141-3_6

A Template-Based Method for the Generation of Attack Trees 165

9. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). https://
doi.org/10.1007/11734727 17

10. Pinchinat, S., Acher, M., Vojtisek, D.: ATSyRa: an integrated environment for
synthesizing attack trees. In: Mauw, S., Kordy, B., Jajodia, S. (eds.) GraMSec
2015. LNCS, vol. 9390, pp. 97–101. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-29968-6 7

11. Ray, I., Poolsapassit, N.: Using attack trees to identify malicious attacks from
authorized insiders. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.)
ESORICS 2005. LNCS, vol. 3679, pp. 231–246. Springer, Heidelberg (2005).
https://doi.org/10.1007/11555827 14

12. Schneier, B.: Attack trees. Dr Dobbs J. (1999)
13. Vigo, R., Nielson, F., Nielson, H.R.: Automated generation of attack trees. In: 2014

IEEE 27th Computer Security Foundations Symposium, pp. 337–350. IEEE (2014)

https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/978-3-319-29968-6_7
https://doi.org/10.1007/978-3-319-29968-6_7
https://doi.org/10.1007/11555827_14

Cybersecurity

Analysis of QUIC Session Establishment
and Its Implementations

Eva Gagliardi1 and Olivier Levillain2(B)

1 French Ministry of the Armies, Paris, France
2 Télécom SudParis, Institut Polytechnique de Paris, Évry, France

olivier.levillain@telecom-sudparis.eu

Abstract. In the recent years, the major web companies have been
working to improve the user experience and to secure the communica-
tions between their users and the services they provide. QUIC is such an
initiative, and it is currently being designed by the IETF. In a nutshell,
QUIC originally intended to merge features from TCP/SCTP, TLS 1.3
and HTTP/2 into one big protocol. The current specification proposes
a more modular definition, where each feature (transport, cryptography,
application, packet reemission) are defined in separate internet drafts.

We studied the QUIC internet drafts related to the transport and
cryptographic layers, from version 18 to version 23, and focused on the
connection establishment with existing implementations.

We propose a first implementation of QUIC connection establishment
using Scapy, which allowed us to forge a critical opinion of the cur-
rent specification, with a special focus on the induced difficulties in the
implementation. With our simple stack, we also tested the behaviour of
the existing implementations with regards to security-related constraints
(explicit or implicit) from the internet drafts. This gives us an interesting
view of the state of QUIC implementations.

Keywords: QUIC · Secure communications · Protocol implementation

1 Introduction

In the recent years, the major web companies have been working to improve
the user experience and to secure the communications between their users and
the services they provide. One of this effort was QUIC, proposed by Google
in 2012. Another change in parallel was the standardization of TLS 1.31, which
both achieves better performance, with a faster session establishment, and better
security, since only up-to-date and secure primitives were kept in this new version
of the protocol.

However, even with TLS 1.3 and HTTP/2, the TLS/HTTP combination is
still considered a bottleneck by some actors. So the development of QUIC went
1 Actually, TLS 1.3 borrowed several ideas from the initial QUIC design.

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Laurent and T. Giannetsos (Eds.): WISTP 2019, LNCS 12024, pp. 169–184, 2020.
https://doi.org/10.1007/978-3-030-41702-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41702-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-41702-4_11

170 E. Gagliardi and O. Levillain

on, and Google proposed their protocol to the IETF for a standardization. A
working group was formed and since 2016, 23 draft versions of the protocol have
been discussed. The original protocol has since been renamed gQUIC (for Google
QUIC). In the remainder of this article, QUIC refers to the IETF version of the
protocol, which differs significantly from gQUIC. Indeed, the IETF version offers
a more modular protocol than the original proposal. QUIC design relies on the
following architecture:

– A transport layer is defined in the quic-transport internet draft [4] over
UDP. This way, QUIC avoids the delay induced by the TCP three-way hand-
shake, but obviously has to handle packet loss and reordering.

– During the session establishment, cryptographic parameters and keys are
negotiated using TLS 1.3 Handshake message. The way QUIC embeds and
interacts with TLS is described in the quic-tls internet draft [11].

– On top of the transport layer, a new version of the HTTP protocol is being
proposed, HTTP/3, which will be designed for QUIC [2].

The working group also wrote several peripheral internet drafts to specify
generic properties for QUIC [7,10] or to give details on specific features [3,6]. In
this article, we focus on the establishment phase described by quic-transport
and quic-tls drafts.

Section 2 describes the QUIC protocol and Sect. 3 details the protection
mechanism used to encrypt QUIC packets. For our study, we implemented parts
of the protocol with Scapy; Sect. 4 presents the challenges we had to face to inter-
act with existing QUIC stacks. Using our tool, we ran some tests to study the
behaviour of public servers with regards to security-related constraints (explicit
or implicit) from the internet drafts; Sect. 5 describes the test bench while Sect. 6
contains the obtained results. Related work is presented in Sect. 7 before our con-
clusion.

2 QUIC in a Nutshell

The message flow of a typical QUIC connection is given in Fig. 1. First, the client
sends an Initial packet, which includes a TLS 1.3 ClientHello. If the enclosed
(QUIC and TLS) parameters are acceptable for the server, it answers with an
Initial packet (including the TLS ServerHello). This message is followed by a
Handshake packet including the rest of the TLS server messages (in particu-
lar the messages related to server authentication). The handshake ends with
a message from the client. Then, application data can be exchanged using so-
called 1-RTT packets. The three phases, corresponding to different packet types
(Initial, Handshake, 1-RTT) correspond to the three cryptographic epochs used
in TLS 1.3 (cleartext messages, protection using Handshake secrets, protection
using Traffic secrets), with the notable exception that Initial packets are actually
encrypted using publicly-available data (we explore this in Sect. 3.1).

Analysis of QUIC Session Establishment 171

Fig. 1. A typical QUIC connection. The TLS 1.3 messages encapsulated in CRYPTO
frames are given in parentheses. ACK and Padding frames have been left out for clarity.

2.1 QUIC Main Goals and Features

The QUIC protocol aims at providing an efficient and secure channel for appli-
cation data. The efficiency properties include:

– Low-latency session establishment. As shown in Fig. 1, a typical con-
nection allows the client to send application data to the server after only
1-RTT2, whereas TLS 1.2 usually requires 3 (including the TCP handshake)
and TLS 1.3 typically requires 2. Moreover, when connecting to a known
server, a client can benefit from TLS 1.3 0-RTT feature to send application
data in its first datagram (whereas TLS 1.3 still requires the RTT induced
by the TCP handshake).

– Stream multiplexing within a shared connection. 1-RTT packets (as
well as 0-RTT packets) include application data which are associated with
streams. From the QUIC point of view, these streams are independant and
can be multiplexed in QUIC packets using the client and server policies. This
feature (also present in HTTP/2) solves the so-called Head of Line blocking
issue from HTTP/1.1 pipelining where you must wait for the end of a request
to emit the next one.

– Low bandwidth usage. The message design in QUIC was made to limit
the bandwidth usage of the signaling and transport structures. For example,
the draft uses several variable-length fields to limit their sizes. It also defines
a padding scheme without any overhead (in case padding is not used).

2 The session establishment latency is usually measured in RTTs (Round-Trip Time),
that is the time required for the client to send a request and get an answer.

172 E. Gagliardi and O. Levillain

The security properties rely on:

– State-of-the art cryptographic primitives. This point is granted by the
use of TLS 1.3, which was designed to clean up the cryptographic zoo accu-
mulated for more than 20 years and only uses up-to-date and robust schemes.

– Privacy-oriented measures. QUIC offers a padding feature to avoid traffic
analysis, and most of QUIC packet contents are encrypted and integrity-
protected. However, as discussed in Sect. 3.1, even if Initial packets are
encrypted, this mechanism offers no protection in typical attacker models.

– Countermeasures against denial-of-service attacks. Since QUIC uses
UDP, it is essential not to enable or encourage amplification attacks where
an attacker would send a small packet to a server with a forged source IP
address, expecting a much larger answer to be sent to the victim. To this aim,
before the session has been established, there are constraints on the size of
the data the server can send. Moreover, QUIC allows the server to validate
the client address before the session establishment (via the so-called Retry
mechanism).

Another goal for the IETF working group is for QUIC to be compatible with
the internet. In particular, the working group has to face so-called middleboxes,
network devices that may intercept or block traffic at different places of the
internet3. This goal led to the definition of several QUIC invariants [10], which
should be taken into account by middleboxes. It also led to encrypting as much
as possible, including Initial packets, to make a QUIC packet as hard as possible
to grasp for a piece of equipment unaware of a particular version of QUIC.

3 QUIC Packet Protection

Almost every QUIC packet follows the steps described in Fig. 2 to encrypt both
the payload and parts of the header. Moreover, since the header is fed as Asso-
ciated Data to the AEAD (Authenticated Encryption with Associated Data)
algorithms, both header and payload are integrity-protected.

To protect a packet, the header is first isolated from the payload. Then, the
payload is encrypted using the negotiated AEAD. It takes as input the plaintext
payload, a key derived from the key exchange, and a nonce (which comes from
the XOR of the packet number from the header with an IV also derived from
the key exchange).

Then, part of the payload is sampled and used as input to an encryption
algorithm (in typical setups, the sample is 16 bit long and is encrypted with
AES-ECB). The resulting ciphertext is used to mask (with a XOR) several fields
of the header.

This convoluted procedure aims at protecting several fields in the header,
such as the Packet Number.
3 These middleboxes were a real problem during the definition of TLS 1.3 and the TLS

working group actually decided to include optional dummy messages in the message
flow to accomodate them.

Analysis of QUIC Session Establishment 173

Fig. 2. QUIC packet protection mechanism. The inputs are the packet to protect, the
key and the iv used to encrypt the payload, and the header protection key.

3.1 The Special Case of Initial Packets

There is however an egg-and-chicken problem with Initial packets, since they are
supposed to be protected, but they contain the key exchange messages which
should provide the keying material.

Actually, Initial packets must be protected, but the used parameters are
defined by the RFC and one field from the client Initial packet:

– the AEAD used to protect the payload is AEAD AES 128 GCM;
– the Initial secret (from which the key, the IV and the header protection key

are derived), is derived from the so-called salt, a constant defined in the spec-
ification for a given version of the protocol, and the Destination Connection
ID (DCID) embedded in the client Initial packet.

This DCID is actually only sent in the first packet, since each endpoint is
responsible for the definition of its own Connection ID (which can be void).
Thus, a server would typically answer with an Initial message with a freshly
generated Source Connection ID and the DCID chosen by the client (in the
Source Connection ID field of the first packet).

It must be clearly stated that this mechanism offers absolutely no protec-
tion from an attacker able to observe the first packet sent by the client. The
draft indeed states that “[t]his provides protection against off-path attackers
and robustness against QUIC version unaware middleboxes, but not against on-
path attackers.” The part about robustness refers to the idea that middleboxes
unaware of a given QUIC version will not know the corresponding salt and will

174 E. Gagliardi and O. Levillain

not be able to inspect the packet. We strongly believe that this is a naive rea-
soning, and that middleboxes will nevertheless try and decrypt and inspect the
packet, which will most certainly lead to reject the packet or report an incident
in typical cases. From our point of view, protecting initial packets is a useless
mechanism that provides no security in practice.

3.2 Header Protection Keys

The hp key, used to encrypt selected fields from the header, is generated from
the Initial secret, and “is used for the duration of the connection, with the value
not changing after a key update.” Thus, if an attacker is able to observe the
client first packet, she can easily remove the header protection for the whole
connection. Since the header protection includes a somewhat great complexity,
for a very small benefit, we wonder whether the trade-off is well balanced.

Moreover, the specification is unclear on how to protect the header when a
Chacha20- or an AES-256-based ciphersuite is selected during the handshake.
Indeed, the initial (and only) header protection key is supposed to be 16-byte
long. Yet, when using Chacha20 or AES-256, a 256-bit key (32 bytes) is expected.
How should we reconcile this?

4 Implementation of the Initial Exchange

To better assess the reality of the message protection scheme, we implemented a
portion of the QUIC protocol in Scapy, a Python framework used to dissect and
forge packets for various network protocols [1]. Appendix A presents excerpts of
our implementation.

What struck us during this work was the complexity of the mechanism, espe-
cially for the client initial packet. Indeed, protecting a packet corresponds to the
following sequence (step 5 is only required for the first Initial packet):

1. build4 the header from its fields;
2. build the payload from its fields;
3. pad the payload so the packet size is long enough;
4. report the payload length in the header to take the padding into account;
5. derive secrets from the version and the DCID;
6. derive the nonce from the IV (derived during the previous step) and the

Packet Number (from the header);
7. encrypt the payload;
8. extract the sample;
9. encrypt the header.

The corresponding actions to unprotect a received packet are the following
(step 2 is only needed to handle the client initial packet):
4 We use the term build to describe the production of a byte string from the abstract

structure manipulated by the rest of the application. It is the reverse operation of
the binary parsing, and is sometimes called unparsing, dumping, or serializing.

Analysis of QUIC Session Establishment 175

1. parse the first fields of the header;
2. derive secrets from the version and the DCID;
3. extract the sample from the payload, assuming the Packet Number Length is

4 (more on this later);
4. decrypt the Packet Number Length;
5. infer the real offset/length of the Packet Number field and of the payload;
6. decrypt the Packet Number;
7. derive the nonce from the IV and the Packet Number;
8. decrypt the payload.

Even if these description are very detailed and even if some of our difficul-
ties might be related to the way Scapy works, we strongly believe the sequence
is inherently complex. Focusing on the protection procedure, it mixes classical
building steps (steps 1 and 2), cryptographic operations (steps 5, 6, 7 and 9), but
also raw manipulations of the binary packet (steps 3, 4 and 85). Such manipula-
tions are highly undesirable from a software engineering point of view, especially
when they are intertwined with cryptographic or parsing/building steps.

Moreover, the manipulation steps are really hard to get right. For example,
updating the payload length in the header requires identifying the offset of this
specific field (which is not fixed) and encoding the new length using a variable
length field: the precise length of the packet may be different after this update!

Another example of the complexity induced by the specification: since the
Packet Number Length is encrypted, there is no way for the receiver to establish
where the payload actually starts. This is why the sample required to encrypt
the header is not computed from the start of the payload, but from what would
be the first byte of the payload, assuming the Packet Number Length is 4 (this
means a shift of 0 to 3 bytes).

Overall, the QUIC design forces developers to write so-called shotgun parsers,
that is parsers which mix several kind of operations (parsing, input-validating
code, processing code) [9], whereas a cleaner design would lead to a simpler and
more straightforward implementation.

5 Test Description

To better understand the emerging QUIC ecosystem, we then looked at the exist-
ing implementations in the wild, as listed on the QUIC Working Group wiki6.
During our study, which spanned over several months and followed drafts 18
to 23, we contacted around 20 public servers, corresponding to 16 different imple-
mentations. To investigate several configurations further, we also installed several
implementations locally.

Table 1 describe the implementations we considered and their availability in
October 2019. Out of the 16 public servers, 10 were available and up to date
after the draft-23 publication.
5 As a matter of fact, since header encryption (step 9) is not a straightforward XOR

on a clearly delimited message, this could also be considered as a raw manipulation.
6 https://github.com/quicwg/base-drafts/wiki/Implementations.

https://github.com/quicwg/base-drafts/wiki/Implementations

176 E. Gagliardi and O. Levillain

Table 1. List of the servers we probed during our study and their status in October
2019 when facing a draft-23 Client Initial packet. Two servers never answered to our
stimuli during the whole study (mozquic and QUICker), which might be explained by
the fact that their development seems to be on hold. For the results described in this
article, we will only consider the 10 servers we could connect to properly during our
latest tests (after draft-23 publication).

Implem. Test server Comments

aioqquic quic.aiortc.org:443 OK (draft-23)

ats quic.ogre.com:4443 OK (draft-23)

f5 204.134.187.194:4433 No answer (latest draft: -22)

lsquic http3-test.litespeedtech.com:4433 No complete Handshake

mozquic mozquic.ducksong.com:4433 No answer (latest draft: -12)

msquic quic.westus.cloudapp.azure.com:4433 No complete Handshake

mvfst fb.mvfst.net:4433 OK (draft-23)

ngtcp2 nghttp2.org:4433 OK (draft-23)

ngx quic cloudflare-quic.com:443 OK (draft-23)

Pandora pandora.cm.in.tum.de:4433 OK (draft-23)

picoquic test.privateoctopus.com:4433 OK (draft-23)

quant quant.eggert.org:4433 OK (draft-23)

quiche quic.tech:4433 OK (draft-23)

QUICker quicker.edm.uhasselt.be:4433 No answer (latest draft: -20)

quicly quic.examp1e.net:4433 No complete Handshake

Quinn ralith.com:4433 OK (draft-23)

Indeed, one major difficulty we faced during our tests was that public servers
would randomly go down and stop answering to our stimuli. The problem was
especially visible each time a new draft was published.

To test the behaviour of these implementations, we sent different stimuli.
The baseline was a valid QUIC Client Initial Packet corresponding to the latest
version7. Then, we sent variations around this first stimulus:

– packets with a future version of the protocol, some of them being partly
incompatible with the current wire format;

– packets not respecting the constraints on Client Initial Packet length;
– packets missing mandatory information (QUIC transport parameters, TLS

Application-Layer Protocol Negotiation extension);
– packets containing forbidden frame types;
– packets with mangled CRYPTO frames.

7 To be precise, we actually sent several valid stimuli, to accomodate with minor quirks
with the ALPN extension, as described in Sect. 6.3.

Analysis of QUIC Session Establishment 177

6 Results

For this section, we chose to use the latest results, which correspond to the
23rd version of the drafts, published in September 2019. As explained in the
previous section, due to the unavailability of several servers, we could only scan
10 implementations in a reliable way before the submission.

Moreover, it is important to keep in mind that the tested implementations,
as well as the specifications, are still works in progress, and that the results
presented here are only a snapshot of a fast-evolving ecosystem. Our goal is thus
not to blame a given QUIC stack for possible deviations with regards to the
draft (or its spirit, in case of implicit constraints), but to draw the attention on
possible issues, which are the consequence of a complex protocol.

6.1 Version Negotiation

The QUIC specification aims at describing a robust protocol able to survive
future changes of the concrete representation of messages on the wire. This is
why the beginning of a QUIC packet is defined in a document called “QUIC
Invariants” [10]: the long header should always look like the definition in Fig. 3.

It is important to notice in particular that the payload length is not part
of this definition. Thus, a QUIC packet advertising a new version should be
able to redefine how the packet length is specified. This is why we sent three
different stimuli to the test servers: a standard valid draft23-compatible Initial
packet, a similar packet advertising a yet-to-be-defined version, and a similar
packet advertising the same future version but with the current Length field set
to a huge value. Since the length should not be parsed for unknown versions,
we expect compliant implementations to answer the first stimulus with a valid
handshake (an Initial packet followed by Handshake packets) and the two other
stimuli with a Version Negotiation message, asking the client to re-emit its packet
using a version of the protocol supported by the server.

The majority of the contacted servers actually behaved this way, but we
also witnessed one implementation (see Table 2, ngtcp2 implementation) that
answered correctly with a Version Negotiation message when our stimulus con-
tained a correct length, while timing out when the length was incorrect. This is
a violation of the invariants as described in the specifications.

As a side note, it is interesting that we discover this behaviour by accident
after a change in the draft describing the invariants when draft-22 was published.
Indeed, in July 2019, the working group decided to change the way Connection
ID length was sent on the wire8. Since we studied both pre-draft-22 and draft-22
implementations at the time, we triggered the incorrect behaviour with recent
versions choking an on old stimulus (or the other way around).

8 We let the reader reflect on the introduction of a change in a document describing
the protocol invariants. Even though this was a bit unsettling, let us recall that this
change was a simplification in the design and that QUIC documents are still drafts.

178 E. Gagliardi and O. Levillain

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+

|1|X X X X X X X|

+-+

|)23(noisreV|

+-+

| DCID Len (8) |

+-+

| Destination Connection ID (0..2040) ...

+-+

| SCID Len (8) |

+-+

| Source Connection ID (0..2040) ...

+-+

Fig. 3. Description of the first fields of any (long-header) QUIC packet, as defined in
the “QUIC Invariants” Internet draft [10].

Table 2. Reaction of the servers selected in the previous section to an initial packets
advertising a future version of the protocol. The first one presents a correct length
field (with regards to the current specification) while the second presents a bigger
length. The Time Out in the second column corresponds to a server waiting for what
it interprets as missing bytes.

Implem. Reaction to a Future version with

Correct length Incorrect length

Expected Version Negotiation Version Negotiation

aioqquic Version Negotiation Version Negotiation

ats Version Negotiation Version Negotiation

mvfst Version Negotiation Version Negotiation

ngtcp2 Version Negotiation Time Out

ngx quic Version Negotiation Version Negotiation

Pandora Version Negotiation Version Negotiation

picoquic Version Negotiation Version Negotiation

quant Version Negotiation Version Negotiation

quiche Version Negotiation Version Negotiation

Quinn Version Negotiation Version Negotiation

6.2 Client Initial Packet Length

Since QUIC uses UDP, it is inherently subject to reflection attacks, where an
attacker sends a packet with a forged source address, leading the server to answer
to the victim. In some cases, the attacker can trigger a huge amount of data using
a small packet. These so-called amplification attacks may lead to denial of service
situations.

Analysis of QUIC Session Establishment 179

To avoid such attacks, QUIC specifies that a client should send at least a
1,200-byte long initial packet, and that a server should never answer with more
than three times the amount of data the client initially sent. Moreover, a server
should ignored a client Initial packet which is too small. The combination of
these constraints allows the server to send up to 3,600 bytes in its first flight,
which is considered sufficient.

To check how servers behaved regarding these constraints, we sent small
stimuli, and observed the reaction of the public servers. Several implementations
actually answered our invalid packet, as shown in Table 3. The exact implemen-
tations that were affected did vary across time, but we also always observed that
the server answer was capped at three times the size of the client Initial packet,
which at least limited the amplification impact, as planned.

6.3 Missing Parameters

Scattered across the specifications, several parameters of the client Initial packet
are described as mandatory. In particular, the TLS 1.3 ClientHello must contain
an extension dedicated to QUIC to define the initial values of several transport
parameters (e.g. to define the maximum size of the exchanged packets) and
the ALPN extension (which defines the nature of the protocol encapsulated in
QUIC).

We found out that several implementations seemed to accept a stimulus
missing these elements, and in the case of ALPN, we even found implementations
that only answered when the extension was missing. The situation might not be
a problem after all, since we only looked at the first messages of the connections,
and what seemed to be a valid connection might then be shut down by the server
when handling the application layer.

Yet, we believe errors should be triggered as soon as possible, both to avoid
useless resource usage and to make debugging easier. Indeed, several implemen-
tations return an empty error packet when some parameters are missing (or do
not correspond to the expected values), and the only way to understand what
is happening is to have access to the server logs, or to compare the behaviour of
a given server with different stimuli.

6.4 Frame Mangling

Another venue we investigated was to send forbidden frames to the servers.
The specification indicates that the only frames that should be sent in an Initial
packet are crypto frames (which embed TLS messages), acknowledgement (ACK)
frames, Connection Close frames (which signal errors) and padding frames. How-
ever, we observed that several servers would accept a Ping frame enclosed in the
first client Initial packet9. Again, we would expect the servers to be stricter with
the messages they accept.

9 As a side note, it appears that placing the Ping frame after instead of before the
Crypto frame gets the stimulus accepted by one more server.

180 E. Gagliardi and O. Levillain

Table 3. Reaction of the selected servers to a small initial packet (300 bytes). Even if
several implementations answer with the beginning of a Handshake, they respect the
constraint not to send more than three times the amount of data initially received.

Implem. Reaction to a small Initial packet

Expected Time Out

aioqquic Time Out

ats Handshake (886 bytes)

mvfst Time Out

ngtcp2 Time Out

ngx quic Time Out

Pandora Time Out

picoquic Time Out

quant Time Out

quiche Handshake (896 bytes)

Quinn Time Out

Table 4. Reaction of the selected servers to a initial packets containing strange frames.
Behaviours in bold are unexpected ones.

Implem. Ping frame Split Crypto Overlapping Crypto frames

Consistent Inconsistent

Expected Error Error Error Error

aioqquic Handshake Handshake Handshake Handshake

ats Handshake Handshake Error Error

mvfst Error Handshake Handshake Handshake

ngtcp2 Handshake Handshake Handshake Handshake

ngx quic Error Handshake Handshake Handshake

Pandora Error Time Out Error Error

picoquic Time Out Handshake Handshake Handshake

quant Error Error Error Error

quiche Error Handshake Handshake Handshake

Quinn Error Handshake Handshake Handshake

We also tried to split the TLS ClientHello across two Crypto frames, which
should be rejected by implementations, since the specification states that “[t]he
first packet sent by a client always includes a CRYPTO frame that contains the
entirety of the first cryptographic handshake message.”. Most of the implemen-
tations nevertheless answered our stimulus.

Finally, we sent packets with two overlapping Crypto frames (bytes 0 to 149,
followed by bytes 50 to the end), first where both fragments would contain the

Analysis of QUIC Session Establishment 181

same content, and then with a glitch introduced in the first fragment10. We
thus observed that most of the servers tolerated overlapping frames, including
when they were inconsistent. There is no obvious way to directly exploit this
behaviour, but we found this a bit unsettling, and would advocate a stricter set
of rules in the implementations.

Table 4 summarises these experiments on frame mangling.

7 Related Work

QUIC is a relatively new protocol, and most of the literature related to QUIC
is about gQUIC. For example, Jager et al. showed how to exploit the Bleichen-
bacher attack against RSA Encryption to forge a signature and bypass server
authentication in Google QUIC [5].

More recently, McMillan and Zuck presented a modeling of QUIC to test the
state machines of existing implementations [8]. We believe our approaches are
complementary since we propose a (partial) concrete test bench, whereas they
validate implementations at a more abstract level. Their work showed in partic-
ular the existence of ambiguities in the specification, which our measurements
seem to confirm, when we look at the diversity of behaviours in the existing
implementations.

An online tool, QUIC Tracker11, describes a test suite regarding QUIC fea-
tures, and shows the reaction of existing implementations. Yet, QUIC Tracker
seems to only look at features whereas we believe measuring the conformance to
specific constraints from the specification would be of great help.

8 Conclusion and Perspectives

QUIC is a relatively recent protocols aiming at improving the efficiency and
security of the web. As of today, it is still a work in progress, which reflects on
the stability and robustness of the implementations. In our work, we focused on
the initial negotiation phase of the protocol, and how to implement it.

We assessed the complexity in practice of the QUIC protection mechanisms
by writing a Scapy implementation. We learned that QUIC is a complex beast
and we believe it would be useful to simplify several aspects of the specification
which are not justified in our mind. We already discussed with the IETF Working
Group of several aspects of our findings and plan to continue this interaction.

We proposed a first framework to send stimuli to servers and observe their
behaviour during the session establishment. Obviously, it would be useful to
pursue this effort and propose more elaborate scenarios to test other features,
e.g. address migration or 0-RTT data exchanges.

10 We also tried with the glitch on the second fragment, but we mostly obtained errors
from the servers.

11 https://quic-tracker.info.ucl.ac.be.

https://quic-tracker.info.ucl.ac.be

182 E. Gagliardi and O. Levillain

In the end, QUIC is a very complex protocol, and this complexity will cer-
tainly lead to implementation bugs. Indeed, the current situation is far from
perfect, since most of the studied implementations do not conform to the spec-
ification on several aspects, and some of these aspects could be the first step
towards a complex attack.

A Scapy Implementation

The description of a QUIC packet in Scapy can be done as shown in the following
extract:

class QUIC(Packet):
fields_desc = [

Flags
BitEnumField("header_type", 1, 1, {0: "short", 1: "long"}),
BitEnumField("fixed_bit", 1, 1, {0: "error", 1: "1"}),
BitEnumField("type", 0, 2, {0: "initial", 1: "0-RTT",

2: "handshake", 3: "retry"}),
BitField("reserved", 0, 2),
BitFieldLenField("PNL", None , 2, length_of="PN",

adjust=lambda pkt ,x:x-1),

Version
XIntField("version", 0x0),

Connection IDs (DCID/SCID)
BitFieldLenField("DCIL", None , 8, length_of="DCID"),
StrLenField("DCID", b’’, length_from=lambda pkt:pkt.DCIL),

BitFieldLenField("SCIL", None , 8, length_of="SCID"),
StrLenField("SCID", b’’, length_from=lambda pkt:pkt.SCIL),

Token (only when type is initial)
ConditionalField(QuicVarLenField("token_length", None ,

length_of="token"),
lambda pkt: pkt.version != 0 and pkt.type == 0),

ConditionalField(StrLenField("token", b’’,
length_from = lambda pkt:pkt.token_length),
lambda pkt: pkt.version != 0 and pkt.type == 0),

Length (only when type is 0-RTT or initial)
ConditionalField(QuicVarLenField("length", None),

lambda pkt: pkt.version != 0 and pkt.type != 3),

Packet Number (only when type is 0-RTT or initial)
ConditionalField(StrLenField("PN", b’\x00’,

length_from = lambda pkt:pkt.PNL+1),
lambda pkt: pkt.version != 0 and pkt.type != 3),

]

Of course, since most fields are only valid for specific types of QUIC packets,
we need to determine the presence most of the fields by the presence of certain
values before in the packet.

To apply packet protection, we had to write dedicated functions. The follow-
ing excerpt shows a simplified version of the protection function, which takes a
QUIC packet as input and produces the byte string that can be sent on the wire.

Analysis of QUIC Session Establishment 183

def protect(material , packet):
(key , iv, hp) = material
header = packet.copy()
header.payload = Raw()
payload = packet [1]

Compute nonce
nonce = int.from_bytes(iv, byteorder=’big’) ^

int.from_bytes(header.PN, byteorder=’big’)
nonce = nonce.to_bytes (12, byteorder = ’big’)

Encrypt the payload
encryptor = Cipher(algorithms.AES(key), modes.GCM(nonce),

backend=default_backend ()).encryptor ()
encryptor.authenticate_additional_data (raw(header))
encrypted_payload = encryptor.update(raw(payload)) +

encryptor.finalize () + encryptor.tag

Extract the sample
PNL = header.PNL + 1
sample_start = 4 - PNL # The receiver will assume PNL is 4
sample = encrypted_payload[sample_start: sample_start + 16]

Compute the mask
encryptor = Cipher(algorithms.AES(hp), modes.ECB(),

backend=default_backend ()).encryptor ()
mask = encryptor.update(sample) + encryptor.finalize ()

Encrypt the flags and the PN
encrypted_header = bytearray(raw(header))
encrypted_header [0] ^= (mask [0] & 0x0f)
for i in range(PNL):

encrypted_header[-PNL + i] ^= mask[i+1]
encrypted_header = bytes(encrypted_header)

return encrypted_header + encrypted_payload

Our implementation could be improved by the addition of a Scapy automaton
to handle the QUIC state machine and its transitions. However, we must keep
in mind that our goal was to send possibly non-conformant stimuli to servers,
so we might want not to follow the expected state machine all the time in our
future work.

References

1. Biondi, P., The Scapy community: Scapy (2003–2016). http://www.secdev.org/
projects/scapy/, http://www.secdev.org/projects/scapy/

2. Bishop, M.: Hypertext Transfer Protocol Version 3 (HTTP/3). Internet-Draft
draft-ietf-quic-http-23, Internet Engineering Task Force, September 2019. https://
datatracker.ietf.org/doc/html/draft-ietf-quic-http-23. Work in Progress

3. Iyengar, J., Swett, I.: QUIC Loss Detection and Congestion Control. Internet-
Draft draft-ietf-quic-recovery-23, Internet Engineering Task Force, Septenber
2019. https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-23. Work in
Progress

4. Iyengar, J., Thomson, M.: QUIC: A UDP-Based Multiplexed and Secure Trans-
port. Internet-Draft draft-ietf-quic-transport-23, Internet Engineering Task Force,
September 2019. https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-
23. Work in Progress

http://www.secdev.org/projects/scapy/
http://www.secdev.org/projects/scapy/
http://www.secdev.org/projects/scapy/
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-23
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-23
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-23
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-23
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-23

184 E. Gagliardi and O. Levillain

5. Jager, T., Schwenk, J., Somorovsky, J.: On the security of TLS 1.3 and QUIC
against weaknesses in PKCS#1 v1.5 encryption. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Denver, CO,
USA, 12–16 October 2015, pp. 1185–1196 (2015)

6. Krasic, C.B., Bishop, M., Frindell, A.: QPACK: Header Compression for HTTP/3.
Internet-Draft draft-ietf-quic-qpack-10, Internet Engineering Task Force, Septem-
ber 2019. https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-10. work in
Progress

7. Kühlewind, M., Trammell, B.: Applicability of the QUIC Transport Protocol.
Internet-Draft draft-ietf-quic-applicability-05, Internet Engineering Task Force,
July 2019. https://datatracker.ietf.org/doc/html/draft-ietf-quic-applicability-05.
work in Progress

8. McMillan, K.L., Zuck, L.D.: Formal specification and testing of QUIC. In: Pro-
ceedings of the ACM Special Interest Group on Data Communication, SIGCOMM
2019, Beijing, China, 19–23 August 2019, pp. 227–240 (2019)

9. Momot, F., Bratus, S., Hallberg, S.M., Patterson, M.L.: The Seven turrets of babel:
a taxonomy of LangSec errors and how to expunge them. In: IEEE Cybersecurity
Development, SecDev 2016, Boston, MA, USA, 3–4 November 2016, pp. 45–52
(2016)

10. Thomson, M.: Version-Independent Properties of QUIC. Internet-Draft draft-ietf-
quic-invariants-07, Internet Engineering Task Force, September 2019. https://
datatracker.ietf.org/doc/html/draft-ietf-quic-invariants-07. Work in Progress

11. Thomson, M., Turner, S.: Using TLS to Secure QUIC. Internet-Draft draft-ietf-
quic-tls-23, Internet Engineering Task Force, September 2019. https://datatracker.
ietf.org/doc/html/draft-ietf-quic-tls-23. Work in Progress

https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-10
https://datatracker.ietf.org/doc/html/draft-ietf-quic-applicability-05
https://datatracker.ietf.org/doc/html/draft-ietf-quic-invariants-07
https://datatracker.ietf.org/doc/html/draft-ietf-quic-invariants-07
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-23
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-23

CompactFlow: A Hybrid Binary Format
for Network Flow Data

Michal Piskozub(B), Riccardo Spolaor, and Ivan Martinovic

University of Oxford, Oxford, UK
{michal.piskozub,riccardo.spolaor,ivan.martinovic}@cs.ox.ac.uk

Abstract. Network traffic monitoring has become fundamental to
obtaining insights about a network and its activities. This knowledge
allows network administrators to detect anomalies, identify faulty hard-
ware, and make informed decisions. The increase of the number of con-
nected devices and the consequent volume of traffic poses a serious chal-
lenge to carrying out the task of network monitoring. Such a task requires
techniques that process traffic in an efficient and timely manner. More-
over, it is crucial to be able to store network traffic for forensic purposes
for as long a period of time as possible.

In this paper, we propose CompactFlow, a hybrid binary format for
efficient storage and processing of network flow data. Our solution offers
a trade-off between the space required and query performance via an
optimized binary representation of flow records and optional indexing.
We experimentally assess the efficiency of CompactFlow by comparing it
to a wide range of binary flow storage formats. We show that Compact-
Flow format improves the state of the art by reducing the size required
to store network flows by more than 24%.

Keywords: Networks · Binary format · Cybersecurity data processing

1 Introduction

In recent years, we have witnessed an astonishing evolution of networks in terms of
complexity, variety, and versatility. An increasing number of devices have started
to embed networking capabilities and to require Internet connection to provide
their full functionalities. Hence, guaranteeing the connectivity of such devices has
become fundamental to the operation of the entire networking infrastructure. In
order to carry out this task, network administrators have to be provided with reli-
able tools to monitor traffic flowing through a network. In addition to that, admin-
istrators have to be able to investigate past events by retrospectively analyzing the
state of a network at any given point in time. For this reason, it is necessary to
archive network traffic in a fast and space-efficient way.

Monitoring networks at the granularity of packets offers perfect visibility
of their state but also requires overwhelming computing resources and storage

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Laurent and T. Giannetsos (Eds.): WISTP 2019, LNCS 12024, pp. 185–201, 2020.
https://doi.org/10.1007/978-3-030-41702-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41702-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-41702-4_12

186 M. Piskozub et al.

space to be devoted. While packet-level approach may have been possible in
the early days of networking, it is infeasible in modern networks due to the
increasing number of interconnected devices and the volume of data produced
by them. Moreover, the ubiquitous adoption of encryption in network commu-
nication to protect user privacy has made packet-level traffic capturing obsolete
since encrypted payloads do not provide any meaningful information. Due to
these limitations, network monitoring has shifted toward a network flow as a
more coarse-grained representation of traffic data. A network flow comprises
information of a communication from a temporal perspective as a five-tuple:
protocol, source and destination IP addresses and ports. Differently from packet-
level data, flows capture only metadata, such as the overall number and size of
exchanged packets.

Flow exporters are devices in the flow creation process that capture and
assign network packets to flows based on their five-tuple and within a tempo-
ral interval. Once flows are created, they are sent to a flow collector using a
given export protocol. A flow collector is a device in charge of storing flow data
for future use. The most popular export protocol is Cisco’s NetFlow [9], which
inspired the creation of the open standard IPFIX [8].

Over the years, a number of flow collectors have been proposed by networking
companies and researchers. The main goal of such devices is to rapidly collect
and store flows in such a way that avoids blocking the next oncoming flows. More
importantly, they have to adopt a storage format that is efficient in terms of the
size required and indexing to process future queries. Network administrators are
constrained by the space available to store network traffic, thus older traffic has
to be periodically deleted. For this reason, a space-optimized format saves storage
space, which allows for keeping network traffic of longer periods for retrospective
analysis. Unfortunately, our investigation of open-source flow collectors showed
that they use an inefficient flow representation in their formats, even among the
ones that favor storage efficiency over processing speed.

In this paper, we present CompactFlow - a binary format to represent net-
work flows that favors storage and processing performance while supporting
indexing. In particular, the CompactFlow format relies on dynamic field sizes
and is based on a linked list to store the contents of flows. This accounts for
a significant reduction of storage size. In fact, experimental results show that
CompactFlow files are on average almost 3 times smaller than the ones using
binary formats of other flow collectors, and 24% smaller than the ones using
the binary format of the state-of-the-art System for Internet-Level Knowledge
(SiLK) collector [29].

CompactFlow can be considered a hybrid binary format since it allows for
customization according to administrators’ analysis purposes: (i) it supports
additional indexing methods to increase the speed of repetitive queries, and
(ii) it is possible to choose which flow fields or which specific values of a flow
field to index. Unlike database-based approaches, our solution allows for high-
speed saving of flows without the risk of dropping them or resorting to sampling
since the indexing can be done after successful storage. The design principles

CompactFlow: A Hybrid Binary Format for Network Flow Data 187

of CompactFlow join two best practices of storage (binary files) and querying
(indexing), to have a robust system for network monitoring and processing of
cybersecurity events.

Contributions. The contribution of this paper is twofold:

– We present a binary file format to store network flows using less space than
state-of-the-art approaches. Our format supports popular indexing methods
to allow faster data processing in the security context.

– We perform a thorough analysis of all open-source network flow collectors
and a popular data serialization library by analyzing their binary formats.

Organization. The remainder of the paper is organized as follows. In Sect. 2, we
survey the state-of-the-art techniques for network traffic monitoring. We present
our CompactFlow format in Sect. 3 while we evaluate and compare its perfor-
mance to other formats in Sect. 4. In Sect. 5, we discuss the results. Finally, we
present conclusions in Sect. 6.

2 Related Work

In the last two decades, many approaches have been proposed to monitor net-
work traffic. This effort has been necessary to carry out management and security
analyses on networks, such as identification of anomalies or failures, and detec-
tion of attacks. Most of these analyses cannot be done in real-time, hence network
traffic has to be stored in persistent memory in order to make it available when
needed. For this reason, it is necessary to store and query network traffic effi-
ciently. A first important distinction between storage approaches is related to
the granularity of traffic collection: packet- and flow-level.

2.1 Packet-Level Traffic Collection

Collecting network data at packet-level provides fine-grained information about
traffic but it requires fast dedicated equipment. Desnoyers et al. in [12] propose
Hyperion, a system that relies on a log-structured file system that is optimized
for writing data streams to store packet-level network traffic. This system indexes
data stream segments via distributed multi-level Signature indexes. The authors
claim to be able to write and index up to 1M and 200K packets per second,
respectively.

Maier et al. in [25] propose to focus only on the part of the packet stream
that may be interesting for a network intrusion detection system (NIDS). Hence,
they present the TimeMachine system which applies a cut-off heuristic (i.e. it
only considers the first N bytes) to reduce the size of the data stream to store.

Fusco et al. in [15] present PcapIndex which extends Libpcap by supporting
rapid packet filtering via COMPAX compressed bitmap index [14]. Doing this,
PcapIndex reduces the disk overhead and the response time of queries.

Unfortunately, the aforementioned methods are not suitable for large-scale
networks since they do not scale on the number of devices connected. Moreover,
such fine-grained information would require an overwhelming storage capacity.

188 M. Piskozub et al.

2.2 Flow-Level Traffic Collectors

In order to cope with the shortcomings of packet-level traffic collection, the net-
working community has moved toward the collection of traffic information by
aggregating packets into flows. Compared to packet-level one, flow-level network
traffic is more privacy-preserving (i.e. packets are aggregated), and more scalable
over the amount of traffic and number of connected devices in modern networks.
The first standard for exporting network flow information was NetFlow [9]. Ini-
tially, Netflow version 5 was released by Cisco in 1996 and then extended to
version 9 in 2004. Subsequently, the Internet Engineering Task Force (IETF) in
2013 released the IP Flow Information eXport (IPFIX) Internet Standard [8]
which is a further enrichment of NetFlow v9. In what follows, we present various
solutions available to collect, store and access network flows.

Storage Formats. Network flow collectors adopt several solutions to store
flow-level network traffic in persistent memory. Such solutions can be divided
according to the way they structure and index the data [20]. A popular data
structure to store flows is a database. The advantage of databases is that such
data structures automatically handle the information storage and indexing via
a DataBase Management System (DBMS). Traditional DataBase Management
Systems, such as MySQL and PostgreSQL, store the information by rows (row-
based databases). In our case, a row represents an entire flow (i.e. all its fields).
Two examples of flow collectors that use a row-based database to store network
traffic are Vermont and pmacct. Regarding the queries, row-based databases offer
good flexibility but they have poor performance in terms of data retrieval and
new flow insertion time. Moreover, a row-based database is not storage-efficient
since it requires considerable indexing.

For this reason, column-based databases have been proposed for network flow
storage. Rather than to consecutively store entire flows, column-based databases
store them in columns by flow fields. Examples of column-based databases are
MariaDB ColumnStore [3] and bitmap indexing methods (e.g. FastBit [31], and
COMPAX [14]). Indexing by columns decreases data retrieval time for queries
while maintaining good flexibility and moderate insertion time. In particular,
FastBit is an order of magnitude faster than MySQL [11]. IPFIXcol is a collector
that relies on FastBit. It supports IPFIX, bidirectional flows, and variable length
fields. Unfortunately, the main shortcoming of column-based databases is poor
performance in retrieving flows in their entirety. Moreover, such databases still
have to maintain a reference to a specific flow (i.e. index) for each flow field
resulting in overhead in storage size.

Another solution that aims to reduce storage space is to rely on flat files.
A flat file typically stores data sequentially and does not embed any hierarchy
nor indexing by default. For this reason, flat files do not offer query flexibility
but they occupy much less space than a database [19]. Data in flat files can be
represented in a text or binary format. Despite the portability of a flat file in
text format, representing data in a binary format further reduces the storage

CompactFlow: A Hybrid Binary Format for Network Flow Data 189

Table 1. Comparison of open-source flow collectors.

Collectors Storage formats Bidirectional

Database Flat files

Row-
based

Column-
based

Binary
format

Text
format

Argus [4] ✓ ✓ ✓ ✓

flowd [1] ✓

IPFIXcol [30] ✓ ✓

nfdump [17] ✓

pmacct [24] ✓ ✓ ✓

SiLK [29] ✓

Vermont [21] ✓ ✓

size and the query response time. Examples of flow collectors that save network
traffic in a binary format are Argus, flowd, nfdump, and SiLK.

In Table 1, we report several open-source network flow collectors and we
compare them according to storage formats supported and whether they can
represent bidirectional flows. It is worth noting that some collectors can use
more than one storage format (e.g. Argus, and pmacct) and that the majority
use flat file formats.

To perform a thorough comparison between our proposal and the state of the
art, we analyze the binary formats used by collectors that allow storing network
flows in flat files (i.e. Argus, flowd, nfdump, and SiLK). In Sect. 4, we show that
our compact format outperforms all of them in terms of space efficiency.

Indexing Methods. Flat file formats are optimal for network flow storage
because they save space and have a negligible computational overhead in insert-
ing new flows. However, the limitation of this format is that it does not provide
integrated indexing of the flows, thus it lacks in query performance and flexibil-
ity. To cope with this shortcoming, researchers propose solutions to build indexes
which offer a low retrieval time and require little storage. Typically, storing net-
work flows from a flow exporter consists of two aspects: writing the flows to a
flat file and building indexes of those flows. For this reason, most solutions rely
on the multi-processing capabilities of modern computers [13,22].

In the literature, researchers use different data structures to organize flow
(or query) indexes [7]. For example, TelegraphCQ [5] stores indexes and results
of queries via a modified version of PostgreSQL. Three other examples, GigaS-
cope [10], MIND [23], and FloSiS [22] arrange indexes into trees, multi-level
hashing tables, and Bloom filters, respectively. However, the most popular and
best-performing approach leverages bitmap indexing. As an example, Reiss et
al. in [28] and Chen et al. in [6] applied the concept of bitmap indexing (i.e.
FastBit [31]) to improve the performance of TelegraphCQ [5] and TimeMachine

190 M. Piskozub et al.

[25] (applied on network flows), respectively. More recently, Xie et al. in [32]
present Index-trie, a novel data structure to index flows that combines trees and
bitmaps. Our CompactFlow format is designed to be hybrid. This means that it
is able to support a variety of flow indexing methods.

Several approaches also propose fast compression/decompression algorithms
to be applied to both stored flow data and indexing data structures to further
reduce the storage size. Fusco et al. propose NET-Fli [14] and RasterZip [16] sys-
tems that compress on-the-fly flow data streams via compression algorithms, e.g.
Lempel-–Ziv-–Oberhumer (LZO) [26], and Run-Length Encoding (RLE) [18].
Unfortunately, even the fastest compression algorithms generate computational
overhead which translates to increased processing time.

3 CompactFlow Format Design

Network flow data is comprised of information relating to communication
between two hosts on a network. Every flow consists of core fields (tradition-
ally called a five-tuple) and additional fields that contain volumetric and tem-
poral information pertaining to communications. A five-tuple includes protocol,
source IP address, source port, destination IP address and destination port. The
basic additional fields of a flow are the timestamp of the first packet, the overall
duration, the number of packets and the total size of packets.

In this section, we introduce CompactFlow, a new format specifically
designed to provide more efficient storage and fast processing of network flow
data. Our proposal relies on a new binary file format, which supports both uni-
directional and bidirectional flows. In Fig. 1, we show the general structure of a
CompactFlow file. In what follows, we describe all of its components and discuss
our design choices.

3.1 CompactFlow File Header

A CompactFlow file is structurally divided into the header and body. The header
stores information about the format (i.e. binary file marker, format version, and
byte order) and contained flows (i.e. type, IP version, number of flows, and
timestamp) that are later encoded in the body of the file. The header of a
CompactFlow file contains a Marker as a first field by which the format can
be recognized. We designed its value to be 0x00434600, where the inner bytes
represent characters ‘C’ and ‘F’ and the outer bytes are non-character values to
avoid being misinterpreted by applications for text files. The Ver value represents
a version of the CompactFlow specification with the first byte being major and
the second minor versions (e.g. 0.3). The T value stands for the type of flow
in terms of its direction (unidirectional or bidirectional). Since CompactFlow
supports both IPv4 and IPv6, the version of IP is given by the IP parameter.
By design, IPv4 and IPv6 flows are stored in separate files. The Flow Count value
stores the total number of flows contained in the file. Instead of storing complete
timestamps in each flow, we only save the Timestamp (down to a precision of

CompactFlow: A Hybrid Binary Format for Network Flow Data 191

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Marker Ver T IP Flow Count Timestamp

BOM Golay

Golay *Flow 1 *Flow 2 *Flow 3
...

*Flow N-3 *Flow N-2 *Flow N-1 *Flow N

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Header

Flow 1

Flow 1 Flow 2

Flow 2
...

Flow N

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Body

Fig. 1. CompactFlow file format (in bytes).

an hour) in the header since each file represents up to one hour of traffic. This
allows for each flow record to store only the added time to that timestamp to
reconstruct it fully. The Byte Order Mark (BOM) is used to clarify that the
CompactFlow file uses big-endian encoding. This decision is justified by the fact
that big-endian order is used by default in network communications, in fact to
such an extent that it is often referred to as the network order.

All fields described above constitute mandatory data in the header. Since
those fields carry high importance to the remainder of the file, we use the
extended binary Golay code (G24) to detect and correct errors in them in the
case of corruption. Such code allows us to recover 3 bits for each 12-bit word at
a cost of doubling the size of data. Fortunately, we can afford it since the header
constitutes a minimal, almost negligible, percentage of the size of the whole file.

Our proposal uses dynamic field sizes to store flows, thus flow records can
vary in size. This means that given a current flow it is not possible to know in
advance where the next one starts. Typically this is not a problem in the con-
text of network security analysis since the way to process flows is to sequentially
traverse each one to get to the ones of interest [29], or to build more complex
network behavior profiles [27]. However, if CompactFlow is used in a network
administration context, the types of workflows could require running the same
queries to extract flows with a fixed set of parameters (e.g. given IP addresses).
One could speed up such queries by indexing data of interest and then accessing
it. This is described as random access and to enable this, CompactFlow pre-
computes an array of 4-byte pointers (offsets from the beginning of a file) to
each flow record. Additionally, one can opt to use one of the indexing methods

192 M. Piskozub et al.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

$ @ s IP d IP time Δ pkts # bytes # s prt d prt dur pr F

1 2 4 4 3 1-4 1-4 0/2 0/2 0-3

0
/
1

0
/
1

(a) Unidirectional flow

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

$ @ s IP d IP time Δ s pkts # s bytes # d pkts # d bytes #

1 3 4 4 3 1-4 1-4 0-4 0-4

31 32 33 34 35 36 37 38 39 40

s prt d prt dur pr s
F

d
F

0/2 0/2 0-3

0
/
1

0
/
1

0
/
1

(b) Bidirectional flow

$=flow size field @=control field s=source d=destination
prt=port field dur=duration field pr=protocol field F=TCP flags field

Fig. 2. Binary schema of CompactFlow records (in bytes).

reported in Sect. 2.2. It is worth noting that this step is optional and such an
array is not contained in the format by default. Overall, the header without an
array of pointers takes 36 bytes of space.

3.2 Flow Binary Representation

Flow records feature dynamic field sizes that are adjusted to the size of data
that needs to be accommodated. The use of dynamic fields makes the flow more
compact in cases where field values to be stored are small. As depicted in Fig. 2a,
every flow record contains the following fields: flow size (in bytes), control, source
IP address, destination IP address, start time of the flow in terms of added
milliseconds to the timestamp in the header, total number of packets, and total
number of bytes. Optionally a flow can include a protocol, source and destination
ports in the case of TCP or UDP protocols, duration and TCP flags. The length
and position of variable-size fields is given by interpreting bits in the control
field, described in Fig. 3.

We noticed that some values are repeatedly used in flows. Saving the full
values of such fields each time would require additional bytes per flow, which
quickly build up if the number of flows is in the order of billions per day. For
example, according to our observations the majority of traffic uses ICMP, TCP
or UDP protocols. In order to save space, we use 2 bits (bits 0 to 1) of the
control field, that allow for the storage of 4 values, to encode them with the
fourth value meaning that another protocol is used which implies the existence
of the protocol field in the binary data.

CompactFlow: A Hybrid Binary Format for Network Flow Data 193

p
ro
to
co
l

co
m
m
on

p
or
t

co
m
m
on

p
kt
s
#

d
u
ra
ti
on

si
ze

p
kt
s
#

si
ze

by
te
s
#

si
ze

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 5 3 2 2 2

(a) Unidirectional control field

p
ro
to
co
l

co
m
m
on

p
or
t

co
m
m
on

s
p
kt
s
#

d
u
ra
ti
on

si
ze

s
p
kt
s
#

si
ze

s
by
te
s
#

si
ze

2n
d
d
ir
fl
ag

co
m
m
on

d
p
kt
s
#

d
p
kt
s
#

si
ze

d
by
te
s
#

si
ze

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

2 5 3 2 2 2 1 3 2 2

(b) Bidirectional control field

Fig. 3. CompactFlow control fields (in bits).

Port values (non-ephemeral) are encoded in a similar fashion using 5 bits (bits
2 to 6). They are only consulted if the protocol is either TCP or UDP (in other
cases the port fields do not exist in the binary format). Encoded port values
are specific to a given production network, hence they should be determined
beforehand. Using those 5 bits, we can encode 32 values. The value of 0 means
that neither source port nor destination port belong to the list of most frequently
used ports. The value of 1 is not used. The remaining 15 and 15 values mean that
the source or destination port respectively is in the list of common ports. Each
common port list hit saves 2 bytes of space. Since we observed that a significant
number of flows constitute requests without a response which translate to a
small number of packets, we use the next 3 bits (bits 7 to 9) to store small
packet numbers. The value of 0 has a special meaning - the number of packets
if different from a list of common small packet numbers. The remaining values
from 1 to 7 are used to represent packet numbers, which results in 1 byte of
saved space per flow. The next 2 bits (bits 10 to 11) in the control field store
the length of the duration field. The value of 0 denotes that the duration is 0
and the respective duration field does not exist in the binary representation. The
duration field can support non-standard values of up to 4.5 h (with millisecond
precision), even though the default active timeout value in the NetFlow 9 export
protocol is only 30 min. This makes the format more robust towards changes of
default values in flow exporters. The sizes of packets and bytes fields take 2 bits
each (bits 12 to 13 and 14 to 15) to denote values up to 4 bytes. Summarizing, the

194 M. Piskozub et al.

size of a unidirectional flow can vary from 16 to 30 bytes. Each unidirectional
CompactFlow file can store up to 143,165,576 flow records (unsigned integer
using 4 bytes divided by a maximum size of a flow - 30), if one chooses to
compute the array of pointers to each flow record.

CompactFlow also supports bidirectional flows (Fig. 2b). The bidirectional
format differs by the addition of packet and byte counters as well as TCP flags
for the other side of the communication. It is not always the case that those
counters exist, e.g. the communication might comprise only a request with no
reply. In such scenarios, the destination counter values are not captured, hence
the size of those counters can be equal to 0. For that reason, the size of a
bidirectional flow is larger than its unidirectional counterpart and can take from
17 to 40 bytes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

*IP 1 *IP 2 *IP 3 *IP 4
...

*IP N-3 *IP N-2 *IP N-1 *IP N

IP 1 (Bitmap)

...

IP N (Bitmap)

Fig. 4. Bitmap index of IP addresses.

To increase data processing performance, CompactFlow automatically places
dynamic fields that could have the size of 0 at the end of the flow. If those fields
were placed throughout the flow record, then one would need to query their size
by calculating the corresponding flags in the control field in order to get to fields
positioned after them. By using this design, we tried to minimize this behavior.
Additionally, IPv6 flow records are supported and saved into separate files. The
format for such files differs in the number of bytes allocated for each address - 4
bytes for IPv4 and 16 bytes for IPv6.

The second part of the CompactFlow framework considers flow processing
techniques. Our proposal supports a variety of indexing methods. We present
how to create the bitmap index, which is considered a state-of-the-art approach.
Bitmap indexing is efficient as it uses only 1 bit per flow record to denote whether
a given value of a flow field is present in a flow. Hence, each bitmap index is
an array of bits with the size equal to the number of all flow records. Figure 4
reports the structure of such a bitmap index that is stored in a separate file as
part of the CompactFlow format. Similarly, to the header of the unidirectional
CompactFlow file, it stores the pointers to the locations of bitmap arrays for each
field. In the case of this figure, these are IP addresses. In order to obtain selected

CompactFlow: A Hybrid Binary Format for Network Flow Data 195

flows, one needs to take the positions of bits with the value of 1 and jump to
the respective flows by using the array of pointers in a binary CompactFlow file.
Since the size of pointers is fixed-size (4 bytes), it is easy to jump to the correct
ones with negligible overhead.

4 Evaluation

We compare our format to most popular open-source flow collectors that support
binary file storage, i.e. Argus, flowd, nfdump, and SiLK. To carry out this com-
parison, we analyze the binary formats of such collectors to have full understand-
ing of their flow representation. In Fig. 5, we show the same unidirectional flow
represented using the aforementioned binary formats and our proposed Compact-
Flow format. The flow is shown in the plaintext format (Fig. 5a) with color-coded
field names (explained in Fig. 5b). In our comparison we configure flow collectors
to store only the fields that we consider, whenever possible. Most binary formats
use fixed-length representation of each flow record, which makes the file format
more straightforward to read from. Indeed, it is possible to jump by a constant
number of bytes to get to the same field in the next flow. However, this fea-
ture also makes it extremely inefficient space-wise. CompactFlow is designed to
achieve a trade-off between file size and processing speed. In fact, our proposed
format applies a hybrid approach, in which the always-present fields are of con-
stant length and the fields whose values can change are of variable length. This
results in a compact representation that is the smallest of all presented binary
formats, as shown in Fig. 5h. It is worth noting that the protocol, destination
port and number of packets are included in the control field as an optimization
by our binary format (see Sect. 3.2). The sample flow in CompactFlow binary
format is only 20 bytes. In what follows, we discuss and compare different flow
collectors one by one.

Audit Record Generation and Utilization System (Argus) [4] is a popular,
open-source flow monitoring framework. The Argus collector provides a binary
file format to store flow records, which assigns a fixed-length space for fields
constituting a flow. It is worth noting that such length remains fixed even when
not all fields are captured. This approach leads to wasted space, which is a
fundamental factor when dealing with large data sets. In total a flow record
takes 116 bytes.

Another flow collector, flowd [1], offers binary storage at a reduced size of 48
bytes per flow record. It uses big-endian encoding and provides no file header.
It offers an option to save protocol, TCP flags, and Type of Service without
being able to selectively pick each one. Additionally, there is no option to save
the timestamp from when the flow started, only the timestamp of receiving the
flow by the collector. It also does not provide an option to store the duration of
a flow. Both of these shortcomings limit its use in real-world settings.

A slight improvement in those regards is offered by nfdump [17]. It uses the
nfcapd tool to collect flows from the exporter and to save them to binary files. It
also allows for fine-grained specification of which fields to store. However, it keeps

196 M. Piskozub et al.

02:59:40 8.96 TCP 192.168.1.43 58769 72.163.4.161 443 3 152

(a) Sample flow

timestamp duration proto srcIP srcPort destIP destPort packets bytes TCP flags

(b) Color legend

01: 3320 001d 0101 0102 c0a8 0101 0201 4105

02: c0a8 012b 48a3 04a1 0600 e591 01bb 2020

03: 031a 1805 5c55 079c 0007 62a0 5c55 07a5

04: 0006 c660 1001 0602 0003 0098 3004 0003

05: 0000 0000 0000 0000 4800 0102 0000 0000

06: 4200 0005 0000 0000 0000 0000 0000 0000

07: 0000 0000 3200 0004 0000 0000 0000 0000

08: 0000 0000

(c) Argus

01: 600a 0000 0000 38a6 5c55 07ab 0002 d4a1

02: 1806 0000 c0a8 012b 48a3 04a1 e591 01bb

03: 0000 0000 0000 0003 0000 0000 0000 0098

(d) flowd

01: 0a00 3800 0600 0000 e401 bc01 9c07 555c

02: a507 555c 0018 0600 91e5 bb01 0100 0000

03: 2b01 a8c0 a104 a348 0300 0000 0000 0000

04: 9800 0000 0000 0000

(e) nfdump

01: da89 1003 2a80 2300 1840 0003 0000 0000

02: e591 01bb c0a8 012b 48a3 04a1

(f) SiLK

01: 0000 1600 2c00 2b00 2400 2000 1400 1000

02: 0c00 0a00 0800 0400 1600 0000 0023 0000

03: bb01 91e5 9800 0000 0300 0000 44bb 25ac

04: 6801 0000 0000 0000 a104 a348 2b01 a8c0

(g) FlatBuffers

01: 1862 e1c0 a801 2b48 a304 a136 a244 9891

02: e523 0018

(h) CompactFlow

Fig. 5. Comparison of binary file formats.

CompactFlow: A Hybrid Binary Format for Network Flow Data 197

Table 2. Comparison of compression methods used with a CompactFlow file of
67,257,407 unidirectional IPv4 flow records.

Compression File size

(MB)

Size gain

(%)

RAM load

time (s)

Processing

time (s)

Total

time (s)

Time loss

(%)

Method CPU cores

Uncompressed 1,425 – 3.267 0.548 3.815 –

gzip 1 791 44 1.887 12.065 13.952 366

gzip 32 792 44 1.881 7.408 9.289 243

bzip2 1 697 51 1.609 61.638 63.247 1,658

bzip2 32 696 51 1.603 3.155 4.758 125

lzo 1 1,023 28 2.325 4.818 7.143 187

start and end timestamp from which duration field is calculated, which is not an
efficient approach. It also uses little-endian encoding, which might seem strange
since network order is big-endian. Moreover, the conversion between encodings
might add unnecessary overhead to the collection process. The binary format
of nfdump stores the header in 344 bytes, each flow record in 56 bytes and the
footer in 44 bytes.

SiLK [29] is the most optimized open-source flow collector with a state-
of-the-art binary format and a set of processing tools. It provides an option
to specify endianness of files and provides optimizations such as storing flow
duration instead of end time or storing average amount of bytes transferred
per packet. This results in the smallest binary format of all open-source tools
with 24–88 bytes for the header and 28 bytes per flow record. However, it does
not support bidirectional flows (even though it provides tools to match flows
after they are captured) and it does not provide functionality to index flows.
Moreover, it relies on the file hierarchy, which divides traffic into internal to
internal, external to external, incoming and outgoing Web and ICMP traffic.
While the hierarchy can speed up select queries regarding one of those types, it
also makes the binary format more complex and adds overhead for more analytic
queries, such as the selection of all flows within a time period to train machine
learning models.

Additionally to flow collectors, we examine a popular, fast data serialization
library, FlatBuffers [2]. This library supports a large variety of extensions in
different programming languages to interact with its binary data format. One
of its advantages is the flexibility of what information to store. This is done by
writing a schema with a structure of data to be stored. In the case of storing
flow records, FlatBuffers does not perform better than most of flow collectors.
It uses 64 bytes per flow record. This is due to the support of only regular types
(e.g. uint8, uint16, uint32, uint64) and no custom types (such as uint24) which
leads to wasted space. Additionally, in order to store a collection of records, one
needs to specify another type that will serve as a container for those records.

Even though the comparison favors the CompactFlow format, a single flow
is not representative of a larger variety of flows on networks. In fact, the uni-
directional record takes from 16 to 30 bytes, which in some cases can exceed

198 M. Piskozub et al.

SiLK’s 28 bytes per flow record. For this reason, we evaluate the average size
of a CompactFlow record by considering a variety of flows from a production
network. Experimental results based on the analysis of 1,802,377,030 flows show
that the average size of a flow in our proposed unidirectional binary format is
21.4 bytes - a value 24% smaller than SiLK’s format.

To get a clearer view of what different binary formats mean in the real world,
we used each of them to store over five months of flow data from the University
of Oxford. The results are shown in Fig. 6. In total 181,315,995,252 flows are
stored that come from three networks with over 64 thousand hosts. The most
inefficient format takes over 21 TB to store the entirety of this data. While the
state-of-the-art binary format of SiLK uses about 5 TB, our proposed format
uses only 3.88 TB.

0 5 10 15 20 25

CompactFlow
FlatBuffers

SiLK

nfdump
flowd

Argus

3.88

11.6

5.08

10.15

8.7

21.03

Storage Size [TB]

Fig. 6. 181 million flows from the University of Oxford using different flow collectors.

The final aspect of the evaluation is a comparison of an uncompressed Com-
pactFlow file against three common compression algorithms (i.e. gzip, bzip2,
and lzo). Such an analysis is meant to show which approach is the fastest in
terms of loading the file into memory (RAM load time) and reading contained
flow records (processing time). We observed that those two metrics are a trade-
off between disk speed and a chosen compression algorithm. As it was shown
in 2014 in the evaluation of SiLK [29], reading flow records was faster from a
compressed binary file. This was due to the limited speed of then widely used
hard disk drives (HDDs). However, we assess that this is no longer true with the
rising popularity and decreasing prices of solid-state drives (SSDs). In Table 2,
we show that the increase of disk speeds (from 100 MB/s in [29] to 436 MB/s
in our analysis) results in faster processing of raw, uncompressed binary files.
In order to reverse this trend, one can assign more CPU cores to speed up the
decompression. We used 32 cores of a dual Intel Xeon CPU to determine that it
takes 25% longer in total while reducing the file size by half. However, the prices
and power requirements of such CPUs are high, which means that often they are
not available to network administrators. As a result, compression is not suitable

CompactFlow: A Hybrid Binary Format for Network Flow Data 199

in the case of commodity hardware, which puts more emphasis on a small binary
representation of flow data.

5 Discussion

Storing data in a binary format is more efficient than database-based methods in
terms of size. In fact, the database-based methods need more space for indexing
purposes, which may even take double the space required for the data [20]. They
also do not allow a fine-grained control of what and when is indexed which
accounts for their poor per-flow storage times. Our format provides a quicker
and hybrid solution. It is also robust in case of errors. We use Golay code in
the header to preserve fundamental information regarding the flows in the file,
such as an hour-based timestamp, the IP version supported, or the type of flow.
Secondly, the header can be optionally enriched with an array of flow pointers.
In this way, it would be easy to isolate the faulty flows in case errors occur within
the file body. Faulty flows can be easily detected by relying on the first two flow
fields, namely flow size and flow control. As a first check, we have to verify the
following condition on the flow size value: flow size ≥ ∑

i∈C size(i) + 2, where
C is a set of flow fields of constant size and size(i) is the size of field i. The
additional 2 is related to the two variable fields with a minimum size of 1 byte
(i.e. number of packets and bytes). The condition does not comprise the other
variable fields since their minimum size is 0. A second check on flow consistency
could be made on the packet and byte flow fields. Indeed, it is known that not
only is the former smaller than the latter, but that the following condition is
verified: bytes# ≥ min packet size ∗ packets#, where min packet size is the
minimum allowed packet size by the considered protocol.

Our evaluation shows that even though flow collectors use the most efficient
type of data storage, binary files, they usually do so in an inefficient manner. In
fact, a string representation of each flow record would take less space than in
most evaluated binary formats.

We do not evaluate compressed sizes of different flow collectors’ binary for-
mats. Even if compressed sizes were similar, in order to process the data, one
needs to decompress it - which brings us to the initial problem since the file
sizes start to matter again. We show in Sect. 4 that compression slows down the
processing of flows. Moreover, memory prices show no signs of decreasing, hence
it is important for a format to have a minimal memory footprint.

6 Conclusion

In this paper, we presented a hybrid binary file format to store network flow
data. It not only is compact in its representation, but also supports well-known
indexing approaches to speed up flow queries. To assess the performance of
the CompactFlow format, we compared it to the most popular open-source flow
collectors with an in-depth analysis of their binary formats. Then, we carried out
an extensive comparison in terms of storage size on a real-world traffic dataset

200 M. Piskozub et al.

from the University of Oxford. Finally, we evaluated the impact of compression
on our format in terms of file size and processing time.

References

1. flowd. https://code.google.com/archive/p/flowd/
2. Flatbuffers (2015). https://google.github.io/flatbuffers/
3. MariaDB ColumnStore (2017). https://mariadb.com/kb/en/library/mariadb-

columnstore/
4. Argus (1985). https://qosient.com/argus/
5. Chandrasekaran, S., et al.: TelegraphCQ: continuous dataflow processing for an

uncertain world. In: Proceedings of of ACM SIGMOD (2003)
6. Chen, Z., et al.: TIFAflow: enhancing traffic archiving system with flow granularity

for forensic analysis in network security. Tsinghua Sci. Technol. 18, 406–417 (2013)
7. Chen, Z., et al.: A survey of bitmap index compression algorithms for big data.

Tsinghua Sci. Technol. 20, 100–115 (2015)
8. Claise, B., et al.: IPFIX protocol specifications. RFC7011 (2004)
9. Claise, B.: Cisco Systems NetFlow Services Export Version 9. The Internet Society,

Technical report (2004)
10. Cranor, C., et al.: Gigascope: a stream database for network applications. In: Pro-

ceedings of ACM SIGMOD (2003)
11. Deri, L., et al.: Collection and exploration of large data monitoring sets using

bitmap databases. In: Proceedings of TMA (2010)
12. Desnoyers, P.J., et al.: Hyperion: high volume stream archival for retrospective

querying. In: Proceedings of USENIX ATC (2007)
13. Fusco, F., et al.: High speed network traffic analysis with commodity multi-core

systems. In: Proceedings of of IMC (2010)
14. Fusco, F., et al.: NET-FLi: on-the-fly compression, archiving and indexing of

streaming network traffic. In: Proceedings of the VLDB Endowment (2010)
15. Fusco, F., et al.: pcapIndex: an index for network packet traces with legacy com-

patibility. ACM SIGCOMM Comput. Commun. Rev. 42, 47–53 (2012)
16. Fusco, F., et al.: RasterZip: compressing network monitoring data with support

for partial decompression. In: Proceedings of IMC (2012)
17. Haag, P.: Watch your Flows with NfSen and NFDUMP (2005)
18. Held, G., Marshall, T.: Data Compression; Techniques and Applications: Hard-

wareand Software Considerations. Wiley, New York (1991)
19. Hofstede, R., et al.: The network data handling war: MySQL vs. NfDump. In:

EUNICE (2010)
20. Hofstede, R., et al.: Flow monitoring explained: from packet capture to data anal-

ysis with NetFlow and IPFIX. IEEE COMST 16, 2037–2064 (2014)
21. Lampertand, R.T., et al.: Vermont - a versatile monitoring toolkit for IPFIX and

PSAMP. In: IEEE/IST Workshop MonAM (2006)
22. Lee, J., et al.: FloSIS: a highly scalable network flow capture system for fast

retrieval and storage efficiency. In: Proceedings of USENIX ATC (2015)
23. Li, X., et al.: Advanced indexing techniques for wide-area network monitoring. In:

Proceedings of ICDE (2008)
24. Lucente, P.: pmacct: steps forward interface counters (2008). http://www.pmacct.

net/pmacct-stepsforward.pdf

https://code.google.com/archive/p/flowd/
https://google.github.io/flatbuffers/
https://mariadb.com/kb/en/library/mariadb-columnstore/
https://mariadb.com/kb/en/library/mariadb-columnstore/
https://qosient.com/argus/
http://www.pmacct.net/pmacct-stepsforward.pdf
http://www.pmacct.net/pmacct-stepsforward.pdf

CompactFlow: A Hybrid Binary Format for Network Flow Data 201

25. Maier, G., et al.: Enriching network security analysis with time travel. ACM SIG-
COMM Comput. Commun. Rev. (2008)

26. Oberhumer, M.: Lempel–Ziv–Oberhumer data compression (2013)
27. Piskozub, M., et al.: MalAlert: detecting malware in large-scale network traffic

using statistical features. SIGMETRICS Perform. Eval. Rev. 46(3), 151–154 (2019)
28. Reiss, F., et al.: Enabling real-time querying of live and historical stream data. In:

Proceedings of SSBD (2007)
29. Thomas, M., et al.: SiLK: a tool suite for unsampled network flow analysis at scale.

In: Proceedings of IEEE BigData (2014)
30. Velan, P., Krejč́ı, R.: Flow information storage assessment using IPFIXcol. In:

Sadre, R., Novotný, J., Čeleda, P., Waldburger, M., Stiller, B. (eds.) AIMS 2012.
LNCS, vol. 7279, pp. 155–158. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-30633-4 21

31. Wu, K., et al.: FastBit: interactively searching massive data. J. Phys. 180, 012053
(2009)

32. Xie, G., et al.: Index-Trie: efficient archival and retrieval of network traffic. Comput.
Netw. 124, 140–156 (2017)

https://doi.org/10.1007/978-3-642-30633-4_21
https://doi.org/10.1007/978-3-642-30633-4_21

SSI-AWARE: Self-sovereign Identity
Authenticated Backup with Auditing

by Remote Entities

Philipp Jakubeit1,2(B), Albert Dercksen2, and Andreas Peter1

1 Services and Cybersecurity Group, University of Twente,
Enschede, The Netherlands

{P.Jakubeit,A.Peter}@utwente.nl
2 Nedap N.V., 7141 DC Groenlo, The Netherlands

Albert.Dercksen@nedap.com

Abstract. The self-sovereign identity (SSI) model entails the full
responsibility and sovereignty of a user regarding his identity data. This
identity data can contain private data which is solely known to the user.
The user himself is therefore required to manage the whole lifecycle of his
private data, including the backup and restore. We show that prior work
on how to backup and restore the user’s identity data does not meet
the requirements of the SSI setting, and we present the first solution
which does meet the requirements. Authenticated backup with audit-
ing by remote entities (AWARE) combines SSI sustaining aspects and
extends them to create a truly self-sovereign backup-and-restore pro-
tocol. In AWARE, trusted, physically met humans, called custodians,
hold a secure device. Custodians with a secure device offer an offline
backup possibility and a secure channel. The backup and restore are
audited by commits on a publicly accessible distributed ledger. These
commits are answered by auditing services which are required during
restore. Only some auditing services hold relevant data for a restore. The
self sovereignty of the user lies in the exclusive information which audit-
ing services hold relevant data. AWARE is the first backup-and-restore
mechanism that fully complies with the SSI model. We perform an in-
depth security-risk analysis of AWARE, showing a risk rating which is
comparable to the best risk rating o related non-SSI-compliant backup-
and-restore mechanisms. We instantiate the AWARE protocol with cryp-
tographic primitives providing a high security level of 256-bit. We show
its implementation feasibility by providing a simulation of AWARE, and
conclude with an estimated performance analysis on a microcontoller
architecture based on our simulation and implementation results in the
literature.

1 Introduction

The amount of digital information is ever-increasing. The International Data
Corporation predicts an annual growth rate of 61% from 2018 to 2025 to the

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Laurent and T. Giannetsos (Eds.): WISTP 2019, LNCS 12024, pp. 202–219, 2020.
https://doi.org/10.1007/978-3-030-41702-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41702-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-41702-4_13

SSI-AWARE 203

global datasphere’s volume of 175ZB [9]. With the majority of this data being
user generated. From 2010 to 2019 the amount of internet users doubled and
nearly reached 60% of the world population [23]. The user generated data consists
of content and identity data. This identity data is traditionally known to the user
and the service. The identity data can include private data, which is a privacy
challenge for the user and an increasing challenge for the services. The General
Data Protection Regulation (GDPR) [12], an EU law regarding data protection
and privacy of the EU citizens, exemplifies the legislative relevance of privacy.

Several identity models have been proposed that achieve different levels of
privacy protection [1]. In case of the isolated identity model the service, a trusted
authority (TA) stores and manages the user’s identity data directly. In case of the
central identity model an identity provider, a TA, stores and manages the user’s
identity data and transfers it to a service. In case of the federated identity model
the identity data is stored and managed distributed across multiple identity
providers (TAs). In case of the user-centric identity model, a service manages
the identity data, but a device is distributed to the user, a security token (ST).
It empowers the user to store his identity data. It can be realized by a smart
card or other dedicated hardware. The sharing of identity data requires explicit
user consent, but the identity data is still managed by an identity provider. The
self-sovereign identity (SSI) model emerged due to the rise of distributed ledger
(DL) technology, it extends the user-centric identity model. In the SSI model,
the user stores his own identity data and also manages his identity data over its
entire lifecycle. Therefore, the user instead of a central authority, is in control of
the identity data and the user decides how personal attributes and credentials
are shared [4].

An essential but overlooked aspect of SSI is backup and restore of the private
data PDu of a user u. The user is responsible for the entire lifecycle of his private
data, therefore, also for backup and restore. Private data PDu is per assumption
not known to any other entity than the user u. Therefore, the user u is the only
entity capable of conducting the backup of PDu. The process of backup is to
store a copy of the data such that it is available for restore in case of lost access.
The process of restore is to access the backed up copy of the data. Abilities
gained by the private data are given to any entity who can access it. The access
to the backed up data thus determines who is sovereign. Access control consists
of three steps: authentication, authorization, and auditing [26]. Authentication
describes that the authenticity of an entity trying to access the data must be
verified. Authorization describes the decision whether to grant or deny access to
the data for a specific entity. Auditing describes the capability of the system to
trace the actions of its participants. Since sovereignty lies in the access to the
data, we define:

A self-sovereign solution must require the user to conduct the step of autho-
rization and the user must also choose who authenticates and who audits
the restore.

We show that in prior works on how backup and restore can be conducted
the user is not sovereign in case of lost access to his private data. We therefore

204 P. Jakubeit et al.

present our self-sovereign backup-and-restore protocol of authenticated backup
with auditing by remote entities (AWARE). The user is empowered to decide if
the restore is granted. We achieve this by backing up the data to physically met
custodians who are audited on a public DL. The user is just required to hold
a low entropy information (about 6 digits) to restore his PDu. The AWARE
protocol further extends the STs of the user-centric model by interconnectable
security tokens (IST’s). An IST is an ST which has a procedure to exchange
specific information with other IST’s. We conduct a security-risk analysis of the
AWARE protocol and compare the results to the current proposals. We show
that the AWARE protocol is the only backup-and-restore mechanism providing
self sovereignty while its worst risk rating is close to the best risk rating of the
proposals not offering self sovereignty.

2 The Problem of Backup and Restore in the SSI Model

The problem of backup and restore in the SSI model is that the user u has private
data PDu which is solely known to him. He wants to backup PDu such that after
he lost access to PDu he can regain access to it. A perfect requirement would
be that only the user u can access PDu while any other entity e �= u cannot.
However, over an insecure channel perfect authenticity cannot be achieved [21].
Realizable requirements are:

1. The user u has a high likelihood of accessing his backed up PDu.
2. Any other entity e �= u has a very low likelihood of accessing the backed up

PDu.

Two systems realizing SSI management explicitly offer a suggestion on how
to conduct backup and restore: Sovrin [30] and uPort [7]. Sovrin proposes the use
of distributed storage devices or social backup, backing up at entities the user
trusts (custodians). uPort proposes a smart contract based solution in which
the private key can be swapped to another key, based on the rules specified in a
smart contract and promotions of earlier specified online entities the user trusts.

By definition, a backup-and-restore mechanism is self sovereign if the user
performs the authorization during restore and chooses who authenticates and
who audits the restore process. The authentication must be performed by some
other entity than the user. Since the user is not capable of authenticating him-
self after data loss. Neither the user nor the authenticating entity can audit
themselves. Therefore, the auditing must be conducted by another entity than
the user or the authenticating entity. The audit trail must be accessible to the
unauthenticated user as he is not capable of accessing his private data. Next to
the steps of access control, the accessibility itself must be minimized. Therefore,
the backed up private data should be stored offline.

In the literature we identified four backup-and-restore mechanisms: Trusted
authorities, one identity service knows all the private data; Local backup, a user
backs up his private data on several devices, which the user distributes (e.g. at
home, deposit box, at work); Social backup, a user distributes his private data

SSI-AWARE 205

across several personally trusted entities (custodians); Smart contract based,
the user allows trusted online entities to promote a new key into his controlling
smart contract. A smart contract is a protocol executed on a DL. It empowers its
participants to conduct credible transactions without the need for third parties.
In Table 1 we show per backup-and-restore mechanism which entity conducts
which step of access control and whether the backup is accessible online or
offline.

Table 1. Per backup-and-restore mechanism the table presents which step of access
control is conducted by which entity as well as the accessibility of the private data.

B-and-R
mech.

Authentication Authorization Audit Accessibility

Trusted
authority

TA TA Not defined Online

Local
backup

Not defined Not defined Not defined Not defined

Social
backup

Custodians Custodians Not defined Offline

Smart
contract

Trusted online
entities

Smart contract DL Online

In case of the TAs every step of access control is managed by a TA. Authen-
tication is only possible via a public channel (the Internet) and the data is
stored online. It is thus not self sovereign. In case of the local backup the steps of
access control and the accessibility are not clearly defined. It is therefore not self
sovereign. In case of social backup authentication is conducted by custodians via
a secure channel. The authorization, however, is also conducted by the custodi-
ans without any defined procedure of audit. It is thus not self sovereign. In case
of the smart contract based backup-and-restore mechanism the authentication is
conducted by trusted entities via a public channel which can trigger the autho-
rization of the smart contract by promoting a new key. It is not self sovereign
and the private data is stored online. However, it offers a publicly accessible
auditing trail by writing the promotions on the DL. In conclusion, none of the
backup-and-restore mechanisms in the literature is self sovereign. The aspect of
a secure channel between the user and his custodians and a publicly accessible
auditing trail on the DL, however, form a starting point for us to build a self
sovereign solution.

3 AWARE

The self sovereignty of the user, even under data loss, is the aim of our protocol
on authenticated backup with auditing by remote entities (AWARE). We have

206 P. Jakubeit et al.

the following participants: The user performs the authorization and decides who
conducts the authentication and who conducts the auditing. Custodians are
entities the user trusts and meets physically, they conduct the authentication.
Likely candidates are family and friends for personal data backup and colleagues
for company related data backup. Auditing services conduct the auditing, logging
on a DL. The accessibility of the backed up PDu is offline to decrease the attack
surface. The physically met custodians in combination with their IST’s allow for
offline data storage and a secure channel. In our AWARE protocol only auditing
requires online communication.

Notation. All participants of the protocol are modeled as elements of the set of
entities E. We abbreviate a specific entity by a small letter (e.g. the user u ∈ E).
We indicate the relation to a specific entity by placing this entity in the index
(e.g. the user u’s private data is abbreviated as PDu). If an entity belongs to a
subgroup of known size we denote it with a numbering in the index. The i’th
user of the subgroup of n users U is denoted with ui ∈ U for i ∈ {1, . . . , n}.

Regarding functionality, we use the following notation: We denote the
symmetric-key encryption of data D by a symmetric-key k with Enck(D) and
respectively the decryption such that Deck(Enck(D)) = D. Asymmetric-key
encryption of data D by an asymmetric-key pek with Encpek(D) and respec-
tively the decryption such that Decsek(Encpek(D)) = D. We denote the split-

ting of data D into n shares by secret sharing D
ss(t,n)====⇒ {s1(D), . . . , sn(D)} such

that t of these shares can be used to reconstruct the data D. Regarding some
set B we denote a uniformly random pick with a

$←− B for a ∈ B.

Parameters. In Table 2 the parameters of the AWARE protocol description are
presented in their contexts.

Assumptions. A user u of our system,

– holds private data PDu,
– is capable of memorizing the low entropy information ρ (q numbers less than

p),
– possesses an interconnectable security token (ISTu).

The concept of an interconnectable security token (IST) is an extension on the ST
used in the user-centric identity model. It stores PDu securely, just accessible to
the user u. The extension lies in the connectivity of the IST. While a smartcard
or ordinary ST device can just connect to a smartphone or computer the ISTs
are capable to interconnect. An ISTu of a user u guarantees that

– private data PDu stored on ISTu is only accessible to the user u,
– it is offline by default and the user needs to specifically enable communication,
– it is interconnectable with other ISTe for e �= u via a short range channel

(e.g. Infrared [3], Near Field Communication [16]),
– it is connectable via another channel to an internet capable device (e.g. smart-

phone, computer, etc.).

SSI-AWARE 207

Table 2. Parameters of the AWARE protocol.

Variable Context

u The user

Cu The custodians of user u

ASu The auditing service list of user u

ASSu The auditing services shares from the user u

πu The policy of user u

l ∈ N The key length

k The key k
$←− {0, 1}l

n,t n-out-of-t shares of Enck(PDu) (using secret sharing)

r,q r-out-of-q shares of k (using secret sharing)

x,y x-out-of-y key promotions required in policy πu

p ≥ q The total amount of auditing services

h The maximum of publishable restore releases

ρ Memorizable, low entropy information of q services holding a key share

The participants of the AWARE protocol are the user u who has n custodians
(Cu) and p auditing services (ASu). The user u and his custodians Cu posses an
interconnectable security token (IST). All participants hold two public-secret key
pairs. A keypair for signing (psk,ssk) and a keypair for encryption (pek,sek).
The user u further holds private data PDu which is solely known to u and which
should be backed up.

User Custodians DLAuditing Services
Shares of (Enck(PDu)|ASu),u

ID’s, Confirmation

Create policy πu Shares of k, πu

Confirm
User looses PDu

Request restore, unew

Shares of (Enck(PDu)|ASu) Promote unew to u

Request restore, u
Check πu of u

Release shares of k encrypted to unew

Read shares of k
Restore PDu.

Fig. 1. Overview sequence diagram of AWARE.

Overview. The AWARE protocol (Fig. 1) consists of interaction from the user
with his custodians and auditing services. The user chooses p auditing services
and sends a share of his PDu concatenated with the list of his auditing services

208 P. Jakubeit et al.

and his public signing key to each of his n custodians. The user creates a policy
πu in which he specifies that x of y custodians are required to promote a new
identity on the DL and the maximum amount of restore releases h. The user
creates p auditing shares. He creates q key shares of the key k and adds p − q
fake shares. Subsequently, he distributes all auditing shares randomly over the p
auditing services. The user receives ρ, the q auditing services holding a key share.
In case of access loss to PDu, the user approaches t custodians, requests his data
and restores his encrypted PDu and ASu. He approaches r auditing services
from the ρ auditing services from ASu and requests a restore. The auditing
service checks the policy and only if it is met releases his share of k encrypted to
the new identity of the user. The auditing service is aware of this new identity
as it is promoted by the custodians on the DL. The user is then able to read the
encrypted shares, decrypt them and reconstruct k. With the key k the user can
decrypt his PDu.

Initialization. To be fully self sovereign, the user is required to choose the system
parameters. He has to choose n = |Cu| the total amount of custodians, t ≤ n
the amount of custodians required for a restore, p = |ASu| the total amount of
auditing services, q ≤ p the total amount of auditing services holding a key share,
r ≤ q the amount of auditing services required for a restore, and k

$←− {0, 1}l the
key k of size l which must be generated uniformly random.

User u Custodian ci ∈ Cu Auditing Service asj ∈ ASu

Backup Computation

Backup Exchange

Auditing Computation

Backup Auditing Exchange

repeat for i = 1, . . . , n

repeat for j = 1, . . . , o

Fig. 2. Sequence diagram of our backup protocol.

Backup. The basic structure of our backup protocol is illustrated in Fig. 2. In
the following we elaborate the details per step:

1. Backup Computation:
– The user u encrypts his private data PDu with the key k, Enck(PDu).
– The user u appends ASu and splits it

SSI-AWARE 209

– (Enck(PDu)|ASu)
ss(t,n)====⇒ {s1(Enck(PDu)|ASu), . . . , sn(Enck(PDu)|

ASu)}.
2. Backup Exchange, the user u meets with each custodian ci ∈ Cu (for i ∈

{1, . . . , n}):
– The user u receives the public signing key pskci of the custodian i.
– The user u provides his public signing key psku and a share

si(Enck(PDu)|ASu).
3. Auditing computation:

– The user u chooses a policy, πu.
(a) pskci for i = 1, . . . , x from which at least y must promote the user.
(b) h, the maximum number allowed of published restore releases.

– The user u splits his key k, k
ss(r,q)====⇒ {s1(k), . . . , sq(k)}.

– The user u generates p−q random fake shares f and appends them to his
list of auditing shares ASSu, ASSu = {s1(k), . . . , sq(k), f1, . . . , fo−q}.

– The user u performs a truly random permutation on ASu to receive
Perm(ASu). The q servers holding a key-share are outputted as ρ.

– The user u encrypts each auditing share appended with his policy
πu to the corresponding service in the permuted auditing service list,
Encpekyj

(aj |πu) for aj ∈ ASSu, yj ∈ Perm(ASu) and j ∈ {1, . . . , o}.
4. Backup Auditing Exchange:

– The ISTu is connected to an online device and each Encpekyj
(aj |πu)

signed with his psku in the order of ASu is uploaded to asj .
– The auditing service asj confirms the receipt.

User unew Custodian ci ∈ Cu Distributed Ledger Auditing Service asj ∈ ASu

Generate new identity

Restore Exchange

Promote unew to u

Restore Computation

Request Restore for u

Read

Check πu.If πu publish Encunew (sj(k))

Read key share

repeat for t custodians

repeat for r auditing services

Restore PDu.

Fig. 3. Sequence diagram of our restore protocol.

210 P. Jakubeit et al.

Restore. Assuming that the user u looses access to his PDu he needs to engage
in a restore protocol. For this we assume a new identity unewof the user as his
old identity is lost. The basic structure of our restore protocol is illustrated in
Fig. 3. In the following we elaborate the details per step:

1. Generate new identity:
– The user generates a new key pairs (pskunew

, sskunew
) and (pekunew

,
sekunew

).
2. Restore Exchange:

– The user u approaches a subset of t of his custodians and provides them
with his new public encryption key pekunew

.
– The custodian ci physically authenticates user u and provides him with

his share, si(Enck(PDu)|ASu) for i ∈ {1, . . . , n}.
3. Promotion:

– Each of the t custodians promotes pekunew
for psku on the DL.

4. Restore Computation:
– The user u reconstructs Enck(PDu) and ASu from the t shares he

received.
– The user u approaches the auditing services holding a key share, by apply-

ing his low entropy information ρ.
5. Restore Auditing Exchange:

– The user u request a key share from r auditing services.
– If the auditing service asj ∈ ASu for j ∈ {1, . . . , q} receives a

restore request for u, it checks the corresponding policy πu and releases
Encpekunew

(sj(k)) if the policy πu is met.
6. Restore:

– The user u reads the encrypted key shares on the DL.
– The user decrypts r key shares with his sekunew

and reconstruct k. He
uses it to decrypt the encrypted private data Deck(Enck(PDu)) = PDu.

4 Security-Risk Analysis

Security. The aim of AWARE is to allow the user u to conduct backup and
restore self sovereignly. The authentication is conducted by carefully chosen cus-
todians. The confidentiality and integrity of the data are maintained by choosing
additional auditing services to audit the process of authentication and authoriza-
tion. The AWARE protocol can be split into the sub-protocol conducted between
the user and his custodians and the sub-protocol conducted between the user
and his aware services. In our analysis we focus on both of the sub-protocols.
For the protocol conducted between the user and his custodians it holds that
if less than t custodians are compromised the private data’s security is deter-
mined by the secret-sharing scheme used. For the protocol conducted between
the user and his auditing services it holds that if less than r of the auditing
services are compromised the key’s security is also determined by the secret-
sharing scheme used. If Shamir’s secret sharing [27] is used the private data is
information-theoretically secure if less than t custodians are compromised and

SSI-AWARE 211

the key is information-theoretically secure if less than r auditing services are
compromised. Therefore, we assume for our analysis that t or more custodians
are compromised and that r or more auditing services are compromised. We fur-
ther assume that the custodians and auditing services do not collude and that
ρ is only known to the user.

Integrity is the property of maintaining and assuring the accuracy and com-
pleteness of data over its entire lifecycle [17]. The custodians hold the shares
of the private data encrypted with key k. The auditing services hold the shares
of the key k. If t or more custodians are compromised they can restore the
encrypted private data and can manipulate it, however, altering would render
the encrypted private data undecryptable by k. Therefore, the accuracy and
completeness of the private data is maintained and assured over its entire life
cycle. If r or more compromised auditing services would manipulate the key
k, the encrypted private data would be undecryptable and thus accuracy and
completeness of the key k is also maintained and assured over its entire life cycle.

Confidentiality is the property that information is not made available or dis-
closed to unauthorized entities [17]. Our AWARE protocol makes use of secret
sharing for the distribution of the encrypted private data PDu to the custodians
and the key k to the auditing services. If t or more custodians are compromised,
the encrypted private data can be restored and is now protected by the security
assumptions of the symmetric cipher used. To retrieve the key k an illegitimate
restore attempt must be conducted. This attempt requires the compromised cus-
todians to get the key k which will be logged on the DL. In this situation the
user can engage. However, this is still insufficient to guarantee self sovereignty.
The auditing services reply and proceed with the restore part of the AWARE
protocol for a new identity, not distinguishing the user from an adversary. There-
fore, we introduced auditing services holding fake shares and the maximum of
potential restore releases h. The adversary is additionally required to choose r of
the q auditing services holding a key share from the p auditing services in total.
The chances to guess r auditing services from the q auditing services holding a

key share from p auditing services in total without knowing ρ is
h−1∏

i=0

q−i
p−i . If we

choose the strictest policy that the amount of allowed restore releases is equal
to the amount of key shares required, thus fixing h = r, the chance to guess r

key share holding auditing services is q!(p−r)!
(q−r)!p! . If r or more auditing services are

compromised we have the same chance that these r auditing services holding
key shares. Without compromised custodians, however, the adversary gets no
information about PDu and cannot even verify if the illegitimately restored key
k′ equals the key k.

Availability is the property that information is accessible and usable on
demand by an authorized entity [17]. For the AWARE protocol this entails that
at least t of the n custodians must be available and that r of the q auditing
services must be available. It is, therefore, not enough to define that t or more
custodians and r or more auditing services are compromised. The relevant aspect
for availability is whether t or more custodians and r or more auditing services

212 P. Jakubeit et al.

are compliant with the protocol. If so, the availability is guaranteed. If, however,
less than t custodians or less than r auditing services are trustworthy the sys-
tem locks itself. This is a denial of service (DOS) as the PDu is not accessible
anymore. By introducing h, the maximum of restore releases, the policy pro-
hibits further publication of auditing shares which can result in an even earlier
DOS. However, both DOS’s are expected as they block an illegitimate restore
attempt. During such a DOS, the user can be in one of two states: State one,
the user is still in possession of his private data. Then there is no problem, he
should simply choose more trustworthy custodians after seeing the auditing trail
on the DL. State two, the user is not in possession of his private data, and the h
published auditing shares contain less than r key shares. Then the protocol has
locked access. When this situation occurs, the private data is inaccessible. This
behavior is consistent with the requirements, that any entity other than the user
has a very low likelihood of accessing the backed up private data while the user
has a high likelihood. This high likelihood allows for lost access. Therefore, such
an DOS is exactly what we are aiming for. If an illegitimate restore occurs locked
access is the preferable state to identity theft and compromise. To prevent this
still unpleasant situation users are advised to monitor restore requests on the
DL to be aware of such illegitimate restore attempts and be able to engage in
time.

Risk. Table 3 shows the numbers of our risk analysis. We conduct it with t = 3
of the n = 5 custodians being required to restore, as well as r = 3 of the q = 5
services being required for restore. The amount of legitimate restore responses
is limited to h = r, and we choose p = 100 services in total. Our risk analysis’s
terminology and scale are based on the NIST ’Risk Management Guide’ [28].

A compromise can concern the custodians, the shares stored at the custodi-
ans, the service, the low entropy information ρ or a combination of them. We
assume a compromise if at least t custodians or shares are compromised. All
compromises can either occur or not, except the compromise of the auditing
services. Here we distinguish not occurring, the compromise of r services and
the compromise of all services. We do this to account for the risk in a situation
in which ρ is compromised. We further distinguish the custodian and the share,
because a compromise of the custodians would enable the adversary to send suf-
ficiently many valid promote message on the DL to conduct a restore, while a
compromise of the shares would not. After calculating the risk rating for the five
isolated compromises we calculate the risk rating of their mutual occurrence.

The likelihood is determined per isolated compromise. The low entropy infor-
mation ρ of the user can be extracted by physical theft, social engineering or
simply by a random guess. The likelihood of physical theft is zero as ρ gets only
memorized by the user. The likelihood of social engineering can only be approx-
imated. Even though the low entropy information is a novel concept, it can be
compared to a user’s password. Happ, Melzer and Steffgen found in [14] that
38.6% of the students they interviewed are willing to give up their password just
by talking less than two minutes to female interviewers. In the case that a treat
is provided directly before the password is asked, the likelihood rises to 47.8%.

SSI-AWARE 213

Therefore, we decided to model the likelihood of social engineering with 0.4. The
likelihood of a random guess is q!(p−r))!

(q−r)!p! as all r service must be chosen correctly
from all p services. Therefore, we assume it to be negligible if p is chosen prop-
erly. For the numbers used in our risk analysis the likelihood of a random guess is
5!(100−3))!
(5−3)!100! ≈ 0.000062. The share stored at a custodian can only be extracted by
social engineering. This is the case as the device is assumed to be offline and the
information is stored securely. If the device would be stolen, a full breach must
be considered. Therefore, we determine the likelihood of just the share being
compromised by 0.4. The share stored at a custodian and the secret signing key
of the custodian can, however, be compromised by either social engineering or
theft. The likelihood of social engineering is again 0.4. The likelihood of theft is
harder to quantify. We set it to conservative 0.5, assuming that the chances are
fifty-fifty. Those two events are not mutually exclusive, therefore, the accumu-
lated likelihood of the custodian being fully compromised is 0.7. The compromise
of a service is quite unlikely. However, we set it to the same conservative 0.5,
again assuming that the chances are fifty-fifty as the data is out of control of
the user. All other likelihoods used in the table are combinations of these base
scenarios.

The impact can be low, medium or high. A high impact describes a situation
in which all knowledge is accessible to the adversary (PDu can be reconstructed).
The medium impact describes a situation in which one piece of information is
missing to the adversary. The low impact describes a situation in which more
than one piece of information is missing to the adversary.

Seven mutual compromises result in a potential break of the system. Only
one of them, however, has a risk rating which exceed very low by being low. The
second low risk rating is from a moderate impact. It is crucial that both of these
events include compromise of the custodians, thus compromise of the share and
the capability to promote a new identity on the DL. The risk rating of just the
compromise of the custodians is larger than the risk rating of compromise of
the custodians and the low entropy information ρ, due to a higher likelihood.
Compared to the other proposed solutions with the same likelihood assumptions
it can be seen that the worst risk rating of the AWARE protocol is low with a
risk rating of 13.71. It is close to the best risk rating of social backup and local
backup. In Table 4 these risk ratings are presented. The risk of just trusting
custodians is much higher with a moderate risk rating. Only the low risk rating
of distributing the private data on local devices is slightly lower than our worst
risk rating. However, the guarantees of local backup are highly dependent on its
user and do not offer self sovereignty. Our AWARE protocol has a comparable
low risk rating while enabling the user to be self sovereign by making use of
trusted custodians, auditing service and the assumption that the user is capable
of memorizing the low entropy information ρ. To guarantee self sovereignty, the
user is required to hold some private information. We reduced its size from the
arbitrary sized PDuvia a fixed size key to the size of ρ.

214 P. Jakubeit et al.

Table 3. Risk analysis for compromised custodians, shares, services, ρ and their com-
binations. The likelihood is determined as described in the text. The terminology and
method are based on the NIST Risk Management Guide [28], the risk rating = likeli-
hood * impact.

Compromised Likelihood Impact Risk rating for t, r = 3

and p = 100

Custodians Shares Service ρ

No No No Yes 0.4 [14] Low (10) 4 Very low

No Yes No No 0.4t Low (10) 0.64 Very low

Yes No No No 0.7t Medium (50) 17.14 Low

No No r No 0.5r Low (10) 1.25 Very low

No No All No 0.5p Medium (50) 4 ∗ 10−29 Very low

No No r Yes 0.4 ∗ 0.5r Medium (50) 2.5 Very low

No No All Yes 0.4 ∗ 0.5p Medium (50) 1.58 ∗ 10−29 Very low

No Yes No Yes 0.4t ∗ 0.4 Medium (50) 1.28 Very low

No Yes r No 0.4t ∗ 0.5r Medium (50) 0.4 Very low

No Yes r Yes 0.4t ∗ 0.5r ∗ 0.4 High (100) 0.32 Very low

No Yes All No 0.4t ∗ 0.5p High (100) 5.05 ∗ 10−30 Very low

No Yes All Yes 0.4t ∗ 0.5p ∗ 0.4 High (100) 2.02 ∗ 10−30 Very low

Yes No No Yes 0.7t ∗ 0.4 High (100) 13.71 Low

Yes No r No 0.7t ∗ 0.5r Medium (50) 2.14 Very low

Yes No r Yes 0.7t ∗ 0.5r ∗ 0.4 High (100) 1.72 Very low

Yes No All No 0.7t ∗ 0.5p High (100) 2.71 ∗ 10−29 Very low

Yes No All Yes 0.7t ∗ 0.5p ∗ 0.4 High (100) 1.08 ∗ 10−29 Very low

Table 4. Risk rating for social and device backup.

Compromised Likelihood Impact Risk rating for t = 3

Social backup 0.7t High (100) 34.3 Moderate

Local backup 0.5d High (100) 12.5 Low

5 Implementation

We implemented a simulation of the AWARE protocol1.
We chose the high security level of our instantiation of the AWARE proto-

col to be 256-bit. The building block of symmetric encryption is instantiated as
256-bit AES [8] in Galois counter mode (GCM) [22]. The building block of the
asymmetric encryption and decryption is instantiated as an integrated encryp-
tion scheme (ECIES) [20] of the symmetric AES256GCM and the P-521 elliptic
curve being specified in NIST FIPS-186-4 [24]. The building block of signing and
verifying signatures is instantiated as the elliptic curve digital signature algo-
rithm (ECDSA) [18] over the P-521 curve. The building block of secret sharing
is instantiated by Shamir’s secret sharing [27] with a modulus of 2521 − 1, the

1 https://github.com/phil-jakubeit/aware.

https://github.com/phil-jakubeit/aware

SSI-AWARE 215

13th Mersenne prime [31]. The random permutation of the auditing service list
is realized by the Fisher-Yates-Durstenfeld random permutation [13].

5.1 Experimentation

We assume 1 KB of private data PDu and an auditing service list ASu consisting
of the addresses and the public signing keys of the p = 100 auditing services.
The address is 128-bit, the size of an IPv6 address [15]. The public signing key is
526-bit due to compression of the point on the P-521 curve. Thus is the service
list about 8 KB. Due to formatting overhead the user and each of his custodians
must exchange 24 KB in our simulation. The NFC specification [16] and serial
infrared communication [3] allow a baud rate of 115,200 bit per second (14.4 B/s).
With this baud rate the backup exchange and the restore exchange between a
user and one custodian each takes less than 2 s.

The most cost intensive building blocks we use are the ECC computations on
the P-521 curve and the generation of random coefficients for the secret sharing.

The most cost intensive operation of ECC is the scalar multiplication with
a time complexity of O(nk+1) for k = 2 if ordinary school book multiplication
is used and n = 2521 − 1,the order of the finite field. The implementation of the
scalar multiplication under the P-521 curve on the low end ARMv6-M architec-
ture by [19] is optimized for memory efficiency and takes about 84 million cycles.
On a 48 MHz processor this equals about 1.7 s for one scalar multiplication. Even
though the channel between a user and his custodian is secure one signature from
the custodian and one verification from the user is required for the user to know
the custodians capability to sign with his private key. This adds up to about 8
s but the required time can be decreased by using speed optimized implemen-
tations or a more powerful microcontroller. The secret sharing requires 521-bit
randomness for each random coefficient. Due to the structure of Shamir’s secret
sharing we require t − 1 521-bit strings. The built-in random number generator
of an ARM cortex M4 with the ARMv7-M architecture is capable of generating
a 32-bit random number every 40 cycles [2]. With t = 3 from our risk analysis
1042-bit of randomness are required. This can be generated in 1320 cycles, which
takes about 0.0000275 s if the processor runs at 48 Mhz.

The communication with the DL has costs and is kept to a minimum. Each
custodian writes a signed promotion message on the DL. It consists of the
hex representation of the ASCII string “SSIAWARE-PROMOTION”, the public
signing key of the custodian, the public signing key of the user to restore and
the public encryption key of the new user. The hex number requires 18-Bytes,
each key requires 66-Bytes in its compressed form, and the signature consists of
132-Bytes. This adds up to 348-Byte of raw information. In our simulation we
have up to 785-Bytes due to overhead from the serialized formatting.

The key k is 256-bit, but our secret-sharing scheme operates modulo the
13th Mersenne prime. Therefore, each share of the key can be up to 521-bit. The
policy consists of two small integers, h and y and contains further x keys each
of size 526-bit. Assuming y = 3 and x = 5, a complete message to an auditing
service can be send in less than 3 KB and should be secured via TLS [10].

216 P. Jakubeit et al.

A signed restore release message consists of the hex representation of the
ASCII string “SSIAWARE-RESTORE”, the public signing key of the user to
restore, the public signing key of the auditing service and the encrypted audit-
ing share. The hex number requires 16-Bytes, each key requires 66-Bytes, the
encrypted share also requires 66-Bytes, and the signature consists of 132-Bytes.
This adds up to 280-Byte of raw information. In our simulation we have up to
1 KB due to serialized formatting.

6 Discussion

We achieved a high likelihood for the user to restore and a low likelihood for
every other entity by requiring public commits to a DL.

Data can be written on any ledger. Exemplary for the Bitcoin (BC) ledger
the data is concatenated, padded and extended with its RIPEMD-160 [11] hash.
Then it is split into 20-Byte chunks and the minimum amount of BC is send to
each 20-Byte chunk (BC address) [5]. The minimum amount of a single trans-
action is 0.00000547 BC and the fee per byte is 0.00000014 BC.

For the conservative amount of 785-Bytes in our simulation this equals
0.00032492 BC (3.04 Euro for 9348.66BC/Euro) for each promotion message.
Each auditing service asj that writes a restore release to the DL is must
spend 0.0004278BC (3.95 Euro for 9348.66BC/Euro). The amount of custodi-
ans required for restore and the amount of auditing services required for restore
directly translate to costs. Exemplary Fig. 4 shows that the amount of custodians
directly translates to costs and to the risk rating of the AWARE protocol. The
thresholds show that an increase in the number of custodians reduces the worst
risk rating to very low with the tradeoff that the costs rise above 20 Euro. It also
shows that less than 3 custodians imply a rise of the risk rating to moderate.

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

Custodians (t)

C
os
ts

plot 1

0

5

10

15

20

25

R
is
k
ra
ti
ng

Cost of promotion messages
Risk rating of compromised custodians

Fig. 4. Plot of the cost of promotion messages with varying t custodians and the worst
risk rating of AWARE. The dotted lines indicate the threshold for the risk rating Very
Low (0–4), Low (5–20) or Moderate (21–79) [28].

SSI-AWARE 217

Other DL like the Ethereum ledger allow for smart contracts. Smart contracts
can be used to write the promotion message and the restore release directly
on the ledger. They can, however, also interact smart, thus performing gated
re-encryption. Auditing services would be required to have a specific key per
user. The user sends data to the smart contract which validates the policy and
performs re-encryption in case of a valid restore request. This would shift the
computation from the auditing services to the smart contracts for the increased
price of computation on the DL, while granting compliance to the policy.

A private ledger (e.g. Hyperledger [29]) of trusted nodes could also be used.
This decreases the cost to the power consumption of the auditing services. It must
further be guaranteed that the ledger is accessible to any participant without
authentication.

7 Conclusion and Future Work

Our AWARE protocol is built on physical trust relations towards custodians
and handles a potential compromise by requiring online auditing on a DL. The
exclusive information ρ in combination with the policy πu empowers the user to
be the only entity capable of restoring his backed up data with certainty. This
makes the AWARE protocol the only self-sovereign backup-and-restore protocol.
Backup-and-restore mechanisms in the literature make the trust assumption
either towards a TA, towards other participants or towards devices. We make
use of all these concepts, the auditing services, the custodians and the ISTs.
However, in the AWARE setting the user is sovereign. The only trust assumption
left is that the auditing services abide to the policy specified by the user. Future
research can look into concepts of enforcing the policy (e.g. smart contracts [6]
or trusted execution environments [25]). It is further desired to speed optimize
ECC computations on low end 32-bit microcontrollers for security parameters
of 256-bit.

The private data is held by the custodians and even in case of compromise
of multiple custodians there is no possibility to retrieve the private data with-
out notice. The auditing services involved are assumed to abide to the policy,
therefore, either the symmetric cipher used (AESGCM256) must be broken or
promotions on the DL are required to decrypt the private data. These promo-
tions reveal the identity of the compromised custodians and the user can engage.
The user remains in charge by being able to access the auditing log and perform
the access authorization. By just holding ρ instead of his private data the user
remains self sovereign.

References

1. Abraham, A.: Self-sovereign identity. Styria. EGIZ.GV.AT (2017)
2. Alkim, E., Jakubeit, P., Schwabe, P.: NewHope on ARM Cortex-M. In: Carlet,

C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 332–349.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6 19

https://doi.org/10.1007/978-3-319-49445-6_19

218 P. Jakubeit et al.

3. Angerstein, J.: Serial infrared specification. http://berk.tc/intercon/irda/IrPHY
1p4.pdf

4. Steinberg, T., Pon, B., Locke, C.: Private-sector digital identity in emerging mar-
kets (2019)

5. CryptoGraffiti: Cryptograffiti (2019). https://cryptograffiti.info/
6. Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the internet

of things. IEEE Access 4, 2292–2303 (2016)
7. ConsenSys AG: uPort (2017). https://www.uport.me/
8. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-The Advanced Encryption

Standard. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-04722-
4

9. John, R., David, R., John, G.: The digitization of the world - from edge to core
(2018)

10. Dierks, T.: TLS v 1.2 (2008). http://www.hjp.at/doc/rfc/rfc5246.html
11. Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: a strengthened version of

rIPEMD. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 71–82. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-60865-6 44

12. European Commission: Data protection in the EU (2016). https://www.eugdpr.
org/

13. Fisher, R.A., Yates, F.: Statistical Tables for Biological, Agricultural and Medical
Research. Nature, Oliver and Boyd Ltd., London (1943)

14. Happ, C., Melzer, A., Steffgen, G.: Trick with treat–reciprocity increases the will-
ingness to communicate personal data. Comput. Hum. Behav. 61, 372–377 (2016)

15. Hinden, R.: IPv6 specification (2017). http://www.hjp.at/doc/rfc/rfc2460.html
16. International Organization for Standardization: Radio frequency parameters for

communications at 13,56 MHz (2008)
17. International Organization for Standardization: ISO 27000 (2018)
18. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-

rithm (ECDSA). IJISS 1, 36–63 (2001)
19. Liu, Z., Seo, H., Castiglione, A., Choo, K.-K.R., Kim, H.: Memory-efficient imple-

mentation of elliptic curve cryptography for the internet-of-things. IEEE TDSC
16, 521–529 (2018)

20. Mart́ınez, V.G., Encinas, L.H., et al.: A comparison of the standardized versions
of ECIES. In: IAS. IEEE (2010)

21. Maurer, U.: Information-theoretically secure secret-key agreement by NOT authen-
ticated public discussion. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 209–225. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-
0 15

22. McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter
Mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30556-9 27

23. Miniwatts Data Group: World internet users and population stats (2019). https://
www.internetworldstats.com/stats.htm

24. NIST: FIPS 186-4-Digital Signature Standard (DSS). NIST (2013)
25. Sabt, M., Achemlal, M., Bouabdallah, A.: Trusted execution environment: what it

is, and what it is not. In: ISPA. IEEE (2015)
26. Sandhu, R.S., Samarati, P.: Access control: principle and practice. IEEE CM 32,

40–48 (1994)
27. Shamir, A.: How to share a secret. Commun. ACM 22, 133–138 (1979)

http://berk.tc/intercon/irda/IrPHY_1p4.pdf
http://berk.tc/intercon/irda/IrPHY_1p4.pdf
https://cryptograffiti.info/
https://www.uport.me/
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4
http://www.hjp.at/doc/rfc/rfc5246.html
https://doi.org/10.1007/3-540-60865-6_44
https://www.eugdpr.org/
https://www.eugdpr.org/
http://www.hjp.at/doc/rfc/rfc2460.html
https://doi.org/10.1007/3-540-69053-0_15
https://doi.org/10.1007/3-540-69053-0_15
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-540-30556-9_27
https://www.internetworldstats.com/stats.htm
https://www.internetworldstats.com/stats.htm

SSI-AWARE 219

28. Stoneburner, G., Goguen, A., Feringa, A.: Risk Management Guide. NIST (2012)
29. The Linux Foundation. Hyperledger. https://www.hyperledger.org/
30. The Sovrin Foundation: Sovrin (2017). https://sovrin.org/
31. Weisstein, E.W.: Mersenne prime (2019). http://mathworld.wolfram.com/

MersennePrime.html

https://www.hyperledger.org/
https://sovrin.org/
http://mathworld.wolfram.com/MersennePrime.html
http://mathworld.wolfram.com/MersennePrime.html

Internet of Things

Automated Security Analysis of IoT
Software Updates

Nicolas Dejon1,2 , Davide Caputo1 , Luca Verderame1 ,
Alessandro Armando1 , and Alessio Merlo1(B)

1 DIBRIS - University of Genova, Genova, Italy
{nicolas.dejon,davide.caputo,luca.verderame,alessandro.armando,

alessio.merlo}@unige.it
2 University of Technology of Compiègne, Compiègne, France

nicolas.dejon@etu.utc.fr

Abstract. IoT devices often operate unsupervised in ever-changing
environments for several years. Therefore, they need to be updated on
a regular basis. Current approaches for software updates on IoT, like
the recent SUIT proposal, focus on granting integrity and confidentiality
but do not analyze the content of the software update, especially the
IoT application which is deployed to IoT devices. To this aim, in this
paper, we present IoTAV, an automated software analysis framework
for systematically verifying the security of the applications contained
in software updates w.r.t. a given security policy. Our proposal can be
adopted transparently by current IoT software updates workflows. We
prove the viability of IoTAV by testing our methodology on a set of
actual RIOT OS applications. Experimental results indicate that the
approach is viable in terms of both reliability and performance, lead-
ing to the identification of 26 security policy violations in 31 real-world
RIOT applications.

Keywords: IoT applications · Software Updates · SUIT · Model
checking · Security policy

1 Introduction

The Internet of Things (IoT) is spreading into diverse application domains at
an unstoppable pace: homes, hospitals, means of transportation, manufacturing
-just to cite some- are all being affected by the coming of the IoT, and will
significantly benefit from its adoption. IoT devices collect, exchange, and pro-
cess data to support the dynamic and possibly even autonomous adaptation to
new and/or evolving contexts. Due to changing requirements, the functionalities
required by a device at deployment time is very likely to change in the future.

This work was partially funded by the Horizon 2020 project “Strategic Programs for
Advanced Research and Technology in Europe” (SPARTA).
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Laurent and T. Giannetsos (Eds.): WISTP 2019, LNCS 12024, pp. 223–239, 2020.
https://doi.org/10.1007/978-3-030-41702-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41702-4_14&domain=pdf
http://orcid.org/0000-0002-2802-0922
http://orcid.org/0000-0002-5408-4735
http://orcid.org/0000-0001-7155-7429
http://orcid.org/0000-0002-5246-2157
http://orcid.org/0000-0002-2272-2376
https://doi.org/10.1007/978-3-030-41702-4_14

224 N. Dejon et al.

The software stack of IoT devices, consisting of bootloader, operating system,
and application(s), will need frequent updates for a number of reasons: to offer
additional functionalities, to support new communication protocols, and/or to
patch software bugs (including security vulnerabilities).

Securing the IoT software update process is key to the security of the IoT.
To this end, the IoT ecosystem must be provided with the means to ensure the
integrity of the software updates, i.e., that the updated software has not been
tampered with by a malicious agent. The IETF IoT group is addressing the prob-
lem through the development of a new standard, Software Updates for Internet
of Things (SUIT) [19], for the software update process of IoT devices. In SUIT,
an IoT Software Maintainer (ISM) creates an update bundle, i.e., the firmware
image (composed of an operating system and an application) holding the core
logic of the IoT device. Then, the ISM uploads the updates to a distribution
server, the Update Server (US), that dispatches the update to the devices using
over-the-air (OTA) or wire technologies. The SUIT workflow has been designed
to enforce the integrity and the confidentiality of the software update, thus pro-
viding end-to-end security between the author of the update (i.e., the ISM) and
the device, even if an untrusted US mediates the process. This ensures a form
of end-to-end security between the (trusted) ISM and the devices.

Unfortunately, even when a mechanism such as SUIT is in place and ensures
the integrity of the software updates, there are no guarantees on the content
of the update. This shortfall implies that an ISM may introduce, wittingly or
not, an insecure software component that can compromise the security of the
updated device. For example, the Zigbee Worm [25], triggered using a malicious
firmware update, allowed the attackers to get full control over Philips Hue Smart
Lamps.

In this paper, we present the IoT Application Verification (IoTAV) Frame-
work, a novel analysis methodology that supports the automatic verification of
security properties in applications running on IoT devices. Given an IoT device
application in an executable format and a set of security properties, the frame-
work tries to determine if the app meets the expected security properties. This
is done by automatically (i) extracting the IoT app from the firmware image
(without the need of source code), (ii) building a formal (i.e., mathematical)
model of the app, and (iii) automatically evaluating a set of security properties
(i.e., a security policy) by leveraging state-of-the-art model checking techniques.
The framework enables the definition of security policies directly by the ISM
or by trusted third-party entities, e.g., the network operator or the IoT device
manufacturer.

IoTAV can be applied to both new and previously deployed devices. More-
over, it does not require the source code and, therefore, can be applied to
third party applications whose source code is not available. As we will see later
(cf. Sect. 3.5) it is almost independent of the hardware that will host and run the
application. Finally, the framework complements and leverages current firmware
updates workflows, including the new SUIT solution.

Automated Security Analysis of IoT Software Updates 225

To demonstrate the effectiveness of the proposed solution, we developed a
prototype implementation of IoTAV for the SUIT update process in the RIOT
ecosystem [24]. Finally, we validated the prototype against a set of 31 real-world
RIOT applications, thereby identifying 26 security policy violations.

Paper Organization. The rest of the paper is structured as follows. Section 2
introduces the major concepts of the IoT software update process and then
details the SUIT standard, along with its security limitations. Section 3 describes
our novel IoT Application Verification Framework for the automatic analysis of
the applications contained in the IoT updates. Furthermore, it provides the
specifications of a prototype implementation for the RIOT ecosystem. Section 4
discusses an assessment of IoTAV against real-world RIOT applications and
presents the collected results along with a discussion on the current limitations
of the approach. Section 5 analyzes the state-of-the-art proposals for securing IoT
software updates and for analyzing IoT apps, thereby underlying the differences
w.r.t. our approach. Finally, Sect. 6 provides some concluding remarks.

2 Software Updates for IoT Devices

The IoT software update process is an essential operation for maintaining a
suitable level of efficiency and security of IoT devices. Over the last few years,
the research community has been working on the definition of several IoT update
processes [20], among which the software update for resource-constrained devices
is still an open research challenge [1]. Resource-constrained devices, as specified
in RFC 7228 [7], use microcontrollers (like the Arm Cortex-M) on which they
run a real-time operating system such as Contiki, FreeRTOS or RIOT [14], just
to cite a few. To this aim, several firmware update solutions have been proposed
in the last years, like FOSE [11], The Update Framework (TUF)1, and Uptane
[21]. However, most of the proposed mechanisms are tied to specific operating
systems or hardware architectures, and thus, they are not general-purpose.

To overcome such limitations, the Internet Engineering Task Force (IETF)
is defining a standard for firmware updates called Software Updates for Internet
of Things (SUIT) [19]. The main goals of SUIT are interoperability (w.r.t. the
platform and the firmware distribution technology) and end-to-end security.

The SUIT standard, currently in draft status, includes a definition of the
firmware update architecture [17], an information model [18], and a manifest
description [16]. Hereafter, we define the firmware image as a binary file that
contains the complete software stack of an IoT device (i.e., the OS and the IoT
application), according to the terminology adopted by IETF [17]. The update
process involves the IoT devices to be updated, the IoT software maintainer,
and the Firmware Update Server, as sketched in Fig. 1.

The typical firmware update procedure works as follows: an IoT software
Maintainer compiles the OS and the IoT app and generates a new firmware
image. In the SUIT specification, firmware images comprise a manifest file that
1 https://github.com/theupdateframework/tuf.

https://github.com/theupdateframework/tuf

226 N. Dejon et al.

Fig. 1. A SUIT update scenario (inspired by [29]) where a developer is able to introduce
a malicious app in the update pipeline.

embeds information such as the location of the firmware image for delivery,
dependencies, cryptographic information, and device data. Both the firmware
and the manifest are then published onto the IoT Firmware Update Server, which
is responsible for storing the update and notifying the IoT devices about the
availability of a new update. On the device side, the firmware update is handled
by a firmware update module named Firmware Consumer, which retrieves both
the manifest and the firmware image.

Upon receiving a notification from the IoT Firmware Update Server, the
Firmware Consumer retrieves the manifest, checks the digital signature and the
firmware sequence number to ensure the integrity and the freshness of the update
image. If the verification succeeds, the IoT device pulls the firmware from the
URI provided in the SUIT manifest, and stores the firmware image on the flash
memory. The flash memory is divided into several memory regions (slots) con-
taining (i) the bootloader and (ii) two slots, one containing the current firmware
and the other is reserved for the update firmware. After the writing process, the
bootloader reads the metadata from the firmware slots and chooses to boot the
newest valid firmware. Using such an approach, an interruption in the update
process (e.g., due to power loss) cannot cause the system to boot an invalid,
corrupted or incompletely received image [29].

2.1 Security Issues in SUIT

The SUIT information model [18] defines a collection of security threats for the
update process. As discussed in [29], such threats can be categorized into: (i)
tampered firmware, (ii) firmware replay, (iii) offline device attack, (iv) firmware
mismatch, (v) flash memory location mismatch, (vi) unexpected precursor image,
(vii) reverse engineering, and (viii) resource exhaustion. Although the SUIT
model suggests a set of security requirements and countermeasures, it is worth
noticing that all these threats are related to the integrity and the confidentiality
of the update process only, while the content of the update is inherently assumed
as trusted. Therefore, the SUIT workflow allows an ISM to upload a firmware
image containing security vulnerabilities or malicious behaviors. Furthermore,

Automated Security Analysis of IoT Software Updates 227

SUIT allows the ISM to transfer its authority to another entity, e.g., a third-
party developer, that can deliver to the ISM some components of a software
update (e.g., the executable of the application to be updated) or triggers the
update process directly. In this case, the ISM has no mechanism to assess the
content of the external software components, and must fully trust the external
entity.

For instance, consider the scenario depicted in Fig. 1. The ISM delegates two
external developers (i.e., A and B) for updating the OS and the IoT application,
respectively. Let us assume that developer A is honest (i.e., she dispatches a
benign and reliable OS image), while developer B is malicious (i.e., she intro-
duces a malware IoT application). According to the SUIT workflow, the ISM
blindly composes the firmware image and dispatches the update to the Firmware
Server. Then, the IoT device only verifies the authenticity and the integrity of the
firmware image and installs the malware update. Such scenario depicts an actual
and widespread attack vector, as the Philips Hue smart lamps security incident
[25] and the Jeep Cherokee hack2 have been carried out by injecting malicious
software components inside the update process, without triggering any security
enforcement mechanism.

To reduce the impact of unreliable updates, we argue that the SUIT update
process needs to rely on a methodology to assess the security of the firmware
image and in particular, of the IoT application. Such a methodology must be
able to automatically evaluate the behavior of the firmware according to a set of
security requirements, in order to allow the same ISM to deliver only validated
and certified software updates. The security requirements can be defined directly
by the same ISM, the IoT device manufacturer, or by a trusted third-party entity
involved in the update process, like a Network Operator or a Device Operator,
as defined in the SUIT standard.

We also argue that the methodology should work as a black box (i.e., with-
out requiring the source code), in order to be systematically applied to any
executable provided by third-parties. Finally, we argue that the analysis pro-
cess must be carried out on the firmware image before it is submitted to the
SUIT pipeline, in order to leverage the security mechanisms provided by SUIT
to prevent any further modification of the image.

3 The IoT Application Verification Framework

In order to mitigate the aforementioned security concerns, we propose a
novel verification solution called the IoT Application Verification Frame-
work (IoTAV). IoTAV allows to automatically evaluate the security of the IoT
applications included in firmware images in a black-box fashion. In details,
IoTAV enables the definition of a set of security requirements, codified as a
security policy, that are then automatically evaluated on the application exe-
cutable using state-of-the-art model checking techniques. As depicted in Fig. 2,
IoTAV can be seamlessly included in the existing update pipeline, like the one
2 https://www.kaspersky.com/blog/blackhat-jeep-cherokee-hack-explained/9493/.

https://www.kaspersky.com/blog/blackhat-jeep-cherokee-hack-explained/9493/

228 N. Dejon et al.

defined in SUIT. IoTAV is able to detect malicious updates (dashed arrows),
thereby discarding those that doe n comply with the security policy and noti-
fying the ISM, without affecting the normal operation in case of secure updates
(solid arrows).

Fig. 2. SUIT update process with IoTAV. The IoTAV Server ensures that the IoT app
bundled in the software update is compliant with the security policy.

P.0

P.1

P.2

B.0

B.1

B.2

B.3

B.4

B.5

B.6

B.7

B.8

YES

NO

IoT Software Mainteiner

Sources

Compilation

Publish

Firmware
Update

IoTAV Server

Extract
Application

Firmware
Storage

Firmware
Update

Application

Application
Modelling

Model
Model

Checking

Policy

Success?

PDB

Firmware
Update

Packaging &
Delivery

Discard &
Notification

Update
Available

Update
Discarded

Fig. 3. The IoTAV verification workflow.

3.1 Formal Security Assessment Workflow

IoTAV features are granted by the workflow depicted in Fig. 3. Initially, the
ISM compiles (P.0) and generates the firmware image update (P.1). Then, she
publishes the executable (P.2) to the IoTAV Server, which stores the firmware
update in a database (Firmware Storage). Then, an application extraction proce-
dure is applied to the firmware image (B.0) to extract only the application part

Automated Security Analysis of IoT Software Updates 229

(B.1). After that, the application executable goes through a modeling phase
(B.2) that outputs the corresponding application model (B.3). Hence, the model
is passed (B.4) to a verification process that checks its compliance against the
security policy (B.5). Security policies are retrieved (B.6) from a policy database
(PDB) handling policy instances that can be customized over the configuration
of the single device. If the verification succeeds (B.7 → YES), IoTAV server
executes a packaging procedure for the firmware (B.8). Finally, it bundles the
system update following the regular SUIT publish procedure and notifies the
IoT Firmware Update Server. Otherwise (B.7 → NO), IoTAV Server notifies
the IoT Software Maintainer and discards the update. The notification contains
the results of the verification process (i.e., which parts of the model violates the
security policy and why).

3.2 Application Extraction and Modeling

The first step of the IoT app verification process is the model generation. To do
that, IoTAV parses the firmware image and identifies the part of the executable
related to the application logic. After that, the Application Modeling lifts the
application machine code to a higher-level language, usually an Intermediate
Representation (IR), by relying on a disassembler. From the IR, the service can
then deduce the structure of the application program. The IoT Application Veri-
fication Framework builds a complete application model through a fruitful combi-
nation of Control Flow Graphs (CFGs), Call Graphs (CGs), and Inter-procedural
Control Flow Graphs (ICFGs). A CFG is a directed graph made by nodes rep-
resenting basic blocks, e.g., pieces of branch-less code, chained through edges to
represent the control flow transfer. Although CFGs are widely used to model
all the possible execution paths of a function call [28], they are able to repre-
sent the control-flow of a single procedure only. To overcome such limitation,
IoTAV model generation procedure combines the CFGs of each procedure with
the calling relationship between them, through CGs, thereby obtaining the ICFG
of the whole application.

Algorithm 1 shows the pseudo-code of the ICFG construction algorithm. Each
call site node is a root node of its own (local procedure) CFG. It is referenced
in other computed CFGs since its procedure is called by the other ones. As a
consequence, the app icfg contains a list of the CFGs rooted at the start node
and at each callee node, each related to another one by reference. Hence, by
constructing the ICFG from an executable, IoTAV gets the structure of the
entire application.

Nevertheless, since the IoT Application Verification Framework aims to
describe the behavior of a system from a security standpoint, any operation
which is not security-relevant is abstracted away. Therefore, the Application
Modeling block records only security-relevant operations defined in the security
policies, notably, file operations, cryptographic primitives, and network proce-
dures. All irrelevant API (Application Programming Interface) calls that are
invoked in a sequential way or in a conditional way (branches) are grouped and

230 N. Dejon et al.

Algorithm 1. Compute the ICFG from local CFGs
1: procedure ICFG construction
2: app icfg ← []
3: start node ← get the entry node
4: callees nodes ← get callees and callees of callees
5: add local CFG of start node to app icfg
6: for callee node ∈ callees nodes do
7: add local CFG of callee node to app icfg
8: end for
9: return app icfg
10: end procedure

then pruned. This way, IoTAV optimizes the application model for the model
checking phase.

3.3 Policy Specification

A policy describes the properties that must hold in the model, while proper-
ties mirror a system description that can be formally expressed. In detail, the
IoT Application Verification Framework allows the definition of security proper-
ties that need to be enforced in the IoT application once it is encapsulated inside
the firmware update. Following the same approach of [3] and [2], IoTAV enables
the definition of security policies on the interaction between the IoT application
and the underlying OS in terms of API calls. Since the ICFG extracted from the
application can be interpreted as a state graph, IoTAV uses Temporal Logic for-
mulas, namely Linear Temporal Logic (LTL) [12] and Computational Tree Logic
(CTL) [13]. An LTL formula describes a pattern for a sequence of events. Any
actual sequence of events may match or not the pattern. Hence, one can express
properties about the sequence of events with temporal operators. For example,
from a given state, Fp (“eventually”) means the property p will eventually hold
at some point in the future, while Gp (“globally”) means that the property p
always holds in the future.

Instead, the Computation Tree Logic is based on a branching notion of time,
meaning that its model of time is a tree-like structure in which the future is not
determined. CTL considers different paths in the future, any one of which might
be an actual path that occurs. Indeed, such a notion of time can represent the
possible execution of a software program. In order to express if a property holds
for all paths or some of them, two quantifier operators are introduced: the A
operator (“for all paths”) and the E operator (“there exists a path”).

For example, the formula “AGp” states that the property p should hold at
each state of any path, whereas the formula “EGp” states that there exists a
path where the property p always holds (and eventually some paths that never
hold property p).

Finally, IoTAV policies enable the definition of security properties in terms
of a logical expression to be evaluated, as in the following example.

Automated Security Analysis of IoT Software Updates 231

1 "never_fread" : A [G FRD =0];

Here, the sample policy bans any use of the fread C function. It states that
along any path from the initial state, no state should set the FRD variable. In
other words, the variable representing the fread function should never be part
of the application model.

3.4 Model Checking

In order to verify the policy compliance of the IoT application, the IoT Appli-
cation Verification Framework leverages model checking techniques that have
been successfully applied to numerous real-world problems. Model checking can
be mapped to a reachability problem, i.e., checking whether the model of the
application cannot reach an undesirable state. Applying Temporal Logic policies
to the model allows to verify some properties at any time (or state of the sys-
tem). The model checking process ends up with a compliance result, that states
whether the security policy is satisfied by the application model.

In order to prevent unbounded computations that are unacceptable in
IoTAV workflow, the Model Checking module includes a timeout mechanism.
Thus, the model checker produces three possible results: (i) YES – the model
complies with the policy; (ii) NO - the model violates the security policy; or (iii)
TIMEOUT (TO) – the time threshold has been reached.

One of the most critical issues in model checking is the so-called state explo-
sion problem [10]. In order to check some properties, the model checker needs to
explore the entire state space, which increases the complexity as the number of
states grows large. Our security model addresses this problem by reducing the
analysis to the sole security-sensitive operations, thus limiting the size of the
corresponding model.

3.5 IoTAV Implementation

In order to evaluate the feasibility and effectiveness of the IoT Application Ver-
ification Framework, we developed a prototype implementation of IoTAV as a
server appliance compatible with the SUIT update process for a RIOT ecosys-
tem. It is worth noticing that, although the IoT Application Verification Frame-
work is compatible with a generic SUIT update process, the focus of this proto-
type is the compliance with the current RIOT implementation.

SUIT in the RIOT Ecosystem. RIOT [5] is an open-source OS, based on a
modular architecture built around a soft real-time micro-kernel. RIOT is struc-
tured in software modules that are aggregated at compile-time, around a kernel
providing core functionality like process scheduling, inter-process communica-
tion, and threading. This approach allows building the complete system in a
modular manner, including only modules that are required by the application
at stake. One of these modules is the application module, which contains the
IoT application.

232 N. Dejon et al.

RIOT implements the SUIT update described in Sect. 2. The RIOT update
firmware is a bundle that contains both the OS and the IoT application in a single
Executable and Link Format (ELF) file. The IoT Software Maintainer can (i)
build the update, (ii) generate the corresponding manifest file, and (iii) push
them to the IoT Firmware Update Server, by using a suit/publish command3.
On the device side, after the board boots the new firmware, RIOT starts two
threads: the idle thread and the main thread. The main thread is the first thread
that runs and calls the main function. This function needs to be defined by the
user application.

Application Modeling. Concerning static code analysis, the angr framework4

is one of the most popular frameworks used in top-ranked teams of the DARPA
Cyber Grand Challenge. It is a python-based binary analysis framework that
currently supports the most common architectures, including x86, ARM, MIPS,
and AMD, and it allows to retrieve the CFG of a program from its executable.
IoTAV uses this tool to extract the CFG of each program procedure and to
compute the overall ICFG. Since the entry point of the user application is the
main function, the IoTAV computes the ICFG from there, which lets the analysis
focus only on the application. For this, angr can be configured to begin the ICFG
recovery directly from the main symbol in the program.

Policy Specification and Model Checking. PRISM (Probabilistic Symbolic
Model Checker) [22] is one of the many existing model checkers. It is free, open-
source, and it analyzes complex systems according to probabilistic behaviors.
It also supports the model checking of non-probabilistic properties using LTL
and CTL. The latter capability supports the definition of the IoTAV security
policies. Indeed, the properties we would like to check with PRISM are the use
of APIs and the call ordering in all execution paths. We mainly focus on APIs
with a security meaning, because they are the only ones relevant in a security
policy, notably any file operation or crypto primitive.

With non-probabilistic expressions, PRISM can also generate counterexam-
ples and witnesses for further investigation on a failed property verification. Such
a feature allows manual investigation as a post-process to determine the reasons
that caused the policy check to fail.

Hence, the IoTAV Server embeds PRISM for the model checking phase,
thereby adopting security policies in LTL and CTL. However, since the PRISM
model checker needs to be fed with a model in its own PRISM language, we
added a conversion block from the recovered ICFG to the PRISM language.
PRISM can then compare these policies to the application model.

4 Experimental Evaluation

We carried out an experimental evaluation of IoTAV to prove the viability of
our proposal and evaluate the impact on the SUIT update process. The exper-
imental scenario is composed by an ISM which deploys updates verified by an
3 https://github.com/RIOT-OS/RIOT/tree/master/examples/suit update.
4 https://github.com/angr/angr.

https://github.com/RIOT-OS/RIOT/tree/master/examples/suit_update
https://github.com/angr/angr

Automated Security Analysis of IoT Software Updates 233

IoTAV in an IoT ecosystem made of RIOT-based devices. More specifically, the
experimental setup is defined as follows.

IoT Applications. We took into consideration two sets of RIOT applications.
The first one is composed of 21 RIOT sample applications available on the official
repository5, while the latter is made by 10 RIOT applications used for a demo
dashboard6 use case by the RIOT Development Team. In particular, the latter
set contains a series of collecting nodes of environmental data (e.g., temperature,
humidity, and pressure) that rely on CoAP [26] and MQTT [15] protocols to send
their data to a real-time visualization dashboard.

SUIT Setup. We setup a standard SUIT environment composed by a Firmware
Update Server connected over-the-air to a SAMR21 Xplained Pro evalua-
tion board7 equipped with RIOT OS Release 2019.07. Then, we deployed an
IoTAV Server, according to the scenario depicted in Fig. 2. Finally, we simulated
the ISM, thereby producing a set of firmware images for the update that are then
pushed to the IoTAV Server to trigger the SUIT update process. In detail, each
of the application under test is bundled with the OS on the evaluation board
(i.e. RIOT OS Release 2019.07) to build the corresponding firmware image. Both
the Firmware Update Server and IoTAV Server executes on two entry-level PCs
equipped with Ubuntu 18.04.2 LTS, Intel Pentium (R) P6200 @2.13 GHz * 2,
4 GB of RAM and 50 GB HDD.

Security Policies. We defined a set of security policies describing three of the
OWASP IoT Top 10 Vulnerabilities 20188. The first two enforce the confiden-
tiality of (i) the data transfer using the MQTT protocol and of (ii) the local
file storage, as recommended in the “Insecure Data Transfer and Storage” - #7
OWASP Risk. The third policy enforces the exclusion of insecure or deprecated
C functions in IoT apps, as suggested in the “Use of Insecure or Outdated Com-
ponents” - #5 OWASP Risk.

Hence, we defined the following three PRISM policy expressions:

1 "mqtt_enc" : A [G MQPB=1 => (CPH_ENC =1 | AES_ENC =1 |

CHA_ENC =1 | CHA_POLY_ENC =1)];

2 "st_enc" : A [G (FPRNT =1 | FWRT=1 | FPTS=1 | FPTC =1) => (

CPH_ENC =1 | AES_ENC =1 | CHA_ENC =1 | CHA_POLY_ENC =1)];

3 "uns_c" : A [G SCPY=0 & SNCPY =0 & SCT=0 & SNCT=0 & SPRNT

=0 & VSPRNT=0 & GTS=0 & MKPTH =0 & SPTH=0 & SCF=0 &

SSCF=0 & SNSCF=0 & ATI=0 & ATF=0 & ATL =0];

The first expression (mqtt enc) ensures that the data are encrypted when
sent through MQTT using one of the following cypher algorithms cipher -
encrypt, aes encrypt, chacha encrypt bytes or chacha20poly1305 encrypt.

5 https://github.com/RIOT-OS/RIOT/.
6 http://riot-demo.inria.fr.
7 https://www.microchip.com/DevelopmentTools/ProductDetails/ATSAMR21-
XPRO.

8 https://www.owasp.org/index.php/OWASP Internet of Things Project.

https://github.com/RIOT-OS/RIOT/
http://riot-demo.inria.fr
https://www.microchip.com/DevelopmentTools/ProductDetails/ATSAMR21-XPRO
https://www.microchip.com/DevelopmentTools/ProductDetails/ATSAMR21-XPRO
https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project

234 N. Dejon et al.

Instead, the second expression (st enc) grants that data are encrypted whenever
they are written on a file through fprintf, fwrite, fputs or fputc C functions.

To represent both mqtt enc and st enc, we relied on the “=>” (implication)
operator in PRISM which states that when the left side condition is satisfied,
the right side should be satisfied as well.

Finally, the uns C policy verifies that none of the insecure C functions
(strcpy, strncpy, strcat, strncat, sprintf, vsprintf, gets, makepath,
splitpath, scanf, scanf, sscanf, snscanf, atoi, atof, atol) is used in the
application.

4.1 Experimental Results

Table 1 summarizes the analysis results on the entire dataset. For each of the ana-
lyzed applications, we provide general details (name and Size of the executable),
the execution times (Modeling time, Verification time, and Total time), and
the results of the verification on the three policies. Since our analysis unveiled
some vulnerabilities in the RIOT applications, we reported our findings to the
RIOT Development Team.

Policy Verification Results. IoTAV was able to successfully analyze 28 out
of the 31 IoT applications. Angr failed when trying to analyze the remaining
three applications; as a consequence, IoTAV was not able to extract the model.

The outcome of IoTAV verification process showed that the node mqtt -
bmx280 application (belonging to the demo dashboard use case) does not comply
with the mqtt enc property, thereby indicating that the MQTT communication
is unencrypted, and thus, the data are transmitted insecurely through the net-
work. Since the source code of the application is available on Github9, we both
inspected the source code and tested the application to validate our findings. The
manual analysis confirmed that data are published to an MQTT broker unen-
crypted. Besides, we were able to execute the node on the evaluation board. We
successfully intercepted the plaintext data traffic sent by the application through
the tcpdump tool. Also, the emcute mqttsn application failed the mqtt enc prop-
erty as well.

Furthermore, IoTAV discovered that lua basic and lua repl applications do
not comply with the st enc policy, since they include some file storage operations
without the adoption of any encryption support in place.

Finally, the experimental results show that the 71% of the dataset (22 out of
31) violate the uns c, and thus adopting insecure or deprecated C primitives.

Notes on Performance. IoTAV successfully evaluated the applications of the
dataset with a mean processing time of 191.2 s. The modeling generation phase
takes on average 80% of the total processing time, while the model checking
phase takes, on average, 20% of that time. The simplification and conversion
phases have negligible impact on the global performance.
9 https://github.com/future-proof-iot/riot-firmwares/tree/master/apps.

https://github.com/future-proof-iot/riot-firmwares/tree/master/apps

Automated Security Analysis of IoT Software Updates 235

Table 1. Execution times and policy verification results.

Time Policies

Applications S [kB] M [s] V [s] Tot [s] uns c mqtt enc st enc

default 72.7 53.0 13.0 66.0 ✗ ✓ ✓

ccn-lite-relay 335.2 169.0 138.0 308.0 ✗ ✓ ✓

cord ep 255.0 161.0 84.0 247.0 ✗ ✓ ✓

asymcute mqttsn 249.9 165.0 76.0 243.0 ✗ ✗ ✓

saul example 49.3 39.0 10.0 49.0 ✗ ✓ ✓

ipc pingpong 38.4 31.0 8.0 39.0 ✗ ✓ ✓

hello world 33.9 29.0 6.0 35.0 ✗ ✓ ✓

timer periodic wu 43.8 37.0 11.0 48.0 ✗ ✓ ✓

filesystem 107.1 100.0 18.0 118.0 ✗ ✓ ✓

bindist 33.9 31.0 7.0 38.0 ✗ ✓ ✓

ndn ping 181.5 147.0 136.0 284.0 ✗ ✓ ✓

gnrc minimal 157.6 195.0 59.0 255.0 ✗ ✓ ✓

nanocoap server 184.1 312.0 123.0 436.0 ✗ ✓ ✓

gcoap example 249.9 427.0 171.0 600.0 ✗ ✓ ✓

cord epsim 195.9 337.0 140.0 479.0 ✗ ✓ ✓

emcute mqttsn 235.8 476.0 133.0 611.0 ✗ ✗ ✓

gnrc networking 282.3 606.0 185.0 792.0 ✗ ✓ ✓

gnrc tftp example 286.6 638.0 208.0 848.0 ✗ ✓ ✓

posix sockets example 240.3 664.0 195.0 861.0 ✗ ✓ ✓

lua basic 335.3 5003.0 1658.0 6668.0 ✗ ✓ ✗

lua repl 339.6 6099.0 1688.0 7794.0 ✗ ✓ ✗

dashboard riot a8 m3 2400.0 1517.0 133.0 1652.0 ✗ ✓ ✓

node bmp180 3500.0 N.A. N.A. N.A. N.A N.A N.A.

node bmx280 3500.0 201.0 43.0 245.0 ✓ ✓ ✓

node ccs811 3500.0 N.A. N.A. N.A. N.A N.A N.A.

node empty 3400.0 137.0 29.0 167.0 ✓ ✓ ✓

node imu 2600.0 N.A. N.A. N.A. N.A N.A N.A.

node io1 xplained 3400.0 117.0 27.0 144.0 ✓ ✓ ✓

node leds 3400.0 112.0 27.0 140.0 ✓ ✓ ✓

node mqtt bmx280 3400.0 110.0 34.0 144.0 ✓ ✗ ✓

node tsl2561 3500.0 179.0 35.0 214.0 ✓ ✓ ✓

236 N. Dejon et al.

4.2 Limitations

The experimental results show both the effectiveness and the applicability of
IoTAV in the SUIT update workflow, although its adoption comes with some
restrictions. First, the evaluation techniques applied by IoTAV on the firmware
image work with unstripped executables only, i.e., binaries containing symbols.
Nevertheless, to the best of our knowledge, no tool is still able to extract CFGs
without any available symbols that could otherwise be used in combination with
our model extractor. Therefore, to overcome this limitation, we propose to add
the possibility to strip the firmware only after the policy verification step. To this
aim, the SUIT process for RIOT applications is still under active discussion and
could eventually include this feature. In addition to that, the static evaluation
of security policies may not cover all possible use cases for an IoT application.
For example, if one security property requires to detect whether a file has been
closed after being opened, the variable monitoring this property will still be
set even if the file is later reopened, thereby potentially affecting the results of
the analysis. To mitigate such issues, we are investigating the introduction of a
runtime monitoring technique, by extending the approach in [4].

Finally, applications have been manually verified afterwards, with no false
positives. However, we noticed that some applications are not expected to verify
the policies, albeit the verification step succeeds. For example, this is the case
of asymcute mqttsn, an asynchronous MQTT-SN implementation, marked as
meeting the mqtt enc policy even if no encryption is used for the published
data. This is due to the fact that the API asymcute pub is not listed among the
relevant APIs in the security policy. Such a result underlines how crucial is the
definition of appropriate security policies to be used in the IoTAV to avoid false
negatives.

5 Related Work

The increasing number of vulnerabilities found in IoT devices have raised the
need for reliable methodologies for securing firmware updates. To this aim, the
scientific and industrial communities have proposed different solutions. In [29],
Zanberg et al. survey open standards and open source libraries that provide
useful building blocks for secure firmware updates for resource-constrained IoT
devices. The authors propose the design and the implementation of a prototype
that leverages these building blocks. Bettayeb et al. [6] discuss security threats
against firmware update for IoT devices and all available secure firmware update
methods for IoT devices in the literature, like [20]. However, all of these works
are focused only on providing end-to-end security between the IoT Firmware
Update Server and the device, but they do not deal with the analysis of the IoT
application.

On this topic, some proposals for static and dynamic analysis of IoT appli-
cations have been already put forward. Soteria [8] and IotSan [23] are static
analysis systems that automatically extract a model of an IoT application and
use a model checker to validate application-specific properties. However, they

Automated Security Analysis of IoT Software Updates 237

require the source code of the application. On the dynamic side, IoTGuard [9]
is a policy-based enforcement system that monitors the execution of IoT appli-
cations. IoTGuard requires to instrument the source code to collect application
data at runtime and build up a dynamic model that represents the runtime
behavior of the application. The limitation of this approach is its invasiveness as
well as the need to modify the business logic of the application. Previous solutions
focus only on a single application, while SIoT [27] is the first tool that analyzes
distributed IoT applications to detect buffer overflow attacks. The authors’ idea
is to look at a distributed IoT system as a single monolithic application.

Our proposal extends the current state of the art by allowing us to sys-
tematically verify the compliance of the binary code of IoT applications w.r.t.
user-defined security policies without the need to modify applications.

6 Conclusion

In this paper, we introduced a novel methodology, called IoT Application Veri-
fication Framework (IoTAV), for the systematic assessment of IoT applications
w.r.t. a set of given security properties. We applied such a methodology to the
assessment of software updates in the IoT ecosystem. We proved the viability of
our proposal experimentally by carrying out automatic analyses of RIOT appli-
cations on an actual deployment based on the SUIT update pipeline. The results
yielded the identification of 26 security policy violations in 31 real-world RIOT
applications.

As future work, we will deal with the limitations described in Sect. 4, at first.
Then, the next step of our research will be to test the methodology on other
IoT architectures, OSes and firmware update workflows. Finally, although we
defined a set of policies based on the OWASP IoT Top 10 security risks, we argue
that novel and more comprehensive security policies should be investigated and
defined. To this aim, the interaction among IoT developers, network operators,
and device manufacturers could lead to the definition of more sophisticated and
widely-accepted security policies.

References

1. Padilla, F.J.A., Baccelli, E., Eichinger, T., Schleiser, K.: The future of IoT soft-
ware must be updated. In: IAB Workshop on Internet of Things Software Update
(IoTSU) (2016)

2. Armando, A., Costa, G., Merlo, A., Verderame, L.: Enabling BYOD through secure
meta-market. In: Proceedings of the 2014 ACM Conference on Security and Privacy
in Wireless Mobile Networks, WiSec 2014, pp. 219–230. ACM, New York (2014)

3. Armando, A., Costa, G., Merlo, A., Verderame, L.: Formal modeling and automatic
enforcement of Bring Your Own Device policies. Int. J. Inf. Secur. 14, 123–140
(2015)

4. Armando, A., Costa, G., Verderame, L., Merlo, A.: Securing the “bring your own
device” paradigm. Computer 47, 48–56 (2014)

238 N. Dejon et al.

5. Baccelli, E., et al.: RIOT: an open source operating system for low-end embedded
devices in the IoT. IEEE Internet Things J. 5, 4428–4440 (2018)

6. Bettayeb, M., Nasir, Q., Talib, M.A.: Firmware update attacks and security for
IoT devices. In: Proceedings of the ArabWIC 6th Annual International Conference
Research Track, ArabWIC 2019. ACM (2019)

7. Bormann, C., Ersue, M., Keranen, A.: Terminology for constrained-node networks.
Internet Engineering Task Force (IETF), Fremont, CA, USA (2014)

8. Celik, Z.B., McDaniel, P., Tan, G.: SOTERIA: automated IoT safety and security
analysis. In: Proceedings of the 2018 USENIX Annual Technical Conference (2018)

9. Celik, Z.B., Tan, G., McDaniel, P.: IoTGuard: dynamic enforcement of security
and safety policy in commodity IoT. In: Network and Distributed Systems Security
(NDSS) Symposium 2019 (2019)

10. Clarke, E.M., Klieber, W.: Model checking and the state explosion problem. Tech-
nical report (2011)

11. Doddapaneni, K., Lakkundi, R., Rao, S., Kulkarni, S., Bhat, B.: Secure FoTA
object for IoT. In: 2017 IEEE 42nd Conference on Local Computer Networks Work-
shops (LCN Workshops) (2017). https://doi.org/10.1109/LCN.Workshops.2017.78

12. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic veri-
fication of linear temporal logic. PSTV 1995. IAICT, pp. 3–18. Springer, Boston,
MA (1996). https://doi.org/10.1007/978-0-387-34892-6 1

13. Goldblatt, R.: Logics of time and computation. Center for the Study of Language
and Information, Stanford (1992)

14. Hahm, O., Baccelli, E., Petersen, H., Tsiftes, N.: Operating systems for low-end
devices in the Internet of Things: a survey. IEEE Internet Things J. 3, 720–734
(2015)

15. Hunkeler, U., Truong, H.L., Stanford-Clark, A.: MQTT-S - a publish/subscribe
protocol for wireless sensor networks. In: 2008 3rd International Conference on
Communication Systems Software and Middleware and Workshops (COMSWARE
2008) (2008)

16. IETF: Firmware manifest format (2019). https://tools.ietf.org/html/draft-moran-
suit-manifest-01. Accessed 11 Sept 2019

17. IETF: Website of: A firmware update architecture for internet of things
devices draft-ietf-suit-architecture-06 (2019). https://tools.ietf.org/pdf/draft-ietf-
suit-architecture-06.pdf. Accessed 11 Sept 2019

18. IETF: Website of: Firmware updates for internet of things devices - an information
model for manifests draft-ietf-suit-information-model-03 (2019). https://tools.ietf.
org/html/draft-ietf-suit-information-model-03. Accessed 11 Sept 2019

19. IETF: Website of: Ietf suit draft architecture (2019). https://tools.ietf.org/html/
draft-ietf-suit-architecture. Accessed 7 Aug 2019

20. Kolehmainen, A.: Secure firmware updates for IoT: a survey. In: 2018 IEEE Inter-
national Conference on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social Comput-
ing (CPSCom) and IEEE Smart Data (SmartData) (2018)

21. Kuppusamy, T.K., DeLong, L.A., Cappos, J.: Uptane: security and customizability
of software updates for vehicles. IEEE Veh. Technol. Mag. (2018). https://doi.org/
10.1109/MVT.2017.2778751

22. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

https://doi.org/10.1109/LCN.Workshops.2017.78
https://doi.org/10.1007/978-0-387-34892-6_1
https://tools.ietf.org/html/draft-moran-suit-manifest-01
https://tools.ietf.org/html/draft-moran-suit-manifest-01
https://tools.ietf.org/pdf/draft-ietf-suit-architecture-06.pdf
https://tools.ietf.org/pdf/draft-ietf-suit-architecture-06.pdf
https://tools.ietf.org/html/draft-ietf-suit-information-model-03
https://tools.ietf.org/html/draft-ietf-suit-information-model-03
https://tools.ietf.org/html/draft-ietf-suit-architecture
https://tools.ietf.org/html/draft-ietf-suit-architecture
https://doi.org/10.1109/MVT.2017.2778751
https://doi.org/10.1109/MVT.2017.2778751
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

Automated Security Analysis of IoT Software Updates 239

23. Nguyen, D.T., Song, C., Qian, Z., Krishnamurthy, S.V., Colbert, E.J., McDaniel,
P.: IotSan: fortifying the safety of IoT systems. In: CoNEXT 2018 - Proceedings
of the 14th International Conference on Emerging Networking EXperiments and
Technologies (2018)

24. RIOT: Riot-os (2019). https://www.riot-os.org. Accessed 7 Aug 2019
25. Ronen, E., Shamir, A., Weingarten, A.O., Oflynn, C.: IoT goes nuclear: creating a

Zigbee chain reaction. IEEE Secur. Priv. 16, 54–62 (2018)
26. Shelby, Z., Castellani, A.P., Bormann, C.: CoAP: an application protocol for bil-

lions of tiny internet nodes. IEEE Internet Comput. 16, 62–67 (2012)
27. Teixeira, F.A., Pereira, F.M., Wong, H.C., Nogueira, J.M., Oliveira, L.B.: SIoT:

securing Internet of Things through distributed systems analysis. Future Gener.
Comput. Syst. 92, 1172–1186 (2019)

28. Xu, L., Sun, F., Su, Z.: Constructing precise control flow graphs from binaries.
Technical report, University of California (2009)

29. Zandberg, K., Schleiser, K., Acosta, F., Tschofenig, H., Baccelli, E.: Secure
firmware updates for constrained iot devices using open standards: a reality check.
IEEE Access 7, 71907–71920 (2019)

https://www.riot-os.org

Towards a Context-Aware Security
and Privacy as a Service in the Internet

of Things

Tidiane Sylla1,3(B) , Mohamed Aymen Chalouf2 , Francine Krief1 ,
and Karim Samaké3

1 University of Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR 5800,
33400 Talence, France

tidiane.sylla@u-bordeaux.fr
2 University of Rennes 1, CNRS, IRISA Lab, UMR 6074, 22300 Lannion, France

3 University of Sciences Techniques and Technologies Bamako, Bamako, Mali

Abstract. Smart city is one of the most known Internet of Things
(IoT) applications. The smart city services improve user’s daily lives.
However, security and privacy issues are slowing down their adoption.
In addition, the characteristics of IoT devices, applications and users
make security implementation of the considered applications a challeng-
ing task. To address these issues, we present, in this paper, a new context-
aware security and privacy architecture for the IoT. Thanks to the “as
a service” approach, this new architecture will be user-centric. It will
also support known context-aware security issues: dynamicity, flexibility.
In addition, it will address mobility, customization of security and pri-
vacy services, and support for generic IoT applications, particularly for
smart city. To do so, a knowledge plane allowing effective management
of context-awareness is proposed. A security and privacy plane allow-
ing better implementation of context-aware security and privacy mecha-
nisms is also proposed. This will be done through dynamic composition
of context-based micro services. The role of the different components of
these two planes are also described.

Keywords: IoT · Security · Privacy · Context-awareness · As a
service · User-centric

1 Introduction

Internet of Things (IoT) applications enable advanced and intelligent services
that make users everyday life easier. In this work, we are interested in the smart
city field. It is a topical field and it includes a number of interesting IoT appli-
cations such as e-health, smart home, vehicular networks, etc. The implementa-
tion of smart city IoT applications and devices may involve risks related to the
users’s security and privacy (disclosure, espionage, theft, etc.). These problems
have been addressed in a large number of works [1,9,11].
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Laurent and T. Giannetsos (Eds.): WISTP 2019, LNCS 12024, pp. 240–252, 2020.
https://doi.org/10.1007/978-3-030-41702-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41702-4_15&domain=pdf
http://orcid.org/0000-0002-3781-6973
http://orcid.org/0000-0002-4653-7837
http://orcid.org/0000-0003-4702-9305
https://doi.org/10.1007/978-3-030-41702-4_15

Towards a Context-Aware Security and Privacy as a Service in the IoT 241

However, these solutions do not consider user’s characteristics, such as
privacy preferences, mobility, usability, etc. To overcome these problems, the
emphasis should be on a user-centric approach. Due to its importance and rel-
evance for IoT and other digital services, the European Telecommunications
Standards Institute (ETSI) has adopted several standards [4]. Indeed, it allows
users to play a central role in security and privacy. Thus, implementing secu-
rity and privacy mechanisms according to some relevant information about users
(e.g. contexts) and without their explicit intervention become necessary.

Furthermore, the security and privacy mechanisms specified in many research
works are proposed or implemented to address specific security threat models
to which the targeted system is exposed. Since the situation of a considered
user could change due to many factors (e.g. mobility), the threat models will
also change. Therefore, to ensure optimal security and address the detected
vulnerabilities properly, the implementation of several security mechanisms is
necessary according to different user situations.

Context-aware security and privacy is an effective way to implement user-
centric security and privacy. It will allow to manage the threat models related
to the users’ frequent context changes. This is done by dynamically deploying
security and privacy mechanisms that respond to the threat model characterizing
user’s current context without his intervention.

In this regard, different proposals have been introduced. However, to the best
of our knowledge, none of these works propose a solution that meets the require-
ments: secure context-awareness management, privacy, authentication, access
control and communication security. In addition, to meet next generation net-
works architecture requirements, security and privacy of the IoT could be based
on the “as a service” approach. This allows it to provide flexibility, dynamicity,
scalability, and better support for user mobility and heterogeneity [3].

That is why our work goes beyond existing works, by proposing a Context-
Aware Security and Privacy as a Service (CASPaaS) based architecture.
The main innovations of our work are the introduction of a knowledge plane,
responsible for managing context-awareness through Machine Learning (ML)
and Quality of Context (QoC), and a security and privacy plane, responsible for
implementing mechanisms through the dynamic composition of context-based
micro services.

The rest of the paper is organized as follows. Section 2 presents and compares
related works. Section 3 describes our contribution. Finally, Sect. 4 concludes the
paper and presents our further works.

2 Related Works

Context-aware security and privacy in the IoT has been the subject of several
studies. In this section, we compare the different proposed solutions and point
out the remaining challenges.

242 T. Sylla et al.

2.1 Proposed Solutions

A context-aware security and privacy solution in smart city IoT applications has
been proposed in [11]. This solution implements context-based security policy
management. It uses a combination of several contextual parameters (time, loca-
tion, network, speed) for context perception. It allows the user to define some
preferences (e.g. access control). The use of a combination of several contextual
parameters can help to determine the context with greater precision. However,
this paper has only focused on the implementation of policy-based security. It
does not support the security of contextual information management. Thus, this
mechanism is vulnerable to attacks of identity theft and fake location.

The solution described in [13] also implements context-aware security and pri-
vacy. Unlike the solution proposed in [11], the proposed context-awareness man-
agement system implements context information security. Nevertheless, Quality
of Context (QoC) is not taken into account in these solutions. Thus, the contexts
determined by these solutions can be subject to conflicts.

Context-aware privacy is complementary to context-aware security in the
IoT. Therefore, in [11], the authors described a privacy mechanism based on
pseudo-anonymization and delayed message delivery. Delayed message delivery
can prevent user tracking (e.g. in geolocation). In [13], the authors presented
a privacy system based on the anonymization of user’s data. However, pseudo-
anonymization and anonymization are vulnerable to inference attacks on user
data. In [9], a context-aware security module offering privacy is described. How-
ever, the authors did not provide details on the technique used in this module.

In [2], the authors focused on context-aware authentication. The proposed
mechanism uses a combination of username/password as an authentication fac-
tor, making it vulnerable to passwords attacks. In addition, the authors of [9]
and [11] addressed authentication and access control. However, the context-aware
security module proposed in [9] does not specifically define how authentication
and access control are sensitive to the context.

In [13], the authors proposed an access control mechanism based on contex-
tual access tokens. However, this mechanism does not enable user to dynamically
define authorizations. Moreover, it does not have the needed flexibility to sup-
port the aforementioned features. In addition, the authorization management
system is centralized, which can cause a single point of failure.

Context-aware communication security allows secure communications irre-
spective of whether the underlying networks are secured or not. However, none
of the studied works proposed a mechanism for communication security.

2.2 Positioning

The above-described works propose context-aware security solutions in the IoT.
Table 1 summarizes the comparison between these works. On the one hand, the
support of the proposed contextual security and privacy mechanisms are mostly
incomplete for the IoT. On the other hand, beyond these challenges, these works

Towards a Context-Aware Security and Privacy as a Service in the IoT 243

addressed the issues of context-aware security and privacy in a specific appli-
cation field. In IoT, each user can have several devices and applications. Thus,
proposing an architecture that allows to meet the requirements identified inde-
pendently of smart city IoT applications and devices becomes necessary.

Table 1. Comparison of work that has proposed context-aware security and privacy
solutions in the IoT

Works C.A.S

C.A

authentication

C.A

authorization

C.A

commu.

security

C.A

privacy

Context

mgmt.

security

As a

service

ITU-T ref.

arch.

integration

[11] Mentioned Mentioned No Yes No No No

[13] No Yes No Mentioned Yes No No

[2] Yes Mentioned No No No No No

[9] Mentioned Mentioned No Mentioned No No No

[1] No Yes No Yes No No No

[6] No No No Yes No No No

Proposition Yes Yes Yes Yes Yes Yes Yes

Furthermore, the need to move towards Software Oriented Architecture
(SOA) in the IoT is growing. On one hand, this is mainly due to the fact that
SOA enables component-based model. SOA allows designing a system into func-
tional parts [3]. On second hand, next generation networks are essentially soft-
ware defined. The architecture proposed supports context-aware security require-
ments. Moreover, it addresses challenges such as dynamicity, flexibility, mobil-
ity, customization, and support for generic IoT applications through secure API,
particularly for smart city.

3 Context-Aware Security and Privacy as a Service
Based Architecture

In this section, we give a detailed description of our contribution. We also high-
light main challenges related to the architecture implementation.

3.1 Overview

An effective context-aware security and privacy needs a separation between the
context-awareness management and the implementation of security and privacy
mechanisms. Indeed, the separation of the intelligence (i.e, context-awareness)
and the enforcement of security/privacy decisions enables more modularity and
flexibility. Thus, these features enable more dynamicity and adaptability in offer-
ing security and privacy to users. Therefore, the proposed architecture is divided
into two planes: Knowledge Plane (KP) and Security and Privacy Plane
(SPP). These planes will integrate ITU-T IoT reference architecture to provide
context-awareness and adaptive security and privacy (See AppendixA).

244 T. Sylla et al.

(a) Knowledge Plane (b) Security and Privacy Plane

Fig. 1. Context-aware security as a service architecture

Thanks to the “as a service” approach, the architecture can be integrated
into new service-oriented networks. Its addresses several challenges in securing
the IoT (Sect. 2.2). Therefore, the modules composing the different planes are
designed according to Virtual Network Function (VNF) requirements presented
in [7]. As a result, security and privacy for IoT applications will be dynamic,
flexible, customizable and user-centric.

The walking through example of our architecture operation will be the fol-
lowing. Bob is a diabetic patient living in a smart home. He is equipped with
a smart watch, which continuously monitors his glucose level and daily activi-
ties. The hospital’s smart healthcare system collects and processes Bob’s health
information in order to provide him with better healthcare and feeding.

3.2 Knowledge Plane

The Knowledge Plane (KP) (Fig. 1a) aims to provide specific and relevant con-
text and related information (e.g. risk level and preferences) to the SPP. Based
on this, the SPP will implement appropriate security and privacy mechanisms.
It is composed of modules necessary for the management of context life cycle,
i.e., context acquisition, modelling, reasoning and dissemination [12].

The first stage of context life cycle is context acquisition. The Context
Acquisition (CA) module receives context information from trusted context
sources (see Sect. 3.3). We refer by context source any device in the user’s envi-
ronment collecting context information. The CA module pre-processes (for exam-
ple a raw GPS sensor data must be put in a format that represents geographical
location) and stores context information, also called low-level context, in the
Context Information Base (CIB). For example, Bob leaves his house and is
walking in the street. In this case, following low-level contexts are sent to the
service: date and time, Bob’s location, Bob’s network and motion.

Towards a Context-Aware Security and Privacy as a Service in the IoT 245

The next step in the context processing is context modelling. This is done
by the Context Modelling (CM) module. Indeed, it represents the context
in terms of context attributes, characteristics and Quality of Context (QoC)
attributes. Then, the representation obtained is organized according to the cho-
sen model. Different context models exist: the key-value model, ontology-based
model, hybrid model, etc. [12]. The choice of a model depends on the its ability
to meet the requirements of the context modelling and the target application
domain. In the considered example, a key-value model is well adapted to the
situation because of its simplicity and flexibility in modelling such a situation.
These operations are performed in collaboration with the QoC module.

The QoC module aims to resolve conflicts in context determination. It is char-
acterized by a set of parameters. First, the module computes QoC parameters
(timeliness, reliability, completeness, importance) to measure the quality of the
low-level context received. Then, the results of these measurements will be inter-
preted to determine the existence of conflicts. Depending on the type of detected
conflict, it applies a set of policies to provide a context with a better-quality. For
example, user’s location sensing policy can be based on the up-to-dateness.

After context modelling, the next stage in context management is the context
reasoning. Context reasoning is the process of deduction high-level context from
several low-level context information. The output of the CM is used by the
Context Reasoning and Prediction (CRP) module to determine the high-
level context. Indeed, it infers on the low-level context information provided by
the CM using a context reasoning technique. In Bob’s case, the resulting high-
level context will be: “user is walking near the home”. There are several context
reasoning techniques, including ontology-based, machine learning, fuzzy logic,
etc. In our architecture, supervised learning technique will be used by the CRP
module, because of its good accuracy. The determined high-level context is first
validated by the QoC module. Then, the resulting high-level context is stored in
the Context Base (CB).

Finally, the last stage of the context management is the dissemination of
high-level contexts. Before context dissemination, the KP will assess the risk
level and user’s preferences associated with the context. These operations are
performed by the Risk Assessment Manager (RAM) and the User Prefer-
ences Management (UPM) modules. Then, the context, risk level and user’
preferences will be straightforward distributed to the SPP for making contex-
tual security decision. This context distribution is done by Context Dispatcher
(CD). The main context consumer in the SPP is the Context Security Poli-
cies Manager (CSPM) (Sect. 3.3). The dissemination of context and related
information to the CSPM is done through a publish/subscribe mechanism.

The RAM compute the risk level of a given context based on the threat model
associated to that context. In the considered example, Bob is at a public garden
with his friends. Bob’s devices (smartphone, smartwatch) are connected to the
public garden Wifi network. After the CD receives Bob’s new context, it sends it
to the RAM for risk assessment. The RAM assesses the given context risk based
on its threat model (unsecure network, eavesdropping, etc.), so high security risk

246 T. Sylla et al.

Fig. 2. CASPaaS modules and their interactions

in Bob’s case. Next, the RAM returns to the CD Bob’s context with the assessed
risk level. When the CD receives the context risk level, it gets the corresponding
user’ preferences from the UPM and sends them to the CSPM. The SPP can
use this new context and deploy appropriate security and privacy mechanisms.
Thus, the KP provides the necessary intelligence to the SPP. Figure 2 illustrates
interactions between the architecture components.

3.3 Security and Privacy Plane

The Security and Privacy Plane (Fig. 1b) addresses the identified context-aware
security and privacy functional requirements. It is divided into three functional
components: Privacy and Security Services (PSS), Context-Aware Secu-
rity and Privacy Management (CASP Mgmt) and Network and Archi-
tecture Security (NAS).

The PSS and CASP Mgmt components constitute the core of the SPP.
Indeed, the CASP Mgmt includes the modules in charge of contextual secu-
rity policies management and security of context-awareness management. The
PSS is composed of modules responsible for the enforcement of contextual secu-
rity and privacy decisions taken by the CASP Mgmt. Finally, the NAS includes
modules providing architecture and network security.

To provide secure context-awareness management, the architecture should
be able to gather secured contexts from trusted user IoT devices. The Device
Trust Management (DTM) is in charge of the management of contexts secu-
rity and the trustworthiness of context sources. First, context sources will send
encrypted context information to the DTM. A lightweight public key cryptog-
raphy for IoT devices will be used to this end. Second, user’s devices trustwor-
thiness should be established for each exchange. This will be based on devices
reputation. Device reputation will be assessed by computing the trustworthiness
of context it has sent. Third, the user should be able to manage his devices own-
ership. The Blockchain can be leveraged to achieve these goals. This choice is

Towards a Context-Aware Security and Privacy as a Service in the IoT 247

motivated by its following features. Firstly, Blockchain-based decentralized PKI
(Public Key Infrastructure) is well suited for IoT [5,15]. Secondly, smart con-
tracts features such as automated execution, transfer of property can help in
automatic reputation assessment [10]. It can also allow the user to control his
device’s ownership.

A core element of the context-aware security and privacy is the management
of contextual security policies. Thus, the Context Security Policy Manager
(CSPM) is in charge of selecting the contextual security policy corresponding to
a given context and related information (risk level, preferences). To do so, when
the CSPM receives a context and related information, it gets the corresponding
policy from the Context Security Policies Base (CSPB) and sends it to the
Context Security Policies Enforcer (CSPE).

The contextual security policy describes the security and privacy mechanisms
to be deployed in a specific context. The role of the CSPE module is to use the
security policy provided by the CSPM to order the enforcement of appropriate
security and privacy mechanisms. This enforcement will be done by the modules
of the PSS component. When a Contextual Security Policy (CSP) has to
be enforced, the CSPE will orchestrate the composition of micro services cor-
responding to the appropriate modules of the PSS component. For example,
the CSP can dictate the enforcement of the following mechanisms: two factor
authentication, renew devices authentication keys, and secure communication.

After the contextual security policy decision processing, the selected pol-
icy must be enforced by context-aware security and privacy mechanisms. Thus,
the Privacy, Authentication, Authorization and Communication mod-
ules are responsible of implementing these mechanisms. Besides, APIs will be
provided to ensure the genericity of the solution and its independence from the
IoT applications. This will enable the developers to export the security task of
their applications by calling the provided APIs.

The Privacy module will act as a privacy assistant. It will be able to contin-
uously analyze the data coming from user’s devices. Depending on the context,
it informs user if there is a proven risk to his privacy. It also implements the
rules provided by the CSPE.

The Authentication module is in charge of users and IoT devices. Thus,
according to the rules provided by the CSPE, a type of authentication is pro-
posed to the user (e.g. one factor, double factor). For a device, depending on the
context, the session key can be renewed.

The Authorization module will manage resources access control. To this
end, Blockchain can enables to define and manage the authorizations of an
entity in a distributed way. This can be done according to the operation of an
IoT application and based on user-centric approach. Indeed, an entity’s autho-
rizations must be represented in the form of tokens. Then it is entered in a smart
contract registered in the Blockchain. Through the UPM, the user should be able
to modify or revoke an authorization at any time. In all cases, the authorization
is dynamically updated and implemented by the module.

248 T. Sylla et al.

Communication security is needed in some contexts, especially for unsecured
networks. Thus, the Communication module role is, according to a context,
to secure communications between devices and applications by enforcing the
associated CSP. This can be done by implementing message security (payload)
of the application layer. Indeed, the effectiveness of message security in providing
secure communications to IoT devices over unsecured networks is proven [8].
Let’s suppose that the hospital healthcare system needs to pull Bob’s glucose
level. Bob’s context is at the public garden. For this context, the CSPM provides
a CSP specifying secure communication and privacy to the CSPE. The result of
that is the establishment of secure communications between Bob’s smartwatch
and the hospital’s healthcare system prior to any data transmission. After secure
communication’s setup, Bob’s glucose level is anonymized/obscured.

Finally, the architecture should be virtualized and deployed as a service. To
this end, it must be secured in order to prevent possible attacks (e.g. denial of
service). The role of Security Management (SM) is to ensure the security of
the entire architecture. It implements a firewall and deep packet inspection for
mitigating attacks against availability. It also addresses the user’s mobility and
devices heterogeneity. To do so, CSP rules will be sent to devices by leveraging
SDN (Software Defined Network) capabilities.

The Network Traffic Policy Management (NTPM) module is responsi-
ble for transmitting rules to devices. It dictates to the SDN controller the traffic
paths based on the results provided by the SM in case of an attack. The devices
will then act as SDN agents, capable of applying and redirecting traffic at the
request of a SDN controller. The SDN controller will receive commands from the
architecture’s mechanism implementation components. Please see Appendix B
for an illustration of our architecture possible deployment in a network with an
edge computing infrastructure.

4 Conclusion and Future Work

Context-aware security and privacy makes it possible to support the smart city
IoT applications user’s situations changes. We have identified important points
that should be considered: intelligence, security services and privacy, dynamicity,
flexibility, scalability, mobility, genericity, scalability.

In this sense, different solutions have been proposed. However, none of them
have addressed the identified requirements. Hence, in this paper, these different
approaches are described and compared, and a new architecture is proposed.
This architecture, unlike the previous proposals, is designed based on “as a
service” approach. It is composed of two planes. Essentially, a Knowledge Plane,
using QoC, Machine Learning and Risk management and improving context-
awareness, is proposed. Besides, the devices trust management within Security
and Privacy Plane is proposed.

Future work will focus on the following points. The first objective is the
implementation of the Device Trust Management module announced in Sect. 3.3.
Then, we will implement the authorization management module based on the

Towards a Context-Aware Security and Privacy as a Service in the IoT 249

Blockchain through a smart contract and contextual access tokens. This imple-
mentation will be based on the Hyperledger Fabric which is a Blockchain frame-
work allowing the creation of smart contracts using Java language. Finally, we
will perform a simulation of the architecture deployment in a 5G network and
its performance evaluation will be performed.

Appendix A ITU-T Reference Architecture Integration

The ITU-T IoT reference architecture integrates a transversal layer to ensure
security across the different layers of the reference architecture1. Our proposed
architecture aims to integrate this layer as a specific security capability in order
to provide a context-aware security as a service for IoT. It also aims to integrate
a knowledge plane in the ITU-T IoT reference architecture to enable context-
awareness features for the management layer. Thus, our work will allow the
ITU-T IoT reference architecture to support context-awareness feature, users
security and privacy, while enabling the next generation networks integration.
Figure 3 shows the integration of the proposed architecture into the ITU-T IoT
reference architecture.

Fig. 3. ITU-T reference architecture integrating our proposed architecture

The management, control and data planes of the ITU-T IoT reference archi-
tecture need context-awareness capabilities to allow dynamic and flexible man-
agement of IoT networks (dynamic traffic steering, location-aware services, etc.).
Therefore, the KP will be very useful for these planes of the ITU-T IoT reference
architecture.
1 ITU-T Recommendation Y.4000/Y.2060, 2012.

250 T. Sylla et al.

Appendix B CASPaaS Underlying Network Architecture

New network architectures pave the way in the development of service-oriented
computing, enabling the deployment of “as a service” architectures and virtual-
ized environments in which only the necessary network function instances will
be used when needed. They bring a new philosophy based on the transforma-
tions carried out in network architectures, essentially based on virtualization
and network programming. They can thus support service-oriented computing,
dynamic network programming through Software Defined Networking (SDN),
Network Function Virtualization (NFV), Edge computing, etc.

Fig. 4. CASPaaS architecture general view

Based on these technologies, our architecture can be implemented as VNF
(Virtual Network Function). Then, it can be deployed instantly in the network,
regardless of the user’s location. This will ensure an optimal security and privacy
levels for the user wherever he is. Thanks to VNFs and service function chaining,
it will be possible to dynamically orchestrate the deployment of the service as

Towards a Context-Aware Security and Privacy as a Service in the IoT 251

close as possible to the user [14]. Moreover, these new network paradigms fit to
ITU-T IoT reference architecture. Indeed, their Management and Orchestration
plane can extend the management layer of the ITU-T IoT reference architecture
(Fig. 4).

References

1. Alagar, V., Alsaig, A., Ormandjiva, O., Wan, K.: Context-based security and pri-
vacy for healthcare IoT. In: 2018 IEEE International Conference on Smart Internet
of Things, Xi’an, China, pp. 122–128. IEEE (2018)

2. Ashibani, Y., Kauling, D., Mahmoud, Q.H.: A context-aware authentication ser-
vice for smart homes. In: 2017 14th IEEE Annual Consumer Communications &
Networking Conference (CCNC), Las Vegas, NV, USA, pp. 588–589. IEEE (2017)

3. Aubonnet, T., Amina, B., Lemoine, F., Simoni, N.: Controlled components for
Internet of Things as-a-service. Open J. Internet Things (OJIOT) 2(1), 16–33
(2016)

4. Aubonnet, T., Lemoine, F., Cadzow, A., Dupré, B., Simoni, N.: User group; user
centric approach in digital ecosystem. Technical report TR 103 438, European
Telecommunications Standards Institute (ETSI), France (2019)

5. Axon, L., Goldsmith, M.: PB-PKI: a privacy-aware blockchain-based PKI. In: Pro-
ceedings of the 14th International Joint Conference on e-Business and Telecommu-
nications, pp. 311–318 (2017)

6. Barhamgi, M., Perera, C., Ghedira, C., Benslimane, D.: User-centric privacy engi-
neering for the Internet of Things. arXiv:1809.00926 [cs] (2018)

7. Boubendir, A., Bertin, E., Simoni, N.: Flexibility and dynamicity for open network-
as-a-service: from VNF and architecture modeling to deployment. In: NOMS 2018–
2018 IEEE/IFIP Network Operations and Management Symposium, Taipei, pp.
1–6. IEEE (2018)

8. Claeys, T., Rousseau, F., Tourancheau, B.: Securing complex IoT platforms with
token based access control and authenticated key establishment. In: 2017 Interna-
tional Workshop on Secure Internet of Things, Oslo, pp. 1–9. IEEE (2017)

9. de Matos, E., Tiburski, R.T., Amaral, L.A., Hessel, F.: Providing context-aware
security for IoT environments through context sharing feature. In: 2018 17th IEEE
International Conference on Trust, Security and Privacy in Computing and Com-
munications/12th IEEE International Conference on Big Data Science and Engi-
neering, New York, NY, USA, pp. 1711–1715. IEEE (2018)

10. Mendiboure, L., Chalouf, M.A., Krief, F.: Towards a blockchain-based SD-IoV
for applications authentication and trust management. In: Skulimowski, A.M.J.,
Sheng, Z., Khemiri-Kallel, S., Cérin, C., Hsu, C.-H. (eds.) IOV 2018. LNCS, vol.
11253, pp. 265–277. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
05081-8 19

11. Neisse, R., Steri, G., Baldini, G., Tragos, E., Fovino, I.N., Botterman, M.: Dynamic
context-aware scalable and trust-based IoT security, privacy framework. In: Ver-
mesan, O., Friess, P. (eds.) Internet of Things - From Research and Innovation
to Market Deployment. River Publishers Series in Communication, pp. 199–224.
River Publishers, Gistrup (2015)

12. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware com-
puting for the Internet of Things: a survey. IEEE Commun. Surv. Tutor. 16(1),
414–454 (2013)

http://arxiv.org/abs/1809.00926
https://doi.org/10.1007/978-3-030-05081-8_19
https://doi.org/10.1007/978-3-030-05081-8_19

252 T. Sylla et al.

13. Ramos, J.L.H., Bernabe, J.B., Skarmeta, A.F.: Managing context information for
adaptive security in IoT environments. In: 2015 IEEE 29th International Con-
ference on Advanced Information Networking and Applications Workshops, pp.
676–681. IEEE (2015)

14. Vilalta, R., et al.: TelcoFog: a unified flexible fog and cloud computing architecture
for 5G networks. IEEE Commun. Mag. 55(8), 36–43 (2017)

15. Won, J., Singla, A., Bertino, E., Bollella, G.: Decentralized public key infrastruc-
ture for Internet-of-Things. In: MILCOM 2018–2018 IEEE Military Communica-
tions Conference (MILCOM), pp. 907–913. IEEE (2018)

Author Index

Armando, Alessandro 223
Assidi, Hafsa 85

Bouffard, Guillaume 123
Bryans, Jeremy 155

Candel, Gaëlle 3
Caputo, Davide 223
Chalouf, Mohamed Aymen 240
Chen, Liqun 15
Cheng, Hao 103
Clédière, Jessy 123

Das, Manik Lal 49
Dejon, Nicolas 223
Dercksen, Albert 202
Dinu, Daniel 103

EL Kassem, Nada 15

Fiolhais, Luís 15

Gagliardi, Eva 169
Gajera, Hardik 49
Géraud-Stewart, Rémi 3
Gérault, David 49
Giraud, Matthieu 49
Großschädl, Johann 103

Imamura, Mitsuyoshi 139

Jakubeit, Philipp 202

Krief, Francine 240

Lafourcade, Pascal 49
Landry, Simon 66

Levillain, Olivier 169
Liew, Lin Shen 155
Linge, Yanis 66

Maimuţ, Diana 32
Martinovic, Ivan 185
Martins, Paulo 15
Merlo, Alessio 223

Naccache, David 3
Nguyen, Hoang Nga 155

Omote, Kazumasa 139

Peter, Andreas 202
Piskozub, Michal 185
Prouff, Emmanuel 66

Rønne, Peter B. 103
Ryan, Peter Y. A. 103

Sabaliauskaite, Giedre 155
Samaké, Karim 240
Sato, Teppei 139
Shaikh, Siraj 155
Souidi, El Mamoun 85
Sousa, Leonel 15
Spolaor, Riccardo 185
Sylla, Tidiane 240

Teşeleanu, George 32
Trouchkine, Thomas 123

Verderame, Luca 223

Zhou, Fengjun 155

	Preface
	Organization
	Contents
	Invited Paper
	How to Compartment Secrets
	1 Introduction
	1.1 Notations and Hypotheses

	2 Collapse Probability
	3 Optimal Solution When {0,1}
	4 Optimal Solution for Monotone Secret Sharing
	5 Finding Optimal Strategies
	6 Heuristic Solutions
	7 Numerical Example
	8 Conclusion
	A Detailed Computation For (3, 3)
	B Detailed Computation With The Heuristic Algorithm
	References

	Authentication
	A Lattice-Based Enhanced Privacy ID
	1 Introduction
	2 Preliminaries
	2.1 Lattice-Based Direct Anonymous Attestation
	2.2 Zero Knowledge Proof of the Ring-LWE Secrets

	3 UC Based Security Model for EPID
	4 The Proposed LEPID Scheme
	4.1 High Level Description of the LEPID Scheme
	4.2 Detailed Description of the LEPID Scheme

	5 A Sketched Security Proof for LEPID
	6 Experimental Results
	7 Conclusion
	References

	A Generic View on the Unified Zero-Knowledge Protocol and Its Applications
	1 Introduction
	2 Preliminaries
	2.1 Groups
	2.2 Zero-Knowledge Protocols
	2.3 Hash Functions

	3 The Main Protocol
	3.1 Description
	3.2 Security Analysis

	4 Special Cases of the UGZK Protocol
	4.1 Proofs of Knowledge of a Multiple Discrete Logarithm
	4.2 Proofs of Knowledge of a Multiple eth-root
	4.3 Proofs of Knowledge of a Multiple Discrete Logarithm Representation
	4.4 Proofs of Knowledge of a Multiple eth-root Representation

	5 Hash Protocol Variant
	5.1 Description
	5.2 Security Analysis

	6 A Distributed Unified Protocol
	6.1 Description
	6.2 Security Analysis
	6.3 Complexity Analysis
	6.4 Variations

	7 Conclusions and Further Development
	References

	Cryptography
	Verifiable and Private Oblivious Polynomial Evaluation
	1 Introduction
	1.1 Related Works
	1.2 Contributions
	1.3 Outline

	2 Preliminaries
	2.1 Paillier Cryptosystem
	2.2 Zero-Knowledge Proof

	3 Definition and Security Model
	3.1 Security Models
	3.2 Security Against Collusion Attacks

	4 VIP-POPE Description
	4.1 Formal Definition of VIP-POPE

	5 Security and Performance Analysis
	5.1 Security Proofs
	5.2 Comparison with Other PPE Schemes

	6 Conclusion
	References

	Monomial Evaluation of Polynomial Functions Protected by Threshold Implementations
	1 Introduction
	1.1 Problematic and State of the Art
	1.2 Our Contributions
	1.3 Overview of the Paper

	2 Preliminaries
	2.1 Basics on Sharing
	2.2 Basic Notions

	3 Our TI Generic Evaluation Technique
	3.1 Our First-Order TI-secure Monomial Evaluation
	3.2 Extension of Our Technique for Any Polynomial Function

	4 Construction of the Dirac Function as a Lookup Table (LUT)
	5 An Illustration on the AES Algorithm
	5.1 AES Algorithm
	5.2 Strategy
	5.3 Application of Our Monomial Evaluation Technique on the AES SBox
	5.4 Presentation of the Other TI-masked AES Operations

	6 Performances of Our Proposition
	6.1 Comparison of Our Proposal for AES SBox Regarding the Prior State of the Art
	6.2 Performances of Our Proposal for the Complete AES

	7 Conclusion
	References

	Strong Designated Verifier Signature Based on the Rank Metric
	1 Introduction
	2 Backgrounds and Definitions
	2.1 Error Correcting Codes in Hamming Metric
	2.2 Error Correcting Codes in the Rank Metric
	2.3 Strong Designated Verifier Signature
	2.4 Security Model of SDVS

	3 The Proposed Strong Designated Verifier Signature
	4 Security Analysis
	5 Parameters and Results
	6 Conclusion
	References

	A Lightweight Implementation of NTRU Prime for the Post-quantum Internet of Things
	1 Introduction
	2 A Brief Overview of NTRU Prime
	3 Polynomial Multiplication
	3.1 Karatsuba-Based Polynomial Multiplication
	3.2 Product-Form Polynomial Multiplication

	4 Results and Comparison
	5 Conclusions
	References

	Threats
	Fault Injection Characterization on Modern CPUs
	1 Introduction
	1.1 Related Works
	1.2 Motivations
	1.3 Contribution

	2 Modern CPU Modeling
	2.1 Modern CPUs Specificities
	2.2 Modern CPU Model

	3 Fault Effect Analysis on CPU
	3.1 Determining the Faulted Element

	4 Experimental Analysis
	4.1 BCM2837
	4.2 Intel Core I3
	4.3 Determining the Faulted MAB

	5 Conclusion and Future Works
	References

	Threat Analysis of Poisoning Attack Against Ethereum Blockchain
	1 Introduction
	2 Background
	2.1 Ethereum
	2.2 How to Use Smart Contract on Ethereum

	3 Related Work
	3.1 Data Stored Space Attack
	3.2 Programs Attack
	3.3 C&C Technique Using Blockchain Network

	4 Blockchain Poisoning Attack
	4.1 What Is Blockchain Poisoning Attack
	4.2 Why Blockchain Poisoning Attack Is Critical/Impact of Blockchain Poisoning Attack
	4.3 Application of Blockchain Poisoning

	5 Evaluation of Flexible Space
	5.1 Methodology
	5.2 Files Embedded in Transactions

	6 Feasibility Experiment of Poisoning Attack
	6.1 Experimental Environment
	6.2 Experiment
	6.3 Ease of Poisoning Attack

	7 Discussion
	7.1 Behavior of a Suspicious Account
	7.2 Risk of Flexible Space of Blockchain
	7.3 Possibility of Wrapping Arbitrary Binary in a Contract
	7.4 Countermeasure Against Blockchain Poisoning

	8 Conclusions
	References

	A Template-Based Method for the Generation of Attack Trees
	1 Introduction
	2 Background
	2.1 Automotive Communication Network
	2.2 Attack Trees

	3 Methodology
	3.1 Attack Tree Templates
	3.2 A Simple Example

	4 Implementation
	5 Conclusion
	References

	Cybersecurity
	Analysis of QUIC Session Establishment and Its Implementations
	1 Introduction
	2 QUIC in a Nutshell
	2.1 QUIC Main Goals and Features

	3 QUIC Packet Protection
	3.1 The Special Case of Initial Packets
	3.2 Header Protection Keys

	4 Implementation of the Initial Exchange
	5 Test Description
	6 Results
	6.1 Version Negotiation
	6.2 Client Initial Packet Length
	6.3 Missing Parameters
	6.4 Frame Mangling

	7 Related Work
	8 Conclusion and Perspectives
	A Scapy Implementation
	References

	CompactFlow: A Hybrid Binary Format for Network Flow Data
	1 Introduction
	2 Related Work
	2.1 Packet-Level Traffic Collection
	2.2 Flow-Level Traffic Collectors

	3 CompactFlow Format Design
	3.1 CompactFlow File Header
	3.2 Flow Binary Representation

	4 Evaluation
	5 Discussion
	6 Conclusion
	References

	SSI-AWARE: Self-sovereign Identity Authenticated Backup with Auditing by Remote Entities
	1 Introduction
	2 The Problem of Backup and Restore in the SSI Model
	3 AWARE
	4 Security-Risk Analysis
	5 Implementation
	5.1 Experimentation

	6 Discussion
	7 Conclusion and Future Work
	References

	Internet of Things
	Automated Security Analysis of IoT Software Updates
	1 Introduction
	2 Software Updates for IoT Devices
	2.1 Security Issues in SUIT

	3 The IoT Application Verification Framework
	3.1 Formal Security Assessment Workflow
	3.2 Application Extraction and Modeling
	3.3 Policy Specification
	3.4 Model Checking
	3.5 IoTAV Implementation

	4 Experimental Evaluation
	4.1 Experimental Results
	4.2 Limitations

	5 Related Work
	6 Conclusion
	References

	Towards a Context-Aware Security and Privacy as a Service in the Internet of Things
	1 Introduction
	2 Related Works
	2.1 Proposed Solutions
	2.2 Positioning

	3 Context-Aware Security and Privacy as a Service Based Architecture
	3.1 Overview
	3.2 Knowledge Plane
	3.3 Security and Privacy Plane

	4 Conclusion and Future Work
	Appendix A ITU-T Reference Architecture Integration
	Appendix B CASPaaS Underlying Network Architecture
	References

	Author Index

