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Abstract. Structures of large graphs have attracted much attention in
recent years, including k-clique, k-core, k-truss, k-club, to name just a
few. These structures can help detect the most cohesive or most influ-
ential subgraphs of social networks and other massive graphs. In this
survey, we summarize the research on k-core, which is the maximal con-
nected subgraph of a graph and the degree for each vertex is equal to
or greater than k. We will address the core decomposition problem, the
core maintenance problem, and a few applications of k-core.
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1 Introduction

In many fields, relationships between entities is ubiquity and graph is a suitable
model to depict entities and their relationships. For example, in a telecommu-
nication record, a vertex represents a person and an edge between two vertices
represents that the two persons have communicated. In a data science model, a
graph may consist of millions of vertices and edges, and may evolve over time.
Detecting and analyzing the structures of large graphs have therefore become
important.

Capturing the structures, such as k-core, k-clique, k-truss, k-club, and cohe-
sive communities of graphs, has attracted much attention. Such structures have
been used widely to find densely connected regions in a graph, analyze topo-
logical structures of the internet, and identify the most influential spreaders,
among other things. A k-core of a graph plays a significant role in analyzing
networks. Determining all k-cores in a static graph, which is called the core
decomposition problem, can be solved in linear time [2]. In this survey, we sum-
marize some of the major contributions to the core decomposition problem and
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the core maintenance problem. We also address a few applications of these two
problems.

The rest of this paper is organized as follows: In Sect. 2, we present a few
basic definitions. In Sect. 3 we describe algorithms for solving the core decom-
position problem, including a linear-time algorithm [2], distributed algorithms
[6,7,10,20], external-memory algorithms [4], semi-external model [14,15], k-core
on uncertain graphs [11,12], and structure detecting algorithms for adding some
constrains to k-core (such as adding a radius or dual graph). We then present
a few core maintenance algorithms in Sect. 4, including streaming algorithms
[16–18], distributed algorithms [19], parallel algorithms [22,23], and order-based
algorithms [21]. In Sect. 5, we provide a few applications of the core decomposi-
tion problem and the core maintenance problem.

2 Basic Definitions and a Problem Statement

The definition of k-core was first presented in 1983 by Seidman [1], which has
played a significant role in describing structures of social networks. For an undi-
rected graph G = (V,E), where V is the set of vertices and E is the set of
edges, the degree of a vertex u ∈ V is the number of incident edges of u in G,
denoted by dG(u). We define δ(G) = min{dG(u) : u ∈ V }. Next we introduce
some definitions and properties.

Definition 1. Let H be a connected subgraph of G = (V,E). If δ(H) ≥ k, where
k is a non-negative integer, then H is called a seed k-core of G. Furthermore,
if H satisfies the maximality, i.e., there is no other seed k-core H ′ contains H,
then H is called a k-core of G.

Suppose that H is a k-core that contains a vertex u. Then H is the unique
k-core that contains u, denoted by Hu

k . Otherwise, there must have another k-
core Q containing u. Since H ∪ Q is also a k-core containing u and H ∪ Q ⊃ H,
it contradicts to the maximality of H. On the other hand, if u has a k-core Hu

k

with k ≥ 1, then a (k − 1)-core Hu
k−1 must exist and Hu

k−1 ⊇ Hu
k .

Definition 2. For a vertex u in G = (V,E), the K value (core number) of u,
denoted by K(u), is the largest k, such that there exists a k-core containing u.
The max-k-core of u in G, denoted by Hu, is the k-core with k = K(u).

An example is presented in Fig. 1, illustrating k-cores of a graph. The vertex
u is contained in a 1-core and a 2-core. The max-k-core of u is a 2-core and
K(u) = 2.

Problem Statement. For a graph G = (V,E), without lose generality, it is
assumed that G is connected. We want to calculate the K value of every vertex
in V , which is equivalent to finding all k-cores with different values of k in G.
This problem is known as the core decomposition problem. An ideal O(m)-time
algorithm was proposed in 2003 [2], where m = |E|. Built on this initial success, a
number of other algorithms have been devised, including distributed algorithms
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Fig. 1. An example of k-core

[6,7,10,20], external-memory algorithms [4], semi-external model [14,15], and
k-core on uncertain graphs [11,12].

The core decomposition problem is formulated on a static graph. However, a
lot of graphs in applications are evolving over time, inserting or removing edges
or vertices. To obtain k-core structures of the new graphs, it needs to update
the K values, which is known as the core maintenance problem. Although the
O(m) algorithm can be used to the new graph to update the new K values, it
will incur too much time. Since only a small portion of vertices would need their
K values updated, detecting the subgraph that contains all vertices whose K
values need to be updated can help improve the efficiency of this process. This
has motivated the work on designing streaming algorithms [16–18], distributed
algorithms [19], parallel algorithms [22,23] and order-based algorithms [21].

3 Core Decomposition

3.1 A Linear-Time Algorithm

In 2003, Batagelj and Zaversnik [2] presented a linear-time algorithm for the core
decomposition problem. This is the first algorithm for the core decomposition
problem to reach be linear time. For a connected graph G = (V,E), if δ(G) ≥ k,
then G itself is a k-core. Based on the degrees of vertices, all k-cores can be
detected. In fact, if we recursively delete all vertices whose degrees are less than
k, then the remaining graph is a combination of some k-cores.

Algorithm 1 is the algorithm presented in [2]. The vertices need to be ordered
in a nondecreasing order by their degrees after computing them. Since all degrees
of vertices are bounded integers, bucket sort can be used to order them and the
time complexity is O(n), where n = |V |. Testing from vertex u1 of the smallest
degree whether K(u1) = d(u1) and subtract 1 from d(w) if (u1, w) ∈ E and
d(w) > d(u1). Do the same operation on the remaining vertices recursively to
compute the K values of all vertices. In the worst case, we traverse all edges at
most once, so the time complexity is O(m). Based on this approach, researchers
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Algorithm 1. O(m) Algorithm for Core Decomposition
Require: Graph G = (V, E)
Ensure: K(u), for each u ∈ V
1: Compute the degree d(u) in G for each u ∈ V
2: Order the vertices in a non-decreasing order by their degrees
3: for each u ∈ V in order do
4: K(u) ← d(u)
5: for each (u, w) ∈ E do
6: if K(u) < d(w) then
7: d(w) ← d(w) − 1
8: Reorder the rest vertices in V by their degrees
9: end if

10: end for
11: end for
12: return K(u)

have devised algorithms for solving the core decomposition problem and the core
maintenance problem.

A vertex property function is p(v, C) with real values, where v ∈ V and
C ⊆ V . We say p(v, C) is monotone, if for each C1, C2 with C1 ⊆ C2, p(v, C1) ≤
p(v, C2). Listed below are examples of vertex property functions [3]:

p1(v, C) = deg(v, C),
p2(v, C) = indeg(v, C),
p3(v, C) = outdeg(v, C),
p4(v, C) = indeg(v, C) + outdeg(v, C).

(1)

Batagelj et al. [3] generalized of the notion of core using vertex property func-
tions. Algorithms for the cores of their generalization are similar to determining
k-cores by degrees in Algorithm 1, testing from the vertex with smallest p(v, C).
They showed that if the vertex property function is monotone, the time com-
plexity of determining the corresponding cores is O(m · max(	, log n)), where
	 is the maximum degree, m = |E|, and n = |V |.

3.2 External-Memory Algorithms and I/O Efficient Algorithms

The O(m)-time algorithm [2] assumes that the entire graph can be loaded in
the main memory and for random access. Thus, this algorithm is not suitable
for a very large graph encountered in practice that exceeds the capacity of the
underlying memory of a computer. An External-Memory algorithm for the
core decomposition problem was designed [4] to take care of large graphs effi-
ciently. Furthermore, for the networks that can be kept in the main memory, the
external-memory algorithm can obtain comparable results as in-memory algo-
rithms. Compared to the traditional buttom-up algorithm, the external-memory
algorithm uses a novel top-down approach which detects k-cores recursively for
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k values from large to small. By removing the vertices in the k-cores we have
detected, the I/O cost and search space can be reduced. The entire external-
memory algorithm is divided into three parts: (1) Divide the whole graph into
several subgraphs so that each subgraph can be loaded in the main memory and
an efficient partition algorithm can be devised to scan the graph G only once. (2)
Estimate the upper bound on K values of vertices in each subgraph and refine
it progressively. (3) Use the top-down core decomposition algorithm recursively
to determine the K value of every vertex in G. If the graph cannot be stored
in the main memory, the algorithm needs O(kmax) scans of the graph, where
kmax = max{K(u) : u ∈ G}. As a result, the external-memory algorithm deter-
mines the K values of all vertices in O(kmax(m + n)) time, with O(kmax(m+n)

B )
I/O space and O(m+n

B ) disk block space in the worst case, where m = |E| and
n = |V |.

To design an I/O efficient core decomposition algorithm, Wen et al. presented
a Semi-External model in [14] and [15], which only stores the information of
vertices to the main memory and the information of edges on the disk of the
underlying computer. The semi-external algorithm stores K values in the main
memory and updates K values iteratively on the edges that are scanned. Their
algorithms can also be used to the core maintenance problem for edge remov-
ing. In particular, they first devised I/O efficient core maintenance algorithms
for edge inserting, degeneracy order computation and maintenance algorithms,
respectively, under the semi-external model. As a result, the space complexity,
the time complexity, and the I/O complexity of the I/O efficient core decom-
position algorithm are, respectively, O(n), O(l(m + n)) and O( l(m+n)

B ), where l
is the number of iterations and is often small in practice.

3.3 Distributed Algorithms

A distributed algorithm is desirable when a graph is too large to store in a single
host or the description of the graph is inherently distributed in multiple hosts.
Montresor et al. [6] propose distributed core decomposition algorithms to solve
it. They considered two computation models:

– One-to-one model. One computational unit, namely one host, is associated
with one vertex in the graph. Thus the information can be diffused directly
through edges between two nodes.

– One-to-many model. One computational unit is associated with a set of ver-
tices in the graph. Information diffuses between vertex sets in this model,
which is suitable to the situation for the graph inherently distributed in mul-
tiple hosts.

At the beginning, use the degrees of vertices as the upper bounds of their K
values. Hosts diffuse their information to their neighbors, then neighbors update
their upper bounds of K values recursively until the upper bounds of K cannot
be updated. The final upper bounds are the K values of vertices and can be
reached with at most O(n) iterations, where n = |V |. Distributed algorithms are
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implemented on GraphChi and Webgraph, and can be extended to large datasets
on a single PC [8].

Mandal et al. [10] proposed a distributed core decomposition algorithm,
called Spark-kCore, to run on a Spark cluster computing platform. Using
a think-like-a-vertex paradigm and a message passing paradigm for the core
decomposition problem, Spark-kCore algorithms can reach the target with
reduced I/O cost.

3.4 Core Decomposition on Uncertain Graphs

Definition 3. A graph G = (V,E, p) is an uncertain graph or a probabilistic
graph, where V is the set of vertices, E is the set of edges, and each (u, v) ∈ E
is assigned a probability p(u, v), p ∈ (0, 1].

Uncertain graphs have arisen in many fields. For instance, a vertex represents
gene and edge represents interactions among genes. Since the interactions among
them are derived through noisy and error operation in experiments, edges are
existing in a probability. To solve the problem that can the core decomposition
problem of uncertain graphs be solved by an efficient approach, Bonchi et al.
[11] propose some algorithms for this problem. They introduce the definition of
(k, η)-core H = (C,E|C, p). H is a maximal subgraph of G = (V,E, p) satisfying
δ(H) ≥ k and every vertex in H has probability no less than η, i.e., Pr[dH(v) ≥
k] ≥ η, where v ∈ C and η ∈ [0, 1] is a threshold representing the level of
certainty of the cores. The algorithms are like the O(m)-time algorithm for the
core decomposition problem on deterministic graphs [2]: computing the initial η-
degrees by a novel efficient dynamic-programming approach, removing the vertex
with smallest η-degree and updating η-degrees recursively. However, it may have
exponential time complexity when computes and updates η-degrees. Bonchi et
al. devise an efficient dynamic-programming method to overcome it. As a result,
the complexity of computation (k, η)-core is O(m	), where m = |E| and 	 is
the maximum η-degree.

Peng et al. [12] proposed a different probabilistic k-core model on uncertain
graphs, named (k, θ)-core where θ is a probability threshold, basing on the well-
known possible world semantics. In a fundamental uncertain graph G = (V,E, p),
where p ∈ (0, 1] and G′ = (V,E′) is a deterministic subgraph with probability

Pr(G′) =
∏

e∈E′
p(e)

∏

e∈E\E′
(1 − p(e)). (2)

Then they defined
p(u) =

∑

G′∈G

p(G′)IG′(k, u) (3)

as the probability of u contained in a k-core of G, where IG′(k, u) is an indicator
function. If u is contained in a k-core of G′, IG′(k, u) = 1, otherwise IG′(k, u) = 0.
They [12] showed that solve the problem of finding all u with p(u) ≥ θ, i.e.,
finding a (k, θ)-core of G is NP-hard. They proposed a sampling-based method
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to find a (k, θ)-core, and used pruning techniques to reduce the candidate size
and a novel membership check algorithm to speed up the computation.

3.5 Core Decomposition Under Additional Constrains

We discuss two constrains. One is adding a attribute to a graph and detecting
the maximal seed k-core in which any two vertices are linked by a relationship
[26,27], the other is finding k-connected cores in large dual networks [25].

In the real world, some graphs are given attributes, as explained in [27]. The
authors of [27] introduced (k, r)-core H which is a maximal subgraph such that
δ(H) ≥ k and any two vertices in H should satisfy an attribute about a threshold
r. Finding a maximal (k, r)-core and a maximum (k, r)-core are both NP-hard.
In [26], Wang et al. added a spatial constrain and asked a new question of
finding a maximal subgraph H with δ(H) ≥ k in a radius-bounded area. Then
they explored three algorithms to find a (k, r)-core where k is the minimum
degree of the core and r is the radius. These algorithms are triple-vertex-based
paradigm, binary-vertex-paradigm, and a paradigm based on rotating circles.
Finding radius-bounded (k, r)-core can be solved in polynomial time.

A dual graph contains a physical graph and a conceptual graph with the
same vertices. Yue et al. [25] formulated a k-connected core (k-CCO) model,
which is a k-core in the conceptual graph and is connected in the physical graph.
For a fixed k, they designed a polynomial-time peeling-style algorithm to detect
all k-CCOs in a dual graph in O(hm) time, where m is the number of edges in
the conceptual graph and h is a value bounded by the number of vertices of the
dual graph. Then they designed bottom-up and top-down algorithms to detect
maximum k-CCOs and a binary search algorithm to speedup these algorithms.
Finally, they designed an index structure to detect a k-CCO containing a set
of query vertices. Basing on the index structure, they presented an efficient
query-processing algorithm and a polynomial-time index construction algorithm.
The size of index is bounded by O(n) and the time complexity of their query-
processing algorithm is O(m).

4 Core Maintenance

How to find the k-cores and determine K values of all vertices in dynamic graphs
that evolve over time is an important problem. This is the core maintenance
problem of graphs. Let V ∗ denote the set of vertices whose K values will change
if the graph G = (V,E) changes. The main idea of the core maintenance problem
is to find a subgraph H ⊆ G (or a subset V ′ of V ) which contains V ∗, prune
the vertices with unchanged K values in H, and update the K values for the
vertices in V ∗.

4.1 Streaming Algorithms

Sarıyüce et al. [16,17] presented three streaming algorithms, called Subcore
Algorithm, Purecore Algorithm, Traversal Algorithm, to solve the core main-
tenance problem. Under the assumption that only one edge is inserted to or
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removed from a graph G = (V,E) each time, they showed that |K(w)−K ′(w)| ≤
1 for each vertex w ∈ V , where K ′(w) is the new K value of w after inserting
or removing. Furthermore, if there is a vertex whose K value changes after
inserting or removing an edge e = (u, v) with K(u) ≤ K(v), then K(u) must
change and we say that u is the root r. In the insertion case, if a vertex w has
K ′(w)−K(w) = 1, then w is connecting to r via a path in which all the vertices
have K = K(r) and K ′ = K(r) + 1 in G + e. In the deletion case, if a vertex
w has K(w) − K ′(w) = 1, then w is connecting to r via a path in which all
the vertices have K = K(r) and K ′ = K(r) − 1 in G. Using these properties,
they showed how to find a set of vertices, subcore of r, that contains V ∗. Next,
they used current degree (cd) of each vertex as a criterion to judge whether
a vertex in the subcore will have its K value changed. Define the cd value of
a vertex w, denoted by cd(w), as the number of adjacent vertices w′ satisfying
K(w′) ≥ K(w). If a vertex w has cd(w) ≤ K(r) in G + e in the insertion case,
then K(w) will not change and we delete w from the subcore of r. Since w can-
not help w′ to have a high K value, then cd(w′) should decrease by 1, where
(w,w′) ∈ E + e, cd(w′) > cd(w), and w′ on the subcore of r. Do the same oper-
ation recursively until all remaining vertices on the subcore have cd > K(r) and
the set of remaining vertices is V ∗. If a vertex w has cd(w) < K(r) in G−e in the
deletion, then K(w) will change. Updating the cd values of the remaining ver-
tices by the same method in the insertion case recursively until all the remaining
vertices on subcore have cd ≥ K(r), we can get the set of vertices which have
been deleted is V ∗ in the deletion case. This is the subcore algorithm, and the
time complexity and the space complexity are both O(m), where m = |E|.

Then, they defined three constrains: the MCD value, the PCD value, and
the RCD value of a vertex, which are used to judge whether the vertex will
have its K value increased. In other words, if a vertex w will have its K value
increased, then the MCD value, the PCD value, and the RCD value are both
greater than K(w). Define the MCD value of a vertex w, denoted by MCD(w),
as the number of adjacent vertices with K ≥ k(w). By using the MCD value as
a constrain, the subcore can be downsized to the purecore based on which they
devised a Purecore Algorithm. The process of the purecore algorithm is the
same as the subcore algorithm except V ′ is smaller and purecore algorithm only
can be used to the insertion case. The time complexity and the space complexity
of the purecore algorithm are both O(m). On the base of knowing MCD values,
we can get a smaller V ′ by the PCD values of vertices. And the PCD value of
a vertex w, denoted by PCD(w), is defined as the number of adjacent vertices
w′ with K(w′) > K(w) or (K(w′) = K(w) and MCD(w′) > K(w)). Next,
the Traversal Algorithm is proposed, which uses the depth-first-search to find
a smaller subgraph than the purecore algorithm and the subcore algorithm.
Because the algorithm will not continue to search when searches a vertex which
cannot have its K value changed. The time complexity and the space complexity
are O(m) and O(n) respectively, where n = |V |. The RCD value of a vertex w,
specifically denoted by RCD(w, n), n ≥ 0, is a generalization of the MCD
value and the PCD value, where RCD(w, 1) = MCD(w) and RCD(w, 2) =
PCD(w). Define RCD(w, n), n ≥ 0, as the number of adjacent vertices w′ with
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K(w′) > K(w) or (K(w′) = K(w) and RCD(w′, n − 1) > K(w)). Thus, using
the RCD(w, n) values as a constrain, we can get a smaller V ′ and use more
calculation with the increasing of n.

In [18], Li et al. found the same properties that the vertices whose K values
will increased have as that in [16,17], and designed efficient core maintenance
algorithms independently. They used Color, RecolorInsert, UpdateInsert to
find V ′, prune vertices, and update K values, respectively. In particular, they
presented two pruning techniques to find a smaller V ′.

4.2 Distributed Algorithms

Since graphs are growing too fast to disposed on a single server, Aksu et al.
presented distributed algorithms for the core maintenance problem [19]. The idea
is executing against the partitioned graph in parallel and taking advantage of
k-core properties to reduce unnecessary computation. In particular, they defined
G = (V,E,M [V,E], C[V,E]) and Nk

G(v) = |{w|(w, v) ∈ E, dG(w) ≥ k}|, where
V is the set of vertices, E is the set of edges, M [V,E] is the structured metadata,
and C[V,E] is the unstructured context. First, they developed a distributed k-
core construction algorithm by the method that prune the vertices with Nk

G < k
recursively. Second, they developed a new k-core maintenance algorithm which
intents to update the previous k-core for a certain k after the change of a graph.
They used a pruning technique to limit the scope of k-core update after insertion
or deletion. For a graph G, there is a k-core Gk = (Vk, Ek) in it. Inserting an edge
e = (u, v), if both u, v ∈ Vk, do not change Gk; if u or v or both are not in Vk,
then the subgraph consisting of vertices in {w|w ∈ V, dG(w) ≥ k,Nk

G(w) ≥ k},
where every vertex in it is reachable from u or v, may need to be updated to
include additional vertices into Gk. Removing an edge e = (u, v), if (u, v) is
not in Ek, do not change Gk; if (u, v) ∈ Ek, then the subgraph consisting of
{w|w ∈ V, dG(w) ≥ k,Nk

G(w) ≥ k}, where every vertex is reachable from u or
v, may need to be updated to remove additional vertices from Gk. In the end,
they proposed a batch k-core maintenance, which accumulates data updates and
refreshes k-core in a batch bundles up expensive graphs traversals and can speed
up the time of updating, compared to maintaining each update incrementally.

4.3 Parallel Algorithms

Previous work mainly focuses on inserting or removing one edge or vertex at
a time. In [22] and [23], the authors presented parallel algorithms for the core
maintenance problem when multiple edges or vertices are inserted or removed.
The parallel algorithms can make a better use of make use of computation power
and avoid extra overhead when inserting or removing one at a time.

Considering the case of inserting multiple edges, Wang et al. [22] discovered a
structure named superior edge set that can update K values in parallel. Given a
graph G = (V,E), an edge e = (u, v) ∈ E is a superior edge of u if K(u) ≤ K(v);
define K(e) = K(u). Define the k-superior edge set as Ek = {e1, e2, . . . ep} such
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that K(ei) = k and each vertex in V is incident with at most one superior edge.
Then the superior edge set

εq = Ek1 ∪ Ek2 ∪ . . . ∪ Ekq
(4)

is a set of edges made up of several k-superior edge sets with different k values.
Insert εq, then K ′(w)−K(w) ≤ 1 for each w ∈ V . Next, the set of vertices whose
K values will increase is determined by inserting a superior edge set. Define the
Superior Degree of a vertex u, u ∈ V , as follows:

SD(u) = |{w|(u,w) ∈ E ∪ εq,K(w) ≥ K(u)}|. (5)

Define the Constraint Superior Degree of a vertex u by

CSD(u) = |{w|(u, w) ∈ E∪εq, K(w) > K(u) or K(w) = K(u)∧SD(w) > K(u)}|. (6)

For a vertex w, if w satisfies these conditions: (1) CSD(w) > K(w); (2) w
is connected to a vertex u with K(u) = K(w) by a path whose vertices have
K = K(u) in G + εq; (3) a superior edge of u is contained in εq, then w may
have its K value increased. (The K values of u and w are those in G.)

Jin et al. [23] developed the parallel algorithms in [22]. They showed that if
the inserted or removed edges constitute a matching, the core number update
with respect to each inserted or removed edge can be handled in parallel.
Meanwhile, they added parallel core maintenance algorithms for the deletion
case. If a matching is inserted to or removed from graph G = (V,E), then
|K ′(w) − K(w)| ≤ 1 for each w ∈ V . Since the parallel algorithms can operate a
matching other than one edge in an iteration, the number of iterations needed
is only 	c + 1 where 	c is maximum number of inserted or removed edges con-
necting to a vertex, which will substantially reduce the time cost over inserting
or removing just one edge at a time.

4.4 Order-Based Algorithms

The O(m) algorithm for the core decomposition problem [2] will produce a ver-
tices’ sequence when it removes vertices recursively to determine K values. This
vertices’ sequence is a k-order. Based on the k-order, Zhang et al. [21] proposed a
novel order-based approach for the core maintenance problem for both insertion
and deletion. Meanwhile, they pointed the drawbacks of the existing traversal
algorithms in [17], which need a large search space to find V ∗ and high overhead
to maintain PCD and MCD.

For any pair of vertices u, v in a graph G = (V,E), let u 
 v denote K(u) <
K(v) or K(u) = K(v) but u is removed before v in the O(m) algorithm for
the core decomposition problem. In other words, u is in front of v in a k-order.
We can summarize that a k-order, (v1, v2, . . . , vn), for each vertex in graph G,
has transitivity, i.e., if vh 
 vj and vj 
 vi, then vh 
 vi. After inserting or
removing an edge, the k-order need to be updated and the new k-order is also
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a removing sequence produced from the graph after the changing by using the
core decomposition algorithm in [2]. Consider inserting or removing one edge
at a time, the K values of all vertices change at most 1. Define the remaining
degree of a vertex u in G, denoted by deg+(u),:

deg+(u) = |{v|(u, v) ∈ E, u 
 v}|. (7)

Let Ok denotes the sequence of vertices in k-order with K = k, and we get a
sequence O0O1O2 · · · , where Oi 
 Oj if i < j. Then the order (
) on O0O1O2 · · ·
is a k-order iff deg+(u) ≤ k for every vertex u in Ok for each k. Insert (u, v),
u ∈ Ok and u 
 v, if a vertex w ∈ Ol, and l > k or l < k, then w is not in
V ∗; if w ∈ Ok but w 
 u, then w is not in V ∗; if w ∈ Ok, u 
 w and there
is a path w0, w1, w2, · · · , wt such that w0 = u, wt = w, (wi, wi+1) ∈ E and
wi 
 wi+1 for 0 ≤ i < t, then w may in V ∗. They used the similar idea in the
traversal algorithm in [17] to remove an edge, but they used the maintaining
k-order method instead of using the PCD values. Define the candidate degree
of a vertex w in Ok, denoted by deg∗(w), as follows

deg∗(w) = |{w′|(w,w′) ∈ E,w′ 
 w ∧ w′is a potential candidate of V ∗}|. (8)

Then deg∗(w) + deg+(w) is a criterion to judge whether a vertex w will be in
V ∗, where w ∈ Ok. Specifically, if deg∗(w) + deg+(w) ≤ k, then w is not in V ∗.
Otherwise, w is a potential vertex in V ∗. Finally, they designed OrderInsert and
OrderRmoval algorithms for edge inserting and removing respectively.

5 Applications

K-core is a critical structure of graphs. It is used to depict the properties (e.g.,
cohesiveness, centrality, sustainability), and has been applied to a variety of
fields: including detecting communities, analyzing the structures of large net-
works, finding the most influential subgraphs or vertices, helping to find other
structures (k-clique, etc.), large-scale networks fingerprinting and visualization,
dealing with problems in bioinformatics, and analyzing software bugs, to name
a few.

Seidman et al. [1] introduced the notion of k-core to measure network cohe-
sion and density, which is the first application of k-core. For the resilience of
core, randomly deleting edges or vertices can destroy the core resilience, and
then destroy the graph resilience [28]. Identifying the most influential spread-
ers is a significant issue in understanding the dynamics of information diffu-
sion in large scale networks. Bae et al. [30] proposed a novel measure coreness
centrality to estimate the spreading influence of a node in a network by using its
k-shell indices. Rossi et al. [31] further refined the nodes by k-truss, which have a
stronger influential ability locating in cores. To find the most influential part of
a graph, Li et al. [29] introduced a novel community model called k-influential
community based on k-core to capture the influence of a community. When it
comes to finding a certain community, Papadopoulos et al. [34] used the method
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for the core decomposition problem to detect communities in large networks of
social media. Nasir et al. [35] used the methods of the core decomposition prob-
lem and the core maintenance problem to find the top-k densest subgraphs in
networks. Alduaiji et al. [32] used k-core to detect communities to find the sub-
graphs and their impact on users’ behavior in twitter communities, then they
find that community members intend to share positive tweets than negative
increasing over time.

In recently years, k-core has been widely used in the fields of software engi-
neering, and bioinformatics. Qu et al. [36] used the core decomposition problem
on class dependency networks to analyze software bugs. Cheng et al. [37] pro-
posed a method to find cluster subgraphs made of k-core and r-clique, which
is used to gene networks. Ma and Balasundaram [38] focused on a change-
constrained version of the minimum spanning k-core problem under probabilistic
edge failures. This can help telecommunication networks design, airline networks
configuration and freight distribution planning. Alvarez-Hamelin et al. [39] pro-
posed a general visualization algorithm to compare different networks using the
method of the core decomposition problem, and a visualization tool to find spe-
cific structures of a network.
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16. Sarıyüce, A.E., Gedik, B., Jacques-Silva, G., Wu, K.L., Çatalyürek, Ü.V.: Stream-
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core view materialization and maintenance for large dynamic graphs. IEEE Trans.
Knowl. Data Eng. 26(10), 2439–2452 (2014)

20. Aridhi, S., Brugnara, M., Montresor, A., Velegrakis, Y.: Distributed k-core decom-
position and maintenance in large dynamic graphs. In: Proceedings of the 10th
ACM International Conference on Distributed and Event-based Systems, pp. 161–
168. ACM, Irvine (2016)

21. Zhang, Y., Yu, J.X., Zhang, Y., Qin, L.: A fast order-based approach for core
maintenance. In: 2017 IEEE 33rd International Conference on Data Engineering
(ICDE), pp. 337–348. IEEE, San Diego (2017)

22. Wang, N., Yu, D., Jin, H., Qian, C., Xie, X., Hua, Q.S.: Parallel algorithm for core
maintenance in dynamic graphs. In: 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), pp. 2366–2371. IEEE, Atlanta (2017)

23. Jin, H., Wang, N., Yu, D., Hua, Q.S., Shi, X., Xie, X.: Core maintenance in dynamic
graphs: a parallel approach based on matching. IEEE Trans. Parallel Distrib. Syst.
29(11), 2416–2428 (2018)

24. Bonchi, F., Gullo, F., Kaltenbrunner, A.: Core Decomposition of Massive,
Information-Rich Graphs. In: Alhajj, R., Rokne, J. (eds.) Encyclopedia of Social
Network Analysis and Mining. Springer, New York (2018). https://doi.org/10.
1007/978-1-4939-7131-2 110176

25. Yue, L., Wen, D., Cui, L., Qin, L., Zheng, Y.: K-connected cores computation in
large dual networks. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds.) DASFAA
2018. LNCS, vol. 10827, pp. 169–186. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-91452-7 12

26. Wang, K., Cao, X., Lin, X., Zhang, W., Qin, L.: Efficient computing of radius-
bounded k-cores. In: 2018 IEEE 34th International Conference on Data Engineering
(ICDE), pp. 233–244. IEEE, Paris (2018)

https://doi.org/10.1007/978-1-4939-7131-2_110176
https://doi.org/10.1007/978-1-4939-7131-2_110176
https://doi.org/10.1007/978-3-319-91452-7_12
https://doi.org/10.1007/978-3-319-91452-7_12


218 F. Zhang et al.

27. Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: When engagement meets sim-
ilarity: efficient (k, r)-core computation on social networks. Proc. VLDB Endow.
10(10), 998–1009 (2017)
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