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Abstract. We explain our recent results [21] on the computational
power of an arbitrary distinguisher for (not necessarily computable) hit-
ting set generators. This work is motivated by the desire of showing the
limits of black-box reductions to some distributional NP problem. We
show that a black-box nonadaptive randomized reduction to any distin-
guisher for (not only polynomial-time but also) exponential-time com-
putable hitting set generators can be simulated in AM ∩ coAM; we also
show an upper bound of SNP

2 even if there is no computational bound on a
hitting set generator. These results provide additional evidence that the
recent worst-case to average-case reductions within NP shown by Hira-
hara (2018, FOCS) are inherently non-black-box. (We omit all detailed
arguments and proofs, which can be found in [21].)

Dedication to Ker-I from Osamu

I, Osamu Watanabe, (with my co-author, Shuichi Hirahara) dedicate this article
to my senior colleague and good friend Ker-I Ko. I met Ker-I in 1985 when
I visited University of California, Santa Barbara (UCSB) for participating in a
small work shop organized by Ron, Professor Ronald V. Book. We then met again
when I was a Key Fan visiting professor at Department of Mathematics, UCSB
from 1987 to 1988. He was visiting Ron around that time. We discussed a lot on
various things almost every day with me sitting in his office for many hours. I still
recall him saying “Osamu, you know what?”, which was usually followed by an
interesting episode of famous researchers, politicians, among other things. This
period was very important for me to develop my career as a computer scientist,
in particular, in theoretical computer science. Certainly, I learnt a lot from Ker-I.
I am also proud of having the following sentence in the acknowledgement of his
paper [25]:

The author would like to thank Ronald Book and Osamu Watanabe. With-
out their help, this work would never be finished in polynomial time.

During that time, we discussed a lot on the structure of complexity classes
such as reducibilities, relativiations, sparse sets, approximability, etc. For exam-
ple, we spent a lot of time trying to improve Mahaney’s theorem: For any NP-
complete set L, if L is polynomial-time many-one reducible to a sparse set, then L
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is indeed in P; that is, it is polynomial-time computable. Since then, the complex-
ity theory has been developed (not so rapidly but) steadily. Several important
notions have been introduced, and many powerful computational/mathematical
tools have been developed for analyzing computability of various types. In this
article, we are glad to explain our result that is much stronger (in several
aspects emphasized below with underlined comments) than Mahaney’s theo-
rem. One of the results stated in Theorem 1 here can be interpreted as fol-
lows: For any set L (for which no complexity class assumption is needed) if L
is randomized polynomial-time nonadaptively and “robustly” reducible (which
is much more general than the one considered in Mahaney’s theorem) to a rela-
tively small density set (that could be much larger than sparse sets), then L is
indeed in SNP2 . Another interesting and exciting point of our results is that it is
motivated from a question in a quite different context, the average-case vs. the
worst-case complexity in NP, which was also one of the topics that I discussed
with Ker-I with no idea at all of how to attack it at that time. Hope Ker-I would
like these results and the following explanation.

1 Introduction

We explain our recent investigation on what can be reduced to the set of random
strings, and its dense subset, which is related to several lines of research of com-
plexity theory – including average-case complexity and black-box reductions,
hitting set generators, the Minimum Circuit Size Problem, and the computa-
tional power of the set of random strings.

The underlying theme that unifies these research lines is Kolmogorov com-
plexity. Kolmogorov complexity enables us to quantify how a finite string looks
“random” in terms of compressibility. For a string x ∈ {0, 1}∗, its Kolmogorov
complexity is the length of the shortest program d such that running d will print
x. More specifically, we fix an arbitrary universal Turing machine U , and the
Kolmogorov complexity of x is defined as KU (x) := min{ |d| | U(d) = x }. A
string x is called random (with threshold s) if KU (x) ≥ s, i.e., x cannot be com-
pressed into a short program. While Kolmogorov complexity is not computable,
by either imposing a time constraint on U or taking another “decoder” U , we are
led to several important concepts of complexity theory mentioned above. Below,
we review these concepts through the lens of Kolmogorov complexity.

An important motivation for this work is the case when a decoder U is defined
as a circuit interpreter Gint: Let Gint denote the function that takes a description
of a Boolean circuit C, and outputs the truth table of the function computed
by C. Here a truth table of a function f : {0, 1}n → {0, 1} is the string of length
2n that can be obtained by concatenating f(x) for every input x ∈ {0, 1}n,
and we often identify a function with its truth table. Taking U = Gint, the
Kolmogorov complexity KGint(f) is approximately equal to the minimum circuit
size for computing f . Therefore, a circuit lower bound question can be seen
as a question of finding a random string f with respect to KGint . For example,
one of the central open questions in complexity theory, E �⊂ SIZE(2εn) for some
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constant ε > 0, can be equivalently rephrased as the question whether there
exists a polynomial-time algorithm that, on input 1N , finds a “random” string
f of length N such that KGint(f) = NΩ(1) for infinitely many N . The problem
of computing KGint(f) on input f is called the Minimum Circuit Size Problem
(MCSP) [24], which is intensively studied recently.

A dense subset of random strings (with respect to KGint) is also one of the
important concepts in complexity theory, which was called a natural property
by Razborov and Rudich [30]. In their influential work, Razborov and Rudich
introduced the notion of natural proof, and explained the limits of current proof
techniques for showing circuit lower bounds. A natural property R ⊂ {0, 1}∗

is a polynomial-time computable 1/poly(�)-dense subset of random strings with
respect to KGint . Here, a set is called γ-dense if Prx∈R{0,1}� [x ∈ R] ≥ γ(�) for
every � ∈ N. It is known that a natural property is equivalent to an errorless
average-case algorithm for MCSP [19].

More generally, a dense subset of random strings with respect to KG can
be seen as an adversary for a hitting set generator G. We consider a family of
functions G = {G� : {0, 1}s(�) → {0, 1}�}�∈N. A hitting set generator (HSG) is
the notion that is used to derandomize one-sided-error randomized algorithms.
For a set R ⊂ {0, 1}∗, we say that G is a hitting set generator (with parameter
γ) for R if Prr∈R{0,1}� [r ∈ R] ≥ γ(�) implies R ∩ Im(G�) �= ∅, for every � ∈ N.
Conversely, R is said to γ-avoid G if G is not a hitting set generator for R,
that is, (1) Prr∈R{0,1}� [r ∈ R] ≥ γ(�) for all � ∈ N (i.e., R is γ-dense), and (2)
R ∩ Im(G�) = ∅ (i.e., R does not intersect with the image Im(G�) of G�). Since
Im(G�) contains all the non-random strings with respect to KG�

, this definition
means that R is a γ-dense subset of random strings with respect to KG.

Next, we proceed to reviewing each research line. We start with average-case
complexity and black-box reductions.

2 Reducing from the Worst-Case to the Average-Case:
Limits of Black-Box Reductions

The security of modern cryptography is based on average-case hardness of some
computational problems in NP. It is, however, a challenging question to find a
problem in NP that is hard with respect to a random input generated efficiently.
The fundamental question of average-case complexity is to find a problem in
NP whose average-case hardness is based on the worst-case complexity of an
NP-complete problem.

A line of work was devoted to understanding why resolving this question is
so difficult. Given our limited understanding of unconditional lower bounds, the
most prevailing proof technique in complexity theory for showing intractability of
a problem is by means of reductions. Moreover, almost all reduction techniques
are black-box in the sense that, given two computational problems A and B,
a reduction R solves A given any oracle (i.e., a black-box algorithm) solving
B. The technique of reductions led to the discovery of a large number of NP-
complete problems computationally equivalent to each other—in the worst-case
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sense. On the other hand, it turned out that the power of black-box reductions is
limited for the purpose of showing intractability of average-case problems based
on worst-case problems.

Building on the work of Feigenbaum and Fortnow [11], Bogdanov and Tre-
visan [9] showed that if a worst-case problem L is reducible to some average-case
problem in NP via a nonadaptive black-box randomized polynomial-time reduc-
tion, then L must be in NP/poly ∩ coNP/poly. This in particular shows that the
hardness of any average-case problem in NP cannot be based on the worst-case
hardness of an NP-complete problem via such a reduction technique (unless the
polynomial-time hierarchy collapses [34]). Akavia, Goldreich, Goldwasser and
Moshkovitz [1,2] showed that, in the special case of a nonadaptive reduction to
the task of inverting a one-way function, the upper bound of [9] can be improved
to AM∩ coAM, thereby removing the advice “/poly”. Bogdanov and Brzuska [8]
showed that even a general (i.e. adaptive) reduction to the task of inverting a size-
verifiable one-way function cannot be used for any problem outside AM∩ coAM.
Applebaum, Barak, and Xiao [7] studied black-box reductions to PAC learning,
and observed that the technique of [1] can be applied to (some restricted type
of) a black-box reduction to the task of inverting an auxiliary-input one-way
function.

3 A Motivation for Investigating Non-black-box
Reductions Further

It was very recent that the first worst-case to average-case reductions from worst-
case problems conjectured to be outside coNP to some average-case problems
in NP were found: Hirahara [18] showed that approximation versions of the
minimum time-bounded Kolmogorov complexity problem (MINKT [26]) and
MCSP admit worst-case to average-case reductions. These problems ask, given
a string x and a threshold s, whether x can be compressed by certain types of
algorithms of size s. For example, MCSP asks whether x can be compressed as a
truth table of a circuit of size at most s. For a constant ε > 0, its approximation
version GapεMCSP is the problem of approximating the minimum circuit size
for a function f : {0, 1}n → {0, 1} (represented as its truth table) within a factor
of 2(1−ε)n. Specifically, the Yes instances of GapεMCSP consists of (f, s) such
that size(f) ≤ s, and the No instances of GapεMCSP consists of (f, s) such that
size(f) > 2(1−ε)ns. MCSP can be defined as Gap1MCSP. It is easy to see that
MCSP ∈ NP and MINKT ∈ NP, but these are important examples of problems
for which there is currently neither a proof of NP-completeness nor evidence
against NP-completeness. Allender and Das [4] showed that MCSP is SZK-hard,
but this hardness result is unlikely to be improved to NP-hardness using “oracle-
independent” reduction techniques: Hirahara and Watanabe [20] showed that a
one-query randomized polynomial-time reduction to MCSPA for every oracle A
can be simulated in AM∩coAM. Nonetheless, MCSP and MINKT are (indirectly)
conjectured to be outside coNP/poly by Rudich [31] based on some assumptions
of average-case complexity: He conjectured that there exists a (certain type
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of) hitting set generator secure even against nondeterministic polynomial-size
circuits. We also mention that the approximation version of MINKT is harder
than Random 3SAT, which is conjectured by Ryan O’Donnell (cf. [19]) to not
be solvable by coNP algorithms.

The work of Hirahara motivates us to study black-box reductions further. We
ask whether the technique used in [18] is inherently non-black-box or not. As
mentioned above, there are several results and techniques developed in order to
simulate black-box reductions by AM∩coAM algorithms. Why can’t we combine
these techniques with the (seemingly non-black-box) reductions of [18] in order
to prove GapεMCSP ∈ coAM and refute Rudich’s conjecture? Note that refuting
Rudich’s conjecture would significantly change our common belief about average-
case complexity and the power of nondeterministic algorithms. We emphasize
that while the proof of [18] seems to yield only non-black-box reductions, it does
not necessarily mean that there is no alternative proof that yields a black-box
reduction.

In order to address the question, we aim at improving our understanding of
the limits of black-box reductions. We summarize a landscape around average-
case complexity in Fig. 1.

DistNP �⊆ AvgBPP

NP �⊆ BPP

∃HSG

GapεMCSP �∈ BPP

∃OWF ∃AIOWF

SZK �⊆ BPP

[18]

[18]

[29]

[6]

[9]

This Work

[20] [7]

[1,8]

Fig. 1. Average-case complexity and limits of black-box reductions. “A → B” means
that there is no black-box (or oracle-independent) reduction technique showing “A ⇒
B” under reasonable complexity theoretic assumptions. The security of all crypto-
graphic primitives is with respect to an almost-everywhere polynomial-time random-
ized adversary.

A couple of remarks about implications written in Fig. 1 are in order:
First, the implication from the existence of an auxiliary-input one-way function
(AIOWF) to GapεMCSP �∈ BPP was implicitly proved in [3] and explicitly in
[6], based on [13,17,30]. The implication from SZK �⊂ BPP to the existence of an
auxiliary-input one-way function is due to Ostrovsky [29] (see also [33]). Second,
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building on [10,19], it was shown in [18, Theorem VI.5] that GapεMCSP �∈ BPP
implies the nonexistence of natural properties, which yields a hitting set genera-
tor Gint = {G2n : {0, 1} ˜O(2ε′n) → {0, 1}2n}n∈N defined as a “circuit interpreter”:
a function that takes a description of a circuit of size 2ε′n and outputs its truth
table (cf. [18, Definition V.3]). The existence of a hitting set generator natu-
rally induces a hard problem in DistNP with respect to AvgBPP algorithms (cf.
[18, Lemma VI.4]). Therefore, the reduction of [18] can be regarded as a non-
black-box (in fact, nonadaptive) reduction to a distinguisher for the hitting set
generator Gint.

We thus continue the study of the limits of black-box reductions to a dis-
tinguisher for a hitting set generator, initiated by Gutfreund and Vadhan [15].
Motivated by the question on whether derandomization is possible under uni-
form assumptions (cf. [32]), they investigated what can be reduced to any oracle
avoiding a hitting set generator in a black-box way.1 They showed that any
polynomial-time randomized nonadaptive black-box reductions to any oracle
avoiding an exponential-time computable hitting set generator G can be sim-
ulated in BPPNP, which is a trivial upper bound when G is polynomial-time
computable.

4 Our Results

We significantly improve the above BPPNP upper bound to AM∩ coAM, thereby
putting the study of hitting set generators into the landscape of black-box reduc-
tions within NP (Fig. 1). We also show a uniform upper bound of SNP2 even if G
is not computable.

Theorem 1. Let G = {G� : {0, 1}s(�) → {0, 1}�}�∈N be any (not necessarily
computable) hitting set generator such that s(�) ≤ (1−Ω(1))� for all large � ∈ N.
Let BPPR

‖ denote the class of languages solvable by a randomized polynomial-time
nonadaptive machine with oracle access to R. (The subscript ‖ stands for parallel
queries.) Then,

⋂

R

BPPR
‖ ⊂ NP/poly ∩ coNP/poly ∩ SNP2 ,

where the intersection is taken over all oracles R that (1 − 1/poly(�))-avoid G.
Moreover, if G� is computable in 2O(�), then we also have

⋂

R

BPPR
‖ ⊂ AM ∩ coAM.

1 As a black-box reduction to any distinguisher for G, it is required in [15] that there
exists a single machine that computes a reduction to every oracle avoiding G. On
the other hand, as stated in Theorem 1, we allow reductions to depend on oracles,
which makes our results stronger.
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Compared to the line of work showing limits of black-box reductions within
NP, a surprising aspect of Theorem 1 is that it generalizes to any func-
tion G that may not be computable. Indeed, almost all the previous results
[1,7,9,11] crucially exploit the fact that a verifier can check the correctness of a
certificate for an NP problem; thus a dishonest prover can cheat the verifier only
for one direction, by not providing a certificate for a Yes instance. In our sit-
uation, a verifier cannot compute G and thus cannot prevent dishonest provers
from cheating in this way. At a high level, our technical contributions are to
overcome this difficulty by combining the ideas of Gutfreund and Vadhan [15]
with the techniques developed in [9,11].

Moreover, we present a new Sp2-type algorithm for simulating reductions to an
oracle R avoiding G. Indeed, at the core of Theorem 1 is the following two types
of algorithms simulating reductions: One is an Sp2 algorithm that simulates any

query q
?∈ R of length at most Θ(log n), and the other is an AM∩coAM algorithm

that simulates any query q
?∈ R of length at least Θ(log n). In particular, when

G is exponential-time computable, the Sp2 algorithm can be replaced with a
polynomial-time algorithm and obtain the AM ∩ coAM upper bound.

We remark that Theorem 1 improves all the previous results mentioned before
in some sense. Compared to [9], our results show that the advice “/poly” is
not required in order to simulate black-box reductions to any oracle avoiding
an exponential-time computable hitting set generator. Compared to [1,7], our
results “conceptually” improve their results because the existence of one-way
functions imply the existence of hitting set generators; on the other hand, since
the implication goes through the adaptive reduction (from the task of inverting a
one-way function to a distinguisher for a PRG) of [17], technically speaking, our
results are incomparable with their results.2Similarly, our results conceptually
improve the result of [20], but these are technically incomparable, mainly because
the implication goes through the non-black-box reduction of [18].

5 Why Are the Reductions of [18] Non-black-box?

Based on Theorem 1, we now argue that the reductions of [18] are inherently non-
black-box in a certain formal sense, without relying on any unproven assump-
tions: The reason is that the idea of [18] can be applied to not only time-bounded
Kolmogorov complexity but also any other types of Kolmogorov complexity,
including resource-unbounded Kolmogorov complexity. Therefore, if this gener-
alized reduction could be made black-box, then (as outlined below) by Theorem1
2 We emphasize that we are concerned the nonadaptivity of reductions used in the

security proof of pseudorandom generators. Several simplified constructions of pseu-
dorandom generators Gf from one-way functions f (e.g., [16,23]) are nonadaptive
in the sense that Gf can be efficiently computed with nonadaptive oracle access to
f ; however, the security reductions of these constructions are adaptive because of
the use of Holenstein’s uniform hardcore lemma [22]. Similarly, the reduction of [17,
Lemma 6.5] is adaptive. (We note that, in the special case when the degeneracy of
a one-way function is efficiently computable, the reduction of [17] is nonadaptive.).
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we would obtain a finite algorithm SNP2 that approximates resource-unbounded
Kolmogorov complexity, which is a contradiction, unconditionally.

To give one specific example, we briefly outline how the reductions of [18]
can be generalized to the case of Levin’s Kt-complexity [27]: Fix any efficient
universal Turing machine U , and the Kt-complexity of a string x is defined as

Kt(x) := min{|d| + log t | U(d) outputs x within t steps }.

We define a hitting set generator G = {G� : {0, 1}�/2 → {0, 1}�}�∈N as
G�(d, t) := U(d) for (d, t) ∈ {0, 1}�/2 when |U(d)| = � and U(d) halts within
t steps, which is computable in exponential time. Note that Im(G) contains all
strings with low Kt-complexity. Given an efficient algorithm D that γ-avoids G,
we can approximate Kt(x) by the following algorithm: Fix any input x. Take any
list-decodable code Enc, and let NWEnc(x)(z) denote the Nisan-Wigderson gen-
erator [28] instantiated with Enc(x) as the truth table of a hard function, where
z is a seed of the generator. Then check whether the distinguishing probability
|Ez,w[D(NWEnc(x)(z)) − D(w)]| is large or small by sampling, whose outcome
tells us whether Kt(x) is small or large, respectively. Indeed, if the distinguishing
probability is large, then by using the security proof of the Nisan-Wigderson gen-
erator, we obtain a short description (with oracle access to D) for x. Conversely,
if Kt(x) is small, then since D γ-avoids G, the distinguishing probability is at
least γ. Now, if we could make this analysis work for any oracle that γ-avoids
G, then by Theorem1 we would put a problem of approximating Kt(x) in AM,
which is not possible unless EXP = PH. (Note that the minimization problem of
Kt is EXP-complete under NP reductions [3].)

6 Our Techniques

We outline our proof strategy for Theorem1 below. Suppose that we have some
reduction from L to any oracle R that avoids a hitting set generator G. Let
Q denote the query distribution that a reduction makes. We focus on the case
when the length of each query is larger than Θ(log n), and explain the ideas of
the AM ∩ coAM simulation algorithms.

As a warm-up, consider the case when the support supp(Q) of Q is small
(i.e., |supp(Q) ∩ {0, 1}�| 
 2� for any length � ∈ N). In this case, we can define
an oracle R1 so that R1 := {0, 1}∗ \ supp(Q) \ Im(G); this is a dense subset and
avoids the hitting set generator G. Therefore, we can simulate the reduction by
simply answering all the queries by saying “No”; hence such a reduction can be
simulated in BPP.

In general, we cannot hope that supp(Q) is small enough. To generalize the
observation above, let us recall the notion of α-heaviness [9]: We say that a query
q is α-heavy (with respect to Q) if the query q is α times more likely to be sampled
underQ than the uniformdistribution on {0, 1}|q|; that is, Prw∼Q[w = q] ≥ α2−|q|.
Now we define our new oracle R2 := {0, 1}∗ \ { q ∈ {0, 1}∗ | q : α-heavy \ Im(G) },
which can be again shown to avoid G because the fraction of α-heavy queries is at
most 1/α ( 
 1 ).
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The problem now is that it is difficult to simulate the new oracle R2; it

appears that, given a query q, we need to test whether q
?∈ Im(G), which is not

possible in AM ∩ coAM. However, it turns out that we do not need to test it,
as we explain next: Observe that the size of Im(G) is very small; it is at most
2s(�)

( 
 2�
)
. Thus, the probability that a query q is in Im(G) and q is not

α-heavy (i.e., q is rarely queried) is at most α · 2s(�)−�, where � is the length
of q. As a consequence, the reduction cannot “distinguish” the oracle R2 and a
new oracle R3 := {0, 1}∗ \{ q ∈ {0, 1}∗ | q : α-heavy }; hence we can simulate the

reduction if, given a query q, we are able to decide whether q
?∈ R3 in AM∩coAM.

This task, however, still appears to be difficult for AM∩coAM; indeed, at this
point, Gutfreund and Vadhan [15] used the fact that the approximate counting
is possible in BPPNP, and thereby simulated the oracle R3 by BPPNP.

Our main technical contribution is to develop a way of simulating the reduc-
tion to R3. First, note that the lower bound protocol of Goldwasser and Sipser
[14] enables us to give an AM certificate for α-heaviness; we can check, given a
query q, whether q is α(1 + ε)-heavy or α-light for any small error parameter
ε > 0. Thus, we have an AM protocol for {0, 1}∗ \ R3 for every query q (except
for α(1 ± ε)-heavy and light queries).

If, in addition, we had an AM protocol for R3, then we would be done;
unfortunately, it does not seem possible in general. The upper bound protocol
of Fortnow [12] does a similar task, but the protocol can be applied only for
a limited purpose: we need to keep the randomness used to generate a query
q ∼ Q from being revealed to the prover. When the number of queries of the
reduction is limited to 1, we may use the upper bound protocol in order to
give an AM certificate for R3; on the other hand, if the reduction makes two
queries (q1, q2) ∼ Q, we cannot simultaneously provide AM certificates of the
upper bound protocol for both of q1 and q2, because the fact that q1 and q2 are
sampled together may reveal some information about the private randomness. To
summarize, the upper bound protocol works only for the marginal distribution
of each query, but does not work for the joint distribution of several queries.

That is, what we can obtain by using the upper bound protocol is information
about each query. For example, the heavy-sample protocol of Bogdanov and
Trevisan [9] (which combines the lower and upper bound protocol and sampling)
estimates, in AM ∩ coAM, the probability that a query q sampled from Q is α-
heavy.

Our idea is to overcome the difficulty above by generalizing the Feigenbaum-
Fortnow protocol [11]. Feigenbaum and Fortnow developed an AM∩coAM proto-
col that simulates a nonadaptive reduction to an NP oracle R, given as advice the
probability that a query is a positive instance of R. We generalize the protocol
in the case when the oracle {0, 1}∗ \R3 is solvable by AM on average (which can
be done by the lower bound protocol [14]), and given as advice the probability
that a query q is in {0, 1}∗ \ R3 (which can be estimated by the heavy-sample
protocol [9]):
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Theorem 2 (Generalized Feigenbaum-Fortnow Protocol; Informal).
Suppose that M is a randomized polynomial-time nonadaptive reduction to ora-
cle R whose queries are distributed according to Q, and that R is solvable by AM
on average (that is, there exists an AM protocol ΠR such that, with probability
1 − 1/poly(n) over the choice of q ∼ Q, the protocol ΠR computes R on input
q). Then, there exists an AM∩ coAM protocol ΠM such that, given a probability
p∗ ≈ Prq∼Q[q ∈ R] as advice, the protocol ΠM simulates the reduction M with
probability at least 1 − 1/poly(n).

On the Case of Adaptive Reductions. We mention that Theorem 1 cannot
be extended to the case of adaptive reductions. Indeed, Trevisan and Vadhan [32]
constructed an exponential-time computable pseudorandom generator based on
the intractability of some PSPACE-complete problem, and its security reduction
is black-box in the sense of Theorem 1 and adaptive. If Theorem1 could be
extended to the case of adaptive reductions, we would obtain PSPACE = AM,
which is unlikely to be true.

7 Some Evidence for the Tightness of Our Upper Bounds

Theorem 1 leads us to the natural question whether the upper bound is tight. We
present evidence that our two types of simulation algorithms are nearly tight.

First consider the AM∩ coAM-type simulation algorithms. In [21] we observe
that the SZK-hardness of MCSP [4] also holds for an average-case version of
MCSP:

Theorem 3. Let ε > 0 be any constant, and R be any oracle 1
2 -avoiding Gint =

{Gint
n : {0, 1}nε → {0, 1}n}n∈N. Then, SZK ⊂ BPPR.

The reduction of Theorem 3 is adaptive because of the use of [17]. We con-
jecture that SZK ⊂ ⋂

R BPPR
‖ , which implies that the AM ∩ coAM upper bound

of Theorem 1 cannot be significantly improved.
Next consider our Sp2-type simulation algorithm. This is in fact completely

tight in a certain setting. Let G be a universal Turing machine. We consider an
exponential-time analogue of Theorem1 when the reduction can make only short
queries. Specifically, for an oracle R, denote by EXPR≤poly

the class of languages

that can be computed by a 2nO(1)
-time algorithm that can query q

?∈ R of
length ≤ nO(1), on inputs of length n. Then by an exponential-time analogue of
Theorem 1 (more specifically, by using the Sp2-type simulation algorithm), we can
show the following upper bound on the computational power of EXPR≤poly

where
R is an arbitrary dense subset of Kolmogorov-random strings, i.e., R is a set
avoiding the outputs of a universal Turing machine U on short inputs. (We note
that all the queries of polynomial length can be asked by an exponential-time
reduction, and thus the adaptivity does not matter here.)
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Theorem 4. Fix any universal Turing machine U . Then we have
⋂

R : 1
2 -avoids U

EXPR≤poly ⊆
⋂

R : 1
2 -avoidsU

BPEXPR≤poly ⊆ Sexp2 .

Here R≤poly means that the length of queries is restricted to be at most a poly-
nomial in the input length. We also have EXPNP ⊂ ⋂

R SR
2 ⊂ Sexp2 .

Previously, Allender, Friedman and Gasarch [5] showed that black-box BPP
reductions to any avoiding oracle can be simulated in EXPSPACE. Theorem 4
significantly improves their upper bound to Sexp2 . What is interesting here is
that we can also show [21] the same lower bound, that is,

⋂

R : 1
2 -avoidsU

EXPR≤poly ⊇ Sexp2

Thus, a complexity class, i.e., the exponential-time analogue of Sp2 , is exactly
characterized by using Kolmogorov-random strings. The above lower bound also
shows the tightness of the exponential-time analogue of the Sp2-type simulation
algorithm.
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