
Ding-Zhu Du
Jie Wang (Eds.)

Complexity
and Approximation

Fe
st

sc
hr

ift
LN

CS
 1

20
00

In Memory of Ker-I Ko

Lecture Notes in Computer Science 12000

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Ding-Zhu Du • Jie Wang (Eds.)

Complexity
and Approximation
In Memory of Ker-I Ko

123

Editors
Ding-Zhu Du
The University of Texas at Dallas
Richardson, TX, USA

Jie Wang
University of Massachusetts Lowell
Lowell, MA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-41671-3 ISBN 978-3-030-41672-0 (eBook)
https://doi.org/10.1007/978-3-030-41672-0

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Cover illustration: The cover illustration was painted by Ker-I Ko and is an artistic interpretation
of turing machines.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-7345-2185
https://orcid.org/0000-0003-1483-2783
https://doi.org/10.1007/978-3-030-41672-0

Ker-I Ko (1950–2018)

Preface

An ad hoc International Workshop on Complexity and Approximation was held during
April 27–28, 2019, in Qingdao, hosted by Ocean University of China, for the purpose
of honoring Ker-I Ko, who passed away in December 2018. A talented computer
scientist, Ko was one of the key players in the areas of Computational Complexity
Theory, Complexity Theory of Real Functions, and Combinatorial Optimization.
Colleagues, friends, and family members gathered together at the workshop to cele-
brate his life, present advanced progress in the aforementioned areas, and highlight
Ko’s significant contributions. This book is a collection of articles selected from pre-
sentations at the workshop. It also includes invited articles not presented at the
workshop by authors unable to travel to China at that time.

We are grateful to Ocean University of China for sponsoring and hosting the
workshop and members of the Organization and Local Arrangement Committee for
their hard and efficient work, which helped make the workshop a great success. We
thank all authors for their contributions and to all reviewers for their constructive
comments.

December 2019 Ding-Zhu Du
Jie Wang

Contents

In Memoriam: Ker-I Ko (1950–2018) . 1
Ding-Zhu Du and Jie Wang

Ker-I Ko and the Study of Resource-Bounded Kolmogorov Complexity 8
Eric Allender

The Power of Self-Reducibility: Selectivity, Information,
and Approximation . 19

Lane A. Hemaspaandra

Who Asked Us? How the Theory of Computing Answers Questions
about Analysis . 48

Jack H. Lutz and Neil Lutz

Promise Problems on Probability Distributions . 57
Jan-Hendrik Lorenz and Uwe Schöning

On Nonadaptive Reductions to the Set of Random Strings
and Its Dense Subsets . 67

Shuichi Hirahara and Osamu Watanabe

Computability of the Solutions to Navier-Stokes Equations
via Effective Approximation . 80

Shu-Ming Sun, Ning Zhong, and Martin Ziegler

AutoOverview: A Framework for Generating Structured Overviews
over Many Documents. 113

Jie Wang

Better Upper Bounds for Searching on a Line with Byzantine Robots 151
Xiaoming Sun, Yuan Sun, and Jialin Zhang

A Survey on Double Greedy Algorithms for Maximizing Non-monotone
Submodular Functions . 172

Qingqin Nong, Suning Gong, Qizhi Fang, and Dingzhu Du

Sequential Location Game on Continuous Directional Star Networks 187
Xujin Chen, Xiaodong Hu, and Mengqi Zhang

Core Decomposition, Maintenance and Applications 205
Feiteng Zhang, Bin Liu, and Qizhi Fang

Active and Busy Time Scheduling Problem: A Survey 219
Vincent Chau and Minming Li

A Note on the Position Value for Hypergraph Communication Situations. . . . 230
Erfang Shan, Jilei Shi, and Wenrong Lv

An Efficient Approximation Algorithm for the Steiner Tree Problem 238
Chi-Yeh Chen and Sun-Yuan Hsieh

A Review for Submodular Optimization on Machine Scheduling Problems 252
Siwen Liu

Edge Computing Integrated with Blockchain Technologies. 268
Chuanwen Luo, Liya Xu, Deying Li, and Weili Wu

Author Index . 289

x Contents

In Memoriam: Ker-I Ko (1950–2018)

Ding-Zhu Du1(B) and Jie Wang2

1 University of Texas at Dallas, Richardson, TX 75080, USA
dzdu@utdallas.edu

2 University of Massachusetts, Lowell, MA 01854, USA
wang@cs.uml.edu

Ker-I Ko is a talented scientist, novelist,
and a warm, sincere long time friend. We
will miss him profoundly.

Andrew Chi-Chih Yao
Turing Award recipient, 2000

Ker-I Ko was a colleague and a friend, and our friendships began from the
mid 1980’s. Ker-I passed away peacefully due to lung failure on the 13th of
December in 2018 at a hospital in New York, with his wife Mindy Pien and all
three children by his side. His passing is a great loss to the theoretical computer
science community.

He received his BS in mathematics from National Tsing Hua University in
1972, his MS in mathematics and his PhD in computer science both from the
Ohio State University in 1974 and 1979, respectively. He started his academic
career as a faculty member at the University of Houston in 1979 and moved to
New York in 1986 as Full Professor at SUNY Stony Brook. He remained in that
position until his retirement in 2012. After that he taught at National Chiao
Tung University in Taiwan.

A versatile and productive researcher, Ker-I had published a total of 66
journal papers [1–66], 29 conference papers [67–85], 5 book chapters [86–90],
and 7 books [91–97]. In his homepage at SUNY Stony Brook, he described his
research interests in five areas and selected 2–3 publications as representatives for
each area: Computational Complexity Theory [28,38,51], Complexity Theory of
Real Functions [20,65,72], Combinatorics [42,44], Combinatorial Optimization
[25,90], and Computational Learning Theory [76,77].

Ker-I was one of the founding fathers of computational complexity over real
numbers and analysis. He and Harvey Friedman devised a theoretical model for
real number computations by extending the computation of Turing machines
[65], based on which he established the computational complexity of several
important real number operations, such as NP -hard for optimization and #P -
hard for integration [97], and introduced computational aspect into several real
number mathematical subjects [20,72].

He contributed significantly to advancing the theory of structural complexity.
Ker-I’s best known work was perhaps his brilliant construction of an infinite series
of oraclesA1,A2, ... that collapses the polynomial-time hierarchy, relative toAk, to
c© Springer Nature Switzerland AG 2020
D.-Z. Du and J. Wang (Eds.): Ko Festschrift, LNCS 12000, pp. 1–7, 2020.
https://doi.org/10.1007/978-3-030-41672-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41672-0_1&domain=pdf
http://orcid.org/0000-0002-7345-2185
http://orcid.org/0000-0003-1483-2783
https://doi.org/10.1007/978-3-030-41672-0_1

2 D.-Z. Du and J. Wang

exactly the k-th level [38]. In addition, to help understand polynomial-time isomor-
phism, Ker-I, with Tim Long and Ding-Zhu Du, showed that P �= UP only if there
exist two sets that are one-to-one length-increasing polynomial-time reducible to
each other but not polynomial-time isomorphic [51]. Moreover, Ker-I, with Pekka
Orponen, Uwe Schöning, and Osamu Watanabe, showed how to use Kolmogorov
complexity to measure the complexity of an instance of a problem [28].

Fig. 1. Ker-I Ko’s artistic interpretation of Turing machines

Ker-I also studied a number of research problems in combinatorics, combina-
torial optimization, and computational learning theory. In particular, he studied
the complexity of group testing [44] and min-max optimization problems [90],
and designed efficient algorithms for searching and learning problems, such as
searching two objects by underweight feedbacks [42] and learning string patterns
and tree patterns from examples [77].

In Memoriam: Ker-I Ko (1950–2018) 3

In addition to being an outstanding researcher and educator in computer
science, Ker-I was also a skilled artist and writer. His work includes over 100
oil and watercolor paintings, and a book of short fiction titled A Narrow Alley
that was released in Chinese by a highly reputable publisher, the Commercial
Press in Taiwan. Figure 1 is an example of his oil painting, reflecting his artistic
interpretation of Turing machines.

Ker-I was quiet, but he always had a great deal to say about mathemat-
ics, computation theory, algorithms, art, literature, and life itself. We value the
intelligence and insight he brought to our many discussions. We will miss him
deeply.

References

1. Chen, X., et al.: Centralized and decentralized rumor blocking problems. J. Comb.
Optim. 34(1), 314–329 (2017)

2. Li, W., Liu, W., Chen, T., Qu, X., Fang, Q., Ko, K.-I.: Competitive profit maxi-
mization in social networks. Theor. Comput. Sci. 694, 1–9 (2017)

3. Ran, Y., Zhang, Z., Ko, K.-I., Liang, J.: An approximation algorithm for maximum
weight budgeted connected set cover. J. Comb. Optim. 31(4), 1505–1517 (2016)

4. Ko, K.-I.: On the complexity of computing the Hausdorff distance. J. Complex.
29(3–4), 248–262 (2013)

5. Fuxiang, Y., Ko, K.-I.: On logarithmic-space computable real numbers. Theor.
Comput. Sci. 469, 127–133 (2013)

6. Fuxiang, Y., Ko, K.-I.: On parallel complexity of analytic functions. Theor. Com-
put. Sci. 489–490, 48–57 (2013)

7. Bauer, A., Hertling, P., Ko, K.-I.: Computability and complexity in analysis. J.
UCS 16(18), 2495 (2010)

8. Cheng, Y., Ding-Zhu, D., Ko, K.-I., Lin, G.: On the parameterized complexity of
pooling design. J. Comput. Biol. 16(11), 1529–1537 (2009)

9. Ko, K.-I., Fuxiang, Y.: On the complexity of convex hulls of subsets of the two-
dimensional plane. Electr. Notes Theor. Comput. Sci. 202, 121–135 (2008)

10. Cheng, Y., Ko, K.-I., Weili, W.: On the complexity of non-unique probe selection.
Theor. Comput. Sci. 390(1), 120–125 (2008)

11. Ko, K.-I., Fuxiang, Y.: Jordan curves with polynomial inverse moduli of continuity.
Electr. Notes Theor. Comput. Sci. 167, 425–447 (2007)

12. Ko, K.-I., Fuxiang, Y.: On the complexity of computing the logarithm and square
root functions on a complex domain. J. Complex. 23(1), 2–24 (2007)

13. Ko, K.-I., Weihrauch, K., Zheng, X.: Editorial: Math. Log. Quart. 4–5/2007. Math.
Log. Q. 53(4–5), 325 (2007)

14. Ko, K.-I., Fuxiang, Y.: Jordan curves with polynomial inverse moduli of continuity.
Theor. Comput. Sci. 381(1–3), 148–161 (2007)

15. Brattka, V., Hertling, P., Ko, K.-I., Tsuiki, H.: Computability and complexity in
analysis. J. Complex. 22(6), 728 (2006)

16. Fuxiang, Y., Chou, A.W., Ko, K.-I.: On the complexity of finding circumscribed
rectangles and squares for a two-dimensional domain. J. Complex. 22(6), 803–817
(2006)

17. Chou, A.W., Ko, K.-I.: On the complexity of finding paths in a two-dimensional
domain II: piecewise straight-line paths. Electr. Notes Theor. Comput. Sci. 120,
45–57 (2005)

4 D.-Z. Du and J. Wang

18. Chou, A.W., Ko, K.-I.: The computational complexity of distance functions of
two-dimensional domains. Theor. Comput. Sci. 337(1–3), 360–369 (2005)

19. Brattka, V., Hertling, P., Ko, K.-I., Zhong, N.: Preface: MLQ - Math. Log. Quart.
4–5/2004. Math. Log. Q. 50(4–5), 327–328 (2004)

20. Chou, A.W., Ko, K.-I.: On the complexity of finding paths in a two-dimensional
domain I: shortest paths. Math. Log. Q. 50(6), 551–572 (2004)

21. Ruan, L., Hongwei, D., Jia, X., Weili, W., Li, Y., Ko, K.-I.: A greedy approximation
for minimum connected dominating sets. Theor. Comput. Sci. 329(1–3), 325–330
(2004)

22. Ko, K.-I., Nerode, A., Weihrauch, K.: Foreword. Theor. Comput. Sci. 284(2), 197
(2002)

23. Ko, K.-I.: On the computability of fractal dimensions and hausdorff measure. Ann.
Pure Appl. Logic 93(1–3), 195–216 (1998)

24. Ko, K.-I.: Computational complexity of fixed points and intersection points. J.
Complex. 11(2), 265–292 (1995)

25. Ko, K.-I., Lin, C.-L.: On the longest circuit in an alterable digraph. J. Glob. Optim.
7(3), 279–295 (1995)

26. Chou, A.W.: Computational complexity of two-dimensional regions. SIAM J. Com-
put. 24(5), 923–947 (1995)

27. Ko, K.-I.: A polynomial-time computable curve whose interior has a nonrecursive
measure. Theor. Comput. Sci. 145(1&2), 241–270 (1995)

28. Orponen, P., Ko, K.-I., Schöning, U., Watanabe, O.: Instance complexity. J. ACM
41(1), 96–121 (1994)

29. Ko, K.-I.: On the computational complexity of integral equations. Ann. Pure Appl.
Logic 58(3), 201–228 (1992)

30. Ding-Zhu, D., Ko, K.-I.: A note on best fractions of a computable real number. J.
Complex. 8(3), 216–229 (1992)

31. Ko, K.-I., Tzeng, W.-G.: Three Σp
2 -complete problems in computational learning

theory. Comput. Complex. 1, 269–310 (1991)
32. Ko, K.-I.: Separating the low and high hierarchies by oracles. Inf. Comput. 90(2),

156–177 (1991)
33. Ko, K.-I.: On the complexity of learning minimum time-bounded turing machines.

SIAM J. Comput. 20(5), 962–986 (1991)
34. Ko, K.-I.: On adaptive versus nonadaptive bounded query machines. Theor. Com-

put. Sci. 82(1), 51–69 (1991)
35. Ko, K.-I.: A note on separating the relativized polynomial time hierarchy by

immune sets. ITA 24, 229–240 (1990)
36. Ko, K.-I.: Separating and collapsing results on the relativized probabilistic

polynomial-time hierarchy. J. ACM 37(2), 415–438 (1990)
37. Ko, K.-I.: Distinguishing conjunctive and disjunctive reducibilities by sparse sets.

Inf. Comput. 81(1), 62–87 (1989)
38. Ko, K.-I.: Relativized polynomial time hierarchies having exactly k levels. SIAM

J. Comput. 18(2), 392–408 (1989)
39. Du, D.-Z., Ko, K.-I.: On the complexity of an optimal routing tree problem. Acta

Math. Appl. Sinica (Engl. Ser.) 5, 68–80 (1989)
40. Du, D.-Z., Ko, K.-I.: Complexity of continuous problems on convex functions. Syst.

Sci. Math. 2, 70–79 (1989)
41. Book, R.V., Ko, K.-I.: On sets truth-table reducible to sparse sets. SIAM J. Com-

put. 17(5), 903–919 (1988)
42. Ko, K.-I.: Searching for two objects by underweight feedback. SIAM J. Discrete

Math. 1(1), 65–70 (1988)

In Memoriam: Ker-I Ko (1950–2018) 5

43. Marron, A., Ko, K.-I.: Identification of pattern languages from examples and
queries. Inf. Comput. 74(2), 91–112 (1987)

44. Du, D., Ko, K.: Some completeness results on decision trees and group testing.
SIAM J. Algebraic Discrete Methods 8, 762–777 (1987)

45. Ko, K.-I., Hua, C.-M.: A note on the two-variable pattern-finding problem. J.
Comput. Syst. Sci. 34(1), 75–86 (1987)

46. Ko, K.-I.: On helping by robust oracle machines. Theor. Comput. Sci. 52, 15–36
(1987)

47. Ko, K.-I.: Corrigenda: on the continued fraction representation of computable real
numbers. Theor. Comput. Sci. 54, 341–343 (1987)

48. Ko, K.-I.: Approximation to measurable functions and its relation to probabilistic
computation. Ann. Pure Appl. Logic 30(2), 173–200 (1986)

49. Ko, K.-I., Teng, S.-C.: On the number of queries necessary to identify a permuta-
tion. J. Algorithms 7(4), 449–462 (1986)

50. Ko, K.-I.: On the computational complexity of best Chebyshev approximations. J.
Complex. 2(2), 95–120 (1986)

51. Ko, K.-I., Long, T.J., Ding-Zhu, D.: On one-way functions and polynomial-time
isomorphisms. Theor. Comput. Sci. 47(3), 263–276 (1986)

52. Ko, K.-I.: On the continued fraction representation of computable real numbers.
Theor. Comput. Sci. 47(3), 299–313 (1986)

53. Ko, K.-I.: On the notion of infinite pseudorandom sequences. Theor. Comput. Sci.
48(3), 9–33 (1986)

54. Ko, K.-I.: Continuous optimization problems and a polynomial hierarchy of real
functions. J. Complex. 1(2), 210–231 (1985)

55. Ko, K.-I.: Nonlevelable sets and immune sets in the accepting density hierarchy in
NP. Math. Syst. Theory 18(3), 189–205 (1985)

56. Ko, K.-I., Schöning, U.: On circuit-size complexity and the low hierarchy in NP.
SIAM J. Comput. 14(1), 41–51 (1985)

57. Ko, K.-I.: On some natural complete operators. Theor. Comput. Sci. 37, 1–30
(1985)

58. Ko, K.-I.: Reducibilities on real numbers. Theor. Comput. Sci. 31, 101–123 (1984)
59. Ko, K.-I.: On the computational complexity of ordinary differential equations. Inf.

Control 58(1–3), 157–194 (1983)
60. Ko, K.-I.: On self-reducibility and weak p-selectivity. J. Comput. Syst. Sci. 26(2),

209–221 (1983)
61. Ko, K.-I.: On the definitions of some complexity classes of real numbers. Math.

Syst. Theory 16(2), 95–109 (1983)
62. Ko, K.-I.: Some negative results on the computational complexity of total variation

and differentiation. Inf. Control 53(1/2), 21–31 (1982)
63. Ko, K.-I.: Some observations on the probabilistic algorithms and NP-hard prob-

lems. Inf. Process. Lett. 14(1), 39–43 (1982)
64. Ko, K.-I.: The maximum value problem and NP real numbers. J. Comput. Syst.

Sci. 24(1), 15–35 (1982)
65. Ko, K.-I., Friedman, H.: Computational complexity of real functions. Theor. Com-

put. Sci. 20, 323–352 (1982)
66. Ko, K.-I., Moore, D.J.: Completeness, approximation and density. SIAM J. Com-

put. 10(4), 787–796 (1981)
67. Bauer, A., Hertling, P., Ko, K.-I.: CCA 2009 front matter - proceedings of the

sixth international conference on computability and complexity in analysis. In:
CCA (2009)

6 D.-Z. Du and J. Wang

68. Bauer, A., Hertling, P., Ko, K.-I.: CCA 2009 preface - proceedings of the sixth
international conference on computability and complexity in analysis. In: CCA
(2009)

69. Yu, F., Chou, A.W., Ko, K.-I.: On the complexity of finding circumscribed rect-
angles for a two-dimensional domain. In: CCA, pp. 341–355 (2005)

70. Ko, K.-I., Yu, F.: On the complexity of computing the logarithm and square
root functions on a complex domain. In: Wang, L. (ed.) COCOON 2005. LNCS,
vol. 3595, pp. 349–358. Springer, Heidelberg (2005). https://doi.org/10.1007/
11533719 36

71. Ko, K.-I.: Fractals and complexity. In: CCA (1996)
72. Ko, K.-I., Weihrauch, K.: On the measure of two-dimensional regions with

polynomial-time computables boundaries. In: Computational Complexity Confer-
ence, pp. 150–159 (1996)

73. Chou, A.W., Ko, K.-I.: Some complexity issues on the simply connected regions of
the two-dimensional plane. In: STOC, pp. 1–10 (1993)

74. Ko, K.-I.: A note on the instance complexity of pseudorandom sets. In: Computa-
tional Complexity Conference, pp. 327–337 (1992)

75. Ko, K.-I.: Integral equations, systems of quadratic equations, and exponential-time
completeness (extended abstract). In: STOC, pp. 10–20 (1991)

76. Ko, K.-I.: On the complexity of learning minimum time-bounded Turing machines.
In: COLT, pp. 82–96 (1990)

77. Ko, K.-I., Marron, A., Tzeng, W.-G.: Learning string patterns and tree patterns
from examples. In: ML, pp. 384–391 (1990)

78. Ko, K.-I.: Computational complexity of roots of real functions (extended abstract).
In: FOCS, pp. 204–209 (1989)

79. Ko, K.-I.: Relativized polynomial time hierarchies having exactly K levels. In:
Computational Complexity Conference (1988)

80. Ko, K.-I.: Distinguishing bounded reducibilities by sparse sets. In: Computational
Complexity Conference, pp. 181–191 (1988)

81. Ko, K.-I: Relativized polynominal time hierarchies having exactly K levels. In:
STOC, pp. 245–253 (1988)

82. Book, R.V., Ko, K.-I.: On sets reducible to sparse sets. In: Computational Com-
plexity Conference (1987)

83. Ko, K.-I.: On helping by robust oracle machines. In: Computational Complexity
Conference (1987)

84. Ko, K.-I., Orponen, P., Schöning, U., Watanabe, O.: What is a hard instance of a
computational problem? In: Selman, A.L. (ed.) Structure in Complexity Theory.
LNCS, vol. 223, pp. 197–217. Springer, Heidelberg (1986). https://doi.org/10.1007/
3-540-16486-3 99

85. Ko, K.-I, Long, T.J., Du, D.-Z.: A note on one-way functions and polynomial-time
isomorphisms (extended abstract). In: STOC, pp. 295–303 (1986)

86. Ko, K.: Applying techniques of discrete complexity theory to numerical computa-
tion. In: Book, R. (ed.) Studies in Complexity Theory, pp. 1–62. Research Notes
in Theoretical Computer Science, Pitman (1986)

87. Ko, K.: Constructing oracles by lower bound techniques for circuits. In: Du, D., Hu,
G. (eds.) Combinatorics, Computing and Complexity, pp. 30–76. Kluwer Academic
Publishers and Science Press, Boston (1989)

88. Ko, K.: Polynomial-time computability in analysis. In: Ershov, Y.L., et al. (eds.)
Handbook of Recursive Mathematics. Recursive Algebra, Analysis and Combina-
torics, vol. 2, pp. 1271–1317 (1998)

https://doi.org/10.1007/11533719_36
https://doi.org/10.1007/11533719_36
https://doi.org/10.1007/3-540-16486-3_99
https://doi.org/10.1007/3-540-16486-3_99

In Memoriam: Ker-I Ko (1950–2018) 7

89. Ko, K.: Computational complexity of fractals. In: Downey, R., et al. (eds.) Pro-
ceedings of the 7th and 8th Asian Logic Conferences, pp. 252–269. World Scientific,
Singapore (2003)

90. Ko, K., Lin, C.-L.: On the complexity of min-max optimization problems and their
approximation. In: Du, D.-Z., Pardalos, P.M. (eds.) Minimax and Applications, pp.
219–239. Kluwer (1995)

91. Du, D.-Z., Ko, K.-I., Hu, X.: Design and Analysis of Approximation Algorithms.
Springer, New York (2012). https://doi.org/10.1007/978-1-4614-1701-9

92. Du, D.-Z., Ko, K., Hu, X.: Design and Analysis of Approximation Algorithms.
Higher Education Press, Beijing (2011). (in Chinese)

93. Du, D.-Z., Ko, K., Wang, J.: Introduction to Computational Complexity. Higher
Education Press, Beijing (2002). (in Chinese)

94. Du, D.-Z., Ko, K.: Problem Solving in Automata, Languages and Complexity.
Wiley, New York (2001)

95. Du, D.-Z., Ko, K.: Theory of Computational Complexity. Wiley, New York (2000)
96. Du, D.-Z., Ko, K. (eds.): Advances in Algorithms, Languages, and Complexity.

Kluwer, Dordrecht (1997)
97. Ko, K.: Computational Complexity of Real Functions. Birkhauser Boston, Boston

(1991)

https://doi.org/10.1007/978-1-4614-1701-9

Ker-I Ko and the Study
of Resource-Bounded Kolmogorov

Complexity

Eric Allender(B)

Rutgers University, New Brunswick, NJ 08854, USA
allender@cs.rutgers.edu

http://www.cs.rutgers.edu/~allender

Abstract. Ker-I Ko was among the first people to recognize the impor-
tance of resource-bounded Kolmogorov complexity as a tool for better
understanding the structure of complexity classes. In this brief infor-
mal reminiscence, I review the milieu of the early 1980’s that caused an
up-welling of interest in resource-bounded Kolmogorov complexity, and
then I discuss some more recent work that sheds additional light on the
questions related to Kolmogorov complexity that Ko grappled with in
the 1980’s and 1990’s.

In particular, I include a detailed discussion of Ko’s work on the ques-
tion of whether it is NP-hard to determine the time-bounded Kolmogorov
complexity of a given string. This problem is closely connected with the
Minimum Circuit Size Problem (MCSP), which is central to several con-
temporary investigations in computational complexity theory.

Keywords: Kolmogorov complexity · Complexity theory · Minimum
Circuit Size Problem

1 Introduction: A Brief History of Time-Bounded
Kolmogorov Complexity

In the beginning, there was Kolmogorov complexity, which provided a satisfy-
ing and mathematically precise definition of what it means for something to be
“random”, and gave a useful measure of the amount of information contained in
a bitstring.1 But the fact that the Kolmogorov complexity function is not com-
putable does limit its application in several areas, and this provided some of the
original motivation for the study of resource-bounded Kolmogorov complexity.

A version of time-bounded Kolmogorov complexity appears already in Kol-
mogorov’s original 1965 paper [41]. However, for the purposes of the story being
told here, the first significant development came with the work of Kolmogorov’s
1 If the reader is not familiar with Kolmogorov complexity, then we recommend some

excellent books on this topic [25,44].

Supported in part by NSF Grants CCF-1514164 and CCF-1909216.

c© Springer Nature Switzerland AG 2020
D.-Z. Du and J. Wang (Eds.): Ko Festschrift, LNCS 12000, pp. 8–18, 2020.
https://doi.org/10.1007/978-3-030-41672-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41672-0_2&domain=pdf
http://orcid.org/0000-0002-0650-028X
https://doi.org/10.1007/978-3-030-41672-0_2

Ker-I Ko and the Study of Resource-Bounded Kolmogorov Complexity 9

doctoral student Leonid Levin.2 Levin’s fundamental work on NP-completeness
[42] has, as its second theorem, a result that can easily be proved3 by making
use of a notion of time-bounded Kolmogorov complexity called Kt, which Levin
developed in the early 1970’s, but whose formal definition did not appear in
a published article until 1984 [43]. Adleman acknowledges communication with
Levin in a 1979 MIT technical report [1] that discusses a very similar notion,
which he called “potential”.4 Since Kt will be discussed at greater length later
on, let us give the definition here:

Definition 1. For any Turing machine M and strings x and y, KtM (x|y) is the
minimum, over all “descriptions” d such that M(d, y) = x in t steps, of the sum
|d| + log t. (If no such d exists, then KtM (x|y) is undefined.) KtM (x) is defined
to be KtM (x|λ), where λ is the empty string.

If M is chosen to be a universal Turing machine, then KtM (x|y) is always defined.
As is usual when discussing Kolmogorov complexity we select one such universal
machine U , and define Kt(x|y) to be equal to KtU (x|y). Kt has the appealing
property that it can be used to design optimal search algorithms for finding
witnesses for problems in NP. For instance, P = NP iff every φ ∈ SAT has some
assignment v such that Kt(v|φ) = O(log |φ|) [1,42]. See [44] for a discussion.

Li and Vitányi [44], in their discussion of the origins of time-bounded Kol-
mogorov complexity, highlight not only the work of Adleman and Levin discussed
above, but also a 1977 paper by Daley [24], where time-bounded Kolmogorov
complexity is studied in the context of inductive inference. Indeed, in Ko’s first
paper that deals with K-complexity [37], Daley’s work [24] is one of the four
papers that Ko mentions as containing prior work on resource-bounded Kol-
mogorov complexity. (The others are [42], and the papers of Hartmanis and of
Sipser that are discussed below.) But I think that this is only part of the story.

Adleman’s work [1] remains even today an unpublished MIT technical report,
which did not circulate widely. Levin’s work [42] was still not particularly
2 Levin was Kolmogorov’s student, but he did not receive his Ph.D. until after he

emigrated to the US, and Albert Meyer was his advisor at MIT. The circumstances
around Levin being denied his Ph.D. in Moscow are described in the excellent article
by Trakhtenbrot [59].

3 This result also appears as Exercise 13.20 in what was probably the most popular
complexity theory textbook for the early 1980’s [33], which credits Levin for that
result, but not for what is now called the Cook-Levin theorem.

4 In [1], in addition to Levin, Adleman also credits Meyer and McCreight [46] with
developing similar ideas. I have been unable to detect any close similarity, although
the final paragraph of [46] states “Our results are closely related to more general
definitions of randomness proposed by Kolmogorov, Martin-Löf, and Chaitin” [and
here the relevant literature is cited, before continuing] “A detailed discussion must
be postponed because of space limitations” [and here Meyer and McCreight include
a citation to a letter from the vice-president of Academic Press (which presumably
communicated the space limitations to the authors).] Indeed, Meyer and McCreight
were interested in when a decidable (and therefore very non-random) set can be said
to “look random” and thereby deserve to be called pseudorandom. We will return
to this topic later in the paper.

10 E. Allender

well-known in the early 1980’s, and the published paper contains very little
detail. Daley’s work [24] was part of the inductive inference research community,
which was then and remains today rather distinct from the complexity the-
ory community. Thus I would also emphasize the impact that the 1980 STOC
paper by Paul, Seiferas, and Simon [52] had, in bringing the tools and tech-
niques of Kolmogorov complexity to the STOC/FOCS community in the con-
text of proving lower bounds. At the following FOCS conference, Gary Peterson
introduced a notion of resource-bounded Kolmogorov complexity [54]. Peter-
son’s article has a very interesting and readable introduction, highlighting the
many ways in which different notions of succinctness had arisen in various other
work on complexity theory. Peterson’s FOCS’80 paper also introduces a theme
that echoes in more recent work, showing how various open problems in com-
plexity theory can be restated in terms of the relationships among different
notions of resource-bounded Kolmogorov complexity. However, the precise model
of resource-bounded Kolmogorov complexity that is introduced in [54] is rather
abstruse, and it seems that there has been no further work using that model in
the following four decades.

Perhaps it was in part due to those very deficiencies, that researchers were
inspired to find a better approach. At the 1983 STOC, Sipser introduced a notion
of polynomial-time “distinguishing” Kolmogorov complexity, in the same paper
in which he showed that BPP lies in the polynomial hierarchy [58]. At FOCS
that same year, Hartmanis introduced what he termed “Generalized Kolmogorov
Complexity”, in part as a tool to investigate the question of whether all NP-
complete sets are isomorphic. Both Sipser and Hartmanis cited Ko’s work, which
would eventually appear as [37], as presenting yet another approach to studying
resource-bounded Kolmogorov complexity.

Ko’s motivation for developing a different approach to resource-bounded Kol-
mogorov complexity arose primarily because of the groundbreaking work of Yao
[62] and Blum and Micali [18], which gave a new approach to the study of pseu-
dorandom generators. Ko sought to find a relationship between the new notion
of pseudorandomness and the classical notions of Martin-Löf randomness for
infinite sequences. Other notions of “pseudorandomness” had been proposed by
Meyer and McCreight [46] and by Wilbur [61], and Ko succeeded in finding the
relationships among these notions, and in presenting new definitions that pro-
vided a complexity-theoretic analog of Martin-Löf randomness. (This analog is
more successful in the context of space-bounded Kolmogorov complexity, than
for time).

One of the people who had a significant impact on the development on
resource-bounded Kolmogorov complexity at this time was Ron Book. Book
took an active interest in mentoring young complexity theoreticians, and he
organized some informal workshops in Santa Barbara in the mid-to-late 1980’s.
That was where I first met Ker-I Ko. Some of the others who participated were
José Balcázar, Richard Beigel, Lane Hemaspaandra, Jack Lutz, Uwe Schöning,
Jacobo Torán, Jie Wang, and Osamu Watanabe. Resource-bounded Kol-
mogorov complexity was a frequent topic of discussion at these gatherings. Four
members of that group (Ko, Orponen, Schöning, and Watanabe) incorporated

Ker-I Ko and the Study of Resource-Bounded Kolmogorov Complexity 11

time-bounded Kolmogorov complexity into their work investigating the ques-
tion of what it means for certain instances of a computational problem to be
hard, whereas other instances can be easy [40]; I first learned about this work at
Book’s 1986 Santa Barbara workshop, shortly before the paper was presented at
the first Structure in Complexity Theory conference (which was the forerunner
to the Computational Complexity Conference (CCC)). A partial list of other
work on resource-bounded Kolmogorov complexity whose origin can be traced
in one way or another to Book’s series of workshops includes [2,13,16,20,26,28],
as well as the volume edited by Watanabe [60].

Research in resource-bounded Kolmogorov complexity has continued at a
brisk pace in the succeeding years. This article will not attempt to survey – or
even briefly mention – all of this work. Instead, our goal in this section is to
sketch the developments that influenced Ker-I Ko’s work on resource-bounded
Kolmogorov complexity. Ko’s research focus shifted toward other topics after
the early 1990’s, and thus later work such as [5,15,22,23] does not pertain to
this discussion.

But there is one more paper that Ko wrote that deals with resource-bounded
Kolmogorov complexity [38], which constitutes an important milestone in a line
of research that is very much an active research topic today. In the next section,
we place Ko’s 1990 COLT paper [38] in context, and discuss how it connects to
the current frontier in computational complexity theory.

2 Time-Bounded Kolmogorov Complexity
and NP-Completeness

Ko was not the first to see that there is a strong connection between resource-
bounded Kolmogorov complexity and one of the central tasks of computational
learning theory: namely, to find a succinct explanation that correctly describes
observed phenomena. But he does appear to have been the first to obtain the-
orems that explain the obstacles that have thus far prevented a classification
of the complexity of this problem, where “succinct explanation” is interpreted
operationally in terms of an efficient algorithm with a short description. There
had been earlier work [55,56] showing that it is NP-hard to find “succinct expla-
nations” that have size at all close to the optimal size, if these “explanations”
are required to be finite automata or various other restricted formalisms. But for
general formalisms such as programs or circuits, this remains an open problem.5

Ko approached this problem by defining a complexity measure called LT for
partially-specified Boolean functions (which now are more commonly referred
to as “promise problems”). Given a list of “yes instances” Y and a list of “no
instances” N , LT(Y,N, t) is the length of the shortest description d such that
U(d, x) = 1 in at most t steps for all x ∈ Y , and U(d, x) = 0 in at most t steps
5 During the review and revision phase of preparing this paper, I was given a paper that

settles this question! Ilango, Loff, and Oliveira have now shown that the “circuit”
version of this problem (which they call Partial-MCSP) is NP-complete [35]. For
additional discussion of this result and how it contrasts with Ko’s work [38], see [4].

12 E. Allender

for all x ∈ N , where U is some fixed universal Turing machine (in the tradition
of Kolmogorov complexity). Given any oracle A, one can define a relativized
measure LTA, merely by giving the machine U access to A; for any A, the set
MinLTA ::={(Y,N, 0s, 0t) : LTA(Y,N, t) ≤ s} is in NPA. Ko showed that there
are oracles A relative to which MinLTA is not NPA-complete under polynomial-
time Turing reductions. In other words, the question of whether this version of
the canonical learning theory problem is NP-complete cannot be answered via
relativizing techniques.

Ko proves his results about MinLT by first proving the analogous results
about a problem he calls MinKT ::= {(x, 0s, 0t) : ∃d |d| ≤ s ∧ U(d) = x in at
most t steps}. Note that MinKT is essentially MinLT restricted to the case where
Y ∪N is equal to the set of all strings of length n (in which case this information
can be represented by a string x of length 2n). Quoting from [39]: “Indeed, there
seems to be a simple transformation of the proofs of the results about MinKT
to the proofs of analogous results about MinLT. This observation supports our
viewpoint of treating the problem MinKT as a simpler version of MinLT, and
suggests an interesting link between program-size complexity and learning in the
polynomial-time setting.” One can see that Ko had been working for quite some
time on the question of whether it is NP-hard to determine the time-bounded
Kolmogorov complexity of a given string (i.e, the question of whether MinKT is
NP-complete), because this question also appears in [37], where it is credited to
some 1985 personal communication from Hartmanis.

Ko’s question about the difficulty of computing time-bounded Kolmogorov
complexity was also considered by Levin in the early 1970’s, as related by Trakht-
enbrot6 [59]; see also the discussion in [12]. More precisely, Levin was especially
interested in what is now called the Minimum Circuit Size Problem MCSP ::=
{(x, s)|x is a string of length 2k representing the truth-table of a k-ary Boolean
function that is computed by a circuit of size at most s}. A small circuit for a
Boolean function f can be viewed as a short description of f , and thus it was
recognized that MCSP was similar in spirit to questions about time-bounded
Kolmogorov complexity, although there are no theorems dating to this period
that make the connection explicit. Trakhtenbrot [59] describes how MCSP had
been the focus of much attention in the Soviet Union as early as the late 1950’s;
Levin had hoped to include a theorem about the complexity of MCSP (or of time-
bounded Kolmogorov complexity) in [42], but these questions remain unresolved
even today.

The modern study of the computational complexity of MCSP can really be
said to have started with the STOC 2000 paper by Kabanets and Cai [36]. They
were the first to show that MCSP must be intractable if cryptographically-secure
one-way functions are to exist, and they were the first to initiate an investigation
of the consequences that would follow if MCSP were NP-complete under various
types of reducibilities.

6 In particular, this is the problem that Trakhtenbrot calls “Task 5” in [59].

Ker-I Ko and the Study of Resource-Bounded Kolmogorov Complexity 13

A tighter connection between MCSP and resource-bounded Kolmogorov
complexity was established in [6]. Prior to [6] most studies of time-bounded
Kolmogorov complexity either concentrated on Levin’s measure Kt, or else on
a measure (similar to what Ko studied) that we can denote Kt for some time
bound t (typically where t(n) = nO(1)), where Kt(x) is the length of the shortest
d such that U(d) = x in at most t(|x|) steps. Although both of these definitions
are very useful in various contexts, there are some drawbacks to each. Computing
Kt(x) does not seem to lie in NP (and in fact it is shown in [6] that computing
Kt is complete for EXP under P/poly reductions). The value of Kt(x) can vary
quite a lot, depending on the choice of universal Turing machine U ; the usual
way of coping with this is to observe that Kt(x), as defined using some machine
U1 is bounded above by Kt′

(x) as defined using a different machine U2, for some
time bound t′ that is not too much larger than t. Both definitions yield measures
that have no clear connection to circuit complexity.

The solution presented in [6] is to modify Levin’s Kt measure, to obtain a
new measure called KT, as follows. First, note that Levin’s Kt measure remains
essentially unchanged if Definition 1 is replaced by

Definition 2. Let x = x1x2 . . . xn be a string of length n. Kt(x) is the minimum,
over all “descriptions” d such that U(d, i) = xi in t steps, of the sum |d| + log t.

In other words, the description d still describes the string x, but the way that
U obtains x from d is to compute U(d, i) for each i ∈ {1, . . . n}. The main thing
that is gained from this modification, is that now the runtime of U can be much
less than |x|. This gives us the flexibility to replace “log t” in the definition of
Kt, with “t”, to obtain the definition of KT:

Definition 3. Let x = x1x2 . . . xn be a string of length n. KT(x) is the min-
imum, over all “descriptions” d such that U(d, i) = xi in t steps, of the sum
|d| + t. (A more formal and complete definition can be found in [6].)

When x is a bit string of length 2k representing a k-ary Boolean function
f , the circuit size of f is polynomially-related to KT(x) [6]. Thus it has been
productive to study MCSP (the problem of computing the circuit size function)
in tandem with MKTP (the problem of computing the KT function) [6,7,9–11,
31,45,49,57]. This has led to improved hardness results for MCSP (and MKTP)
[6,7,9,31,57] and some non-hardness results [9–11]. (The non-hardness results
of [47] for MCSP apply equally well to MKTP, and should also be listed here.)
We now know that MCSP and MKTP are hard for a complexity class known
as SZK under BPP-Turing reductions [7], and they cannot be shown to be NP-
complete under polynomial-time many-one reductions without first proving that
EXP �= ZPP [47]. These hardness results also hold for Ko’s languages MinKT and
MinLT.

Somewhat surprisingly, some hardness proofs currently work only for MKTP
and the corresponding hardness conditions for MCSP are either not known to
hold [8,9] or seem to require different techniques [27].

Some researchers have begun to suspect that MCSP may be hard for NP
under sufficiently powerful notions of reducibility, such as P/poly reductions.

14 E. Allender

Interestingly, Ko explicitly considered the possibility that MinKT is NP-complete
under a powerful notion of reducibility known as SNP reducibility. (Informally,
“A is SNP reducible to B” means that A is (NP ∩ coNP)-reducible to B.) More
recently, Hitchcock and Pavan have shown that this indeed holds under a plau-
sible hypothesis [32]. Interestingly, Ilango has shown that a variant of MCSP is
NP-complete under (very restrictive) AC0 reductions [34]. Hirahara has shown
that, if a certain version of time-bounded Kolmogorov complexity is NP-hard
to compute, then this implies strong worst-case-to-average-case reductions in
NP [30].

One especially intriguing recent development involves what has been termed
“hardness magnification”. This refers to the phenomenon wherein a seemingly
very modest and achievable lower bound can be “magnified” to yield truly dra-
matic lower bounds which would solve longstanding open questions about the
relationships among complexity classes. The problems MCSP,MKTP, and even
MKtP (the problem of computing Kt complexity) figure prominently in this line
of work [45,49,50]. In particular, it is shown in [49] that if one were able to show
a certain lower bound for MKtP that is known to hold for the apparently much
easier problem of computing the inner product mod 2, then it would follow that
EXP �⊆ NC1.

3 Conclusions

Ker-I Ko has left us. But he has left us a rich legacy. This brief article has touched
on only a small part of his scientific accomplishments, and how they continue to
affect the scientific landscape. Even within the very limited focus of this paper,
much has been left out. For instance, the connection between resource-bounded
Kolmogorov complexity and learning theory could itself be the subject of a much
longer article; as a sample of more recent work in this line, let us mention [48].

References

1. Adleman, L.M.: Time, space and randomness. Technical report, MIT/LCS/TM-
131, MIT (1979)

2. Allender, E.: Some consequences of the existence of pseudorandom generators.
In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing
(STOC), pp. 151–159 (1987). https://doi.org/10.1145/28395.28412, see also [3]

3. Allender, E.: Some consequences of the existence of pseudorandom genera-
tors. J. Comput. Syst. Sci. 39(1), 101–124 (1989). https://doi.org/10.1016/0022-
0000(89)90021-4

4. Allender, E.: The new complexity landscape around circuit minimization. In: Pro-
ceedings of the 14th International Conference on Language and Automata Theory
and Applications (LATA) (2020, to appear)

5. Allender, E., Buhrman, H., Friedman, L., Loff, B.: Reductions to the set of random
strings: the resource-bounded case. Logical Methods Comput. Sci. 10(3) (2014).
https://doi.org/10.2168/LMCS-10(3:5)2014

6. Allender, E., Buhrman, H., Koucky, M., van Melkebeek, D., Ronneburger, D.:
Power from random strings. SIAM J. Comput. 35, 1467–1493 (2006). https://doi.
org/10.1137/050628994

https://doi.org/10.1145/28395.28412
https://doi.org/10.1016/0022-0000(89)90021-4
https://doi.org/10.1016/0022-0000(89)90021-4
https://doi.org/10.2168/LMCS-10(3:5)2014
https://doi.org/10.1137/050628994
https://doi.org/10.1137/050628994

Ker-I Ko and the Study of Resource-Bounded Kolmogorov Complexity 15

7. Allender, E., Das, B.: Zero knowledge and circuit minimization. Inf. Comput. 256,
2–8 (2017). https://doi.org/10.1016/j.ic.2017.04.004. Special issue for MFCS 2014

8. Allender, E., Grochow, J., van Melkebeek, D., Morgan, A., Moore, C.: Minimum
circuit size, graph isomorphism and related problems. SIAM J. Comput. 47, 1339–
1372 (2018). https://doi.org/10.1137/17M1157970

9. Allender, E., Hirahara, S.: New insights on the (non)-hardness of circuit minimiza-
tion and related problems. ACM Trans. Comput. Theory (ToCT) 11(4), 27:1–27:27
(2019). https://doi.org/10.1145/3349616

10. Allender, E., Holden, D., Kabanets, V.: The minimum oracle circuit size problem.
Comput. Complex. 26(2), 469–496 (2017). https://doi.org/10.1007/s00037-016-
0124-0

11. Allender, E., Ilango, R., Vafa, N.: The non-hardness of approximating circuit size.
In: van Bevern, R., Kucherov, G. (eds.) CSR 2019. LNCS, vol. 11532, pp. 13–24.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19955-5 2

12. Allender, E., Koucky, M., Ronneburger, D., Roy, S.: The pervasive reach of
resource-bounded Kolmogorov complexity in computational complexity theory. J.
Comput. Syst. Sci. 77, 14–40 (2010). https://doi.org/10.1016/j.jcss.2010.06.004

13. Allender, E., Watanabe, O.: Kolmogorov complexity and degrees of tally sets. In:
Proceedings: Third Annual Structure in Complexity Theory Conference, pp. 102–
111. IEEE Computer Society (1988). https://doi.org/10.1109/SCT.1988.5269, see
also [14]

14. Allender, E., Watanabe, O.: Kolmogorov complexity and degrees of tally sets. Inf.
Comput. 86(2), 160–178 (1990). https://doi.org/10.1016/0890-5401(90)90052-J

15. Antunes, L., Fortnow, L., van Melkebeek, D., Vinodchandran, N.V.: Computational
depth: concept and applications. Theor. Comput. Sci. 354(3), 391–404 (2006).
https://doi.org/10.1016/j.tcs.2005.11.033

16. Arvind, V., et al.: Reductions to sets of low information content. In: Kuich, W. (ed.)
ICALP 1992. LNCS, vol. 623, pp. 162–173. Springer, Heidelberg (1992). https://
doi.org/10.1007/3-540-55719-9 72. See also [17]

17. Arvind, V., et al.: Reductions to sets of low information content. In: Ambos-Spies,
K., Homer, S., Schoning, U. (eds.) Complexity Theory: Current Research, pp. 1–46.
Cambridge University Press (1993)

18. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo
random bits. In: 23rd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 112–117 (1982). https://doi.org/10.1109/SFCS.1982.72, see also [19]

19. Blum, M., Micali, S.: How to generate cryptographically strong sequences of
pseudo-random bits. SIAM J. Comput. 13(4), 850–864 (1984). https://doi.org/
10.1137/0213053

20. Book, R.V., Lutz, J.H.: On languages with very high information content. In:
Proceedings of the Seventh Annual Structure in Complexity Theory Conference,
pp. 255–259. IEEE Computer Society (1992). https://doi.org/10.1109/SCT.1992.
215400, see also [21]

21. Book, R.V., Lutz, J.H.: On languages with very high space-bounded Kolmogorov
complexity. SIAM J. Comput. 22(2), 395–402 (1993). https://doi.org/10.1137/
0222029

22. Buhrman, H., Fortnow, L., Laplante, S.: Resource-bounded Kolmogorov complex-
ity revisited. SIAM J. Comput. 31(3), 887–905 (2001). https://doi.org/10.1137/
S009753979834388X

23. Buhrman, H., Mayordomo, E.: An excursion to the Kolmogorov random strings.
JCSS 54, 393–399 (1997). https://doi.org/10.1006/jcss.1997.1484

https://doi.org/10.1016/j.ic.2017.04.004
https://doi.org/10.1137/17M1157970
https://doi.org/10.1145/3349616
https://doi.org/10.1007/s00037-016-0124-0
https://doi.org/10.1007/s00037-016-0124-0
https://doi.org/10.1007/978-3-030-19955-5_2
https://doi.org/10.1016/j.jcss.2010.06.004
https://doi.org/10.1109/SCT.1988.5269
https://doi.org/10.1016/0890-5401(90)90052-J
https://doi.org/10.1016/j.tcs.2005.11.033
https://doi.org/10.1007/3-540-55719-9_72
https://doi.org/10.1007/3-540-55719-9_72
https://doi.org/10.1109/SFCS.1982.72
https://doi.org/10.1137/0213053
https://doi.org/10.1137/0213053
https://doi.org/10.1109/SCT.1992.215400
https://doi.org/10.1109/SCT.1992.215400
https://doi.org/10.1137/0222029
https://doi.org/10.1137/0222029
https://doi.org/10.1137/S009753979834388X
https://doi.org/10.1137/S009753979834388X
https://doi.org/10.1006/jcss.1997.1484

16 E. Allender

24. Daley, R.: On the inference of optimal descriptions. Theor. Comput. Sci. 4(3),
301–319 (1977). https://doi.org/10.1016/0304-3975(77)90015-9

25. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-0-387-68441-3

26. Gavaldà, R., Torenvliet, L., Watanabe, O., Balcázar, J.L.: Generalized Kolmogorov
complexity in relativized separations (extended abstract). In: Rovan, B. (ed.)
MFCS 1990. LNCS, vol. 452, pp. 269–276. Springer, Heidelberg (1990). https://
doi.org/10.1007/BFb0029618

27. Golovnev, A., Ilango, R., Impagliazzo, R., Kabanets, V., Kolokolova, A., Tal, A.:
AC0[p] lower bounds against MCSP via the coin problem. In: 46th International
Colloquium on Automata, Languages, and Programming, (ICALP). LIPIcs, vol.
132, pp. 66:1–66:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2019).
https://doi.org/10.4230/LIPIcs.ICALP.2019.66

28. Hemachandra, L.A., Wechsung, G.: Using randomness to characterize the complex-
ity of computation. In: Proceedings of the IFIP 11th World Computer Congress
on Information Processing 1989, pp. 281–286. North-Holland/IFIP (1989), see also
[29]

29. Hemachandra, L.A., Wechsung, G.: Kolmogorov characterizations of complexity
classes. Theor. Comput. Sci. 83(2), 313–322 (1991). https://doi.org/10.1016/0304-
3975(91)90282-7

30. Hirahara, S.: Non-black-box worst-case to average-case reductions within NP. In:
59th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pp.
247–258 (2018). https://doi.org/10.1109/FOCS.2018.00032

31. Hirahara, S., Santhanam, R.: On the average-case complexity of MCSP and its
variants. In: 32nd Conference on Computational Complexity, CCC. LIPIcs, vol. 79,
pp. 7:1–7:20. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017). https://
doi.org/10.4230/LIPIcs.CCC.2017.7

32. Hitchcock, J.M., Pavan, A.: On the NP-completeness of the minimum circuit
size problem. In: Conference on Foundations of Software Technology and The-
oretical Computer Science (FST&TCS). LIPIcs, vol. 45, pp. 236–245. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2015). https://doi.org/10.4230/
LIPIcs.FSTTCS.2015.236

33. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Boston (1979)

34. Ilango, R.: Approaching MCSP from above and below: Hardness for a conditional
variant and AC0[p]. In: 11th Innovations in Theoretical Computer Science Confer-
ence, ITCS. LIPIcs, vol. 151, pp. 34:1–34:26. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2020). https://doi.org/10.4230/LIPIcs.ITCS.2020.34

35. Ilango, R., Loff, B., Oliveira, I.C.: NP-hardness of minimizing circuits and com-
munication (2019, manuscript)

36. Kabanets, V., Cai, J.Y.: Circuit minimization problem. In: ACM Symposium on
Theory of Computing (STOC), pp. 73–79 (2000). https://doi.org/10.1145/335305.
335314

37. Ko, K.: On the notion of infinite pseudorandom sequences. Theor. Comput. Sci.
48(3), 9–33 (1986). https://doi.org/10.1016/0304-3975(86)90081-2

38. Ko, K.: On the complexity of learning minimum time-bounded Turing machines. In:
Proceedings of the Third Annual Workshop on Computational Learning Theory,
(COLT), pp. 82–96 (1990), see also [39]

39. Ko, K.: On the complexity of learning minimum time-bounded Turing machines.
SIAM J. Comput. 20(5), 962–986 (1991). https://doi.org/10.1137/0220059

https://doi.org/10.1016/0304-3975(77)90015-9
https://doi.org/10.1007/978-0-387-68441-3
https://doi.org/10.1007/BFb0029618
https://doi.org/10.1007/BFb0029618
https://doi.org/10.4230/LIPIcs.ICALP.2019.66
https://doi.org/10.1016/0304-3975(91)90282-7
https://doi.org/10.1016/0304-3975(91)90282-7
https://doi.org/10.1109/FOCS.2018.00032
https://doi.org/10.4230/LIPIcs.CCC.2017.7
https://doi.org/10.4230/LIPIcs.CCC.2017.7
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.236
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.236
https://doi.org/10.4230/LIPIcs.ITCS.2020.34
https://doi.org/10.1145/335305.335314
https://doi.org/10.1145/335305.335314
https://doi.org/10.1016/0304-3975(86)90081-2
https://doi.org/10.1137/0220059

Ker-I Ko and the Study of Resource-Bounded Kolmogorov Complexity 17

40. Ko, K.-I., Orponen, P., Schöning, U., Watanabe, O.: What is a hard instance of a
computational problem? In: Selman, A.L. (ed.) Structure in Complexity Theory.
LNCS, vol. 223, pp. 197–217. Springer, Heidelberg (1986). https://doi.org/10.1007/
3-540-16486-3 99. See also [51]

41. Kolmogorov, A.N.: Three approaches to the quantitative definition ofinformation’.
Probl. Inf. Transm. 1(1), 1–7 (1965)

42. Levin, L.: Universal search problems. Probl. Inf. Transm. 9, 265–266 (1973)
43. Levin, L.A.: Randomness conservation inequalities; information and independence

in mathematical theories. Inf. Control 61(1), 15–37 (1984). https://doi.org/10.
1016/S0019-9958(84)80060-l

44. Li, M., Vitanyi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Appli-
cations. Texts in Computer Science, 4th edn. Springer, Heidelberg (2019). https://
doi.org/10.1007/978-3-030-11298-1

45. McKay, D.M., Murray, C.D., Williams, R.R.: Weak lower bounds on resource-
bounded compression imply strong separations of complexity classes. In: Proceed-
ings of the 51st Annual ACM SIGACT Symposium on Theory of Computing
(STOC), pp. 1215–1225 (2019). https://doi.org/10.1145/3313276.3316396

46. Meyer, A., McCreight, E.: Computationally complex and pseudo-random zero-one
valued functions. In: Theory of Machines and Computations, pp. 19–42. Elsevier
(1971)

47. Murray, C., Williams, R.: On the (non) NP-hardness of computing circuit com-
plexity. Theory Comput. 13(4), 1–22 (2017). https://doi.org/10.4086/toc.2017.
v013a004

48. Oliveira, I., Santhanam, R.: Conspiracies between learning algorithms, circuit lower
bounds and pseudorandomness. In: 32nd Conference on Computational Complex-
ity, CCC. LIPIcs, vol. 79, pp. 18:1–18:49. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2017). https://doi.org/10.4230/LIPIcs.CCC.2017.18

49. Oliveira, I.C., Pich, J., Santhanam, R.: Hardness magnification near state-of-
the-art lower bounds. In: 34th Computational Complexity Conference (CCC).
LIPIcs, vol. 137, pp. 27:1–27:29. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik (2019). https://doi.org/10.4230/LIPIcs.CCC.2019.27

50. Oliveira, I.C., Santhanam, R.: Hardness magnification for natural problems. In:
59th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pp.
65–76 (2018). https://doi.org/10.1109/FOCS.2018.00016

51. Orponen, P., Ko, K., Schoning, U., Watanabe, O.: Instance complexity. J. ACM
41(1), 96–121 (1994). https://doi.org/10.1145/174644.174648

52. Paul, W.J., Seiferas, J.I., Simon, J.: An information-theoretic approach to time
bounds for on-line computation (preliminary version). In: Proceedings of the
Twelfth Annual ACM Symposium on Theory of Computing, STOC 1980, pp. 357–
367. ACM, New York (1980). https://doi.org/10.1145/800141.804685, see also [53]

53. Paul, W.J., Seiferas, J.I., Simon, J.: An information-theoretic approach to time
bounds for on-line computation. J. Comput. Syst. Sci. 23(2), 108–126 (1981).
https://doi.org/10.1016/0022-0000(81)90009-X

54. Peterson, G.L.: Succinct representation, random strings, and complexity classes.
In: 21st Annual Symposium on Foundations of Computer Science (FOCS), pp.
86–95 (1980). https://doi.org/10.1109/SFCS.1980.42

55. Pitt, L., Valiant, L.G.: Computational limitations on learning from examples. J.
ACM 35(4), 965–984 (1988). https://doi.org/10.1145/48014.63140

56. Pitt, L., Warmuth, M.K.: The minimum consistent DFA problem cannot be approx-
imated within any polynomial. J. ACM 40(1), 95–142 (1993). https://doi.org/10.
1145/138027.138042

https://doi.org/10.1007/3-540-16486-3_99
https://doi.org/10.1007/3-540-16486-3_99
https://doi.org/10.1016/S0019-9958(84)80060-l
https://doi.org/10.1016/S0019-9958(84)80060-l
https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1145/3313276.3316396
https://doi.org/10.4086/toc.2017.v013a004
https://doi.org/10.4086/toc.2017.v013a004
https://doi.org/10.4230/LIPIcs.CCC.2017.18
https://doi.org/10.4230/LIPIcs.CCC.2019.27
https://doi.org/10.1109/FOCS.2018.00016
https://doi.org/10.1145/174644.174648
https://doi.org/10.1145/800141.804685
https://doi.org/10.1016/0022-0000(81)90009-X
https://doi.org/10.1109/SFCS.1980.42
https://doi.org/10.1145/48014.63140
https://doi.org/10.1145/138027.138042
https://doi.org/10.1145/138027.138042

18 E. Allender

57. Rudow, M.: Discrete logarithm and minimum circuit size. Inf. Process. Lett. 128,
1–4 (2017). https://doi.org/10.1016/j.ipl.2017.07.005

58. Sipser, M.: A complexity theoretic approach to randomness. In: Proceedings of
the 15th Annual ACM Symposium on Theory of Computing (STOC), pp. 330–335
(1983). https://doi.org/10.1145/800061.808762

59. Trakhtenbrot, B.A.: A survey of Russian approaches to perebor (brute-force
searches) algorithms. IEEE Ann. Hist. Comput. 6(4), 384–400 (1984)

60. Watanabe, O.: Kolmogorov Complexity and Computational Complexity, 1st edn.
Springer, Heidelberg (2012)

61. Wilber, R.E.: Randomness and the density of hard problems. In: 24th Annual
Symposium on Foundations of Computer Science (FOCS), pp. 335–342 (1983).
https://doi.org/10.1109/SFCS.1983.49

62. Yao, A.C.: Theory and applications of trapdoor functions (extended abstract). In:
23rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 80–91
(1982). https://doi.org/10.1109/SFCS.1982.45

https://doi.org/10.1016/j.ipl.2017.07.005
https://doi.org/10.1145/800061.808762
https://doi.org/10.1109/SFCS.1983.49
https://doi.org/10.1109/SFCS.1982.45

The Power of Self-Reducibility:
Selectivity, Information, and

Approximation

Lane A. Hemaspaandra

Department of Computer Science, University of Rochester,
Rochester, NY 14627, USA

http://www.cs.rochester.edu/u/lane/

In memory of Ker-I Ko, whose indelible
contributions to computational complexity
included important work (e.g., [24–27]) on
each of this chapter’s topics:
self-reducibility, selectivity, information,
and approximation.

Abstract. This chapter provides a hands-on tutorial on the impor-
tant technique known as self-reducibility. Through a series of “Challenge
Problems” that are theorems that the reader will—after being given defi-
nitions and tools—try to prove, the tutorial will ask the reader not to read
proofs that use self-reducibility, but rather to discover proofs that use
self-reducibility. In particular, the chapter will seek to guide the reader to
the discovery of proofs of four interesting theorems—whose focus areas
range from selectivity to information to approximation—from the liter-
ature, whose proofs draw on self-reducibility.

The chapter’s goal is to allow interested readers to add self-reducibility
to their collection of proof tools. The chapter simultaneously has a related
but different goal, namely, to provide a “lesson plan” (and a coordinated
set of slides is available online to support this use [13]) for a lecture to
a two-lecture series that can be given to undergraduate students—even
those with no background other than basic discrete mathematics and
an understanding of what polynomial-time computation is—to immerse
them in hands-on proving, and by doing that, to serve as an invitation to
them to take courses on Models of Computation or Complexity Theory.

Keywords: Computational and structural complexity theory ·
Enumerative counting · P-selectivity · Self-reducibility · Sparse sets

This chapter was written in part while on sabbatical at Heinrich Heine University
Düsseldorf, supported in part by a Renewed Research Stay grant from the Alexander
von Humboldt Foundation.

c© Springer Nature Switzerland AG 2020
D.-Z. Du and J. Wang (Eds.): Ko Festschrift, LNCS 12000, pp. 19–47, 2020.
https://doi.org/10.1007/978-3-030-41672-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41672-0_3&domain=pdf
http://orcid.org/0000-0003-0659-5204
https://doi.org/10.1007/978-3-030-41672-0_3

20 L. A. Hemaspaandra

1 Introduction

Section 1.1 explains the two quite different audiences that this chapter is intended
for, and for each describes how that group might use the chapter. If you’re not a
computer science professor it would make sense to skip Sect. 1.1, and if you are
a computer science professor you might at least on a first reading choose to skip
Sect. 1.1.

Section 1.2 introduces the type of self-reducibility that this chapter will focus
on, and the chapter’s central set, SAT (the satisfiability problem for propositional
Boolean formulas).

1.1 A Note on the Two Audiences, and How to Read This Chapter

This chapter is unusual in that it has two intended audiences, and those audi-
ences differ dramatically in their amounts of background in theoretical computer
science.

For Those Unfamiliar with Complexity Theory. The main intended audi-
ence is those—most especially young students—who are not yet familiar with
complexity theory, or perhaps have not even yet taken a models of computation
course. If that describes you, then this chapter is intended to be a few-hour tuto-
rial immersion in—and invitation to—the world of theoretical computer science
research. As you go through this tutorial, you’ll try to solve—hands-on—research
issues that are sufficiently important that their original solutions appeared in
some of theoretical computer science’s best conferences and journals.

You’ll be given the definitions and some tools before being asked to try your
hand at finding a solution to a problem. And with luck, for at least a few of
our four challenge problems, you will find a solution to the problem. Even if
you don’t find a solution for the given problem—and the problems increase in
difficulty and especially the later ones require bold, flexible exploration to find
possible paths to the solution—the fact that you have spent time trying to solve
the problem will give you more insight into the solution when the solution is
then presented in this chapter.

A big-picture goal here is to make it clear that doing theoretical computer sci-
ence research is often about playful, creative, flexible puzzle-solving. The under-
lying hope here is that many people who thought that theoretical computer
science was intimidating and something that they could never do or even under-
stand will realize that they can do theoretical computer science and perhaps
even that they (gasp!) enjoy doing theoretical computer science.

The four problems also are tacitly bringing out a different issue, one more
specifically about complexity. Most people, and even most computer science
professors, think that complexity theory is extraordinarily abstract and hard to
grasp. Yet in each of our four challenge problems, we’ll see that doing complexity
is often extremely concrete, and in fact is about building a program that solves a
given problem. Building programs is something that many people already have
done, e.g., anyone who has taken an introduction to programming course or

The Power of Self-Reducibility 21

a data structures course. The only difference in the programs one builds when
doing proofs in complexity theory is that the programs one builds typically draw
on some hypothesis that provides a piece of the program’s action. For example,
our fourth challenge problem will be to show that if a certain problem is easy
to approximate, then it can be solved exactly. So your task, when solving it,
will be to write a program that exactly solves the problem. But in writing your
program you will assume that you have as a black box that you can draw on
as a program (a subroutine) that given an instance of the problem gives an
approximate solution.

This view that complexity is largely about something that is quite con-
crete, namely building programs, in fact is the basis of an entire graduate-level
complexity-theory textbook [18], in which the situation is described as follows:

Most people view complexity theory as an arcane realm populated by
pointy-hatted (if not indeed pointy-headed) sorcerers stirring cauldrons of
recursion theory with wands of combinatorics, while chanting incantations
involving complexity classes whose very names contain hundreds of char-
acters and sear the tongues of mere mortals. This stereotype has sprung
up in part due to the small amount of esoteric research that fits this bill,
but the stereotype is more strongly attributable to the failure of complex-
ity theorists to communicate in expository forums the central role that
algorithms play in complexity theory.

Expected Background. To keep this chapter as accessible as possible, the amount
of expected background has been kept quite small. But there are some types
of background that are being assumed here. The reader is assumed to know
following material, which would typically be learned within about the first two
courses of most computer science departments’ introductory course sequences.

1. What a polynomial is.
As an example, p(n) = n1492 + 42n42 + 13 is a polynomial; e(n) = 2n is not.

2. What it means for a set or function to be computable in polynomial time,
i.e., to be computed in time polynomial in the number of bits in the input to
the problem. The class of all sets that can be computed in polynomial time
is denoted P, and is one of the most important classes in computer science.
As an example, the set of all positive integers that are multiples of 10 is a set
that belongs to P.

3. Some basics of logic such as the meaning of quantifiers (∃ and ∀) and what a
(propositional) Boolean formula is.
As an example of the latter, the formula x1 ∧ (x2 ∨ x3) is a such a formula,
and evaluates as True—with each of x1, x2, and x3 being variables whose
potential values are True or False—exactly if x1 is True and either x2 is True
or the negation of x3 is True.

If you have that background in hand, wonderful! You have the background to
tackle this chapter’s puzzles and challenges, and please (unless you’re a professor
thinking of modeling a lecture series on this chapter) skip from here right on to
Sect. 1.2.

22 L. A. Hemaspaandra

For Computer Science Professors. Precisely because this chapter is designed
to be accessible and fun for students who don’t have a background in theoretical
computer science, the chapter avoids—until Sect. 7—trying to abstract away
from the focus on SAT. In particular, this chapter either avoids mentioning
complexity class names such as NP, coNP, and PSPACE, or at least, when it
does mention them, uses phrasings such as “classes known as” to make clear
that the reader is not expected to possess that knowledge.

Despite that, computer science professors are very much an intended audi-
ence for this chapter, though in a way that is reflecting the fact that the real
target audience for these challenges is young students. In particular, in addi-
tion to providing a tutorial introduction for students, of the flavor described in
Sect. 1.1, this chapter also has as its goal to provide to you, as a teacher, a “les-
son plan” to help you offer in your course a one- or two-day lecture (but really
hands-on workshop) sequence1 in which you present the definitions and tools of
the first of these problems, and then ask the students to break into groups and
in groups spend about 10–25 minutes working on solving the problem,2 and then
you ask whether some group has found a solution and would like to present it to
the class, and if so you and the class listen to and if needed correct the solution
(and if no group found a solution, you and the class will work together to reach
a solution). And then you go on to similarly treat the other three problems,
again with the class working in teams. This provides students with a hands-on
immersion in team-based, on-the-spot theorem-proving—something that most
students never get in class. I’ve done this in classes of size up to 79 students,
and they love it. The approach does not treat them as receptors of information
lectured at them, but rather shows them that they too can make discoveries—
even ones that when first obtained appeared in such top forums as CCC (the
yearly Computational Complexity Conference), ICALP (the yearly International
Colloquium on Automata, Languages, and Programming), the journal Informa-
tion and Computation, and SIAM Journal on Computing.

1 To cover all four problems would take two class sessions. Covering just the first two
or perhaps three of the problems could be done in a single 75-minute class session.

2 In this chapter, since student readers of the chapter will be working as individuals,
I suggest to the reader, for most of the problems, longer amounts of time. But in a
classroom setting where students are working in groups, 10–25 minutes may be an
appropriate amount of time; perhaps 10minutes for the first challenge problem, 15
for the second, 15 for the third, and 25 for the fourth. You’ll need to yourself judge
the time amounts that are best, based on your knowledge of your students. For many
classes, the just-mentioned times will not be enough. Myself, I try to keep track of
whether the groups seem to have found an answer, and I will sometimes stretch out
the time window if many groups seem to be still working intensely and with interest.
Also, if TAs happen to be available who don’t already know the answers, I may
assign them to groups so that the class’s groups will have more experienced members,
though the TAs do know to guide rather than dominate a group’s discussions.

The Power of Self-Reducibility 23

To support this use of the chapter as a teaching tool in class, I have made
publicly available a set of LATEX/Beamer slides that can be used for a one-
or two-class hands-on workshop series on this chapter. The slides are available
online [13], both as pdf slides and, for teachers who might wish to modify the
slides, as a zip archive of the source files.

Since the slides might be used in courses where students already do know
of such classes as NP and coNP, the slides don’t defer the use of those classes
as aggressively as this chapter itself does. But the slides are designed so that
the mention of the connections to those classes is parenthetical (literally so—
typically a parenthetical, at the end of a theorem statement, noting the more
general application of the claim to all of NP or all of coNP), and those par-
entheticals can be simply skipped over. Also, the slides define on the fly both
NP and coNP, so that if you do wish to cover the more general versions of the
theorems, the slides will support that too.

The slides don’t themselves present the solutions to Challenge Problems 1,
2, or 3. Rather, they assume that one of the class’s groups will present a solution
on the board (or document camera) or will speak the solution with the professor
acting as a scribe at the board or the document camera. Challenge Problems
1, 2, and 3 are doable enough that usually at least one group will either have
solved the question, or at least will made enough progress that, with some help
from classmates or some hints/help from the professor, a solution can quickly be
reached building on the group’s work. (The professor ideally should have read
the solutions in this chapter to those problems, so that even if a solution isn’t
reached or almost reached by the students on one or two of those problems, the
professor can provide a solution at the board or document camera. However, in
the ideal case, the solutions of those problems will be heavily student-driven and
won’t need much, if any, professorial steering.)

Challenge Problem 4 is sufficiently hard that the slides do include both a
slide explaining why a certain very natural approach—which is the one students
often (quite reasonably) try to make work—cannot possibly work, and thus why
the approach that the slides gave to students as a gentle, oblique hint may be
the way to go, and then the slides present a solution along those lines.

The difficulty of Challenge Problem 4 has a point. Although this chapter
is trying to show students that they can do theory research, there is also an
obligation not to give an artificial sense that all problems are easily solved.
Challenge Problem 4 shows students that some problems can have multiple twists
and turns on the way to finding a solution. Ideally, the students won’t be put
off by this, but rather will appreciate both that solving problems is something
they can do, and that in doing so one may well run into obstacles that will take
some out-of-the-box thinking to try to get around—obstacles that might take
not minutes of thought but rather hours or days or more, as well as working
closely with others to share ideas as to what might work.

24 L. A. Hemaspaandra

1.2 Self-Reducibility and SAT

Now that you have read whatever part of Sect. 1.1 applied to you, to get the lay
of the land as to what this chapter is trying to provide you, let us discuss the
approach that will be our lodestar throughout this chapter.

One of the most central paradigms of computer science is “divide and con-
quer.” Some of the most powerful realizations of that approach occur though the
use of what is known as self-reducibility, which is our chapter’s central focus.

Loosely put, a set is self-reducible if any membership question regarding
the set can be easily resolved by asking (perhaps more than one) membership
questions about smaller strings.

That certainly divides, but does it conquer?
The answer varies greatly depending on the setting. Self-reducibility itself,

depending on which polynomial-time variant one is looking at, gives upper
bounds on a set’s complexity. However, those bounds—which in some cases are
the complexity classes known as NP and PSPACE—are nowhere near to putting
the set into deterministic polynomial time (aka, P).

The magic of self-reducibility, however, comes when one adds another ingre-
dient to one’s stew. Often, one can prove that if a set is self-reducible and has
some other property regarding its structure, then the set is feasible, i.e., is in
deterministic polynomial time.

This tutorial will ask the reader to—and help the reader to—discover for
him- or herself the famous proofs of three such magic cases (due to Selman,
Berman, and Fortune), and then of a fourth case that is about the “counting”
analogue of what was described in the previous paragraph.

Beyond that, I hope you’ll keep the tool/technique of self-reducibility in mind
for the rest of your year, decade, and lifetime—and on each new challenge will
spend at least a few moments asking, “Can self-reducibility play a helpful role
in my study of this problem?” And with luck, sooner or later, the answer may
be, “Yes! Goodness. . . what a surprise!”

Throughout this chapter, our model language (set) will be “SAT,” i.e., the
question of whether a given Boolean formula, for some way of assigning each of
its variables to True or to False, evaluates to True. SAT is a central problem
in computer science, and possesses a strong form of self-reducibility. As a quiet
bonus, though we won’t focus on this in our main traversal of the problems and
their solutions, SAT has certain “completeness” properties that make results
proven about SAT often yield results for an entire important class of problems
known as the “NP-complete” sets; for those interested in that, Sect. 7, “Going
Big: Complexity-Class Implications,” briefly covers that broader view.

2 Definitions Used Throughout: SAT and
Self-Reducibility

The game plan of this chapter, as mentioned above, is this: For each of the four
challenge problems (theorems), you will be given definitions and some other

The Power of Self-Reducibility 25

background or tools. Then the challenge problem (theorem) will be stated, and
you’ll be asked to try to solve it, that is, you’ll be asked to prove the theorem.
After you do, or after you hit a wall so completely that you feel you can’t solve
the theorem even with additional time, you’ll read a proof of the theorem. Each
of the four challenge problems has an appendix presenting a proof of the result.

But before we start on the problems, we need to define SAT and discuss its
self-reducibility.

Definition 1. SAT is the set of all satisfiable (propositional) Boolean formulas.

Example 1. 1. x ∧ x �∈ SAT, since neither of the two possible assignments to x
causes the formula to evaluate to True.

2. (x1∧x2∧x3)∨(x4∧x4) ∈ SAT, since that formula evaluates to True under at
least one of the eight possible ways that the four variables can each be assigned
to be True or False. For example, when we take x1 = x2 = x4 = True and
x3 = False, the formula evaluates to True.

SAT has the following “divide and conquer” property.

Fact 1 (2-disjunctive length-decreasing self-reducibility). Let k ≥ 1. Let
F (x1, x2, . . . , xk) be a Boolean formula (without loss of generality, assume that
each of the variables actually occurs in the formula). Then

F (x1, x2, . . . , xk) ∈ SAT ⇐⇒
(
F (True, x2, . . . , xk) ∈ SAT ∨ F (False, x2, . . . , xk) ∈ SAT

)
.

The above fact says that SAT is self-reducible (in particular, in the lingo, it
says that SAT is 2-disjunctive length-decreasing self-reducible).

Note: We won’t at all focus in this chapter on details of the encoding of
formulas and other objects. That indeed is an issue if one wants to do an utterly
detailed discussion/proof. But the issue is not a particularly interesting one, and
certainly can be put to the side during a first traversal, such as that which this
chapter is inviting you to make.

A Bit of History. In this chapter, we typically won’t focus much on references. It
is best to immerse oneself in the challenges, without getting overwhelmed with
a lot of detailed historical context. However, so that those who are interested in
history can have some sense of the history, and so that those who invented the
concepts and proved the theorems are property credited, we will for most sections
have an “A Bit of History” paragraph that extremely briefly gives literature
citations and sometimes a bit of history and context. As to the present section,
self-reducibility dates back to the 1970s, and in particular is due to the work of
Schnorr [34] and Meyer and Paterson [33].

26 L. A. Hemaspaandra

3 Challenge Problem 1: Is SAT Even Semi -feasible?

Pretty much no one believes that SAT has a polynomial-time decision algorithm,
i.e., that SAT ∈ P [8]. This section asks you to show that it even is unlikely
that SAT has a polynomial-time semi-decision algorithm—a polynomial-time
algorithm that, given any two formulas, always outputs one of them and does
so in such a way that if at least one of the input formulas is satisfiable then the
formula that is output is satisfiable.

3.1 Needed Definitions

A set L is said to be feasible (in the sense of belonging to P) if there is a
polynomial-time algorithm that decides membership in L.

A set is said to be semi-feasible (aka P-selective) if there is a polynomial-
time algorithm that semi-decides membership, i.e., that given any two strings,
outputs one that is “more likely” to be in the set (to be formally cleaner, since
the probabilities are all 0 and 1 and can tie, what is really meant is “no less
likely” to be in the set). The following definition makes this formal. (Here and
elsewhere, Σ will denote our (finite) alphabet and Σ∗ will denote the set of finite
strings over that alphabet.)

Definition 2. A set L is P-selective if there exists a polynomial-time function,
f : Σ∗ × Σ∗ → Σ∗ such that,

(∀a, b ∈ Σ∗)[f(a, b) ∈ {a, b} ∧ ({a, b} ∩ L �= ∅ =⇒ f(a, b) ∈ L
)
].

It is known that some P-selective sets can be very hard. Some even have the
property known as being “undecidable.” Despite that, our first challenge problem
is to prove that SAT cannot be P-selective unless SAT is outright easy computa-
tionally, i.e., SAT ∈ P. Since it is close to an article of faith in computer science
that SAT �∈ P, showing that some hypothesis implies that SAT ∈ P is consid-
ered, with the full weight of modern computer science’s current understanding
and intuition, to be extremely strong evidence that the hypothesis is unlikely to
be true. (In the lingo, the hypothesis is implying that P = NP. Although it is
possible that P = NP is true, basically no one believes that it is [8]. However,
the issue is the most important open issue in applied mathematics, and there is
currently a $1,000,000 prize for whoever resolves the issue [5].)

A Bit of History. Inspired by an analogue in computability theory, P-selectivity
was defined by Selman in a seminal series of papers [35–38], which included a
proof of our first challenge theorem. The fact, alluded to above, that P-selective
sets can be very hard is due to Alan L. Selman’s above work and to the work of
the researcher in whose memory this chapter is written, Ker-I Ko [24]. In that
same paper, Ko also did very important early work showing that P-selective sets
are unlikely to have what is known as “small circuits.” For those particularly
interested in the P-selective sets, they and their nondeterministic cousins are the
subject of a book, Theory of Semi-feasible Algorithms [21].

The Power of Self-Reducibility 27

3.2 Can SAT Be P-Selective?

Challenge Problem 1. (Prove that) if SAT is P-selective, then SAT ∈ P.

Keep in mind that what you should be trying to do is this. You may assume
that SAT is P-selective. So you may act as if you have in hand a polynomial-
time computable function, f , that in the sense of Definition 2 shows that SAT is
P-selective. And your task is to give a polynomial-time algorithm for SAT, i.e.,
a program that in time polynomial in the number of bits in its input determines
whether the input string belongs to SAT. (Your algorithm surely will be making
calls to f—possibly quite a few calls.)

So that you have them easily at hand while working on this, here are some
of the key definitions and tools that you might want to draw on while trying to
prove this theorem.

SAT. SAT is the set of all satisfiable (propositional) Boolean formulas.
Self-Reducibility. Let k ≥ 1. Let F (x1, x2, . . . , xk) be a Boolean formula

(without loss of generality assume that each of the variables occurs in
the formula). Then F (x1, x2, . . . , xk) ∈ SAT ⇐⇒ (

F (True, x2, . . . , xk) ∈
SAT ∨ F (False, x2, . . . , xk) ∈ SAT

)
.

P-Selectivity. A set L is P-selective if there exists a polynomial-time function,
f : Σ∗ × Σ∗ → Σ∗ such that, (∀a, b ∈ Σ∗)[f(a, b) ∈ {a, b} ∧ ({a, b} ∩ L �=
∅ =⇒ f(a, b) ∈ L

)
].

My suggestion to you would be to work on proving this theorem until either
you find a proof, or you’ve put in at least 20 minutes of thought, are stuck, and
don’t think that more time will be helpful.

When you’ve reached one or the other of those states, please go on to
Appendix A to read a proof of this theorem. Having that proof will help you
check whether your proof (if you found one) is correct, and if you did not find
a proof, will show you a proof. Knowing the answer to this challenge problem
before going on to the other three challenge problems is important, since an
aspect of this problem’s solution will show up in the solutions to the other chal-
lenge problems.

I’ve put the solutions in separate appendix sections so that you can avoid
accidentally seeing them before you wish to. But please do (unless you are com-
pletely certain that your solution to the first problem is correct) read the solution
for the first problem before moving on to the second problem. If you did not find
a proof for this first challenge problem, don’t feel bad; everyone has days when
we see things and days when we don’t. On the other hand, if you did find a
proof of this first challenge theorem, wonderful, and if you felt that it was easy,
well, the four problems get steadily harder, until by the fourth problem almost
anyone would have to work very, very hard and be a bit lucky to find a solution.

28 L. A. Hemaspaandra

4 Challenge Problem 2: Low Information Content
and SAT, Part 1: Can SAT Reduce to a Tally Set?

Can SAT have low information content? To answer that, one needs to formalize
what notion of low information content one wishes to study. There are many such
notions, but a particularly important one is whether a given set can “many-one
polynomial-time reduce” to a tally set (a set over a 1-letter alphabet).

A Bit of History. Our second challenge theorem was stated and proved by
Berman [2]. Berman’s paper started a remarkably long and productive line of
work, which we will discuss in more detail in the “A Bit of History” note accom-
panying the third challenge problem. That same note will provide pointers to
surveys of that line of work, for those interested in additional reading.

4.1 Needed Definitions

ε will denote the empty string.

Definition 3. A set T is a tally set if T ⊆ {ε, 0, 00, 000, . . . }.
Definition 4. We say that A ≤p

m B (A many-one polynomial-time reduces to
B) if there is a polynomial-time computable function g such that

(∀x ∈ Σ∗)[x ∈ A ⇐⇒ g(x) ∈ B].

Informally, this says that B is so powerful that each membership query to A
can be efficiently transformed into a membership query to B that gets the same
answer as would the question regarding membership in A.

4.2 Can SAT Reduce to a Tally Set?

Challenge Problem 2. (Prove that) if there exists a tally set T such that
SAT ≤p

m T , then SAT ∈ P.

Keep in mind that what you should be trying to do is this. You may assume
that there exists a tally set T such that SAT ≤p

m T . You may not assume that
you have a polynomial-time algorithm for T ; you are assuming that T exists,
but for all we know, T might well be very hard. On the other hand, you may
assume that you have in hand a polynomial-time computable function g that
reduces from SAT to T in the sense of Definition 4. (After all, that reduction
is (if it exists) a finite-sized program.) Your task here is to give a polynomial-
time algorithm for SAT, i.e., a program that in time polynomial in the number
of bits in its input determines whether the input string belongs to SAT. (Your
algorithm surely will be making calls to g—possibly quite a few calls.)

So that you have them easily at hand while working on this, here are some
of the key definitions and tools that you might want to draw on while trying to
prove this theorem.

The Power of Self-Reducibility 29

SAT. SAT is the set of all satisfiable (propositional) Boolean formulas.
Self-Reducibility. Let k ≥ 1. Let F (x1, x2, . . . , xk) be a Boolean formula

(without loss of generality assume that each of the xi actually occurs in
the formula). Then F (x1, x2, . . . , xk) ∈ SAT ⇐⇒ (

F (True, x2, . . . , xk) ∈
SAT ∨ F (False, x2, . . . , xk) ∈ SAT

)
.

Tally Sets. A set T is a tally set if T ⊆ {ε, 0, 00, 000, . . . }.
Many-One Reductions. We say that A ≤p

m B if there is a polynomial-time
computable function g such that (∀x ∈ Σ∗)[x ∈ A ⇐⇒ g(x) ∈ B].

My suggestion to you would be to work on proving this theorem until either
you find a proof, or you’ve put in at least 30 minutes of thought, are stuck, and
don’t think that more time will be helpful.

When you’ve reached one or the other of those states, please go on to
Appendix B to read a proof of this theorem. The solution to the third challenge
problem is an extension of this problem’s solution, so knowing the answer to this
challenge problem before going on to the third challenge problem is important.

5 Challenge Problem 3: Low Information Content
and SAT, Part 2: Can SAT Reduce to a Sparse Set?

This problem challenges you to show that even a class of sets that is far broader
than the tally sets, namely, the so-called sparse sets, cannot be reduced to from
SAT unless SAT ∈ P.

A Bit of History. This third challenge problem was stated and proved by For-
tune [7]. It was another step in what was a long line of advances—employing
more and more creative and sometimes difficult proofs—that eventually led to
the understanding that, unless SAT ∈ P, no sparse set can be hard for SAT
even with respect to extremely flexible types of reductions. The most famous
result within this line is known as Mahaney’s Theorem: If there is a sparse set
S such that SAT ≤p

m S, then SAT ∈ P [30]. There are many surveys of the
just-mentioned line of work, e.g., [11,31,32,41]. The currently strongest result
in that line is due to Glaßer [9] (see the survey/treatment of that in [10], and
see also the results of Arvind et al. [1]).

5.1 Needed Definitions

Let ‖S‖ denote the cardinality of set S, e.g., ‖{ε, 0, 0, 0, 00}‖ = 3.
For any set L, let L denote the complement of L.
Let |x| denote the length string x, e.g., |moon| = 4.

Definition 5. A set S is sparse if there exists a polynomial q such that, for each
natural number n ∈ {0, 1, 2, . . . }, it holds that

‖{x | x ∈ S ∧ |x| ≤ n}‖ ≤ q(n).

30 L. A. Hemaspaandra

Informally put, the sparse sets are the sets whose number of strings up to a given
length is at most polynomial. {0, 1}∗ is, for example, not a sparse set, since up to
length n it has 2n+1 − 1 strings. But all tally sets are sparse, indeed all via the
bounding polynomial q(n) = n + 1.

5.2 Can SAT Reduce to a Sparse Set?

Challenge Problem 3. (Prove that) if there exists a sparse set S such that
SAT ≤p

m S, then SAT ∈ P.

Keep in mind that what you should be trying to do is this. You may assume
that there exists a sparse set S such that SAT ≤p

m S. You may not assume that
you have a polynomial-time algorithm for S; you are assuming that S exists, but
for all we know, S might well be very hard. On the other hand, you may assume
that you have in hand a polynomial-time computable function g that reduces
from SAT to S in the sense of Definition 4. (After all, that reduction is—if it
exists—a finite-sized program.) And you may assume that you have in hand a
polynomial that upper-bounds the sparseness of S in the sense of Definition 5.
(After all, one of the countably infinite list of simple polynomials nk + k—for
k = 1, 2, 3, . . . —will provide such an upper bound, if any such polynomial upper
bound exists.) Your task here is to give a polynomial-time algorithm for SAT, i.e.,
a program that in time polynomial in the number of bits in its input determines
whether the input string belongs to SAT. (Your algorithm surely will be making
calls to g—possibly quite a few calls.)

One might wonder why I just said that you should build a polynomial-time
algorithm for SAT, given that the theorem speaks of SAT. However, since it is
clear that SAT ∈ P ⇐⇒ SAT ∈ P (namely, given a polynomial-time algorithm
for SAT, if we simply reverse the answer on each input, then we now have a
polynomial-time algorithm for SAT), it is legal to focus on SAT—and most
people find doing so more natural and intuitive.

Do be careful here. Solving this challenge problem may take an
“aha!. . . insight” moment. Knowing the solution to Challenge Problem 2 will
be a help here, but even with that knowledge in hand one hits an obstacle. And
then the challenge is to find a way around that obstacle.

So that you have them easily at hand while working on this, here are some
of the key definitions and tools that you might want to draw on while trying to
prove this theorem.

SAT and SAT. SAT is the set of all satisfiable (propositional) Boolean formulas.
SAT denotes the complement of SAT.

Self-Reducibility. Let k ≥ 1. Let F (x1, x2, . . . , xk) be a Boolean formula
(without loss of generality assume that each of the xi actually occurs in
the formula). Then F (x1, x2, . . . , xk) ∈ SAT ⇐⇒ (

F (True, x2, . . . , xk) ∈
SAT ∨ F (False, x2, . . . , xk) ∈ SAT

)
.

Sparse Sets. A set S is sparse if there exists a polynomial q such that, for each
natural number n ∈ {0, 1, 2, . . . }, it holds that ‖{x | x ∈ S∧|x| ≤ n}‖ ≤ q(n).

The Power of Self-Reducibility 31

Many-One Reductions. We say that A ≤p
m B if there is a polynomial-time

computable function g such that (∀x ∈ Σ∗)[x ∈ A ⇐⇒ g(x) ∈ B].

My suggestion to you would be to work on proving this theorem until either
you find a proof, or you’ve put in at least 40 minutes of thought, are stuck, and
don’t think that more time will be helpful.

When you’ve reached one or the other of those states, please go on to
Appendix C to read a proof of this theorem.

6 Challenge Problem 4: Is #SAT as Hard to
(Enumeratively) Approximate as It Is to Solve Exactly?

This final challenge is harder than the three previous ones. To solve it, you’ll
have to have multiple insights—as to what approach to use, what building blocks
to use, and how to use them.

The problem is sufficiently hard that the solution is structured to give you,
if you did not solve the problem already, a second bite at the apple! That is, the
solution—after discussing why the problem can be hard to solve—gives a very
big hint, and then invites you to re-try to problem with that hint in hand.

A Bit of History. The function #SAT, the counting version of SAT, will play
a central role in this challenge problem. #SAT was introduced and studied by
Valiant [39,40]. This final challenge problem, its proof (including the lemma
given in the solution I give here and the proof of that lemma), and the notion of
enumerators and enumerative approximation are due to Cai and Hemachandra
[3]. The challenge problem is a weaker version of the main result of that paper,
which proves the result for not just 2-enumerators but even for sublinear-
enumerators; later work showed that the result even holds for all polynomial-time
computable enumerators [4].

6.1 Needed Definitions

|F | will denote the length of (the encoding of) formula F .
#SAT is the function that given as input a Boolean formula

F (x1, x2, . . . , xk)—without loss of generality assume that each of the variables
occurs in F—outputs the number of satisfying assignments the formula has (i.e.,
of the 2k possible assignments of the variables to True/False, the number of those
under which F evaluates to True; so the output will be a natural number in the
interval [0, 2k]). For example, #SAT(x1 ∨ x2) = 3 and #SAT(x1 ∧ x1) = 0.

Definition 6. We say that #SAT has a polynomial-time 2-enumerator (aka, is
polynomial-time 2-enumerably approximable) if there is a polynomial-time com-
putable function h such that on each input x,

1. h(x) outputs a list of two (perhaps identical) natural numbers, and
2. #SAT(x) appears in the list output by h(x).

32 L. A. Hemaspaandra

So a 2-enumerator h outputs a list of (at most) two candidate values for the
value of #SAT on the given input, and the actual output is always somewhere
in that list. This notion generalizes in the natural way to other list cardinalities,
e.g., 1492-enumerators and, for each k ∈ {1, 2, 3, . . . }, max(1, |F |k)-enumerators.

6.2 Food for Thought

You’ll certainly want to use some analogue of the key self-reducibility observa-
tion, except now respun by you to be about the number of solutions of a formula
and how it relates to or is determined by the number of solutions of its two
“child” formulas.

But doing that is just the first step your quest. So. . . please play around with
ideas and approaches. Don’t be afraid to be bold and ambitious. For example,
you might say “Hmmmm, if we could do/build XYZ (where perhaps XYZ might
be some particular insight about combining formulas), that would be a powerful
tool in solving this, and I suspect we can do/build XYZ.” And then you might
want to work both on building XYZ and on showing in detail how, if you did
have tool XYZ in hand, you could use it to show the theorem.

6.3 Is #SAT as Hard to (Enumeratively) Approximate as It Is to
Solve Exactly?

Challenge Problem 4 (Cai and Hemachandra). (Prove that) if #SAT has
a polynomial-time 2-enumerator, then there is a polynomial-time algorithm for
#SAT.

Keep in mind that what you should be trying to do is this. You may assume
that you have in hand a polynomial-time 2-enumerator for #SAT. Your task here
is to give a polynomial-time algorithm for #SAT, i.e., a program that in time
polynomial in the number of bits in its input determines the number of satisfying
assignments of the (formula encoded by the) input string. (Your algorithm surely
will be making calls to the 2-enumerator—possibly quite a few calls.)

Do be careful here. Proving this may take about three “aha!. . . insight”
moments; Sect. 6.2 gave slight hints regarding two of those.

So that you have them easily at hand while working on this, here are some
of the key definitions and tools that you might want to draw on while trying to
prove this theorem.

#SAT. #SAT is the function that given as input a Boolean formula
F (x1, x2, . . . , xk)—without loss of generality assume that each of the vari-
ables occurs in F—outputs the number of satisfying assignments the formula
has (i.e., of the 2k possible assignments of the variables to True/False, the
number of those under which F evaluates to True; so the output will be a
natural number in the interval [0, 2k]). For example, #SAT(x1 ∨ x2) = 3 and
#SAT(x1 ∧ x1) = 0.

The Power of Self-Reducibility 33

Enumerative Approximation. We say that #SAT has a polynomial-time 2-
enumerator (aka, is polynomial-time 2-enumerably approximable) if there is
a polynomial-time computable function h such that on each input x, (a) h(x)
outputs a list of two (perhaps identical) natural numbers, and (b) #SAT(x)
appears in the list output by h(x).

My suggestion to you would be to work on proving this theorem until either
you find a proof, or you’ve put in at least 30–60 minutes of thought, are stuck,
and don’t think that more time will be helpful.

When you’ve reached one or the other of those states, please go on to
Appendix D, where you will find first a discussion of what the most tempt-
ing dead end here is, why it is a dead end, and a tool that will help you avoid
the dead end. And then you’ll be urged to attack the problem again with that
extra tool in hand.

7 Going Big: Complexity-Class Implications

During all four of our challenge problems, we focused just on the concrete prob-
lem, SAT, in its language version or in its counting analogue, #SAT.

However, the challenge results in fact apply to broader classes of problems.
Although we (mostly) won’t prove those broader results in this chapter, this
section will briefly note some of those (and the reader may well be able to in
most cases easily fill in the proofs). The original papers, cited in the “A Bit
of History” notes, are an excellent source to go to for more coverage. None of
the claims below, of course, are due to the present tutorial paper, but rather
they are generally right from the original papers. Also often of use for a gen-
tler treatment than the original papers is the textbook, The Complexity Theory
Companion [18], in which coverage related to our four problems can be found in,
respectively, Chapters 1, 1 [sic], 3, and (using a different technique and focusing
on a concrete but different target problem) 6.

Let us define the complexity class NP by NP = {L | L ≤p
m SAT}. NP more

commonly is defined as the class of sets accepted by nondeterministic polynomial-
time Turing machines; but that definition in fact yields the same class of sets
as the alternate definition just given, and would require a detailed discussion of
what Turing machines are.

Recall that L denotes the complement of L. Let us define the complexity
class coNP by coNP = {L | L ∈ NP}.

A set H is said to be hard for a class C if for each set L ∈ C it holds that
L ≤p

m H. If in addition H ∈ C, then we say that H is C-complete. It is well
known—although it takes quite a bit of work to show and showing this was one
of the most important steps in the history of computer science—that SAT is
NP-complete [6,23,29].

The following theorem follows easily from our first challenge theorem, basi-
cally because if some NP-hard set is P-selective, that causes SAT to be P-
selective. (Why? Our P-selector function for SAT will simply polynomial-time

34 L. A. Hemaspaandra

reduce each of its two inputs to the NP-hard set, will run that set’s P-selector
function on those two strings, and then will select as the more likely to belong
to SAT whichever input string corresponded to the selected string, and for def-
initeness will choose its first argument in the degenerate case where both its
arguments map to the same string.)

Theorem 1. If there exists an NP-hard, P-selective set, then P = NP.

The converse of the above theorem also holds, since if P = NP then SAT and
indeed all of NP is P-selective, since P sets unconditionally are P-selective.

The following theorem follows easily from our second challenge theorem.

Theorem 2. If there exists an NP-hard tally set, then P = NP.

The converse of the above theorem also holds.
The following theorem follows easily from our third challenge theorem.

Theorem 3. If there exists a coNP-hard sparse set, then P = NP.

The converse of the above theorem also holds.
To state the complexity-class analogue of the fourth challenge problem takes

a bit more background, since the result is about function classes rather than
language classes.

There is a complexity class, which we will not define here, defined by Valiant
and known as #P [39], that is the set of functions that count the numbers of
accepting paths of what are known as nondeterministic polynomial-time Turing
machines.

Metric reductions give a reduction notion that applies to the case of func-
tions rather than languages, and are defined as follows. A function f : Σ∗ →
{0, 1, 2, . . . } is said to polynomial-time metric reduce to a function g : Σ∗ →
{0, 1, 2, . . . } if there exist two polynomial-time computable functions, ϕ and ψ,
such that (∀x ∈ Σ∗)[f(x) = ψ(x, g(ϕ(x)))] [28]. (We are assuming that our out-
put natural numbers are naturally coded in binary.) We say a function f is hard
for #P with respect to polynomial-time metric reductions if for every f ′ ∈ #P
it holds that f ′ polynomial-time metric reduces to f ; if in addition f ∈ #P, we
say that f is #P-complete with respect to polynomial-time metric reductions.

With that groundwork in hand, we can now state the analogue, for counting
classes, of our fourth challenge theorem. Since we have not defined #P here,
we’ll state the theorem both in terms of #SAT and in terms of #P (the two
statements below in fact turn out to be equivalent).

Theorem 4. 1. If there exists a function f such that #SAT polynomial-time
metric reduces to f and f has a 2-enumerator, then there is a polynomial-time
algorithm for #SAT.

2. If there exists a function that is #P-hard with respect to polynomial-time
metric reductions and has a 2-enumerator, then there is a polynomial-time
algorithm for #SAT.

The Power of Self-Reducibility 35

The converse of each of the theorem parts also holds. The above theorem parts
(and their converses) even hold if one asks not about 2-enumerators but rather
about polynomial-time enumerators that have no limit on the number of elements
in their output lists (aside from the polynomial limit that is implicit from the
fact that the enumerators have only polynomial time to write their lists).

8 Conclusions

In conclusion, self-reducibility provides a powerful tool with applications across
a broad range of settings.

Myself, I have found self-reducibility and its generalizations to be useful in
understanding topics ranging from election manipulation [12] to backbones of
and backdoors to Boolean formulas [16,17] to the complexity of sparse sets [20],
space-efficient language recognition [19], logspace computation [15], and approx-
imation [14,22].

My guess and hope is that perhaps you too may find self-reducibility useful
in your future work. That is, please, if it is not already there, consider adding
this tool to your personal research toolkit: When you face a problem, think (if
only for a moment) whether the problem happens to be one where the concept
of self-reducibility will help you gain insight. Who knows? One of these years,
you might be happily surprised in finding that your answer to such a question
is “Yes!”

Acknowledgments. I am grateful to the students and faculty at the computer science
departments of RWTH Aachen University, Heinrich Heine University Düsseldorf, and
the University of Rochester. I “test drove” this chapter at each of those schools in
the form of a lecture or lecture series. Particular thanks go to Peter Rossmanith, Jörg
Rothe, and Muthu Venkitasubramaniam, who invited me to speak, and to Gerhard
Woeginger regarding the counterexample in Appendix D. My warm appreciation to
Ding-Zhu Du, Bin Liu, and Jie Wang for inviting me to contribute to this project that
they have organized in memory of the wonderful Ker-I Ko, whose work contributed so
richly to the beautiful, ever-growing tapestry that is complexity theory.

Appendices

A Solution to Challenge Problem 1

Before we start on the proof, let us put up a figure that shows the flavor of a struc-
ture that we will use to help us understand and exploit SAT’s self-reducibility.
The structure is known as the self-reducibility tree of a formula. At the root
of this tree sits the formula. At the next level as the root’s children, we have
the formula with its first variable assigned to True and to False. At the level
below that, we have the two formulas from the second level, except with each of
their first variables (i.e., the second variable of the original formula) assigned to
both True and False. Figure 1 shows the self-reducibility tree of a two-variable
formula.

36 L. A. Hemaspaandra

F (True, x2) F (False, x2)

F (x1, x2)

F (False,True) F (False,False)F (True,True) F (True,False)

Fig. 1. The self-reducibility tree (completely unpruned) of a two-variable formula, rep-
resented generically.

Self-reducibility tells us that, for each node N in such a self-reducibility tree
(except the leaves, since they have no children), N is satisfiable if and only if at
least one of its two children is satisfiable. Inductively, the formula at the root
of the tree is satisfiable if and only if each level of the self-reducibility tree has
at least one satisfiable node. And, also, the formula at the root of the tree is
satisfiable if and only if every level of the self-reducibility tree has at least one
satisfiable node.

How helpful is this tree? Well, we certainly don’t want to solve SAT by
checking every leaf of the self-reducibility tree. On formulas with k variables, that
would take time at least 2k—basically a brute-force exponential-time algorithm.
Yuck! That isn’t surprising though. After all, the tree is really just listing all
assignments to the formula.

But the magic here, which we will exploit, is that the “self-reducibility”
relationship between nodes and their children as to satisfiability will, at least with
certain extra assumptions such as about P-selectivity, allow us to not explore the
whole tree. Rather, we’ll be able to prune away, quickly, all but a polynomially
large subtree. In fact, though on its surface this chapter is about four questions
from complexity theory, it really is about tree-pruning—a topic more commonly
associated with algorithms than with complexity. To us, though, that is not
a problem but an advantage. As we mentioned earlier, complexity is largely
about building algorithms, and that helps make complexity far more inviting
and intuitive than most people realize.

That being said, let us move on to giving a proof of the first challenge prob-
lem. Namely, in this section we sketch a proof of the result:

If SAT is P-selective, then SAT ∈ P.

So assume that SAT is P-selective, via (in the sense of Definition 2)
polynomial-time computable function f . Let us give a polynomial-time algorithm
for SAT. Suppose the input to our algorithm is the formula F (x1, x2, . . . , xk). (If
the input is not a syntactically legal formula we immediately reject, and if the
input is a formula that has zero variables, e.g., True ∧ True ∧ False, we simply
evaluate it and accept if and only if it evaluates to True.) Let us focus on F and
F ’s two children in the self-reducibility tree, as shown in Fig. 2.

Now, run f on F ’s two children. That is, compute, in polynomial
time, f(F (True, x2, . . . , xk), F (False, x2, . . . , xk)). Due to the properties of P-
selectivity and self-reducibility, note that the output of that application of f is

The Power of Self-Reducibility 37

F (True, x2, . . . , xk) F (False, x2, . . . , xk)

F (x1, x2, . . . , xk)

Fig. 2. F and F ’s two children.

a formula/node that has the property that the original formula is satisfiable if
and only if that child-node is satisfiable.

In particular, if f(F (True, x2, . . . , xk), F (False, x2, . . . , xk)) = F (True,
x2, . . . , xk) then we know that F (x1, x2, . . . , xk) is satisfiable if and only
if F (True, x2, . . . , xk) is satisfiable. And if f(F (True, x2, . . . , xk), F (False,
x2, . . . , xk)) �= F (True, x2, . . . , xk) then we know that F (x1, x2, . . . , xk) is satis-
fiable if and only if F (False, x2, . . . , xk) is satisfiable.

Either way, we have in time polynomial in the input’s size eliminated the
need to pay attention to one of the two child nodes, and now may focus just on
the other one.

Repeat the above process on the child that, as per the above, was selected
by the selector function. Now, “split” that formula by assigning x2 both possible
ways. That will create two children, and then analogously to what was done
above, use the selector function to decide which of those two children is the
more promising branch to follow.

Repeat this until we have assigned all variables. We now have a fully assigned
formula, but due to how we got to it, we know that it evaluates to True if and only
if the original formula is satisfiable. So if that fully assigned formula evaluates
to True, then we state that the original formula is satisfiable (and indeed, our
path down the self-reducibility tree has outright put into our hands a satisfying
assignment). And, more interestingly, if the fully assigned formula evaluates to
False, then we state that the original formula is not satisfiable. We are correct in
stating that, because at each iterative stage we know that if the formula we start
that stage focused on is satisfiable, then the child the selector function chooses
for us will also be satisfiable.

The process above is an at most polynomial number of at most polynomial-
time “descend one level having made a linkage” stages, and so overall itself runs
in polynomial time. Thus we have given a polynomial-time algorithm for SAT,
under the hypothesis that SAT is P-selective. This completes the proof sketch.

Our algorithm was mostly focused on tree pruning. Though F induces a giant
binary tree as to doing variable assignments one variable at a time in all possible
ways, thanks to the guidance of the selector function, we walked just a single
path through that tree.

38 L. A. Hemaspaandra

Keeping this flavor of approach in mind might be helpful on Challenge
Problem 2, although that is a different problem and so perhaps you’ll have to
bring some new twist, or greater flexibility, to what you do to tackle that.

And now, please pop right on back to the main body of the chapter, to read
and tackle Challenge Problem 2!

B Solution to Challenge Problem 2

In this section we sketch a proof of the result:

If there exists a tally set T such that SAT ≤p
m T , then SAT ∈ P.

So assume that there exists a tally set T such that SAT ≤p
m T . Let g be the

polynomial-time computable function performing that reduction, in the sense of
Definition 4. (Keep in mind that we may not assume that T ∈ P. We have no
argument line in hand that would tell us that that happens to be true.) Let us
give a polynomial-time algorithm for SAT.

Suppose the input to our algorithm is the formula F (x1, x2, . . . , xk). (If the
input is not a syntactically legal formula we immediately reject, and if the input
is a formula that has zero variables we simply evaluate it and accept if and only
if it evaluates to True.)

Let us focus first on F . Compute, in polynomial time, g(F (x1, x2, . . . , xk)).
If g(F (x1, x2, . . . , xk)) �∈ {ε, 0, 00, . . . }, then clearly F (x1, x2, . . . , xk) �∈ SAT,
since we know that (a) T ⊆ {ε, 0, 00, . . . } and (b) F (x1, x2, . . . , xk) ∈ SAT ⇐⇒
g(F (x1, x2, . . . , xk)) ∈ T . So in that case, we output that F (x1, x2, . . . , xk) �∈
SAT. Otherwise, we descend to the next level of the “self-reducibility tree” as
follows.

We consider the nodes (i.e., in this case, formulas) F (True, x2, . . . , xk)
and F (False, x2, . . . , xk). Compute g(F (True, x2, . . . , xk)) and g(F (False,
x2, . . . , xk)). If either of our two nodes in question does not, under the action
just computed of g, map to a string in {ε, 0, 00, . . . }, then that node certainly
is not a satisfiable formula, and we can henceforward mentally ignore it and the
entire tree (created by assigning more of its variables) rooted at it. This is one
key type of pruning that we will use: eliminating from consideration nodes that
map to “nontally” strings.

But there is a second type of pruning that we will use: If it happens to be the
case that g(F (True, x2, . . . , xk)) ∈ {ε, 0, 00, . . . } and g(F (True, x2, . . . , xk)) =
g(F (False, x2, . . . , xk)), then at this point it may not be clear to us whether
F (True, x2, . . . , xk) is or is not satisfiable. However, what is clear is that

F (True, x2, . . . , xk) ∈ SAT ⇐⇒ F (False, x2, . . . , xk) ∈ SAT.

How do we know this? Since g reduces SAT to T , we know that

g(F (True, x2, . . . , xk)) ∈ T ⇐⇒ F (True, x2, . . . , xk) ∈ SAT

and
g(F (False, x2, . . . , xk)) ∈ T ⇐⇒ F (False, x2, . . . , xk) ∈ SAT.

The Power of Self-Reducibility 39

By those observations, the fact that g(F (True, x2, . . . , xk)) = g(F (False,
x2, . . . , xk)), and the transitivity of “ ⇐⇒ ”, we indeed have that
F (True, x2, . . . , xk) ∈ SAT ⇐⇒ F (False, x2, . . . , xk) ∈ SAT. But since
that says that either both or neither of these nodes is a formula belonging
to SAT, there is no need at all for us to further explore more than one of
them, since they stand or fall together as to membership in SAT. So if we
have g(F (True, x2, . . . , xk)) = g(F (False, x2, . . . , xk)), we can mentally dismiss
F (False, x2, . . . , xk)—and of course also the entire subtree rooted at it—from all
further consideration.

After doing the two types of pruning just mentioned, we will have either one
or two nodes left at the level of the tree—the level one down from the root—that
we are considering. (If we have zero nodes left, we have pruned away all possible
paths and can safely reject). Also, if k = 1, then we can simply check whether
at least one node that has not been pruned away evaluates to True, and if so we
accept and if not we reject.

But what we have outlined can iteratively be carried out in a way that drives
us right down through the tree, one level at a time. At each level, we take all
nodes (i.e., formulas; we will speak interchangeably of the node and the formula
that it is representing) that have not yet been eliminated from consideration,
and for each, take the next unassigned variable and make two child formulas,
one with that variable assigned to True and one with that variable assigned to
False. So if at a given level after pruning we end up with j formulas, we in
this process start the next level with 2j formulas, each with one fewer variable.
Then for those 2j formulas we do the following: For each of them, if g applied
to that formula outputs a string that is not a member of {ε, 0, 00, . . . }, then
eliminate that node from all further consideration. After all, the node clearly is
not a satisfiable formula. Also, for all nodes among the 2j such that the string
z that g maps them to belongs to {ε, 0, 00, . . . } and z is mapped to by g by
at least one other of the 2j nodes, for each such cluster of nodes that map to
the same string z (of the form {ε, 0, 00, . . . }) eliminate all but one of the nodes
from consideration. After all, by the argument given above, either all of that
cluster are satisfiable or none of them are, so we can eliminate all but one from
consideration, since eliminating all the others still leaves one that is satisfiable,
if in fact the nodes in the cluster are satisfiable.

Continue this process until (it internally terminates with a decision, or) we
reach a level where all variables are assigned. If there were j nodes at the level
above that after pruning, then at this no-variables-left-to-assign level we have
at most 2j formulas. The construction is such that F (x1, x2, . . . , xk) ∈ SAT if
and only if at least one of these at most 2j variable-free formulas belongs to
SAT, i.e., evaluates to True. But we can easily check that in time polynomial in
2j × |F (x1, x2, . . . , xk)|.

Is the proof done? Not yet. If j can be huge, we’re dead, as we might have
just sketched an exponential-time algorithm. But fortunately, and this was the
key insight in Piotr Berman’s paper that proved this result, as we go down the

40 L. A. Hemaspaandra

tree, level by level, the tree never grows too wide. In particular, it is at most
polynomially wide!

How can we know this? The insight that Berman (and with luck, also
you!) had is that there are not many “tally” strings that can be reached by the
reduction g on the inputs that it will be run on in our construction on a given
input. And that fact will ensure us that after we do our two kinds of pruning,
we have at most polynomially many strings left at the now-pruned level.

Let us be more concrete about this, since it is not just the heart of this
problem’s solution, but also might well (hint!, hint!) be useful when tacking the
third challenge problem.

In particular, we know that g is polynomial-time computable. So there
certainly is some natural number k such that, for each natural number n,
the function g runs in time at most nk + k on all inputs of length n. Let
m = |F (x1, x2, . . . , xk)|. Note that, at least if the encoding scheme is reason-
able and we if needed do reasonable, obvious simplifications (e.g., True ∧ y ≡ y,
True ∨ y ≡ True, ¬True ≡ False, and ¬False ≡ True), then each formula in
the tree is of length less than or equal to m. Crucially, g applied to strings of
length less than or equal to m can never output any string of length greater than
mk + k. And so there are at most mk + k + 1 strings (the “+ 1” is because the
empty string is one of the strings that can be reached) in {ε, 0, 00, . . . } that can
be mapped to by any of the nodes that are part of our proof’s self-reducibility
tree when the input is F (x1, x2, . . . , xk). So at each level of our tree-pruning,
we eliminate all nodes that map to strings that do not belong to {ε, 0, 00, . . . },
and since we leave at most one node mapping to each string that is mapped to
in {ε, 0, 00, . . . }, and as we just argued that there are at most mk + k + 1 of
those, at the end of pruning a given level, at most mk + k + 1 nodes are still
under consideration. But m is the length of our problem’s input, so each level,
after pruning, finishes with at most at most mk + k + 1 nodes, and so the level
after it, after we split each of the current level’s nodes, will begin with at most
2(mk + k + 1) nodes. And after pruning that level, it too ends up with at most
mk + k + 1 nodes still in play. The tree indeed remains at most polynomially
wide.

Thus when we reach the “no variables left unassigned” level, we come into
it with a polynomial-sized set of possible satisfying assignments (namely, a set
of at most mk + k + 1 assignments), and we know that the original formula is
satisfiable if and only if at least one of these assignments satisfies F .

Thus the entire algorithm is a polynomial number of rounds (one per variable
eliminated), each taking polynomial time. So overall it is a polynomial-time
algorithm that it is correctly deciding SAT. This completes the proof sketch.

And now, please pop right on back to the main body of the chapter, to
read and tackle Challenge Problem 3! While doing so, please keep this proof
in mind, since doing so will be useful on Challenge Problem 3. . . though you
also will need to discover a quite cool additional insight—the same one Steve
Fortune discovered when he originally proved the theorem that is our Challenge
Problem 3.

The Power of Self-Reducibility 41

C Solution to Challenge Problem 3

In this section we sketch a proof of the result:

If there exists a sparse set S such that SAT ≤p
m S, then SAT ∈ P.

So assume that there exists a sparse set S such that SAT ≤p
m S. Let g be the

polynomial-time computable function performing that reduction, in the sense of
Definition 4. (Keep in mind that we may not assume that S ∈ P. We have no
argument line in hand that would tell us that that happens to be true.) Let us
give a polynomial-time algorithm for SAT.

Suppose the input to our algorithm is the formula F (x1, x2, . . . , xk). (If the
input is not a syntactically legal formula we immediately reject, and if the input
is a formula that has zero variables we simply evaluate it and accept if and only
if it evaluates to True.)

What we are going to do here is that we are going to mimic the proof that
solved Challenge Problem 2. We are going to go level by level down the self-
reducibility tree, pruning at each level, and arguing that the tree never gets too
wide—at least if we are careful and employ a rather jolting insight that Steve
Fortune (and with luck, also you!) had.

Note that of the two types of pruning we used in the Challenge Problem 2
proof, one applies perfectly well here. If two or more nodes on a given level of
the tree map under g to the same string, we can eliminate from consideration
all but one of them, since either all of them or none of them are satisfiable.

However, the other type of pruning—eliminating all nodes not mapping to a
string in {ε, 0, 00, . . . }—completely disappears here. Sparse sets don’t have too
many strings per level, but the strings are not trapped to always being of a
specific, well-known form.

Is the one type of pruning that is left to us enough to keep the tree from
growing exponentially bushy as we go down it? At first glance, it seems that
exponential width growth is very much possible, e.g., imagine the case that
every node of the tree maps to a different string than all the others at the node’s
same level. Then with each level our tree would be doubling in size, and by its
base, if we started with k variables, we’d have 2k nodes at the base level—clearly
an exponentially bushy tree.

But Fortune stepped back and realized something lovely. He realized that if
the tree ever became too bushy, then that itself would be an implicit proof that
F is satisfiable! Wow; mind-blowing!

In particular, Fortune used the following beautiful reasoning.
We know g runs in polynomial time. So let the polynomial r(n) bound g’s

running time on inputs of length n, and without loss of generality, assume that
r is nondecreasing. We know that S is sparse, so let the polynomial q(n) bound
the number of strings in S up to and including length n, and without loss of
generality, assume that q is nondecreasing.

Let m = |F (x1, x2, . . . , xk)|, and as before, note that all the nodes in our
proof are of length less than or equal to m.

42 L. A. Hemaspaandra

How many distinct strings in S can be reached by applying g to strings of
length at most m? On inputs of length at most m, clearly g maps to strings of
length at most r(m). But note that the number of strings in S of length at most
r(m) is at most q(r(m)).

Now, there are two cases. Suppose that at each level of our tree we have, after
pruning, at most q(r(m)) nodes left active. Since q(r(m)) itself is a polynomial
in the input size, m, that means our tree remains at most polynomially bushy
(since levels of our tree are never, even right after splitting a level’s nodes to
create the next level, wider than 2q(r(m))). Analogously to the argument of
Challenge Problem 2’s proof, when we reach the “all variables assigned” level,
we enter it with a set of at most 2q(r(m)) no-variables-left formulas such that
F is satisfiable if and only if at least one of those formulas evaluates to True. So
in that case, we easily do compute in polynomial time whether the given input
is satisfiable, analogously to the previous proof.

On the other hand, suppose that on some level, after pruning, we have at
least 1+q(r(m)) nodes. This means that at that level, we had at least 1+q(r(m))
distinct labels. But there are only q(r(m)) distinct strings that g can possibly
reach, on our inputs, that belong to S. So at least one of the 1+q(r(m)) formulas
in our surviving nodes maps to a string that does not belong to S. But g was a
reduction from SAT to S, so that node that mapped to a string that does not
belong to S must itself be a satisfiable formula. Ka-zam! That node is satisfiable,
and yet that node is simply F with some of its variables fixed. And so F itself
certainly is satisfiable. We are done, and so the moment our algorithm finds a
level that has 1 + q(r(m)) distinct labels, our algorithm halts and declares that
F (x1, x2, . . . , xk) is satisfiable.

Note how subtle the action here is. The algorithm is correct in reasoning
that, when we have at least 1 + q(r(m)) distinct labels at a level, at least one of
the still-live nodes at that level must be satisfiable, and thus F (x1, x2, . . . , xk)
is satisfiable. However, the algorithm doesn’t know a particular one of those at-
least-1+ q(r(m))-nodes that it can point to as being satisfiable. It merely knows
that at least one of them is. And that is enough to allow the algorithm to act
correctly. (One can, if one wants, extend the above approach to actually drive
onward to the base of the tree; what one does is that at each level, the moment
one gets to 1 + q(r(m)) distinct labels, one stops handling that level, and goes
immediately on to the next level, splitting each of those 1 + q(r(m)) nodes into
two at the next level. This works since we know that at least one of the nodes
is satisfiable, and so we have ensured that at least node at the next level will be
satisfiable.) This completes the proof sketch.

And now, please pop right on back to the main body of the chapter, to
read and tackle Challenge Problem 4! There, you’ll be working within a related
but changed and rather challenging setting: you’ll be working in the realms of
functions and counting. Buckle up!

The Power of Self-Reducibility 43

D Solution to Challenge Problem 4

D.1 Why One Natural Approach Is Hopeless

One natural approach would be to run the hypothetical 2-enumerator h on the
input formula F and both of F ’s x1-assigned subformulas, and to argue that
purely based on the two options that h gives for each of those three, i.e., viewing
the formulas for a moment as black boxes (note: without loss of generality, we
may assume that each of the three applications of the 2-enumerator has two
distinct outputs; the other cases are even easier), we can either output ‖F‖ or
can identify at least one of the subformulas such that we can show a particular
1-to-1 linkage between which of the two predicted numbers of solutions it has
and which of the two predicted numbers of solutions F has. And then we would
iteratively walk down the tree, doing that.

But the following example, based on one suggested by Gerhard Woeginger,
shows that that is impossible. Suppose h predicts outputs {0, 1} for F , and h
predicts outputs {0, 1} for the left subformula, and h predicts outputs {0, 1} for
the right subformula. That is, for each, it says “this formula either has zero sat-
isfying assignments or has exactly one satisfying assignment.” In this case, note
that the values of the root can’t be, based solely on the numbers the enumerator
output, linked 1-to-1 to those of the left subformula, since 0 solutions for the left
subformula can correspond to a root value of 0 (0 + 0 = 0) or to a root value
of 1 (0 + 1 = 1). The same clearly also holds for the right subformula.

The three separate number-pairs just don’t have enough information to make
the desired link! But don’t despair: we can make h help us far more powerfully
than was done above!

D.2 XYZ Idea/Statement

To get around the obstacle just mentioned, we can try to trick the enumerator
into giving us linked/coordinated guesses! Let us see how to do that.

What I was thinking of, when I mentioned XYZ in the food-for-thought hint
(Sect. 6.2), is the fact that we can efficiently combine two Boolean formulas into a
new one such that from the number of satisfying assignments of the new formula
we can easily “read off” the number of satisfying assignments of both the original
formulas. In fact, it turns out that we can do the combining in such a way that
if we concatenate the (appropriately padded as needed) bitstrings capturing the
numbers of solutions of the two formulas, we get the (appropriately padded
as needed) bitstring capturing the number of solutions of the new “combined”
formula. We will, when F is a Boolean formula, use ‖F‖ to denote the number
of satisfying assignments of F .

Lemma 1. There are polynomial-time computable functions combiner and
decoder such that for any Boolean formulas F and G, combiner(F, G) is a
Boolean formula and decoder(F,G, ‖combiner(F,G)‖) prints ‖F‖, ‖G‖.

44 L. A. Hemaspaandra

Proof Sketch. Let F = F (x1, . . . , xn) and G = G(y1, . . . , ym), where
x1, . . . , xn, y1, . . . , ym are all distinct. Let z and z′ be two new Boolean vari-
ables. Then

H = (F ∧ z) ∨ (z̄ ∧ x1 ∧ · · · ∧ xn ∧ G ∧ z′)

gives the desired combination, since ‖h‖ = ‖f‖2m+1 + ‖g‖ and ‖g‖ ≤ 2m. ��
We can easily extend this technique to combine three, four, or even polyno-

mially many formulas.

D.3 Invitation to a Second Bite at the Apple

Now that you have in hand the extra tool that is Lemma 1, this would be a
great time, unless you already found a solution to the fourth challenge problem,
to try again to solve the problem. My guess is that if you did not already solve
the fourth challenge problem, then the ideas you had while trying to solve it will
stand you in good stead when you with the combining lemma in hand revisit
the problem.

My suggestion to you would be to work again on proving Challenge Problem 4
until either you find a proof, or you’ve put in at least 15 more minutes of thought,
are stuck, and don’t think that more time will be helpful.

When you’ve reached one or the other of those states, please go on to Sect.D.4
to read a proof of the theorem.

D.4 Proof Sketch of the Theorem

Recall that we are trying to prove:

If #SAT is has a polynomial-time 2-enumerator, then there is a
polynomial-time algorithm for #SAT.

Here is a quick proof sketch. Start with our input formula, F , whose number
of solutions we wish to compute in polynomial time.

If F has no variables, we can simply directly output the right number of
solutions, namely, 1 (if F evaluates to True), or 0 (otherwise). Otherwise, self-
reduce formula F on its first variable. Using the XYZ trick, twice, combine
the original formula and the two subformulas into a single formula, H, whose
number of solutions gives the number of solutions of all three. For example, if
our three formulas are F = F (x1x2, x3, . . .), Fleft = F (True, x2, x3, . . .), and
Fright = F (False, x2, x3, . . .), our combined formula can be

H = combiner(F, combiner(Fleft , Fright)),

and the decoding process is clear from this and Lemma 1 (and its proof). Run the
2-enumerator on H. If either of H’s output’s two decoded guesses are inconsistent
(a �= b + c), then ignore that line and the other one is the truth. If both are
consistent and agree on ‖F‖, then we’re also done. Otherwise, the two guesses
must each be internally consistent and the two guesses must disagree on ‖F‖,

The Power of Self-Reducibility 45

and so it follows that the two guesses differ in their claims about at least one
of ‖Fleft‖ and ‖Fright‖. Thus if we know the number of solutions of that one,
shorter formula, we know the number of solutions of ‖F‖.

Repeat the above on that formula, and so on, right on down the three, and
then (unless the process resolves internally or ripples back up earlier) at the end
we have reached a zero-variable formula and for it we by inspection will know
how many solutions it has (either 1 or 0), and so using that we can ripple our
way all the way back up through the tree, using our linkages between each level
and the next, and thus we now have computed ‖F‖. The entire process is a
polynomial number of polynomial-time actions, and so runs in polynomial time
overall.

That ends the proof sketch, but let us give an example regarding the key
step from the proof sketch, as that will help make clear what is going on.

Which of
the Guesses

‖F (x1, x2, x3, . . .)‖ ‖F (True, x2, x3, . . .)‖ ‖F (False, x2, x3, . . .)‖

First 100 83 17
Second 101 85 16

In this example, note that we can conclude that ‖F‖ = 100 if
‖F (False, x2, x3, . . .)‖ = 17, and ‖F‖ = 101 if ‖F (False, x2, x3, . . .)‖ = 16; and
we know that ‖F (False, x2, x3, . . .)‖ ∈ {16, 17}.

So we have in polynomial time completely linked ‖F (x1, x2, x3, . . .)‖ to the
issue of the number of satisfying assignments of the (after simplifying) shorter
formula F (False, x2, x3, . . .). This completes our example of the key linking step.

References

1. Arvind, V., Han, Y., Hemachandra, L., Köbler, J., Lozano, A., Mundhenk, M.,
Ogiwara, M., Schöning, U., Silvestri, R., Thierauf, T.: Reductions to sets of low
information content. In: Ambos-Spies, K., Homer, S., Schöning, U. (eds.) Com-
plexity Theory, pp. 1–45. Cambridge University Press, Cambridge (1993)

2. Berman, P.: Relationship between density and deterministic complexity of NP-
complete languages. In: Ausiello, G., Böhm, C. (eds.) ICALP 1978. LNCS, vol. 62,
pp. 63–71. Springer, Heidelberg (1978). https://doi.org/10.1007/3-540-08860-1 6

3. Cai, J.-Y., Hemachandra, L.: Enumerative counting is hard. Inf. Comput. 82(1),
34–44 (1989)

4. Cai, J.-Y., Hemachandra, L.: A note on enumerative counting. Inf. Process. Lett.
38(4), 215–219 (1991)

5. Clay Mathematics Institute: Millennium problems (web page) (2019). https://
www.claymath.org/millennium-problems. Accessed 10 July 2019

6. Cook, S.: The complexity of theorem-proving procedures. In: Proceedings of the
3rd ACM Symposium on Theory of Computing, pp. 151–158. ACM Press, May
1971

7. Fortune, S.: A note on sparse complete sets. SIAM J. Comput. 8(3), 431–433 (1979)
8. Gasarch, W.: The third P =? NP poll. SIGACT News 50(1), 38–59 (2019)

https://doi.org/10.1007/3-540-08860-1_6
https://www.claymath.org/millennium-problems
https://www.claymath.org/millennium-problems

46 L. A. Hemaspaandra

9. Glaßer, C.: Consequences of the existence of sparse sets hard for NP under a sub-
class of truth-table reductions. Technical report, TR 245, Institut für Informatik,
Universität Würzburg, Würzburg, Germany, January 2000

10. Glaßer, C., Hemaspaandra, L.: A moment of perfect clarity II: consequences of
sparse sets hard for NP with respect to weak reductions. SIGACT News 31(4),
39–51 (2000)

11. Hemachandra, L., Ogiwara, M., Watanabe, O.: How hard are sparse sets? In: Pro-
ceedings of the 7th Structure in Complexity Theory Conference, pp. 222–238. IEEE
Computer Society Press, June 1992

12. Hemaspaandra, E., Hemaspaandra, L., Menton, C.: Search versus decision for elec-
tion manipulation problems. In: Proceedings of the 30th Annual Symposium on
Theoretical Aspects of Computer Science, vol. 20, pp. 377–388. Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), February/March 2013

13. Hemaspaandra, L.: The power of self-reducibility: selectivity, information, and
approximation (2019). File set–providing slides and their source code. http://www.
cs.rochester.edu/u/lane/=self-reducibility/. Accessed 10 July 2019

14. Hemaspaandra, L., Hempel, H.: P-immune sets with holes lack self-reducibility
properties. Theoret. Comput. Sci. 302(1–3), 457–466 (2003)

15. Hemaspaandra, L., Jiang, Z.: Logspace reducibility: models and equivalences. Int.
J. Found. Comput. Sci. 8(1), 95–108 (1997)

16. Hemaspaandra, L., Narváez, D.: The opacity of backbones. In: Proceedings of
the 31st AAAI Conference on Artificial Intelligence, pp. 3900–3906. AAAI Press,
February 2017

17. Hemaspaandra, L.A., Narváez, D.E.: Existence versus exploitation: the opacity of
backdoors and backbones under a weak assumption. In: Catania, B., Královič, R.,
Nawrocki, J., Pighizzini, G. (eds.) SOFSEM 2019. LNCS, vol. 11376, pp. 247–259.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10801-4 20

18. Hemaspaandra, L., Ogihara, M.: The Complexity Theory Companion. Springer,
Heidelberg (2002). https://doi.org/10.1007/978-3-662-04880-1

19. Hemaspaandra, L., Ogihara, M., Toda, S.: Space-efficient recognition of sparse
self-reducible languages. Comput. Complex. 4(3), 262–296 (1994)

20. Hemaspaandra, L., Silvestri, R.: Easily checked generalized self-reducibility. SIAM
J. Comput. 24(4), 840–858 (1995)

21. Hemaspaandra, L., Torenvliet, L.: Theory of Semi-feasible Algorithms. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-662-05080-4

22. Hemaspaandra, L., Zimand, M.: Strong self-reducibility precludes strong immunity.
Math. Syst. Theory 29(5), 535–548 (1996)

23. Karp, R.: Reducibilities among combinatorial problems. In: Miller, R., Thatcher,
J. (eds.) Complexity of Computer Computations, pp. 85–103. Springer, Boston
(1972). https://doi.org/10.1007/978-1-4684-2001-2 9

24. Ko, K.: The maximum value problem and NP real numbers. J. Comput. Syst. Sci.
24(1), 15–35 (1982)

25. Ko, K.: On self-reducibility and weak P-selectivity. J. Comput. Syst. Sci. 26(2),
209–221 (1983)

26. Ko, K.: On helping by robust oracle machines. Theoret. Comput. Sci. 52(1–2),
15–36 (1987)

27. Ko, K., Moore, D.: Completeness, approximation, and density. SIAM J. Comput.
10(4), 787–796 (1981)

28. Krentel, M.: The complexity of optimization problems. J. Comput. Syst. Sci. 36(3),
490–509 (1988)

http://www.cs.rochester.edu/u/lane/=self-reducibility/
http://www.cs.rochester.edu/u/lane/=self-reducibility/
https://doi.org/10.1007/978-3-030-10801-4_20
https://doi.org/10.1007/978-3-662-04880-1
https://doi.org/10.1007/978-3-662-05080-4
https://doi.org/10.1007/978-1-4684-2001-2_9

The Power of Self-Reducibility 47

29. Levin, L.: Universal sequential search problems. Probl. Inf. Transm. 9(3), 265–266
(1975)

30. Mahaney, S.: Sparse complete sets for NP: solution of a conjecture of Berman and
Hartmanis. J. Comput. Syst. Sci. 25(2), 130–143 (1982)

31. Mahaney, S.: Sparse sets and reducibilities. In: Book, R. (ed.) Studies in Complex-
ity Theory, pp. 63–118. Wiley, Hoboken (1986)

32. Mahaney, S.: The Isomorphism Conjecture and sparse sets. In: Hartmanis, J. (ed.)
Computational Complexity Theory, pp. 18–46. American Mathematical Society
(1989). Proceedings of Symposia in Applied Mathematics #38

33. Meyer, A., Paterson, M.: With what frequency are apparently intractable problems
difficult? Technical report, MIT/LCS/TM-126, Laboratory for Computer Science,
MIT, Cambridge, MA (1979)

34. Schnorr, C.: Optimal algorithms for self-reducible problems. In: Proceedings of the
3rd International Colloquium on Automata, Languages, and Programming, pp.
322–337. Edinburgh University Press, July 1976

35. Selman, A.: P-selective sets, tally languages, and the behavior of polynomial time
reducibilities on NP. Math. Syst. Theory 13(1), 55–65 (1979)

36. Selman, A.: Some observations on NP real numbers and P-selective sets. J. Comput.
Syst. Sci. 23(3), 326–332 (1981)

37. Selman, A.: Analogues of semirecursive sets and effective reducibilities to the study
of NP complexity. Inf. Control 52(1), 36–51 (1982)

38. Selman, A.: Reductions on NP and P-selective sets. Theoret. Comput. Sci. 19(3),
287–304 (1982). https://doi.org/10.1016/0304-3975(82)90039-1

39. Valiant, L.: The complexity of computing the permanent. Theoret. Comput. Sci.
8(2), 189–201 (1979)

40. Valiant, L.: The complexity of enumeration and reliability problems. SIAM J. Com-
put. 8(3), 410–421 (1979)

41. Young, P.: How reductions to sparse sets collapse the polynomial-time hierarchy:
a primer. SIGACT News 23 (1992). Part I (#3, pp. 107–117), Part II (#4, pp.
83–94), and Corrigendum to Part I (#4, p. 94)

https://doi.org/10.1016/0304-3975(82)90039-1

Who Asked Us?
How the Theory of Computing Answers

Questions about Analysis

Jack H. Lutz(B) and Neil Lutz

Iowa State University, Ames, IA, USA
{lutz,nlutz}@iastate.edu

Dedicated to the Memory of Ker-I Ko

Abstract. Algorithmic fractal dimensions—constructs of computabil-
ity theory—have recently been used to answer open questions in classi-
cal geometric measure theory, questions of mathematical analysis whose
statements do not involve computability theory or logic. We survey these
developments and the prospects for future such results.

1 Introduction

Ker-I Ko was a pioneer in the computability, and especially the computational
complexity, of problems in mathematical analysis. Aside from his visionary work
on the complexity theory of functions on the reals, the early part of which is
summarized in his well-known 1991 monograph [17], he did groundbreaking work
on computability and complexity aspects of fractal geometry and other topics
in geometric measure theory [5–8,18–22,48].

This chapter surveys recent developments in which algorithmic fractal dimen-
sions, which are constructs of the theory of computing, have been used to answer
open questions in classical fractal geometry, questions of mathematical analysis
whose statements do not involve the theory of computing.

The results surveyed here concern the classical Hausdorff and packing dimen-
sions of sets in Euclidean spaces R

n. These fractal dimensions are duals of each
other that were developed in 1918 and the early 1980s, respectively [15,45,46].
They assign every set E ⊆ R

n a Hausorff dimension dimH(E) and a pack-
ing dimension dimP(E), which are real numbers satisfying 0 ≤ dimH(E) ≤
dimP(E) ≤ n [12,14]. These dimensions are both 0 if E consists of a single
point, 1 if E is a smooth curve, 2 if E is a smooth surface, etc., but, for any two
real numbers α and β satisfying 0 ≤ α ≤ β ≤ n, there are 2c many sets E ⊆ R

n

such that dimH(E) = α and dimP(E) = β, where c = 2ℵ0 is the cardinality of
the continuum. So-called “fractals” (a term with no accepted formal definition)

J.H. Lutz—Research supported in part by National Science Foundation grants 1545028
and 1900716.

c© Springer Nature Switzerland AG 2020
D.-Z. Du and J. Wang (Eds.): Ko Festschrift, LNCS 12000, pp. 48–56, 2020.
https://doi.org/10.1007/978-3-030-41672-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41672-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-41672-0_4

Who Asked Us? 49

are typically sets E ⊆ R
n with non-integral Hausdorff and packing dimensions.

(Note: Hausdorff and packing dimensions are well-defined in arbitrary metric
spaces, but this generality is not needed in the present survey.)

In contrast with the above classical fractal dimensions, the algorithmic frac-
tal dimensions developed in [1,24] and defined in Sect. 2 below use computability
theory to assign each individual point x in a Euclidean space R

n a dimension
dim(x) and a strong dimension Dim(x) satisfying 0 ≤ dim(x) ≤ Dim(x) ≤ n.
Intuitively, dim(x) and Dim(x) are the lower and upper densities of the algo-
rithmic information in x. Computable points x (and many other points) satisfy
dim(x) = Dim(x) = 0. In contrast, points x that are algorithmically random in
the sense of Martin-Löf [33] (and many other points) satisfy dim(x) = Dim(x) =
n. In general, for any two real numbers α and β satisfying 0 ≤ α ≤ β ≤ n, the
set of points x ∈ R

n such that dim(x) = α and Dim(x) = β has the cardinality
c of the continuum.

The algorithmic fractal dimensions dim(x) and Dim(x) were known from
their inceptions to be closely related to—and in fact Σ0

1 versions of—their
respective classical forerunners dimH(E) and dimP(E) [1,24]. However, it was
only recently [26] that the point-to-set principles discussed in Sect. 3 below were
proven, giving complete characterizations of dimH(E) and dimP(E) in terms of
oracle relativizations of dim(x) and Dim(x), respectively.

The point-to-set principles are so named because they enable one to infer a
bound—especially a difficult lower bound—on the classical fractal dimensions of
a set E ⊆ R

n from a bound on the relativized algorithmic dimension of a single,
judiciously chosen point x ∈ E. The power of this point-to-set reasoning has
quickly become apparent. Sections 4 through 7 below survey recent research in
which this method has been used to prove new theorems in classical fractal geom-
etry. Several of these theorems answered well-known open questions in the field,
completely classical questions whose statements do not involve computability or
logic. Section 8 discusses the prospects for future such results.

2 Algorithmic Information and Algorithmic Dimensions

The Kolmogorov complexity, or algorithmic information content, of a string x ∈
{0, 1}∗ is

K(x) = min
{|π| ∣

∣ π ∈ {0, 1}∗ and U(π) = x
}
,

where U is a fixed universal prefix Turing machine, and π is the length of a
binary “program π for x.” Extensive discussions of the history and intuition
behind this notion, including its essential invariance with respect to the choice
of the universal Turing machine U , may be found in any of the standard texts [11,
23,40,41]. By routine encoding we extend this notion to let x range over various
countable sets, so that K(x) is well defined when x is an element of N, Q, Qn,
etc.

We “lift” Kolmogorov complexity to Euclidean space in two steps. We first
define the Kolmogorov complexity of a set E ⊆ R

n to be

K(E) = min{K(q) | q ∈ Q
n ∩ E},

50 J. H. Lutz and N. Lutz

i.e., the amount of information to specify some rational point in E. (A similar
notion was used for a different purpose in [42].) Note that

E ⊆ F =⇒ K(E) ≥ K(F).

We then define the Kolmogorov complexity of a point x ∈ R
n at a precision

r ∈ N to be
Kr(x) = K

(
B2−r (x)

)
,

where Bε(x) is the open ball of radius ε about x. That is, Kr(x) is the number
of bits required to specify some rational point q whose Euclidean distance from
x is less than 2−r.

The (algorithmic) dimension of a point x ∈ R
n is

dim(x) = lim inf
r→∞

Kr(x)
r

, (2.1)

and the strong (algorithmic) dimension of a point x ∈ R
n is

Dim(x) = lim sup
r→∞

Kr(x)
r

. (2.2)

(The adjectives “constructive” and “effective” are sometimes used in place of
“algorithmic” here.) We should note that the identities (2.1) and (2.2) were
originally theorems proven in [27] (following a key breakthrough in [37]) char-
acterizing the algorithmic dimensions dim(x) and Dim(x) that had first been
developed using algorithmic betting strategies called gales [1,24]. The charac-
terizations (2.1) and (2.2) support the intuition that dim(x) and Dim(x) are the
lower and upper asymptotic densities of algorithmic information in the point
x ∈ R

n.
By giving the underlying universal prefix Turing machine oracle access to

a set A ⊆ N, the quantities in this section can all be defined relative to A.
We denote these relativized complexities and dimensions by KA(x), KA

r (x),
dimA(x), etc. When A encodes a point y ∈ R

n, we may instead write Ky(x),
Ky

r (x), dimy(x), etc. The following easily verified result is frequently useful.

Theorem 1 (chain rule for algorithmic dimensions). For all x ∈ R
m and

y ∈ R
n,

dimy(x) + dim(y) ≤ dim(x, y)
≤ Dimy(x) + dim(y)
≤ Dim(x, y)
≤ Dimy(x) + Dim(y).

3 Point-to-Set Principles

One of the oldest and most beautiful theorems of computable analysis says that
a function f : R → R is continuous if and only if there is an oracle A ⊆ N

Who Asked Us? 51

relative to which f is computable [39,43]. That is, relativization allows us to
characterize continuity—a completely classical notion—in terms of computabil-
ity. The following two recent theorems are very much in the spirit of this old
theorem.

Theorem 2 (point-to-set principle for Hausdorff dimension [26]). For
every set E ⊆ R

n,

dimH(E) = min
A⊆N

sup
x∈E

dimA(x). (3.1)

Theorem 3 (point-to-set principle for packing dimension [26]). For
every set E ⊆ R

n,
dimP(E) = min

A⊆N

sup
x∈E

DimA(x). (3.2)

For purposes of this survey, readers unfamiliar with Hausdorff and packing
dimensions may use Theorems 2 and 3 as their definitions, but it should be kept
in mind that these characterizations are theorems that were proven a century
after Hausdorff developed his beautiful dimension.

Two remarks on the point-to-set principles are in order here. First, as the
principles state, the minima on the right-hand sides of (3.1) and (3.2) are actually
achieved. In other words, if we define a Hausdorff oracle for a set E ⊆ R

n to be
an oracle A ⊆ N such that

dimH(E) = sup
x∈E

dimA(x), (3.3)

and we similarly define a packing oracle for a set E ⊆ R
n to be an oracle A ⊆ N

such that
dimP(E) = sup

x∈E
DimA(x), (3.4)

then the point-to-set principles are assertions that every set E ⊆ R
n has Haus-

dorff and packing oracles. It is easy to show that, if A is a Hausdorff oracle for
a set E ⊆ R

n, and if A is Turing reducible to a set B ⊆ N, then B is also a
Hausdorff oracle for E, and similarly for packing oracles. This is useful, because
it often enables one to combine Hausdorff or packing oracles with other oracles
in a proof.

The second remark on the point-to-set principles concerns their use. Some of
the most challenging problems in fractal geometry and dynamical systems involve
finding lower bounds on the fractal dimensions of various sets. The point-to-set
principles allow us to infer lower bounds on the fractal dimensions of sets from
lower bounds on the corresponding relativized algorithmic fractal dimensions
of judiciously chosen individual points in those sets. For example, to prove, for
a given set E ⊆ R

n, that dimH(E) ≥ α, it suffices to show that, for every
Hausdorff oracle A for E and every ε > 0, there is a point x ∈ E such that
dimA(x) > α − ε. In some applications, the ε here is not even needed, because
one can readily show that there is a point x ∈ E such that dimA(x) ≥ α. Most
of the rest of this survey is devoted to illustrating the power of this point-to-set
reasoning about fractal dimensions.

52 J. H. Lutz and N. Lutz

4 Fractal Products

Marstrand’s product formula [14,32] states that for all sets E,F ⊆ R
n,

dimH(E) ≤ dimH(E × F) − dimH(F).

The proof of this fact for Borel sets is simple [14], but Marstrand’s original proof
of the general result is more difficult [36]. Using the point-to-set principle for
Hausdorff dimension, the general result is an almost trivial consequence of the
chain rule, Theorem 1 [28]. Tricot [46] proved related inequalities about packing
dimension, including the fact that for all E,F ⊆ R

n,

dimP(E) ≥ dimH(E × F) − dimH(F).

Xiao [47] showed that for every Borel set E ⊆ R
n and ε > 0, there exists a Borel

set F ⊆ R
n such that

dimP(E) ≤ dimH(E × F) − dimH(F) + ε. (4.1)

Bishop and Peres [4] independently showed that for Borel (or analytic) E there
exists a compact F satisfying (4.1); they also later commented that that it would
be straightforward to modify their construction to achieve ε = 0.

Using the point-to-set principles, N. Lutz proved for arbitrary sets E that
ε = 0 can be achieved in (4.1), albeit not necessarily by a compact or Borel
set F .

Theorem 4 ([29]). For every set E ⊆ R
n,

dimP(E) = max
F⊆Rn

(
dimH(E × F) − dimH(F)

)
.

The particular set F constructed in the proof of this theorem is the set of all
points x ∈ R

n with dimA(x) ≤ n − dimP(E), for a carefully chosen oracle A.

5 Fractal Intersections

Given a parameter x ∈ R and a set E ⊆ R
2 with dimH(E) ≥ 1, what can we

say about the Hausdorff dimension of the vertical slice Ex = {y : (x, y) ∈ E}?
Without further information, we can only give the trivial upper bound,

dimH(Ex) ≤ 1. (5.1)

For instance, equality holds in (5.1) whenever {x}× [0, 1] ⊆ E. It would be more
informative, then, to ask about the Hausdorff dimension of a random vertical
slice of E. The Marstrand slicing theorem tells us that if E is a Borel set, then
for Lebesgue almost every x ∈ E,

dimH(Ex) ≤ dimH(Ex) − 1.

Who Asked Us? 53

Several more general results giving upper bounds on the Hausdorff dimension of
the intersections of random transformations of restricted classes of sets have been
proven, including theorems by Mattila [34–36] and Kahane [16]; in particular,
Falconer [14] showed that when E,F ⊆ R

n are Borel sets,

dimH(E ∩ (F + z)) ≤ max{0,dimH(E × F) − n} (5.2)

holds for Lebesgue almost every z ∈ R. Using the point-to-set principle, N. Lutz
showed that this inequality holds even when the Borel assumption is removed.

Theorem 5 ([28]). For all E,F ⊆ R
n, and for Lebesgue almost every z ∈ R

n,

dimH(E ∩ (F + z)) ≤ max{0,dimH(E × F) − n}.

6 Kakeya Sets and Generalized Furstenberg Sets

A Kakeya set in R
n is a set that contains unit-length line segments in all direc-

tions. That is, a set E ⊆ R
n such that for every direction a ∈ Sn−1 (the (n− 1)-

dimensional unit sphere in R
n), there exists b ∈ R

n with {ax+b | x ∈ [0, 1]} ⊆ E.
Besicovitch [2,3] proved that Kakeya sets in R

n can have measure 0, and
Davies [9] proved that Kakeya sets in R

2 must have Hausdorff dimension 2.
Lutz and Lutz gave computability theoretic proofs of both of these facts.

They showed that the former corresponds to the existence of lines in all directions
that contain no random points [25], and that the latter corresponds to the fact
that for any random pair (a, x) ∈ R

2, dim(x, ax + b) = 2 holds for all b ∈ R [26].
A set E ⊆ R

2 is an (α, β)-generalized Furstenberg set, for parameters α, β ∈
[0, 1], if E contains α-dimensional subsets of lines in all of a β-dimensional set
of directions. That is, E is an (α, β)-generalized Furstenberg set if there is a set
J ⊆ S1 such that dimH(H) = β and, for every direction a ∈ J , there exist b ∈ R

2

and Fa ⊆ R with dimH(Fa) = α and {ax + b | x ∈ Sa} ⊆ E.
It is known that (α, β)-generalized Furstenberg sets of Hausdorff dimension

α+ α+β
2 exist. Molter and Rela [38] gave a lower bound on the Hausdorff dimen-

sion of such sets:

dimH(E) ≥ α + max
{

β

2
, α + β − 1

}
. (6.1)

Stull [44] gave a new computability theoretic proof of (6.1), based on the point-
to-principle. N. Lutz and Stull used the point-to-set principle to give a bound
that improves on (6.1) whenever α, β < 1 and β < 2α.

Theorem 6 ([30]). For all α, β ∈ (0, 1] and every set E ∈ Fαβ,

dimH(E) ≥ α + min{β, α}.

54 J. H. Lutz and N. Lutz

7 Fractal Projections

In recent decades, Marstrand’s projection theorem has become one of the most
central results in fractal geometry [13]. It says that almost all orthogonal pro-
jections of a Borel set onto a line have the maximum possible dimension. More
formally, letting proja denote orthogonal projection onto a line in direction a,
Marstrand’s projection theorem states that for all Borel E ⊆ R

2 and Lebesgue
almost every a ∈ S1,

dimH(proja E) = min{1,dimH(E)}. (7.1)

Given Theorems 4 and 5, it is natural to hope that the point-to-set principle for
Hausdorff dimension might allow us to remove the Borel assumption here as well.
But Davies [10], assuming the continuum hypothesis, constructed a non-Borel
set E for which (7.1) does not hold. Nevertheless, N. Lutz and Stull used the
point-to-set principles to prove the following.

Theorem 7 ([31]). Let E ⊆ R
2 be any set such that dimH(E) = dimP(E). Then

for Lebesgue almost every a ∈ S1,

dimH(proja E) = min{1,dimH(E)}.

Theorem 8 ([31]). Let E ⊆ R
2 be any set. Then for Lebesgue almost every

a ∈ S1,
dimP(proja E) ≥ min{1,dimH(E)}.

8 Conclusion

As the preceding four sections show, the point-to-set principles have enabled the
theory of computing to make significant advances in classical fractal geometry
in a very short time. There is every indication that more such advances are
on the near horizon. But a scientist with Ker-I Ko’s vision would already be
asking about more distant horizons. What other areas of classical mathematical
analysis can be advanced by analogous methods? Are there intrinsic limits of
such methods? We look forward to seeing the answers to these questions take
shape.

References

1. Athreya, K.B., Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: Effective strong
dimension in algorithmic information and computational complexity. SIAM J.
Comput. 37(3), 671–705 (2007)

2. Besicovitch, A.S.: Sur deux questions d’intégrabilité des fonctions. J. de la Soci?t?
de physique et de mathematique de l’Universite de Perm 2, 105–123 (1919)

3. Besicovitch, A.S.: On Kakeya’s problem and a similar one. Math. Z. 27, 312–320
(1928)

Who Asked Us? 55

4. Bishop, C.J., Peres, Y.: Packing dimension and Cartesian products. Trans. Am.
Math. Soc. 348, 4433–4445 (1996)

5. Chou, A.W., Ko, K.: Computational complexity of two-dimensional regions. SIAM
J. Comput. 24(5), 923–947 (1995)

6. Chou, A.W., Ko, K.: On the complexity of finding paths in a two-dimensional
domain I: shortest paths. Math. Log. Q. 50(6), 551–572 (2004)

7. Chou, A.W., Ko, K.: The computational complexity of distance functions of two-
dimensional domains. Theor. Comput. Sci. 337(1–3), 360–369 (2005)

8. Chou, A.W., Ko, K.: On the complexity of finding paths in a two-dimensional
domain II: piecewise straight-line paths. Electr. Notes Theor. Comput. Sci. 120,
45–57 (2005)

9. Davies, R.O.: Some remarks on the Kakeya problem. In: Proceedings of the Cam-
bridge Philosophical Society, vol. 69, pp. 417–421 (1971)

10. Davies, R.O.: Two counterexamples concerning Hausdorff dimensions of projec-
tions. Colloq. Math. 42, 53–58 (1979)

11. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer,
New York (2010). https://doi.org/10.1007/978-0-387-68441-3

12. Edgar, G.: Measure, Topology, and Fractal Geometry, 2nd edn. Springer, New York
(2008). https://doi.org/10.1007/978-0-387-74749-1

13. Falconer, K., Fraser, J., Jin, X.: Sixty years of fractal projections. In: Bandt, C.,
Falconer, K., Zähle, M. (eds.) Fractal Geometry and Stochastics V. PP, vol. 70,
pp. 3–25. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18660-3 1

14. Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Applications,
3rd edn. Wiley, Hoboken (2014)

15. Hausdorff, F.: Dimension und äusseres Mass. Math. Ann. 79, 157–179 (1918)
16. Kahane, J.P.: Sur la dimension des intersections. In: Barroso, J.A. (ed.) Aspects

of Mathematics and Its Applications, pp. 419–430. Elsevier (1986). N.-Holl. Math.
Libr. 34

17. Ko, K.: Complexity Theory of Real Functions. Birkhäuser, Boston (1991)
18. Ko, K.: A polynomial-time computable curve whose interior has a nonrecursive

measure. Theor. Comput. Sci. 145(1&2), 241–270 (1995)
19. Ko, K.: On the computability of fractal dimensions and Hausdorff measure. Ann.

Pure Appl. Logic 93(1–3), 195–216 (1998)
20. Ko, K.: On the complexity of computing the Hausdorff distance. J. Complex. 29(3–

4), 248–262 (2013)
21. Ko, K., Weihrauch, K.: On the measure of two-dimensional regions with

polynomial-time computable boundaries. In: Proceedings of the Eleveth Annual
IEEE Conference on Computational Complexity, Philadelphia, Pennsylvania, USA,
24–27 May 1996, pp. 150–159 (1996)

22. Ko, K., Yu, F.: Jordan curves with polynomial inverse moduli of continuity. Theor.
Comput. Sci. 381(1–3), 148–161 (2007)

23. Li, M., Vitányi, P.M.: An Introduction to Kolmogorov Complexity and Its Appli-
cations, 3rd edn. Springer, New York (2008). https://doi.org/10.1007/978-0-387-
49820-1

24. Lutz, J.H.: The dimensions of individual strings and sequences. Inf. Comput.
187(1), 49–79 (2003)

25. Lutz, J.H., Lutz, N.: Lines missing every random point. Computability 4(2), 85–
102 (2015)

26. Lutz, J.H., Lutz, N.: Algorithmic information, plane Kakeya sets, and conditional
dimension. ACM Trans. Comput. Theory 10(2), 7:1–7:22 (2018)

https://doi.org/10.1007/978-0-387-68441-3
https://doi.org/10.1007/978-0-387-74749-1
https://doi.org/10.1007/978-3-319-18660-3_1
https://doi.org/10.1007/978-0-387-49820-1
https://doi.org/10.1007/978-0-387-49820-1

56 J. H. Lutz and N. Lutz

27. Lutz, J.H., Mayordomo, E.: Dimensions of points in self-similar fractals. SIAM J.
Comput. 38(3), 1080–1112 (2008)

28. Lutz, N.: Fractal intersections and products via algorithmic dimension. In: 42nd
Proceedings of the International Symposium on Mathematical Foundations of
Computer Science, Aalborg, Denmark, 21–25 August 2017 (2017)

29. Lutz, N.: Fractal intersections and products via algorithmic dimension (extended
version) (2019). https://arxiv.org/abs/1612.01659

30. Lutz, N., Stull, D.M.: Bounding the dimension of points on a line. Information and
Computation (to appear)

31. Lutz, N., Stull, D.M.: Projection theorems using effective dimension. In: 43rd Inter-
national Symposium on Mathematical Foundations of Computer Science, MFCS
2018, Liverpool, UK, 27–31 August 2018, pp. 71:1–71:15 (2018)

32. Marstrand, J.M.: Some fundamental geometrical properties of plane sets of frac-
tional dimensions. Proc. Lond. Math. Soc. 4(3), 257–302 (1954)

33. Martin-Löf, P.: The definition of random sequences. Inf. Control 9(6), 602–619
(1966)

34. Mattila, P.: Hausdorff dimension and capacities of intersections of sets in n-space.
Acta Math. 152, 77–105 (1984)

35. Mattila, P.: On the Hausdorff dimension and capacities of intersections. Mathe-
matika 32, 213–217 (1985)

36. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces: Fractals and
Rectifiability. Cambridge University Press, Cambridge (1995)

37. Mayordomo, E.: A Kolmogorov complexity characterization of constructive Haus-
dorff dimension. Inf. Process. Lett. 84(1), 1–3 (2002)

38. Molter, U., Rela, E.: Furstenberg sets for a fractal set of directions. Proc. Am.
Math. Soc. 140, 2753–2765 (2012)

39. Moschovakis, Y.N.: Descriptive Set Theory. North-Holland Publishing, Amsterdam
(1980)

40. Nies, A.: Computability and Randomness. Oxford University Press Inc., New York
(2009)

41. Shen, A., Uspensky, V.A., Vereshchagin, N.: Kolmogorov Complexity and Algo-
rithmic Randomness. AMS, Boston (2017)

42. Shen, A., Vereshchagin, N.K.: Logical operations and Kolmogorov complexity. The-
oret. Comput. Sci. 271(1–2), 125–129 (2002)

43. Soare, R.I.: Turing oracle machines, online computing, and three displacements in
computability theory. Ann. Pure Appl. Log. 160, 368–399 (2009)

44. Stull, D.M.: Results on the dimension spectra of planar lines. In: 43rd International
Symposium on Mathematical Foundations of Computer Science, MFCS 2018, Liv-
erpool, UK, 27–31 August 2018, pp. 79:1–79:15 (2018)

45. Sullivan, D.: Entropy, Hausdorff measures old and new, and limit sets of geomet-
rically finite Kleinian groups. Acta Math. 153(1), 259–277 (1984)

46. Tricot, C.: Two definitions of fractional dimension. Math. Proc. Camb. Philos. Soc.
91(1), 57–74 (1982)

47. Xiao, Y.: Packing dimension, Hausdorff dimension and Cartesian product sets.
Math. Proc. Camb. Philos. Soc. 120(3), 535–546 (1996)

48. Yu, F., Chou, A.W., Ko, K.: On the complexity of finding circumscribed rectangles
and squares for a two-dimensional domain. J. Complex. 22(6), 803–817 (2006)

https://arxiv.org/abs/1612.01659

Promise Problems on Probability
Distributions

Jan-Hendrik Lorenz and Uwe Schöning(B)

Ulm University, Institute of Theoretical Computer Science, 89081 Ulm, Germany
{jan-hendrik.lorenz,uwe.schoening}@uni-ulm.de

Abstract. We consider probability distributions which are associated
with the running time of probabilistic algorithms, given for algorith-
mic processing in symbolic form. The considered decision (also count-
ing) problems deal with the question whether a complete restart of the
underlying probabilistic algorithm after some number of steps t gives an
advantage. Since deciding whether a given symbolic formula indeed rep-
resents a probability distribution (either as probability mass function or
as cumulative distribution function) is itself a difficult problem to decide,
we discuss the issue in terms of promise problems.

Keywords: Promise problems · Probability distributions · Restart
strategies

1 Introduction

The concept of a promise problem was initiated by Even, Selman and Yacobi
[1] and was especially popularized by Selman [9]. It also has applications in
cryptographic complexity (see the extensive survey by Goldreich [2]).

A promise problem is given by a pair of languages (decision problems) (Q,R)
and can be represented in the following way:

Input: x
Promise: Q(x)
Question: R(x)

Intuitively, the issue is: what is the complexity of deciding property R, given that
the input x has property Q. Vaguely, this has some similarity with the definition
of conditional probability. Notice that it might be harder to decide Q than it
is to decide R. Also there can be a difference between deciding R as such and
deciding R under the precondition that Q already holds.

We will concentrate on the following definitions: A promise problem (Q,R)
is solvable in polynomial-time if there is a polynomial-time Turing machine M
such that for all inputs x,

Q(x) → (M(x) = “yes” ↔ R(x)).

c© Springer Nature Switzerland AG 2020
D.-Z. Du and J. Wang (Eds.): Ko Festschrift, LNCS 12000, pp. 57–66, 2020.
https://doi.org/10.1007/978-3-030-41672-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41672-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-41672-0_5

58 J.-H. Lorenz and U. Schöning

Equivalently, if L is the language accepted by machine M , then it holds:

Q ∩ R ⊆ L and Q ∩ R ⊆ L.

On the other hand, a promise problem (Q,R) is NP-hard, if every language L
which satisfies the property Q ∩ R ⊆ L and Q ∩ R ⊆ L is NP-hard in the usual
sense. That is, to show that a promise problem (Q,R) is NP-hard, it is sufficient
to construct a polynomial-time computable function f such that for all x, if
x ∈ SAT (a well-known NP-complete problem), then f(x) is in Q ∩ R, and if
x ∈ SAT, then f(x) ∈ Q ∩ R.

We apply the promise-problem framework to a setting which is concerned
with probability distributions.

Probability distributions are considered in statistics, mostly in terms of esti-
mating or verifying their parameters. In algorithmics, probability distributions
are often used to describe the runtime behavior of probabilistic algorithms. Typi-
cally, the distributions are used to characterize the mean runtime, the tail behav-
ior, or other properties which are unambiguously described by the probability
distributions. It is possible to consider complexity issues when some probability
distribution is given in an appropriate form, see [6]. In particular, the question
whether restarts are advantageous is addressed. Restarting is a paradigm used
in some algorithms. After a fixed number of steps t, a stochastic search process
is reset and reinitialized with a new random seed. Potentially, restarts can dra-
matically speed up the expected run time of algorithms (e.g. [3,8]). However,
Lorenz [6] showed that deciding whether an algorithm benefits from restarts is
NP-hard.

Usually it is assumed that the probability distribution is known and given as
a formula in symbolic form. However, the underlying decision problem is only
reasonable if the formula indeed describes a probability distribution. For other
formulas, the behavior is ill-defined. For instance, let f be a function which
is suspected (but not proven) to be a probability function. If f is used in the
model to decide whether restarts are beneficial, then the answer is conditional
on f being a distribution. Formally, this means that the problems described in
[6] are in fact promise problems.

2 Preliminaries

For the remainder of this paper it is assumed that the probability distribution
is known either as a cumulative distribution function or as a probability mass
function in symbolic form (as described below). For each such function it is
only required that it is well defined on a bounded interval I = {0, . . . , a} with
0 < a < ∞. Here, a is typically exponentially large, say a = 2n − 1, so that the
binary representation of a (or i ≤ a) takes n bits.

Definition 1. Let f : {0, . . . , a} 	→ Q be a function and let X be some integer-
valued random variable. The function f is a cumulative distribution func-
tion (cdf) of X if and only if for all i ∈ {0, . . . , a},

f(i) = Pr(X ≤ i). (1)

Promise Problems on Probability Distributions 59

Equivalently, f is a cdf if and only if

f(a) ≤ 1 and ∀t ∈ {1, . . . , a} : f(t) − f(t − 1) ≥ 0.

Definition 2. Let f : {0, . . . , a} 	→ Q be a function and let X be some integer-
valued random variable. The function f is the probability mass function
(pmf) of X if and only if for all i ∈ {0, . . . , a}

f(i) = Pr(X = i). (2)

Equivalently, f is a pmf if and only if F (t) =
∑t

i=0 f(i) is a cdf.

In this work, each function F : {0, 1}n 	→ Q uses a binary encoded input
and F is given in symbolic form, e.g. as a straight-line program calculating on
the binary representation of input i ≤ a. In each line of such a program, either
a Boolean operation is evaluated, or an arithmetical operation is performed.
In each intermediate step a number of bits are provided as are necessary to
represent the intermediate result. In such a form, F (i) can be evaluated in some
fixed polynomial-time (relative to the size of the straight line program F and |i|).

We often argue about the effect of restarts on the expected runtime of an
algorithm. The fixed-cutoff strategy is a theoretically optimal restart strategy.
For the remainder of this work, whenever we refer to restarts, we implicitly mean
a fixed-cutoff strategy.

Definition 3. ([7]). Let A(x) be an algorithm A on input x. Let t be a positive
integer. A modified algorithm At is obtained from A by introducing a step counter
to A, and each time the counter has reached the value t, A(x) is reset with a new
random seed and the counter set to zero again. If at any point an instantiation of
A(x) finds a solution, then At(x) stops and returns this solution, otherwise the
computation continues. The integer t is called restart time. This algorithmic
approach is called fixed-cutoff strategy.

Let X and Xt be discrete random variables corresponding to the running
times of A and At. Let the distribution of A be described in terms of cdf F .
Luby et al. [7] calculated the expected value E[Xt] as follows:

E[Xt] =
1

F (t)

(

t −
∑

x<t

F (x)

)

≤ t

F (t)
. (3)

For the rest of this work, the quotient t/F (t) is called the upper bound (of the
expected value with restarts).

3 On the Hardness of Probability Distributions

Many algorithmic questions are, in fact, promise problems. For example, consider
the well-known 3-SAT problem. In this case, the promise is that the input
consists of a Boolean formula in conjunctive normal form (CNF) with each clause

60 J.-H. Lorenz and U. Schöning

having three literals. Such a promise is taken as normal and not mentioned
explicitly since in this case it is easily verified in polynomial-time. On the other
hand, consider the 1SAT problem (e.g. discussed in [5]). The promise here is
that the input CNF formula has either zero or exactly one satisfying assignment,
and the question is whether the formula is satisfiable. However, deciding whether
a given CNF formula has either zeo or exactly one satisfying assignment is at
least as hard as SAT itself.

The goal of this section is evaluating the hardness of several non-trivial
promise problems related to probability destributions (being non-trivial mean-
ing that the promise itself is equivalent to some complexity theoretic statement).
Consider the following problem introduced in [6]. The definition is rewritten as
a promise problem.

RestartPMF
Input: A formula f in symbolic form and an integer k.
Promise: The formula f fulfills the definition of a pmf

with respect to the interval {0, 1, . . . , k}.
Question: Is there a restart time t such that t

F (t) < k

where F (t) =
t∑

i=0

f(i)?

It is known that RestartPMF is NP-hard [6]. However, the promise to this
problem is that f is a pmf. We will show that this promise is non-trivial. First,
we define the promise explicitly as a decision problem and restrict ourselves to
functions of the type c(i)/M where c is a function mapping to the integers, and
M is an integer.

PMF
Input: An integer k, a function c : {0, . . . , k} 	→ Z in symbolic form,

and an integer M .
Question: Is c(i)

M a probability mass function on {1, . . . , k}?

We will show that this problem is P (#P)-complete, where #P is the class
of functions f : {0, 1}∗ → N corresponding to the number of accepting com-
putations which a nondeterministic, polynomial-time Turing machine on input
x ∈ {0, 1}∗ can achieve. Toda [11] showed that P (#P), i.e. the class of decision
problems which can be solved in polynomial-time on oracle Turing machines
with a (functional) oracle from #P , is a powerful class that includes the entire
polynomial-time hierarchy.

Theorem 1. PMF is P (#P)-complete with respect to polynomial-time Turing
reductions.

Proof. Let c : {0, . . . , k} 	→ Z be an arbitrary function and let M be any integer.
In the following, f(i) denotes c(i)

M . According to Definition 2, f is a probability
mass function on {1, . . . , k} if and only if F (x) =

∑x
i=1 f(i) is a cdf. The function

F is a cdf if F is monotone increasing and upper bounded by 1. F being monotone
increasing means that for all i, f(i) is non-negative. This can be expressed by

Promise Problems on Probability Distributions 61

a CoNP predicate. The function F can be represented as a #P function. A
nondeterministic Turing machine can guess i ≤ x, calculate f(i) and afterwards
produce f(i) many accepting computation paths. Therefore, both conditions can
be verified in P (#P). It remains to be shown that PMF is P (#P)-hard.
Toda [10] showed that the following problem is P (#P)-complete:

Lexical k-th SAT
Input: Boolean CNF formula G, integer k
Question: Is xn = 1 in the k-th satisfying assignment of G?

We show that Lexical k-th SAT can be reduced to PMF with a polynomial-
time Turing reduction. Let G be an arbitrary CNF formula and k an arbitrary
integer. The CNF formula G can be evaluated at any assignment, and integers
(their binary representation) can be interpreted as assignments. Let αt be the
assignment associated with t, and let Gαt

be the result of evaluating G on
assignment αt. Define:

pG(t) =
Gαt−1

k
. (4)

From the construction, we know that pG(t) ≥ 0 for all t. Then, PMF(j,G, k)
yields YES if and only if there are at most k satisfying assignments in G in
the interval {0, . . . , j}. The minimal j with PMF(j,G, k) = YES can be found
by using binary search. This j corresponds to the k-th satisfying assignment
of G. The binary encoding of j can be used to answer whether xn = 1 in the
k-th satisfying assignment. Therefore, Lexical k-the SAT can be reduced to
PMF. �

RestartPMF requires a pmf as input. The same kind of problem which
takes a cdf as input can be defined. This raises the question how hard it is to
recognize a cdf. In the following, we show that this problem is significantly easier
than its pmf version.

CDF
Input: A function F : N 	→ Q in symbolic form and an integer k.
Question: Is F a cumulative distribution function on {1, . . . , k}?

Theorem 2. CDF is CoNP-complete.

Proof. An arbitrary function f is a cumulative distribution function on
{1, . . . , k} if and only if f is monotone and is bounded by 1 (compare Defi-
nition 1). Both conditions can be verified by a CoNP-machine. Thus, CDF is in
CoNP.

We show CoNP-hardness by reducing UNSAT to CDF. Let G be an arbitrary
SAT formula in CNF and define the following formula:

FG(t) =

⎧
⎨

⎩

1
2n+1 , t = 1

t
2n+1 (1 − Gαt−2), t ∈ {2, . . . , 2n + 1}
1, t > 2n + 1

(5)

62 J.-H. Lorenz and U. Schöning

If G is unsatisfiable, then FG is the cdf of a uniform distribution on {1, . . . , 2n +
1}. Consider the case when G is satisfiable and let x be the index of the first
satisfying assignment of G. Then, by definition FG(x + 2) = 0 and F (x + 1) =
x+1
2n+1 , i.e., FG(x + 2) − FG(x + 1) < 0 and FG is not a cdf. Therefore, FG is a
cdf if and only if G is unsatisfiable. This completes the proof. �
Lorenz [6] examined the cdf version of RestartPMF, called RestartCDF. As
before, it should be considered as a promise problem. RestartCDF in fact is
NP-complete [6].

4 Approximating the Restart Time

In RestartCDF the question is whether there is a restart time t such that
t/F (t) < k for some fixed k. Accordingly, the corresponding optimization prob-
lem is finding a restart time t which minimizes t/F (t). Since RestartCDF is
NP-complete, it is unlikely that there is an efficient algorithm which finds the
optimal restart time. Nevertheless, this raises the question whether it is possible
to approximate the optimal restart time in polynomial-time. Lorenz [6] showed
that the pmf version RestartPMF does not admit an efficient approximation
algorithm unless P = NP. On the other hand, we show that for the cdf version
there is a fully polynomial-time approximation scheme (FPTAS).

Consider the following algorithm. It uses as promise that F is a cdf.

function ApproxRestartTime(F, ε, k)
x := minx := 1
minvalue := x/F (x)
while x ≤ k do

x := (1 + ε) · x
if x/F (x) < minvalue then

minx := x
minvalue := x/F (x)

end if
end while
return minx

end function

Theorem 3. For every ε > 0 ApproxRestartTime(F, ε, k) returns a restart

time x with
x

F (x)
≤ (1 + ε)

t∗

F (t∗)
where t∗ = arg min

1≤t≤k

t

F (t)
.

Proof. Let x be a number with t∗ ≤ x ≤ (1 + ε) t∗. Since F is monotone, we
have F (x) ≥ F (t∗). Then,

x

F (x)
≤ (1 + ε)

t∗

F (x)
≤ (1 + ε)

t∗

F (t∗)
. (6)

Sometime during the loop t∗ ≤ x ≤ (1 + ε) t∗ is fulfilled. Therefore, the output
of the algorithm is a restart time x with x

F (x) ≤ (1 + ε) t∗
F (t∗) . �

Promise Problems on Probability Distributions 63

Corollary 1. ApproxRestartTime is an FPTAS which terminates in
� ln k
ln (1+ε)� loop cycles.

Proof. Let l be the smallest integer with (1 + ε)l ≥ k. Simple arithmetics yield
l ≥ ln k

ln (1+ε) . By definition, l is � ln k
ln (1+ε)�. After l loop cycles x takes the value

(1 + ε)l ≥ k and the algorithm terminates.
We use the well-known inequality 2x

2+x ≤ ln (1 + x) to bound the required
number of loop cycles from above:

⌈
ln k

ln (1 + ε)

⌉

≤
⌈(

1
ε

+
1
2

)

ln k

⌉

. (7)

Thus, the runtime of ApproxRestartTime is in O
(
1
ε ln k

)
which is linear in

both 1
ε and the size of k. Therefore, ApproxRestartTime is an FPTAS. �

In other words, ApproxRestartTime finds a good approximation for the
restart time on the interval {1, . . . , k} with respect to the t/F (t). However, t/F (t)
is just an upper bound for the expected runtime E[Xt] according to Eq. 3. When
choosing a restart time, it is more appropriate to choose a restart time which
has certain guarantees with respect to the true optimal expected value E[Xt∗],
where t∗ = arg inft E[Xt] is an optimal restart time.

In fact, we show that it is possible to use a slight modification of Approx-
RestartTime to obtain a 4+ ε approximation algorithm for restart times with
respect to the expected value. To this end, we use a property first stated by
Luby et al [7].

Lemma 1. Let X be any positive random variable and let F be its associated
cumulative distribution function. Then,

inf
t

E[Xt] ≤ inf
x

x

F (x)
≤ 4 inf

t
E[Xt] (8)

holds.

A notable property of the upper bound t/F (t) is that it always approaches
its minimum for a finite value of t. Therefore, for an appropriate choice of k
ApproxRestartTime(F, ε, k) yields a restart time t with

t

F (t)
≤ (1 + ε) inf

x

x

F (x)
≤ 4(1 + ε) inf

t
E[Xt]. (9)

Particularly, if a suitable interval {1, . . . , k} is known in advance, then the algo-
rithm is an efficient approximation algorithm. However, the a priori knowledge
of a suitable candidate k is not reasonable for many probability distributions.

The question then becomes whether another condition can replace the knowl-
edge of k. In the following, we answer this question in the affirmative. First,
consider the role of k in ApproxRestartTime, there k is only used as the
condition x ≤ k for the while loop. We replace this condition by x ≤ minvalue.

64 J.-H. Lorenz and U. Schöning

Consider the following slightly modified algorithm.

function ApproxRestartTimeExact(F, ε)
x := minx := 1
minvalue := x/F (x)
while x ≤ minvalue do

x := (1 + ε) · x
if x/F (x) < minvalue then

minx := x
minvalue := x/F (x)

end if
end while
return minx

end function

Corollary 2. Let y be an optimal restart time with respect to t/F (t) and let
t∗ be an optimal restart time with respect to E[Xt∗]. For every ε > 0 Approx-
RestartTimeExact returns a restart time t with E[Xt] ≤ (4 + ε)E[Xt∗]. The
algorithm terminates after O(q(|y|)+log2 y

log2 (1+ε)) iterations where |y| is the length of y.

Proof. First, it is shown that ApproxRestartTimeExact terminates after a
finite number of iterations. Consider the case when x > minvalue. Then,

x

F (x)
>

minvalue

F (x)
≥ minvalue

because F (x) ≤ 1 for all x. In other words, all x > minvalue are worse restart
times than minx and therefore the modified algorithm eventually terminates.

It remains to be shown how many iterations the modified algorithm needs
until it terminates. As usual, we assume that F can be evaluated in polynomial-
time. To be more precise, let y = arg mint

t
F (t) be an optimal restart time. Since

F can be evaluated in polynomial-time, the length of the binary representation
|F (y)| is bounded by some polynomial q(|y|). Therefore, F (y) is at least 2−q(|y|)

and we conclude
y

F (y)
≤ y2q(|y|). (10)

After some number of iterations, minvalue is at most (1 + ε)y2q(|y|). Let l + 1
be the number of iterations until x is at least as big as minvalue, i.e., l is the
number of iterations after which the algorithm terminates.

x = (1 + ε)l+1 ≥ (1 + ε)y2q(|y|) (11)
⇔ (1 + ε)l ≥ y2q(|y|) (12)

⇔ l ≥ q(|y|) + log2 y

log2 (1 + ε)
(13)

By definition, l is the smallest integer for which inequality 13 holds. There-
fore, the algorithm terminates after O(q(|y|)+log2 y

log2 (1+ε)) iterations which is polynomial
in both the size of y and 1

ε .

Promise Problems on Probability Distributions 65

The approximation factor is a consequence of Theorem 3 and Lemma 1. This
completes the proof. �

5 Conclusion and Outlook

We discussed several problems corresponding to probability distributions. Two
models were studied: One assumes that the probability mass function (pmf) is
given and the other uses the cumulative distribution function (cdf). Both models
require that pmf / cdf is provided in a symbolic form.

We note that for the problems studied in this work the cdf versions are
considerably simpler than its corresponding pmf versions. Specifically, we studied
the complexity of verifying whether a given function is a pmf/cdf. Theorem 1
shows that the pmf version of this problem is P (#P)-complete. On the other
hand, the cdf version of this problem is CoNP-complete (Theorem 2). For the
case when the cdf is known, an FPTAS for the optimal restart time is analyzed in
Theorem 3. Unless P = NP, Lorenz [6] showed that there is no polynomial-time
approximation algorithm for the pmf case.

This raises the question whether the pmf versions of a problem is always
harder than its cdf counterpart. This question can be answered in the negative.
Lorenz [6] found that the calculation of the mean and all other moments is #P-
complete for both the pmf and the cdf version. However, the cdf version of every
problem is always at most as hard as its pmf version. The reason is that for a cdf
F the corresponding pmf is given by F (t) − F (t − 1). Therefore, there is always
a polynomial-time reduction from the cdf problem to the corresponding pmf
problem. This argument only holds for discrete probability distributions. Thus,
for continuous distributions there might be properties for which the probability
density function version of a problem is significantly easier than the cdf version.

More generally, it would be interesting to study the continuous generaliza-
tions of the problems presented here. This will need such framework as studied
by Ko [4]. A starting point could be the approximation algorithms. The promise
that the cdf can be evaluated in polynomial-time also means that the binary
representation of each value is finite and its length is bounded by a polynomial.
For real-valued functions, this property does not generally hold. Yet, not all bits
have to be evaluated for deciding the condition x/F (x) < minvalue. This could
be achieved by a lazy data structure. Nonetheless, a more careful approach and
analysis are necessary.

There are also other loose ends to this work. So far, the computational
complexity of probability distributions has only been considered in the context
of restarts. Other questions could be parameter estimations and distinguishing
between several types of distributions.

References

1. Even, S., Selman, A.L., Yacobi, Y.: The complexity of promise problems with
applications to public-key cryptography. Inf. Control 61(2), 159–173 (1984)

66 J.-H. Lorenz and U. Schöning

2. Goldreich, O.: On promise problems: a survey. In: Goldreich, O., Rosenberg, A.L.,
Selman, A.L. (eds.) Theoretical Computer Science. LNCS, vol. 3895, pp. 254–290.
Springer, Heidelberg (2006). https://doi.org/10.1007/11685654 12

3. Gomes, C.P., Selman, B., Kautz, H.: Boosting combinatorial search through ran-
domization. In: National Conference on Artificial Intelligence, pp. 431–437. AAAI
Press (1998)

4. Ko, K.: Complexity Theory of Real Functions. Birkhäuser, Boston (1991)
5. Köbler, J., Schöning, U., Torán, J.: The Graph Isomorphism Problem - Its Struc-

tural Complexity. Birkhäuser, Boston (1993)
6. Lorenz, J.-H.: On the complexity of restarting. In: van Bevern, R., Kucherov, G.

(eds.) CSR 2019. LNCS, vol. 11532, pp. 250–261. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-19955-5 22

7. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speed-up of las vegas algorithms.
Inf. Process. Lett. 47(4), 173–180 (1993)

8. Schöning, U.: A probabilistic algorithm for k-SAT and constraint satisfaction prob-
lems. In: 40th Annual Symposium on Foundations of Computer Science, pp. 410–
414. IEEE (1999)

9. Selman, A.L.: Promise problems complete for complexity classes. Inf. Comput.
78(2), 87–98 (1988)

10. Toda, S.: The complexity of finding medians. In: Proceedings 31th Annual Sym-
posium on Foundations of Computer Science, pp. 778–787. IEEE (1990)

11. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20,
865–877 (1991)

https://doi.org/10.1007/11685654_12
https://doi.org/10.1007/978-3-030-19955-5_22
https://doi.org/10.1007/978-3-030-19955-5_22

On Nonadaptive Reductions to the Set
of Random Strings and Its Dense Subsets

Shuichi Hirahara1 and Osamu Watanabe2(B)

1 National Institute of Informatics, Tokyo, Japan
s hirahara@nii.ac.jp

2 Tokyo Institute of Technology, Tokyo, Japan
watanabe@c.titech.ac.jp

Abstract. We explain our recent results [21] on the computational
power of an arbitrary distinguisher for (not necessarily computable) hit-
ting set generators. This work is motivated by the desire of showing the
limits of black-box reductions to some distributional NP problem. We
show that a black-box nonadaptive randomized reduction to any distin-
guisher for (not only polynomial-time but also) exponential-time com-
putable hitting set generators can be simulated in AM ∩ coAM; we also
show an upper bound of SNP

2 even if there is no computational bound on a
hitting set generator. These results provide additional evidence that the
recent worst-case to average-case reductions within NP shown by Hira-
hara (2018, FOCS) are inherently non-black-box. (We omit all detailed
arguments and proofs, which can be found in [21].)

Dedication to Ker-I from Osamu

I, Osamu Watanabe, (with my co-author, Shuichi Hirahara) dedicate this article
to my senior colleague and good friend Ker-I Ko. I met Ker-I in 1985 when
I visited University of California, Santa Barbara (UCSB) for participating in a
small work shop organized by Ron, Professor Ronald V. Book. We then met again
when I was a Key Fan visiting professor at Department of Mathematics, UCSB
from 1987 to 1988. He was visiting Ron around that time. We discussed a lot on
various things almost every day with me sitting in his office for many hours. I still
recall him saying “Osamu, you know what?”, which was usually followed by an
interesting episode of famous researchers, politicians, among other things. This
period was very important for me to develop my career as a computer scientist,
in particular, in theoretical computer science. Certainly, I learnt a lot from Ker-I.
I am also proud of having the following sentence in the acknowledgement of his
paper [25]:

The author would like to thank Ronald Book and Osamu Watanabe. With-
out their help, this work would never be finished in polynomial time.

During that time, we discussed a lot on the structure of complexity classes
such as reducibilities, relativiations, sparse sets, approximability, etc. For exam-
ple, we spent a lot of time trying to improve Mahaney’s theorem: For any NP-
complete set L, if L is polynomial-time many-one reducible to a sparse set, then L

c© Springer Nature Switzerland AG 2020
D.-Z. Du and J. Wang (Eds.): Ko Festschrift, LNCS 12000, pp. 67–79, 2020.
https://doi.org/10.1007/978-3-030-41672-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41672-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-41672-0_6

68 S. Hirahara and O. Watanabe

is indeed in P; that is, it is polynomial-time computable. Since then, the complex-
ity theory has been developed (not so rapidly but) steadily. Several important
notions have been introduced, and many powerful computational/mathematical
tools have been developed for analyzing computability of various types. In this
article, we are glad to explain our result that is much stronger (in several
aspects emphasized below with underlined comments) than Mahaney’s theo-
rem. One of the results stated in Theorem 1 here can be interpreted as fol-
lows: For any set L (for which no complexity class assumption is needed) if L
is randomized polynomial-time nonadaptively and “robustly” reducible (which
is much more general than the one considered in Mahaney’s theorem) to a rela-
tively small density set (that could be much larger than sparse sets), then L is
indeed in SNP2 . Another interesting and exciting point of our results is that it is
motivated from a question in a quite different context, the average-case vs. the
worst-case complexity in NP, which was also one of the topics that I discussed
with Ker-I with no idea at all of how to attack it at that time. Hope Ker-I would
like these results and the following explanation.

1 Introduction

We explain our recent investigation on what can be reduced to the set of random
strings, and its dense subset, which is related to several lines of research of com-
plexity theory – including average-case complexity and black-box reductions,
hitting set generators, the Minimum Circuit Size Problem, and the computa-
tional power of the set of random strings.

The underlying theme that unifies these research lines is Kolmogorov com-
plexity. Kolmogorov complexity enables us to quantify how a finite string looks
“random” in terms of compressibility. For a string x ∈ {0, 1}∗, its Kolmogorov
complexity is the length of the shortest program d such that running d will print
x. More specifically, we fix an arbitrary universal Turing machine U , and the
Kolmogorov complexity of x is defined as KU (x) := min{ |d| | U(d) = x }. A
string x is called random (with threshold s) if KU (x) ≥ s, i.e., x cannot be com-
pressed into a short program. While Kolmogorov complexity is not computable,
by either imposing a time constraint on U or taking another “decoder” U , we are
led to several important concepts of complexity theory mentioned above. Below,
we review these concepts through the lens of Kolmogorov complexity.

An important motivation for this work is the case when a decoder U is defined
as a circuit interpreter Gint: Let Gint denote the function that takes a description
of a Boolean circuit C, and outputs the truth table of the function computed
by C. Here a truth table of a function f : {0, 1}n → {0, 1} is the string of length
2n that can be obtained by concatenating f(x) for every input x ∈ {0, 1}n,
and we often identify a function with its truth table. Taking U = Gint, the
Kolmogorov complexity KGint(f) is approximately equal to the minimum circuit
size for computing f . Therefore, a circuit lower bound question can be seen
as a question of finding a random string f with respect to KGint . For example,
one of the central open questions in complexity theory, E �⊂ SIZE(2εn) for some

On Nonadaptive Reductions to Dense Subsets of Random Strings 69

constant ε > 0, can be equivalently rephrased as the question whether there
exists a polynomial-time algorithm that, on input 1N , finds a “random” string
f of length N such that KGint(f) = NΩ(1) for infinitely many N . The problem
of computing KGint(f) on input f is called the Minimum Circuit Size Problem
(MCSP) [24], which is intensively studied recently.

A dense subset of random strings (with respect to KGint) is also one of the
important concepts in complexity theory, which was called a natural property
by Razborov and Rudich [30]. In their influential work, Razborov and Rudich
introduced the notion of natural proof, and explained the limits of current proof
techniques for showing circuit lower bounds. A natural property R ⊂ {0, 1}∗

is a polynomial-time computable 1/poly(�)-dense subset of random strings with
respect to KGint . Here, a set is called γ-dense if Prx∈R{0,1}� [x ∈ R] ≥ γ(�) for
every � ∈ N. It is known that a natural property is equivalent to an errorless
average-case algorithm for MCSP [19].

More generally, a dense subset of random strings with respect to KG can
be seen as an adversary for a hitting set generator G. We consider a family of
functions G = {G� : {0, 1}s(�) → {0, 1}�}�∈N. A hitting set generator (HSG) is
the notion that is used to derandomize one-sided-error randomized algorithms.
For a set R ⊂ {0, 1}∗, we say that G is a hitting set generator (with parameter
γ) for R if Prr∈R{0,1}� [r ∈ R] ≥ γ(�) implies R ∩ Im(G�) �= ∅, for every � ∈ N.
Conversely, R is said to γ-avoid G if G is not a hitting set generator for R,
that is, (1) Prr∈R{0,1}� [r ∈ R] ≥ γ(�) for all � ∈ N (i.e., R is γ-dense), and (2)
R ∩ Im(G�) = ∅ (i.e., R does not intersect with the image Im(G�) of G�). Since
Im(G�) contains all the non-random strings with respect to KG�

, this definition
means that R is a γ-dense subset of random strings with respect to KG.

Next, we proceed to reviewing each research line. We start with average-case
complexity and black-box reductions.

2 Reducing from the Worst-Case to the Average-Case:
Limits of Black-Box Reductions

The security of modern cryptography is based on average-case hardness of some
computational problems in NP. It is, however, a challenging question to find a
problem in NP that is hard with respect to a random input generated efficiently.
The fundamental question of average-case complexity is to find a problem in
NP whose average-case hardness is based on the worst-case complexity of an
NP-complete problem.

A line of work was devoted to understanding why resolving this question is
so difficult. Given our limited understanding of unconditional lower bounds, the
most prevailing proof technique in complexity theory for showing intractability of
a problem is by means of reductions. Moreover, almost all reduction techniques
are black-box in the sense that, given two computational problems A and B,
a reduction R solves A given any oracle (i.e., a black-box algorithm) solving
B. The technique of reductions led to the discovery of a large number of NP-
complete problems computationally equivalent to each other—in the worst-case

70 S. Hirahara and O. Watanabe

sense. On the other hand, it turned out that the power of black-box reductions is
limited for the purpose of showing intractability of average-case problems based
on worst-case problems.

Building on the work of Feigenbaum and Fortnow [11], Bogdanov and Tre-
visan [9] showed that if a worst-case problem L is reducible to some average-case
problem in NP via a nonadaptive black-box randomized polynomial-time reduc-
tion, then L must be in NP/poly ∩ coNP/poly. This in particular shows that the
hardness of any average-case problem in NP cannot be based on the worst-case
hardness of an NP-complete problem via such a reduction technique (unless the
polynomial-time hierarchy collapses [34]). Akavia, Goldreich, Goldwasser and
Moshkovitz [1,2] showed that, in the special case of a nonadaptive reduction to
the task of inverting a one-way function, the upper bound of [9] can be improved
to AM∩ coAM, thereby removing the advice “/poly”. Bogdanov and Brzuska [8]
showed that even a general (i.e. adaptive) reduction to the task of inverting a size-
verifiable one-way function cannot be used for any problem outside AM∩ coAM.
Applebaum, Barak, and Xiao [7] studied black-box reductions to PAC learning,
and observed that the technique of [1] can be applied to (some restricted type
of) a black-box reduction to the task of inverting an auxiliary-input one-way
function.

3 A Motivation for Investigating Non-black-box
Reductions Further

It was very recent that the first worst-case to average-case reductions from worst-
case problems conjectured to be outside coNP to some average-case problems
in NP were found: Hirahara [18] showed that approximation versions of the
minimum time-bounded Kolmogorov complexity problem (MINKT [26]) and
MCSP admit worst-case to average-case reductions. These problems ask, given
a string x and a threshold s, whether x can be compressed by certain types of
algorithms of size s. For example, MCSP asks whether x can be compressed as a
truth table of a circuit of size at most s. For a constant ε > 0, its approximation
version GapεMCSP is the problem of approximating the minimum circuit size
for a function f : {0, 1}n → {0, 1} (represented as its truth table) within a factor
of 2(1−ε)n. Specifically, the Yes instances of GapεMCSP consists of (f, s) such
that size(f) ≤ s, and the No instances of GapεMCSP consists of (f, s) such that
size(f) > 2(1−ε)ns. MCSP can be defined as Gap1MCSP. It is easy to see that
MCSP ∈ NP and MINKT ∈ NP, but these are important examples of problems
for which there is currently neither a proof of NP-completeness nor evidence
against NP-completeness. Allender and Das [4] showed that MCSP is SZK-hard,
but this hardness result is unlikely to be improved to NP-hardness using “oracle-
independent” reduction techniques: Hirahara and Watanabe [20] showed that a
one-query randomized polynomial-time reduction to MCSPA for every oracle A
can be simulated in AM∩coAM. Nonetheless, MCSP and MINKT are (indirectly)
conjectured to be outside coNP/poly by Rudich [31] based on some assumptions
of average-case complexity: He conjectured that there exists a (certain type

On Nonadaptive Reductions to Dense Subsets of Random Strings 71

of) hitting set generator secure even against nondeterministic polynomial-size
circuits. We also mention that the approximation version of MINKT is harder
than Random 3SAT, which is conjectured by Ryan O’Donnell (cf. [19]) to not
be solvable by coNP algorithms.

The work of Hirahara motivates us to study black-box reductions further. We
ask whether the technique used in [18] is inherently non-black-box or not. As
mentioned above, there are several results and techniques developed in order to
simulate black-box reductions by AM∩coAM algorithms. Why can’t we combine
these techniques with the (seemingly non-black-box) reductions of [18] in order
to prove GapεMCSP ∈ coAM and refute Rudich’s conjecture? Note that refuting
Rudich’s conjecture would significantly change our common belief about average-
case complexity and the power of nondeterministic algorithms. We emphasize
that while the proof of [18] seems to yield only non-black-box reductions, it does
not necessarily mean that there is no alternative proof that yields a black-box
reduction.

In order to address the question, we aim at improving our understanding of
the limits of black-box reductions. We summarize a landscape around average-
case complexity in Fig. 1.

DistNP �⊆ AvgBPP

NP �⊆ BPP

∃HSG

GapεMCSP �∈ BPP

∃OWF ∃AIOWF

SZK �⊆ BPP

[18]

[18]

[29]

[6]

[9]

This Work

[20] [7]

[1,8]

Fig. 1. Average-case complexity and limits of black-box reductions. “A → B” means
that there is no black-box (or oracle-independent) reduction technique showing “A ⇒
B” under reasonable complexity theoretic assumptions. The security of all crypto-
graphic primitives is with respect to an almost-everywhere polynomial-time random-
ized adversary.

A couple of remarks about implications written in Fig. 1 are in order:
First, the implication from the existence of an auxiliary-input one-way function
(AIOWF) to GapεMCSP �∈ BPP was implicitly proved in [3] and explicitly in
[6], based on [13,17,30]. The implication from SZK �⊂ BPP to the existence of an
auxiliary-input one-way function is due to Ostrovsky [29] (see also [33]). Second,

72 S. Hirahara and O. Watanabe

building on [10,19], it was shown in [18, Theorem VI.5] that GapεMCSP �∈ BPP
implies the nonexistence of natural properties, which yields a hitting set genera-
tor Gint = {G2n : {0, 1} ˜O(2ε′n) → {0, 1}2n}n∈N defined as a “circuit interpreter”:
a function that takes a description of a circuit of size 2ε′n and outputs its truth
table (cf. [18, Definition V.3]). The existence of a hitting set generator natu-
rally induces a hard problem in DistNP with respect to AvgBPP algorithms (cf.
[18, Lemma VI.4]). Therefore, the reduction of [18] can be regarded as a non-
black-box (in fact, nonadaptive) reduction to a distinguisher for the hitting set
generator Gint.

We thus continue the study of the limits of black-box reductions to a dis-
tinguisher for a hitting set generator, initiated by Gutfreund and Vadhan [15].
Motivated by the question on whether derandomization is possible under uni-
form assumptions (cf. [32]), they investigated what can be reduced to any oracle
avoiding a hitting set generator in a black-box way.1 They showed that any
polynomial-time randomized nonadaptive black-box reductions to any oracle
avoiding an exponential-time computable hitting set generator G can be sim-
ulated in BPPNP, which is a trivial upper bound when G is polynomial-time
computable.

4 Our Results

We significantly improve the above BPPNP upper bound to AM∩ coAM, thereby
putting the study of hitting set generators into the landscape of black-box reduc-
tions within NP (Fig. 1). We also show a uniform upper bound of SNP2 even if G
is not computable.

Theorem 1. Let G = {G� : {0, 1}s(�) → {0, 1}�}�∈N be any (not necessarily
computable) hitting set generator such that s(�) ≤ (1−Ω(1))� for all large � ∈ N.
Let BPPR

‖ denote the class of languages solvable by a randomized polynomial-time
nonadaptive machine with oracle access to R. (The subscript ‖ stands for parallel
queries.) Then,

⋂

R

BPPR
‖ ⊂ NP/poly ∩ coNP/poly ∩ SNP2 ,

where the intersection is taken over all oracles R that (1 − 1/poly(�))-avoid G.
Moreover, if G� is computable in 2O(�), then we also have

⋂

R

BPPR
‖ ⊂ AM ∩ coAM.

1 As a black-box reduction to any distinguisher for G, it is required in [15] that there
exists a single machine that computes a reduction to every oracle avoiding G. On
the other hand, as stated in Theorem 1, we allow reductions to depend on oracles,
which makes our results stronger.

On Nonadaptive Reductions to Dense Subsets of Random Strings 73

Compared to the line of work showing limits of black-box reductions within
NP, a surprising aspect of Theorem 1 is that it generalizes to any func-
tion G that may not be computable. Indeed, almost all the previous results
[1,7,9,11] crucially exploit the fact that a verifier can check the correctness of a
certificate for an NP problem; thus a dishonest prover can cheat the verifier only
for one direction, by not providing a certificate for a Yes instance. In our sit-
uation, a verifier cannot compute G and thus cannot prevent dishonest provers
from cheating in this way. At a high level, our technical contributions are to
overcome this difficulty by combining the ideas of Gutfreund and Vadhan [15]
with the techniques developed in [9,11].

Moreover, we present a new Sp2-type algorithm for simulating reductions to an
oracle R avoiding G. Indeed, at the core of Theorem 1 is the following two types
of algorithms simulating reductions: One is an Sp2 algorithm that simulates any

query q
?∈ R of length at most Θ(log n), and the other is an AM∩coAM algorithm

that simulates any query q
?∈ R of length at least Θ(log n). In particular, when

G is exponential-time computable, the Sp2 algorithm can be replaced with a
polynomial-time algorithm and obtain the AM ∩ coAM upper bound.

We remark that Theorem 1 improves all the previous results mentioned before
in some sense. Compared to [9], our results show that the advice “/poly” is
not required in order to simulate black-box reductions to any oracle avoiding
an exponential-time computable hitting set generator. Compared to [1,7], our
results “conceptually” improve their results because the existence of one-way
functions imply the existence of hitting set generators; on the other hand, since
the implication goes through the adaptive reduction (from the task of inverting a
one-way function to a distinguisher for a PRG) of [17], technically speaking, our
results are incomparable with their results.2Similarly, our results conceptually
improve the result of [20], but these are technically incomparable, mainly because
the implication goes through the non-black-box reduction of [18].

5 Why Are the Reductions of [18] Non-black-box?

Based on Theorem 1, we now argue that the reductions of [18] are inherently non-
black-box in a certain formal sense, without relying on any unproven assump-
tions: The reason is that the idea of [18] can be applied to not only time-bounded
Kolmogorov complexity but also any other types of Kolmogorov complexity,
including resource-unbounded Kolmogorov complexity. Therefore, if this gener-
alized reduction could be made black-box, then (as outlined below) by Theorem1
2 We emphasize that we are concerned the nonadaptivity of reductions used in the

security proof of pseudorandom generators. Several simplified constructions of pseu-
dorandom generators Gf from one-way functions f (e.g., [16,23]) are nonadaptive
in the sense that Gf can be efficiently computed with nonadaptive oracle access to
f ; however, the security reductions of these constructions are adaptive because of
the use of Holenstein’s uniform hardcore lemma [22]. Similarly, the reduction of [17,
Lemma 6.5] is adaptive. (We note that, in the special case when the degeneracy of
a one-way function is efficiently computable, the reduction of [17] is nonadaptive.).

74 S. Hirahara and O. Watanabe

we would obtain a finite algorithm SNP2 that approximates resource-unbounded
Kolmogorov complexity, which is a contradiction, unconditionally.

To give one specific example, we briefly outline how the reductions of [18]
can be generalized to the case of Levin’s Kt-complexity [27]: Fix any efficient
universal Turing machine U , and the Kt-complexity of a string x is defined as

Kt(x) := min{|d| + log t | U(d) outputs x within t steps }.

We define a hitting set generator G = {G� : {0, 1}�/2 → {0, 1}�}�∈N as
G�(d, t) := U(d) for (d, t) ∈ {0, 1}�/2 when |U(d)| = � and U(d) halts within
t steps, which is computable in exponential time. Note that Im(G) contains all
strings with low Kt-complexity. Given an efficient algorithm D that γ-avoids G,
we can approximate Kt(x) by the following algorithm: Fix any input x. Take any
list-decodable code Enc, and let NWEnc(x)(z) denote the Nisan-Wigderson gen-
erator [28] instantiated with Enc(x) as the truth table of a hard function, where
z is a seed of the generator. Then check whether the distinguishing probability
|Ez,w[D(NWEnc(x)(z)) − D(w)]| is large or small by sampling, whose outcome
tells us whether Kt(x) is small or large, respectively. Indeed, if the distinguishing
probability is large, then by using the security proof of the Nisan-Wigderson gen-
erator, we obtain a short description (with oracle access to D) for x. Conversely,
if Kt(x) is small, then since D γ-avoids G, the distinguishing probability is at
least γ. Now, if we could make this analysis work for any oracle that γ-avoids
G, then by Theorem1 we would put a problem of approximating Kt(x) in AM,
which is not possible unless EXP = PH. (Note that the minimization problem of
Kt is EXP-complete under NP reductions [3].)

6 Our Techniques

We outline our proof strategy for Theorem1 below. Suppose that we have some
reduction from L to any oracle R that avoids a hitting set generator G. Let
Q denote the query distribution that a reduction makes. We focus on the case
when the length of each query is larger than Θ(log n), and explain the ideas of
the AM ∩ coAM simulation algorithms.

As a warm-up, consider the case when the support supp(Q) of Q is small
(i.e., |supp(Q) ∩ {0, 1}�|
 2� for any length � ∈ N). In this case, we can define
an oracle R1 so that R1 := {0, 1}∗ \ supp(Q) \ Im(G); this is a dense subset and
avoids the hitting set generator G. Therefore, we can simulate the reduction by
simply answering all the queries by saying “No”; hence such a reduction can be
simulated in BPP.

In general, we cannot hope that supp(Q) is small enough. To generalize the
observation above, let us recall the notion of α-heaviness [9]: We say that a query
q is α-heavy (with respect to Q) if the query q is α times more likely to be sampled
underQ than the uniformdistribution on {0, 1}|q|; that is, Prw∼Q[w = q] ≥ α2−|q|.
Now we define our new oracle R2 := {0, 1}∗ \ { q ∈ {0, 1}∗ | q : α-heavy \ Im(G) },
which can be again shown to avoid G because the fraction of α-heavy queries is at
most 1/α (
 1).

On Nonadaptive Reductions to Dense Subsets of Random Strings 75

The problem now is that it is difficult to simulate the new oracle R2; it

appears that, given a query q, we need to test whether q
?∈ Im(G), which is not

possible in AM ∩ coAM. However, it turns out that we do not need to test it,
as we explain next: Observe that the size of Im(G) is very small; it is at most
2s(�)

(
 2�
)
. Thus, the probability that a query q is in Im(G) and q is not

α-heavy (i.e., q is rarely queried) is at most α · 2s(�)−�, where � is the length
of q. As a consequence, the reduction cannot “distinguish” the oracle R2 and a
new oracle R3 := {0, 1}∗ \{ q ∈ {0, 1}∗ | q : α-heavy }; hence we can simulate the

reduction if, given a query q, we are able to decide whether q
?∈ R3 in AM∩coAM.

This task, however, still appears to be difficult for AM∩coAM; indeed, at this
point, Gutfreund and Vadhan [15] used the fact that the approximate counting
is possible in BPPNP, and thereby simulated the oracle R3 by BPPNP.

Our main technical contribution is to develop a way of simulating the reduc-
tion to R3. First, note that the lower bound protocol of Goldwasser and Sipser
[14] enables us to give an AM certificate for α-heaviness; we can check, given a
query q, whether q is α(1 + ε)-heavy or α-light for any small error parameter
ε > 0. Thus, we have an AM protocol for {0, 1}∗ \ R3 for every query q (except
for α(1 ± ε)-heavy and light queries).

If, in addition, we had an AM protocol for R3, then we would be done;
unfortunately, it does not seem possible in general. The upper bound protocol
of Fortnow [12] does a similar task, but the protocol can be applied only for
a limited purpose: we need to keep the randomness used to generate a query
q ∼ Q from being revealed to the prover. When the number of queries of the
reduction is limited to 1, we may use the upper bound protocol in order to
give an AM certificate for R3; on the other hand, if the reduction makes two
queries (q1, q2) ∼ Q, we cannot simultaneously provide AM certificates of the
upper bound protocol for both of q1 and q2, because the fact that q1 and q2 are
sampled together may reveal some information about the private randomness. To
summarize, the upper bound protocol works only for the marginal distribution
of each query, but does not work for the joint distribution of several queries.

That is, what we can obtain by using the upper bound protocol is information
about each query. For example, the heavy-sample protocol of Bogdanov and
Trevisan [9] (which combines the lower and upper bound protocol and sampling)
estimates, in AM ∩ coAM, the probability that a query q sampled from Q is α-
heavy.

Our idea is to overcome the difficulty above by generalizing the Feigenbaum-
Fortnow protocol [11]. Feigenbaum and Fortnow developed an AM∩coAM proto-
col that simulates a nonadaptive reduction to an NP oracle R, given as advice the
probability that a query is a positive instance of R. We generalize the protocol
in the case when the oracle {0, 1}∗ \R3 is solvable by AM on average (which can
be done by the lower bound protocol [14]), and given as advice the probability
that a query q is in {0, 1}∗ \ R3 (which can be estimated by the heavy-sample
protocol [9]):

76 S. Hirahara and O. Watanabe

Theorem 2 (Generalized Feigenbaum-Fortnow Protocol; Informal).
Suppose that M is a randomized polynomial-time nonadaptive reduction to ora-
cle R whose queries are distributed according to Q, and that R is solvable by AM
on average (that is, there exists an AM protocol ΠR such that, with probability
1 − 1/poly(n) over the choice of q ∼ Q, the protocol ΠR computes R on input
q). Then, there exists an AM∩ coAM protocol ΠM such that, given a probability
p∗ ≈ Prq∼Q[q ∈ R] as advice, the protocol ΠM simulates the reduction M with
probability at least 1 − 1/poly(n).

On the Case of Adaptive Reductions. We mention that Theorem 1 cannot
be extended to the case of adaptive reductions. Indeed, Trevisan and Vadhan [32]
constructed an exponential-time computable pseudorandom generator based on
the intractability of some PSPACE-complete problem, and its security reduction
is black-box in the sense of Theorem 1 and adaptive. If Theorem1 could be
extended to the case of adaptive reductions, we would obtain PSPACE = AM,
which is unlikely to be true.

7 Some Evidence for the Tightness of Our Upper Bounds

Theorem 1 leads us to the natural question whether the upper bound is tight. We
present evidence that our two types of simulation algorithms are nearly tight.

First consider the AM∩ coAM-type simulation algorithms. In [21] we observe
that the SZK-hardness of MCSP [4] also holds for an average-case version of
MCSP:

Theorem 3. Let ε > 0 be any constant, and R be any oracle 1
2 -avoiding Gint =

{Gint
n : {0, 1}nε → {0, 1}n}n∈N. Then, SZK ⊂ BPPR.

The reduction of Theorem 3 is adaptive because of the use of [17]. We con-
jecture that SZK ⊂ ⋂

R BPPR
‖ , which implies that the AM ∩ coAM upper bound

of Theorem 1 cannot be significantly improved.
Next consider our Sp2-type simulation algorithm. This is in fact completely

tight in a certain setting. Let G be a universal Turing machine. We consider an
exponential-time analogue of Theorem1 when the reduction can make only short
queries. Specifically, for an oracle R, denote by EXPR≤poly

the class of languages

that can be computed by a 2nO(1)
-time algorithm that can query q

?∈ R of
length ≤ nO(1), on inputs of length n. Then by an exponential-time analogue of
Theorem 1 (more specifically, by using the Sp2-type simulation algorithm), we can
show the following upper bound on the computational power of EXPR≤poly

where
R is an arbitrary dense subset of Kolmogorov-random strings, i.e., R is a set
avoiding the outputs of a universal Turing machine U on short inputs. (We note
that all the queries of polynomial length can be asked by an exponential-time
reduction, and thus the adaptivity does not matter here.)

On Nonadaptive Reductions to Dense Subsets of Random Strings 77

Theorem 4. Fix any universal Turing machine U . Then we have
⋂

R : 1
2 -avoids U

EXPR≤poly ⊆
⋂

R : 1
2 -avoidsU

BPEXPR≤poly ⊆ Sexp2 .

Here R≤poly means that the length of queries is restricted to be at most a poly-
nomial in the input length. We also have EXPNP ⊂ ⋂

R SR
2 ⊂ Sexp2 .

Previously, Allender, Friedman and Gasarch [5] showed that black-box BPP
reductions to any avoiding oracle can be simulated in EXPSPACE. Theorem 4
significantly improves their upper bound to Sexp2 . What is interesting here is
that we can also show [21] the same lower bound, that is,

⋂

R : 1
2 -avoidsU

EXPR≤poly ⊇ Sexp2

Thus, a complexity class, i.e., the exponential-time analogue of Sp2 , is exactly
characterized by using Kolmogorov-random strings. The above lower bound also
shows the tightness of the exponential-time analogue of the Sp2-type simulation
algorithm.

References

1. Akavia, A., Goldreich, O., Goldwasser, S., Moshkovitz, D.: On basing one-way func-
tions on NP-hardness. In: Proceedings of the Symposium on Theory of Computing
(STOC), pp. 701–710 (2006)

2. Akavia, A., Goldreich, O., Goldwasser, S., Moshkovitz, D.: Erratum for: on basing
one-way functions on NP-hardness. In: Proceedings of the Symposium on Theory
of Computing (STOC), pp. 795–796 (2010)

3. Allender, E., Buhrman, H., Koucký, M., van Melkebeek, D., Ronneburger, D.:
Power from random strings. SIAM J. Comput. 35(6), 1467–1493 (2006)

4. Allender, E., Das, B.: Zero knowledge and circuit minimization. Inf. Comput. 256,
2–8 (2017)

5. Allender, E., Friedman, L., Gasarch, W.I.: Limits on the computational power of
random strings. Inf. Comput. 222, 80–92 (2013)

6. Allender, E., Hirahara, S.: New insights on the (non-) hardness of circuit mini-
mization and related problems. In: Proceedings of the International Symposium
on Mathematical Foundations of Computer Science (MFCS), pp. 54:1–54:14 (2017)

7. Applebaum, B., Barak, B., Xiao, D.: On basing lower-bounds for learning on worst-
case assumptions. In: Proceedings of the Symposium on Foundations of Computer
Science (FOCS), pp. 211–220 (2008)

8. Bogdanov, A., Brzuska, C.: On basing size-verifiable one-way functions on NP-
hardness. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 1–6.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6 1

9. Bogdanov, A., Trevisan, L.: On worst-case to average-case reductions for NP prob-
lems. SIAM J. Comput. 36(4), 1119–1159 (2006)

10. Carmosino, M.L., Impagliazzo, R., Kabanets, V., Kolokolova, A.: Learning algo-
rithms from natural proofs. In: Proceedings of the Conference on Computational
Complexity (CCC), pp. 10:1–10:24 (2016)

https://doi.org/10.1007/978-3-662-46494-6_1

78 S. Hirahara and O. Watanabe

11. Feigenbaum, J., Fortnow, L.: Random-self-reducibility of complete sets. SIAM J.
Comput. 22(5), 994–1005 (1993)

12. Fortnow, L.: The complexity of perfect zero-knowledge. Adv. Comput. Res. 5,
327–343 (1989)

13. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

14. Goldwasser, S., Sipser, M.: Private coins versus public coins in interactive proof
systems. In: Proceedings of the Symposium on Theory of Computing (STOC), pp.
59–68 (1986)

15. Gutfreund, D., Vadhan, S.: Limitations of hardness vs. randomness under uni-
form reductions. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.)
APPROX/RANDOM -2008. LNCS, vol. 5171, pp. 469–482. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85363-3 37

16. Haitner, I., Reingold, O., Vadhan, S.P.: Efficiency improvements in constructing
pseudorandom generators from one-way functions. SIAM J. Comput. 42(3), 1405–
1430 (2013)

17. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

18. Hirahara, S.: Non-black-box worst-case to average-case reductions within NP. In:
Proceedings of the Symposium on Foundations of Computer Science (FOCS), pp.
247–258 (2018)

19. Hirahara, S., Santhanam, R.: On the average-case complexity of MCSP and its
variants. In: Proceedings of the Computational Complexity Conference (CCC),
pp. 7:1–7:20 (2017)

20. Hirahara, S., Watanabe, O.: Limits of minimum circuit size problem as oracle. In:
Proceedings of the Conference on Computational Complexity (CCC), pp. 18:1–
18:20 (2016)

21. Hirahara, S., Watanabe, O.: On nonadaptive reductions to the set of random strings
and its dense subsets. In: Electronic Colloquium on Computational Complexity
(ECCC), vol. 26, p. 25 (2019)

22. Holenstein, T.: Key agreement from weak bit agreement. In: Proceedings of the
Symposium on Theory of Computing (STOC), pp. 664–673 (2005)

23. Holenstein, T.: Pseudorandom generators from one-way functions: a simple con-
struction for any hardness. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 443–461. Springer, Heidelberg (2006). https://doi.org/10.1007/
11681878 23

24. Kabanets, V., Cai, J.: Circuit minimization problem. In: Proceedings of the Sym-
posium on Theory of Computing (STOC), pp. 73–79 (2000)

25. Ko, K.: On helping by robust oracle machines. Theor. Comput. Sci. 52, 15–36
(1987)

26. Ko, K.: On the complexity of learning minimum time-bounded turing machines.
SIAM J. Comput. 20(5), 962–986 (1991)

27. Levin, L.A.: Randomness conservation inequalities; information and independence
in mathematical theories. Inf. Control 61(1), 15–37 (1984)

28. Nisan, N., Wigderson, A.: Hardness vs Randomness. J. Comput. Syst. Sci. 49(2),
149–167 (1994)

29. Ostrovsky, R.: One-way functions, hard on average problems, and statistical zero-
knowledge proofs. In: Proceedings of the Structure in Complexity Theory Confer-
ence, pp. 133–138 (1991)

30. Razborov, A.A., Rudich, S.: Natural proofs. J. Comput. Syst. Sci. 55(1), 24–35
(1997)

https://doi.org/10.1007/978-3-540-85363-3_37
https://doi.org/10.1007/11681878_23
https://doi.org/10.1007/11681878_23

On Nonadaptive Reductions to Dense Subsets of Random Strings 79

31. Rudich, S.: Super-bits, demi-bits, and NP/qpoly-natural proofs. In: Rolim, J. (ed.)
RANDOM 1997. LNCS, vol. 1269, pp. 85–93. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63248-4 8

32. Trevisan, L., Vadhan, S.P.: Pseudorandomness and average-case complexity via
uniform reductions. Comput. Complex. 16(4), 331–364 (2007)

33. Vadhan, S.P.: An unconditional study of computational zero knowledge. SIAM J.
Comput. 36(4), 1160–1214 (2006)

34. Yap, C.: Some consequences of non-uniform conditions on uniform classes. Theor.
Comput. Sci. 26, 287–300 (1983)

https://doi.org/10.1007/3-540-63248-4_8
https://doi.org/10.1007/3-540-63248-4_8

Computability of the Solutions
to Navier-Stokes Equations
via Effective Approximation

Shu-Ming Sun1, Ning Zhong2(B), and Martin Ziegler3

1 Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA
sun@math.vt.edu

2 Department of Mathematical Sciences, University of Cincinnati,
Cincinnati, OH 45221, USA

zhongn@ucmail.uc.edu
3 School of Computing, KAIST, 291 Daehak-ro, Daejeon 34141, Republic of Korea

ziegler@kaist.ac.kr

The paper is dedicated to the memory of
Professor Ker-I Ko.

Abstract. As one of the seven open problems in the addendum to their
1989 book Computability in Analysis and Physics, Pour-El and Richards
proposed “... the recursion theoretic study of particular nonlinear prob-
lems of classical importance. Examples are the Navier-Stokes equation,
the KdV equation, and the complex of problems associated with Feigen-
baum’s constant.” In this paper, we approach the question of whether
the Navier-Stokes Equation admits recursive solutions in the sense of
Weihrauch’s Type-2 Theory of Effectivity. A natural encoding (“repre-
sentation”) is constructed for the space of divergence-free vector fields on
2-dimensional open square Ω = (−1, 1)2. This representation is shown
to render first the mild solution to the Stokes Dirichlet problem and
then a strong local solution to the nonlinear inhomogeneous incompress-
ible Navier-Stokes initial value problem uniformly computable. Based on
classical approaches, the proofs make use of many subtle and intricate
estimates which are developed in the paper for establishing the com-
putability results.

Keywords: Navier-Stokes equations · Computability

1 Introduction

The (physical) Church-Turing Hypothesis [17] postulates that every physical
phenomenon or effect can, at least in principle, be simulated by a sufficiently

The third author is supported by grant NRF-2017R1E1A1A03071032.

c© Springer Nature Switzerland AG 2020
D.-Z. Du and J. Wang (Eds.): Ko Festschrift, LNCS 12000, pp. 80–112, 2020.
https://doi.org/10.1007/978-3-030-41672-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41672-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-41672-0_7

Computability to Navier-Stokes Equations 81

powerful digital computer up to any desired precision. Its validity had been chal-
lenged, though, in the sound setting of Recursive Analysis: with a computable
C1 initial condition to the Wave Equation leading to an incomputable solution
[11,13]. The controversy was later resolved by demonstrating that, in both phys-
ically [1,30] and mathematically more appropriate Sobolev space settings, the
solution is computable uniformly in the initial data [23]. Recall that functions
f in a Sobolev space are not defined pointwise but by local averages in the Lq

sense1 (in particular q = 2 corresponding to energy) with derivatives under-
stood in the distributional sense. This led to a series of investigations on the
computability of linear and nonlinear partial differential equations [24–26].

The (incompressible) Navier-Stokes Equation

∂tu − �u + (u · ∇)u + ∇P = f , ∇ · u = 0, u(0) = a, u
∣
∣
∂Ω

≡ 0 (1)

describes the motion of a viscous incompressible fluid filling a rigid box Ω. The
vector field u = u(x, t) =

(

u1, u2, . . . , ud

)

represents the velocity of the fluid and
P = P (x, t) is the scalar pressure with gradient ∇P ; � is the Laplace operator;
∇ · u denotes componentwise divergence; u · ∇ means, in Cartesian coordinates,
u1∂x1 + u2∂x2 + . . . + ud∂xd

; and the function a = a(x) with ∇ · a = 0 provides
the initial velocity and f is a given external force. Equation (1) thus constitutes
a system of d + 1 partial differential equations for d + 1 functions.

The question of global existence and smoothness of its solutions, even in the
homogeneous case f ≡ 0, is one of the seven Millennium Prize Problems posted
by the Clay Mathematics Institute at the beginning of the 21st century. Local
existence has been established, though, in various Lq settings [5]; and unique-
ness of weak solutions in dimension 2, but not in dimension 3 [18, §V.1.5], [2,
§V.1.3.1]. Nevertheless, numerical solution methods have been devised in abun-
dance, often based on pointwise (or even uniform, rather than Lq) approximation
and struggling with nonphysical artifacts [14]. In fact, the very last of seven open
problems listed in the addendum to [12] asks for a “recursion theoretic study
of . . . the Navier-Stokes equation”. Moreover it has been suggested [16] that
hydrodynamics could in principle be incomputable in the sense of allowing to
simulate universal Turing computation and to thus ‘solve’ the Halting prob-
lem. And indeed recent progress towards (a negative answer to) the Millennium
Problem [20] proceeds by simulating a computational process in the vorticity
dynamics to construct a blowup in finite time for a PDE very similar to (1).

1.1 Overview

Using the sound framework of Recursive Analysis, we assert the computability
of a local strong solution of (1) in the space Lσ

2,0(Ω) (see Sect. 2 for definition)
from a given initial condition a ∈ Lσ

2,0(Ω); moreover, the computation is uniform

1 We use q ∈ [1, ∞] to denote the norm index, P for the pressure field, p for polynomi-
als, P for a set of trimmed and mollified tuples of the latter, and P for the Helmholtz
Projection.

82 S.-M. Sun et al.

in the initial data. We follow a common strategy used in the classical existence
proofs [3–5,18,21]:

(i) Eliminate the pressure P by applying, to both sides of Eq. (1), the Helmholtz
projection P :

(

L2(Ω)
)2 → Lσ

2,0(Ω), thus arriving at the non-linear evolution
equation

∂tu + Au + Bu = g (t > 0), u(0) = a ∈ Lσ
2,0(Ω) (2)

where L2(Ω) is the set of all square-integrable real-valued functions defined
on Ω, g = Pf , u = Pu ∈ Lσ

2,0(Ω), A = −P� denotes the Stokes operator,
and Bu = P (u · ∇)u is the nonlinearity.

(ii) Construct a mild solution v(t)a = e−tAa of the associated homogeneous
linear equation

∂tv + Av = 0 for t ≥ 0, v(0) = a ∈ Lσ
2,0(Ω) (3)

(iii) Rewrite (2) using (ii) in an integral form [5, §2]

u(t) = e−tAa +
∫ t

0

e−(t−s)Ag(s) ds −
∫ t

0

e−(t−s)A
Bu(s) ds for t ≥ 0 (4)

and solve it by a limit/fixed-point argument using the following iteration
scheme [5, Eq. (2.1)]:

v0(t) = e−tAa +
∫ t

0

e−(t−s)Ag(s) ds, vn+1(t) = v0(t) −
∫ t

0

e−(t−s)A
Bvn(s) ds

(5)
(iv) Recover the pressure P from u by solving

∇P = f − ∂tu + �u − (u · ∇)u (6)

To make use of the above strategy for deriving an algorithm to compute the
solution of (1), there are several difficulties which need to be dealt with. Firstly,
a proper representation is needed for coding the solenoidals. The codes should
be not only rich enough to capture the functional characters of these vector
fields but also robust enough to retain the coded information under elemen-
tary function operations, in particular, integration. Secondly, since the Stokes
operator A : dom(A) → Lσ

2,0(Ω) is neither continuous nor its graph dense in
(Lσ

2,0(Ω))2, there is no convenient way to directly code A for computing the
solution of the linear equation (3). The lack of computer-accessible information
on A makes the computation of the solution v(t)a = e−tAa of (3) much more
intricate. Thirdly, since the nonlinear operator B in the iteration (5) involves
differentiation and multiplication, and a mere Lσ

2,0-code of vn is not rich enough
for carrying out these operations, it follows that there is a need for computa-
tionally derive a stronger code for vn from any given Lσ

2,0-code of a so that Bvn

can be computed. This indicates that the iteration is to move back and forth
among different spaces, and thus additional care must be taken in order to keep

Computability to Navier-Stokes Equations 83

the computations flowing in and out without any glitches from one space to
another. To overcome those difficulties arising in the recursion theoretic study
of the Navier-Stokes equation, many estimates - subtle and intricate - are estab-
lished in addition to the classical estimates.

The paper is organized as follows. Presuming familiarity with Weihrauch’s
Type-2 Theory of Effectivity [22], Sect. 2 recalls the standard representation δL2

of L2(Ω) and introduces a natural representation δLσ
2,0

of Lσ
2,0(Ω). Section 3

proves that the Helmholtz projection P :
(

L2(Ω)
)2 → Lσ

2,0(Ω) is
(

(δL2)
2, δLσ

2,0

)

-
computable. Section 4 presents the proof that the solution to the linear homo-
geneous Dirichlet problem (3) is uniformly computable from the initial condi-
tion a. Section 5 is devoted to show that the solution to the nonlinear Navier-
Stokes problem (1) is uniformly computable locally. Subsection 5.1 recalls the
Bessel (=fractional Sobolev) space Hs

2(Ω) ⊆ L2(Ω) of s-fold weakly differen-
tiable square-integrable functions on Ω and its associated standard representa-
tion δHs

2,0
, s ≥ 0. For s > 1 we assert differentiation Hs

2(Ω) 	 w
→ ∂xw ∈ L2(Ω)
to be

(

δHs
2,0

, δL2

)

-computable and multiplication Hs
2(Ω) × L2(Ω) 	 (v, w)
→

vw ∈ L2(Ω) to be
(

δHs
2,0

× δL2 , δL2

)

-computable. Based on these preparations,
Subsect. 5.3 asserts that in the homogeneous case g ≡ 0, the sequence, generated
from the iteration map

S : C
(

[0;∞), Lσ
2,0(Ω)

)× C
(

[0;∞),Lσ
2,0(Ω)

) 	 (v0,vn)

→ vn+1 ∈ C
(

[0;∞), Lσ
2,0(Ω)

)

according to Eq. (5), converges effectively uniformly on some positive (but not
necessarily maximal) time interval [0;T] whose length T = T (a) > 0 is com-
putable from the initial condition a. Subsection 5.4 proves that the iteration
map S is

(

[ρ→δLσ
2,0

] × [ρ→δLσ
2,0

], [ρ→δLσ
2,0

]
)

-computable. We conclude in Sub-
sect. 5.5 with the final extensions regarding the inhomogeneity f and pressure
P , thus establishing the main result of this work:

Theorem 1. There exists a
(

δLσ
2,0

×[ρ→δLσ
2,0

]

, ρ
)

-computable map T ,

T : Lσ
2,0(Ω) × C

(

[0;∞), Lσ
2,0(Ω)

)→ (0;∞), (a,f)
→ T (a,f)

and a
(

δLσ
2,0

×[ρ→δLσ
2,0

]× ρ , δLσ
2,0

)

-computable partial map S,

S :⊆ Lσ
2,0(Ω) × C

(

[0;∞), Lσ
2,0(Ω)

)× [0;∞) → Lσ
2,0(Ω)×L2(Ω)

such that, for every a ∈ Lσ
2,0(Ω) and f ∈ C

(

[0;∞), Lσ
2,0(Ω)

)

, the function
(u, P) :

[

0;T (a,f)] 	 t
→ S(a,f , t) constitutes a (strong local in time and
weak global in space) solution to Eq. (1).

Roughly speaking, a function is computable if it can be approximated by
“computer-accessible” functions (such as rational numbers, polynomials with
rational coefficients, and so forth) with arbitrary precision, where precision is

84 S.-M. Sun et al.

given as an input; such a sequence of approximations is called an effective approx-
imation. Thus in terms of effective approximations, the theorem states that the
solution of Eq. (1) can be effectively approximated locally in the time interval
[0, T (a,f)], where the time instance T (a,f) is effectively approximable.

More precisely, in computable analysis, a map F : X → Y from a space X
with representation δX to a space Y with representation δY is said to be (δX , δY)-
computable if there exists a (Turing) algorithm (or any computer program) that
computes a δY -name of F (x) from any given δX -name of x. A metric space
(X, d), equipped with a partial enumeration ζ :⊆ N → X of some dense subset,
gives rise to a canonical Cauchy representation δζ by encoding each x ∈ X with
a sequence s̄ = (s0, s1, s2, . . .) ∈ dom(ζ)ω ⊆ N

ω such that d
(

x, ζ(sk)
) ≤ 2−k for

all k [22, §8.1]; in other words, {ζ(sk)} is an effective approximation of x. For
example, approximating by (dyadic) rationals thus leads to the standard repre-
sentation ρ of R; and for a fixed bounded Ω ⊆ R

d, the standard representation
δL2 of L2(Ω) encodes f ∈ L2(Ω) by a sequence {pk : k ∈ N} ⊆ Q[Rd] of d-
variate polynomials with rational coefficients such that ‖f − pk‖2 ≤ 2−k, where
‖ · ‖2 = ‖ · ‖L2 . Thus if both spaces X and Y admit Cauchy representations,
then a function f : X → Y is computable if there is an algorithm that com-
putes an effective approximation of f(x) on any given effective approximation
of x as input. For represented spaces (X, δX) and (Y, δY), δX ×δY denotes the
canonical representation of the Cartesian product X ×Y . When X and Y are
σ-compact metric spaces with respective canonical Cauchy representations δX

and δY , [δX → δY] denotes a canonical representation of the space C(X,Y) of
continuous total functions f : X → Y , equipped with the compact-open topol-
ogy [22, Theorem 3.2.11+Definition 3.3.13]. The representation [δX → δY]
supports type conversion in the following sense [22, Theorem 3.3.15]:

Fact 2. On the one hand, the evaluation (f, x)
→ f(x) is ([δX →δY]×δX , δY)-
computable. On the other hand, a map f : X×Y → Z is (δX×δY , δZ)-computable
iff the map X 	 x
→ (y
→ f(x, y)

) ∈ C(Y,Z) is (δX , [δY →δZ])-computable.

We mention in passing that all spaces considered in this paper are equipped
with a norm. Thus for any space X considered below, a δX -name of f ∈ X is
simply an effective approximation of f despite the often cumbersome notations.

2 Representing Divergence-Free L2 Functions on Ω

Let us call a vector field f satisfying ∇ · f = 0 in Ω divergence-free. A vector-
valued function p is called a polynomial of degree N if each of its components
is a polynomial of degree less than or equal to N with respect to each variable
and at least one component is a polynomial of degree N . Let Lσ

2,0(Ω)—or Lσ
2,0

if the context is clear—be the closure in L2-norm of the set {u ∈ (C∞
0 (Ω))2 :

∇ · u = 0} of all smooth divergence-free functions with support of u and all of
its partial derivatives contained in some compact subset of Ω. Let Q[R2] be the
set of all polynomials of two real variables with rational coefficients and Q

σ
0 [R2]

the subset of all 2-tuples of such polynomials which are divergence-free in Ω and

Computability to Navier-Stokes Equations 85

vanish on ∂Ω. We note that the boundary value of a Lσ
2,0(Ω)-function u, u|∂Ω,

is not defined unless u is (weakly) differentiable; if u is (weakly) differentiable,
then u|∂Ω = 0.

Notation 3. Hereafter we use ‖w‖2 for the L2-norm ‖w‖L2(Ω) if w is real-
valued, or for ‖w‖(L2(Ω))2 if w is vector-valued (in R

2). We note that ‖·‖Lσ
2,0(Ω) =

‖ · ‖(L2(Ω))2 . For any subset A of Rn, its closure is denoted as A.

Proposition 1. (a) A polynomial tuple

p = (p1, p2) =
(

N∑

i,j=0

a1
i,jx

iyj ,
N∑

i,j=0

a2
i,jx

iyj
)

is divergence-free and boundary-free if and only if its coefficients satisfy the
following system of linear equations with integer coefficients:

(i + 1)a1
i+1,j + (j + 1)a2

i,j+1 = 0, 0 ≤ i, j ≤ N − 1

(i + 1)a1
i+1,N = 0, 0 ≤ i ≤ N − 1 (7)

(j + 1)a2
N,j+1 = 0, 0 ≤ j ≤ N − 1

and for all 0 ≤ i, j ≤ N ,

∑N

i=0
a1

i,j =
∑N

i=0
a2

i,j =
∑N

i=0
(−1)ia1

i,j =
∑N

i=0
(−1)ia2

i,j = 0 (8)
∑N

j=0
a1

i,j =
∑N

j=0
a2

i,j =
∑N

j=0
(−1)ja1

i,j =
∑N

j=0
(−1)ja2

i,j = 0 (9)

(b) Q
σ
0 [R2] is dense in Lσ

2,0(Ω) w.r.t. L2-norm.

The proof of Proposition 1 is deferred to AppendixA.
We may be tempted to use Qσ

0 [R2] as a set of names for coding/approximating
the elements in the space Lσ

2,0(Ω). However, since the closure of Qσ
0 [R2] in L2-

norm contains Lσ
2,0(Ω) as a proper subspace, Qσ

0 [R2] is “too big” to be used as
a set of codes for representing Lσ

2,0(Ω); one has to “trim” polynomials in Q
σ
0 [R2]

so that any convergent sequence of “trimmed” polynomials converges to a limit
in Lσ

2,0(Ω). The trimming process is shown below. For each k ∈ N (where N is
the set of all positive integers), let Ωk = (−1 + 2−k; 1 − 2−k)2. And for each
p = (p1, p2) ∈ Q

σ
0 [R2], define Tkp = (Tkp1,Tkp2), where

Tkpj(x, y) =
{

pj(x
1−2−k , y

1−2−k), −1 + 2−k ≤ x, y ≤ 1 − 2−k

0, otherwise
(10)

j = 1, 2. Then Tkpj and Tkp have the following properties:

86 S.-M. Sun et al.

(a) Tkp has compact support Ωk contained in Ω.
(b) Tkp is a polynomial with rational coefficients defined in Ωk.
(c) Tkp is continuous on Ω = [−1, 1]2.
(d) Tkp = 0 on ∂Ωk, for p vanishes on the boundary of Ω. Thus Tkp vanishes

in the exterior region of Ωk including its boundary ∂Ωk.
e) Tkp is divergence-free in Ωk following the calculation below: for (x, y) ∈ Ωk,

we have (x
1−2−k , y

1−2−k) ∈ Ω and

∂Tkp1
∂x

(x, y) +
∂Tkp2

∂y
(x, y) =

1
1 − 2−k

∂p1
∂x′ (x

′, y′) +
1

1 − 2−k

∂p2
∂y′ (x

′, y′)

=
1

1 − 2−k

[
∂p1
∂x′ (x

′, y′) +
∂p2
∂y′ (x′, y′)

]

= 0

for p is divergence-free in Ω, where x′ = x
1−2−k and y′ = y

1−2−k .

It follows from the discussion above that every Tkp is a divergence-free polyno-
mial of rational coefficients on Ωk that vanishes in [−1, 1]2\Ωk and is continuous
on [−1, 1]2. However, although the functions Tkp are continuous on [−1, 1]2 and
differentiable in Ωk, they can be non-differentiable along the boundary ∂Ωk ⊆ Ω.
To use these functions as names for coding elements in Lσ

2,0(Ω), it is desirable
to smoothen them along the boundary ∂Ωk so that they are differentiable in
the entire Ω. A standard technique for smoothing a function is to convolute it
with a C∞ function. We use this technique to modify functions Tkp so that they
become divergence-free and differentiable on the entire region of Ω. Let

γ(x) :=

{

γ0 · exp
(

− 1
1−‖x‖2

)

, if 1 > ‖x‖ := max{|x1|, |x2|}
0, otherwise

(11)

where γ0 is a constant such that
∫

R2 γ(x) dx = 1 holds. The constant γ0 is com-
putable, since integration on continuous functions is computable [22, §6.4]. Let
γk(x) = 22kγ(2kx). Then, for all k ∈ N, γk is a C∞ function having support
in the closed square [−2−k, 2−k]2 and

∫

R2 γk(x) dx = 1. Recall that for differen-
tiable functions f, g : Rd → R with compact support, the convolution f ∗ g is
defined as follows:

(

f ∗ g
)

(x) =
∫

Rd

f(x − y) · g(y) dy (12)

It is easy to see that for n ≥ k+1 the support of γn∗Tkp := (γn∗Tkp1, γn∗Tkp2)
is contained in the closed square [−1 + 2−(k+1), 1 − 2−(k+1)]2. It is also known
classically that γn ∗Tkp is a C∞ function. Since γn is a computable function and
integration on compact domains is computable, the map (n, k,p)
→ γn ∗ Tkp is
computable. Moreover the following metric is computable:

(

(n, k,p), (n′, k′,p′)
)
→

(∫
∣
∣(γn ∗ Tkp)(x) − (γn′ ∗ Tk′p′)(x)

∣
∣
2
dx

)1/2

(13)

Computability to Navier-Stokes Equations 87

Lemma 1. Every function γn ∗ Tkp is divergence-free in Ω, where n, k ∈ N,
n ≥ k, and p ∈ Q

σ
0 [R2].

Lemma 2. The set P =
{

γn ∗ Tkp : n, k ∈ N, n ≥ k + 1,p ∈ Q
σ
0 [R2]

}

is dense
in Lσ

2,0(Ω).

See Appendices B and C for the proofs.

From Lemmas 1 and 2 it follows that P is a countable set that is dense in Lσ
2,0(Ω)

(in L2-norm) and every function in P is C∞, divergence-free on Ω, and having a
compact support contained in Ω; in other words, P ⊂ {u ∈ C∞

0 (Ω)2 : ∇·u = 0}.
Thus, Lσ

2,0(Ω) = the closure of P in L2 − norm. This fact indicates that the set
P is qualified to serve as codes for representing Lσ

2,0(Ω).
Since the function φ :

⋃∞
N=0 Q

(N+1)2 × Q
(N+1)2 → {0, 1}, where

φ
(

(ri,j)0≤i,j≤N , (si,j)0≤i,j≤N

)

=

⎧

⎨

⎩

1, if (7), (8), and (9) are satisfied
(with ri,j = a1

i,j and si,j = a2
i,j)

0, otherwise

is computable, there is a total computable function on N that enumerates
Q

σ
0 [R2]. Then it follows from the definition of P that there is a total com-

putable function α : N → P that enumerates P; thus, in view of the computable
Eq. (13),

(

Lσ
2,0(Ω), (u,v)
→ ‖u − v‖2,P, α

)

is a computable metric space. Let
δLσ

2,0
: Nω → Lσ

2,0 be the standard Cauchy representation of Lσ
2,0; that is, every

function u ∈ Lσ
2,0(Ω) is encoded by a sequence {pk : k ∈ N} ⊆ P, such that

‖u−pk‖2 ≤ 2−k. The sequence {pk}k∈N is called a δLσ
2,0

-name of u, which is an
effective approximation of u (in L2-norm).

3 Computability of Helmholtz Projection

In this section, we show that the Helmholtz projection P is computable.

Proposition 2. The projection P :
(

L2(Ω)
)2 → Lσ

2,0(Ω) is
(

(δL2)
2, δLσ

2,0

)

-
computable.

Proof. For simplicity let us set Ω = (0, 1)2. The proof carries over to Ω =
(−1, 1)2 by a scaling on sine and cosine functions. We begin with two classical
facts which are used in the proof:

(i) It follows from [6, p. 40]/[21] that for any u =
(

u1, u2

) ∈ (L2(Ω)
)2,

Pu = (−∂yϕ, ∂xϕ) (14)

where the scalar function ϕ is the solution of the following boundary value
problem:

� ϕ = ∂xu2 − ∂yu1 in Ω, ϕ = 0 on ∂Ω (15)

We note that P is a linear operator.

88 S.-M. Sun et al.

(ii) Each of {sin(nπx) sin(mπy)}n,m≥1,

{sin(nπx) cos(mπy)}n≥1,m≥0, or {cos(nπx) sin(mπy)}n≥0,m≥1

is an orthogonal basis for L2(Ω). Thus each u =
(

u1, u2

)

in
(

L2(Ω)
)2, ui,

i = 1 or 2, can be written in the following form:

ui(x, y) =
∑

n,m≥0

ui,n,m cos(nπx) sin(mπy)

=
∑

n,m≥0

ũi,n,m sin(nπx) cos(mπy)

where

ui,n,m =
∫ 1

0

∫ 1

0

ui(x, y) cos(nπx) sin(mπy)dxdy, and

ũi,n,m =
∫ 1

0

∫ 1

0

ui(x, y) sin(nπx) cos(mπy)dxdy

with the property that ‖ui‖2 =
(
∑

n,m≥0 |ui,n,m|2
)1/2

=
(
∑

n,m≥0 |ũi,n,m|2
)1/2

.
We note that the sequences {ui,n,m}, {ũi,n,m}, and ‖ui‖2 are computable from
u; cf. [22].

To prove that the projection is
(

(δL2)
2, δLσ

2,0

)

-computable, it suffices to show
that there is an algorithm computing, given any accuracy k ∈ N and for any
u ∈ (L2(Ω))2, a vector function (pk, qk) ∈ P such that ‖Pu − (pk, qk)‖2 ≤ 2−k.
Let us fix k and u =

(

u1, u2). Then a straightforward computation shows that
the solution ϕ of (15) can be explicitly written as

ϕ(x, y) =
∑∞

n,m=1

−nu2,n,m + mũ1,n,m

(n2 + m2)π
sin(nπx) sin(mπy)

It then follows that

− ∂yϕ =
∑

n,m≥1

mnu2,n,m − m2ũ1,n,m

n2 + m2
sin(nπx) cos(mπy) (16)

Similarly, we can obtain a formula for ∂xϕ. Since we have an explicit expression
for (−∂yϕ, ∂xϕ), a search algorithm is usually a preferred choice for finding a
k-approximation (pk, qk) of Pu by successively computing the norms

‖(−∂yϕ, ∂xϕ) − (p, q)‖2, (p, q) ∈ P.

However, since −∂yϕ and ∂xϕ are infinite series which involve limit processes, a
truncating algorithm is needed so that one can compute approximations of the
two limits before a search program can be executed. The truncating algorithm
will find some N(k,u) ∈ N such that the N(k,u)-partial sum of (−∂yϕ, ∂xϕ) is a

Computability to Navier-Stokes Equations 89

2−(k+1)-approximation of the series; in other words, the algorithm chops off the
infinite tails of the series within pre-assigned accuracy. The following estimate
provides a basis for the desired truncating algorithm:

‖ − ∂yϕ −
∑

n,m<N

mnu2,n,m − m2ũ1,n,m

n2 + m2
sin(nπx) cos(mπy)‖22

= ‖
∑

n,m≥N

mnu2,n,m − m2ũ1,n,m

n2 + m2
sin(nπx) cos(mπy)‖22

=
∑

n,m≥N

∣
∣
∣
∣

mnu2,n,m − m2ũ1,n,m

n2 + m2

∣
∣
∣
∣

2

≤ 2
∑

n,m≥N

(|u2,n,m|2 + |ũ1,n,m|2)

A similar estimate applies to ∂xϕ. Since

‖ui‖22 =
∑

n,m≥1

|ui,n,m|2 =
∑

n,m≥1

|ũi,n,m|2 , i = 1, 2,

is computable, it follows that there is an algorithm computing N(k,u) from k and
u such that the N(k,u)-partial sum of (−∂yϕ, ∂xϕ) is a 2−(k+1)-approximation
of the series. Now we can search for (pk, qk) ∈ P that approximates the N(k,u)-
partial sum in L2-norm within the accuracy 2−(k+1) as follows: enumerate P =
{p̃j}, compute the L2-norm of the difference between the N(k,u)-partial sum
and p̃j , halt the computation at p̃j when the L2-norm is less that 2−(k+1), and
then set (pk, qk) = p̃j . We note that each computation halts in finitely many
steps. The search will succeed since Pu = (−∂yϕ, ∂xϕ) ∈ Lσ

2,0 and P is dense in
Lσ
2,0. It is then clear that ‖Pu − (pk, qk)‖2 ≤ 2−k.

4 Computability of the Linear Problem

In this section, we show that the solution operator for the linear homogeneous
equation (3) is uniformly computable from the initial data. We begin by recalling
the Stokes operator and some of its classical properties. Let A = −P� be the
Stokes operator as defined for instance in [3, §2] or [18, §III.2.1], where P :
(

L2(Ω)
)2 → Lσ

2,0 is the Helmholtz projection. It is known from the classical
study that A is an unbounded but closed positively self-adjoint linear operator
whose domain is dense in Lσ

2,0, and thus −A is the infinitesimal generator of an
analytic semigroup; cf. [18, Theorem III.2.1.1] or [2, §IV.5.2]. In this case, the
linear homogeneous equation (3) has the solution u(t) = e−Ata, where u(0) = a,
e−At is the analytic semigroup generated by the infinitesimal generator −A, and
u(t) ∈ Lσ

2,0(Ω) for t ≥ 0. Furthermore, the following lemma shows that the
solution u(t) decays in L2-norm as time t increases.

Lemma 3. For every a ∈ Lσ
2,0(Ω) and t ≥ 0,

‖u(t)‖2 = ‖e−tAa‖2 ≤ ‖a‖2 = ‖u(0)‖2 (17)

(Recall that ‖ · ‖2 = ‖ · ‖Lσ
2,0(Ω); see Notation 3.)

90 S.-M. Sun et al.

Proof. Classically it is known that for any a ∈ Lσ
2,0(Ω), u(t) = e−tAa is in the

domain of A for t > 0. Thus if a = u(0) itself is in the domain of A, then so
is u(t) for t ≥ 0. Since A is positively self-adjoint, it follows that A

∗ = A and
〈Au(t),u(t)〉 :=

∫

Ω
Au(t)(x) · u(t)(x) dx > 0 for every a in the domain of A

with a �≡ 0 and t ≥ 0. Now if we rewrite the Eq. (3) in the form of

〈ut,u〉 + 〈Au,u〉 = 0

or equivalently 1
2

d
dt 〈u,u〉 + 〈Au,u〉 = 0, then d

dt 〈u,u〉 ≤ 0 and consequently
〈u,u〉(t) ≤ 〈u,u〉(0); thus (17) holds true for a in the domain of A. Since
the domain of A is dense in Lσ

2,0(Ω), it follows that (17) holds true for all
a ∈ Lσ

2,0(Ω). �
Proposition 3. For the linear homogenous equation (3), the solution operator
S : Lσ

2,0(Ω) → C
(

[0;∞), Lσ
2,0(Ω)

)

, a
→ (t
→ e−Ata), is (δLσ
2,0

, [ρ → δLσ
2,0

])-
computable.

By the First Main Theorem of Pour-El and Richards [12, §II.3], the
unbounded operator A does not preserve computability. In particular, the naive
exponential series

∑

n(−At)na/n! does not establish Proposition 3.

Convention. For readability we will not notationally distinguish the spaces
of vectors u,a and scalar functions u, a in the proof below and the proof of
Lemma 6.

Proof. We show how to compute a δLσ
2,0

-name of e−tAa on inputs t ≥ 0 and
a ∈ Lσ

2,0(Ω). Recall that a δLσ
2,0

-name of e−tAa is a sequence {qK}, qK ∈ P,
satisfying ‖e−tAa−qK‖2 ≤ 2−K for all K ∈ N. Again, for readability, we assume
that Ω = (0, 1)2.

We first consider the case where a ∈ P and t > 0. The reason for us to start
with functions in P is that these functions have stronger convergence property
in the sense that, for any a ∈ P, if a = (a1, a2) is expressed in terms of the
orthogonal basis {sin(nπx) sin(mπy)}n,m≥1 for L2(Ω): for i = 1, 2,

ai =
∑

n,m≥1

ai
n,m sin(nπx) sin(mπy) (18)

where ai
n,m =

∫ 1

0

∫ 1

0
ai sin(nπx) sin(mπy) dx dy, then the following series is con-

vergent
∑

n,m≥1

(1 + n2 + m2)|ai
n,m|2 < ∞ (19)

The inequality (19) holds true because functions in P are C∞. In fact, the series
is not only convergent but its sum is also computable (from a) (see, for example,
[28]).

Now let K ∈ N be any given precision. Since −A generates an analytic
semigroup, it follows from [10, Section 2.5] that for t > 0,

e−tAa =
1

2πi

∫

Γ

eλt(λI + A)−1a dλ (20)

Computability to Navier-Stokes Equations 91

where Γ is the path composed from two rays reiβ and re−iβ with 0 < r < ∞ and
β = 3π

5 . Thus we have an explicit expression for e−tAa, which involves a limit
process – an infinite integral – indicating that a search algorithm is applicable
for finding a desirable K-approximation provided that a finite approximation of
e−tAa can be computed by some truncating algorithm.

In the following, we construct such a truncating algorithm. We begin by
writing the infinite integral in (20) as a sum of three integrals: two are finite
and one infinite; the infinite one can be made arbitrarily small. Now for the
details. Let l be a positive integer to be determined; let Γ1 be the path reiβ with
0 < r ≤ l; Γ2 the path re−iβ with 0 < r ≤ l; and Γ3 = Γ \ (Γ1 ∪ Γ2). Since
a ∈ P, it follows that −Aa = P � a = �a, which further implies that

(λI + A)−1a =
(
∑

n,m≥1

a1
n,m sin(nπx) sin(mπy)

λ+(nπ)2+(mπ)2 ,
∑

n,m≥1

a2
n,m sin(nπx) sin(mπy)

λ+(nπ)2+(mπ)2

)

(21)

Note that for any λ ∈ Γ , |λ + (nπ)2 + (mπ)2| �= 0. From (20) and (21) we can
write e−tAa as a sum of three terms:

e−tAa =
3∑

j=1

1
2πi

∫

Γj

ãeλtdλ

=
3∑

j=1

1
2πi

∑

n,m≥1

[
∫

Γj

eλt

λ + (nπ)2 + (mπ)2
dλ

]

an,m sin(nπx) sin(mπy)

=: β1 + β2 + β3

where ã = (λI+A)−1a. The functions βj , j = 1, 2, 3, are in Lσ
2,0(Ω) as verified as

follows: It follows from a = (λI+A)ã = (λI−P�)ã and P�ã = P(�ã) ∈ Lσ
2,0(Ω)

that �(P � ã) = 0 and

0 = �a = λ(�ã) − �(P � ã) = λ(�ã) (22)

Since λ ∈ Γ , it follows that λ �= 0; thus �ã = 0. This shows that ã ∈ Lσ
2,0(Ω).

Then it follows from (22) that

�βj =
1

2πi

∫

Γj

(�ã)eλtdλ = 0

Hence βj ∈ Lσ
2,0(Ω) for 1 ≤ j ≤ 3.

Next we show that β1 and β2 can be effectively approximated by finite sums
while β3 tend to zero effectively as l → ∞. We start with β3. Since t > 0 and
cos β = cos 3π

5 < 0, it follows that
∣
∣
∣
∣

∫

Γ3

eλt

λ + (nπ)2 + (mπ)2
dλ

∣
∣
∣
∣
≤ 2
∫ ∞

l

etr cos β

r
dr → 0

92 S.-M. Sun et al.

effectively as l → ∞. Thus there is some lK ∈ N, computable from a and t, such
that the following estimate is valid for i = 1, 2 when we take l to be lK :

‖βi
3‖2

=

∥
∥
∥
∥
∥
∥

1
2πi

∑

n,m≥1

[∫

Γ3

eλt

λ + (nπ)2 + (mπ)2
dλ

]

ai
n,m sin(nπx) sin(mπy)

∥
∥
∥
∥
∥
∥
2

≤ 1
π

∫ ∞

lK

etr cos β

r
dr

⎛

⎝
∑

n,m≥1

|ai
n,m|2
⎞

⎠

1/2

=
1
π

∫ ∞

lK

etr cos β

r
dr · ‖a‖2 ≤ 2−(K+7)

where β3 = (β1
3 , β

2
3). Now let us set l = lK and estimate β1. Since β = 3π

5 < 3π
4 ,

it follows that cosβ < 0 and | cos β| < sin β. Consequently, for any λ = reiβ on
Γ1, if r ≥ 1

sin β , then |reiβ + (nπ)2 + (mπ)2| ≥ r sinβ ≥ 1. On the other hand, if
0 < r < 1

sin β , then r cos β+(nπ)2+(mπ)2 ≥ π2(n2+m2)−r sinβ ≥ 2π2−1 > 1,
which implies that |reiβ + (nπ)2 + (mπ)2| ≥ |r cos β + (nπ)2 + (mπ)2| > 1. Thus
|λ + (nπ)2 + (mπ)2| ≥ 1 for every λ ∈ Γ1. And so

∣
∣
∣
∣

∫

Γ1

eλt

λ + (nπ)2 + (mπ)2
dλ

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∫ l

0

etreiβ

reiβ + (nπ)2 + (mπ)2
d(reiβ)

∣
∣
∣
∣
∣

≤

≤
∫ l

0

|etreiβ |
|reiβ + (nπ)2 + (mπ)2|dr ≤

∫ l

0

etr cosβdr ≤
∫ l

0

etldr = letl

This estimate together with (19) implies that there exists a positive integer
k = k(t, a,K), computable from t > 0, a and K, such that

1
1 + 2k2

(
lelt

2π

)2
⎛

⎝
∑

n,m≥1

(1 + n2 + m2)(|a1
n,m|2 + |a2

n,m|2)
⎞

⎠ < 2−2(K+7)

Write β1(k) = (β1
1(k), β2

1(k)) with

βi
1(k) =

∑

1≤n,m≤k

(
1

2πi

∫

Γ1

eλt

λ + (nπ)2 + (mπ)2
dλ

)

ai
n,m sin(nπx) sin(mπy),

i = 1, 2. Then

Computability to Navier-Stokes Equations 93

‖β1 − β1(k)‖22
≤
∑

n,m>k

∣
∣
∣
∣

1
2πi

∫

Γ1

eλt

λ + (nπ)2 + (mπ)2
dλ

∣
∣
∣
∣

2

(|a1
n,m|2 + |a2

n,m|2)

≤
∑

n,m>k

1
1 + n2 + m2

· (1 + n2 + m2)
(

lelt

2π

)2

(|a1
n,m|2 + |a2

n,m|2)

≤ 1
1 + k2 + k2

(
lelt

2π

)2
∑

n,m≥1

(1 + n2 + m2)(|a1
n,m|2 + |a2

n,m|2)

< 2−2(K+7)

Similarly, if we write β2(k) = (β1
2(k), β2

2(k)) with

βi
2(k) =

∑

n,m≤k

(
1

2πi

∫

Γ2

eλt

λ + (nπ)2 + (mπ)2
dλ

)

ai
n,m sin(nπx) sin(mπy)

then ‖β2 − β2(k)‖2 ≤ 2−(K+7). The construction of the truncating algorithm is
now complete; the algorithm outputs β1(k) + β2(k) (uniformly) on the inputs
a ∈ P, t > 0, and precision K; the output has the property that it is a finite
sum involving a finite integral and ‖β1(k) + β2(k) − e−tAa‖2 ≤ 2−(K+4).

Now we are able to search for a desirable approximation in P. Let us list
P = {φj : j ∈ N} and compute ‖φj − (β1(k) + β2(k))‖2. Halt the computation
at j = j(K) when

‖φj − (β1(k) + β2(k))‖2 < 2−(K+4)

The computation will halt since β1, β2 ∈ Lσ
2,0(Ω), ‖β1 − β1(k)‖2 ≤ 2−(K+7),

‖β2 − β2(k)‖2 ≤ 2−(K+7), and P is dense in Lσ
2,0(Ω) (in L2-norm). Set qK =

φj(K). Then

‖qK − e−tAa‖2
= ‖qK − (β1 + β2 + β3)‖2
≤ ‖qK − (β1(k) + β2(k))‖2 + ‖(β1(k) + β2(k)) − (β1 + β2)‖2 + ‖β3‖2
< 2−K

Next we consider the case where a ∈ Lσ
2,0(Ω) and t > 0. In this case, the

input a is presented by (any) one of its δLσ
2,0

-names, say {ak}, where ak ∈ P.
It is then clear from the estimate (17) and the discussion above that there is
an algorithm that computes a K-approximation pK ∈ P on inputs t > 0, a and
precision K such that ‖pK − e−tAa‖2 ≤ 2−K .

Finally we consider the case where t ≥ 0 and a ∈ Lσ
2,0(Ω). Since e−tAa = a

for t = 0 and we already derived an algorithm for computing e−tAa for t > 0,

94 S.-M. Sun et al.

it suffices to show that e−tAa → a in L2-norm effectively as t → 0. Let {ak}
be a δLσ

2,0
-name of a. It follows from Theorem 6.13 of Sect. 2.6 [Paz83] that

‖e−tAak − ak‖ ≤ Ct1/2‖A1/2ak‖. Thus

‖a − e−tAa‖ ≤ ‖a − ak‖ + ‖ak − e−tAak‖ + ‖e−tAak − e−tAa‖

the right-hand side goes to 0 effectively as t → 0. �
We note that the computation of the approximations qK of e−tAa does not

require encoding A. Let W : Lσ
2,0(Ω) × [0,∞) → Lσ

2,0(Ω), (a, t)
→ e−tAa. Then
it follows from the previous Proposition and Fact 2 that W is computable.

5 Extension to the Nonlinear Problem

We now proceed to the nonlinear problem (2) by solving its integral version (4)
via the iteration scheme (5) but first restrict to the homogeneous case g ≡ 0:

u0(t) = e−tAa, um+1(t) = u0(t) −
∫ t

0

e−(t−s)A
Bum(s) ds (23)

Classically, it is known that for every initial condition a ∈ Lσ
2,0(Ω) the sequence

um = um(t) converges near t = 0 to a unique limit u solving (4) and thus
(2). Since there is no explicit formula for the solution u, the truncation/search
type of algorithms such as those used in the proofs of Propositions 2 and 3 is no
longer applicable for the nonlinear case. Instead, we use a method based on the
fixed-point argument to establish the computability of u. We shall show that the
limit of the above sequence um = um(t) has an effective approximation. The
proof consists of two parts: first we study the rate of convergence and show that
the sequence converges at a computable rate as m → ∞ for t ∈ [0;T] with some
T = Ta > 0, where Ta is computable from a; then we show that the sequence –
as one entity – can be effectively approximated starting with the given a. The
precise statements of the two tasks are given in the following two propositions.

Proposition 4. There is a computable map T : Lσ
2,0(Ω) → (0,∞), a
→ Ta ,

such that the sequence {um} converges effectively in m and uniformly for t ∈
[0;Ta].

Recall that a sequence {xm} in a metric space (X, d) is effectively convergent
if d(xm, xm+1) ≤ 2−m. In view of type conversion (Subsect. 1.1), the following
proposition asserts (ii):

Proposition 5. The map S : N×Lσ
2,0(Ω)×[0,∞) → Lσ

2,0(Ω), (m,a, t) → um(t)
according to Eq. (23), is

(

ν × δLσ
2,0

× ρ, δLσ
2,0

)

-computable.

The main difficulties in proving the two propositions are rooted in the nonlin-
earity of B: the nonlinear operator B requires greater care in estimating the rate

Computability to Navier-Stokes Equations 95

of convergence and demands richer codings for computation. Since information
on Bum is required in order to compute um+1, but Bum = P (um ·∇)um involves
both differentiation and multiplication, it follows that a δLσ

2,0
-name of um may

not contain enough information for computing Bum. Moreover, since estimates
of type ‖Aαum(t)‖2, 0 ≤ α ≤ 1, play a key role in proving Propositions 4 and 5,
we need to computationally derive a richer code for um from a given δLσ

2,0
-name

of um in order to capture the fact that um is in the domain of Aα for t > 0.

5.1 Representing and Operating on Space Hs
2,0(Ω)

We begin by recalling several definitions and facts. Let θn,m(x, y) := ei(nx+my)π,
n,m ≥ 0. Then, the sequence {θn,m(x, y)}n,m≥0 is a computable orthogonal
basis of L2(Ω). For any s ≥ 0, Hs

2(Ω) is the set of all (generalized) functions
w(x, y) on Ω satisfying

∑

n,m≥0(1 + n2 + m2)s|wn,m|2 < ∞, where wn,m =
∫ 1

−1

∫ 1

−1
w(x, y)θn,m(x, y) dx dy. Hs

2(Ω) is a Banach space with a norm ‖w‖Hs
2

=
(
∑

n,m≥0(1 + n2 + m2)s|wn,m|2)1/2.

Let D(Aα) be the domain of Aα. Since

D(A) = Lσ
2,0(Ω)

⋂

{u ∈ (H2
2 (Ω))2 : u = 0 on ∂Ω},

D(A1/2) = Lσ
2,0(Ω)

⋂

{u ∈ (H1
2 (Ω))2 : u = 0 on ∂Ω},

and D(Aα), 0 ≤ α ≤ 1, are the complex interpolation spaces of Lσ
2,0(Ω) and

D(A), we need to represent the subspace of Hs
2(Ω) in which the functions van-

ish on ∂Ω. However, it is usually difficult to design a coding system for such
subspaces. Fortunately, for 0 ≤ s < 3/2, it is known classically that

Hs
2,0(Ω) = {w ∈ Hs

2(Ω) : w = 0 on ∂Ω} (24)

where Hs
2,0(Ω) is the closure in Hs

2 -norm of the set of all C∞-smooth functions
defined on compact subsets of Ω. For Hs

2,0(Ω), there is a canonical coding system

H = {γn ∗ q : n ∈ N, q ∈ Q[R2]}

(see (11) and (12) for the definitions of γn and γn ∗ q). Then every w in Hs
2,0(Ω)

can be encoded by a sequence {pk} ⊂ H such that ‖pk − w‖Hs
2

≤ 2−k; the
sequence {pk}, which are mollified polynomials with rational coefficients, is called
a δHs

2,0
-name of w. If w = (w1, w2) ∈ Hs

2,0(Ω) × Hs
2,0(Ω), a δHs

2,0
-name of w is a

sequences {(pk, qk)}, pk, qk ∈ H, such that (‖w1 − pk‖2Hs
2,0

+ ‖w2 − qk‖2Hs
2,0

)1/2 ≤
2−k.

Notation 4. We use ‖w‖Hs
2

to denote the Hs
2 -norm of w if w is in Hs

2(Ω) or
Hs

2 × Hs
2 -norm of w if w is in Hs

2(Ω) × Hs
2(Ω). Also for readability we use

[ρ → δHs
2,0

] to denote the canonical representation of either C
(

[0;T];Hs
2,0(Ω)

)

or C
(

[0;T];Hs
2,0(Ω) × Hs

2,0(Ω)
)

.

96 S.-M. Sun et al.

Recall that C
(

[0;T];Hs
2,0(Ω)

)

is the set of all continuous functions from the
interval [0;T] to Hs

2,0(Ω). A function u ∈ C
(

[0;T];Hs
2,0(Ω)

)

is computable if
there is a machine that computes a δHs

2,0
-name of u(t) when given a ρ-name of

t as input; and a map F : X → C
(

[0;T];Hs
2,0(Ω)

)

from a represented space
(X, δX) to C

(

[0;T];Hs
2,0(Ω)

)

is computable if there is a machine that computes
a δHs

2,0
-name of F (x)(t) when given a δX -name of x and a ρ-name of t. Let X be

either L2(Ω), Lσ
2,0(Ω), Hs

2,0(Ω), or C
(

[0;T];Hs
2,0(Ω)

)

. We remark again that a
δX -name of f ∈ X is simply an effective approximation of f because each space
X is equipped with a norm.

Lemma 4. For s ≥ 1, differentiation ∂x, ∂y : Hs
2,0(Ω) → L2(Ω) is (δHs

2,0
, δL2)-

computable.

Proof. Let {pk} be a δHs
2,0

-name of w ∈ Hs
2,0(Ω). Since ∂x(γ ∗ q) = γ ∗ ∂xq, the

map pk
→ ∂xpk is computable; hence a polynomial p̃ in Q[R2] can be computed
from pk such that max−1≤x,y≤1 |∂xpk − p̃k| < 2−k. Next let us express w and pk

in the orthogonal basis θn,m: w(x, y) =
∑

n,m≥0 wn,meinπxeimπy and pk(x, y) =
∑

n,m≥0 pk,n,meinπxeimπy, where

wn,m =
∫ 1

0

∫ 1

0

w(x, y)einπxeimπy dx dy ,

pk,n,m =
∫ 1

0

∫ 1

0

pk(x, y)einπxeimπy dx dy .

Since s ≥ 1 and {pk} is a δHs
2,0

-name of w, it follows that

‖∂xpk − ∂xw‖22
=
∥
∥
∥

∑

n,m
inπ(pk,n,m − wn,m)einπxeimπy

∥
∥
∥

2

2
= π2

∑

n,m
n2|pk,n,m − wn,m|2

= π2
∑

n,m

n2

(1 + n2 + m2)s
(1 + n2 + m2)s|pk,n,m − wn,m|2

≤ π2
∑

n,m
(1 + n2 + m2)s|pk,n,m − wn,m|2 = π2‖pk − w‖2Hs

2
≤ π2 · 2−2k

which further implies that

‖p̃k − ∂xw‖2 ≤ ‖p̃k − ∂xpk‖2 + ‖∂xpk − ∂xw‖2 ≤ 2−k + π2−k

Thus, by definition, {p̃k} is a δL2-name of ∂xw.

It is known classically that every polygonal domain in R
2 is Lipschitz (see,

for example, [9]) and Hs
2(U) is continuously embedded in C(U) if s > 1 and U is

a bounded Lipschitz domain, where U is the closure of U in R
2 and C(U) is the

set of all continuous functions on U . Since Ω is a bounded polygonal domain,
it follows that for any s > 1, there is a constant Cs > 0 such that ‖w‖C(Ω) ≤
Cs‖w‖Hs

2 (Ω), where ‖w‖C(Ω) = ‖w‖∞ = max{|w(x, y)| : (x, y) ∈ U}.

Computability to Navier-Stokes Equations 97

Lemma 5. For s > 1, multiplication Mul : Hs
2(Ω)×L2(Ω) → L2(Ω), (v, w)
→

vw, is (δHs
2,0

× δL2 , δL2)-computable.

Proof. Assume that {pk} is a δHs
2,0

-name of v and {qk} is a δL2-name of w. For
each n ∈ N, pick k(n) ∈ N such that Cs‖v‖Hs

2
‖w − qk(n)‖2 ≤ 2−(n+1). Since

‖v‖Hs
2

is computable from {pk}, the function n
→ k(n) is computable from {pk}
and {qk}. Next pick m(n) ∈ N such that ‖qk(n)‖C(Ω)‖v − pm(n)‖Hs

2
≤ 2−(n+1).

It is clear that m(n) is computable from k(n), {qk}, and {pk}. The sequence
{pm(n)qk(n)}n is then a δL2 -name of vw, for it is a sequence of polynomi-
als of rational coefficients and ‖vw − pm(n)qk(n)‖2 ≤ ‖v‖C(Ω)‖w − qk(n)‖2 +
‖qk(n)‖C(Ω)‖v − pm(n)‖Hs

2
≤ 2−n.

5.2 Some Classical Properties of Fractional Powers of A

It is known that fractional powers of the Stokes operator A are well defined; cf.
[10, Section 2.6]. In the following, we summarize some classical properties of
the Stokes operator and its fractional powers; these properties will be used in
later proofs.

Fact 5. Let A be the Stokes operator.

(1) For every 0 ≤ α ≤ 1, let D(Aα) be the domain of Aα; this is a Banach space
with the norm ‖u‖D(Aα) := ‖Aαu‖Lσ

2,0(Ω) = ‖Aαu‖2. In particular, D(Aα)
is continuously embedded in H2α

2 , that is, for every u ∈ D(Aα),

‖u‖H2α
2

≤ ‖u‖D(Aα) = C‖Aαu‖2 (25)

where C is a constant independent of α. Moreover, we have D(A1/2) =
Lσ
2,0(Ω)

⋂{u ∈ (H1(Ω))2;u = 0 on ∂Ω}.
(2) For every nonnegative α the estimate

‖Aαe−tAu‖2 ≤ Cαt−α‖u‖2, t > 0 (26)

is valid for all u ∈ Lσ
2,0(Ω), where Cα is a constant depending only on α. In

particular, C0 = 1. Moreover, the estimate implies implicitly that for every
u ∈ Lσ

2,0(Ω), e−tAu is in the domain of A, and thus e−tAu vanishes on the
boundary of Ω for t > 0.

(3) If α ≥ β > 0, then D(Aα) ⊆ D(Aβ).
(4) For 0 < α < 1, if u ∈ D(A), then

A
αu =

sin πα

π

∫ ∞

0

tα−1
A(tI + A)−1u dt

(5) ‖A−1/4
P(u,∇)v‖2 ≤ M‖A1/4u‖2‖A1/2v‖2 is valid for all u,v in the domain

of A3/5, where M is a constant independent of u and v.

98 S.-M. Sun et al.

Proof. See Lemmas 2.1, 2.2 and 2.3 in [3] for (1) and (2) except for C0 = 1;
C0 = 1 is proved in Lemma 3. See Theorems 6.8 and 6.9 in Sect. 2.6 of [10] for
(3) and (4); Lemma 3.2 in [3] for (5).

We record, without going into the details, that the constants C, M , and Cα

(0 ≤ α ≤ 1) appeared in Fact 5 are in fact computable (some general discus-
sions on the computability of Sobolev embedding constants and interpolation
constants together with other constants in the PDE theory are forthcoming).

5.3 Proof of Proposition 4

In order to show that the iteration sequence is effectively convergent, we need
to establish several estimates on various functions such as ‖Aβum(t)‖2 and
‖Aβ(um+1(t) − um(t))‖2 for β being some positive numbers. Subsequently, as
a prerequisite, um(t) must be in the domain of Aβ ; thus the functions um(t) are
required to have higher smoothness than the given initial function a according
to Fact 5-(1). This is indeed the case: For functions um(t) obtained by the itera-
tion (23), it is known classically that if um(0) ∈ L2(Ω) then um(t) ∈ H2α

2 (Ω) for
t > 0, where 0 ≤ α ≤ 1. In other words, um(t) undergoes a jump in smoothness
from t = 0 to t > 0 (due to the integration). In the following lemma, we present
an algorithmic version of this increase in smoothness.

Lemma 6. Let α = 3/5. Then for the iteration (23)

u0(t) = e−tAa, um+1(t) = u0(t) −
∫ t

0

e−(t−s)A
Bum(s) ds

the mapping SH : N×Lσ
2,0(Ω)×(0,∞) → H2α

2,0(Ω)×H2α
2,0(Ω), (m,a, t)
→ um(t),

is well-defined and (ν × δLσ
2,0

× ρ, δH2α
2,0

)-computable.

We emphasize that the lemma holds true for t > 0 only. Also the choice of α =
3/5 is somewhat arbitrary; in fact, α can be selected to be any rational number
strictly between 1

2 and 3
4 . The requirement α < 3

4 guarantees that D(Aα) ⊂
H2α

2,0(Ω) × H2α
2,0(Ω) because 2α < 3/2 (see (24)). The other condition α > 1

2
ensures that Lemma 5 can be applied for 2α > 1.

Proof. We induct on m. Note that for any t > 0 and any a ∈ Lσ
2,0(Ω), the

estimates (25) and (26) imply that

‖e−tAa‖H2α
2

≤ C‖Aαe−tAa‖2 ≤ CCαt−α‖a‖2
Combining this inequality with the following strengthened version of (19): for
any a ∈ P,

∑

n,m≥1

(1 + n2 + m2)2|an,m|2 < ∞

Computability to Navier-Stokes Equations 99

(the inequality is valid since a is C∞), a similar argument used to prove Propo-
sition 3 works for m = 0. Moreover, by type conversion (Fact 2), a ∈ Lσ

2,0(Ω)
→
u0 ∈ C((0,∞),H6/5

2,0 (Ω) × H
6/5
2,0 (Ω)) is (δLσ

2,0
, [ρ → δ

H
6/5
2,0

])-computable.

Assume that (j, a)
→ uj is (ν, δLσ
2,0

, [ρ → δ
H

6/5
2,0

])-computable for 0 ≤ j ≤ m,

where a ∈ Lσ
2,0(Ω), and uj ∈ C((0,∞), (H6/5

2,0 (Ω))2). We show how to compute
a δ

H
6/5
2,0

-name for um+1(t) = e−tAa − ∫ t

0
e−(t−s)A

Bum(s)ds on inputs m + 1,
a and t > 0. Let us first look into the nonlinear term Bum. It is clear that
Bum(s) lies in Lσ

2,0(Ω) for s > 0. Moreover, it follows from Lemmas 4 and 5, and
Proposition 2 that the map (um, s)
→ Bum(s) is ([ρ→δH2α

2,0
], ρ, δLσ

2,0
)-computable

for all s ∈ (0, t]. Now since Bum(s) is in Lσ
2,0(Ω) for s > 0, it follows from the case

where m = 0 that (um, s)
→ e−(t−s)A
Bum(s) is ([ρ→δH2α

2,0
], ρ, δ

H
6/5
2,0

)-computable
for 0 < s < t.

Next let us consider the integral
∫ t

0
e−(t−s)A

Bum(s) ds; we wish to compute
a δ

H
6/5
2,0

-name of the integral from a and t > 0. We make use of the following

fact: For θ ≥ 1, the integration operator from C([a, b];Hθ
2,0(Ω) × Hθ

2,0(Ω)) to

Hθ
2,0(Ω)×Hθ

2,0(Ω), F
→ ∫ b

a
F (t)(x)dt, is computable from a, b, and F . This fact

can be proved by a similar argument as the one used in the proof of Lemma 3.7
[24]. However, since the function e−(t−s)A

Bum(s) is not necessarily in (H6/5
2 (Ω))2

when s = 0 or s = t, the stated fact cannot be directly applied to the given
integral. To overcome the problem of possible singularities at the two endpoints,
we use a sequence of closed subintervals [tn, t − tn] to approximate the open
interval (0, t), where tn = t/2n, n ≥ 1. Then it follows from the stated fact
and the induction hypotheses that a δ

H
6/5
2,0

-name, say {pn,K}, of un
m+1(t) =

e−tAa−∫ t−tn

tn
e−(t−s)A

Bum(s)ds can be computed from inputs n, um, and t > 0,
which satisfies the condition that ‖un

m+1(t) − pn,K‖
H

6/5
2

≤ 2−K . Thus if we can

show that the integrals
∫ tn

0
e−(t−s)A

Bum(s)ds and
∫ t

t−tn
e−(t−s)A

Bum(s)ds tend

to zero effectively in H
6/5
2 × H

6/5
2 -norm as n → ∞, then we can effectively

construct a δ
H

6/5
2,0

-name of um+1(t) from {pn,K}n,K .
It remains to show that both sequences of integrals tend to zero effectively in

H
6/5
2 ×H

6/5
2 -norm as n → ∞. Since a similar argument works for both sequences,

it suffices to show that the sequence Intn :=
∫ tn

0
e−(t−s)A

Bum(s)ds tends to zero
effectively as n → ∞. We are to make use of Fact 5-(1), (2), (5) for showing the
effective convergence. The following two claims comprise the proof.

Claim I. Let β = 1
2 or 1

4 . Then the map (a, t,m, β)
→ Mβ,m is computable,
where Mβ,m is a positive number satisfying the condition

‖Aβum(s)‖2 ≤ Mβ,ms−β for all 0 < s < t (27)

(note that Mβ,m is independent of s).

Proof. Again we induct on m. For m = 0, let Mβ,0 = Cβ‖a‖2, where Cβ is
the constant in estimate (26) with α replaced by β and u by a. Then Mβ,0 is

100 S.-M. Sun et al.

computable from a and β, and ‖Aβu0(s)‖2 ≤ Cβs−β‖a‖2 = Mβ,0s
−β for any

s > 0. Assume that Mβ,k, 0 ≤ k ≤ m, has been computed from k, β, a, and
t > 0. We show how to compute Mβ,m+1. Since um+1(s) has a singularity at
s = 0, it may not be in H2β

2 (Ω) × H2β
2 (Ω) at s = 0 (recall that D(A1/2) =

Lσ
2,0(Ω)

⋂{u ∈ H1
2 (Ω) × H1

2 (Ω) : u = 0 on ∂Ω}). Let us first compute a bound
(in L2-norm) for A

β
∫ s

ε
e−(t−r)A

Bum(r)dr, where 0 < ε < s. It follows from the
induction hypothesis, Fact 5-(1), (2), (5), and Theorems 6.8 and 6.13 in [10] that

‖Aβ

∫ s

ε

e−(s−r)A
Bum(r)dr‖2

= ‖
∫ s

ε

A
β+1/4e−(s−r)A

A
−1/4

Bum(r)dr‖2

≤ Cβ+1/4

∫ s

ε

(s − r)−(β+1/4)‖A−1/4
Bum(r)‖2dr

≤ Cβ+1/4M

∫ s

ε

(s − r)−(β+1/4)‖A1/4um(r)‖2‖A1/2um(r)‖2dr

≤ Cβ+1/4MM1/4,mM1/2,m

∫ t

ε

(s − r)−(β+1/4)r−3/4dr (28)

Subsequently, we obtain that

‖Aβum+1(s)‖2
= ‖Aβu0(s) −

∫ s

0

A
βe−(s−r)A

Bum(r)dr‖2

≤ Mβ,0s
−β + ‖ lim

ε→0

∫ s

ε

A
βe−(s−r)A

Bum(r)dr‖2

≤ Mβ,0s
−β + Cβ+ 1

4
MM 1

4 ,mM 1
2 ,m

∫ s

0

(s − r)−(β+ 1
4)r−3/4dr

= Mβ,0s
−β + Cβ+ 1

4
MM 1

4 ,mM 1
2 ,mB(

3
4

− β,
1
4
)s−β (29)

where B(34 − β, 1/4) is the integral
∫ 1

0
(1 − θ)(

3
4−β)−1θ

1
4−1dθ, which is the value

of the Beta function B(x, y) =
∫ 1

0
(1 − θ)1−xθ1−ydθ at x = 3

4 − β and y = 1
4 . It

is clear that B(34 − β, 1/4) is computable. Thus if we set

Mβ,m+1 = Mβ,0 + Cβ+ 1
4
MM 1

4 ,mM 1
2 ,mB

(
3
4

− β,
1
4

)

(30)

then Mβ,m+1 is computable and satisfies the condition that ‖Aβum+1(s)‖2 ≤
Mβ,m+1s

−β for all 0 < s < t. The proof of Claim I is complete.

Claim II.
∥
∥
∥

∫ tn

0
e−(t−s)A

Bum(s)ds
∥
∥
∥

H
6/5
2

→ 0 effectively as n → ∞.

Proof. Once again, to avoid singularity of um(s) at s = 0, we begin with the
following estimate: Let 0 < ε < tn. Then it follows from Fact 5-(1), (2), (5), (27),

Computability to Navier-Stokes Equations 101

(30), and a similar calculation as performed in Claim I that

‖
∫ tn

ε

e−(t−s)A
Bum(s)ds‖

H
6/5
2

≤ C‖A3/5

∫ tn

ε

e−(t−s)A
Bum(s)ds‖2

≤ CC17/20MM 1
4 ,mM 1

2 ,m

∫ tn

ε

(t − s)−17/20s−3/4ds

≤ CC17/20MM 1
4 ,mM 1

2 ,m(t − tn)−17/20 · 4(t1/4
n − ε1/4)

which then implies that

‖
∫ tn

0

e−(t−s)A
Bum(s)ds‖

H
6/5
2

= ‖ lim
ε→0

∫ tn

ε

e−(t−s)A
Bum(s)ds‖

H
6/5
2

≤ lim
ε→0

CC17/20MM 1
4 ,mM 1

2 ,m(t − tn)−17/20 · 4(t1/4
n − ε1/4)

= CC17/20MM 1
4 ,mM 1

2 ,m(t − tn)−17/20 · 4t1/4
n

It is readily seen that
∫ tn

0
e−(t−s)A

Bum(s)ds‖
H

6/5
2

→ 0 effectively as n → ∞
(recall that tn = t/2n). The proof for the claim II, and thus for the lemma is
now complete.

Remark 1. In our effort to compute an upper bound for ‖Aβum+1(s)‖2, we
start with the integral

∫ s

ε
e−(s−r)A

Bum(r)dr because the integral might have
a singularity at 0; then we take the limit as ε → 0 to get the desired esti-
mate (see computations of (28) and (29)). The limit exists because the bound,
Cβ+ 1

4
MM 1

4 ,mM 1
2 ,mB

(
3
4 − β, 1

4

)

, is uniform in r for 0 < r ≤ s. In the rest of the
paper, we will encounter several similar computations. In those later situations,
we will derive the estimates starting with

∫ t

0
instead of

∫ t

ε
. There will be no loss

in rigor because the integral is uniformly bounded with respect to the integrating
variable, say t, for t > 0.

Corollary 1. For any a ∈ Lσ
2,0(Ω) and t > 0, let {um(t)} be the sequence

generated by the iteration scheme (23) based on a. Then um(t) ∈ Dom(A3/5) ⊂
Dom(A1/2) ⊂ Dom(A1/4).

Proof. The corollary follows from Lemma6 and Fact 5-(3).

Corollary 2. The map from P to L2(Ω), u
→ ‖Aαu‖2, is (δLσ
2,0

, ρ)-computable,
where α = 1/8, 1/4, or 1/2.

Proof. We prove the case when α = 1/4; the other two cases can be proved in
exactly the same way. Since P is contained in the domain of A, it follows from

102 S.-M. Sun et al.

Theorem 6.9, Sect. 2.6 [10] that for every u ∈ P, A1/4u = sinπ/4
π

∫∞
0

t−3/4
A(tI+

A)−1udt. By definition of P, if u ∈ P, then u is C∞ with compact support
in Ω, and Au = −P � u = − � u. Express each component of u = (u1, u2)
in terms of the orthogonal basis {einπxeimπy}n,m of L2(Ω) in the form of ui =
∑

n,m≥0 ui
n,meiπnxeiπmy, where ui

n,m =
∫ 1

−1

∫ 1

−1
u1(x, y)eiπnxeiπmydxdy. Then a

straightforward calculation shows that

sinπ/4
π

∫ ∞

0

t−3/4
A(tI + A)−1uidt

=
sinπ/4

π

∑

n,m≥0

(∫ ∞

0

t−3/4 (πn)2 + (πm)2

t + (πn)2 + (πm)2
dt

)

ui
n,meiπnxeiπmy

Since the integral is convergent and computable, it follows that A
1/4u is com-

putable from u and, consequently, ‖Au‖2 is computable.

Proof (Proof of Proposition 4). For each a ∈ Lσ
2,0, let {ak}, ak = (a1

k, a2
k) ∈ P,

be a δLσ
2,0

-name of a; i.e. ‖a − ak‖2 ≤ 2−k. Let C̃ := c1MB1, where M is the
constant in Fact 5(4), c1 = max{C1/4, C1/2, C3/4, 1}, and

B1 = max{B(1/2, 1/4), B(1/4, 1/4), 1}
with B(a, b) =

∫ 1

0
(1−t)a−1tb−1dt, a, b > 0, being the beta function. Then M and

c1 are computable by assumption while B1 is computable for the beta functions
with rational parameters are computable. Note that c1B1 ≥ 1. Let

vm(t) = um+1(t) − um(t) =
∫ t

0

e−(t−s)A(Bum(s) − Bum−1(s))ds, m ≥ 1 (31)

Our goal is to compute a constant ε, 0 < ε < 1, such that near t = 0,

‖vm(t)‖2 ≤ Lεm−1 (32)

where L is a constant. Once this is accomplished, the proof is complete.
It follows from Corollary 1 that Fact 5-(5) holds true for all um(t) and vm(t)

with t > 0. It is also known classically that

‖A− 1
4 (Bum+1(t) − Bum(t))‖2

= ‖A− 1
4Bum+1(t) − A

− 1
4Bum(t)‖2

≤ M
(

‖A 1
4 vm(t)‖2‖A 1

2 um+1(t)‖2 + ‖A 1
4 um(t)‖2‖A 1

2 vm(t)‖2
)

(33)

(see, for example, [5]). The equality in the above estimate holds true because
A

−1/4 is a (bounded) linear operator. The estimate (33) indicates that, in order
to achieve (32), there is a need in establishing some bounds on ‖Aβum(t)‖2 and
‖Aβvm(t)‖2 which become ever smaller as m gets larger uniformly for values of
t near zero. The desired estimates are developed in a series of claims beginning
with the following one.

Computability to Navier-Stokes Equations 103

Claim 1. Let β = 1
4 or 1

2 ; let

K̃a
β,0(T) = max

0≤t≤T
tβ‖Aβe−tAa‖2

and

ka
0 (T) = max{K̃a

1
4 ,0(T), K̃a

1
2 ,0(T)}

Then there is a computable map from Lσ
2,0(Ω) to (0, 1), a
→ Ta , such that

ka
0 (Ta) <

1

8C̃

Proof. First we note that tβ‖Aβe−tAa‖2 = 0 for any a ∈ Lσ
2,0(Ω) if t = 0; cf.

Theorem 6.1 in [3]. Furthermore, it follows from (17) that the operator norm of
e−tA, ‖e−tA‖op, is bound above by 1 for any t > 0. Since e−tA is the identity
map on Lσ

2,0(Ω) when t = 0, we conclude that max0≤t≤T ‖e−tA‖op ≤ 1 for any
T > 0. Now for any a ∈ Lσ

2,0(Ω), it follows from Fact 5-(2) and Theorems 6.8
and 6.13 in Sect. 2.6 of [10] (Aα and e−tA are interchangeable) that

K̃a
β,0(T) = max

0≤t≤T
tβ‖Aβe−tAa‖2

= sup
0≤t≤T

tβ‖Aβe−tAa‖2

≤ sup
0<t≤T

tβ‖Aβe−tA(a − ak)‖2 + sup
0<t≤T

tβ‖Aβe−tAak‖2

≤ Cβ‖a − ak‖2 + T β max
0≤t≤T

‖e−tA‖op‖Aβak‖2
≤ c12−k + max{T 1/4, T 1/2}max{‖A1/4ak‖2, ‖A1/2ak‖2}

We note that although a is not necessarily in the domain of A but ak ∈ P and
P is contained in the domain of A; thus A

βak is well defined. Furthermore, it
follows from Corollary 2 that ‖Aβak‖2 is computable. Clearly one can compute
a positive integer k̂ such that

2−k̂ <
1

16c1C̃

then compute a positive number Ta such that

max{T 1/4
a , T 1/2

a }max{‖A1/4ak̃‖2, ‖A1/2ak̃‖2} <
1

16C̃

The computations are performed on the inputs a and the constants c1, M , and
B1. Consequently, ka

0 (Ta) < 1/(8C̃). The proof of Claim 1 is complete.
We recall that, for a given a ∈ Lσ

2,0(Ω), the iteration scheme (23) is based
on the “seed” function u0(t) = e−tAa. Claim 1 asserts that the seed function has
the property that max0≤t≤Ta

tβ‖Aβu0(t)‖2 is bounded by K̃a
β,0, uniformly in t.

We extend this property to the iteration sequence {um(t)} in the next claim.

104 S.-M. Sun et al.

Claim 2. Let β = 1
4 or 1

2 . Then there is a computable map N× Lσ
2,0 → (0,∞),

(m,a)
→ Ka
β,m, such that

max
0≤t≤Ta

tβ‖Aβum(t)‖2 ≤ Ka
β,m (34)

Proof. We induct on m. For m = 0, let Ka
β,0 = 1/(8C̃). Then (34) follows from

Claim 1. It is clear that Ka
β,0 is computable.

For m ≥ 1 and t > 0, Ka
β,m+1 is computed by the recursive formula:

Ka
β,m+1 = Ka

β,0 + Cβ+ 1
4
MB(1 − β − 1

4
,
1
4
)Ka

1
4 ,mKa

1
2 ,m (35)

The recursive formula is derived similarly as that of (29). Since the upper bound
is uniformly valid for all 0 < t ≤ Ta , it follows that it is also valid for t = 0. The
proof of Claim 2 is complete.

In the next claim, we show that the sequences {Ka
β,m}, β = 1/4 or 1/2, are

bounded above with an upper bound strictly less than 1/(2C̃).

Claim 3. Let ka
m = max{Ka

1
4 ,m

,Ka
1
2 ,m

} and let K = 4ka
0 (

√
2−1)√
2

. Then ka
m ≤

K < 1

2 ˜C
for all m ≥ 1.

Proof. It follows from Claim 2 that ka
0 = 1

8 ˜C
and ka

m+1 ≤ ka
0 + C̃(ka

m)2 (recall

that C̃ = c1MB1). To get a bound on ka
m, let’s write ka

m = ka
0 wm. Then wm

satisfies the following inequality:

ka
0 wm+1 ≤ ka

0 + C̃(ka
0)2w2

m

which implies that

wm+1 ≤ 1 + C̃ka
0 w2

m = 1 +
1
8
w2

m

Then a direct calculation shows that

wm ≤ 4(
√

2 − 1)√
2

Thus

ka
m = ka

0 wm ≤ 4ka
0 (

√
2 − 1)√
2

=
√

2 − 1

2
√

2C̃
<

1

2C̃

And so if we pick K = 4ka
0 (

√
2−1)√
2

, then ka
m ≤ K < 1

2 ˜C
for all m ≥ 1. The proof

of Claim 3 is complete.
Next we present an upper bound for tα‖Aαvm(t)‖2, m ≥ 1. Recall that

vm(t) = um+1(t) − um(t).

Computability to Navier-Stokes Equations 105

Claim 4. For t ∈ [0, Ta], 0 ≤ α < 3
4 , and m ≥ 1,

tα‖Aαvm(t)‖2 ≤ 2KCα+ 1
4
(2C̃K)m−1B(1 − α − 1

4
,
1
4
) (36)

Proof. First we observe that (36) is true for t = 0. Next we assume that
0 < t ≤ Ta . Once again we induct on m. At m = 1: We recall from the definition
of c1 and B1 that 1

2c1B1
≤ 1

2 . Also it follows from (33), Claims 2 and 3 that
‖A 1

2 u1(t)‖2 ≤ Ka
1
2 ,1

t−
1
2 ≤ Kt−

1
2 , ‖A 1

4 u0(t)‖2 ≤ Kt−
1
4 , ‖A 1

4 v0(t)‖2 ≤ 2Kt−
1
4 ,

and ‖A 1
2 v0(t)‖2 ≤ 2Kt−

1
2 . Making use of these inequalities we obtain the fol-

lowing estimate:

tα‖Aαv1(t)‖2
= tα‖Aα(u2(t) − u1(t))‖2
= tα
∥
∥
∥
∥
A

α

∫ t

0

e−(t−s)A(Bu1(s) − Bu0(s))ds

∥
∥
∥
∥
2

≤ tαCα+ 1
4

∫ t

0

(t − s)−α− 1
4 ‖A− 1

4Bu1(s) − A
− 1

4Bu0(s)‖2ds

≤ tαCα+ 1
4

∫ t

0

(t − s)α− 1
4 M

(

‖A 1
4 v0(s)‖2 · ‖A 1

2 u1(s)‖2

+ ‖A 1
4 u0(s)‖2 · ‖A 1

2 v0(s)‖2
)

ds

≤ tαCα+ 1
4
M2K2

∫ t

0

(t − s)−α− 1
4 s− 3

4 ds

= 2KCα+ 1
4
MKB(1 − α − 1

4
,
1
4
)

< 2KCα+ 1
4

M

2c1MB1
B(1 − α − 1

4
,
1
4
) (recall that K <

1

2C̃
=

1
2c1MB1

)

< 2KCα+ 1
4
(2C̃K)0B(1 − α − 1

4
,
1
4
)

Thus (36) is true for m = 1.
Now assuming that (36) holds for all 1 ≤ j ≤ m, we show that (36) is also

true for m+1. First it follows from Claims 2 and 3, and the induction hypothesis
that for any s ∈ (0, Ta),

‖A 1
4 vm(s)‖2 · ‖A 1

2 um+1(s)‖2
≤ 2KC 1

4+
1
4
(2C̃K)m−1B(1 − 1

4
− 1

4
,
1
4
)s− 1

4 · Ks− 1
2

≤ 2Kc1(2C̃K)m−1B1Ks− 3
4

Similarly,

‖A 1
2 vm(s)‖2 · ‖A 1

4 um(s)‖2 ≤ 2Kc1(2C̃K)m−1B1Ks− 3
4

106 S.-M. Sun et al.

Thus,

‖A 1
2 um+1(s)‖2 · ‖A 1

4 vm(s)‖2 + ‖A 1
2 vm(s)‖2 · ‖A 1

4 um(s)‖2
≤ 2Kc1(2C̃K)m−1B1 · 2Ks− 3

4

These inequalities imply the desired estimate:

tα‖Aαvm+1(t)‖2
≤ tαCα+ 1

4

∫ t

0

(t − s)−α− 1
4 ‖A− 1

4 (Bum+1(s) − Bum(s))‖2ds

≤ tαCα+ 1
4

∫ t

0

(t − s)−α− 1
4 M
(

‖A 1
2 um+1(s)‖2 · ‖A 1

4 vm(s)‖2

+ ‖A 1
2 vm(s)‖2 · ‖A 1

4 um(s)‖2
)

ds

≤ tαCα+ 1
4

∫ t

0

(t − s)−α− 1
4 M · 2Kc1(2C̃K)m−1B1 · 2Ks− 3

4 ds

= tα2KCα+ 1
4

· 2c1MB1K(2C̃K)m−1

∫ t

0

(t − s)−α− 1
4 s− 3

4 ds

= 2KCα+ 1
4
(2C̃K)mB(1 − α − 1

4
,
1
4
)

The proof for Claim 4 is complete.
We now set α = 0, ε = 2C̃K, and L = 2KC 1

4
B
(
3
4 , 1

4

)

. Since K < 1

2 ˜C
by

Claim 3, it follows that 0 < ε < 1 and

‖um+1(t) − um(t)‖ ≤ Lεm−1

Consequently, the iterated sequence {um(t)} converges effectively to u(t) and
uniformly on [0, Ta].

We mention in passing the following fact that can be proved by similar com-
putations of Claims 1–3: On input (a,m, n), a positive number T (a,m, n) can be
computed such that ka

0 (T (a,m, n)) < (8C̃)−1 ·2−n, T (a,m, n+1) < T (a,m, n),
and max0≤t≤T (a,m,n) tβ‖Aβum(t)‖2 ≤ La

β,m ·2−n, where La
β,m is a constant inde-

pendent of t and n, and computable from a and m.

5.4 Proof of Proposition 5

We now come to the proof of Proposition 5. We need to show that the map
S : N×Lσ

2,0×[0,∞) → Lσ
2,0, (m,a, t)
→ um(t), is (ν×δLσ

2,0
×ρ, δLσ

2,0
)-computable.

By a similar argument as we used for proving Lemma 6, we are able to compute
um(t) on the input (m,a, t), where m ∈ N, a ∈ Lσ

2,0(Ω), and t > 0. We note
that um(0) = u0(0) = a for all m ∈ N. Thus, to complete the proof, it suffices to
show that there is a modulus function η : N×N → N, computable from a, such
that ‖um+1(t) − a‖2 ≤ 2−k whenever 0 < t < 2−η(m+1,k). Now for the details.

Computability to Navier-Stokes Equations 107

Given a and k. Refereeing to the last paragraph of the previous subsection and
Fact 5-(2), (5), we obtain the following estimate: for 0 < t < T (a,m, n)

∥
∥
∥
∥

∫ t

0

e−(t−s)A
Bum(s)ds

∥
∥
∥
∥
2

=
∥
∥
∥
∥
A

1/4

∫ t

0

e−(t−s)A
A

−1/4
Bu(s)ds

∥
∥
∥
∥
2

≤ C1/4M

∫ t

0

(t − s)−1/4‖A1/4um(s)‖2 · ‖A1/2um(s)‖2ds

≤ C1/4M

∫ t

0

(t − s)−1/4 · s−1/4 · La
1/4,m · 2−n · s−1/2 · La

1/2,m · 2−nds

≤ C1/4MLa
1/4,mLa

1/2,m2−2n

∫ t

0

(t − s)−1/4s−3/4ds

= C1/4MLa
1/4,mLa

1/2,mB(3/4, 1/4) · 2−2n

Thus if ‖e−tAa − a‖2 ≤ 2−(k+1) and

2−2nC1/4MLa
1/4,mLa

1/2,mB(3/4, 1/4) ≤ 2−(k+1) ,

then

‖um+1(t) − a‖2 ≤ ‖e−tAa − a‖2 +
∥
∥
∥
∥

∫ t

0

e−(t−s)A
Bum(s)ds

∥
∥
∥
∥
2

≤ 2−k

Since e−tAa is computable in t by Proposition 3 and a = e−0Aa, there is a
computable function θ1 : N → N such that ‖e−tAa − a‖2 ≤ 2−(k+1) whenever
0 < t < 2−θ1(k). Let θ2 : N × N → N be a computable function satisfying
C1/4MLa

1/4,mLa
1/2,mB(3/4, 1/4) · 2−2θ2(m,k) ≤ 2−(k+1). Let η(m+1, k) be a pos-

itive integer such that 2−η(m+1,k) ≤ min{2−θ1(k), T (a,m, θ2(m, k))}. Then η is
the desired modulus function. The proof of Proposition 5 is complete.

Propositions 4 and 5 show that the solution u of the integral equation (4) is
an effective limit of the computable iterated sequence {um} starting with u0 = a
on [0, Ta]; consequently, u itself is also computable. Thus we obtain the desired
preliminary result:

Theorem 6. There is a computable map T : Lσ
2,0(Ω) → (0,∞), a
→ T (a),

such that u(t), the solution of the integral equation (4), is computable in Lσ
2,0

from a and t for a ∈ Lσ
2,0 and t ∈ [0;T (a)].

5.5 The Inhomogeneous Case and Pressure

It is known [5, Theorem 2.3] that, also in the presence of an inhomogeneity g ∈
C
(

[0;T], Lσ
2,0(Ω)

)

, the iterate sequence (5) converges to a unique solution u of
Eq. (2) near t = 0. Similarly to (the proofs of) Propositions 5, 4, and [24, Lemma

108 S.-M. Sun et al.

3.7], this solution is seen to be computable. Moreover, g = Pf is computable
from f ∈ (L2(Ω)

)2 according to Proposition 2. Finally the right-hand side of
Eq. (6) equals

(

I − P
)

[f + �u − (u · ∇)u
]

=: h

which, by the definition of P projecting onto the solenoidal subspace, is conserva-
tive (=rotation-free/a pure divergence). Hence the path integral

∫ x

0
h(y) ·dγ(y)

does not depend on the chosen path from 0 to x and well-defines P (x). This
concludes our proof of Theorem1.

A Proof of Proposition 1

(a) For a divergence-free and boundary-free polynomial, its coefficients must
satisfy a system of linear equations. In the following, we derive explicitly this
system of linear equations in the 2-dimensional case, i.e. Ω = (−1, 1)2. Let p =
(p1, p2) =

(∑N
i,j=0 a1

i,jx
iyj ,
∑N

i,j=0 a2
i,jx

iyj
)

be a divergence-free and boundary-
free polynomial of real coefficients. (If the degree of p1 or p2 is less than N , then
zeros are placed for the coefficients of missing terms). Then, by definition,

∇ · p =
∂p1
∂x

+
∂p2
∂y

=
∑

1≤i≤N,0≤≤N

ia1
i,jx

i−1yj +
∑

0≤i≤N,1≤≤N

ja2
i,jx

iyj−1

=
∑

0≤i,j≤N−1

[(i + 1)a1
i+1,j + (j + 1)a2

i,j+1]x
iyj

+
∑

0≤i≤N−1

(i + 1)a1
i+1,NxiyN +

∑

0≤j≤N−1

(j + 1)a2
N,j+1x

Nyj

≡ 0 on Ω

which implies that all coefficients in ∇ · p must be zero; or equivalently, Eq. (7)
holds true. Turning to the boundary conditions, along the line x = 1, since

p(1, y) =
(∑N

j=0
(
∑N

i=0
a1

i,j)y
j ,
∑N

j=0
(
∑N

i=0
a2

i,j)y
j
)

is identically zero, it follows that
∑N

i=0 a1
i,j =

∑N
i=0 a2

i,j = 0 for 0 ≤ j ≤ N .
There are similar types of restrictions on the coefficients of p along the lines
x = −1, y = 1, and y = −1. In summary, p vanishes on ∂Ω if and only if for all
0 ≤ j, i ≤ N , both (8) and (9) hold true.

In the 3-dimensional case, a similar calculation shows that a polynomial triple
p(x, y, z) =

(

p1(x, y, z), p2(x, y, z), p3(x, y, z)
)

is divergence-free and boundary-
free if and only if its coefficients satisfies a system of linear equations with integer
coefficients.

Computability to Navier-Stokes Equations 109

(b) In [8] it is shown that for any real number s ≥ 3 and for any function
w ∈ N s

div ∩ H1,σ
2,0 (Ω)d, the following holds:

inf
p∈N 1

div

⋂ P0
N (Ω)d

‖w − p‖Hs
2 (Ω)d ≤ CN−2‖w‖Hs

2 (Ω)d

where Ω = (−1, 1)d,

N s
div = {w ∈ Hs

2(Ω)d |∇ · w = 0}, P0
N (Ω) = PN (Ω)

⋂

H1,σ
2,0 (Ω),

PN is the set of all d-tuples of real polynomials with d variables and degree
less than or equal to N with respect to each variable, H1,σ

2,0 (Ω) is the closure in
H1

2 (Ω) of C∞
0 (Ω), and C is a constant independent of N . This estimate implies

that every function w ∈ Lσ
2,0 can be approximated with arbitrary precision by

divergence-free and boundary-free real polynomials as follows: for any n ∈ N,
since {u ∈ C∞

0 (Ω)d : ∇ · u = 0} is dense in Lσ
2,0, there is a divergence-free

C∞ function u with compact support in Ω such that ‖w − u‖L2 ≤ 2−(n+1).
Then it follows from the above inequality that there exists a positive integer
N and a divergence-free and boundary-free polynomial p of degree N with real
coefficients such that ‖u − p‖L2 ≤ ‖u − p‖H3(Ω)d ≤ 2−(n+1). Consequently,
‖w − p‖L2 ≤ ‖w − u‖L2 + ‖u − p‖L2 ≤ 2−n.

It remains to show that Qσ
0 [R2], the divergence-free and boundary-free poly-

nomial tuples with rational coefficients, is dense (in L2-norm) in the set of all
polynomial tuples with real coefficients which are divergence-free on Ω and
boundary-free on ∂Ω. To this end we note that, according to part (a), the
divergence-free and boundary-free polynomials can be characterized, indepen-
dent of their coefficient field, in terms of a homogeneous system of linear equa-
tions with integer coefficients. Then it follows from the lemma below that the
set of the rational solutions of this system is dense in the set of its real solu-
tions. And since Ω is bounded (=relatively compact), the approximations to its
coefficients of a polynomial yields (actually uniform) the approximations to the
polynomial itself:

sup
x∈Ω

|pk(x)| ≤
N∑

i,j=0

|ak
i,j | · M i+j for Ω ⊆ [−M,+M]2 and k = 1, 2

Lemma 7. Let A ∈ Q
m×n be a rational matrix. Then the set kernelIQ(A) :=

{x ∈ Q
n : A · x = 0} of rational solutions to the homogeneous system of linear

equations given by A is dense in the set kernelR(A) of real solutions.

Proof. For d := dim
(

kernelR(A)
)

, Gaussian Elimination yields a basis B =
(b1, . . . , bd) of kernel(A); in fact it holds B ∈ Q

n×d and

kernelF(A) = imageF(B) :=
{

λ1b
1 + · · · + λdb

d : λ1, . . . , λd ∈ F
}

for every field F ⊇ Q: Observe that the elementary row operations Gaussian
Elimination employs to transform A into echelon form containing said basis B
consist only of arithmetic (=field) operations! (We deliberately do not require B
to be orthonormal; cf. [29, §3]). Now imageQ(B) is obviously dense in imageR(B).

110 S.-M. Sun et al.

B Proof of Lemma1

Note that γn ∗ Tkp = (γn ∗ Tkp1, γn ∗ Tkp2). For each p ∈ Q
σ
0 [R2] and n ≥ k,

since

∂(γn ∗ Tkp1)
∂x

(x, y) =
∂

∂x

∫ 1

−1

∫ 1

−1

γn(x − s, y − t) · Tkp1(s, t) ds dt

=
∫ 1−2−k

−1+2−k

[
∫ 1−2−k

−1+2−k

∂γn

∂x
(x − s, y − t) · Tkp1(s, t) ds

]

dt

=
∫ 1−2−k

−1+2−k

[
∫ 1−2−k

−1+2−k

−∂γn

∂s
(x − s, y − t) · Tkp1(s, t) ds

]

dt (37)

for Tkp1 = 0 in the exterior region of Ωk including its boundary ∂Ωk. Note that
∂γn

∂s is continuous on R
2; ∂γn

∂s (x−s, y− t) ·Tkp1(s, t) is continuous on [−1, 1]2 for
any given x, y ∈ R; ∂Tkp1

∂s (s, t) is continuous in (−1 + 2−n, 1 − 2−n) and Tkp1 is
continuous on [−1 + 2−n, 1 − 2−n] for any given t ∈ [−1; 1]. Thus, we can apply
the integration by parts formula to the integral

∫ 1−2−k

−1+2−k

−∂γn

∂s
(x − s, y − t) · Tkp1(s, t) ds

as follows:
∫ 1−2−k

−1+2−k

−∂γn

∂s
(x − s, y − t) · Tkp1(s, t) ds

= −γn(x − s, y − t) · Tkp1(s, t)
∣
∣
1−2−k

−1+2−k

+
∫ 1−2−k

−1+2−k

γn(x − s, y − t) · ∂Tkp1
∂s

(s, t) ds

=
∫ 1−2−k

−1+2−k

γn(x − s, y − t) · ∂Tkp1
∂s

(s, t) ds (38)

Then it follows from (37) and (38) that for any (x, y) ∈ Ω,

∂γn ∗ Tkp1
∂x

(x, y) =
∫ 1−2−k

−1+2−k

∫ 1−2−k

−1+2−k

γn(x − s, y − t) · ∂Tkp1
∂s

(s, t) ds dt.

A similar calculation yields that for any (x, y) ∈ Ω,

∂γn ∗ Tkp2
∂y

(x, y) =
∫ 1−2−k

−1+2−k

∫ 1−2−k

−1+2−k

γn(x − s, y − t) · ∂Tkp2
∂t

(s, t) ds dt.

Computability to Navier-Stokes Equations 111

Thus, for any (x, y) ∈ Ω and n ≥ k,

∇·(γn ∗ Tkp)(x, y) =
∂γn ∗ Tkp1

∂x
(x, y) +

∂γn ∗ Tkp2
∂y

(x, y)

=
∫ 1−2−k

−1+2−k

∫ 1−2−k

−1+2−k

γn(x − s, y − t) ·
[
∂Tkp1

∂s
+

∂Tkp2
∂t

]

(s, t) ds dt

= 0

for Tkp = (Tkp1,Tkp2) is divergence-free on Ωk. This proves that for any p ∈
Q

σ
0 [R2] and n ≥ k, γn ∗ Tkp is divergence-free on Ω.

C Proof of Lemma2

Since for each p ∈ Q
σ
0 [R2] and k ∈ N, γn ∗Tkp → Tkp effectively and uniformly

on Ωk as n → ∞, it suffices to show that {Tkp : k ∈ N,p ∈ Q
σ
0 [R2]} is dense

in Lσ
2,0(Ω). On the other hand, since Q

σ
0 [R2] is dense in Lσ

2,0(Ω), we only need
to show that for each p ∈ Q

σ
0 [R2] and m ∈ N, there is a k ∈ N such that

2−m ≥ ‖p − Tkp‖∞ = max{|p1(x) − Tkp1(x)|, |p2(x) − Tkp2(x)| : x ∈ Ω̄}.
Since pi is uniformly continuous on Ω̄, there exists a k ∈ N such that

|pi(x, y) − pi(x′, y′)| ≤ 2−m whenever |x − x′|, |y − y′| ≤ 2−k+1, and, in par-
ticular, for x′ = x

1−2−k and y′ = y
1−2−k . Also, since pi(x, y) = 0 for (x, y) ∈ ∂Ω,

|pi(x, y)| ≤ 2−m−1 for all (x, y) ∈ Ω\Ωk. This establishes |pi(x, y)−Tkpi(x, y)| ≤
2−m on Ω̄.

References

1. Beggs, E., Costa, J.F., Tucker, J.V.: Axiomatising physical experiments as oracles
to algorithms. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 370, 3359–3384
(2012)

2. Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible
Navier-Stokes Equations and Related Models. Spring Applied Mathematical Sci-
ences. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4614-5975-0

3. Giga, Y.: Weak and strong solutions of the Navier-Stokes initial value problem.
Publ. RIMS Kyoto Univ. 19, 887–910 (1983)

4. Giga, Y.: Time and spatial analyticity of solutions of the Navier-Stokes equations.
Commun. Partial Differ. Equ. 8, 929–948 (1983)

5. Giga, Y., Miyakawa, T.: Solutions in Lr of the Navier-Stokes initial value problem.
Arch. Ration. Mech. Anal. 89(3), 267–281 (1985)

6. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations.
Springer Series in Computational Mathematics, vol. 5. Springer, New York (1986).
https://doi.org/10.1007/978-3-642-61623-5

7. Kawamura, A., Steinberg, F., Ziegler, M.: Complexity of Laplace’s and Poisson’s
equation. Bull. Symb. Logic 20(2), 231 (2014). Full version to appear in Mathem.
Structures in Computer Science (2016)

8. Landriani, G.S., Vandeven, H.: Polynomial approximation of divergence-free func-
tions. Math. Comput. 52, 103–130 (1989)

https://doi.org/10.1007/978-1-4614-5975-0
https://doi.org/10.1007/978-3-642-61623-5

112 S.-M. Sun et al.

9. Mclean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cam-
bridge University Press, London (2000)

10. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential
Equations. Springer, New York (1983). https://doi.org/10.1007/978-1-4612-5561-1

11. Pour-El, M.B., Richards, J.I.: The wave equation with computable initial data such
that its unique solution is not computable. Adv. Math. 39(4), 215–239 (1981)

12. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer,
New York (1989)

13. Pour-El, M.B., Zhong, N.: The wave equation with computable initial data whose
unique solution is nowhere computable. Math. Logic Q. 43(4), 499–509 (1997)

14. Patel, M.K., Markatos, N.C., Cross, M.: A critical evaluation of seven discretization
schemes for convection-diffusion equations. Int. J. Numer. Meth. Fluids 5(3), 225–
244 (1985)

15. Brattka, V., Presser, G.: Computability on subsets of metric spaces. Theor. Com-
put. Sci. 305, 43–76 (2003)

16. Smith, W.D.: On the uncomputability of hydrodynamics. NEC preprint (2003)
17. Soare, R.I.: Computability and recursion. Bull. Symb. Logic 2, 284–321 (1996)
18. Sohr, H.: The Navier-Stokes Equations: An Elementary Functional Analytic App-

roach. Birkhäuser Advanced Texts. Birkhäuser, New York (2001)
19. Sun, S.M., Zhong, N., Ziegler, M.: On computability of Navier-Stokes’ equation.

In: Beckmann, A., Mitrana, V., Soskova, M. (eds.) CiE 2015. LNCS, vol. 9136, pp.
334–342. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20028-6 34

20. Tao, T.: Finite time blowup for an averaged three-dimensional Navier-Stokes equa-
tion. J. Am. Math. Soc. 29, 601–674 (2016)

21. Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. North-
Holland Publishing Company, New York (1977)

22. Weihrauch, K.: Computable Analysis: An Introduction. Springer, New York (2000).
https://doi.org/10.1007/978-3-642-56999-9

23. Weihrauch, K., Zhong, N.: Is wave propagation computable or can wave computers
beat the Turing machine? Proc. Lond. Math. Soc. 85(2), 312–332 (2002)

24. Weihrauch, K., Zhong, N.: Computing the solution of the Korteweg-de Vries equa-
tion with arbitrary precision on Turing machines. Theor. Comput. Sci. 332, 337–
366 (2005)

25. Weihrauch, K., Zhong, N.: Computing Schrödinger propagators on Type-2 Turing
machines. J. Complex. 22(6), 918–935 (2006)

26. Weihrauch, K., Zhong, N.: Computable analysis of the abstract Cauchy problem
in Banach spaces and its applications I. Math. Logic Q. 53, 511–531 (2007)

27. Wiegner, M.: The Navier-Stokes equations – a never-ending challenge? Jahres-
bericht der Deutschen Mathematiker Vereinigung (DMV) 101(1), 1–25 (1999)

28. Zhong, N.: Computability structure of the Sobolev spaces and its applications.
Theor. Comput. Sci. 219, 487–510 (1999)

29. Ziegler, M., Brattka, V.: Computability in linear algebra. Theor. Comput. Sci. 326,
187–211 (2004)

30. Ziegler, M.: Physically-relativized Church-Turing hypotheses: physical foundations
of computing and complexity theory of computational physics. Appl. Math. Com-
put. 215(4), 1431–1447 (2009)

https://doi.org/10.1007/978-1-4612-5561-1
https://doi.org/10.1007/978-3-319-20028-6_34
https://doi.org/10.1007/978-3-642-56999-9

AutoOverview: A Framework
for Generating Structured Overviews

over Many Documents

Jie Wang(B)

University of Massachusetts, Lowell, MA 01854, USA
wang@cs.uml.edu

http://www.cs.uml.edu/~wang

In a conversation with Prof. Ker-I Ko
about 10 years ago during a visit to
Tsinghua University in Beijing, I indicated
a desire to venture into a new field that
would allow me to integrate algorithm
designs, software development, system
construction, data modeling, data
management, and web technologies into a
long-term project, so that a group of PhD
students with various backgrounds and
interests could work on different parts of
the project for their dissertations. Ker-I
was supportive and offered his insights. I
am honored to dedicate this article on text
mining and document engineering in
memory of him.

Abstract. This article is an exposition of a recent study on automatic
generation of a structured overview (SOV) over a very large corpus
of documents, where an SOV is organized as sections and subsections
according to the latent hierarchy of topics contained in the documents.
We present a new framework called AutoOverview that includes and
extends our previous scheme called NDORGS (best paper runner-up
in ACM DocEng’2019) [47]. Different from the standard NLP task of
generating a coherent summary typically over a handful of documents,
AutoOverview needs to balance between two competitive objectives of
accuracy and efficiency over thousands of documents. It incorporates
hierarchical topic clustering, single-document summarization, multiple-
document summarization, title generation, and other text mining tech-
niques into a single platform. To assess the quality of an SOV generated
over many documents, while it is possible to rely on human annota-
tors to judge its readability, the sheer size of the inputs would make
it formidable for human judges to determine if an SOV has covered all
major points contained in the original texts. To overcome this obsta-
cle, we present a text mining mechanism to evaluate topic coverage of

c© Springer Nature Switzerland AG 2020
D.-Z. Du and J. Wang (Eds.): Ko Festschrift, LNCS 12000, pp. 113–150, 2020.
https://doi.org/10.1007/978-3-030-41672-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41672-0_8&domain=pdf
http://orcid.org/0000-0003-1483-2783
https://doi.org/10.1007/978-3-030-41672-0_8

114 J. Wang

the SOV against the topics contained in the original documents. We
use multi-attribute decision making to help determine a suitable suite
of algorithms to implement AutoOverview and the values of parameters
for achieving a satisfactory SOV with respect to both accuracy and effi-
ciency. We use NDORGS as an implementation example to address these
issues and present evaluation results over a corpus of over 2,000 classified
news articles and a corpus of over 5,000 unclassified news articles in a
span of 10 years obtained from a search of the same keyword.

Keywords: Single document summarization · Multiple document
summarization · Hierarchical topic clustering · Title generation ·
Multi-attribute optimization

1 Introduction

Generating an accurate, well-structured overview over a very large corpus of doc-
uments enables readers to quickly grasp the key points contained in a formidable
amount of textual data, helping decision makers to make informed decisions and
learners to learn new materials, among other things. This task is typically carried
out by experts. However, when hundreds and thousands of fairly long articles
are presented, even experienced experts would find this task hard to accomplish
in a short period of time. For example, let us imagine that Alice, a politician,
needs for her campaign to obtain a solid understanding of public sentiments con-
tained in several thousand news articles on issues of global economy and regional
conflicts, to help her prepare a speech for a meeting next week. Impossible to
read through such a large volume of articles in a short period of time, sampling
a small number of articles would be the only thing doable. However, these arti-
cles are not equally important and so sampling without knowing the underlying
topic distribution will inevitably miss a few key points and capture a few minor
points not needed. Fortunately, a clever use of text mining and natural language
processing (NLP) techniques can come to the rescue. For example, instead of
sampling articles uniformly at random from the corpus of articles, Alice may
first cluster the corpus according to the underlying (latent) topics, compute a
document score for each document that indicates its salience, and then sample
a few articles in each cluster with high document scores. She may even generate
a structured overview (SOV) of a moderate size over these articles.

AutoOverview is a text mining framework for generating an SOV over a large
corpus of related documents with multiple topics in reasonable time. By “large”
we mean hundreds of documents and by “very large” we mean thousands of
documents, or even tens of thousands of documents, where the size of a document
may range from a few pages to a few dozens of pages. By “reasonable time” we
mean a few hours of CPU processing time on a normal desktop server with a
moderate size of RAM. By “structured” we mean that an overview is organized
in a hierarchy of two (i.e., sections and subsections) or more levels according
to latent topics and subtopics contained in the original texts for easier reading,

Automatic Generation of Structured Overviews 115

where each section and subsection must have, respectively, an appropriate title.
Moreover, an SOV itself must be of a reasonable size. For a corpus of about
5,000 documents, for instance, an SOV with 20 or fewer pages would be desirable.
Moreover, an SOV should also include figures to highlight frequencies and trends
of interesting entities contained in the corpus.

Multiple-document summarization (MDS) is a standard NLP task, which
typically takes a handful of short articles as input and outputs a short, unstruc-
tured summary. For example, the MDS systems presented in papers [5,7,51] are
designed to handle the sizes of DUC datasets [10], where the DUC-02, DUC-03,
and DUC-04 datasets provide benchmark summaries for MDS tasks, with each
MDS task consisting of 10 or fewer documents as input. Directly applying these
MDS systems for generating a summary for a corpus of thousands of documents
could possibly generate a proportionately longer and disorganized summary. A
more recent algorithm named T-CMDA [30] was devised to generate an English
Wikipedia article on a specific topic over many documents. However, T-CMDA
is still not suitable for generating a well-organized overview for a large corpus of
documents containing many subtopics.

AutoOverview uses MDS as one of the building blocks. To generate a coherent
summary that preserves the major points of the input documents, even if there
are only a handful of them, a typical MDS algorithm is both CPU intensive and
RAM intensive. Thus, using such an MDS imposes two constraints:

1. Each document should not be too long.
2. The number of documents should not be too big.

Violating these two constraints may cause a system crash or unacceptable delay
of generating a summary.

To deal with the first constraint, we may use an appropriate summary to
represent the document. Note that in an SOV of a reasonable size over a large
corpus of documents, less important points should be excluded. As long as sum-
maries contain all the major points of the original documents, generating an SOV
over these summaries is expected to preserve major information, even though a
major point included in an individual summary may still be considered minor for
the final SOV. Thus, it suffices to first apply a single-document summarization
(SDS) algorithm to obtain a summary for each document and then apply an MDS
algorithm on these summaries to generate a new combined summary. Moreover,
working on summaries also has an added benefit of improving efficiency.

To deal with the second constraint, we may organize the given corpus of
documents into a hierarchy of two or more levels of clusters according to the
underlying hierarchy of topics and subtopics, and force each cluster to have a
workable size. Hierarchical topic clustering also provides a needed structure for
the SOV, which helps improve the efficiency of AutoOverview.

After generating a hierarchy of topic clusters, we will then use a title gener-
ation algorithm to generate a suitable title for each section and subsection.

To assess the quality of an SOV, we rely on human annotators to judge its
readability and use text mining techniques to evaluate information coverage and
topic diversity. We take a holistic approach that weighs in readability, running

116 J. Wang

time, information coverage, and topic diversity and use TOPSIS (Technique for
Order Preference by Similarity to an Ideal Solution) [19] to determine the best
ratio of the length of an SDS summary over that of the original document.

This article is organized as follows: We present in Sect. 2 the framework of
AutoOverview and in Sect. 3 the evaluation method of SOVs. We then describe
in Sect. 4 topic clustering algorithms, in Sect. 5 single-document-summarization
(SDS) algorithms, and MDS algorithms, and in Sect. 6 title generation algo-
rithms. We elaborate the first concrete implementation of AutoOverview and
provide experimental results over two large corpora of thousands of documents,
one is classified and the other unclassified. We conclude the paper in Sect. 9 with
final notes.

2 AutoOverview: A General Framework

AutoOverview is a general framework consisting of the following seven
components:

1. Text Wrangling (TWG),
2. Hierarchical Topic Clustering (HTC),
3. Document Summarizing (DOS),
4. Statistics and Trends of Entities (STE),
5. Cluster Summarizing (CLS),
6. Cluster Titling (CLT),
7. Assembling (ASG).

Among these components, HTC, DOS, and STE can be executed in parallel.
The architecture and data flow of AutoOverview is shown in Fig. 1.

2.1 Text Wrangling

The TWG component is responsible for determining what language an input
document is written in, eliminating irrelevant texts, and removing unsuitable
documents. Irrelevant texts include URLs, duplicate documents, unrecognized
symbols, and texts in other languages different from the underlying language
the document is written in. Unsuitable documents include excessively long doc-
uments and interviews. An article of more than 100 pages, for example, would be
considered excessive. Interview articles would need a separate, special treatment,
for interviews may have loose structures in a number of different directions that
may not be logically connected.

After text wrangling, the processed documents are inputs to HTC, DOS, and
STE. For simplicity, in what follows, we will still use “documents” to denote the
documents that have been processed by the TWG component, unless otherwise
stated.

2.2 Hierarchical Topic Clustering

Multiple topics are anticipated over a large corpus of documents under a broader,
common theme. Each topic may further contain subtopics.

Automatic Generation of Structured Overviews 117

Text Wrangling
(TWG)

Document
Summarizing

(DOS)

Hierarchical
Topic Clustering

(HTC)

Cluster
Summarizing

(CLS)

Cluster Titling
(CLT)

Assembling
(ASG)

AutoOverview
Framework

Statistics &
Trends of Entities

(STE)

Structured
Overview

(SOV)

Documents

Fig. 1. AutoOverview architecture and data flow.

Two-Level Clustering. The HTC component is designed to discover the latent
hierarchy of topics of two or three levels. For simplicity, we present in this article
a two-level topic clustering. Topic clustering of three (or more) levels is similar.

A rule of thumb in writing an overview is not to have too many sections at
each level, particularly at the top level, for top-level sections represent major
topics. Too many top-level sections in an SOV may cause the reader to loose
focus. A desirable number of top-level sections is not to exceed 10. Also, while an
article could be divided into four levels with the following LATEX tags: “section”,

118 J. Wang

“subsection”, “subsubsection”, and “paragraph”, an SOV may be confined to
two (maybe three) levels of sections for easier reading.

HTC first partitions documents into K clusters at the top level, denoted by
C = {C1, C2, . . . , CK}, using a text clustering algorithm with a preset number
of clusters K. For each top-level cluster Ci, if |Ci| > N , where |Ci| denotes the
number of documents contained in Ci and N is a preset number (for example,
N = 100), then HTC further partitions Ci into Ki sub-clusters as the second-
level clusters, where

Ki = 1 +
⌊ |Ci|

N

⌋
.

It may be inevitable to have more than a handful of subsections at the second
level, and so for the second-level subtopic clustering, we could use a clustering
algorithm that determines the number of clusters dynamically during clustering.
If the clustering fails to split a certain cluster Ci into two or more sub-clusters,
then this means that documents in Ci do not contain subtopics. In other words,
they cannot be further distinguished under this clustering algorithm in terms of
topics. We can deal with this situation in one of the following ways:

1. Select N documents from Ci with the highest document scores, and discard
the rest of the documents. We will define document scores in Sect. 2.4.

2. Use a different clustering algorithm to cluster Ci, with the hope that a differ-
ent clustering algorithm may be able to further divide Ci into sub-clusters.

3. Split Ci evenly into

Kij = 1 +
⌊ |Cij |

N

⌋

sub-clusters with N documents in each sub-cluster (except the last one)
according to document scores in non-descending order.

Cluster Ranking. HTC ranks topic clusters of the same level based on
cluster scores. Assume that cluster Ci consists of n documents, denoted by
Ci = {di1, di2, . . . , din}. Let pij denote the probability distribution that dij

belongs to cluster Ci. Such a probability distribution can be computed using
continuous topic modeling algorithms such as Latent Dirichlet Allocation (LDA)
[3]. We define the score of cluster Ci using the following empirical formula:

s(Ci) =
1
n2

n∑
j=1

2pij .

The size n of the cluster may be viewed as a distance between any two documents
contained in it, and taking a reciprocal of n2 instead of n is somewhat similar
to the Newton’s law of universal gravitation that contains a reciprocal of r2

with a distance r of two objects. Experiments show that using a reciprocal of n2

provides a better result than using a reciprocal of n.

Automatic Generation of Structured Overviews 119

2.3 Document Summarizing

The DOS component generates, for each document, a summary of an appropri-
ate length using an existing SDS algorithm. Extracting summaries is necessary
for speeding up the process and is sufficient for generating a good overview,
as only the most important content of an article will ultimately contribute to
the overview (also noted in [30]). More information of SDS algorithms will be
presented in Sect. 5.1.

The length of a summary is an important parameter, which is often mea-
sured by the percentage of the length of the original document. Let λ-summary
denote a summary of a document d with a length equal to λ|d|, where λ ∈ (0, 1)
represents a percentage and |d| the length of d in terms of words or in terms of
characters.

Note that we may also carry out HTC on λ-summaries for appropriate values
of λ, which may reduce running time.

2.4 Statistics and Trends of Entities

The STE component uses an NLP tool of name entity recognition to identify
name entities in the input documents. It then extracts, for each document, the
title, the publication time, and the name of the press. For each document d,
it removes the stop words contained in it. Let w be a name entity and nd(w)
denote the number of times w appears in d. Let d′ denote the bag of words of d
after removing stop words. Compute the term frequency for each name entity w
as follows:

TFd(w) =
nd(w)
|d′| ,

where |d′| is the cardinal number of d′.
To compute trends of a name entity with respect to certain aspects of interests

including the time when a document is published, the time an event takes place,
or other types of classifications, STE groups the documents with respect to these
aspects. It then computes the TFIDF value for each name entity w with respect
to the aforementioned aspects of interests. That is, Let w be a term appearing
in a document d, which is in a cluster G. Let

IDFG(w) = log
|{d : d ∈ G}|

|{d ∈ G : w ∈ d}| .

The TFIDF value of w with respect to (d,G) is computed as follows:

TFIDFd,G(w) = TFd(w) · IDFG(w).

The TFIDF value of w indicates the significance of w in d with respect to G.

120 J. Wang

Measuring Trends. Let

TFG(w) =
∑
d∈G

TFd(w),

TFIDFG(w) =
∑
d∈G

TFIDFd,G(w).

These two values are used to indicate trends with respect to the underlying
aspect of interests. Other text mining tools may also be used to measure trends.

Document Scoring. Let d be a document after removing stop words and C be
a cluster containing d. Let |d| denote the number of words in the bag of words
of d. Then the document score of d with respect to C is defined by

sC(d) =
1
d

∑
w∈d

TFIDFd,C(w).

2.5 Cluster Summarizing

The CLS component generates a coherent summary of an appropriate length for
all SDS summaries in a given cluster using an MDS algorithm. This would be
a second-level cluster unless a first-level cluster C does not have a second-level
cluster, namely, |{d :∈ C}| ≤ N . In particular, for each second-level cluster, CLS
takes the corresponding SDS summaries of original documents as input and uses
an appropriate MDS to produce a summary of a suitable length over these SDS
summaries. Section 5.3 includes more information on MDS algorithms.

2.6 Cluster Titling

The CLT component is responsible for generating section titles and subsection
titles for the overview based on topic clusters and subtopic clusters. A hierarchy
of concise section and subsection headings that capture the most important point
of the underlying cluster is one of the most important components in a clear and
well-organized overview. More information of title generation will be presented
in Sect. 6.

2.7 Assembling

The ASG component is responsible for putting everything together and generat-
ing the final SOV. This includes filling in the hierarchy of topic clusters generated
by the HTC component with a title generated by the CLT component for each
top-level cluster (assuming it has sub-clusters), a content summary and a title
for each sub-cluster generated by, respectively, the CLS component and the CLT
component, and the trending graphs or tables for the entire SOV generated by
the STE component. If top-level cluster does not have sub-clusters, then fill it in

Automatic Generation of Structured Overviews 121

with a content summary in addition to a title. As a cluster with a higher cluster
score represents a more significant topic, ASG lists clusters (and sub-clusters)
as sections (and sub-sections) at the same level according to cluster scores in
descending order.

3 Evaluation Methods

When implementing AutoOverview, the choice of algorithms for carrying out
each component affects the quality of an SOV and the time complexity of gen-
erating it. Quality and efficiency are competitive objectives: Achieving a higher
quality would need more computations. These criteria must be considered holis-
tically when evaluating an SOV.

The quality of an SOV is determined by readability, information coverage,
and topic diversity. While readability should be judged by human annotators,
asking human annotators to judge how well information is covered is impractical
because of the sheer number of documents they would need to comprehend. Thus,
we would need to devise text mining algorithms to determine topic coverage.

3.1 Readability

We rely on human annotators to evaluate readability. An SOV is readable if the
following eight categories all have good ratings:

1. Sentences in the SOV are coherent.
2. The SOV does not include useless or confusion text.
3. The SOV does not contain redundancy information.
4. Common nouns, proper nouns, and pronouns are well referenced in the SOV.
5. The entity re-mentions are not overly explicit.
6. Grammars are correct.
7. The SOV is well formatted.
8. Section and sub-section titles are appropriate.

The first seven categories are the DUC-04 evaluation schema [9].

3.2 Information Coverage

Let D be a corpus of text documents. Suppose that we have a gold-standard
partition of D into K clusters C = {C1, C2, . . . , CK}, and a clustering algorithm
generates K clusters, denoted by A = {A1, A2, . . . , AK}. We rearrange these
clusters so that the symmetric difference of Ci and Ai, denoted by Δ(Ci, Ai), is
minimum, where Δ(X,Y) = |X ∪ Y | − |X ∩ Y |. That is, for all 1 ≤ i ≤ K,

Δ(Ci, Ai) = min
1≤j≤k

Δ(Ci, Aj).

This problem has an efficient algorithm. Even finding a permutation σ of
1, 2, . . . ,K such that

∑K
i=1 Δ(Ci, Aσ(i)) is minimum is still polynomial time [16].

122 J. Wang

However, if we have one more clustering algorithm and we want to align three
partitions such that the summartion of pairwise symmetric differences of three
partitions is minimum, then the problem is NP-hard, but has an polynomial-time
approximation with a 4/3-garantee [2].

We define CSD F1-score for A and C as follows, where CSD stands for Clus-
ters Symmetric Difference:

F1(A, C) =
1
K

K∑
i=1

F1(Ai, Ci),

F1(Ai, Ci) =
2P (Ai, Ci)R(Ai, Ci)

P (Ai, Ci) + R(Ai, Ci)
,

with P and R being precision and recall defined by

P (Ai, Ci) =
|Ai ∩ Ci|

|Ai| ,

R(Ai, Ci) =
|Ai ∩ Ci|

|Ci| .

Note that F1(Ai, Ci) can also be written as

F1(Ai, Ci) =
2|Ai ∩ Ci|
|Ai| + |Ci| . (1)

Clearly, F1(A,C) ≤ 1; the higher the value, the better.
Let U be a set of top k words from the original corpus and V a set of top k

words from an SOV. Let

Sk(U, V) =
|U ∩ V |

k
(2)

denote the information coverage score of U and V . Then Sk(U, V) ≤ 1; the
higher the value, the better.

3.3 Topic Diversity

We generate clusters for the original corpus and for an SOV by treating each
sentence in the SOV as a document. We then evaluate the top words among
these clusters using CSD F1-scores to measure topic diversity.

3.4 Overall Quality

We evaluate the overall performance of an SOV using the following criteria
(listed in the order of preference): human evaluation, time efficiency, information
coverage, and topic diversity. We then use Saaty’s pairwise comparison 9-point
scale [41] and the Technique for Order Preference by Similarity to an Ideal
Solution (TOPSIS) [19] to evaluate the overall quality of an overview.

Automatic Generation of Structured Overviews 123

4 Topic Clustering

A topic clustering algorithm partitions a set of documents into clusters with
each cluster representing a topic. LDA [3] can be used to cluster text documents.
Spectral Clustering (SC) [36] is another popular topic clustering method.

Other clustering methods, such as PW-LDA [25], Dirichlet multinomial mix-
ture [52], and neural network models [49], are targeted at corpora of short doc-
uments such as abstracts of scientific papers, which are not suited for our task.
The documents we are dealing with are much longer. Even if we use summaries
to represent the original documents, a summary may still be significantly longer
than a typical abstract. We note that the k-NN graph model [32] may also be
used for topic clustering.

4.1 LDA Clustering

LDA assumes that the given corpus of documents D = {d1, d2, . . . , dL} are all
having the same multiple (latent) topics, labeled as 1, 2, . . . , K for convenience,
but each document follows a different topic distribution. In this model, topics
are distributed differently in each document and words are distributed differently
under each topic.

For topic clustering methods based on word counts in each document, LDA
included, it is sufficient to consider only essential words contained in the doc-
ument. Essential words are words that pass a part-of-speech filter, a stop-word
filter, and a stemmer that reduces inflected words to the word stem. In what
follows, unless otherwise stated, when words are mentioned, they are essential
words. Let W = {w1, w2, . . . , wM} denote the vocabulary of D and W the col-
lection of bags-of-words of all documents.

It is convenient to view each document-to-topic distribution as a biased die
of K faces and each topic-to-word distribution as a biased die of M faces. LDA
assumes that there are infinite K-face dice and infinite M -face dice. LDA selects
a document-to-topic die following a Dirichlet distribution with parameters α
and a topic-to-word die following a Dirichlet distribution with parameters β.

LDA computes two matrices Θ = (θik)L×K and Φ = (ϕkj)K×M using Gibbs
sampling to maximize the likelihood of W, where the i-th row in Θ is a topic
distribution for document di and the k-th row is a word distribution for topic k;
namely,

∀i = 1, 2, . . . , L :
K∑

k=1

θik = 1, θik ≥ 0;

∀k = 1, 2, . . . ,K :
M∑

j=1

ϕkj = 1, ϕkj ≥ 0.

Note that the observable probability p(wj |di) of word wj in document di can
be viewed as a dot product of the i-th row in matrix Θ and the j-th column in
matrix Φ.

124 J. Wang

We can use the document-to-topic matrix (or the topic-to-word matrix) to
cluster documents. For example, we may use K-means to cluster the set of rows
in the document-to-topic matrix into K ′ clusters, where K ′ may or may not
be equal to K. We may also simply use the largest value in the corresponding
row of each document in the document-to-topic matrix to determine its cluster;
namely, the document belongs to the cluster with the largest value.

LDA is a probabilistic algorithm, and so it may produce somewhat different
clusters on the same corpus of documents on different runs.

4.2 Spectral Clustering

SC [46] clusters a given set of data points using eigenvalues of a similarity matrix
(aka. affinity matrix) of the data points into K clusters, where K is a preset
positive integer. SC can handle data points that do not satisfy convexity. In
particular, we treat each document as a data point, represented as a list of words.
Let WMD(di, dj) denote the Word Mover’s Distance [23] of two documents di

and dj . Recall that L is the total number of documents in the corpus D of
documents. The similarity matrix is an L × L matrix, where the entry sij of the
matrix corresponds to a similarity between two documents di and dj defined in
Eq. (3). Under the WMD metric, a smaller value between two documents means
that they are more similar, while a larger value means that they are less similar.
This can be transformed to a similarity metric using the RBF kernel as follows:

simG(di, dj) = e−γ·WMD(di,dj)
2
, (3)

where γ may be set to 1. SC then uses K-means to generate clusters over eigen-
vectors corresponding to the K smallest eigenvalues.

The computation of WMD has a cubical time complexity in terms of the
number of unique words contained in the two input documents. In practice, we
may use the Linear-Complexity Relaxed WMD [1] that runs in linear time on
average with only a limited loss in accuracy compared with WMD.

Similar to LDA clustering, SC also needs to predetermine the number of
topics. SC is a deterministic and faster clustering algorithm, which also needs to
preset the number of topics.

4.3 Affinity Propagation Clustering

Recall that both LDA clustering and spectral clustering must fix a number
of clusters before clustering. This could be a concern in practice. Although
Hierarchical Dirichlet Process (HDP) [44] can be used to dynamically deter-
mine the number of clusters during clustering, its complexity hinders its appli-
cation in AutoOverview. Affinity propagation (AP) clustering [11] overcomes
this problem. AP not only can dynamically determines the number of clusters
during clustering, it is also straightforward to implement with quadratic-time
complexity. AP is an exemplar-based clustering algorithm such as K-means [17]

Automatic Generation of Structured Overviews 125

and K-medoids [21] except that AP does not need to preset the number of clus-
ters.

Let d1, d2, . . . , dL be the documents to be clustered under the similarity mea-
sure of simG(di, dj) defined in Eq. (3). Each document is a potential exemplar in
K-means. AP proceeds by updating two L × L matrices R = (rij) (the respon-
sibility matrix) and A = (aij) (the availability matrix) until they converge for
all i and j:

1. Initially, let rij ← 0 and aij ← 0.
2. Let rij ← simG(di, dj) − bij , where

bij = max
j′ �=j

{simG(di, dj′) + a(i, j′)}.

3. If i 	= j, then let

aij ← min{0, rjj} +
∑

i′ �∈{i,j}
max{0, ri′j}.

Otherwise, let
aij ←

∑
i′ �=j

max{0, ri′j}.

If rii +aii > 0, then select di as an exemplar. Document dj belongs to the cluster
of di if dj has the largest similarity with di among all other exemplars.

5 Text Summarization and Title Generation

Text summarization algorithms include SDS, MDS, hierarchical summarization,
and structural summarization.

5.1 Single-Document Summarization

Single-document summarization is a classic NLP task that has been studied
intensively and extensively for more than six decades since 1958 [31]. The task
of SDS may be formulated as a multi-objective maximization problem. Let d
denote a document consisting of n sentences indexed as S1, S2, . . . , Sn in the
order they appear, each with a length li and a score si, along with a maximum
length constraint Q, where li is the number of characters contained in Si. Let
Fd(D) denote a diversity coverage measure and xi a 0–1 variable such that
xi = 1 if sentence Si is selected, and 0 otherwise. Then the SDS task is modeled
as follows, which is an NP-hard problem:

maximize
n∑

i=1

sixi and Fd(D),

subject to
n∑

i=1

lixi ≤ Q and xi ∈ {0, 1}.

126 J. Wang

There are two types of SDS algorithms in terms of content presentations,
namely, extractive summaries and abstractive summaries. Extractive summaries
are formed by extracting sentences from the original document, while abstractive
summaries are formed by rewriting sentences. The latter is closer to what a
summary is expected to look like by human readers, and is also much more
difficult to produce. There are also two types of SDS algorithms in terms of
methodology, namely, supervised learning and unsupervised learning.

Some of the recent publications of SDS algorithms include [6,33,34,53,54].
At the time when this article is written, the best unsupervised, extractive sum-
marization is substantially better than the best supervised summarization and
the best abstractive summarization in terms of accuracy, efficiency, scalability,
and flexibility across different languages. The recent Semantic WordRank (SWR)
algorithm [54] is currently the state of the art in all aspects. SWR is operated
on a semantic word graph with a few other adjustments.

5.2 SWR

Semantic Word Graphs. A semantic word graph of a given document d is a
weighted graph G = (V,E) of essential words in d. Compute word embeddings
of all words on a Wikipedia dump using an existing NLP tool. Two words are
connected if at lease one of the following two conditions holds:

1. They co-occur within a small window of Δ successive words in the document
(e.g, Δ is often set to 2 to capture two-word phrases).

2. The cosine similarity of their embedding representations exceeds a threshold
value δ (e.g. δ = 0.6).

For each edge (u, v), if only one type of connection exists, then treat the weight
of the other type 0. Assign the co-occurrence count of u and v as the initial
weight to the co-occurrence connection and the cosine similarity of the word
embedding vectors of u and v as the initial weight to the semantic connection.
Normalize the initial weights of co-occurrence connections; namely, divide the
initial co-occurrence weight by the total initial co-occurrence weight. Normalize
the initial weights of semantic connections; namely, divide the initial semantic
weight by the total initial semantic weight. Let wc(u, v) and ws(u, v) denote,
respectively, the normalized weight for the co-occurrence connection and the
semantic connection of u and v. Finally, assign w(u, v) = wc(u, v) + ws(u, v) as
the weight to the edge (u, v).

Article-Structure-Biased PageRank. Article structures define how infor-
mation is presented. For example, news articles are typically structured as an
inverted pyramids [38], with critical information presented at the beginning, fol-
lowed by additional information. Similar to the position-biased PageRank algo-
rithm [13]. SWR uses a position-biased PageRank algorithm as follows:

W (vi) =
∑

vj∈Adj(vi)

d · wji∑
vk∈Adj(vj)

wjk
W (vj) +

∑
k:vi∈Sk

(1 − d) · LSk(vi)∑
j,k:vj∈Sk

LSk(vj)
, (4)

Automatic Generation of Structured Overviews 127

where LSi is the location score of the i-th sentence si according the importance
of sentence locations and LSi(v) = LSi for v ∈ Si. For example, for a document
with the inverted pyramid structure, a location score for word w ∈ si may be
defined by LSi(w) = 1/i. Compute Eq. (4) with an arbitrary initial value for
each node, and iterates it until it converges.

W (vi), referred to as salient score of vi, represents its importance relative to
the other words in the document.

Sentence Scoring with Softplus Adjustment. Let S be a sentence. To score
S, one may simply sum up the salient score W (v) of each word v contained in S.
This has a drawback. To see this, suppose that S1 and S2 are two sentences with
similar scores under this scoring, and contain about the same number of words.
If the distribution of word scores for words contained in S1 follows the Pareto
Principle, namely, a few words have very high scores and the rest have very low
scores close to 0, while S2 has roughly a uniform word score distribution, where
the high scores of a few words in S1 are much larger than the (almost uniform)
scores of words in S2, then the few words in S1 with very high scores would
make S1 appear more important than S2. Using direct summation of salient
word scores, it is possible to end up with the opposite outcome.

Using the Softplus function sp(x) = ln(1 + ex) to elevate a score helps over-
come this drawback. Used as an activation function in neural networks, sp(x)
offers a significant elevation of x when x is a small positive number. If x is large,
then sp(x) ≈ x. Apply the Softplus function to each word, and sum up the
elevated values to be the salient score of S, denoted by salsp(S). Namely,

salsp(S) =
∑
vi∈S

ln(1 + eW (vi)).

Greedy Sentence Selection and Ranking. SWR uses spectral clustering to
cluster sentences into K clusters. Empirical studies suggest that setting λ = 0.3
would be the best for an λ-summary to contain almost all significant points
contained in the original document. On the other hand, to avoid having too
many clusters that could deteriorate performance, it is necessary to set an upper
bound U . For typical news articles, for example, an upper bound U = 8 would
be appropriate. Thus, let

K = min{�0.3n�, U}.

Each sentence Si is now associated with the following four values:

1. Sentence index i.
2. Salient score si = salsp(Si).
3. Sentence length li.
4. Cluster index j of the cluster Si belongs to.

SWR selects sentences as a summary using a greedy strategy in a round robin
fashion as follows:

128 J. Wang

1. Let S denote the set of selected sentences. Initially, S ← ∅.
2. For each sentence Si, compute the value per unit length to obtain a unit score

s′
i = si/li.

3. For each cluster cj , sort the sentences contained in it in descending order
according to their unit scores.

4. While there are still sentences that have not been selected, do the followings:
(a) Sort the remaining clusters in descending order according to the highest

unit score contained in a cluster. For example, if the highest unit score
in cluster ci is smaller than the highest unit score in cluster cj , then cj

comes before ci in the sorted clusters.
(b) Select the sentence from the remaining sentences with the highest unit

score, one from each cluster in the order of sorted clusters, and add it to
S. That is,

S ← S ∪ {Si1 , Si2 , . . . , Sik},

where Sij are the selected sentences and k is the number of remaining
clusters that are nonempty.

(c) Remove the selected sentences from their corresponding clusters.
5. Rank sentences according to the order they are selected.

Evaluation. Evaluating SWR against the SummBank benchmarks [39] indi-
cates that SWR is a good choice for implementing AutoOverview. Each Summ-
Bank benchmark consists of the following data:

1. A corpus of documents.
2. Sentences in each document are individually ranked by three human judges.
3. A combined ranking of the three judges for each sentence.

To evaluate SWR, the threshold value of similarities and the size of sliding
window of co-occurrences must be determined. To demonstrate robustness and
avoid overfitting, SWR is run on the DUC-01 dataset to obtain the values of
these parameters that maximize the average ROUGE-1 score [29]. Testing on the
DUC-02 benchmarks, SWR achieves higher ROUGE-1, ROUGE-2, and ROUGE-
SU4 scores over all previous SDS algorithms. On the SummBank benchmarks,
SWR outperforms each individual judge against the other two judges under the
ROUGE measures, while comparing favorably with the combined ranking of all
judges on ranking sentences up to the top 30% rank, which is what AutoOverview
will be using. The combined ranking represents the collective judgments of the
three judges.

5.3 Multi-Document Summarization

An MDS algorithm takes several documents as input and generates a summary
of these documents as output. Most MDS algorithms are algorithms of selecting
sentences. Sentences may be ranked using features of term frequencies, sentence

Automatic Generation of Structured Overviews 129

positions, and keyword co-occurrences [18,33], among a few other things. Meth-
ods include graph-based lexical centrality LexRank [12], centroid-based cluster-
ing [40], Support Vector Regression [28], syntactic linkages between text [48],
and Integer Linear Programming [15,26]. Selected sentences may be reordered
to improve coherence using probabilistic methods [24,35].

GFLOW. Focused on sentence coherency, GLFOW [7] is an unsupervised
graph-based method that selects and reorders sentences to balance coherence
and salience over an approximate discourse graph (ADG) of sentences. An ADG
is a weighted, directed graph on sentences, modeling sentence discourse rela-
tions among documents based on (1) deverbal noun reference, (2) event/entity
continuation, (3) discourse markers, (4) sentence inference, and (5) co-reference
mentions. Two sentences are connected with a direction if they have one of
the aforementioned sentence relations. Edge weight is calculated based on the
number of sentence relations between two sentences.

GFLOW solves uses a random-walk heuristic to find an approximation to the
following NP-hard ILP problem over an ADG:

maximize Sal(X) + αCoh(X) − β|X|
subject to

∑
xi∈X

l(xi) < B,

∀xi, xj ∈ X : rdt(xi, xj) = 0,

where variable X is a summary, |X| is the number of sentences in the given
summary, Sal(X) is the salience score of X, Coh(X) is the coherence score of
X, rdt(xi, xj) is a redundancy measure between two sentences xi and xj , and
l(xi) is the length of sentence xi.

Random Walks. Start from a node with the highest salience score with no incom-
ing edges, and proceeds to the next node with the highest out-degree. Repeat
this walk until it cannot go any further or the total number of sentences exceeds
a given limit. Sum up the salience scores on this path. Start from another node
and repeat the same procedure. Choose one path with largest salience score, or
a few paths with the highest total salience score such that the total number of
sentences is below the limit.

Choosing GFLOW to implement AutoOverview would be a natural choice
for its strength on generating a coherent summary with minimum redundancy.
Since we are using 0.3-summaries obtained by SWR, the loss of most important
points of the original documents will not be a major concern.

Other Recent MDS Algorithms. Based on GFLOW, a supervised neural
network model [51] was devised that combines Personalized Discourse Graph
(PDG), Gated Recurrent Units (GRU), and Graph Convolutional Network
(GCN) [22] to rank and select sentences. TCSum [5] is another neural network
model that leverages text classification to improve the quality of multi-document

130 J. Wang

summaries. However, neural network methods require large-scale training data
to obtain a good result.

T-DMCA [30] is a large-scale summarization method to generate an English
Wikipedia article. It combines extractive summarizations and abstractive sum-
marizations trained on a large-scale Wikipedia dataset to summarize the text.
While T-CMDA is capable of creating summaries with specified topics as
Wikipedia article, it can hardly generate an SOV for a large corpus of docu-
ments containing multiple topics.

5.4 Hierarchical and Structural Summarization

There are algorithms for generating a hierarchical summary of a single document
[4] and Otterbacher et al. [37] and an algorithm that summarizes the news tweets
into a flexible, topic-oriented hierarchy based on Twitter-LDA [14]. SUMMA [8]
is a system that creates coherent summaries hierarchically in the order of time,
locations, or events. These methods focus on single documents or short texts,
or require documents be written with a certain predefined structure template,
making them unsuited for our task.

Structured summarization algorithms first identify topics of the input docu-
ments. For example, using a high-level structure of human-authored documents,
one can generate a topic-structure multi-paragraph overview with domain-
specific templates [42]. A summary template generation system was proposed to
cluster sentences and words and generate sentence patterns to represent topics
based on an entity-aspect LDA model [27]. Autopedia [50] is a Wikipedia article
generation framework that selects Wikipedia templates as article structures.

6 Title Generation

A suitable title for a block of texts must convey the central meanings of these
texts, and be succinct and catchy. Automatic title generation (ATG) for a given
block of texts can be viewed as a task of generating a phrase or a short sentence
to represent the central meanings of the texts. Shao and Wang [43] presented a
two-phase algorithm to generate a title. In the first phase the algorithm identifies
a few sentences with high rankings, with a structure suitable to being a title
after some modifications. These sentences are referred to as title candidates. In
the second phase, the algorithm constructs a dependency tree1 for each title
candidate using a dependency parser, and trims off possible branches using a
set of empirical rules they defined. The shortest output is used as the final title.
This process is called Dependency-Tree Automatic Title Generator (DTATG).
Sentence trimming has been used to generate titles using context-free grammar
trees [45,55]. But context-free grammar trees are tedious to work with, and
working with dependency trees is better for our purpose. Experiments confirms
that DTATG can generate titles comparable to titles generated by human writers
on most single documents.
1 For example, see http://nlpprogress.com/english/dependency parsing.html.

http://nlpprogress.com/english/dependency_parsing.html

Automatic Generation of Structured Overviews 131

6.1 DTATG

DTATG generates a title for a given block of texts as follows:

1. Rank each sentence using a suitable measure such as the sentence rank-
ing according to the greedy selection process of SWR (see the greedy sen-
tence selection and ranking algorithm in Sect. 5.2). Select a small number
of sentences with the highest rankings, which are referred to as the cen-
tral sentences. In practice, selecting three or four central sentences would be
sufficient.

2. Construct a dependency tree for each central sentence using a dependency
parser such as the Stanford Dependency Parser2, starting from the sentence
with the highest ranking.

3. Remove certain branches of the dependency tree based on a set of empirical
rules.

4. If a trimmed sentence passes the title tests, then use it as a title.

6.2 Dependency Trees and Trimming

A dependency tree is constructed based on part-of-speech tag for each word in
a sentence and grammatical relations between words in the form of triplets as
follows:

(relation, governor, dependent).

Trimming Rules. For the purpose of generating a title, the following set of
empirical rules specifies what words may be trimmed and what words should be
kept, so that a trimmed sentence would look like a title.

1. “May-be-trimmed” rules:
(a) The first adverbial phrase and the last adverbial phrase may be trimmed.
(b) The phrase of “X says” and “X said”, where X is a noun or pronoun, may

be trimmed.
(c) If there are two clauses connected with “and” and the first clause consists

of a subject and a verb, then the second clause and the “and” may be
trimmed.

(d) If there is a clause starting with “that” and the clause has a subject and
a verb, then this “that” and the words before it may be trimmed.

(e) If there are more than one nmod relations next to each other, then all the
nmod relations except the last one may be trimmed.

2. “To-be-kept” rules:
(a) If the relation is nsubj or nsubjpass, then both the governor and the depen-

dent are to be kept.
(b) If the relation is dobj or iobj, then both the governor and the dependent

are to be kept.

2 Available at http://nlp.stanford.edu/software/stanford-dependencies.shtml.

http://nlp.stanford.edu/software/stanford-dependencies.shtml

132 J. Wang

(c) If the relation is compound, then both the governor and the dependent
are to be kept.

(d) If the relation is root, then the dependent is to be kept.
(e) If the relation is nmod, then the dependent and the preposition in nmod

are to be kept.
(f) If the relation is nummod, then both the governor and the dependent are

to be kept.

For example, the sentence “Market concerns about the deficit has hit the green-
back” after trimming is “Market concerns about deficit hit greenback”, which
would be a suitable title.

6.3 DTATG-generated Titles

A good title must be concise and catchy to capture the reader’s attention. In
other words, a good title should pass the following title tests:

Conciseness Test

1. A title should not exceed 15 words.
2. A title must not have clauses.
3. A title should have the following structure: Subject + Verb + Object or

Subject + Verb. Subject must be specific: it can be a noun but not a pronoun.

Fluency Test. A title should contain no grammatical errors.

Topic-Relevance Test. A title must convey at least one main meaning of the
document.

Evaluation. DTATG-generated titles are evaluated by five human annotators
on a corpus of 2,225 classified BBC news articles published in the years of 2004
to 2005 with classification labels of business, entertainment, politics, sports, and
technology, hereafter referred to as BBC News. The evaluations confirm that
DTATG generates suitable titles on most cases.

7 NDORGS: The First Implementation of AutoOverview

Implementing AutoOverview involves a selection of a suite of algorithms: an
HTC algorithm, a DOS algorithm, a CLS algorithm, and a CLT algorithm. It
also needs to determine the best value of parameter λ for λ-summaries. NDORGS
[47] is the first implementation of AutoOverview.

Automatic Generation of Structured Overviews 133

7.1 Data Sets

Two datasets are used to evaluate the quality of SOVs generated by NDORGS.
One is the same BBC News dataset used to test DTATG (The BBC News dataset
can be found at http://mlg.ucd.ie/datasets/bbc.html, which was made available
by D. Greene and P. Cunningham). The other is a corpus of 5,300 unclassified
articles extracted from Factiva [20] under the keyword search of “Marxism” from
the year of 2008 to the year of 2017, hereafter referred to as Factiva-Marx. The
latter dataset was used to test SOVs for a project of analyzing public sentiments
about Marxism.

Fig. 2. A subtree of topic clusters in the BBC News dataset.

Figure 2 is an example of a subtree from the hierarchical topic clustering
over BBC News, where each node represents a topic with six most frequent
words under that topic. The root illustrates the most frequent words of the
corpus. The first level topic cluster contains two subtopics: Entertainment and
Technology. When words such as “series”, “comedy”, and “episode” under topic
Entertainment are discovered for a substantial number of times, a subtopic of
TV Series may be detected. The hierarchically structured topic clusters pro-
vide detail information about topic relationships contained in a large corpus of
documents.

Table 1 shows some of the statistics of BBC News and Factiva-Marx, where
NumD denotes “the total number of documents”, NumW denotes “the total
number of words” and AvgNumW/D denotes “the average number of words per
document”.

http://mlg.ucd.ie/datasets/bbc.html

134 J. Wang

Table 1. Size comparisons between different datasets.

Dataset NumD NumW AvgNumW/D Vocab size

BBC News 2, 225 8.5 × 105 380 6.56 × 104

Factiva-Marx 5, 300 1.09 × 107 2,100 3.89 × 105

7.2 Programming Modules

NDORGS is focused on generating the text portion of an SOV. The STE compo-
nent is carried out separately. It also combines the TWG and DOS components
into one programming module called Pre-Processing (PPG) module for easier
handling. Figure 3 is a data flow diagram of the five programming modules of
NDORGS.

Process 1

PPG

Process 2

HTC

Process 3

CLS

MDS Summaries

Process 4

CLT

Process 5

ASG

Documents

SDS Summaries

Titles

Hierarchical Topic Clusters

BusinessEntertainment

Oscar TV Series Musical Finance Real EstateCompany

Cluster Titles

Ore costs hit global steel firms

GM pays $2bn to evade Fiat buyout

Vera Drake leads UK Oscar hopes

....

House prices show slight increase

....

5.1. Ore costs hit global steel firms
.... steel firms have dropped worldwide amid
concerns that higher iron ore costs will hit profit
growth

5.2. GM pays $2bn to evade Fiat buyout

.... Fiat claims that GM is legally obliged to buy the
90% of the car unit it does not already own

6.1. House prices show slight increase

.... UK housing market is slowing after interest rate
increases

7.1. Vera Drake leads UK Oscar hopes

.... best male and female film actors, boosting their
Oscars hopes this month
....

SOV

Fig. 3. An example of NDORGS processing.

7.3 Settings and Parameters

We determine empirically the values of parameters that lead to the best over-
all performance for both BBC News and Factiva-Marx. For each dataset,
NDORGS produces three SOVs3 corresponding to three λ-summaries with
λ ∈ {0.1, 0.2, 0.3}.

1. The PPG module generates λ-summaries for each document with the length
ratio λ = 0.1, 0.2, and 0.3 using the SWR algorithm described in Sect. 5.1.

2. The HTC module creates two-level topic clusters using the LDA clustering
algorithm on 0.3-summaries, where the number of clusters at the first level is
set to K = 9, as suggested in Sect. 7.4 (see Fig. 4). To generate the second-
level clusters, we set N = 200 as an upper bound of each cluster. The number
of second-level clusters is dynamically determined. Note if a cluster Ci with
|Ci| > N but cannot be further divided into multiple sub-clusters, the HTC

3 The six SOVs generated by NDORGS are available at http://www.ndorg.net.

http://www.ndorg.net

Automatic Generation of Structured Overviews 135

module follows method 3 in Sect. 2.2. Namely, split Ci evenly into Kij =
1 + �|Cij |/N� sub-clusters with N documents in each sub-cluster (except the
last one) according to document scores in non-descending order.

3. The CLS module uses GFLOW to produce a cluster summary for each cluster.
The length li of an MDS summary of (nonempty) cluster Ci is determined by

li =
{

150 · �|Ci|/10� + 300, if |Ci| < 70,
200 · �|Ci|/10�, if |Ci| ≥ 70.

This is an empirical setting, and may be changed in practice.
4. The CLT module applies DTATG to generate a title for each cluster and

sub-cluster.
5. The ASG module reorders clusters at the same level according to cluster

scores SC defined in Sect. 2.2. For each level of clusters, if there are clusters
containing less than 70 documents, then ASG merges these clusters’ sum-
maries into a separate section under the title of “Other Topics”, where each
cluster’s summary is listed as a bullet item, in descending order of cluster
scores.

7.4 Text Clustering Evaluations for Deciding K

Let HLDA-D, HSC-D, HLDA-S, and HSC-S denote, respectively, the algorithms
of applying HTC using LDA clustering and HTC using spectral clustering on
original documents and 0.3-summaries generated by SWR.

Fig. 4. CSD F1-scores on labeled BBC News articles.

Comparisons of Clustering Quality. Figure 4 compares the CSD F1-scores
of HLDA-D, HLDA-S, HSC-D, and HSC-S over the labeled BBC News articles.
We can see that HLDA-D is better than HLDA-S, which is better than HSC-D,

136 J. Wang

Fig. 5. Comparisons of clustering running time

and HSC-D is better than HSC-S. All of these algorithms have the highest CSD
F1-scores when the number of top-level topics K = 9. This is in line with a
general experience that the number of top-level sections in an SOV should be
bounded by 10.

Comparisons of Clustering Running Time. Figure 5 depicts the running
time of clustering the BBC News and Factiva-Marx datasets by different algo-
rithms into two-level clusters on a Dell desktop with a quad-core Intel Xeon
2.67 GHz processor and 12 GB RAM. The top-level clusters numbers K are
ranged from 2 to 200.

We can see that for both corpora, HSC-S is the fastest, HSC-D is slightly
slower, HLDA-D is the slowest, and HLDA-S is in between HLDA-D and HSC-
D. Thus, HLDA-S would be a good choice for balancing accuracy and efficiency.

Automatic Generation of Structured Overviews 137

On the other hand, it can be seen that when the number of top-level clusters
is small, the two-level clustering running time is high. This is because, for a
given corpus, having a smaller number of top-level clusters would imply a larger
number of second-level clusters, and so would require significantly more time for
clustering at the second level. The turning points are around K = 20.

7.5 Evaluations of Overall Quality of SOVs

Readability. Human annotators with high ratings were recruited from Ama-
zon Mechanical Turk (AMT) to evaluate six SOVs generated by NDORGS on,
respectively, 0.1, 0.2, and 0.3-summaries of documents in the two corpora [47],
with each SOV being evaluated by four human annotators. The evaluation scores
are provided in Table 2.

Figure 6 shows the average scores of human annotators using a 4-point sys-
tem, with 4 being the best. It can be seen from Fig. 6a that, for BBC News,
the SOVs generated on 0.3-summaries outperforms reports generated on 0.2-
summaries and 0.1-summaries in all categories except “OverlyExplicit”. From
Fig. 6b it can be seen that, for Factiva-Marx, the SOVs generated on 0.2-
summaries is better than reports generated on 0.3-summaries and 0.1-summaries
in most of the categories; they are “UselessText”, “Referents”, “OverlyExplicit”,
“Grammatical”, and “Formatting”. Note that a larger value of λ yields a bet-
ter SOV on BBC News, while a smaller value of λ yields a better SOV on
Factiva-Marx. Note that the Factiva-Marx corpus contains almost three times
more documents than the BBC News corpus, and each document in Factiva-
Marx contains on average over ten times larger number of tokens than that in a
document from BBC News. This may indicate that for a larger corpus of longer
documents, using a smaller value of λ might be better.

Information Coverage. Information coverage is evaluated by comparing the
top words in an SOVs and the top words in the corresponding corpus. Top words
in BBC News and Factiva-Marx, are listed below, respectively, for comparisons,
where the first item depicts the top 50 words in the original corpus, and the
second, third, and fourth items depict, respectively, the top 50 words in the
report generated on 0.1-summaries, 0.2-summaries, and 0.3-summaries, listed in
descending order of keyword scores. The words in bold are the common top
words that occur across all four rows. The words with underlines are the top
words that occur in the first row and two of the other three rows. The words in
italics are the top words that occur in the first row and just one of the other
three rows.

Top word comparisons for BBC News

1. people, told, best, government, time, year, number, three, film, music,
bbc, set, game, going, years, labour, good, well, top, british, european,
win, market, won, company, public, second, play, mobile, work, firm, blair,
games, minister, expected, england, chief, technology, party, sales, news,
plans, including, help, election, digital, players, director, economic, big

138 J. Wang

Table 2. Human evaluation Scores, where C1,C2, . . . ,C7 represent, respectively,
Coherence, UselessText, Redundancy, Referents, OverlyExplicit, Grammatical, and
Formatting

Corpus SOV Human evaluation score

C1 C2 C3 C4 C5 C6 C7

BBC News λ = 0.1 3 1 2 2 2 2 1

4 4 4 4 4 4 4

3 3 2 1 3 1 2

1 1 2 2 2 4 4

λ = 0.2 4 3 3 3 0 3 2

2 3 3 3 4 4 4

1 1 2 3 2 2 4

3 3 3 3 3 3 2

λ = 0.3 4 3 2 4 4 4 4

4 1 3 2 1 1 3

3 2 2 3 1 3 3

4 4 4 4 4 4 4

Factiva-Marx λ = 0.1 3 3 3 1 3 2 3

4 1 4 2 4 4 4

2 2 3 2 3 1 2

3 2 2 3 1 2 3

λ = 0.2 3 2 2 3 3 4 2

2 2 2 3 3 3 4

2 4 3 3 3 3 3

4 4 4 4 4 2 4

λ = 0.3 4 3 4 4 3 3 3

3 3 3 2 3 3 2

2 2 2 2 2 2 2

3 3 3 3 3 3 2

2. people, best, number, government, film, year, three, game, howard,
music, london, british, face, biggest, net, action, firm, deal, rise, national,
foreign, singer, michael, leader, oil, blair, dollar, stock, star, cup, online,
future, games, 2004, work, won, list, international, coach, win, mark, tory,
labour, brown, general, prices, market, car, help, users

3. year, people, number, three, best, british, film, company, won, labour,
music, net, bbc, government, leader, shares, european, earlier, chart, third,
games, state, win, coach, expected, second, months, political, house, eco-
nomic, game, years, team, start, manchester, england, election, chief, inter-
national, michael, profit, champion, award, star, announced, service, future,
firm, top, news

Automatic Generation of Structured Overviews 139

Fig. 6. Human evaluations. (a) BBC-0.1, BBC-0.2, and BBC-0.3: reports with sum-
mary length ratio = 0.1, 0.2, and 0.3 over BBC News. (b) Marx-0.1, Marx-0.2, and
Marx-0.3: reports with summary length ratio = 0.1, 0.2, and 0.3 over Factiva-Marx.

4. people, england, year, film, labour, boss, firm, despite, number, three,
wales, british, nations, best, company, music, blair, set, record, oil, time,
years, won, prices, plans, net, online, including, films, bbc, court, games,
game, brown, david, government, expected, club, action, beat, total, group,
unit, firms, rules, mobile, second, analysts, future, computer

Top word comparisons for Factiva-Marx

1. party, chinese, china, political, people, communist, economic,
national, state, government, years, social, great, time, rights,
development, international, president, central, war, north, university,

140 J. Wang

power, united, work, country, foreign, global, military, history, south,
marxism, human, western, soviet, well, system, mao, american, news,
public, cultural, long, states, countries, three, left, media, british, including

2. party, china, chinese, communist, political, years, economic, rights,
human, president, people, national, year, state, leaders, government,
central, countries, news, social, country, leader, time, foreign, power,
north, nuclear, top, marxism, ideological, led, media, war, beijing, west-
ern, united, development, soviet, mao, states, history, university, capital-
ism, official, market, officials, march, korea, democracy, south

3. china, party, communist, chinese, political, economic, years, rights,
president, people, central, state, social, united, north, beijing, west-
ern, news, media, mao, cpc, war, human, anniversary, public, members,
country, jinping, leader, states, government, south, marxism, democratic,
national, power, year, foreign, american, education, international, july,
nuclear, day, book, leadership, committee, leaders, copyright, study

4. china, party, communist, chinese, economic, years, people, politi-
cal, human, news, state, social, government, central, national, leader,
president, media, cultural, rights, mao, power, development, year,
international, university, leaders, history, united, beijing, copyright, social-
ist, global, great, top, nation, universities, western, revolution, nuclear, for-
eign, public, agency, marxism, time, members, congress, war, change,
north

Listed below are the summary of the comparison results:

1. For BBC News, over 70% of the top words in the corpus are also top words
in the three overview reports combined, over one-third of the top words in
the corpus are top words in the report on 0.1-summaries, over one half of the
top words in the corpus are top words in the report on 0.2-summaries as well
as in the report on 0.3-summaries, and over 80% of the top 10 words in the
corpus are top words in each report.

2. For Factiva-Marx, 82% of the top words in the corpus are also top words
in the three overview reports combined, 70% of the top words in the corpus
are top words in the report on 0.1-summaries as well as in the report on
0.3-summaries, 64% of the top words in the corpus are top words in the
report on 0.2-summaries, and the top 12 words in the corpus are top words in
each summary. These results indicate that NDORGS is capable of capturing
important information of a large corpus.

Information-Coverage Score. The information coverage scores (see Eq. 2 in
Sect. 3.2 for definition) for SOVs over BBC News and Factiva-Marx are given in
Table 3. It can be seen that the report generated on 0.2-summaries achieves the
highest information coverage score over BBC News, and the SOV generated on
0.1-summaries or 0.3-summaries achieves the highest information coverage score
over Factiva-Marx.

Automatic Generation of Structured Overviews 141

Table 3. Information-coverage scores.

Dataset λ = 0.1 λ = 0.2 λ = 0.3

BBC News 0.38 0.54 0.52

Factiva-Marx 0.70 0.64 0.70

Topic Diversity. Topic diversity scores are shown in Table 4. It can be seen that
SOVs generated on 0.2-summaries outperform those generated on 0.1-summaries
and 0.3-summaries for both BBC News and Factiva-Marx.

Table 4. Topic-diversity scores.

Dataset λ = 0.1 λ = 0.2 λ = 0.3

BBC News 0.1278 0.1444 0.1278

Factiva-Marx 0.1056 0.1167 0.1111

Time Efficiency. Figure 7 illustrates the running time of NDORGS on BBC
News and Factiva-Marx, with the following results:

1. NDORGS incurs, respectively, about 80% and 56% more time to generate an
SOV on 0.3-summaries and 0.2-summaries than 0.1-summaries (see Fig. 7(a)).

2. NDORGS incurs, respectively, over 2 times and 1.8 times longer to generate an
SOV on 0.3-summaries and 0.2-summaries than 0.1-summaries (see Fig. 7(b)).

3. NDORGS achieves the best time efficiency on 0.1-summaries, which is
expected.

4. Working on a larger summary length ratio incurs a longer running time, which
is expected.

Fig. 7. Comparisons of running time.

142 J. Wang

Overall Performance. The overall performance of NDORGS is evaluated
using the following criteria (listed in the order of preference): human evalua-
tion, time efficiency, information coverage, and topic diversity. In particular, we
use Saaty’s pairwise comparison 9-point scale [41] and the Technique for Order
Preference by Similarity to an Ideal Solution (TOPSIS) [19] to determine which
value of λ has the best performance.

Let the three SOVs for the same corpus be the three alternatives, denoted
by a1, a2, a3. Let the human evaluation mean score, running time, information
coverage score, and topics diversity score be four criteria, denoted by c1, c2, c3, c4.
Next, we use Saaty’s pairwise comparison 9-point scale to determine weights for
each criterion. A weight vector w = {w1, w2, w3, w4} is then computed using the
Analytic Hierarchy Process (AHP) procedure [41], where wi is the weight for
criterion ci. A weighted normalization decision matrix T is then generated from
the normalized matrix R and the weight vector w. The alternatives a1, a2, and
a3 are ranked using Euclidean distance and a similarity method (see Table 5). It
can be seen that the SOVs generated on 0.2-summaries achieve the best overall
performance on both BBC News and Factiva-Marx.

Table 5. Overall performance.

Rank Model Readability Time Coverage Diversity

3 BBC-0.1 3.57 3310 0.38 0.1278

1 BBC-0.2 3.71 5060 0.54 0.1444

2 BBC-0.3 4.03 5930 0.52 0.1278

2 Marx-0.1 3.57 317023 0.70 0.1056

1 Marx-0.2 4.03 539474 0.64 0.1167

3 Marx-0.3 3.75 758404 0.70 0.1111

Sensitivity Analysis. A decision made by TOPSIS is stable if it is not changed
when slightly alternating the weight of the criteria. To evaluate how stable the
decision TOPSIS has made, we carry out sensitivity analyses to measure the
sensitivity of weights. For criterion ci, we vary wi with a small increment c by
w′

i = wi + c. We then adjust the weights for other criteria cj by

w′
j = (1 − w′

i)wj/(1 − wi).

Recompute the ranking until another alternative is ranked number one.
Figure 8 depicts the sensitivity analyses results. In both Fig. 8a and b, reports
generated on 0.2-summaries keep the highest rank while adjusting the weight
of criteria of “Human Evaluation”, “Time”, “Coverage”, and “Diversity”. Thus,
the decision made by TOPSIS is stable over both BBC News and Factiva-Marx.

Automatic Generation of Structured Overviews 143

Fig. 8. The x-axis indicates the weight of corresponding criterion in incre-
ments/decrements of 0.02 each time, and the y-axis shows the new TOPSIS values.

144 J. Wang

8 Statistics and Trends of Entities

The STE component of AutoOverview generates statistics and trending graphs of
name entities of interests to provide the reader with an easy visual. Name entities
that are of particular interests include organizations, persons, and geopolitical

Fig. 9. The most frequent organizations in Factiva-Marx

Fig. 10. The most frequent persons in Factiva-Marx

Automatic Generation of Structured Overviews 145

entities. An implementation of STE uses a name-entity-recognition tool (such as
nltk.org) to tag name entities and compute their frequencies. Figures 9, 10, and
11 are the trending graphs generated over the Factiva-Marx dataset.

Fig. 11. The most frequent geopolitical entities in Factiva-Marx

Fig. 12. The trend of “South Korea” in Factiva-Marx

146 J. Wang

Fig. 13. The trend of “America” in BBC News

For a specific name entity of interests, STE also generates TFIDF scores,
in addition to its frequency by years. The TFIDF score of each year is the
summation of the TFIDF score of each document with respect to the corpus of
articles in that year, which measures its significance. Figure 12 depicts a trending
graph for “South Korea”. It is interesting to note that, while South Korea was
both mentioned 30 times in 2016 and 2017, its significance was much higher
in 2017 than 2016. Figure 13 depicts a trending graph for “America” in BBC
News across the six categories. It is interesting to note that, while America
was mentioned one more time in Entertainment than in Politics, the TFIDF
score is significantly higher in Politics than in Entertainment, indicating that
America plays a more significant role in politics than other countries compared
to Entertainment.

9 Final Comments

This article introduces and elaborates a general framework of AutoOverview for
generating an SOV over a very large corpus of documents. There are still many
problems not addressed and many directions not yet explored. Above all, there
is much room for improving the quality of an SOV. The author hopes to bring
readers’ attentions to this fascinating subject. In the course of this research, we
realized that it helps to think about algorithms as combinatorics of algorithms,
namely, algorithms of algorithms, for solving a complex problem involving many
sub-components for the same input instances, in addition to working on individ-
ual algorithms dealing with combinatorics of different components in an instance.

Automatic Generation of Structured Overviews 147

Acklowledgement. During the past five years, a number of students have worked on
various parts of AutoOverview for their PhD degrees at the University of Massachusetts
Lowell, although the term of AutoOverview and its current framework were not intro-
duced until now in this article. They are (in alphabetical order) Yiqi Bai, Ming Jia,
Liqun (Catherine) Shao, Jingwen (Jessica) Wang, Wenjing Yang, Cheng Zhang, and
Hao Zhang, and five of them have graduated. Most of their contributions have been
published elsewhere. The term of AutoOverview was inspired from a conversation with
Prof. Jiawei Han of the University of Illinois at Urbana-Champaign.

References

1. Atasu, K., et al.: Linear-complexity relaxed word mover’s distance with GPU accel-
eration. In: Proceedings of the 2017 IEEE International Conference on Big Data
(BigData 2017), Boston, Massachusetts, USA, 11–14 December 2017, pp. 889–896
(2017)

2. Berman, P., DasGupta, B., Kao, M.Y., Wang, J.: On constructing an optimal
consensus clustering from multiple clusterings. Inform. Process. Lett. 104(4), 137–
145 (2007)

3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

4. Buyukkokten, O., Garcia-Molina, H., Paepcke, A.: Seeing the whole in parts: text
summarization for web browsing on handheld devices. In: Proceedings of the 10th
International Conference on World Wide Web (WWW 2001), Hong Kong, China,
1–5 May 2001, pp. 652–662. ACM (2001)

5. Cao, Z., Li, W., Li, S., Wei, F.: Improving multi-document summarization via text
classification. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence
(AAAI 2017), San Francisco, USA, 4–9 February 2017, pp. 3053–3059 (2017)

6. Cao, Z., Li, W., Li, S., Wei, F., Li, Y.: AttSum: joint learning of focusing and
summarization with neural attention. In: Proceedings of the 26th International
Conference on Computational Linguistics (COLING 2016), Osaka, Japan, 11–16
December 2016, pp. 547–556 (2016)

7. Christensen, J., Mausam, Soderland, S., Etzioni, O.: Towards coherent multi-
document summarization. In: Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies (NAACL-HLT 2013), Atlanta, Georgia, USA, 9–15 June 2013,
pp. 1163–1173 (2013)

8. Christensen, J., Soderland, S., Bansal, G., et al.: Hierarchical summarization: scal-
ing up multi-document summarization. In: Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics (ACL 2014), Baltimore, Mary-
land, USA, 22–27 June 2014, vol. 1, pp. 902–912 (2014)

9. DUC: DUC 2004 quality questions (2004). http://duc.nist.gov/duc2004/quality.
questions.txt

10. DUC: Document understanding conference (2014). https://www-nlpir.nist.gov/
projects/duc/intro.html

11. Dueck, D.: Affinity propagation: clustering data by passing messages. Citeseer
(2009)

http://duc.nist.gov/duc2004/quality.questions.txt
http://duc.nist.gov/duc2004/quality.questions.txt
https://www-nlpir.nist.gov/projects/duc/intro.html
https://www-nlpir.nist.gov/projects/duc/intro.html

148 J. Wang

12. Erkan, G., Radev, D.R.: LexRank: graph-based lexical centrality as salience in text
summarization. J. Artif. Intell. Res. 22, 457–479 (2004)

13. Florescu, C., Caragea, C.: A position-biased pagerank algorithm for keyphrase
extraction. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence
(AAAI 2017), San Francisco, California, USA, 4–9 February 2017, pp. 4923–4924
(2017)

14. Gao, W., Li, P., Darwish, K.: Joint topic modeling for event summarization across
news and social media streams. In: Proceedings of the 21st ACM International Con-
ference on Information and Knowledge Management (CIKM 2012), Maui, Hawaii,
USA, 29 October–2 November 2012, pp. 1173–1182 (2012)

15. Gillick, D., Favre, B.: A scalable global model for summarization. In: Proceedings
of the Workshop on Integer Linear Programming for Natural Langauge Processing,
pp. 10–18 (2009)

16. Gusfield, D.: Partition-distance: a problem and class of perfect graphs arising in
clustering. Inform. Process. Lett. 82(3), 159–164 (2002)

17. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a k-means clustering algorithm.
J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979)

18. Hong, K., Conroy, J.M., Favre, B., Kulesza, A., Lin, H., Nenkova, A.: A repository
of state of the art and competitive baseline summaries for generic news summariza-
tion. In: Proceedings of the 9th edition of the Language Resources and Evaluation
Conference (LREC 2014), Reykjavik, Iceland, 26–31 May 2014, pp. 1608–1616
(2014)

19. Hwang, C.L., Yoon, K.: Methods for multiple attribute decision making. In: Hwang,
C.L., Yoon, K. (eds.) Multiple Attribute Decision Making. Lecture Notes in Eco-
nomics and Mathematical Systems, vol. 186, pp. 58–191. Springer, Heidelberg
(1981). https://doi.org/10.1007/978-3-642-48318-9 3

20. Jones, D.: Factiva global news database (2018). https://www.dowjones.com/
products/factiva/

21. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley, Hoboken (2009)

22. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: Proceedings of the 4th International Conference on Learning Repre-
sentations (ICLR 2016), San Juan, Puerto Rico, 2–4 May 2016

23. Kusner, M.J., Sun, Y., Kolkin, N.I., Weinberger, K.Q.: From word embeddings
to document distances. In: Proceedings of the 32nd International Conference on
Machine Learning (ICML 2015), Lille, France, 06–11 July 2015, vol. 37 (2015)

24. Lapata, M.: Probabilistic text structuring: experiments with sentence ordering.
In: Proceedings of the 41st Annual Meeting on Association for Computational
Linguistics (ACL 2003), Sapporo, Japan, 7–12 July 2003, vol. 1, pp. 545–552 (2003)

25. Li, C., et al.: LDA meets Word2Vec: a novel model for academic abstract clustering.
In: Companion Proceedings of the Web Conference (WWW 2018), pp. 1699–1706
(2018)

26. Li, C., Qian, X., Liu, Y.: Using supervised bigram-based ILP for extractive sum-
marization. In: Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (ACL 2013), Sofia, Bulgaria, 4–9 August 2013, vol. 1,
pp. 1004–1013 (2013)

27. Li, P., Jiang, J., Wang, Y.: Generating templates of entity summaries with an
entity-aspect model and pattern mining. In: Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics (ACL 2010), Uppsala, Sweden,
11–16 July 2010, pp. 640–649 (2010)

https://doi.org/10.1007/978-3-642-48318-9_3
https://www.dowjones.com/products/factiva/
https://www.dowjones.com/products/factiva/

Automatic Generation of Structured Overviews 149

28. Li, S., Ouyang, Y., Wang, W., Sun, B.: Multi-document summarization using sup-
port vector regression. In: Proceedings of DUC. Citeseer (2007)

29. Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. In: Proceed-
ings of Workshop on Text Summarization Branches Out, Barcelona, Spain, 21–26
July 2004, pp. 74–81 (2004)

30. Liu, P.J., et al.: Generating Wikipedia by summarizing long sequences. In: Pro-
ceedings 6th International Conference on Learning Representation (ICLR 2018),
Vancouva, Canada, 30 April-3 May 2018, vol. abs/1801.10198 (2018)

31. Luhn, H.P.: The automatic creation of literature abstracts. IBM J. Res. Dev. 2(2),
159–165 (1958)

32. Lulli, A., Debatty, T., Dell’Amico, M., Michiardi, P., Ricci, L.: Scalable k-NN based
text clustering. In: Proceedings of 2015 IEEE International Conference on Big Data
(IEEE BigData 2015), Santa Clara, California, USA, 29 October–1 November 2015,
pp. 958–963 (2015)

33. Mihalcea, R., Tarau, P.: TextRank: Bringing order into texts. In: Proceedings of the
2004 Conference on Empirical Methods in Natural Language Processing (EMNLP
2004), Barcelona, Spain, 25–26 July 2004, pp. 404–411 (2004)

34. Nallapati, R., Zhai, F., Zhou, B.: SummaRuNNer: a recurrent neural network based
sequence model for extractive summarization of documents. In: Proceedings of the
31st AAAI Conference on Artificial Intelligence (AAAI 2017), San Francisco, USA,
4–9 February 2017, pp. 3075–3081 (2017)

35. Nayeem, M.T., Chali, Y.: Extract with order for coherent multi-document sum-
marization. In: Proceedings of the Workshop on Graph-based Methods for Natural
Language Processing (TextGraphs 2011), Vancouver, Canada, 3 August 2017, pp.
51–56 (2017)

36. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algo-
rithm. In: Advances in Neural Information Processing Systems, pp. 849–856 (2002)

37. Otterbacher, J., Radev, D., Kareem, O.: News to go: hierarchical text summariza-
tion for mobile devices. In: Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and Development on Information Retrieval (SIGIR
2006), Seattle, Washington, USA, 6–11 August 2006, pp. 589–596 (2006)

38. Pottker, H.: News and its communicative quality: the inverted pyramidwhen and
why did it appear? J. Stud. 4(4), 501–511 (2003)

39. Radev, D., et al.: SummBank 1.0 LDC2003T16. web download. Linguistic Data
Consortium, Philadelphia (2003)

40. Radev, D.R., Jing, H., Sty, M., Tam, D.: Centroid-based summarization of multiple
documents. Inf. Process. Manage. 40, 919–938 (2004)

41. Saaty, T.: The Analytical Hierarchy Process. McGraw Hill, New York (1980)
42. Sauper, C., Barzilay, R.: Automatically generating Wikipedia articles: a structure-

aware approach. In: Proc of the Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on Natural Language Processing
of the AFNLP (ACL 2009), Suntec, Singapore, 2–7 August 2009, pp. 208–216
(2009)

43. Shao, L., Wang, J.: DTATG: an automatic title generator based on dependency
trees. In: Proceedings of the 8th International Joint Conference on Knowledge
Discovery and Information Retrieval (KDIR 2016), Porto, Portugal, 9–11 Novem-
ber 2016, pp. 166–173. SCITEPRESS - Science and Technology Publications, Lda,
Portugal (2016). https://doi.org/10.5220/0006035101660173

44. Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical dirichlet processing.
J. Am. Stat. Assoc. 101(476), 1566–1581 (2006)

https://doi.org/10.5220/0006035101660173

150 J. Wang

45. Vandegehinste, V., Pan, Y.: Sentence compression for automated subtitling: a
hybrid approach. In: Proceedings of the 42nd Annual Meeting of the Association
for Computational Linguistic (ACL 2004), Barcelona, Spain, 21–26 July 2004, pp.
89–95 (2004)

46. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416
(2007)

47. Wang, J., Zhang, H., Zhang, C., Yang, W., Wang, J.: An effective scheme for gen-
erating an overview report over a very large corpus of documents. In: Proceedings
ACM Symposium on Document Engineering (DocEng 2019), Berlin, Germany,
23–26 September 2019. (Best paper runnerup)

48. Wang, X., Nishino, M., Hirao, T., Sudoh, K., Nagata, M.: Exploring text links for
coherent multi-document summarization. In: Proceedings of the 26th International
Conference on Computational Linguistics (COLING 2016), Osaka, Japan, 11–16
December 2016, pp. 213–223 (2016)

49. Xu, J., et al.: Short text clustering via convolutional neural networks. In: Proceed-
ings of the 2015 Conference of the North American Chapter of the Association for
Computational Linguistics Human Language Technologies (NAACL HLT 2015),
Denver, Colorado, USA, 31 May-5 June 2015, pp. 62–69 (2015)

50. Yao, C., Jia, X., Shou, S., Feng, S., Zhou, F., Liu, H.: Autopedia: automatic
domain-independent Wikipedia article generation. In: Proceedings of the 20th
International Conference Companion on World Wide Web (WWW 2011), Hyder-
abad, India, 28 March–1 April 2011, pp. 161–162 (2011)

51. Yasunaga, M., Zhang, R., Meelu, K., Pareek, A., Srinivasan, K., Radev, D.R.:
Graph-based neural multi-document summarization. In: Proceedings of the
SIGNLL Conference on Computational Natural Language Learning (CoNLL 2017),
Vancouver, Canada, 3–4 August 2017

52. Yin, J., Wang, J.: A Dirichlet multinomial mixture model-based approach for short
text clustering. In: Proceedings of the 20th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD 2014), New York, NY, USA,
24–27 August 2014, pp. 233–242 (2014)

53. Yogatama, D., Liu, F., Smith, N.A.: Extractive summarization by maximizing
semantic volume. In: Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2015), Lisbon, Portugal, 17–21 September
2015, pp. 1961–1966 (2015)

54. Zhang, H., Wang, J.: Semantic WordRank: generating finer single-document sum-
marizations. In: Yin, H., Camacho, D., Novais, P., Tallón-Ballesteros, A.J. (eds.)
IDEAL 2018. LNCS, vol. 11314, pp. 398–409. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03493-1 42

55. Zhang, Y., Peng, C., Wang, H.: Research on Chinese sentence compression for the
title generation. In: Ji, D., Xiao, G. (eds.) CLSW 2012. LNCS (LNAI), vol. 7717,
pp. 22–31. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36337-
5 3

https://doi.org/10.1007/978-3-030-03493-1_42
https://doi.org/10.1007/978-3-030-03493-1_42
https://doi.org/10.1007/978-3-642-36337-5_3
https://doi.org/10.1007/978-3-642-36337-5_3

Better Upper Bounds for Searching
on a Line with Byzantine Robots

Xiaoming Sun1,2(B), Yuan Sun1,2, and Jialin Zhang1,2

1 CAS Key Lab of Network Data Science and Technology, Institute of Computing
Technology, Chinese Academy of Sciences, Beijing, China
{sunxiaoming,sunyuan2016,zhangjialin}@ict.ac.cn

2 University of Chinese Academy of Sciences, Beijing, China

Abstract. Searching on a line with Byzantine robots was first posed
by Czyzowicz et al. in [13]: Suppose there are n robots searching on an
infinite line to find a target which is unknown to the robots. At the
beginning all robots stay at the origin and then they can start to search
with maximum speed 1. Unfortunately, f of them are Byzantine fault,
which means that they may ignore the target when passing it or lie that
they find the target. Therefore, the target is found if at least f +1 robots
claim that they find the target at the same location. The aim is to design
a parallel algorithm to minimize the competitive ratio S(n, f), the ratio
between the time of finding the target and the distance from origin to
the target in the worst case by n robots among which f are Byzantine
fault.

In this paper, our main contribution is a new algorithm framework
for solving the Byzantine robot searching problem with (n, f) sufficiently
large. Under this framework, we design two specific algorithms to improve
the previous upper bounds in [13] when f/n ∈ (0.358, 0.382)∪(0.413, 0.5).
Besides, we also improve the upper bound of S(n, f) for some small (n, f).
Specifically, we improve the upper bound of S(6, 2) from 4 to 3.682, and
the upper bound of S(3, 1) from 9 to 8.53.

Keywords: Searching on a line · Mobile robots · Parallel search ·
Competitive ratio · Byzantine fault

1 Introduction

1.1 Problem Description

In this paper, we consider the following robot searching problem from [13]. Sup-
pose there are n robots searching on a one-dimensional axis in parallel, and their
aim is to find a target placed somewhere on the line unknown to these robots.
At the beginning all robots are at the origin of the axis. The maximum speed of
each robot is 1 per unit time, both on moving either along the positive direction
(which can be seen as moving right) or negative direction (which can be seen
as moving left). During the searching, any robot can change its direction at any
c© Springer Nature Switzerland AG 2020
D.-Z. Du and J. Wang (Eds.): Ko Festschrift, LNCS 12000, pp. 151–171, 2020.
https://doi.org/10.1007/978-3-030-41672-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41672-0_9&domain=pdf
https://doi.org/10.1007/978-3-030-41672-0_9

152 X. Sun et al.

position without loss of time. The state of a position is detected by a robot only
when this robot has passed there. Robots are assumed to have full knowledge of
the detected searching states at any time. The mission is to find the target as
fast as possible.

If all robots are functioning normally, this problem is quite trivial. However,
when we introduce Byzantine fault into the robot system, the problem becomes
much complicated. In fact, when we build a communication network to control
the actions of all robots, it is natural to consider the fault tolerance of the
network. We say a robot is Byzantine fault or a Byzantine robot, if during the
searching process it may ignore the target or lie that it finds the target at
its position. In order to deal with Byzantine faults, we allow that robots can
communicate and vote. All robots can communicate with each other in wireless
mode with any distance. Communication does not cost time. When a robot
claims it finds the target, it also set up a vote for this claim in the communication
channel. Before the vote ends any robot passing the controversial position should
vote on supporting or opposing this claim. If we know that there are f Byzantine
robots in the robot system, then the vote ends immediately when at least f + 1
robots holding the same opinion on one side. More precisely, when there are at
least f +1 robots claiming that the target is found at the same position, we can
finish the searching process and believe that we find the target indeed. Similarly,
when there are at least f +1 robots showing that a finding claim is false, we can
mark all the robots which support the claim as Byzantine robots. We allow that
there are more than one votes in the communication channel simultaneously.

Under the Byzantine robot model, we need some evaluation functions to
judge the efficiency of a protocol among all robots. One obvious way to evaluate
a searching algorithm is to consider the ratio between time and the distance from
the origin in the worst case. In the next subsection, we will define such functions
formally.

1.2 Evaluation Functions

For the problem that n robots among which are f byzantine fault ones search on a
line, we define two kinds of functions, S(n, f) and T (f

n), to represent the optimal
search time among all algorithms for the searching problem. This notations is
similar to the ones in [13].

First, the concept searching time need be clarified:

Definition 1 (Searching Time). Given two integers n, f , a real number x
and a protocol (or an algorithm) A, we define SA

x (n, f) as the searching time of
the situation that under the algorithm A, (n−f) normal robots with f Byzantine
fault robots together find the target whose coordinate is x on the axis.

Then we can evaluate the efficiency of an algorithm by the following compet-
itive ratio function:

Better Upper Bounds for Searching on a Line with Byzantine Robots 153

Definition 2 (Competitive Ratio). Define

SA(n, f) = sup
|x|>0

{
SA

x (n, f)
|x|

}

as the competitive ratio of the algorithm A with the parameter pair (n, f). In
other words, this function represents the ratio of the searching time and distance
in the worst case.

Remark 1. W.o.l.g, we may need to assume that the target can not be placed to
close to the origin. For example, we can suppose that the distance between the
target and the origin is at least 0.01.

For the whole problem, first let A be the set of all algorithms for this problem.
Then we use

S(n, f) = inf
A∈A

{SA(n, f)}

to be the competitive ratio of the Byzantine robot searching problem with a
robot system with fault ratio β.

When both n and f are both sufficiently large, we turn to consider the
relationship between f

n (we say f
n is the fault ratio of a robot system with f

Byzantine robots and (n − f) normal robots) and the competitive ratio, which
induces the asymptotic competitive ratio function:

Definition 3 (Asymptotic Competitive Ratio). For β ∈ (0, 1
2), define

T (β) = lim
n→∞S(n, βn)

as the asymptotic competitive ratio of the Byzantine robot searching problem with
a robot system with fault ratio β.

Remark 2. For competitive ratio, the parameter (n, f) we are interested in sat-
isfies 2f +1 ≤ n ≤ 4f +1, because if n ≤ 2f then we can not judge any position
where f robots claim while others give different opinion, and if n ≥ 4f + 2 then
we just let two groups with n

2 robots search each side [13].
For asymptotic competitive ratio, we only consider the fault ratio β satisfying

1
4 < β < 1

2 for the same reason. Furthermore, for convenience the status of a
position is totally checked if at least 2βn robots have passed there, instead of
2βn + 1.

1.3 Our Results

The main contribution of this work is that, for sufficiently large n and f we
provide an algorithm framework, ByzantineSearch(Base, μ), to give upper
bounds of asymptotic competitive ratio. Here, Base is a searching algorithm
which can only deal with the robot systems with fault ratio no more than μ.
The details of this algorithm framework are in Algorithm 1, Sect. 3. As a brief

154 X. Sun et al.

description, the main process of ByzantineSearch is that if the fault ratio
of the current robot system is no more than μ we just call Base, otherwise we
call a recursion subroutine repetitively to reduce the fault ratio. In the recursion
subroutine, when some robots claim that they find the target, we do not let
others come to check immediately, but let them move along their original routes
for a while then turn to check. The deferred time on checking depends on an extra
parameter. This operation is the key to the trade-off among all bad cases. We
merge all extra parameters in each times of recursive program into a parameter
sequence. For a given (Base, μ) we can give an optimal assignment to the
parameter sequence to get the best upper bound of asymptotic competitive ratio
under the algorithm ByzantineSearch(Base, μ).

As a result, we achieve the upper bounds of asymptotic competitive ratio in
Theorems 1 and 2 by ByzantineSearch(Base, μ) with two different (Base,
μ) pairs:

Theorem 1. Define a real number sequence {βn}n≥1 : β0 = 5
14 , βn =

1+βn−1
4−2βn−1

(n ≥ 1) and a function sequence {fn(x)}n≥1 : f1(x) = x + 1, fn(x) =
(x+1)(1− 1

fn−1(x)
)(n ≥ 2). Then if the fault ratio β satisfies βn−1 < β ≤ βn for

some n ≥ 1, we have T (β) ≤ 3 + 2x∗, where x∗ ∈ (0, 3) is the largest real root of
the equation fn(x) = x+1

x .

Theorem 2. Define a real number sequence {βn}n≥1 : β0 = 13
34 , βn =

1+βn−1
4−2βn−1

(n ≥ 1) and a function sequence {fn(x)}n≥1 : f1(x) = x + 1, fn(x) =
(x + 1)(1 − 1

fn−1(x)
)(n ≥ 2). Then if the fault ratio β satisfies β ≤ β0, we have

T (β) ≤ 3.682; otherwise if the fault ratio β satisfies βn−1 < β ≤ βn for some
n ≥ 1, we have T (β) ≤ 3 + 2x∗, where x∗ ∈ (0, 3) is the largest real root of the
equation fn(x) = x+1

x−0.341 .

Table 1. Upper bounds of T (β) when 5
14

< β < 1
2
. (The previous upper bounds are

from [13])

β (5
14

, 13
34

] (13
34

, 19
46

] (19
46

, 47
110

] (47
110

, 65
146

]

Previous upper bounds 4 5 6 7

Our upper bounds 3.682 5 5.682 6.236

Achieved by Theorem 2 Theorem 1 Theorem 2 Theorem 1

β (65
146

, 157
346

] (157
346

, 211
454

] (211
454

, 503
1070

] (503
1070

, 665
1394

]

Previous upper bounds 8 9 9 9

Our upper bounds 6.747 7 7.369 7.494

Achieved by Theorem 2 Theorem 1 Theorem 2 Theorem 1

β (665
1394

, 1573
3274

] (1573
3274

, 2059
4246

] (2059
4246

, 4847
9950

] ...

Previous upper bounds 9 9 9 9

Our upper bounds 7.762 7.828 8.026 ...

Achieved by Theorem 2 Theorem 1 Theorem 2 ...

Better Upper Bounds for Searching on a Line with Byzantine Robots 155

Fig. 1. The comparison between the efficiency of previous and current results. X axis
represents the ratio parameter β, and Y axis represents the upper bounds of S(β). The
straight line is the previous results while the dashed line is the results achieved in this
paper.

The final upper bounds are achieved by combining Theorems 1 and 2. Table 1
gives an intuitive version of the above theorems, and compares our results with
the previous ones. It can be seen that when β ∈ (5

14 , 13
34] ∪ (1946 , 1

2), Theorems 1
and 2 make significant improvement. Moreover, Fig. 1 presents a straightforward
visual feeling of the improvement.

For some small (n, f), we also make achievement on the upper bounds of
S(n, f). First, a corollary of Theorem 2 directly gives a better upper bound of
S(6, 2):

Corollary 1. S(6, 2) ≤ 3.682.

Next, for the case where (n, f) = (3, 1), we get the following theorem by a totally
different algorithm, which is based on an algorithm from [11]:

Theorem 3. S(3, 1) ≤ 8.653.

Table 2 compares these results with the previous ones.

Table 2. Upper bounds of S(n, f) for some small n and f . (The previous upper bounds
are from [13], and lower bounds are from [13,19])

(n, f) Previous upper bounds Our upper bounds Lower bounds

(3, 1) 9 8.653 5.23

(6, 2) 4 3.682 3

156 X. Sun et al.

1.4 Related Works

Searching on a line is an interesting combinatorial problem with a long history.
The original version of this problem appears in [3], where a robot needs to search
on an infinite line to find an unknown target. It shows that the competitive ratio
is exact 9. Since then, there are a series of follow-up discussions [2–6].

If we change the searching region, there are many interesting extension of
this problem. Some researchers expand the detectable region to higher dimen-
sions [16,18,22]. To get more complicated environment, researchers also intro-
duce obstacles [1], or just put all agents in a large network [7,14]. Another variant
is the so-called cow-path problem [17], where a robot need to search on several
rays shared with a same origin. This problem is solved by [15], and [17] gives an
optimal randomized solution to it.

Searching by a group of detectors also leads out a number of works. [8]
considers the simplest form of the linear group search in which the process ends
when the target is reached by the last robot visiting it and shows that increasing
the number of robots does not help and the optimal competitive ratio is still
9. [10,14] think of the cost and restrictions of communications and information
exchanges between the group members.

In group searching, it is natural to consider the safety of the whole system.
The concept Byzantine Fault Tolerance has been widely studied in distributed
computing [21]. [20] notices that it is important to keep the whole system safe
even if some of the agents are broken down and send wrong messages to others,
which induces the Byzantine general problem. On group searching with faulty
members, there are also many impressive works [9,10]. Recently, researchers
discuss the problem that the robots search on a line by group together while
some of them are crash or Byzantine fault [11,13,19]. These is the main model
discussed in this paper. See also [12] as a survey.

1.5 Organization

In Sect. 2, we will denote some necessary notations to describe our algorithm
better. In Sect. 3, we will give an algorithm framework for the asymptotic com-
petitive ratio. In Sect. 4, we provide two specific base algorithms which can be
used as inputs for the framework and prove main theorems. In Sect. 5, we turn
to discuss the competitive ratio for small n and f . In Sect. 6, we conclude our
work and give some open problems.

2 Notations

In order to describe our algorithms clearly, we provide some new definitions.
First, we give several notations on robot systems.

Definition 4 (Robot Status Representation (RSR)). For a robot r, its
robot status representation (RSR) is a tuple (posr, dr), where posr ∈ R is its
coordinate and dr ∈ {−1, 0, 1} is its current moving direction. Here dr = 1 (−1)

Better Upper Bounds for Searching on a Line with Byzantine Robots 157

means r will move along the right (left) direction after receiving move order, and
dr = 0 means r will stop at its position after receiving move order.

Definition 5 (Group Searching System (GSS)). At any time of the search-
ing progress, the status of all working robots can be described as a group searching
system (GSS) P = (n, f,R, S), where n is the number of robots, f is the number
of Byzantine fault robots, R is the set of all robots and S is the set of all RSRs.
Note that we do not know which f robots are Byzantine fault. In a GSS, if all
robots in a set A is at a same position, we say that the position of A is the
position of robots in A.

Definition 6 (Symmetric Two-group Searching System (STSS)). A
GSS P is a symmetric two-group searching system (STSS) if all robots in P
can be divided into two groups A and B such that:

– Robots in the same group have the same RSR tuple;
– for any two robots r1 ∈ A and r2 ∈ B, posr1 = −posr2 and dr1 = −dr2 .

We write an STSS P as P = (n, f,A,B, (pos, d)), where (pos, d) is the RSR of
robots in the set A. In particular, a STSS P is an initial STSS, if all robots are
at the origin, and half of robots have directions −1 while others have directions
1. An initial STSS can also be seen as a status of a robot system at the beginning
of searching.

Next, we define some basic orders on a robot system, which can be used as
basic components of our algorithms.

– Move(P, R, t): for the GSS P , keep robots in the robot set R moving along
their directions for time t with speed 1. In other words, this function will cost
t units of time and for any robot r ∈ R after this function its position will be
posr := posr + tdr. Robots in R will check their position to find the target
while moving.

– MoveAll(P, t): for the GSS P , keep all robots moving along their directions
for time t with maximum speed. All robots will check their position to find
the target while moving.

– TurnAround(P, R): for the GSS P , change directions of robots in the robot
set R. i.e., set dr := −dr for all r ∈ R.

– TurnAroundAll(P): for the GSS P , change directions of all robots.
– Remove(P, R): for the GSS P , remove all robots in R from P.
– Join(P, R1, R2, k): for the GSS P, arbitrarily choose k robots from the robot

set R1, and add them to the robot set R2. This operation only works when k
is no larger than |R1| and the positions of robots in both R1 and R2 are all
the same.

– Select(P, R0, k): for the GSS P and a robot set R0, this operation will
randomly choose k robots in R0, and return a robot set containing these k
robots. This operation only work when k ≤ |R0| and R0 ⊆ P.R.

Also, here are some specific variables closely related to the searching process:

158 X. Sun et al.

– TargetClaim: a Boolean variable which is False initially, but turns to be True
immediately after some robots claim the finding of the target, while the num-
ber of robots with opposite opinion is no more than f . This variable will
turn to be False again when all robots reach a consensus that the claim on
ClaimPos is false, and turn to be True for the next effective claim, and so
on.

– ClaimPos: a real number representing the position where some robots claim
they find the target which change the value of TargetClaim from False to
True. (This variable is meaningless when TargetClaim is False.)

– ClaimSet : The set of robots which claim they find the target (This variable
is meaningless when TargetClaim is False.)

– TargetVeri : a Boolean variable which is False initially, but turns to be True
immediately after the target is actually found. (i.e., at least f +1 robots claim
they find the target at the same place.) After it turns to be True, its value
will not be changed.

– TargetPos: a real number representing the position of the target (This variable
is meaningless when TargetVeri is False.)

Remark 3. Here are some extra supplementary explanation for the operations
and variables in Sect. 2.2.

– It is easy to see that the time cost of a searching process is the sum of time
parameters in Move and MoveAll functions.

– When we use Move order some robots, the others stay at their positions.
– Positions on the line can be verified even when TargetClaim is true, but

the value of TargetPos won’t be changed when a new claim occurs but
TargetClaim is already True.

– If more than one positions are claimed to be the location of target which
makes TargetClaim from False to True, randomly choose one position as the
value of ClaimPos.

– If during a Move process a position is verified to be the real position of the
target, the Move function will be ended immediately and values of the two
variables TargetPos and TargetV eri will be updated.

3 An Algorithm Framework for Byzantine Robot
Searching Problem

In this section we provide an algorithm framework, ByzantineSearch, for the
Byzantine robot searching problem. The detail is stated in Algorithm 1.

Better Upper Bounds for Searching on a Line with Byzantine Robots 159

Algorithm 1. ByzantineSearch(Base, μ): A searching algorithm
framework
1: P :=Initial STSS
2: i := 0, m :=Times(P.f/P.n, μ)
3: while (P.f/P.n > μ) ∧ (TargetV eri = False) do
4: i := i + 1
5: Recur(P, λ(i,m))
6: if TargetV eri = True then
7: return TargetPos
8: else
9: Base(P)

This framework has two input parameters, Base and μ. Base is a partial
searching algorithm, and μ is the corresponding fault ratio limit. More precisely,
Base can deal with the Byzantine searching problem with an STSS only when
the fault ratio is no more than μ. In Sect. 4, we will provide two different (Base,
μ) to Algorithm 4 and prove Theorems 1 and 2.

At the beginning of ByzantineSearch, the robot system turns to be an
initial STSS P. If the fault ratio is no more than μ, we can just call Base
algorithm. Otherwise, we provide a searching subroutine called Recur. Each
time after we call Recur, either we find the target or the fault ratio of STSS P
is reduced. Thus we can call Base algorithm when the fault ratio of STSS P is
reduced to be no more than μ.

In ByzantineSearch, the procedure Recur is the core component, which
can reduce the fault ratio and keep the robot system still an STSS. The process
details of Recur are stated in Algorithm 2. The Recur procedure has two
inputs, an STSS P and a real number λ ≥ 1. The basic idea is that first let
P search until some robots claim, then all robots turn around and move again.
When all robots meet at the origin, two groups swap some members. After
this subroutine either the target is found or P is still an STSS but with lower
fault ratio. However, if each time when some robots claim others move to check
immediately, the time cost will be too large if the target is near ClaimPos. To
balance this bad case, the key point of Recur is deferred verification. When
some robots claim that they find the target, robots in the other group will not
turn around to check it immediately but move along their directions for a while.
The moving length depends on λ, the second input. In ByzantineSearch, the
i-th time we call Recur the value of the second input λ is λ(i,m). {λ(i,m)}(1 ≤
i ≤ m) is a real parameter sequence, whose value is not related to the correctness
of ByzantineSearch, but can affect the (asymptotic) competitive ratio. For a
given (Base, μ), we can give an optimal assignment to the parameter sequence
to get the best upper bound of asymptotic competitive ratio under the algorithm
ByzantineSearch(Base, μ), by solving a convex optimization. In the proof of
Theorem 4 we will give an example on this assertion.

To give an intuitive impression, the process of Algorithm 2 is also showed in
Fig. 2.

160 X. Sun et al.

Algorithm 2. Recur(P, λ): A group searching subroutine with an STSS P
and a real number λ ≥ 1 to reduce the value of P.f/P.n

1: do
2: MoveAll(P, 0.01) � Here 0.01 can be a arbitrarily small number.
3: until TargetClaim = True
4: MoveAll(P, (λ − 1) · |ClaimPos|)
5: TurnAroundAll(P)
6: MoveAll(P, λ · |ClaimPos|) � After this order, all robots are at the origin.
7: m := |ClaimSet|, k := min{n − 2f,m/2}
8: if ClaimSet ⊆ P.A then
9: Join(P, P.B, P.A, k)

10: else
11: Join(P, P.A, P.B, k)

� After this order P turns to be a general GSS.
12: R′ :=Select(P, ClaimSet, 2k)
13: MoveAll(P, λ · |ClaimPos|)
14: Remove(P, R′) � After this order P turns to be an STSS again.

Fig. 2. Process of Algorithm 2

Now we show some basic properties of Recur. It is easy to verify the next
two facts:

Fact 1. For any STSS P, it will still be an STSS after Recur(P, λ).

Fact 2. For any STSS P, all points in the interval [−λ · |ClaimPos|, λ ·
|ClaimPos|] will totally be checked after Recur(P, λ).

Next, Lemma 1 shows the ability of Recur on reducing the fault ratio of P:

Lemma 1. For a given STSS P, let β = P.f
P.n . Then either Recur(P, λ) actu-

ally finds the target, or it can reduce β to a number no greater than 4β−1
2β+1 . (Notice

that β < 1
2 , so we always have 4β−1

2β+1 < β.)

Better Upper Bounds for Searching on a Line with Byzantine Robots 161

Proof. For an STSS P = (n, f,A,B, (pos, d)) with fault ration β = f
n , suppose

there are m robots claiming the finding after line 3 in Algorithm 2. Note that
we have m ≥ n

2 − f , otherwise the claiming will be verified as a false statement
immediately by all robots at ClaimPos. Thus after Recur(P, λ), if the finding
claim is false, the fault ratio will turn to be

f − m

n − m
≤

1 − (1
2β − 1)

1
β − (1

2β − 1)
=

4β − 1
2β + 1

,

or
f − (2n − 4f)
n − (2n − 4f)

=
5f − 2n

4f − n
≤ 5β − 2

4β − 1
≤ 4β − 1

2β + 1
.

By Lemma 1, if we have a Base algorithm which can deal with the Byzantine
robots searching problem with fault ratio no more than μ, then for a given
initial STSS P with fault ratio β, we can easily calculate the maximum possible
times that we call Recur to reduce the fault ratio of P no more than μ, which
is the function Times(β, μ). The details of the function Times are stated in
Algorithm 3.

Algorithm 3. TIMES(β, μ): The maximum possible recursion times in
ByzantineSearch

1: if β ≤ μ then
2: return 0
3: else
4: return Times((4β − 1)/(2β + 1), μ) + 1

4 Two Different Base Algorithms

In this section, we give two different (Base, μ) pairs to prove Theorems 1 and 2
respectively.

4.1 A Base Algorithm with µ ≤ 5
14

For an initial STSS P with fault ratio no more than 5/14, [11] gives an algorithm
in Theorem 13. Here we modify this algorithm as a base algorithm called Left-
Right. We give details of LeftRight in Algorithm 4. The main idea is that,
after checking ClaimPos if TargetClaim is false, we still keep two groups of suf-
ficient number robots move along different directions respectively after remove
Byzantine robots. (That is why we call this algorithm “LeftRight”.) Here we
omit the proof of the correctness of Algorithm 4, since it is similar to the proof
of Theorem 13 in [13].

162 X. Sun et al.

Algorithm 4. LeftRight(P): A base algorithm for an STSS P satisfying
P.f
P.n ≤ 5

14

1: do
2: MoveAll(P, 0.01) � Here 0.01 can be an arbitrary small positive real

number.
3: until TargetClaim = True � W.l.o.g, suppose ClaimSet ⊆ P.A.
4: R1 :=Select(P, P.B, (3/5)|P.B|)
5: R2 :=Select(P, ClaimSet, (2/5)|ClaimSet|)
6: R3 :=Select(P, P.A \ ClaimSet, (2/5)|P.A \ ClaimSet|)
7: TurnAround(P, R1 ∪ R2 ∪ R3) � After this order P turns to be a general

GSS.
8: Move(P, R1 ∪ R2 ∪ R3, 2|ClaimPos|)
9: if TargetV eri = False then

10: Remove(P, ClaimSet)
11: do
12: MoveAll(P, 0.01)
13: until TargetV eri = True
14: return TargetPos

Combining ByzantineSearch and LeftRight, we have the following
result leading to Theorem 1:

Theorem 4. ByzantineSearch(LeftRight, 5/14) with a specific parameter
sequence {λ(i,m)} can achieve the upper bounds of asymptotic competitive ratio
in Theorem 1.

Proof. First, it is easy to verify that the sequence {βn} in Theorem 1 is mono-
tonically increasing and limm→∞ βm = 1

2 . So for a given β with 5
14 < β < 1

2 ,
there exists an integer m ≥ 1 such that βm < β ≤ βm+1.

Second, suppose P is an initial STSS with P.f
P.n = β, by Lemma 1 and the defi-

nition of {βn} we know that the while loop in ByzantineSearch(LeftRight,
5/14) will repeat at most m times. Denote that in the i-th (1 ≤ i ≤ m) repetition
of the while loop the value of the parameter λ(i,m) is λi, and let λ0 = 1. Our
aim is to choose specific {λi} to reduce the asymptotic competitive ratio.

There are two cases on finding the target. First, suppose in the i-th (1 ≤
i ≤ m) repetition of the while loop we actually find the target. Then the
worst case will be that the target is placed at ±(λi−1ClaimPos + ε), where
ε > 0 is an arbitrary small number. Second, the target is found in the base
algorithm LeftRight. Then the worst case will be that the target is placed at
±(λmClaimPos+ε), where ε > 0 is an arbitrary small number. After calculating
the searching time of all bad cases, we can express the asymptotic competitive
ratio of ByzantineSearch(LeftRight, 5/14) as

Better Upper Bounds for Searching on a Line with Byzantine Robots 163

max{3 + 2λ1, 3 + 2λ2 +
2
λ1

, 3 + 2λ3 +
2
λ2

+
2

λ2λ1
, ...,

3 + 2λm +
2

λm−1
+

2
λm−1λm−2

+ ... +
2

λm−1λm−2...λ1
,

5 +
2

λm
+

2
λmλm−1

+ ... +
2

λmλm−1...λ1
}

By analysis in the convex optimization, we know that if (λ1, λ2, ..., λm) satisfies:

3 + 2λ1 = 3 + 2λ2 +
2
λ1

= ... = 5 +
2

λm
+

2
λmλm−1

+ ... +
2

λmλm−1...λ1
,

λ1 ≥ 1, λ2 ≥ 1, ..., λm ≥ 1
(1)

then 3 + 2λ1 will be the upper bound of the asymptotic competitive ratio, and
this assignment to the parameter sequence {λ(i,m)} is optimal for Byzantine-
Search(LeftRight, 5/14).

To solve (1) we let x = λ1 and use the first two equations 3 + 2λ1 = 3 +
2λ2 + 2

λ1
. Then we get that λ2 = x2−1

x . Similarly we can express λi(i > 2) as
λi = (1 + x)(1 − 1

λi−1
) by the equations 3 + 2λ1 = 3 + 2λi + 2

λi
+ 2

λiλi−1
+

... + 2
λiλi−1...λ1

, 3 ≤ i ≤ m. Combining these results to the equation 3 + 2λ1 =
5 + 2

λm
+ 2

λmλm−1
+ ... + 2

λmλm−1...λ1
, and then we have:

(1− 1

λm
)(3 + 2x) =(5 +

2

λm
+

2

λmλm−1
+ ... +

2

λmλm−1...λ1
)

− 1

λm
(3 + 2λm +

2

λm−1
+

2

λm−1λm−2
+ ... +

2

λm−1λm−2...λ1
)

(2)

Finally the equation turns to be:

λm =
x + 1

x
(3)

Since all λi (1 ≤ i ≤ m) can be expressed as a rational function of x, (3) is
a polynomial equation about x. The last thing is to verify that there exists a
real root x satisfying that λi ≥ 1, ∀1 ≤ i ≤ m. Lemmas 2 and 3 show that, the
largest real root of (3) can meet our requirements.

Lemma 2. Define a rational function sequence about x: f1(x) = x + 1, fn(x) =
(1 + x)(1 − 1

fn−1(x)
) (n ≥ 2). Let {αn} be the sequence of the largest real root of

the equation fn(x) = x+1
x . Then sequence {αn} is monotonically increasing with

finite limit and its limit is no greater than 3.

Proof. Define a rational function sequence {gn(x)} related to {fn(x)}: ∀n ≥ 1,
gn(x) = fn(x) − x+1

x . Then {αn} be the sequence of the biggest real root of
the equation fn(x) = x+1

x ⇐⇒ {αn} be the sequence of the biggest real root of

164 X. Sun et al.

the equation gn(x) = 0. Note that fn+1(x) = (1 + x)(1 − 1
fn(x)

), n ≥ 1, which
induces the recursive formula of gn(x):

gn+1(x) = (1 + x)
x2gn(x) − xgn(x) − 1

x2gn(x) + x2 + x
, n ≥ 1.

Now we can prove this lemma by induction. In fact, we will show a much stronger
conclusion as the following list:

– gn(3) = 2n+6
3n .

– ∀n ≥ 2, gn(x) is monotonically increasing and continuous when x ≥ αn;
– αn−1 ≤ αn < 3;

The case of n = 2 is trivial. Suppose this proposition holds when n ≤ k. Now
consider n = k + 1. First, we have

gk+1(3) = 4
6gk(3) − 1
9gk(3) + 12

= 4
6 2k+6

3k − 1
9 2k+6

3k + 12
=

2(k + 1) + 6
3(k + 1)

.

Second, calculate the derivation of gk+1(x), we have

g
′
k+1(x) =

1 + 2x3gk(x) + 2x(1 + gk(x)) + x2(1 + gk(x))
2 + x5g′

k(x) + x4(gk(x) + g2
k(x) + g′

k(x))

x2(1 + x + xgk(x))2
.

Since when x ≥ αk, we have gk(x) ≥ gk(αk) = 0 and g′
k(x) > 0 by induction

hypothesis, we have
x2(1 + x + xgk(x))2 > 0

and

1 + 2x3gk(x) + 2x(1 + gk(x)) + x2(1 + gk(x))
2 + x5g′

k(x) + x4(gk(x) + g2k(x) + g′
k(x)) > 0,

so gk+1(x) is monotonically increasing and continuous when x ≥ αk.
Finally, since

gk+1(αk) = (1 + x)
x2gk(αk) − xgk(αk) − 1

x2gk(αk) + x2 + x
= − 1

x
< 0,

there exists exactly one root x0 of gk+1(x) which lies in the interval (αk, 3).
Because gk+1(x) is monotonically increasing and continuous when x ≥ αk+1, we
have αk+1 = x0. Thus αk ≤ αk+1 < 3.

Combining the above discussions, we finish the induction step of n = k + 1.

Better Upper Bounds for Searching on a Line with Byzantine Robots 165

Lemma 3. Define a function sequence about x: f1(x) = x + 1, fn(x) = (1 +
x)(1 − 1

fn−1(x)
)(n ≥ 2). Let {αn} be the sequence of the largest real root of the

equation fn(x) = x+1
x . Then ∀n, if x ≥ αn, we get that fi(x) > 1 and f ′

i(x) > 0,
∀1 ≤ i ≤ n.

Proof. We still prove this proposition by induction. When n = 1, we have α1 = 1
and ∀x ≥ 1, f1(x) = 1+x > 1 and f ′

1(x) = 1 > 0. Now suppose that this lemma
holds for all 1 ≤ n ≤ k. Consider about n = k + 1. Since αk+1 ≥ αk from
Lemma 2, by induction hypothesis we just need to prove that fk+1(x) > 1 and
f ′

k+1(x) > 0 when x ≥ αk+1. First, we have

f ′
k+1(x) = 1 − 1

fk(x)
+ (1 + x)(1 +

f ′
k(x)

f2
k (x)

) > 1 − 1
1

+
(1 + x)f ′

k(x)
f2

k (x)
> 0.

So if x ≥ αk+1, fk+1(x) is monotonically increasing. Since αk+1 is a root of
fk+1(x) = x+1

x , we get that

fk+1(x) ≥ fk+1(αk+1) =
αk+1 + 1

αk+1
> 1,

which finish the induction step of n = k + 1.

4.2 A Base Algorithm with µ ≤ 13
34

In this subsection we design a new base algorithm, LeftMiddleRight, which
accepts an STSS P with fault ratio no more than 13/34 as input. The details of
this algorithm are stated in Algorithm 5, which is totally different from Left-
Right.

Here we give a brief description for the process. Algorithm 5 can be divided
into two parts. The first part of it is from line 1 to line 15, and the if component
that starts at line 16 is the second part. For a given STSS P, if some robots
claim they find the target at the first part, we repartition all robots into 5 groups
(ClaimSet, A2, A1 \A2, B1, B \B1) and let 4 of them (except ClaimSet) move
along different routes. At the end of the first part, ClaimPos is checked. If the
claim is true, we can finish the searching, otherwise we remove all Byzantine
robots and merge remained robots into 3 groups (A2, B2, C2). The position of
robots in A2 and B2 are symmetric about the position of robots in C. (That is
why we call this algorithm “LeftMiddleRight”.) Then we let robots in A2

and B2 move along their directions until TargetClaim turns to be true again.
At this time, robots in C move to ClaimPos to check it.

166 X. Sun et al.

Algorithm 5. LeftMiddleRight(P): A base algorithm for an STSS P with
P.f
P.n ≤ 13

34

1: do
2: MoveAll(P, 0.01)
3: until TargetClaim = True � W.l.o.g, suppose ClaimSet ⊆ P.A.
4: m := |ClaimSet|, k := (1/2)n + (2/3)m − (2/3)f
5: x0 := 1.341, x1 := 1.797, x2 := 2.41
6: A := P.A, B := P.B
7: A1 := A \ ClaimSet, B1 :=Select(P, B, k)
8: Move(P, A1 ∪ B, x0|ClaimPos|) � After this order P turns to be a

general GSS.
9: TurnAround(P, B1)

10: Move(P, A1 ∪ B, (x1 − x0)|ClaimPos|)
11: A2 :=Select(P, A1,

4
3 (f − m))

12: TurnAround(P, A2)
13: Move(P, A2 ∪ B, (x2 − x1)|ClaimPos|)
14: TurnAround(P, B \ B1)
15: Move(P, A2 ∪ B, (x2 + x1 − x0)|ClaimPos|)
16: if TargetV eri = False then
17: Remove(P, ClaimSet)
18: B2 := (A1 \ A2) ∪ B1, C := B \ B1

19: d := (x1 − x0)ClaimPos � At this moment, Robots in B \ B1 are at d.
20: do
21: Move(P, A2 ∪ B2, 0.01)
22: until TargetClaim = True � W.l.o.g, suppose ClaimSet ⊆ A2.
23: if TargetV eri = False then
24: Move(P, C, d − ClaimPos)
25: if TargetV eri = False then
26: Remove(P, ClaimSet)
27: do
28: MoveAll(P, 0.01)
29: until TargetClaim = True
30: return ClaimPos

To give an intuitive impression, the first part of Algorithm 5 is also showed
in Fig. 3.

Better Upper Bounds for Searching on a Line with Byzantine Robots 167

Fig. 3. Process of Algorithm 5

Lemma 4. Given an STSS P with fault ratio no more than 13/34,
LeftMiddleRight(P) can actually find the target.

Proof. For any given STSS P with fault ratio no more than 13
34 , in order to

prove that LeftMiddleRight(P) actually finds the target, let us analyze the
algorithm step by step.

In the first part, if the target is truly lying in the interval [−x1d0,−d0] ∪
[d0, x0d0], the searching process will stop immediately and the asymptotic com-
petitive ratio will be no more than 1 + 2x0 because all the points in the interval
[−x1d0, x0d0] are checked by at least 2βn robots; If the target is lying in the
interval [x0d0, x2d0], then it will be verified immediately after the robots from
group A2 check its position; Otherwise after the first part the asymptotic com-
petitive ratio of P turns to be

β′ =
f − m

n − m
≤

1 − (1
2β − 1)

1
β − (1

2β − 1)
≤ 3

10
.

Now let us consider the second part of the algorithm. If β ≤ 13
34 , then β′ ≤ 3

10
and at the beginning the group A2 and B2 are is symmetrical about (x0 −x1)d0
(the position group C stays), and the ratio between the number of robots in A2,
B2, C is 2 : 2 : 1. We let the groups A2 and B2 keep on moving until TargetClaim
turns to be true again. We then let robots in group C move ClaimPos. Notice
that there will be at least 3

5n′ = 2f ′ robots checking ClaimPos, so the state of
the position can be clearly determined. If the claim is true, then we can finish
the search process. If not, then after the Remove function P.f/P.n will be no
greater than (3

10 − 1
10)/(1 − 1

10) = 2
9 < 1

4 , and the distribution of the robots at
this time allows us to use an extra Move process to finish the searching.

Combining ByzantineSearch and LeftMiddleRight, we have the fol-
lowing theorem leading to Theorem 2, whose proof is similar to the one of
Theorem 4:

168 X. Sun et al.

Theorem 5. ByzantineSearch(LeftMiddleRight, 13/34) with a specific
parameter sequence {λ(i,m)} can achieve the upper bounds of asymptotic com-
petitive ratio in Theorem 2.

5 Competitive Ratio S(n, f) for Small n and f

In this section we discuss the upper bounds of competitive ratio S(n, f) for small
n and f .

For the case where n = 6 and f = 2, we design an algorithm similar to
Algorithm 5. First, let 3 robots (we mark them as A, B, C) move left while
others move right (we mark them as D, E, F). W.l.o.g, suppose A claims that it
finds the target at position −d0(d0 > 0). If B or C support this claim, then let D
and E turn round immediately to −d0 to check the position while F still moves
on. In this situation the competitive ratio will be no greater than 3. Otherwise
B and C oppose the claim. Then we let B and C move to −x1d0 then turn right,
while D and E move to x0d0 then turn left and F moves to x2d0 then turns
left until it stops at the location. (x0 − x1)d0. (Here x0 = 1.341, x1 = 1.797,
x2 = 2.41.) It is not hard to verify that by this searching process, S(6, 2) ≤ 3.682,
which leads to Corollary 1.

For the case where n = 3 and f = 1, we will use some results from the
problem searching on a line with crash robots, where crash means that some
robots cannot detect the target. [13] gives an efficient algorithm to deal with
this problem. For completeness, we also give the details of the proof of this
algorithm.

Lemma 5 (Czyzowicz et al. [13]). There is an algorithm for the case (n, f) =
(3, 1) that can solve the problem in the version of crash robots with competitive
ratio (β + 1)

4
3 (β − 1)− 1

3 + 1 (β > 1 is a parameter that can be determined by
ourselves).

Proof (Proof of Lemma 5). We provide an algorithm to achieve this competitive
ratio. At first we let all robots move right. For robot i (1 ≤ i ≤ 3), we define its
turning-around location sequence as xi,0, xi,1, xi,2, The first turning-around
location of each robot are calculated by the formulas below: x1,0 = 1, x2,0 =
(β+1

β−1)
2
n β − β + 1, x3,0 = (β+1

β−1)
4
n β − β + 1. The later turning-around locations

of each robot can be calculate by the formulas below: ∀1 ≤ i ≤ 3, j ≥ 1,
xi,j = xi,j−1 · (−β+1

β−1). To give a direct impression, the relationships between
time and locations of each robot can be viewed in the left side of Fig. 4. This
strategy can give the competitive ratio (β + 1)

4
3 (β − 1)− 1

3 + 1 for S(3, 1).

Better Upper Bounds for Searching on a Line with Byzantine Robots 169

Fig. 4. Left side: The coordinate map between time and distance in the proof of
Lemma 5. The three lines represent the traces of each robot. Right side: The coor-
dinate map between time and distance in the proof of Theorem 3. The thick dashed
line represents the behavior of the robots which claims that it finds the target near
−x0. The straight line represents the behavior of the robot whose turning point is −x0,
while the thin dashed line represents its changing after receiving the target detecting
message.

We design Algorithm 6 to prove Theorem 3. In the Byzantine fault version,
we split the search process into two parts, and express it as follows:

Algorithm 6. ByzantineSearch31(P): A searching algorithm with an
initial STSS P where n = 3 and f = 1

1: In the first part, we run the algorithm described in the proof of Lemma 5,
until there is a robot claiming that it finds the target. At the end of this part,
w.l.o.g suppose a robot claims that it finds the target at position −x0(x > 0).

2: In the second part, at the beginning for the other two robots if some of them
have not detected the position −x0 and are moving right, let them turn
around immediately to move forward to −x0. After checking the claim, if it
is false then there remain two normal robots. The final step is letting them
moving on opposite directions.

Proof (Proof of Theorem 3). There are many situations need to be discussed in
the analysis of Algorithm 6. Here we provide the analysis of the worst situation,
where the target is truly at −x0 which is ignored by the first robot passing there,
and the claiming is by the second robot reaching the position −x0. In the first
part of Algorithm 6, the search time is αx0, where α = (β + 1)

4
3 (β − 1)− 1

3 + 1
(β > 1 is a parameter undetermined yet). Notice that there are two robots having
detected the position −x0, in which one claims that there is the target while the
other holds the different opinion. Now consider the only robot which has not
check −x0 yet. We build a coordinate map between the time and coordinate from
original axis (horizontal axis represents original coordinate, and vertical axis

170 X. Sun et al.

represents time, see also the right side of Fig. 4), we can get that the intersection
point of two lines t = βx and t−βx0

x+x0
= 1 is (β+1

β−1x0, β
β+1
β−1x0), so if there was

no alert it would move to the point β β+1
β−1x0 then change the direction. So if

β β+1
β−1 > α we can save time. The total time of the third robot from the origin

to −x0 in its orbit is (2α − β)x0. Let β = 2.023, then the competitive ratio is
(2α − β) = 2(β + 1)

4
3 (β − 1)− 1

3 + 2 − β = 8.653, which also satisfies β β+1
β−1 > α.

Thus the proof of this case is finished.

6 Conclusions and Open Problems

In this paper we investigate the Byzantine robots search problem where n robots
search on a line for an unknown target while f of them are Byzantine fault. For
sufficiently large (n, f), we provide a new algorithm framework, and design two
specific algorithm under this framework. With these algorithms, We improve
the upper bounds of asymptotic competitive ratio T (β) significantly with the
fault ratio β ∈ (5

14 , 13
34) ∪ (1946 , 1

2) compared with the results in [13]. Besides,
we also improve upper bounds of competitive ratio S(n, f) for the cases where
(n, f) = (6, 2) and (3, 1).

For more discussion, We conjecture that the upper bounds of asymptotic
competitive ratio achieved in this paper would be optimal. Another conjecture
is that limβ→ 1

2
T (β) = 9. In other words, when the number of byzantine robots

is almost half of the total number, we can not do much better than the algorithm
in [2].

Another interesting direction of this problem is how to improve the lower
bounds. The hardness comes from the lack of methods to analysis the complicate
behaviors of all robots at all time. For example, we even do not know whether
all the robots should not stop at all time in every optimal algorithm to the
searching problem with (n, f) = (3, 1). However, a feasible way to the cases
(n, f) = (2f + 1, f) is to consider a weaker version where all the faulty robots
are crash fault. Some researchers have improve the lower bounds by this idea
[19], and their results match the upper bound for crash robots. But for Byzantine
version, the lower bounds are still not tight.

References

1. Albers, S., Kursawe, K., Schuierer, S.: Exploring unknown environments with
obstacles. Algorithmica 32(1), 123–143 (2002)

2. Beck, A.: On the linear search problem. Israel J. Math. 2(4), 221–228 (1964)
3. Beck, A.: More on the linear search problem. Israel J. Math. 3(2), 61–70 (1965)
4. Beck, A., Newman, D.J.: Yet more on the linear search problem. Israel J. Math.

8(4), 419–429 (1970)
5. Beck, A., Warren, P.: The return of the linear search problem. Israel J. Math.

14(2), 169–183 (1973)
6. Bellman, R.: An optimal search. SIAM Rev. 5(3), 274 (1963)

Better Upper Bounds for Searching on a Line with Byzantine Robots 171

7. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408
(2012)

8. Chrobak, M., G ↪asieniec, L., Gorry, T., Martin, R.: Group search on the line. In: Ital-
iano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R.
(eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46078-8 14

9. Chuangpishit, H., Czyzowicz, J., Kranakis, E., Krizanc, D.: Rendezvous on a line
by location-aware robots despite the presence of byzantine faults. In: Fernández
Anta, A., Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.) ALGOSENSORS 2017.
LNCS, vol. 10718, pp. 70–83. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-72751-6 6

10. Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Taleb, N.:
When patrolmen become corrupted: monitoring a graph using faulty mobile robots.
Algorithmica 79(3), 925–940 (2017)

11. Czyzowicz, J., et al.: Search on a line by byzantine robots. In: 27th International
Symposium on Algorithms and Computation, vol. 27 (2016)

12. Czyzowicz, J., Georgiou, K., Kranakis, E.: Group search and evacuation. In:
Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile
Entities, pp. 335–370. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
11072-7 14

13. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Search on a
line with faulty robots. In: Proceedings of the 2016 ACM Symposium on Principles
of Distributed Computing, pp. 405–414. ACM (2016)

14. Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algo-
rithms (TALG) 11(1), 1 (2014)

15. Gal, S.: Minimax solutions for linear search problems. SIAM J. Appl. Math. 27(1),
17–30 (1974)

16. Hoffmann, F., Icking, C., Klein, R., Kriegel, K.: The polygon exploration problem.
SIAM J. Comput. 31(2), 577–600 (2001)

17. Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: an opti-
mal randomized algorithm for the cow-path problem. Inf. Comput. 131(1), 63–79
(1996)

18. Kleinberg, J.M.: On-line search in a simple polygon. In: SODA, vol. 94, pp. 8–15
(1994)

19. Kupavskii, A., Welzl, E.: Lower bounds for searching robots, some faulty. In: Pro-
ceedings of the 2018 ACM Symposium on Principles of Distributed Computing,
pp. 447–453. ACM (2018)

20. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans.
Program. Lang. Syst. (TOPLAS) 4(3), 382–401 (1982)

21. Lynch, N.A.: Distributed Algorithms. Elsevier, Amsterdam (1996)
22. Schuierer, S.: Lower bounds in on-line geometric searching. Comput. Geom. 18(1),

37–53 (2001)

https://doi.org/10.1007/978-3-662-46078-8_14
https://doi.org/10.1007/978-3-319-72751-6_6
https://doi.org/10.1007/978-3-319-72751-6_6
https://doi.org/10.1007/978-3-030-11072-7_14
https://doi.org/10.1007/978-3-030-11072-7_14

A Survey on Double Greedy Algorithms
for Maximizing Non-monotone

Submodular Functions

Qingqin Nong1 , Suning Gong1(B), Qizhi Fang1, and Dingzhu Du2

1 School of Mathematical Science, Ocean University of China,
Qingdao 266100, Shandong, People’s Republic of China

gsn ouc@163.com
2 Department of Computer Science, University of Texas, Dallas 75083, USA

Abstract. Maximizing non-monotone submodular functions is one of
the most important problems in submodular optimization. A break-
through work on the problem is the double-greedy technique introduced
by Buchbinder et al. [7]. Prior work has shown that this technique is very
effective. This paper surveys on double-greedy algorithms for maximiz-
ing non-monotone submodular functions from discrete domains of sets
and integer lattices to continuous domains.

Keywords: Submodular · Non-monotone · Algorithm · Double greedy

1 Introduction

Submodularity captures the principle of diminishing returns in economics. Moti-
vated by the principle of economy of scale, prevalent applications such as machine
learning [3], computer vision [16], and operations research [17] have stimu-
lated research on problems with submodular objective functions. The most early
results on submodular maximization concentrate on submodular set functions.
The greedy approach is a basic method for the problems: start with the empty
set being the initial solution, go through all the elements one at a time, and
iteratively add to the current solution set an element that results in the largest
positive marginal gain of the objective function while satisfying the constraints.
This approach is effective for monotone submodular maximization with different
types of constraints. However, this greedy algorithm performs poorly with non-
monotone submodular functions such as the Unconstrained Submodular Maxi-
mization (USM). It has applications in various practical settings such as market-
ing in social networks [15], revenue maximization with discrete choice [1]. Given
a non-negative submodular set fucntion f : N → R+, the goal of USM is to find

This research was supported in part by the National Natural Science Foundation
of China under grant numbers 11201439 and 11871442, and was also supported in
part by the Natural Science Foundation of Shandong Province under grant number
ZR2019MA052 and the Fundamental Research Funds for the Central Universities.

c© Springer Nature Switzerland AG 2020
D.-Z. Du and J. Wang (Eds.): Ko Festschrift, LNCS 12000, pp. 172–186, 2020.
https://doi.org/10.1007/978-3-030-41672-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41672-0_10&domain=pdf
http://orcid.org/0000-0002-0895-7793
http://orcid.org/0000-0002-7345-2185
https://doi.org/10.1007/978-3-030-41672-0_10

A Survey on Double Greedy Algorithms 173

a subset S ⊆ N such that f(S) is maximized. For the problem, consider a similar
algorithm to the greedy algorithm that starts with a solution consisting of all
the elements, and then goes through all the elements one by one, and removes
the element from the current solution if its marginal contribution to the current
solution is negative. This algorithm is called reverse greedy. It is shown that this
greedy algorithm also performs poorly for USM. In a breakthrough work, Buch-
binder et al. [7] combined greedy and reverse-greedy by using them concurrently.
When going through the elements, information from both greedy and reverse-
greedy is used to decide whether to add the current element to the solution.
Inspired by the double-greedy framework of Buchbinder et al. [7], researchers
have designed effective algorithms for a large number of non-monotone submod-
ular maximization problems and their generalizations. In this paper we survey
on the results related to double-greedy algorithms for maximizing non-monotone
submoduar functions from discrete domains of sets and integer lattices to con-
tinuous domains.

2 Maximizing Non-monotone Submodular Set Functions

Definition 1 (Submodular Set Function). Given a finite ground set N ,
a set function f : 2N → R is said to be submodular, if it satisfies one of the
following two conditions:

(a) f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T), for any pair of subsets S, T ⊆ N ;
(b) fS(j) ≥ fT (j), for any S ⊆ T ⊂ N and j ∈ N \ T .

Unconstrained Submodular Maximization (USM) has been studied since the
1960s. The first rigorous study of it was conducted by Feige et al. [11]. They
showed that a subset S chosen uniformly at random is a 1

4 -approximation. They
presented two local search algorithms, one with an approximation ratio of 1

3
and the other with an approximation guarantee of 2

5 . Gharan and Vondrák [13]
provided an algorithm with an improved approximation of roughly 0.41. On
the negative side, Feige et al. [11] showed that for any constant ε > 0, any
algorithm achieving an approximation of (12 + ε) requires an exponential number
of oracle queries. This hardness result holds even if f is symmetric, that is, even
if f(S) = f(N \ S) for every S ⊆ N .

To improve the approximation guarantees of algorithms for the USM, Buch-
binder et al. [7] firstly introduced double-greedy framework. Basing on this idea,
they presented a simple deterministic algorithm with an approximation guaran-
tee of 1

3 and a randomized algorithm achieving a tight approximation guarantee
of 1

2 .
Let N = {u1, . . . , un}. The 1

3–approximate deterministic double-greedy algo-
rithm runs as follows:

Lemma 1. For every i ∈ {1, . . . , n}, we have ai + bi ≥ 0.

174 Q. Nong et al.

Algorithm 1. Deterministic USM(f,N)
Input: A submodular set function f : 2N → R+ and a value oracle for f .
Output: An approximate solution to max

S⊆N
f(S)

1: Initialization: X0 ← ∅, Y0 ← N
2: for i = 1 to n do
3: ai ← f(Xi−1 ∪ {ui}) − f(Xi−1)
4: bi ← f(Yi−1 \ {ui}) − f(Yi−1)
5: if ai ≥ bi then
6: Xi ← Xi−1 ∪ {ui}, Yi ← Yi−1

7: else
8: Xi ← Xi−1, Yi ← Yi−1 \ {ui}
9: end if

10: end for
11: return Xn

Proof. Observe that Xi−1 ⊆ Yi−1 \ {ui} and ui ∈ Yi−1.

ai + bi = [f(Xi−1 ∪ {ui}) − f(Xi−1)] + [f(Yi−1 \ {ui}) − f(Yi−1)]
= [f(Xi−1 ∪ {ui}) − f(Xi−1)] − [f(Yi−1) − f(Yi−1 \ {ui})]
≥ 0,

where the last inequality holds from the submodularity of f .

The above result indicates that the solutions Xi and Yi returned by the
algorithm improve at every step.

Corollary 1. For every i ∈ {1, . . . , n}: f(Xi) ≥ f(Xi−1) and f(Yi) ≥ f(Yi−1).

Proof. Consider the ith loop. If ai ≥ bi, then Xi = Xi−1 ∪ {ui} and Yi = Yi−1.
ai+bi ≥ 0 implies that ai ≥ 0 and thus f(Xi)−Xi−1 ≥ 0 and f(Yi)−f(Yi−1) = 0.
If ai < bi, Xi = Xi−1 and Yi = Yi−1 \ {ui}. ai + bi ≥ 0 means that bi ≥ 0 and
thus f(Yi) − f(Yi−1) ≥ 0 and f(Xi) − f(Xi−1) ≥ 0.

Let OPT be an optimal solution and OPTi = (OPT ∨ Xi) ∧ Yi (i =
0, 1, . . . , n). OPTi is the set that coincides with Xi and Yi on u1, . . . , ui and
coincides with OPT on ui+1, . . . , un. One can see that Xi ⊆ OPTi ⊆ Yi

(i = 0, 1, . . . , n), OPTn = Xn = Yn and OPT0 = OPT . Note that OPTi is
the crucial sequence of sets used through the analysis.

Lemma 2. For every i ∈ {1, . . . , n}, we have

[f(Xi) − f(Xi−1)] + [f(Yi) − f(Yi−1)] ≥ f(OPTi−1) − f(OPTi).

Proof. Assume that ai ≥ bi (the case that ai < bi is similar). Then Xi =
Xi−1 ∪ {ui}, Yi = Yi−1 and the sum of the left terms of the inequality is ai.
If ui ∈ OPTi−1, then OPTi = OPTi−1 and thus f(OPTi) = f(OPTi−1). Note
that ai ≥ 0 in this case. The inequality follows. If ui �∈ OPTi−1, then OPTi =

A Survey on Double Greedy Algorithms 175

OPTi−1 ∪ {ui}. By the submodularity and the fact that OPTi−1 ⊆ Yi−1 \ {ui},
we have

f(OPTi−1) − f(OPTi) = f(OPTi−1) − f(OPTi−1 ∪ {ui})
≤ f(Yi−1 \ {ui}) − f(Yi−1)
= bi

≤ ai.

This concludes the proof.

Theorem 1. Algorithm 1 has an approximation guarantee of 1
3 for USM.

Proof.

f(Xn) + f(Yn) ≥ f(Xn) − f(X0) + f(Yn) − f(Y0)

=
n∑

i=1

[f(Xi) − f(Xi−1) + f(Yi) − f(Yi−1)]

≥
n∑

i=1

f(OPTi−1) − f(OPTi)

= f(OPT0) − f(OPTn),

where the first inequality holds from the fact that f(X0) ≥ 0 and f(Y0) ≥ 0, and
the second holds from Lemma 2. Observe that OPT0 = OPT and Xn = Yn =
OPTn. The result follows.

In the case where ai and bi are both positive, either the decision of picking
ui or of rejecting ui could be a good decision. By either picking it or rejecting it
with some probability, the approximation guarantee can be improved to 1

2 . The
randomized algorithm is described at the below.

Lemma 3. For every i ∈ {2, . . . , n}, we have

E[f(Xi) − f(Xi−1) + f(Yi) − f(Yi−1)] ≥ 2E[f(OPTi−1) − f(OPTi)].

Proof. If ai ≥ 0 and bi ≤ 0, then with probability 1, Xi = Xi−1 ∪ {ui} and
Yi ← Yi−1. The sum of the left terms of the inequality is ai. If ui ∈ OPTi−1,
then OPTi = OPTi−1 and thus f(OPTi) = f(OPTi−1). The inequality follows.
If ui �∈ OPTi−1, then OPTi = OPTi−1 ∪ {ui}. By the submodularity and the
fact that OPTi−1 ⊆ Yi−1 \ {ui}, we have

f(OPTi−1) − f(OPTi) = f(OPTi−1) − f(OPTi−1 ∪ {ui})
≤ f(Yi−1 \ {ui}) − f(Yi−1)
= bi

≤ ai

2
.

176 Q. Nong et al.

Algorithm 2. Randomized USM(f,N)
Input: A submodular set function f : 2N → R+ and a value oracle for f .
Output: An approximate solution to max

S⊆N
f(S)

1: Initialize: X0 ← ∅, Y0 ← N
2: for i = 1 to n do
3: ai ← f(Xi−1 ∪ {ui}) − f(Xi−1)
4: bi ← f(Yi−1 \ {ui}) − f(Yi−1)
5: a′

i ← max{ai, 0}, b′
i ← max{bi, 0},

6: with probability
a′
i

a′
i+b′

i
: Xi ← Xi−1 ∪ {ui}, Yi ← Yi−1

7: with probability
b′
i

a′
i+b′

i
: Xi ← Xi−1, Yi ← Yi−1 \ {ui}

8: end for
9: return Xn

(Note: assume that
a′
i

a′
i+b′

i
= 1 if a′

i = b′
i = 0)

If bi ≥ 0 and ai < 0, then with probability 1: Xi = Xi−1, Yi = Yi−1 \ {ui}. The
proof follows similarly as the previous case. By Lemma 1, ai + bi ≥ 0. Thus the
only case remains is ai > 0 and bi > 0. In this case a′

i = ai and b′
i = bi. With

probability ai

ai+bi
, Xi = Xi−1 ∪ {ui} and Yi = Yi−1, and with probability bi

ai+bi
,

Xi = Xi−1 and Yi = Yi−1 \ {ui}. Thus,

E[f(OPTi−1) − f(OPTi)

=
ai

ai + bi
(f(OPTi−1) − f(OPTi−1 ∪ {ui})) + bi

ai + bi
(f(OPTi−1) − f(OPTi−1 \ {ui})).

(1)
If ui ∈ OPTi−1, then OPTi−1 ∪ {ui} = OPTi−1 and thus

f(OPTi−1) − f(OPTi−1 ∪ {ui}) = 0.

By submodularity of f and the fact that Xi−1 ⊆ OPTi−1 \ {ui}, we have

f(OPTi−1) − f(OPTi−1 \ {ui}) ≤ f(Xi−1 ∪ {ui}) − f(Xi−1) = ai.

If ui �∈ OPTi−1, then OPTi−1 \ {ui} = OPTi−1 and thus

f(OPTi−1) − f(OPTi−1 \ {ui}) = 0.

By the submodularity of f and the fact that OPTi−1 ⊆ Yi−1 \ {ui}, we have

f(OPTi−1) − f(OPTi−1 ∪ {ui}) ≤ f(Yi−1 \ {ui}) − f(Yi−1) = bi.

A Survey on Double Greedy Algorithms 177

Therefore, in both cases the sum of the right terms of Equality (1) is aibi
ai+bi

. On
the other hand,

E[f(Xi) − f(Xi−1) + f(Yi) − f(Yi−1)]

=
ai

ai + bi
(f(Xi−1 ∪ {ui}) − f(Xi−1)) +

bi

ai + bi
(f(Yi−1 \ {ui}) − f(Yi−1))

=
a2

i + b2i
ai + bi

≥ 2aibi

ai + bi

≥ E[f(OPTi−1) − f(OPTi).

This completes the proof of the lemma.

Lemma 3 implies the following theorem.

Theorem 2. Algorithm 2 has an approximation guarantee of 1
2 for USM.

In most cases the approximation guarantees obtained by randomized algo-
rithms are superior to the best results obtained by the known deterministic
algorithms. Buchbinder and Feldman [5] gave evidence that randomization is
not necessary for obtaining good algorithms by presenting a new technique for
derandomization of Algorithm 2. Its approximation guarantee remains 1

2 . Their
idea is to maintain explicitly a (small) distribution over the states of the algo-
rithm, and carefully update it using marginal values obtained from an extreme
point solution of a suitable linear formulation.

Inspired by the double-greedy framework, Buchbinder et al. [6] presented a
continuous double-greedy algorithm for maximizing non-monotone submodular
set functions with cardinality constraints max

|S|≤k
f(S), where k is a positive integer.

They showed that the approximate guarantee of the algorithm is at least (1 +
n

2
√

(n−k)k
)−1. Ene and Nguy˜̂en [9] considered the problem max

S∈I
f(S), where f

is a non-monotone submodular set function and I is an independent system
(I ⊆ 2N , and B ∈ I and A ⊆ B implies A ∈ I) with ground set N . Given a set
function f : 2N → R+, a function F : [0, 1]N → R+ is the multilinear extension
of f if

F (x) = E[f(R(x))] =
∑

R⊆N

f(R) ·
∏

u∈R

xu ·
∏

v/∈R

(1 − xv).

Ene and Nguy˜̂en [9] described an algorithm for maximizing the multilinear exten-
sion of f . The algorithm picks the best out of the following two solutions. The
first solution is constructed by running a Continuous Greedy algorithm with an
additional dampening constraint. The second solution is constructed by running
a double-greedy exactly when the marginal gain becomes low. They showed that
the approximation guarantee of the algorithm is 0.372, improving over the 1

e
approximation achieved by the unified Continuous Greedy algorithm Feldman
et al. [12].

178 Q. Nong et al.

3 Maximizing Non-monotone Submodular Integer
Lattice Functions

Set functions are powerful for describing problems with variable selection. But
they cannot cast the case that allows multiple choices of an element in the
ground set. To deal with such situations, several generalizations of submodularity
have been proposed. Different from submodular set functions, the diminishing-
return-style characterization is not equivalent to submodularity for integer lattice
functions [18,20]. It leads to two kinds of submodularities, weak-submodular and
DR-submodular, where the latter is stronger than the former.

Let B = (B1, B2, . . . , Bn) ∈ Z
n
+ be an integer vector and [B] = {x ∈ Z

n
+ :

0 ≤ xi ≤ Bi,∀1 ≤ i ≤ n} be the set of all smaller non-negative integer vectors.
Specially, [Bi] = {0, 1, . . . , Bi} for any integer Bi ∈ Z+. Let x ∨ y be the vector
whose i-th coordinate is max{xi, yi} and x∧y be the vector whose i-th coordinate
is min{xi, yi}.

Definition 2 (Weak-submodular Integer Lattice Function). An integer
lattice function f : [B] → R is said to be weak-submodular, if it satisfies one of
the following two conditions:

(a) f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y), for any pair of vectors x,y ∈ [B];
(b) f(x + k1i) − f(x) ≥ f(y + k1i) − f(y), for any i ∈ {1, . . . , n}, k ∈ Z+ and

any pair of x,y ∈ [B] such that x ≤ y and xi = yi, where 1i is the vector
with the ith component equal to 1 and each of the others equals to 0.

Definition 3 (DR-submodular Integer Lattice Function). An integer
lattice function f : [B] → R is said to be DR-submodular, if

f(x + k1i) − f(x) ≥ f(y + k1i) − f(y),

for any i ∈ {1, . . . , n}, k ∈ Z+ and any pair of x,y ∈ [B] such that x ≤ y.

Given a non-monotone weak-submodular integer lattice function f : [B] →
R+, Gottschalk and Peis [14] considered the following maximization problem on
a bounded integer lattice (W-MBIL):

max
x∈[B]

f(x).

They presented the following double-greedy algorithm for the problem and
showed that its tight approximate guarantee is 1

3 . For a vector x ∈ Z
n, let

(c,x−i) denote a vector that the ith component is set to c while the others
remain the same as x.

Lemma 4 below shows that with the progress of Algorithm 3, both of f(x(i))
and f(y(i)) is non-decreasing.

Lemma 4. For every i ∈ {1, . . . , n}, we have f(x(i)) ≥ f(x(i−1)) and f(y(i)) ≥
f(y(i−1)).

A Survey on Double Greedy Algorithms 179

Algorithm 3. Double Greedy for W-MBIL
Input: A non-monotone weak-submodular integer lattice function f : [B] → R+.
Output: An approximate solution to maxx∈[B] f(x).

1: Initialize: x(0) = 0, y(0) = B
2: for i = 1 to n do
3: c′ ← arg maxc∈[Bi] f(c,x

(i−1)
−i) − f(x(i−1)); δxi ← f(c′,x(i−1)

−i) − f(x(i−1))

4: c′′ ← arg maxc∈[Bi] f(c,y
(i−1)
−i) − f(y(i−1)); δyi ← f(c′′,y(i−1)

−i) − f(y(i−1))
5: if δxi ≥ δyi then

6: x(i) ← (c′,x(i−1)
−i); y(i) ← (c′,y(i−1)

−i)
7: else
8: x(i) ← (c′′,x(i−1)

−i); y(i) ← (c′′,y(i−1)
−i)

9: end if
10: end for
11: return x(n)

Proof. Consider the ith loop. Clearly, x(i) coincides with y(i) on the first i com-
ponents, denoted by c1, c2, . . . , ci−1 respectively. That is,

x(i) = (c1, c2, . . . , ci−1, ci, 0, . . . , 0),

y(i) = (c1, c2, . . . , ci−1, ci, Bi+1, . . . , Bn).

Case 1. δxi ≥ δyi.
It is straightforward see that ci = c′ and f(x(i)) ≥ f(x(i−1)) holds naturally.
Next we consider f(y(i)) and f(y(i−1)). From the submodularity of f and the
fact that ci = arg maxc∈[Bi] f(c,x(i−1)

−i) − f(x(i−1)), we have

f(y(i−1)) − f(y(i)) = f(Bi,y
(i−1)
−i) − f(ci,y

(i−1)
−i)

≤ f(Bi,x
(i−1)
−i) − f(ci,x

(i−1)
−i)

≤ 0.

Case 2. δxi < δyi.
The proof is similar to that of case 1. In this case, ci = c′′ and f(y(i)) ≥
f(y(i−1)) holds naturally. From the submodularity of f and the fact that ci =
arg maxc∈[Bi] f(c,y(i−1)

−i) − f(y(i−1)), we have

f(x(i)) − f(x(i−1)) = f(ci,x
(i−1)
−i) − f(0,x

(i−1)
−i)

≥ f(ci,y
(i−1)
−i) − f(0,y

(i−1)
−i)

≥ 0.

This completes the proof of the lemma.

Let OPT be the optimal solution of W-MBIL and OPT (i) = (OPT ∨x(i)) ∧
y(i). Then x(i) ≤ OPT (i) ≤ y(i) for each i ∈ {0, 1, . . . , n}. Similar to Lemma 2,
we have the following result.

180 Q. Nong et al.

Lemma 5. For every i ∈ {1, . . . , n}, we have

[f(x(i)) − f(x(i−1))] + [f(y(i)) − f(y(i−1))] ≥ f(OPT (i−1)) − f(OPT (i)).

Proof. For convenience, let Oi be the ith component of OPT . Consider the ith
loop. Clearly, the first i components of OPT (i) are the same with x(i) and y(i)

while the others are the same with OPT , namely,

OPT (i) = (c1, . . . , ci−1, ci, Oi+1, . . . , On).

It is easy to see that OPT (i) = (ci, OPT
(i−1)
−i).

Case 1. δxi ≥ δyi.
Then ci = c′ in this case.

Case 1.1. ci ≤ Oi.
From the submodularity of f , we have

f(OPT (i−1)) − f(OPT (i)) = f(Oi, OPT
(i−1)
−i) − f(ci, OPT

(i−1)
−i)

≤ f(Oi,x
(i−1)
−i) − f(ci,x

(i−1)
−i)

≤ 0,

where the second inequality follows from the fact that ci = arg maxc∈[Bi] f(c,
x
(i−1)
−i) − f(x(i−1)). Combined with Lemma 4, the result follows.

Case 1.2. ci > Oi.
From the submodularity of f , we have

f(OPT (i)) − f(OPT (i−1)) = f(ci, OPT
(i−1)
−i) − f(Oi, OPT

(i−1)
−i)

≥ f(ci,y
(i−1)
−i) − f(Oi,y

(i−1)
−i)

= [f(y(i)) − f(y(i−1))] + [f(y(i−1)) − f(Oi,y
(i−1)
−i)]

≥ [f(y(i−1)) − f(Oi,y
(i−1)
−i)]

≥ [f(y(i−1)) − f(c′′,y(i−1)
−i)]

≥ f(x(i−1)) − f(x(i)).

where the second inequality holds from Lemma 4, the third inequality holds from
the fact that c′′ = arg maxc∈[Bi] f(c,y(i−1)

−i) − f(y(i−1)) and the last inequality
from the assumption that δxi ≥ δyi. Thus f(x(i)) − f(x(i−1)) ≥ f(OPT (i−1)) −
f(OPT (i)). Combined with Lemma 4, the result follows.

Case 2. δxi < δyi.
The proof is similar to that of case 1 and we omit it here.

By Lemma 5 and having a discussion as done in the proof of Theorem 1,
one can obtain the following theorem. Gottschalk and Peis [14] also provide an
example that shows the analysis is tight.

A Survey on Double Greedy Algorithms 181

Theorem 3. Algorithm 3 has an approximation guarantee of 1
3 for W-MBIL.

Soma and Yoshida [21] considered non-monotone DR-submodular integer
lattice function maximization (DR-MBIL). They presented a 1

2 -approximation
algorithm (Algorithm 4) with a running time of O(||B||1θ+||B||1), where θ is the
running time of evaluating f . They also speeded up the algorithm by rounding
the values of f(xi +1,x−i)−f(x) and f(yi −1,y−i)−f(y) to the form δ(1+ε)k,
where δ is the minimum positive marginal gain and k is a positive integer. They
showed that the resulting algorithm is a 1

2+ε -approximation algorithm with time
complexity O(n

ε log(Δ
δ) log ||B||∞θ + ||B||1 log ||B||∞), where Δ is the maximum

marginal gain.
Let a = f(xi +1,x−i)− f(x) and b = f(yi − 1,y−i)− f(y). By the submod-

ularity of f , a + b ≥ 0. Algorithm 4 is described below.

Algorithm 4. Double Greedy for DR-MBIL
Input: A non-monotone DR-submodular integer lattice function f : [B] → R+.
Output: An approximate solution to maxx∈[B] f(x).
1: Initialize: x = 0, y = B
2: for i = 1 to n do
3: while xi < yi do
4: a ← f(xi + 1,x−i) − f(x) and b ← f(yi − 1,y−i) − f(y)
5: if b < 0 then xi ← xi + 1
6: else if a < 0 then yi ← yi − 1
7: else xi ← xi + 1 with probability a

a+b
and yi ← yi − 1 with probability b

a+b

8: (Note: assume that a
a+b

= 1 if a = b = 0)
9: end if

10: end while
11: end for
12: return x

4 Maximizing Submodular Continuous Functions

Submodularity has naturally been considered for functions defined on continu-
ous domains [2]. Similar to the integer lattice settings, there are two kinds of
submodularities in continuous domains.

Definition 4 (Weak-Submodular Continuous Function). A function f :
R

n → R is said to be weak-submodular, if it satisfies one of the following two
equivalent conditions:

(a) f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y), for any pair of vectors x,y ∈ R
n;

(b) f(x + k1i) − f(x) ≥ f(y + k1i) − f(y), for any i ∈ {1, . . . , n}, k ∈ R+ and
x ≤ y ∈ R

n such that xi = yi.

182 Q. Nong et al.

Definition 5 (DR-submodular Continuous Function). A function f :
R

n → R is said to be DR-submodular, if for any of vectors x ≤ y ∈ R
n,

i ∈ {1, . . . , n} and k ∈ R+ we have

f(x + k1i) − f(x) ≥ f(y + k1i) − f(y).

Bian et al. [4] generalized the simple non-optimal 1
3 -approximation determin-

istic double-greedy algorithm of [7] for set functions to DR-submodular continu-
ous functions and obtain a 1

3 -approximation. Niazadeh and Roughgardenthe [19]
considered the problem of maximizing a nonnegative and coordinate-wise Lip-
schitz continuous submodular function over a hypercube [0, 1]n. They provided
a randomized double-greedy 1

2 -approximation algorithm for weak-submodular
continuous functions. For the special case of DR-submodular maximization, they
presented a faster 1

2 -approximation algorithm that runs in almost linear time.
Ene et al. [10] studied the problem of maximizing a non-negative differentiable
DR-submodular submodular function over a hypercube [0, 1]n. They designed a
parallel double continuous greedy 1

2 -approximate algorithm and then offered a
discrete parallel version of the algorithm. They showed that the discrete algo-
rithm achieves a (12 − ε)-approximation and uses O(1ε log (1ε)) parallel rounds of
function evaluations. If f is differentiable, f is DR-submodular if and only if
∇f(x) ≥ ∇f(y) for any pair of vectors x ≤ y ∈ [0, 1]n. Let t be a continuous
time variable. The parallel double continuous greedy algorithm runs as follows.

Algorithm 5. Parallel Double Continuous Greedy Algorithm
Input: A diferentiable DR-submodular function f : [0, 1]n → R+ and a value oracle

for f and its gradient ∇f .
Output: An approximate solution to max

x∈[0,1]n
f(x).

1: Initialize: t ← 0, x ← 0, y ← 1 and N = [n]
2: while t < 1 and N �= ∅ do
3: if ∇if(x) ≤ 0 then y ← (xi,y−i) and N ← N \ {i}
4: else if ∇if(y) ≥ 0 then x ← (yi,x−i) and N ← N \ {i}
5: else if ∇if(x) > 0 and ∇if(y) < 0 then

6: ẋi(t) = ∇if(x)
∇if(x)−∇if(y)

and ẏi(t) = ∇if(y)
∇if(x)−∇if(y)

7: end if
8: end while
9: return x

One can see that in the process of the algorithm x and y change with time.

Lemma 6. x = y at the moment t = 1 of Algorithm 5.

Proof. We only need to show that xi = yi for each i ∈ N at the moment t = 1.
To see this, consider an arbitrary i ∈ N . If there is some moment such that
∇if(x) ≤ 0 or ∇if(y) ≥ 0, xi = yi by the algorithm. Otherwise, the increasing
speed of xi and the decreasing speed of yi are ∇if(x)

∇if(x)−∇if(y)
and ∇if(y)

∇if(x)−∇if(y)
,

A Survey on Double Greedy Algorithms 183

respectively. Thus |ẋi(t)| + |ẏi(t)| = 1. Note that at the moment 0, xi = 0 and
yi = 1. The result follows.

Let x∗ be the optimal solution of max
x∈[0,1]n

f(x) and p = (x∗ ∨ x) ∧ y. By the

DR-submodularity of f , we have the following observation.

Lemma 7. Consider an arbitrary moment of Algorithm 5.

(1) If there is some i such that ∇if(x) ≤ 0, set y′ = (xi,y−i) and p′ = (x∗ ∨
x) ∧ y′. Then

f(y′) − f(y) ≥ 0 and f(p′) − f(p) ≥ 0.

(2) If there is some i such that ∇if(y) ≥ 0, set x′ = (yi,x−i) and p̄ = (x∗ ∨
x′) ∧ y. Then

f(x′) − f(x) ≥ 0 and f(p̄) − f(p) ≥ 0.

(3) If each i satisfies ∇if(x) > 0 and ∇if(y) < 0,

d[f(x) + f(y)]
dt

+ 2
df(p)
dt

≥ 0.

Proof. (1) It is easy to see that x ≤ p′ ≤ y′. From the DR-submodularity of f
and the assumption that ∇if(x) ≤ 0, we have ∇if(z) ≤ 0 for any z ≥ x.
Specially, ∇if(si,z−i) ≤ 0 for any si ∈ [xi, yi] and for any z−i such that
x−i ≤ z−i ≤ y−i. Thus f(si,z−i) is decreasing in the interval [xi, yi] along
coordinate i. Since y′ = (xi,y−i) and p′ = (xi,p−i), we have

f(y′) − f(y) ≥ 0 and f(p′) − f(p) ≥ 0.

(2) Take a similar discussion as that in (1), one can conclude the inequalities.
(3) We first analyze df(p)

dt . One can see that: if x∗
i ∈ [0, xi), ṗi(t) = ẋi(t); if

x∗
i ∈ [xi, yi], ṗi(t) = 0; if x∗

i ∈ (yi, 0], ṗi(t) = ẏi(t). Thus,

df(p)
dt

=
n∑

i=1

∇if(p)ṗi(t)

=
∑

i:x∗
i ∈[0,xi)

∇if(p)ẋi(t) +
∑

i:x∗
i ∈(yi,0]

∇if(p)ẏi(t)

≥
∑

i:x∗
i ∈[0,xi)

∇if(y)ẋi(t) +
∑

i:x∗
i ∈(yi,0]

∇if(x)ẏi(t)

=
∑

i:x∗
i ∈[0,xi)

∇if(x)∇if(y)
∇if(x) − ∇if(y)

+
∑

i:x∗
i ∈(yi,0]

∇if(x)∇if(y)
∇if(x) − ∇if(y)

,

where the first inequality holds from the submodularity of f , the fact that x ≤
p ≤ y and the assumption that ∇if(x) > 0 and ∇if(y) < 0. On the other hand,

184 Q. Nong et al.

d[f(x) + f(y)]

dt
=

n∑

i=1

[∇if(x)ẋi(t) + ∇if(y)ẏi(t)]

=
n∑

i=1

∇if(x)2 + ∇if(y)2

∇if(x) − ∇if(y)

≥
∑

i:x∗
i ∈[0,xi)

∇if(x)2 + ∇if(y)2

∇if(x) − ∇if(y)
+

∑

i:x∗
i ∈(yi,0]

∇if(x)2 + ∇if(y)2

∇if(x) − ∇if(y)
.

Therefore,

d[f(x) + f(y)]
dt

+ 2
df(p)

dt

≥
∑

i:x∗
i ∈[0,xi)

(∇if(x) + ∇if(y))2

∇if(x) − ∇if(y)
+

∑

i:x∗
i ∈(yi,0]

(∇if(x) + ∇if(y))2

∇if(x) − ∇if(y)

≥ 0.

Theorem 4. Algorithm 5 returns a solution x with f(x) ≥ 1
2f(x∗).

Proof. Suppose that at the moment t of Algorithm 5, x = x(t), y = y(t). Let
p(t) = x∗ ∨ x(t) ∧ y(t). Partition the time interval [0, 1] into k small intervals

[0, t1), [t1, t2), . . . , [tk, 1],

where tj (j = 1, . . . , k) is a moment that Algorithm 5 executes line 3 or 4. Let
x(t−

j) (x(t+j)) be the state of x exactly before (after) tj and y(t−
j) (y(t+j)) be

the state of y exactly before (after) tj . For convenience, let t0 = 0, f(x(t−
0)) =

f(x(t+0)) = f(x(0)), and tk+1 = 1, f(x(t−
k+1)) = f(x(t+k+1)) = f(x(1)). Note that

if line 3 or line 4 happens, the value of the i-th coordinate is fixed and the
function considered in the sequel has one less variable. Thus in each [t+j−1, t

−
j]

(j = 1, . . . , k + 1) it satisfies ∇if(x) > 0 and ∇if(y) < 0 for every coordinate
i of a variable left. Consider an arbitrary time interval [t+j−1, t

−
j]. From (3) of

Lemma 7, for each j = 1, . . . , k + 1, we have

[f(x(t−
j)) − f(x(t+j−1))] + [f(y(t−

j)) − f(y(t+j−1))]

=
∫ t−

j

t+j−1

d[f(x(t)) + f(y(t))]
dt

≥ −2
∫ t−

j

t+j−1

df(p)
dt

= 2[f(p(t+j−1)) − f(p(t−
j))].

Consider an arbitrary moment that Algorithm 5 executes line 3 or 4. From (1)
and (2) of Lemma 4, we have

[f(x(t+j)) − f(x(t−
j))] + [f(y(t+j)) − f(y(t−

j))] ≥ 2[f(p(t−
j)) − f(p(t+j))].

A Survey on Double Greedy Algorithms 185

Thus,

[f(x(1)) − f(x(0))] + [f(y(1)) − f(y(0))] ≥ f(p(0)) − f(p(1)).

Note that f(x(0)) ≥ 0, f(y(0)) ≥ 0, p(0) = x∗ and p(1) = x(1) = y(1). The result
follows.

Researchers have also studied the trade-off between the number of adap-
tive sequential rounds of parallel computations (adaptive complexity), the total
number of objective function evaluations (query complexity) and the resulting
solution quality. Chen et al. [8] considered the USM problem. Using the idea
of double-greedy algorithm, they proposed the first algorithm for this problem
that achieves a tight (12−ε)-approximation guarantee using Õ(1ε) adaptive rounds
and a linear number of function evaluations. The algorithm can be extend to the
maximization of a non-negative continuous DR-submodular function subject to
a box constraint, and achieves a tight (12 − ε)-approximation guarantee for this
problem while keeping the same adaptive and query complexities.

References

1. Ahmed, S., Atamtürk, A.: Maximizing a class of submodular utility functions.
Math. Program. 128(1–2), 149–169 (2011)

2. Bach, F.: Submodular functions: from discrete to continuous domains. Math. Pro-
gram. 175(1–2), 419–459 (2019)

3. Balcan, M.-F., Harvey, N.-J.-A.: Learning submodular functions. In: Proceedings
of the 43rd ACM Symposium on Theory of Computing, pp. 793–802. ACM. San
Jose, CA, USA (2011)

4. Bian, A., Mirzasoleiman, B., Buhmann, J., Krause, A.: Guaranteed nonconvex
optimization: submodular maximization over continuous domains. In: Proceedings
of the 20th International Conference on Artificial Intelligence and Statistics, pp.
111–120. JMLR. Fort Lauderdale, Florida, USA (2017)

5. Buchbinder, N., Feldman, M.: Deterministic algorithms for submodular maximiza-
tion problems. ACM Trans. Algorithms 14(3), 1–20 (2018). Article 32

6. Buchbinder, N., Feldman, M., Naor, J.-S., Schwartz, R.: Submodular maximization
with cardinality constraints. In: Proceedings of the 25th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA, Oregon, Portland, pp. 1433–1452 (2014)

7. Buchbinder, N., Feldman, M., Seffi, J., Schwartz, R.: A tight linear time (1/2)-
approximation for unconstrained submodular maximization. SIAM J. Comput.
44(5), 1384–1402 (2015)

8. Chen, L., Feldman, M., Karbasi, A.: Unconstrained submodular maximization with
constant adaptive complexity. In: Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC, Phoenix, AZ, USA, pp. 102–113
(2019)

9. Ene, A., Nguy˜̂en, H.-L.: Constrained submodular maximization: beyond 1/e. In:
2016 IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS,
New Brunswick, NJ, USA, pp. 248–258 (2016)

10. Ene, A., Nguy˜̂en, H.-L., Vladu, A.: A parallel double greedy algorithm for sub-
modular maximization (2018). https://arxiv.org/abs/1812.01591

https://arxiv.org/abs/1812.01591

186 Q. Nong et al.

11. Feige, U., Mirrokni, V.-S., Vondrák, J.: Maximizing non-monotone submodular
functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

12. Feldman, M., Naor, J., Schwartz, R.: A unified continuous greedy algorithm for
submodular maximization. In: 2011 IEEE 52nd Annual Symposium on Foundations
of Computer Science, FOCS, pp. 570–579. Palm Springs, CA, USA (2011)

13. Gharan, S.-O., Vondrák J.: Submodular maximization by simulated annealing. In:
Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 1098–1117. Society for Industrial and Applied Mathematics, San
Francisco, California, USA (2011)

14. Gottschalk, C., Peis, B.: Submodular function maximization on the bounded inte-
ger lattice. In: Sanità, L., Skutella, M. (eds.) WAOA 2015. LNCS, vol. 9499, pp.
133–144. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28684-6 12

15. Hartline, J., Mirrokni, V., Sundararajan, M.: Optimal marketing strategies over
social networks. In: Proceedings of the 17th International Conference on World
Wide Web, pp. 189–198. ACM. Beijing, China (2008)

16. Hochbaum, D.S.: An efficient algorithm for image segmentation. Markov random
fields and related problems. J. ACM 48(4), 686–701 (2001)

17. Hochbaum, D.S., Hong, S.P.: About strongly polynomial time algorithms for
quadratic optimization over submodular constraints. Math. Program. 69(1), 269–
309 (1995)

18. Kapralov, M., Post, I., Vondrák, J.: Online submodular welfare maximization:
greedy is optimal. In: Proceedings of the 24th Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 1216–1225. SIAM, New Orleans, Louisiana, USA (2013)

19. Niazadeh, R., Roughgarden, T.: Optimal algorithms for continuous non-monotone
submodular and DR-submodular maximization. In: the 32nd Conference on Neural
Information Processing Systems, NIPS, Montréal, Canada, pp. 9617–9627 (2018)

20. Soma, T., Yoshida, Y.: A generalization of submodular cover via the diminishing
return property on the integer lattice. In: Advances in Neural Information Pro-
cessing Systems, pp. 847–855 (2015)

21. Soma, T., Yoshida, Y.: Non-monotone DR-submodular function maximization. In:
Proceedings of the 31st AAAI Conference on Artificial Intelligence, pp. 898–904.
AAAI, San Francisco, California, USA (2017)

https://doi.org/10.1007/978-3-319-28684-6_12

Sequential Location Game on Continuous
Directional Star Networks

Xujin Chen1,2, Xiaodong Hu1,2, and Mengqi Zhang1,2(B)

1 Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
Beijing 100190, China

{xchen,xdhu,mqzhang}@amss.ac.cn
2 School of Mathematical Sciences, University of Chinese Academy of Sciences,

Beijing 100049, China

Abstract. We consider a sequential location game on a continuous
directional star network, where a finite number of players (facilities)
sequentially choose their locations to serve their consumers who are
uniformly and continuously distributed in the network. Each consumer
patronizes all the closest locations that have been chosen, bringing them
equal shares of payoff. In turn, each location distributes the total pay-
off it receives evenly to every player choosing it. We study hierarchical
Stackelberg equilibria (HSE), a.k.a, subgame perfect equilibria of the
game, under which every player chooses a location to maximize its pay-
off. We establish a universal lower bound for payoff to a player under
any HSE outcome. The lower bound is then strengthened with better
estimations, and some HSE outcomes are explicitly presented, provided
that the number of players and the network parameters satisfy certain
relations.

Keywords: Sequential location game · Directional network ·
Hierarchical Stackelberg Equilibrium · Subgame perfect equilibrium

1 Introduction

Competitive location model was first introduced by Hotelling [12]. He consid-
ered the competitive location of two facilities in a finite nondirectional interval
with uniformly spread consumers. The market (network) of consumers could be
nondirectional or directional. The directional constraint that consumers can only
move in one direction (instead of the reverse) play an important role in some
applications, like TV broadcasting time, air schedules, among other things [4].

Following Prescott and Visscher [2] and Yates [13], we are concerned with
the n-player sequential location game in continuous directional markets. In this
setting, consumers are uniformly distributed on an directional network and each
will buy one unit of goods from the closest facilities. Facilities (also called firms or
players) 1, 2, . . . , n enter the directional network (market) sequentially according

Research supported in part by NNSF of China under Grant No. 11531014.

c© Springer Nature Switzerland AG 2020
D.-Z. Du and J. Wang (Eds.): Ko Festschrift, LNCS 12000, pp. 187–204, 2020.
https://doi.org/10.1007/978-3-030-41672-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41672-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-41672-0_11

188 X. Chen et al.

to an exogenously given order, say 1, 2, . . . , n, and each will choose a location on
the network when knowing the locations of the preceding facilities. Assume that
facilities sell a heterogeneous product with a fixed price, i.e., they only compete
on location and the payoff of each facility is the number of consumers served by
it. We consider sequential location with foresight, where each facility locates to
maximize its payoff, given the locations of facilities that have located and the
information that all succeeding facilities will try to maximize their payoffs. Facil-
ity n chooses an optimal location given the locations selected by the preceding
n − 1 facilities. Its strategy is a response function on the n − 1 known locations.
For facility n − 1, given the locations selected by the preceding n − 2 facilities,
it assumes that facility n is a payoff maximizer, i.e., facility n will always make
a best response to each of its decisions; so facility n − 1 will make decision to
maximize payoff considering the decision rule of facility n. Continuing in this
way, facility 1 will choose an optimal location considering the decision rule of
the succeeding n − 1 facilities. Prescott and Visscher [2] presented the optimal
solutions for the case of sequential locations of 2 players and the case of 3 players
in an unit interval [0, 1], which models the linear market.

The solution of the game we investigate is the hierarchical Stackelberg equi-
librium (HSE) [1], which is an extension of Stackelberg equilibrium of two players
into n-player sequential game. It is a subgame perfect equilibrium in which every
facility knows how to make a best response (i.e., choose an optimal location to
maximize its payoff in response) to every location profile of preceding players,
if all succeeding facilities will make best response to every location profile they
are facing. When every player makes a best response to preceding players, the
resulting profile of locations is called an HSE outcome.

Our Results. We study the sequential location game of n players on a continuous
directional star network S which consists of s incoming arcs to and t outgoing
arcs from a common center. Each player can choose its location to be any end-
point or interior point of an arc in S, under the constraint that no two players
are allowed to choose the same interior point. The chosen locations along with
endpoints of arcs divide S into a set of internally disjoint closed directional inter-
vals. All the points in each of the intervals have the same set of closest locations;
these locations split the length of the interval equally as their market shares
obtained from it. In turn, each location will distribute its total market share
evenly to all players choosing it as their payoffs. We call S a normal star if all
of its arcs have equal length, an out-star if s = 0, and an in-star if t = 0.

We contribute to the study on sequential location on directional stars by esti-
mating player payoffs and locations in any HSE outcome, as well as constructing
typical HSE outcomes.

– We establish a universal lower bound lmin/(� n
s+t� + 1)) for player payoffs

under any HSE outcome, where lmin is the shortest length of the s + t arcs
in S. The lower bound is shown to be tight when S is a normal out-star (i.e.,
s = 0) and t does not divide n.

Sequential Location Game on Continuous Directional Star Networks 189

– For in-stars and normal starts with n ≡ 0 (mod s + t), we show that under
any HSE outcome, the total arc length of S is evenly divided into n shares
to be player payoffs.

The equal-payoff results (see Corollary 1 and Theorem 2) generalize the coun-
terpart for a directional interval proved by Yates [13], and show that there is no
first-mover advantage or last-mover advantage in the corresponding cases. This
differs from to the results for the nondirectional model in Prescott and Viss-
cher [2], where the preceding players might get larger market shares than the
succeeding ones.

The most technical part of our work is the proof that in some cases a kind of
weak monotonicity holds, which means that some succeeding players can always
find a location to obtain a market share at least as good as those of some
preceding players.

– For normal stars with n ≡ 1 (mod s + 1) and t ≥ 1, we show that under any
HSE, the payoffs of the first f := (s + 1)� n

s+t� + 1 players must equal to the
lower bound ρ := 1/(� n

s+t�+ 1
s+1). A common pattern of locations in all HSE

outcomes in this case is also presented.
– For normal out-stars with n �≡ 0 (mod t), we show that under any HSE, the

payoffs of the first f := (n (mod t))(�n
t �+1) players must equal to the lower

bound ρ := 1/(�n
t � + 1).

Using these properties (see Theorems 4 and 5), we construct HSE outcomes
where the first f players adopt a conservative (and actually optimal) strategy to
obtain the bottom payoff ρ, while the remaining players obtain an equally larger
payoff 1/� n

s+t�.
In deriving the above results, we do not directly use the backward induction

procedure as in Prescott and Visscher [2] to find an HSE since it is almost
impossible for the sequential location game with multiple players. Our basic
method uses the lower bound of the payoff that each player can guarantee to
rule out most strategies that cannot lead to an HSE outcome, which simplifies
the process of computing an equilibrium outcome.

Related Work. Our work is an extension of the sequential location model intro-
duced by Prescott and Visscher [2], who introduced the sequential location game
in a continuous nondirectional linear market. They considered the sequential
entry of a fixed number facilities freely and found the optimal locations of for
the games with 2 facilities and 3 facilities, respectively. In the early of 1980s,
Drezner [6] and Hakimi [11] presented a series of results on the sequential location
game in the plane and networks, respectively. The basic setting is that the leader
who plays first locates p facilities and the follower who plays second locates q
facilities. Most works on sequential location since then are the extensions of this
setting. Recently, Gentile et al. [9] used integer programming to deal with three
sequential location problems under the framework of leader-follower. Reviews of
sequential location models can be found in [7,10,14,16].

190 X. Chen et al.

Location model with directional constraints (called directional location model
or one-sided location model) was originally proposed by Cancian [3]. He mod-
eled the television news scheduling as a Hotelling location game [12] with direc-
tional constraints and showed that there exists no pure Nash equilibrium. After
that, many researchers have developed this model in different aspects. Yates [13]
regarded the stock exchange listings as a one-sided location competition and first
analyzed the HSE outcomes of the n-player sequential location game on a direc-
tional line [0, 1], which extends the sequential game in Prescott and Visscher [2]
to a multi-player setting. He showed that all players obtain equal payoffs under
the equilibrium. Lai [15] and Sun [17] considered discrete location choices and
characterized the subgame perfect equilibria of 2-player and 3-player sequen-
tial location games in directional linear markets, respectively. Colombo [4,5]
considered the spatial price discrimination and spatial Cournot competition in
directional Hotelling model.

This paper is organized as follows. In Sect. 2, we introduce our formal model
of the sequential location game on directional networks and present formal def-
initions of best responses and HSE (Definition 1). In Sect. 3, we discuss general
properties of HSE for games on directional stars, among which Lemma 1 is the
major technical tool for deriving our results. As its quick corollaries, we obtain
the universal payoff lower bound lmin/(� n

s+t� + 1)) and equal-payoff result on
in-stars. In Sect. 4, we focus on normal stars whose number of arcs have some
special relations with n players. First, we extend the equal-payoff result to the
case with n ≡ 0 (mod s+t) in Sect. 4.1. Then we prove the aforementioned weak
monotonicity for the case with n ≡ 1 (mod s + t) and t ≥ 1 in Sect. 4.2, and
for normal out-stars with n �≡ 0 (mod t) in Sect. 4.3. We conclude the paper in
Sect. 5 with remarks on future research.

2 Model

We are concerned with the situation where n facilities enter a directional market
sequentially, and each facility chooses a location in the market based on the
choices of preceding facilities, under the assumption that the consumers are
uniformly distributed on the market and each of them will buy one unit of
goods from the closest facility. This situation is modeled as a game (H, [n], π),
where H is a directional network that represents the market, [n] = {1, 2, . . . , n}
is the set of facilities that are often called players, and π = (πκ)n

κ=1 consists of
the payoff functions πκ of players κ ∈ [n].

Directional Network. The directional network H is spanned by its skeleton,
which is a digraph H = (V,A, �) with vertex set V , arc (directed edge) set
A, and length function � ∈ R

A
>0. For any arc in A with tail vertex u and head

vertex v, we write it as (u, v), and use �(u, v) to represent its length. For
every real number r ∈ [0, 1], let (u, v, r) denote the point on (u, v) at a dis-
tance r · �(u, v) from u. In particular, u = (u, v, 0) and v = (u, v, 1). For any
two points w1 = (u, v, r1) and w2 = (u, v, r2) on arc (u, v) with r1 ≤ r2, we

Sequential Location Game on Continuous Directional Star Networks 191

call [w1, w2] = {(u, v, r)|r1 ≤ r ≤ r2} a directional interval, whose left limit is
w1, right limit is w2, and interior points are points in [w1, w2] − {w1, w2}.1 The
length of [w1, w2] is �(w1, w2) = �(u, v)×(r2−r1), which is also considered the dis-
tance from w1 to w2. The directional network H = {(u, v, r)|(u, v) ∈ A, r ∈ [0, 1]}
consists of (all the points in) all directional intervals [u, v] with (u, v) ∈ A,
where points (vertices) of V are skeleton points and the remaining are non-
skeleton points. Abusing notation, we identify each arc (u, v) ∈ A with its
corresponding direction interval [u, v]. Given two points p, q ∈ H that are not
contained by the same arc, if there exist distinct points p1, p2, . . . , ph ∈ H,
where l ≥ 1, such that [p,p1], [p1, p2], . . . , [pi, pi+1], . . . , [ph, q] are internally dis-
joint directional intervals in H, let such p1, p2, . . . , ph ∈ H be taken to min-
imize the number

∑h
i=0 �(pi, pi+1), where p0 = p and pl+1 = q. We consider

this minimum number as the distance from p to q, and the concatenation of
[p,p1], [p1, p2], . . . , [ph, q] as a shortest p-q path in H. If no such p1, p2, . . . , ph ∈ H
exist, the distance from p to q is infinite.

Market Share. The participants of the game (H, [n], π) are facilities (players)
and consumers. Players 1, 2, . . . , n enter the directional network H sequentially
in this order, where player κ precedes player μ, or equivalently, μ succeeds κ if
and only if κ < μ. Each player κ ∈ [n], knowing the locations of the κ − 1
preceding players, chooses a point xκ ∈ H as its location, where a point is called
a location only if it has been chosen by some player(s). The following co-location
rule is applied:

(R1) No two players are allowed to co-locate at the same non-skeleton point of
H, while any number of players could choose the same skeleton point of H.

Consumers are uniformly distributed on H in the sense that the number of
consumers on a directional interval is proportional to the interval length, Each
consumer will buy one unit of goods from their closest players, i.e., the ones
(among all n candidates) at a shortest distance to the player. Our model adopts
the same tie-breaking rule as that in [8]:

(R2) A consumer with exactly d closest locations contributes a market share of
1
d to each of them. If exactly h players choose the same location, then each
of them obtains a payoff equal to a fraction 1

h of the total market share the
location receives.

Formally, given a location profile x = (x1, . . . , xn), for every κ ∈ [n], we say
that location xκ as well as all players choosing xκ is favored by directional
interval [a, b] if xκ is a closest location of all the points (consumers) in [a, b]. It
is easy to see that the set I of maximal directional intervals that favor xκ is
unique and finite. In turn, each I ∈ I is an internally disjoint union of finitely
many directional intervals JI,1, . . . , JI,ν(I) such that each JI,i, i ∈ ν(I) favors
a common set XI,i of locations (no points inside JI,i has a closest location

1 In our discussion, all directional intervals are closed.

192 X. Chen et al.

outside XI,i). The tie-breaking rule (R2) yields that every player ζ who chooses
xζ = xκ obtains a payoff

πζ(x) =

∑
I∈I

∑ν(I)
i=1

�(J,I,i)
|XI,i|

|{η ∈ [n]|xη = xκ}| ,

where the numerator is the market share that location xκ receives.

Hierarchical Stackelberg Equilibrium. For each ζ ∈ [n], the (partial) location
profile (x1, . . . , xζ) is often abbreviated to (xκ)ζ

κ=1 or x[ζ]. In a mild abuse of
notation, we also use x[ζ] to denote the corresponding multiset {x1, . . . , xζ} of
locations. For convenience, let x[0] denote the null location profile. The strategy
of player κ ∈ [n] is a function λκ which maps every partial location profile
x[κ−1] to a point λκ(x[κ−1]) ∈ H, and let Λκ denote the set of such functions.
Every strategy profile (λk)n

κ=1 induces a location profile (xκ)n
κ=1 such that xκ =

λκ(x[κ−1]) for every κ ∈ [n]. This location profile is often referred to as the
outcome of (λk)n

κ=1.
Naturally, every player κ would choose a location that maximizes its payoff

based on the observed choices of the preceding κ − 1 players and optimal deci-
sion rules of the succeeding n−κ players. This class of player strategies leads to
solutions of the sequential location game, which is an extension of widely-studied
Stackelberg equilibria. We call a strategy profile (λ∗

κ)n
κ=1 a hierarchical Stack-

elberg equilibrium (HSE) of the game (H, [n], π), if for all κ = n, n − 1, . . . , 1,
given any partial location profile x[κ−1], point λ∗

κ(x[κ−1]) is an optimal location
that player κ can choose to maximize its payoff, provided that all the succeed-
ing players make the best responses. Formally, for any x[κ−1], function λ∗

κ is an
optimal solution λκ ∈ Λκ of the following optimization problem:

max
λκ∈Λκ

πκ(x[κ−1], xκ, x∗
κ+1, . . . , x

∗
n) (2.1)

s.t. xκ = λκ(x[κ−1])
x∗

κ+1 = λ∗
κ+1(x[κ−1], xκ)

x∗
μ = λ∗

μ(x[κ−1], xκ, x∗
κ+1, . . . , x

∗
μ−1), μ = κ + 2, . . . , n

where the optimal functions λ∗
μ, μ = κ+1, . . . , n, has been derived before seeking

for λ∗
κ.

Before proceeding, a technical issue has to be addressed. In the process of
maximization (2.1), it may happen that function λκ wants to take location xκ

to be a point as close to some point p as possible but cannot be p itself. The
approaching to p can be assumed to happen along an arc e ∈ A containing p.
Firstly, we define such a location choice xκ selected by λκ as a pseudo point pe

on e, whose distance to p is an infinitesimal amount ε > 0, such that

(R3) pe “touches” p along (the direction of) e, and no location choices made
afterwards can be “inserted” between pe and p.

(R4) The payoffs of players in a location profile which contains some pseudo
points are computed by taking limit with ε → 0+.

Sequential Location Game on Continuous Directional Star Networks 193

Henceforth, by a single word “point” without any modifier we mean a real or
pseudo one, and by a “(partial) location profile” we mean a general one which
may contain some pseudo locations (unless otherwise noted). Given a profile x[n]

of real or pseudo locations and player κ ∈ [n], we define

π̃κ(x) = lim
ε→0+

π(x).

as the payoff of player κ under x. When x contains no pseudo locations, π̃k(x) is
noting but πκ(x). Replacing (2.1) with the following more “general” maximiza-
tion which allows λκ, . . . , λn to take pseudo points:

max
λκ∈Λκ

π̃κ(x[κ−1], xκ, x∗
κ+1, . . . , x

∗
n) (2.2)

s.t. xκ = λκ(x[κ−1])
x∗

κ+1 = λ∗
κ+1(x[κ−1], xκ)

x∗
μ = λ∗

μ(x[κ−1], xκ, x∗
κ+1, . . . , x

∗
μ−1), μ = κ + 2, . . . , n

the optimal (real or pseudo) locations of n players can be obtained by solving a
n-level optimization problem sequentially.

Given any ζ ∈ [n], any partial profile x′
[ζ−1] = (x′

1, . . . , x
′
ζ−1) of real or pseudo

locations of players 1, . . . , ζ − 1, and any partial strategy profile (λζ , λζ+1, . . . ,
λn) ∈ ∏n

κ=ζ Λκ of players ζ, ζ + 1, . . . , n, if partial profile (xζ , xζ+1, . . . , xn)
of real or pseudo locations satisfies xκ = λκ(x′

1, . . . , x
′
ζ−1, xζ , . . . , xκ−1) for

κ = ζ, ζ + 1, . . . , n, we say that it is induced by x′
ζ−1 and (λζ , λζ+1, . . . , λn).

Definition 1 (Best Response, HSE). (λζ , λζ+1, . . . , λn) is called a best
response to x′

[ζ−1], if for every κ = n, n − 1, . . . , ζ and any partial profile x[κ−1]

of real or pseudo locations in which (x1, . . . , xζ−1) = x′
[ζ−1], function λκ is an

optimal solution of (2.2) and subject to the optimality, λκ(x[κ−1]) is taken to be
a real point (instead of a pseudo one) whenever possible. A strategy profile is
called a HSE if and only if it is a best response to the null location profile.

3 Sequential Location on Directional Stars

Figure 1 depicts the location game (S, [n], π̃) in a directional star market S
spanned by a directed star S = (V,A, �), where V = {ci | i ∈ [s]}∪{o}∪{gj | j ∈
[t]}, and A consists of s incoming arcs (ci, o), i ∈ [s] and t outgoing arcs (o, gj),
j ∈ [t]. When s = 0 (resp. t = 0), we call both S and S out-stars (resp. in-stars).
S and S are normal if �(e) = 1 for every arc e ∈ A.

For any partial location profile x[ζ], the points in x[ζ] ∪ V divide S into a
set I(x[ζ]) of internally disjoint closed directional intervals of positive lengths,
whose limits are points in x[ζ]∪V and which are internally disjoint from x[ζ]∪V .

– For every i ∈ [s], we use Ci,ζ = x[ζ] ∩ {(ci, o, r) | r ∈ [0, 1)} to denote the
multiset of locations of x[ζ] in arc (ci, o) with o excluded. We order the points
in Ci,ζ as ci,1, . . . , ci,|Ci,ζ | in nondecreasing distances to o; if xη, xκ ∈ Ci,ζ

with η < κ are at the same distance to o, then we put xη in front of xκ.

194 X. Chen et al.

Fig. 1. A directed star S

– For every j ∈ [t], we use Gj,ζ = x[ζ] ∩ {(o, gj , r) | r ∈ (0, 1]} to denote the
multiset of locations of x[ζ] in arc (o, gj) with o excluded. We order the points
in Gj,ζ as gj,1, . . . , gj,|Gj,ζ | in nondecreasing distances from o; if xη, xκ ∈ Gj,ζ

with η < κ are at the same distance from o, then we put xκ in front of xη.

Let Oζ = {x ∈ x[ζ]|x = o} represent the set of players in [h] who choose vertex
o as their locations under x[ζ].

Definition 2 (Happiness). Given any location profile x = (xκ)n
κ=1 and real

number Π, we say that a player κ ∈ [n] is Π-happy (under x) if either π̃(x) > Π,
or π̃(x) = Π and xκ is a real point in S.

Lemma 1. In game (S, [n], π̃), let x̃[f] = (x̃h)f
h=1 be a fixed partial location

profile, where 0 ≤ f ≤ n − 1, and let Π > 0 be a fixed positive number. For
every h ∈ {f, f + 1, . . . , n}, let Xh denote the the set of partial location profiles
x[h] with x[f] = x̃[f]. Suppose that for any ξ ∈ [n] − [f] and any partial location
profile x[ξ−1] ∈ Xξ−1, player ξ can choose some real point x∗

ξ ∈ S such that one
of the following holds:

(i) x∗
ξ �= o is the right limit of a unique directional interval in I(x[ξ−1], x

∗
ξ)

whose length equals π̃ξ(x[ξ−1], x
∗
ξ) = Π;

(ii) x∗
ξ = o, π̃ξ(x[ξ−1], x

∗
ξ) ≥ Π, and 0 < �(ci,1, o) ≤ Π for all i ∈ [s], where ci,1,

i ∈ [s] are defined w.r.t. x[ξ−1], or ξ = n and π̃n(x[n−1], x
∗
n) ≥ Π.

Given any ζ ∈ [n] − [f] and any x̃[ζ−1] ∈ Xζ−1, let (x̃ζ , . . . , x̃n) be the partial
profile induced by x̃[ζ−1] and a best response to x̃[ζ−1]. Then all players in {ζ, ζ +
1, . . . , n} are Π-happy under (x̃1, . . . , x̃n).

Proof. Suppose that (λζ , . . . , λn) is the best response to x̃[ζ−1] which together
with x̃[ζ−1] induces (x̃ζ , . . . , x̃n). By Definition 1 for every κ = [n] − [ζ − 1],
the partial strategy profile (λκ, . . . , λn) is a best response to all partial location
profiles in Xκ−1.

We apply backward induction on ζ to prove the lemma. The base case
where ζ = n is clear, since by (i) or (ii) player n could choose some real
point x̃∗

n to ensure π̃n(x̃[n−1], x̃
∗
n) ≥ Π. Assuming that the conclusion is true

for n, n−1, . . . , ζ +1, we consider player ζ ∈ [n−1]. Let x̃∗
ζ denote the real point

satisfying either (a) x̃∗
ζ �= o is the right limit of a unique directional interval

Sequential Location Game on Continuous Directional Star Networks 195

[p, x̃∗
ζ] in I(x̃[ζ−1], x̃

∗
ζ) whose length equals π̃ζ(x̃[ζ−1], x̃

∗
ζ) = Π; or (b) x̃∗

ζ = o,
0 < �(ci,1, o) ≤ Π for all i ∈ [s], and π̃ζ(x̃[ζ−1], x̃

∗
ζ) ≥ Π, where ci,1, i ∈ [s] are

defined w.r.t. x̃[ζ−1].
From the induction hypothesis, players ζ +1, . . . , n will make a best response

(λζ+1, . . . , λn) to (x̃[ζ−1], x̃
∗
ζ), inducing partial location profile (x̃′

ζ+1, . . . , x̃
′
n)

such that under (x̃[ζ−1], x̃
∗
ζ , x̃

′
ζ+1, . . . , x̃

′
n) each player in [n]− [ζ] obtains a payoff

at least Π and he locates at a real point unless its payoff is larger than Π. Hence,
none of ζ + 1, . . . , n has chosen a point inside [p, x∗

ζ] − {p} in case (a), and none
of them has chosen any interior point in [ci,1, o] for any i ∈ [s] in case (b). So
either π̃ζ(x̃[ζ−1], x̃

∗
ζ , x̃

′
ζ+1, . . . , x̃

′
n) = π̃ζ(x̃[ζ−1], x̃

∗
ζ) ≥ Π; or x̃∗

ζ = o = x̃′
η for some

η ≥ ζ + 1, implying

π̃ζ(x̃[ζ−1], x̃
∗
ζ , x̃

′
ζ+1, . . . , x̃

′
n) = π̃η(x̃[ζ−1], x̃

∗
ζ , x̃

′
ζ+1, . . . , x̃

′
n) ≥ Π,

where the last inequality is guaranteed by the induction hypothesis. Therefore,
in any case, choosing real location x̃∗

ζ guarantees player ζ to obtain a pay-
off at least Π provided the succeeding n − ζ players make a best response
to (x̃[ζ−1], x̃

∗
ζ). It follows from the definition of (λζ , . . . , λn) and (x̃ζ , . . . , x̃n)

that π̃ζ(x̃) ≥ Π, where x̃ = (x̃1, . . . , x̃n), and further that ζ is Π-happy under
x̃. Moreover, as (λζ+1, . . . , λn) is a best response to (x̃1, . . . , x̃ζ), the induction
hypothesis guarantees that every k = ζ+1, . . . , n is Π-happy under x̃, proving the
lemma. �
Theorem 1. In game (S, [n], π̃), all players are mine∈A �(e)

�n/(s+t)�+1 -happy under every
HSE outcome.

Proof. Given any ξ ∈ [n] and any partial location profile x[ξ−1], since there is an
arc in S containing at most �n−1

s+t � locations in x[ξ−1], we see that this arc contains
an directional interval in I(x[ζ−1]) whose length at least (mine∈A �(e))/(�n−1

s+t �+
1) > (mine∈A �(e))/(� n

s+t� + 1). So player ξ can find an real interior point x∗
ξ

inside this directional interval such that condition (i) in Lemma 1 holds with
Π = (mine∈A �(e))/(� n

s+t� + 1). The result is instant from Lemma 1 by taking
x̃[f] and ζ over there as the null location profile and 1, respectively. �

For in-stars, the following result shows that players can obtain equal payoff
under every HSE, which is a generalization of the result in directional linear
markets.

Corollary 1. Suppose that S is an in-star with Ω = 1
n

∑
i∈[s] �(ci, o). The fol-

lowing hold for game (S, [n], π̃).

(i) If x = (xκ)n
κ=1 is an HSE outcome, then π̃κ(x) = Ω and xκ ia real point for

all κ ∈ [n].
(ii) If n0 = 0, ni =

∑i
h=1� �(ci,o)

Ω � for i ∈ [s], and for each κ ≤ ns, the positive
integer κ′ is the largest such that nκ′−1 < κ , then (xκ)n

κ=1 with xκ =
(ck′ , o, (κ − nκ′−1)Ω) for all κ ≤ ns and xκ = o for all κ ∈ [n] − [ns] is a
HSE outcome.

196 X. Chen et al.

Proof. Taking x̃[f] in Lemma 1 as the null location profile with f = 0, it is easy
to see that condition (i) or (ii) is satisfied with Π = Ω. Therefore Lemma 1
(with ζ = 1 over there) implies that κ is Ω-happy under x and particularly
π̃κ(x) ≥ Ω for all κ ∈ [n]. Now (i) follows from

∑n
κ=1 π̃κ(x) ≤ ∑

i∈[s] �(ci.o) and
Definition 2. Statement (ii) is clear from (i) and Definition 1. �

4 Sequential Location in Normal Directional Stars

In this section, we focus on normal directional star market S, for which we write
the sequential location game (S, [n], π̃) as N. For the easy case with n ≤ s + t,
the following warmup observation is straightforward.

Observation 1. Suppose that x is an HSE outcome of game N.

(i) If n = 1, then π̃1(x) = s + 1 when t > 0, and π̃1(x) = s when t = 0.
(ii) If 2 ≤ n ≤ s − 1, then π̃κ(x) = s

n for all κ ∈ [n], and (o, . . . , o) is an HSE
outcome.

(iii) If s ≤ n ≤ s + t, then π̃κ(x) = 1 for all κ ∈ [n], and
(o, . . . , o, g1, g2, . . . , gn−s), in which players in [s] chooses o, and player
κ ∈ [n] − [s] chooses gκ−s, is an HSE outcome.

We next consider n > s + t. We divide our discussion into three cases: n ≡ 0
(mod s + t) in Sect. 4.1, n ≡ 1 (mod s + t) with t ≥ 1 in Sect. 4.2, and out-stars
with n �≡ 0 (mod t) in Sect. 4.3. For these three cases, we strengthen the general
lower bound on payoffs in Theorem 1 to a kind of “characterization” of the HSE
outcome.

4.1 Case 1: n ≡ 0 (mod s + t)

In this subsection, we first prove properties of game N with n = m(s + t)
(see Lemma 2 and Corollary 2), which helps to find typical HSE outcomes in
Theorem 2.

Lemma 2. In game N with n = m(s + t), given any ζ ∈ [n] and any partial
location profile x[ζ−1], player ζ can choose some real point x∗

ζ ∈ S such that
exactly one of the following holds:

(i) x∗
ζ �= o is the right limit of a unique directional interval in I(x[ζ−1], x

∗
ζ)

whose length equals π̃ζ(x[ζ−1], x
∗
ζ) = 1

m ;
(ii) x∗

ζ = o, π̃ζ(x[ζ−1], x
∗
ζ) ≥ 1

m , and 0 < �(ci,1, o) ≤ 1
m for all i ∈ [s] �= ∅, where

ci,1, i ∈ [s] are defined w.r.t. x[ζ−1].

Proof. If I(x[ζ−1]) contains an directional interval [a, b] such that either �(a, b) >
1
m , or �(a, b) = 1

m , b �= o and b �∈ x[ζ−1], we may take x∗
ζ to be the real point in

[a, b] at a distance 1
m from a, and π̃ζ(x[ζ−1], x

∗
ζ) = �(a, x∗

ζ) = 1
m implies (i).

So we assume that all directional intervals in I(x[ζ−1]) have length no more
than 1

m , and their right limits belong to x[ζ−1] ∪ {o} whenever their length are

Sequential Location Game on Continuous Directional Star Networks 197

1
m . It follows that �(ci,1, o) ∈ (0, 1

m] for all i ∈ [s], and |Gj,ζ−1| ≥ m for all j ∈ [t].
These t inequalities along with (

∑s
i=1 |Ci,ζ−1|)+|Oζ−1|+

∑t
j=1 |Gj,ζ−1| = ζ−1 ≤

n − 1 = m(s + t) − 1 enforce

|Oζ−1| +
s∑

i=1

|Ci,ζ−1| ≤ ms − 1. (4.1)

Let L denote the total length of directional intervals [ci,1, o], i ∈ [s]. Since every
directional interval in I(x[ζ−1]) has length at most 1

m , it is easy to see that
1
m

∑s
i=1 |Ci,ζ−1| + L ≥ s, which along with (4.1) gives L

|Oζ−1|+1 ≥ 1
m . Therefore,

choosing x∗
ζ = o provides π̃ζ(x[ζ−1], x

∗
ζ) = L

|Oζ−1|+1 ≥ 1
m , implying (ii). �

The following is an immediate corollary of Lemmas 1 and 2, where we take
f = 0 (for which the fixed partial location profile is the null one) and Π = 1

m .

Corollary 2. In game N with n = m(s + t), given any ζ ∈ [n] and any partial
location profile x[ζ−1], supposed that (λζ , . . . , λn) is a best response to x[ζ−1],
and (xζ , . . . , xn) is the partial location profile induced by x[ζ−1] and (λζ , . . . , λn).
Then all players in {ζ, ζ + 1, . . . , n} are 1

m -happy under (x1, . . . , xn).

For any two positive integers a and b, let a � b denote (a mod b) if a �= 0
(mod b), and denote b otherwise.

Theorem 2. If n = m(s + t), then the following hold for game N.

(i) If x = (xκ)n
κ=1 is an HSE outcome, then π̃κ(x) = 1

m and xκ is a real point
for all κ ∈ [n].

(ii) If x = (xκ)n
κ=1 satisfies xκ = (c	κ/m
, o, κ�m

m) for κ ∈ [ms] and xκ =
(o, g	(κ−ms)/m
,

(κ−ms)�m
m) for κ ∈ [n] − [ms], then x is an HSE outcome.

Proof. Since the total length of arcs in S is s + t, Corollary 2 along with
Definition 2 implies (i) instantly. By (i) and Definition 1, it is routine to check
the correctness of (ii). �

4.2 Case 2: n ≡ 1 (mod s + t) and t ≥ 1

In this subsection, we assume that n = m(s+ t)+1 and t ≥ 1. Different from the
case discussed in Sect. 4.1, the “extra” player makes it impossible to split market
share equally, and invalidates the analysis method of the preceding subsection.
Fortunately, we still have a tight lower bound

Θ =
s + 1

(s + 1)m + 1

for the payoff that each player can guarantee himself to obtain. For each j ∈ [t],
we decompose S into two normal stars: Sj consisting of s + 1 arcs (directional
intervals) [ci, o], i ∈ [s] and [o, gj]; and S̄j consisting of the remaining t − 1 arcs
(directional intervals) [o, gh], h ∈ [t] − {j}.

198 X. Chen et al.

Lemma 3. In game N with n = m(s + t) + 1 and t ≥ 1, given any ζ ∈ [n] and
any partial location profile x[ζ−1], player ζ can choose some real point x∗

ζ ∈ S
such that one of the following holds:

(i) x∗
ζ �= o is the right limit of a unique directional interval in I(x[ζ−1], x

∗
ζ)

whose length equals π̃ζ(x[ζ−1], x
∗
ζ) = Θ;

(ii) ζ = n, and π̃n(x[n−1], x
∗
n) ≥ Θ.

Proof. If I(x[ζ−1]) contains an directional interval [a, b] such that either �(a, b) >
Θ, or �(a, b) = Θ, b �= o and b �∈ x[ζ−1], then we may take x∗

ζ to be the real point
in [a, b] at a distance Θ from a, giving π̃ζ(x[ζ−1], x

∗
ζ) = �(a, x∗

ζ) = Θ, as stated
in (i).

So we assume that all directional intervals in I(x[ζ−1]) have length no more
than Θ, and their right limits belong to x[ζ−1]∪{o} whenever their lengths are Θ.
It follows that |Ci,ζ−1| ≥ m for all i ∈ [s] and |Gj,ζ−1| ≥ m for all j ∈ [t]. These
s + t inequalities along with (

∑s
i=1 |Ci,ζ−1|) + |Oζ−1| +

∑t
j=1 |Gj,ζ−1| = ζ − 1 =

m(s+ t)− (n−ζ) enforce |Oζ−1| ≤ ζ −n. Therefore, we have |Oζ−1| = ζ −n = 0,
i.e., ζ = n and |Ci,ζ−1| = m for all i ∈ [s] and |Gj,ζ−1| = m for all j ∈ [t]. Then
we only need to prove (ii) holds.

Renaming the indices j ∈ [t] if necessary, we may assume that �(o, g1,1) =
minj∈[t] �(o, gj,1). Note that S1 consists of (s + 1) arcs, and contains (s + 1)m
locations in x[n−1]. It follows that S1 consists of at most (s + 1)(m + 1) direc-
tional intervals from I(x[n−1]). We partition these directional intervals into two
sets I1 and I2 with I1 = {[o, g1,1] ∪ {[ci,1, o] | i ∈ [s]} consisting of the s + 1
directional intervals that contain a common skeleton point o, and I2 consisting
of the remaining at most m(s + 1) directional intervals.

For j = 1, either gj,|Gj,n−1| = gj which implies |I2| < m(s+1), or gj,|Gj,n−1| �=
gj , i.e., gj �∈ x[n−1]∪{o}, which enforces �(gj,|Gj,n−1|, gj) < Θ. Thus

∑
I∈I2

�(I) <
Θ · m(s + 1). In turn, from

∑
I∈I1

�(I) +
∑

I∈I2
�(I) = s + 1 we deduce that∑

I∈I1
�(I) > Θ, and there is an interior point x∗

n in [o, g1,1] such that L =
(
∑

I∈I1−{[o,g1,1]} �(I))+�(o, x∗
n) ≥ Θ. Since On−1 = ∅, the minimality of �(o, g1,1)

among all �(o, gj,1), j ∈ [t] guarantees that π̃n(x[n−1], x
∗
n) = L ≥ Θ, as stated

in (ii). �
The following result follows instantly from Lemmas 1 and 3, where we take

f = 0 (for which the fixed partial location profile is the null one) and Π = Θ.

Theorem 3. In game N with n = m(s+ t)+1 and t ≥ 1, given any ζ ∈ [n] and
any partial location profile x[ζ−1], supposed that (λζ , . . . , λn) is a best response
to x[ζ−1], and (xζ , . . . , xn) is the partial location profile induced by x[ζ−1] and
(λζ , . . . , λn). Then all players {ζ, ζ + 1, . . . , n} are Θ-happy under (x1, . . . , xn).

Corollary 3. In game N with n = m(s + t) + 1 and t ≥ 1, no player locates at
the skeleton point o under any HSE outcome.

Proof. Let x = x[n] be an HSE outcome. In view of Theorem 1, the result is
trivial when s = 0. Suppose for a contradiction that s ≥ 1, and the set On of

Sequential Location Game on Continuous Directional Star Networks 199

players who located at o under x is nonempty. Since, by Theorem 3, π̃κ(x) ≥ Θ,
for all k ∈ [n]. It follows that |Gj,n| ≤ m for all j ∈ [t]. Therefore, for every
player κ ∈ On, we have

π̃κ(x) ≤ 1
|On| (s − (n − mt − |On|) · Θ) .

Substituting m(s + t) + 1 for n in the above inequality, easy computation give
π̃κ(x) < Θ, which is a contradiction to Theorem 3. �

For convenience, given any direction interval I, we use α(I) and β(I) to
denote the left and right limits of I, respectively. We next show that certain
weak monotonicity holds for HSE.

Theorem 4. In game N with n = m(s + t) + 1 and t ≥ 1, let x = (xκ)n
κ=1

be an HSE outcome. There exists j∗ ∈ [t] such that the following hold with
ϑ = 1

(s+1)m+1 and Θ = s+1
(s+1)m+1 .

(i) |Ci,n| = m, and ci,h = (ci, o, (m + 1 − h)Θ) for i ∈ [s] and all h ∈ [m].
(ii) |Gj∗,n| = m + 1, and gj∗,h = (o, gj∗ , ϑ + (h − 1)Θ) for all h ∈ [m + 1].
(iii) There are exactly (s + 1)m + 1 players who choose locations inside Sj∗ ; the

payoff of each of them is Θ.
(iv) |Gj,n| = m and �(o, gj,1) ≥ Θ for all j ∈ [t] − {j∗}.
(v) π̃κ(x) = Θ for all κ ∈ [(s + 1)m + 1].

Proof. We observe that ϑ + mΘ = 1, and recall from Theorem 3 that

π̃κ(x) ≥ Θ for every k ∈ [n]. (4.2)

It follows that

Fact 1. |Ci,n| ≤ m for all i ∈ [s] and |Gj,n| ≤ m + 1 for all i ∈ [t].

Let J denote the set of indices j ∈ [t] such that �(o, gj,1) < Θ. Since n =
m(s + t) + 1, there exists j∗ ∈ [t] such that |Gj∗,n| = m + 1. By (4.2), we see
that �(o, gj∗,1) ≤ 1 − m · Θ = ϑ < Θ. Hence j∗ ∈ J . It is instant from (4.2) that

�(o, gj,1) = �(o, gj∗,1) ≤ ϑ for all j ∈ J.

Let μ denote the player locating at xμ = gj∗,1. Let (λκ)n
κ=1 be the HSE that

induces x. By Definition 1, for every ζ ∈ [n], (λκ)n
κ=ζ is a best response to all

partial location profiles of players 1, . . . , ζ − 1,

Fact 2. J = {j∗}.

If |J | ≥ 2, then π̃μ(x) = �(o, gj∗,1) + 1
|J|

∑s
i=1 �(ci,1, o) < Δ := �(o, gj∗,1) +

∑s
i=1 �(ci,1, o). Let ψ ∈ {μ, . . . , n} be the largest index such that π̃ψ(x) < Δ.

The maximality implies

Claim 1. π̃(xκ) ≥ Δ for all (if any) κ ∈ {ψ + 1, . . . , n}.

200 X. Chen et al.

Moreover, we may find an interior point x′
ψ of [o, gj∗,1] (which is very close

to xμ = gj∗,1) such that

Claim 2. π̃ψ(x) < �(o, x′
ψ) +

∑s
i=1 �(ci,1, o) < Δ.

Let Ψ1, . . . , Ψf be all the directional intervals in I(x[ψ−1]) that (with the left
limits excluded) contain some (at least one) location(s) from {xψ+1, . . . , xn}.
Notice that for each κ ∈ {ψ + 1, . . . , n}, there is a unique h ∈ [f] such that
either xκ is an interior point of Ψh, or xκ = β(Ψh) �= o is a skeleton point, where
xκ �= o is guaranteed by Corollary 3. For each h ∈ [f], let h′ denote the number
of locations in {xψ+1, . . . , xn} that are contained Ψh − {α(Ψh)}. Then

Claim 3.
∑f

h=1 h′ = n − ψ.

Since �(o, gj∗,1) ≤ ϑ < Δ, we see that [o, xμ] = [o, gj∗,1] �∈ {Ψ1, . . . , Ψf}
contains no locations inside {xψ+1, . . . , xn}. Suppose w.l.o.g. that xψ is contained
by one of Ψ1 − {α(Ψ1)}, . . . , Ψf − {α(Ψf)} only if xψ ∈ Ψf − {α(Ψf)}. Let us
examine the intervals in I(x[ψ−1], x

′
ψ) that (with the left limits excluded) contain

some location(s) from {xψ+1, . . . , xn}. There are Ψ ′
1, . . . , Ψ

′
f−1 such that Ψ ′

h = Ψh

for all h ∈ [f − 1], and either (when ψ �= μ or xψ �∈ Ψf) Ψ ′
f := Ψf , or (when

ψ = μ and xμ ∈ Ψf) Ψ ′
f := [x′

μ, β(Ψf)]. In either case, every Ψ ′
h−{α(Ψ ′

h)}, h ∈ [f]
contains exactly h′ locations from {xψ+1, . . . , xn}. It is immediate from Claim 1
and Theorem 1 that

Claim 4. For all all h ∈ [f], either �(Ψ ′
h) > h′Δ, or �(Ψ ′

h) = h′Δ and β(Ψh) �∈
(x[ψ−1], x

′
ψ) is a skeleton point.

For any ζ ∈ [n] − [ψ] and any partial location profile x′
[ζ−1] with x′

[ψ] =
(x[ψ−1], x

′
ψ), by

∑r
h=1 h′ = n − ψ in Claim 3, we deduce from |{x′

ψ+1, . . . ,
x′

ζ−1}| ≤ n − 1 − ψ that there exists d ∈ [f] such that Ψ ′
d − {α(Ψ ′

d)} contains at
most d′ − 1 vertices from {x′

ψ+1, . . . , x
′
ζ−1}. It follows from Claim 4 that

Claim 5. Player ζ can choose some real point x∗
ζ ∈ Ψ ′

d such that x∗
ζ �= o is the

right limit of a unique directional interval in I(x′
[ζ−1], x

∗
ζ) whose length equals

π̃ζ(x′
[ζ−1], x

∗
ζ) = Δ.

Let partial location profile (x′
ψ+1, . . . , x

′
n) be induced by (x[ψ−1], x

′
ψ) and

its best response (λκ)n
κ=ψ+1. It is instant from Claim 5 and Lemma 1 that

π̃κ(x[ψ−1], x
′
ψ, x′

ψ+1, . . . , x
′
n) ≥ Δ for every κ = ψ + 1, . . . , n. Recalling Claim 2,

�(o, x′
ψ) +

∑s
i=1 �(ci,1, o) < Δ implies that none of x′

ψ, x′
ψ+1, . . . , x

′
n is inside

any of the directional interval (o, x′
ψ) and (ci,1, o), i ∈ [s]. It follows that

π̃ψ(x[ψ−1], x
′
ψ, x′

ψ+1, . . . , x
′
n) = π̃(x[ψ−1], x

′
ψ) = �(o, x′

ψ) +
∑s

i=1 �(ci,1, o) >
π̃ψ(x), a contradiction to the hypothesis that (λκ)n

κ=1 is an HSE, which jus-
tifies Fact 2.

Recall from Corollary 3 that On = ∅. Facts 1 and 2 along with n = (s+t)m+1
enforces

Fact 3. |Ci,n| = m for all i ∈ [s], and |Gj,n| = m for all j ∈ [t] − {j∗}.

Sequential Location Game on Continuous Directional Star Networks 201

It follows from (4.2) and Fact 3 that �(ci,1, o) ≤ 1−|Ci,n|·Θ = ϑ for all i ∈ [s],
and therefore s

(s+1)m+1 =
∑s

i=1 �(ci,1, o) = π̃μ(x)− �(o, gj∗,1) ≥ Θ − �(o, gj∗,1) ≥
s

(s+1)m+1 enforces that

�(ci,1, o) = ϑ = �(o, gj∗,1) for all i ∈ [s],

and the payoff of each of the ms players in ∪i∈[s]Ci,n is Θ. Again, from (4.2) we
deduce that the payoff of each of the m + 1 players in Gj∗,n touches the lower
bound Θ. Note that the total length s + 1 of arcs in Sj∗ has to be distributed
without any loss, gj∗ must be chosen by a unique player under x. This gives

Fact 4. Under x, exactly (s + 1)m + 1 players locate inside Sj∗ ; each of them
obtains a payoff Θ; one of them locates at the skeleton point gj∗ .

Combining Facts 1–4, we have proved (i)–(iv). To prove (v), we suppose on
the contrary that some player ς ∈ [(s + 1)m + 1] obtains a payoff π̃ς(x) > Θ. It
follows from Fact 4 that there exists a largest φ ∈ [n] − [(s + 1)m + 1] such that
xφ ∈ Sj∗ . Furthermore, notice from Fact 4 that exactly (t − 1)m players locate
inside the out-star S̄j∗ of t − 1 arcs. By the maximality of φ, it is clear that
the locations in xφ+1, . . . , xn are exactly those inside S̄j∗ and outside x[φ]. Let
x[φ]|S̄j∗ denote the partial location profile, which is the restriction of x[φ] to S̄j∗ .
Applying Lemma 2 to game (S̄j∗ , {κ ∈ [n] |xκ ∈ S̄j∗}, π̃), we deduce that for any
ζ ∈ {φ+1, . . . , n} and any partial location profile (x[φ]|S̄j∗ , zφ+1, . . . , zζ−1) ⊆ S̄j∗ ,
player ζ can choose some real point z∗

ζ ∈ S̄j∗ such that z∗
ζ �= o is the right limit of

a unique directional interval in I(x[φ]|S̄j∗ , zφ+1, . . . , zζ−1, z
∗
ζ) whose length equals

π̃ζ(x[φ]|S̄j∗ , zφ+1, . . . , zζ−1, z
∗
ζ) = 1

m . Now, Lemma 1 applies, giving

Claim 6. π̃κ(x) ≥ 1
m > Θ for all κ ∈ [n] − [φ].

We conduct an analysis similar to that in the proof of Fact 2. Let
Φ1, . . . , Φf−1, [a, xς] be all the directional intervals in I(x[φ−1]). Let h′ with
h ∈ [f] (resp. f ′) denote the number of players {φ + 1, . . . , n} whose locations
are inside Φh − {α(Φh)} (resp. [a, xς] − {a}). It is straight forward that

Claim 7.
∑f

h=1 h′ = n − φ, and (by Claim 6 and Fact 4) for all h ∈ [f − 1],
either �(Φh) > h′

m , or �(Φh) = h′
m and β(Φh) �∈ x[φ] ∪ {o}.

Clearly by Claim 6, �(a, xς) ≥ π̃ς(x) + f ′

m > Θ + f ′

m . Hence we can take an
interior point x′

φ of [a, xς] such that

Claim 8. 1
m > �(a, x′

φ) > Θ, and �(Φf) ≥ f ′

m , where Φf := [x′
φ, xς].

For any ζ ∈ [n] − [φ] and any partial location profile x′
[ζ−1] with x′

[φ] =
(x[φ−1], x

′
φ), by Claim 7, we see that |{x′

φ+1, . . . , x
′
ζ−1}∩ (Φd −{α(Φd)}| < d′ for

some d ∈ [f]. Now, combining the second statement of Claim 7 and �(Φf) > f ′

m
in Claim 8, we deduce that player ζ can choose some real point x∗

ζ ∈ Φd such
that x∗

ζ �= o is the right limit of a unique directional interval in I(x′
[ζ−1], x

∗
ζ)

whose length equals π̃ζ(x′
[ζ−1], x

∗
ζ) = 1

m .

202 X. Chen et al.

Let partial location profile (x′
φ+1, . . . , x

′
n) be induced by (x[φ−1], x

′
φ) and best

response (λκ)n
κ=φ+1. It is from Lemma 1 that π̃κ(x[φ−1], x

′
φ, x′

φ+1, . . . , x
′
n) ≥

1
m for every κ = φ + 1, . . . , n. Recalling Claim 8, �(a, x′

φ) < 1
m implies that

none of x′
φ, x′

φ+1, . . . , x
′
n is inside the directional interval [a, x′

φ]. It follows that
π̃φ(x[φ−1], x

′
φ, x′

φ+1, . . . , x
′
n) = �(a, x′

φ) > Θ, which is a contradiction to the
hypothesis that (λκ)n

κ=1 is an HSE. The contradiction establishes (v), completing
the proof. �

According to Theorem 4 we can construct an HSE outcome of sequential
location game with m(s + t) + 1 players.

Corollary 4. If n = m(s+ t)+1 and t ≥ 1, then game N has an HSE outcome
x = (xκ)n

κ=1 with

xκ = (c	κ/m
, o, (κ � m)Θ) for κ ∈ [sm],
xκ = (o, g1, ϑ + (κ − s − 1)Θ) for κ = [(s + 1)m + 1] − [sm], and
xκ = (o, g	(κ−(s+1)m−1)/m
,

(κ−(s+1)m−1)�m
m) for κ = [n] − [(s + 1)m + 1]

such that π̃κ(x) = Θ for κ ∈ [(s + 1)m + 1], and π̃κ(x) = 1
m for κ ∈ [n] − [(s +

1)m + 1].

Proof. By Theorem 4, the first (s+1)m+1 players have already made their best
choices. In response to these choices, the last (t − 1)m players are actually play
a game on the out-star consisting of (t − 1) arcs (o, gj), j = 2, . . . , t. It follows
from Theorem 2 that x is indeed an HSE outcome. �

4.3 Case 3: Out-Stars

Different from the game on in-stars (recalling Corollary 1), when players play
the game on a normal out-star, under the HSE their payoffs are not necessarily
equal, as seen from the following theorem.

Theorem 5. Suppose that S is a normal out-star. The following hold for game
(S, [n], π̃) with m = �n

t � and 1 ≤ r = n (mod t).

(i) If x = (xκ)n
κ=1 is an HSE outcome, then π̃κ(x) = 1

m+1 for all κ ∈ [r(m+1)]
and π̃κ(x) ≥ 1

m+1 for all κ ∈ [n] − [r(m + 1)]
(ii) If x = (xκ)n

i=1 satisfies xκ = (o, g	κ/(m+1)
,
κ�(m+1)

m+1) for all κ ∈ [r(m + 1)]

and xκ = (c	(κ−r(m+1))/m)
,
(κ−r(m+1))�m

m) for all κ ∈ [n]− [r(m+1)], then
x is an HSE outcome such that π̃κ(x) = 1

m+1 for all κ ≤ r(m + 1) and
π̃κ(x) = 1

m for all κ ∈ [n] − [r(m + 1)].

Proof. Theorem 1 has guaranteed that π̃κ(x) ≥ 1
m+1 for all κ ∈ [n]. It follows

that under x at most (t − r)m = n − r(m + 1) players can obtain a payoff
larger then 1

m+1 . Suppose that x is the outcome of HSE (λκ)n
κ=1. To prove (i),

we suppose on the contrary that some player ς ∈ [r(m + 1)] obtains a payoff
π̃ς(x) > 1

m+1 . Then we may take a largest φ ∈ [n] − [r(m + 1)] such that
π̃φ(x) ≤ 1

m+1 , and a point x′
φ the directional interval [a, xς] ∈ I(x[φ−1]) such

that

Sequential Location Game on Continuous Directional Star Networks 203

Claim 9. π̃κ(x) > 1
m+1 for all κ ∈ [n] − [φ], and π̃φ(x) < �(a, x′

φ) <
minn

κ=φ+1 π̃κ(x).

By arguments similar to (and easier than) those for deriving Claims 7 and 8
in the proof of Theorem 4, we deduce that for any ζ ∈ [n] − [φ] and any partial
location profile x′

[ζ−1] with x′
[φ] = (x[φ−1], x

′
φ), player ζ can choose some real

point x∗
ζ such that x∗

ζ �= o is the right limit of a unique directional interval in
I(x′

[ζ−1], x
∗
ζ) whose length equals π̃ζ(x′

[ζ−1], x
∗
ζ) = �(a, x′

φ). Let partial location
profile (x′

φ+1, . . . , x
′
n) be induced by (x[φ−1], x

′
φ) and its best response (λκ)n

κ=φ+1.
It is instant from Lemma 1 that π̃κ(x[φ−1], x

′
φ, x′

φ+1, . . . , x
′
n) ≥ �(a, x′

φ) for every
κ = φ + 1, . . . , n. Thus none of x′

φ, x′
φ+1, . . . , x

′
n is inside the directional interval

[a, x′
φ]. It follows that π̃φ(x[φ−1], x

′
φ, x′

φ+1, . . . , x
′
n) = �(a, x′

φ) > π̃φ(x), where the
last inequality is given by Claim 9, The contradiction to the hypothesis that
(λκ)n

κ=1 is an HSE establishes (i).
Considering the location profile x given in (ii), by (i), it is easy to check that

every player in r(m + 1) has already made its best choices. Given these choices,
the game is reduced to a (t− r)m-player game on the out-star consisting of t− r
arcs (o, gj), j ∈ [t] − [r]. It follows from Theorem 2 that x is indeed an HSE
outcome. �

5 Conclusion

In this paper, we study the properties of HSE for the sequential location game on
directional star networks. Due to the complexity of analyzing the full strategies
of each player, we focus on discussing the existence and characterizations of the
HSE outcomes. While the solution for the cases under investigation might be
somewhat satisfactory, many interesting questions remain open. As seen from
Corollary 1 and Theorem 2, in-stars and normal stars with n ≡ 0 (mod s + t)
each guarantees that all HSE outcomes consist of real locations. We suspect that
this is true for all star networks without any additional condition. Moreover, our
method might be extended to deal with normal stars for the cases with n ≡ r
(mod s + t) for r ≥ 2. The game on non-normal stars also deserves research
efforts.

References

1. Anderson, S., Engers, M.: Stackelberg versus cournot oligopoly equilibrium. Int. J.
Ind. Organ. 10, 127–135 (1992)

2. Prescott, E.C., Visscher, M.: Sequential location among firms with foresight. Bell
J. Econ. 8, 378–393 (1977)

3. Cancian, M., Bills, A., Bergstrom, T.: Hotelling location problems with directional
constraints: an application to television news scheduling. J. Ind. Econ. 43, 121–124
(1995)

4. Colombo, S.: Spatial price discrimination in the unidirectional hotelling model with
elastic demand. J. Econ. 102(2), 157–169 (2011)

204 X. Chen et al.

5. Colombo, S.: Spatial cournot competition with non-extreme directional constraints.
Ann. Reg. Sci. 51, 761–774 (2013)

6. Drezner, Z.: Competitive location strategies for two facilities. Reg. Sci. Urban Econ.
12, 485–493 (1982)

7. Eiselt, H., Marianov, V.: Foundations of Location Analysis, vol. 155. Springer, New
York (2011). https://doi.org/10.1007/978-1-4419-7572-0

8. Fournier, G., Scarsini, M.: Hotelling games on networks: existence and efficiency
of equilibria. Math. Oper. Res. 44, 212–235 (2016)

9. Gentile, J., Pessoa, A., Poss, M., Costa Roboredo, M.: Integer programming formu-
lations for three sequential discrete competitive location problems with foresight.
Eur. J. Oper. Res. 265, 872–881 (2017)

10. Gorji, M.: Competitive location: a state-of-art review. Int. J. Ind. Eng. Comput.
6, 1–18 (2015)

11. Hakimi, S.: On locating new facilities in a competitive environment. Eur. J. Oper.
Res. 12, 29–35 (1983)

12. Hotelling, H.: Stability in competition. Econ. J. 39(153), 41–57 (1929)
13. Yates, A.J.: Hotelling and the new york stock exchange. Econ. Lett. 56, 107–110

(1997)
14. Kress, D.: Sequential Competitive Location on Networks (2013)
15. Lai, F.C.: Sequential locations in directional markets. Reg. Sci. Urban Econ. 31,

535–546 (2001)
16. San Martin, G., Cordera, R., Alonso, B.: Spatial Interaction Models (2017)
17. Sun, C.H.: Sequential location in a discrete directional market with three or more

players. Ann. Reg. Sci. 48, 101–122 (2012)

https://doi.org/10.1007/978-1-4419-7572-0

Core Decomposition, Maintenance
and Applications

Feiteng Zhang, Bin Liu(B) , and Qizhi Fang

School of Mathematical Sciences, Ocean University of China, Qingdao 266100,
Shandong, People’s Republic of China

binliu@ouc.edu.cn

Abstract. Structures of large graphs have attracted much attention in
recent years, including k-clique, k-core, k-truss, k-club, to name just a
few. These structures can help detect the most cohesive or most influ-
ential subgraphs of social networks and other massive graphs. In this
survey, we summarize the research on k-core, which is the maximal con-
nected subgraph of a graph and the degree for each vertex is equal to
or greater than k. We will address the core decomposition problem, the
core maintenance problem, and a few applications of k-core.

Keywords: K-core · Core decomposition · Core maintenance

1 Introduction

In many fields, relationships between entities is ubiquity and graph is a suitable
model to depict entities and their relationships. For example, in a telecommu-
nication record, a vertex represents a person and an edge between two vertices
represents that the two persons have communicated. In a data science model, a
graph may consist of millions of vertices and edges, and may evolve over time.
Detecting and analyzing the structures of large graphs have therefore become
important.

Capturing the structures, such as k-core, k-clique, k-truss, k-club, and cohe-
sive communities of graphs, has attracted much attention. Such structures have
been used widely to find densely connected regions in a graph, analyze topo-
logical structures of the internet, and identify the most influential spreaders,
among other things. A k-core of a graph plays a significant role in analyzing
networks. Determining all k-cores in a static graph, which is called the core
decomposition problem, can be solved in linear time [2]. In this survey, we sum-
marize some of the major contributions to the core decomposition problem and

This research was supported in part by the National Natural Science Foundation of
China (11971447, 11871442), the Natural Science Foundation of Shandong Province of
China (ZR2017QA010), and the Fundamental Research Funds for the Central Univer-
sities (201964006).

c© Springer Nature Switzerland AG 2020
D.-Z. Du and J. Wang (Eds.): Ko Festschrift, LNCS 12000, pp. 205–218, 2020.
https://doi.org/10.1007/978-3-030-41672-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41672-0_12&domain=pdf
http://orcid.org/0000-0002-8958-3999
https://doi.org/10.1007/978-3-030-41672-0_12

206 F. Zhang et al.

the core maintenance problem. We also address a few applications of these two
problems.

The rest of this paper is organized as follows: In Sect. 2, we present a few
basic definitions. In Sect. 3 we describe algorithms for solving the core decom-
position problem, including a linear-time algorithm [2], distributed algorithms
[6,7,10,20], external-memory algorithms [4], semi-external model [14,15], k-core
on uncertain graphs [11,12], and structure detecting algorithms for adding some
constrains to k-core (such as adding a radius or dual graph). We then present
a few core maintenance algorithms in Sect. 4, including streaming algorithms
[16–18], distributed algorithms [19], parallel algorithms [22,23], and order-based
algorithms [21]. In Sect. 5, we provide a few applications of the core decomposi-
tion problem and the core maintenance problem.

2 Basic Definitions and a Problem Statement

The definition of k-core was first presented in 1983 by Seidman [1], which has
played a significant role in describing structures of social networks. For an undi-
rected graph G = (V,E), where V is the set of vertices and E is the set of
edges, the degree of a vertex u ∈ V is the number of incident edges of u in G,
denoted by dG(u). We define δ(G) = min{dG(u) : u ∈ V }. Next we introduce
some definitions and properties.

Definition 1. Let H be a connected subgraph of G = (V,E). If δ(H) ≥ k, where
k is a non-negative integer, then H is called a seed k-core of G. Furthermore,
if H satisfies the maximality, i.e., there is no other seed k-core H ′ contains H,
then H is called a k-core of G.

Suppose that H is a k-core that contains a vertex u. Then H is the unique
k-core that contains u, denoted by Hu

k . Otherwise, there must have another k-
core Q containing u. Since H ∪ Q is also a k-core containing u and H ∪ Q ⊃ H,
it contradicts to the maximality of H. On the other hand, if u has a k-core Hu

k

with k ≥ 1, then a (k − 1)-core Hu
k−1 must exist and Hu

k−1 ⊇ Hu
k .

Definition 2. For a vertex u in G = (V,E), the K value (core number) of u,
denoted by K(u), is the largest k, such that there exists a k-core containing u.
The max-k-core of u in G, denoted by Hu, is the k-core with k = K(u).

An example is presented in Fig. 1, illustrating k-cores of a graph. The vertex
u is contained in a 1-core and a 2-core. The max-k-core of u is a 2-core and
K(u) = 2.

Problem Statement. For a graph G = (V,E), without lose generality, it is
assumed that G is connected. We want to calculate the K value of every vertex
in V , which is equivalent to finding all k-cores with different values of k in G.
This problem is known as the core decomposition problem. An ideal O(m)-time
algorithm was proposed in 2003 [2], where m = |E|. Built on this initial success, a
number of other algorithms have been devised, including distributed algorithms

Core Decomposition, Maintenance and Applications 207

Fig. 1. An example of k-core

[6,7,10,20], external-memory algorithms [4], semi-external model [14,15], and
k-core on uncertain graphs [11,12].

The core decomposition problem is formulated on a static graph. However, a
lot of graphs in applications are evolving over time, inserting or removing edges
or vertices. To obtain k-core structures of the new graphs, it needs to update
the K values, which is known as the core maintenance problem. Although the
O(m) algorithm can be used to the new graph to update the new K values, it
will incur too much time. Since only a small portion of vertices would need their
K values updated, detecting the subgraph that contains all vertices whose K
values need to be updated can help improve the efficiency of this process. This
has motivated the work on designing streaming algorithms [16–18], distributed
algorithms [19], parallel algorithms [22,23] and order-based algorithms [21].

3 Core Decomposition

3.1 A Linear-Time Algorithm

In 2003, Batagelj and Zaversnik [2] presented a linear-time algorithm for the core
decomposition problem. This is the first algorithm for the core decomposition
problem to reach be linear time. For a connected graph G = (V,E), if δ(G) ≥ k,
then G itself is a k-core. Based on the degrees of vertices, all k-cores can be
detected. In fact, if we recursively delete all vertices whose degrees are less than
k, then the remaining graph is a combination of some k-cores.

Algorithm 1 is the algorithm presented in [2]. The vertices need to be ordered
in a nondecreasing order by their degrees after computing them. Since all degrees
of vertices are bounded integers, bucket sort can be used to order them and the
time complexity is O(n), where n = |V |. Testing from vertex u1 of the smallest
degree whether K(u1) = d(u1) and subtract 1 from d(w) if (u1, w) ∈ E and
d(w) > d(u1). Do the same operation on the remaining vertices recursively to
compute the K values of all vertices. In the worst case, we traverse all edges at
most once, so the time complexity is O(m). Based on this approach, researchers

208 F. Zhang et al.

Algorithm 1. O(m) Algorithm for Core Decomposition
Require: Graph G = (V, E)
Ensure: K(u), for each u ∈ V
1: Compute the degree d(u) in G for each u ∈ V
2: Order the vertices in a non-decreasing order by their degrees
3: for each u ∈ V in order do
4: K(u) ← d(u)
5: for each (u, w) ∈ E do
6: if K(u) < d(w) then
7: d(w) ← d(w) − 1
8: Reorder the rest vertices in V by their degrees
9: end if

10: end for
11: end for
12: return K(u)

have devised algorithms for solving the core decomposition problem and the core
maintenance problem.

A vertex property function is p(v, C) with real values, where v ∈ V and
C ⊆ V . We say p(v, C) is monotone, if for each C1, C2 with C1 ⊆ C2, p(v, C1) ≤
p(v, C2). Listed below are examples of vertex property functions [3]:

p1(v, C) = deg(v, C),
p2(v, C) = indeg(v, C),
p3(v, C) = outdeg(v, C),
p4(v, C) = indeg(v, C) + outdeg(v, C).

(1)

Batagelj et al. [3] generalized of the notion of core using vertex property func-
tions. Algorithms for the cores of their generalization are similar to determining
k-cores by degrees in Algorithm 1, testing from the vertex with smallest p(v, C).
They showed that if the vertex property function is monotone, the time com-
plexity of determining the corresponding cores is O(m · max(, log n)), where
	 is the maximum degree, m = |E|, and n = |V |.

3.2 External-Memory Algorithms and I/O Efficient Algorithms

The O(m)-time algorithm [2] assumes that the entire graph can be loaded in
the main memory and for random access. Thus, this algorithm is not suitable
for a very large graph encountered in practice that exceeds the capacity of the
underlying memory of a computer. An External-Memory algorithm for the
core decomposition problem was designed [4] to take care of large graphs effi-
ciently. Furthermore, for the networks that can be kept in the main memory, the
external-memory algorithm can obtain comparable results as in-memory algo-
rithms. Compared to the traditional buttom-up algorithm, the external-memory
algorithm uses a novel top-down approach which detects k-cores recursively for

Core Decomposition, Maintenance and Applications 209

k values from large to small. By removing the vertices in the k-cores we have
detected, the I/O cost and search space can be reduced. The entire external-
memory algorithm is divided into three parts: (1) Divide the whole graph into
several subgraphs so that each subgraph can be loaded in the main memory and
an efficient partition algorithm can be devised to scan the graph G only once. (2)
Estimate the upper bound on K values of vertices in each subgraph and refine
it progressively. (3) Use the top-down core decomposition algorithm recursively
to determine the K value of every vertex in G. If the graph cannot be stored
in the main memory, the algorithm needs O(kmax) scans of the graph, where
kmax = max{K(u) : u ∈ G}. As a result, the external-memory algorithm deter-
mines the K values of all vertices in O(kmax(m + n)) time, with O(kmax(m+n)

B)
I/O space and O(m+n

B) disk block space in the worst case, where m = |E| and
n = |V |.

To design an I/O efficient core decomposition algorithm, Wen et al. presented
a Semi-External model in [14] and [15], which only stores the information of
vertices to the main memory and the information of edges on the disk of the
underlying computer. The semi-external algorithm stores K values in the main
memory and updates K values iteratively on the edges that are scanned. Their
algorithms can also be used to the core maintenance problem for edge remov-
ing. In particular, they first devised I/O efficient core maintenance algorithms
for edge inserting, degeneracy order computation and maintenance algorithms,
respectively, under the semi-external model. As a result, the space complexity,
the time complexity, and the I/O complexity of the I/O efficient core decom-
position algorithm are, respectively, O(n), O(l(m + n)) and O(l(m+n)

B), where l
is the number of iterations and is often small in practice.

3.3 Distributed Algorithms

A distributed algorithm is desirable when a graph is too large to store in a single
host or the description of the graph is inherently distributed in multiple hosts.
Montresor et al. [6] propose distributed core decomposition algorithms to solve
it. They considered two computation models:

– One-to-one model. One computational unit, namely one host, is associated
with one vertex in the graph. Thus the information can be diffused directly
through edges between two nodes.

– One-to-many model. One computational unit is associated with a set of ver-
tices in the graph. Information diffuses between vertex sets in this model,
which is suitable to the situation for the graph inherently distributed in mul-
tiple hosts.

At the beginning, use the degrees of vertices as the upper bounds of their K
values. Hosts diffuse their information to their neighbors, then neighbors update
their upper bounds of K values recursively until the upper bounds of K cannot
be updated. The final upper bounds are the K values of vertices and can be
reached with at most O(n) iterations, where n = |V |. Distributed algorithms are

210 F. Zhang et al.

implemented on GraphChi and Webgraph, and can be extended to large datasets
on a single PC [8].

Mandal et al. [10] proposed a distributed core decomposition algorithm,
called Spark-kCore, to run on a Spark cluster computing platform. Using
a think-like-a-vertex paradigm and a message passing paradigm for the core
decomposition problem, Spark-kCore algorithms can reach the target with
reduced I/O cost.

3.4 Core Decomposition on Uncertain Graphs

Definition 3. A graph G = (V,E, p) is an uncertain graph or a probabilistic
graph, where V is the set of vertices, E is the set of edges, and each (u, v) ∈ E
is assigned a probability p(u, v), p ∈ (0, 1].

Uncertain graphs have arisen in many fields. For instance, a vertex represents
gene and edge represents interactions among genes. Since the interactions among
them are derived through noisy and error operation in experiments, edges are
existing in a probability. To solve the problem that can the core decomposition
problem of uncertain graphs be solved by an efficient approach, Bonchi et al.
[11] propose some algorithms for this problem. They introduce the definition of
(k, η)-core H = (C,E|C, p). H is a maximal subgraph of G = (V,E, p) satisfying
δ(H) ≥ k and every vertex in H has probability no less than η, i.e., Pr[dH(v) ≥
k] ≥ η, where v ∈ C and η ∈ [0, 1] is a threshold representing the level of
certainty of the cores. The algorithms are like the O(m)-time algorithm for the
core decomposition problem on deterministic graphs [2]: computing the initial η-
degrees by a novel efficient dynamic-programming approach, removing the vertex
with smallest η-degree and updating η-degrees recursively. However, it may have
exponential time complexity when computes and updates η-degrees. Bonchi et
al. devise an efficient dynamic-programming method to overcome it. As a result,
the complexity of computation (k, η)-core is O(m), where m = |E| and 	 is
the maximum η-degree.

Peng et al. [12] proposed a different probabilistic k-core model on uncertain
graphs, named (k, θ)-core where θ is a probability threshold, basing on the well-
known possible world semantics. In a fundamental uncertain graph G = (V,E, p),
where p ∈ (0, 1] and G′ = (V,E′) is a deterministic subgraph with probability

Pr(G′) =
∏

e∈E′
p(e)

∏

e∈E\E′
(1 − p(e)). (2)

Then they defined
p(u) =

∑

G′∈G

p(G′)IG′(k, u) (3)

as the probability of u contained in a k-core of G, where IG′(k, u) is an indicator
function. If u is contained in a k-core of G′, IG′(k, u) = 1, otherwise IG′(k, u) = 0.
They [12] showed that solve the problem of finding all u with p(u) ≥ θ, i.e.,
finding a (k, θ)-core of G is NP-hard. They proposed a sampling-based method

Core Decomposition, Maintenance and Applications 211

to find a (k, θ)-core, and used pruning techniques to reduce the candidate size
and a novel membership check algorithm to speed up the computation.

3.5 Core Decomposition Under Additional Constrains

We discuss two constrains. One is adding a attribute to a graph and detecting
the maximal seed k-core in which any two vertices are linked by a relationship
[26,27], the other is finding k-connected cores in large dual networks [25].

In the real world, some graphs are given attributes, as explained in [27]. The
authors of [27] introduced (k, r)-core H which is a maximal subgraph such that
δ(H) ≥ k and any two vertices in H should satisfy an attribute about a threshold
r. Finding a maximal (k, r)-core and a maximum (k, r)-core are both NP-hard.
In [26], Wang et al. added a spatial constrain and asked a new question of
finding a maximal subgraph H with δ(H) ≥ k in a radius-bounded area. Then
they explored three algorithms to find a (k, r)-core where k is the minimum
degree of the core and r is the radius. These algorithms are triple-vertex-based
paradigm, binary-vertex-paradigm, and a paradigm based on rotating circles.
Finding radius-bounded (k, r)-core can be solved in polynomial time.

A dual graph contains a physical graph and a conceptual graph with the
same vertices. Yue et al. [25] formulated a k-connected core (k-CCO) model,
which is a k-core in the conceptual graph and is connected in the physical graph.
For a fixed k, they designed a polynomial-time peeling-style algorithm to detect
all k-CCOs in a dual graph in O(hm) time, where m is the number of edges in
the conceptual graph and h is a value bounded by the number of vertices of the
dual graph. Then they designed bottom-up and top-down algorithms to detect
maximum k-CCOs and a binary search algorithm to speedup these algorithms.
Finally, they designed an index structure to detect a k-CCO containing a set
of query vertices. Basing on the index structure, they presented an efficient
query-processing algorithm and a polynomial-time index construction algorithm.
The size of index is bounded by O(n) and the time complexity of their query-
processing algorithm is O(m).

4 Core Maintenance

How to find the k-cores and determine K values of all vertices in dynamic graphs
that evolve over time is an important problem. This is the core maintenance
problem of graphs. Let V ∗ denote the set of vertices whose K values will change
if the graph G = (V,E) changes. The main idea of the core maintenance problem
is to find a subgraph H ⊆ G (or a subset V ′ of V) which contains V ∗, prune
the vertices with unchanged K values in H, and update the K values for the
vertices in V ∗.

4.1 Streaming Algorithms

Sarıyüce et al. [16,17] presented three streaming algorithms, called Subcore
Algorithm, Purecore Algorithm, Traversal Algorithm, to solve the core main-
tenance problem. Under the assumption that only one edge is inserted to or

212 F. Zhang et al.

removed from a graph G = (V,E) each time, they showed that |K(w)−K ′(w)| ≤
1 for each vertex w ∈ V , where K ′(w) is the new K value of w after inserting
or removing. Furthermore, if there is a vertex whose K value changes after
inserting or removing an edge e = (u, v) with K(u) ≤ K(v), then K(u) must
change and we say that u is the root r. In the insertion case, if a vertex w has
K ′(w)−K(w) = 1, then w is connecting to r via a path in which all the vertices
have K = K(r) and K ′ = K(r) + 1 in G + e. In the deletion case, if a vertex
w has K(w) − K ′(w) = 1, then w is connecting to r via a path in which all
the vertices have K = K(r) and K ′ = K(r) − 1 in G. Using these properties,
they showed how to find a set of vertices, subcore of r, that contains V ∗. Next,
they used current degree (cd) of each vertex as a criterion to judge whether
a vertex in the subcore will have its K value changed. Define the cd value of
a vertex w, denoted by cd(w), as the number of adjacent vertices w′ satisfying
K(w′) ≥ K(w). If a vertex w has cd(w) ≤ K(r) in G + e in the insertion case,
then K(w) will not change and we delete w from the subcore of r. Since w can-
not help w′ to have a high K value, then cd(w′) should decrease by 1, where
(w,w′) ∈ E + e, cd(w′) > cd(w), and w′ on the subcore of r. Do the same oper-
ation recursively until all remaining vertices on the subcore have cd > K(r) and
the set of remaining vertices is V ∗. If a vertex w has cd(w) < K(r) in G−e in the
deletion, then K(w) will change. Updating the cd values of the remaining ver-
tices by the same method in the insertion case recursively until all the remaining
vertices on subcore have cd ≥ K(r), we can get the set of vertices which have
been deleted is V ∗ in the deletion case. This is the subcore algorithm, and the
time complexity and the space complexity are both O(m), where m = |E|.

Then, they defined three constrains: the MCD value, the PCD value, and
the RCD value of a vertex, which are used to judge whether the vertex will
have its K value increased. In other words, if a vertex w will have its K value
increased, then the MCD value, the PCD value, and the RCD value are both
greater than K(w). Define the MCD value of a vertex w, denoted by MCD(w),
as the number of adjacent vertices with K ≥ k(w). By using the MCD value as
a constrain, the subcore can be downsized to the purecore based on which they
devised a Purecore Algorithm. The process of the purecore algorithm is the
same as the subcore algorithm except V ′ is smaller and purecore algorithm only
can be used to the insertion case. The time complexity and the space complexity
of the purecore algorithm are both O(m). On the base of knowing MCD values,
we can get a smaller V ′ by the PCD values of vertices. And the PCD value of
a vertex w, denoted by PCD(w), is defined as the number of adjacent vertices
w′ with K(w′) > K(w) or (K(w′) = K(w) and MCD(w′) > K(w)). Next,
the Traversal Algorithm is proposed, which uses the depth-first-search to find
a smaller subgraph than the purecore algorithm and the subcore algorithm.
Because the algorithm will not continue to search when searches a vertex which
cannot have its K value changed. The time complexity and the space complexity
are O(m) and O(n) respectively, where n = |V |. The RCD value of a vertex w,
specifically denoted by RCD(w, n), n ≥ 0, is a generalization of the MCD
value and the PCD value, where RCD(w, 1) = MCD(w) and RCD(w, 2) =
PCD(w). Define RCD(w, n), n ≥ 0, as the number of adjacent vertices w′ with

Core Decomposition, Maintenance and Applications 213

K(w′) > K(w) or (K(w′) = K(w) and RCD(w′, n − 1) > K(w)). Thus, using
the RCD(w, n) values as a constrain, we can get a smaller V ′ and use more
calculation with the increasing of n.

In [18], Li et al. found the same properties that the vertices whose K values
will increased have as that in [16,17], and designed efficient core maintenance
algorithms independently. They used Color, RecolorInsert, UpdateInsert to
find V ′, prune vertices, and update K values, respectively. In particular, they
presented two pruning techniques to find a smaller V ′.

4.2 Distributed Algorithms

Since graphs are growing too fast to disposed on a single server, Aksu et al.
presented distributed algorithms for the core maintenance problem [19]. The idea
is executing against the partitioned graph in parallel and taking advantage of
k-core properties to reduce unnecessary computation. In particular, they defined
G = (V,E,M [V,E], C[V,E]) and Nk

G(v) = |{w|(w, v) ∈ E, dG(w) ≥ k}|, where
V is the set of vertices, E is the set of edges, M [V,E] is the structured metadata,
and C[V,E] is the unstructured context. First, they developed a distributed k-
core construction algorithm by the method that prune the vertices with Nk

G < k
recursively. Second, they developed a new k-core maintenance algorithm which
intents to update the previous k-core for a certain k after the change of a graph.
They used a pruning technique to limit the scope of k-core update after insertion
or deletion. For a graph G, there is a k-core Gk = (Vk, Ek) in it. Inserting an edge
e = (u, v), if both u, v ∈ Vk, do not change Gk; if u or v or both are not in Vk,
then the subgraph consisting of vertices in {w|w ∈ V, dG(w) ≥ k,Nk

G(w) ≥ k},
where every vertex in it is reachable from u or v, may need to be updated to
include additional vertices into Gk. Removing an edge e = (u, v), if (u, v) is
not in Ek, do not change Gk; if (u, v) ∈ Ek, then the subgraph consisting of
{w|w ∈ V, dG(w) ≥ k,Nk

G(w) ≥ k}, where every vertex is reachable from u or
v, may need to be updated to remove additional vertices from Gk. In the end,
they proposed a batch k-core maintenance, which accumulates data updates and
refreshes k-core in a batch bundles up expensive graphs traversals and can speed
up the time of updating, compared to maintaining each update incrementally.

4.3 Parallel Algorithms

Previous work mainly focuses on inserting or removing one edge or vertex at
a time. In [22] and [23], the authors presented parallel algorithms for the core
maintenance problem when multiple edges or vertices are inserted or removed.
The parallel algorithms can make a better use of make use of computation power
and avoid extra overhead when inserting or removing one at a time.

Considering the case of inserting multiple edges, Wang et al. [22] discovered a
structure named superior edge set that can update K values in parallel. Given a
graph G = (V,E), an edge e = (u, v) ∈ E is a superior edge of u if K(u) ≤ K(v);
define K(e) = K(u). Define the k-superior edge set as Ek = {e1, e2, . . . ep} such

214 F. Zhang et al.

that K(ei) = k and each vertex in V is incident with at most one superior edge.
Then the superior edge set

εq = Ek1 ∪ Ek2 ∪ . . . ∪ Ekq
(4)

is a set of edges made up of several k-superior edge sets with different k values.
Insert εq, then K ′(w)−K(w) ≤ 1 for each w ∈ V . Next, the set of vertices whose
K values will increase is determined by inserting a superior edge set. Define the
Superior Degree of a vertex u, u ∈ V , as follows:

SD(u) = |{w|(u,w) ∈ E ∪ εq,K(w) ≥ K(u)}|. (5)

Define the Constraint Superior Degree of a vertex u by

CSD(u) = |{w|(u, w) ∈ E∪εq, K(w) > K(u) or K(w) = K(u)∧SD(w) > K(u)}|. (6)

For a vertex w, if w satisfies these conditions: (1) CSD(w) > K(w); (2) w
is connected to a vertex u with K(u) = K(w) by a path whose vertices have
K = K(u) in G + εq; (3) a superior edge of u is contained in εq, then w may
have its K value increased. (The K values of u and w are those in G.)

Jin et al. [23] developed the parallel algorithms in [22]. They showed that if
the inserted or removed edges constitute a matching, the core number update
with respect to each inserted or removed edge can be handled in parallel.
Meanwhile, they added parallel core maintenance algorithms for the deletion
case. If a matching is inserted to or removed from graph G = (V,E), then
|K ′(w) − K(w)| ≤ 1 for each w ∈ V . Since the parallel algorithms can operate a
matching other than one edge in an iteration, the number of iterations needed
is only 	c + 1 where 	c is maximum number of inserted or removed edges con-
necting to a vertex, which will substantially reduce the time cost over inserting
or removing just one edge at a time.

4.4 Order-Based Algorithms

The O(m) algorithm for the core decomposition problem [2] will produce a ver-
tices’ sequence when it removes vertices recursively to determine K values. This
vertices’ sequence is a k-order. Based on the k-order, Zhang et al. [21] proposed a
novel order-based approach for the core maintenance problem for both insertion
and deletion. Meanwhile, they pointed the drawbacks of the existing traversal
algorithms in [17], which need a large search space to find V ∗ and high overhead
to maintain PCD and MCD.

For any pair of vertices u, v in a graph G = (V,E), let u
 v denote K(u) <
K(v) or K(u) = K(v) but u is removed before v in the O(m) algorithm for
the core decomposition problem. In other words, u is in front of v in a k-order.
We can summarize that a k-order, (v1, v2, . . . , vn), for each vertex in graph G,
has transitivity, i.e., if vh
 vj and vj
 vi, then vh
 vi. After inserting or
removing an edge, the k-order need to be updated and the new k-order is also

Core Decomposition, Maintenance and Applications 215

a removing sequence produced from the graph after the changing by using the
core decomposition algorithm in [2]. Consider inserting or removing one edge
at a time, the K values of all vertices change at most 1. Define the remaining
degree of a vertex u in G, denoted by deg+(u),:

deg+(u) = |{v|(u, v) ∈ E, u
 v}|. (7)

Let Ok denotes the sequence of vertices in k-order with K = k, and we get a
sequence O0O1O2 · · · , where Oi
 Oj if i < j. Then the order (
) on O0O1O2 · · ·
is a k-order iff deg+(u) ≤ k for every vertex u in Ok for each k. Insert (u, v),
u ∈ Ok and u
 v, if a vertex w ∈ Ol, and l > k or l < k, then w is not in
V ∗; if w ∈ Ok but w
 u, then w is not in V ∗; if w ∈ Ok, u
 w and there
is a path w0, w1, w2, · · · , wt such that w0 = u, wt = w, (wi, wi+1) ∈ E and
wi
 wi+1 for 0 ≤ i < t, then w may in V ∗. They used the similar idea in the
traversal algorithm in [17] to remove an edge, but they used the maintaining
k-order method instead of using the PCD values. Define the candidate degree
of a vertex w in Ok, denoted by deg∗(w), as follows

deg∗(w) = |{w′|(w,w′) ∈ E,w′
 w ∧ w′is a potential candidate of V ∗}|. (8)

Then deg∗(w) + deg+(w) is a criterion to judge whether a vertex w will be in
V ∗, where w ∈ Ok. Specifically, if deg∗(w) + deg+(w) ≤ k, then w is not in V ∗.
Otherwise, w is a potential vertex in V ∗. Finally, they designed OrderInsert and
OrderRmoval algorithms for edge inserting and removing respectively.

5 Applications

K-core is a critical structure of graphs. It is used to depict the properties (e.g.,
cohesiveness, centrality, sustainability), and has been applied to a variety of
fields: including detecting communities, analyzing the structures of large net-
works, finding the most influential subgraphs or vertices, helping to find other
structures (k-clique, etc.), large-scale networks fingerprinting and visualization,
dealing with problems in bioinformatics, and analyzing software bugs, to name
a few.

Seidman et al. [1] introduced the notion of k-core to measure network cohe-
sion and density, which is the first application of k-core. For the resilience of
core, randomly deleting edges or vertices can destroy the core resilience, and
then destroy the graph resilience [28]. Identifying the most influential spread-
ers is a significant issue in understanding the dynamics of information diffu-
sion in large scale networks. Bae et al. [30] proposed a novel measure coreness
centrality to estimate the spreading influence of a node in a network by using its
k-shell indices. Rossi et al. [31] further refined the nodes by k-truss, which have a
stronger influential ability locating in cores. To find the most influential part of
a graph, Li et al. [29] introduced a novel community model called k-influential
community based on k-core to capture the influence of a community. When it
comes to finding a certain community, Papadopoulos et al. [34] used the method

216 F. Zhang et al.

for the core decomposition problem to detect communities in large networks of
social media. Nasir et al. [35] used the methods of the core decomposition prob-
lem and the core maintenance problem to find the top-k densest subgraphs in
networks. Alduaiji et al. [32] used k-core to detect communities to find the sub-
graphs and their impact on users’ behavior in twitter communities, then they
find that community members intend to share positive tweets than negative
increasing over time.

In recently years, k-core has been widely used in the fields of software engi-
neering, and bioinformatics. Qu et al. [36] used the core decomposition problem
on class dependency networks to analyze software bugs. Cheng et al. [37] pro-
posed a method to find cluster subgraphs made of k-core and r-clique, which
is used to gene networks. Ma and Balasundaram [38] focused on a change-
constrained version of the minimum spanning k-core problem under probabilistic
edge failures. This can help telecommunication networks design, airline networks
configuration and freight distribution planning. Alvarez-Hamelin et al. [39] pro-
posed a general visualization algorithm to compare different networks using the
method of the core decomposition problem, and a visualization tool to find spe-
cific structures of a network.

References

1. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287
(1983)

2. Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of net-
works. In: The Computing Research Repository (CoRR). arXiv:cs.DS/0310049
(2003)

3. Batagelj, V., Zaveršnik, M.: Fast algorithms for determining (generalized) core
groups in social networks. Adv. Data Anal. Classif. 5(2), 129–145 (2011)

4. Cheng, J., Ke, Y., Chu, S., Özsu, M.T.: Efficient core decomposition in massive
networks. In: 27th International Conference on Data Engineering (ICDE), pp. 51–
62. IEEE, Hannover (2011)

5. Garas, A., Schweitzer, F., Havlin, S.: A k-shell decomposition method for weighted
networks. New J. Phys. 14(8), 083030 (2012)

6. Montresor, A., De Pellegrini, F., Miorandi, D.: Distributed k-core decomposition.
Trans. Parallel Distrib. Syst. 24(2), 288–300 (2012)

7. Jakma, P., Orczyk, M., Perkins, C.S., Fayed, M.: Distributed k-core decomposition
of dynamic graphs. In: Proceedings of the 2012 ACM Conference on CoNEXT
Student Workshop, pp. 39–40. ACM, Nice (2012)

8. Khaouid, W., Barsky, M., Srinivasan, V., Thomo, A.: K-core decomposition of
large networks on a single PC. Proc. VLDB Endow. 9(1), 13–23 (2015)

9. Govindan, P., Wang, C., Xu, C., Duan, H., Soundarajan, S.: The k-peak decompo-
sition: mapping the global structure of graphs. In: Proceedings of the 26th Interna-
tional Conference on World Wide Web, pp. 1441–1450. International World Wide
Web Conferences Steering Committee, Perth (2017)

10. Mandal, A., Al Hasan, M.: A distributed k-core decomposition algorithm on spark.
In: 2017 IEEE International Conference on Big Data (Big Data), pp. 976–981.
IEEE, Boston (2017)

http://arxiv.org/abs/cs.DS/0310049

Core Decomposition, Maintenance and Applications 217

11. Bonchi, F., Gullo, F., Kaltenbrunner, A., Volkovich, Y.: Core decomposition of
uncertain graphs. In: Proceedings of the 20th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 1316–1325. ACM, New York
(2014)

12. Peng, Y., Zhang, Y., Zhang, W., Lin, X., Qin, L.: Efficient probabilistic k-core
computation on uncertain graphs. In: 2018 IEEE 34th International Conference on
Data Engineering (ICDE), pp. 1192–1203. IEEE, Paris (2018)

13. Tripathy, A., Hohman, F., Chau, D.H., Green, O.: Scalable K-core decomposition
for static graphs using a dynamic graph data structure. In: 2018 IEEE International
Conference on Big Data (Big Data), pp. 1134–1141. IEEE, Seattle (2018)

14. Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J.X.: I/o efficient core graph decompo-
sition at web scale. In: 2016 IEEE 32nd International Conference on Data Engi-
neering (ICDE), pp. 133–144. IEEE, Helsinki (2016)

15. Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J.X.: I/O efficient core graph decompo-
sition: application to degeneracy ordering. IEEE Trans. Knowl. Data Eng. 31(1),
75–90 (2018)

16. Sarıyüce, A.E., Gedik, B., Jacques-Silva, G., Wu, K.L., Çatalyürek, Ü.V.: Stream-
ing algorithms for k-core decomposition. Proc. VLDB Endow. 6(6), 433–444 (2013)

17. Sarıyüce, A.E., Gedik, B., Jacques-Silva, G., Wu, K.L., Çatalyürek, Ü.V.: Incre-
mental k-core decomposition: algorithms and evaluation. VLDB J. Int. J. Very
Large Data Bases 25(3), 425–447 (2016)

18. Li, R.H., Yu, J.X., Mao, R.: Efficient core maintenance in large dynamic graphs.
IEEE Trans. Knowl. Data Eng. 26(10), 2453–2465 (2013)

19. Aksu, H., Canim, M., Chang, Y.C., Korpeoglu, I., Ulusoy, Ö.: Distributed k-
core view materialization and maintenance for large dynamic graphs. IEEE Trans.
Knowl. Data Eng. 26(10), 2439–2452 (2014)

20. Aridhi, S., Brugnara, M., Montresor, A., Velegrakis, Y.: Distributed k-core decom-
position and maintenance in large dynamic graphs. In: Proceedings of the 10th
ACM International Conference on Distributed and Event-based Systems, pp. 161–
168. ACM, Irvine (2016)

21. Zhang, Y., Yu, J.X., Zhang, Y., Qin, L.: A fast order-based approach for core
maintenance. In: 2017 IEEE 33rd International Conference on Data Engineering
(ICDE), pp. 337–348. IEEE, San Diego (2017)

22. Wang, N., Yu, D., Jin, H., Qian, C., Xie, X., Hua, Q.S.: Parallel algorithm for core
maintenance in dynamic graphs. In: 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), pp. 2366–2371. IEEE, Atlanta (2017)

23. Jin, H., Wang, N., Yu, D., Hua, Q.S., Shi, X., Xie, X.: Core maintenance in dynamic
graphs: a parallel approach based on matching. IEEE Trans. Parallel Distrib. Syst.
29(11), 2416–2428 (2018)

24. Bonchi, F., Gullo, F., Kaltenbrunner, A.: Core Decomposition of Massive,
Information-Rich Graphs. In: Alhajj, R., Rokne, J. (eds.) Encyclopedia of Social
Network Analysis and Mining. Springer, New York (2018). https://doi.org/10.
1007/978-1-4939-7131-2 110176

25. Yue, L., Wen, D., Cui, L., Qin, L., Zheng, Y.: K-connected cores computation in
large dual networks. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds.) DASFAA
2018. LNCS, vol. 10827, pp. 169–186. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-91452-7 12

26. Wang, K., Cao, X., Lin, X., Zhang, W., Qin, L.: Efficient computing of radius-
bounded k-cores. In: 2018 IEEE 34th International Conference on Data Engineering
(ICDE), pp. 233–244. IEEE, Paris (2018)

https://doi.org/10.1007/978-1-4939-7131-2_110176
https://doi.org/10.1007/978-1-4939-7131-2_110176
https://doi.org/10.1007/978-3-319-91452-7_12
https://doi.org/10.1007/978-3-319-91452-7_12

218 F. Zhang et al.

27. Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: When engagement meets sim-
ilarity: efficient (k, r)-core computation on social networks. Proc. VLDB Endow.
10(10), 998–1009 (2017)

28. Laishram, R., Sariyüce, A.E., Eliassi-Rad, T., Pinar, A., Soundarajan, S.: Measur-
ing and improving the core resilience of networks. In: Proceedings of the 2018 World
Wide Web Conference, pp. 609–618. International World Wide Web Conferences
Steering Committee, Lyon (2018)

29. Li, R.H., Qin, L., Yu, J.X., Mao, R.: Finding influential communities in massive
networks. VLDB J. Int. J. Very Large Data Bases 26(6), 751–776 (2017)

30. Bae, J., Kim, S.: Identifying and ranking influential spreaders in complex networks
by neighborhood coreness. Phys. A Stat. Mech. Appl. 395, 549–559 (2014)

31. Rossi, M.E.G., Malliaros, F.D., Vazirgiannis, M.: Spread it good, spread it fast:
identification of influential nodes in social networks. In: Proceedings of the 24th
International Conference on World Wide Web, pp. 101–102. ACM, Florence (2015)

32. Alduaiji, N., Datta, A.: An empirical study on sentiments in twitter communities.
In: 2018 IEEE International Conference on Data Mining Workshops (ICDMW),
pp. 1166–1172. IEEE, Singapore (2018)

33. Barbieri, N., Bonchi, F., Galimberti, E., Gullo, F.: Efficient and effective commu-
nity search. Data Min. Knowl. Disc. 29(5), 1406–1433 (2015)

34. Papadopoulos, S., Kompatsiaris, Y., Vakali, A., Spyridonos, P.: Community detec-
tion in social media. Data Min. Knowl. Disc. 24(3), 515–554 (2012)

35. Nasir, M.A.U., Gionis, A., Morales, G.D.F., Girdzijauskas, S.: Fully dynamic algo-
rithm for top-k densest subgraphs. In: Proceedings of the 2017 ACM on Confer-
ence on Information and Knowledge Management, pp. 1817–1826. ACM, Singapore
(2017)

36. Qu, Y., et al.: Using K-core decomposition on class dependency networks to
improve bug prediction model’s practical performance. IEEE Trans. Softw. Eng. 1
(2019). https://doi.org/10.1109/TSE.2019.2892959

37. Cheng, Y., Lu, C., Wang, N.: Local k-core clustering for gene networks. In:
2013 IEEE International Conference on Bioinformatics and Biomedicine, pp. 9–
15. IEEE, Shanghai (2013)

38. Ma, J., Balasundaram, B.: On the chance-constrained minimum spanning k-core
problem. J. Global Optim. 74(4), 783–801 (2019)

39. Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale net-
works fingerprinting and visualization using the k-core decomposition. In: Advances
in Neural Information Processing Systems, pp. 41–50 (2006)

40. Eppstein, D., Löffler, M., Strash, D.: Listing all maximal cliques in sparse graphs
in near-optimal time. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010.
LNCS, vol. 6506, pp. 403–414. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17517-6 36

https://doi.org/10.1109/TSE.2019.2892959
https://doi.org/10.1007/978-3-642-17517-6_36
https://doi.org/10.1007/978-3-642-17517-6_36

Active and Busy Time Scheduling
Problem: A Survey

Vincent Chau1 and Minming Li2(B)

1 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,
Shenzhen, China

vincentchau@siat.ac.cn
2 City University of Hong Kong, Hong Kong, China

minming.li@cityu.edu.hk

Abstract. We present an overview of recent research on the busy time
and active time scheduling model, which has its applications in energy
efficient scheduling for cloud computing systems, optical network design
and computer memories. The major feature of this type of scheduling
problems is to aggregate job execution into as few time slots as possible
to save energy. The difference between busy time and active time is
that the former refers to multiple machines while the latter refers to a
single machine. After summarizing the previous results on this topic, we
propose a few potential future directions for each model.

Keywords: Busy time · Active time · Approximation

1 Introduction

With the rise of the use of data centers, energy consumption has become a major
concern. Saving energy is crucial for both economic and ecological reasons.

One of the significant energy consumptions comes from the use of memory
which can be turned on and off depending on the underlying usage [2], especially
during low utilization periods. The min-gap strategy is one of the approaches in
dynamic resource sleep management [4,12]. We have the possibility of transiting
machines into the sleep state without any cost. However, a small amount of
energy will be consumed for transiting the machines back into the active state to
process jobs. For more details on the min-gap scheduling problems, the interested
reader may consult the recent surveys [3,11].

In this survey, we focus on the case when machines are active. At any moment,
the scheduler can work on a group of at most g jobs by machines that are at
the working state. Unlike the min-gap strategy, there is no cost for turning on a
device. Thus, the aim is to minimize the total time that a machine is on.

This measure was introduced in the cloud computing context [19,23]. Com-
mercial cloud computing systems possess a set of computing resources and allo-
cate them to clients, depending on their requests. They usually charge the clients

c© Springer Nature Switzerland AG 2020
D.-Z. Du and J. Wang (Eds.): Ko Festschrift, LNCS 12000, pp. 219–229, 2020.
https://doi.org/10.1007/978-3-030-41672-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41672-0_13&domain=pdf
http://orcid.org/0000-0002-3362-2063
http://orcid.org/0000-0002-7370-6237
https://doi.org/10.1007/978-3-030-41672-0_13

220 V. Chau and M. Li

according to the time usage independent of their workload. Therefore, it is natu-
ral for the clients to maximize the number of tasks they can compute according
to the given period, or to minimize the time used to complete all their tasks.

The active time is also motivated by problems in optical network design [7,
8,21]. In fiber-optic communications, optical wavelength-division multiplexing
(WDM) is a technology that deals with the growth of traffic in communication
networks. The optical carrier signals are multiplexed onto a single optical fiber
by using different wavelengths (i.e., colors) of laser light. The communications
between nodes are realized by lightpaths. This technique enables bidirectional
communications over one strand of fiber, as well as multiplication of capacity. As
the energy of the signal decreases along a lightpath, we need to place regenerators
to reinforce the signal. Thus the associated hardware cost is proportional to the
length of the lightpaths. When a regenerator is set at some node and is operating
at some specific color, it can be shared by at most g connections. This is known
as traffic grooming. The regenerator optimization problem on the path topology
can be seen as a scheduling problem where the regenerator cost is measured
by the length of lightpaths (the busy time) while grooming corresponds to the
machine capacity.

2 Preliminaries

In the scheduling problem that we are interested in, we want to schedule a set of
n jobs on m identical machines. Each job Jj is characterized by its release time
rj , its deadline dj and its processing time pj . A job can only be scheduled inside
the interval [rj , dj) and needs to be executed during pj time-unit. Moreover, we
may schedule up to g different jobs at any moment on the same machine. We can
see this environment as having m machines, and each of them has g processors.

Definition 1. A machine is active whenever there is at least one job running
at a given time.

The goal is to schedule all the jobs while minimizing the total duration that
a machine is on. In this survey, we consider different types of instances which
are defined below.

Proper Instance. A job set is proper if no job interval is properly contained in
another interval. Formally, for any two jobs Ji, Jj ∈ J , we have ri ≤ rj ⇔ di ≤
dj .

Laminar Instance. A job set forms a laminar family if for any two jobs Ji, Jj ∈
J , it holds that [ri, di) ⊆ [rj , dj) or [rj , dj) ⊆ [ri, di) or [ri, di) ∩ [rj , dj) = ∅.

Clique Instance. A job set is a clique instance if any two job intervals intersect,
i.e., ∃t such that t ∈ [rj , dj) ∀Jj ∈ J .

Active and Busy Time Scheduling Problem: A Survey 221

One-sided Clique Instance. It is a special case of the clique instance. In the one-
sided clique instance, all jobs have the same release time or the same completion
time.

Proper Clique. The proper clique instance is a combination of the proper instance
and the clique instance. In this kind of instance, jobs not only share a common
time, but also follow the same ordering of release time and deadline.

Note that the one-sided clique instance is also a proper clique instance.

3 Busy Time

In the busy time model, jobs cannot be preempted, i.e., a job cannot be inter-
rupted once it is started and the goal is to schedule all the jobs while minimizing
the total duration that the machine is on.

3.1 Minimizing the Busy Time Length

We first investigate the case when jobs are rigid (interval jobs), i.e., there is no
flexibility for scheduling a job, which must start at its release time and complete
at its deadline. Then we consider the complementary case when jobs are flexible.
Finally, we focus on the online case.

Interval Jobs In The Offline Setting. The problem is NP-Hard for interval jobs
even when g = 2 [24] by a reduction from the circular arc graph coloring
problem. In the following, we assume that we are given an unlimited number of
machines to schedule jobs, and the number of machines is part of the output of
the scheduling algorithms. Alicherry and Bhatia [1], and independently Kumar
and Rudra [17], developed a 2-approximation algorithm for interval jobs. Flam-
mini et al. [9] proposed later on a simple greedy algorithm with an approximation
ratio of 4. The idea is as follows: First, we sort the jobs in non-increasing order
of their processing time. Then we assign the next job, Jj , to the first machine
that can process it, i.e., find the minimum value of i ≥ 1 such that, at any time
t ∈ Jj , Mi is processing at most g − 1 jobs. If no such a machine exists, then
open a new machine for Jj . They showed that this algorithm could not have
a ratio better than 3. When jobs have agreeable deadline, a 2-approximation
greedy algorithm has been independently proposed by two groups: Flammini
et al. [9] and Khandekar et al. [13]. The idea is similar to the algorithm for the
general case, but instead of considering jobs according to their processing times,
they considered the jobs according to their release times.

Flexible Jobs In The Offline Setting. Khandekar et al. [13] were the first to
give a constant approximation algorithm when jobs are flexible, i.e., jobs can
be scheduled at any time between their release time and their deadline. Their
algorithm achieves an approximation ratio of 5. In fact, their algorithm can solve

222 V. Chau and M. Li

a more general case where jobs have an additional demand on the number of
resource R ∈ [1, g]. Therefore, a machine can schedule at any time a set of jobs so
that their total demand is no more than g. Jobs are separated into two subsets
according to their demand size. After assigning the wide jobs arbitrarily, we
apply a greedy algorithm on the remaining jobs.

Finally, Chang et al. [6] improved the approximation ratio to 3 using a round-
ing technique of linear programming. The above results all assume that there is
an unbounded number of machines and the number of machines required by the
schedules they generate can be as large as Ω(n).

Khoeller and Khuller [15] focused on optimizing both objectives, i.e., the busy
time length as well as the number of machines used. When optimizing them
separately, we know that the busy time can be approximated with a ratio of
3 [6], while the best-known approximation algorithm for minimizing the number
of machines has an approximation ratio of O(

√
log n/ log log n). When jobs have

the same processing time, but not unit, i.e., when ∀j pj = p, the minimum
number of machines can be computed in polynomial time. The idea of their
algorithm is to first compute the minimum number of machines, then minimize
the busy time length. This algorithm is a 6-approximation on the busy time using
the minimum number of machines. Finally, for the general case, they provided
an algorithm whose approximation ratio is (α + 1) on busy time, and using
�logα pmax/pmin�(2�α�mopt + 8) machines where mopt is the minimum number
of machines to get a feasible solution.

A summary of the results are listed can be found in Table 1.

Table 1. Results of offline mininimization of busy time

Jobs g Assumption Results

Rigid 2 NP-hard [24]

Clique Polynomial [13,18]

Arbitrary 2-approximation [1,17]

4-approximation [9]

Proper 2-approximation [9,13]

Laminar Polynomial [13]

Clique PTAS [13](
gHg

Hg+g−1

)
-approximationa [18]

Flexible Arbitrary 5-approximation [13]

3-approximation [6]

Unbounded Polynomial [13]

Bounded number of machines (machines, busy time)

Flexible Arbitrary pj = p ∀j (1, 6)-approximation [15]

Arbitrary pj (log pmax
pmin

, 5)-approximation [15]
aHg is the gth harmonic number.

Active and Busy Time Scheduling Problem: A Survey 223

Interval Jobs In Online Setting. Shalom et al. [22] studied the online version of
interval-job scheduling with jobs unknown in advance. Jobs are revealed only when
they are released, and we need to decide on which machines to schedule them.
Moreover, decisions are made irrevocably. They showed that any deterministic
online algorithm cannot have an approximation ratio less than g. They subse-
quently provided an online algorithm which is (5 log pmax)-competitive. For one-
sided clique instance, they showed a competitive ratio lower bound of 2 and pro-
posed a (1 + ϕ)-competitive algorithm, where ϕ = (1 +

√
5)/2 is the golden ratio.

By extending this result, a factor of 2 is needed for handling the clique instances.

Flexible Jobs In Online Setting. As opposed to the interval jobs, an additional
decision needs to be made on when to schedule the jobs as we have more flex-
ibility. Fong et al. [10], Koehler et al. [15] and Ren et al. [20] independently
developed a constant competitive algorithm when g is unbounded. The compet-
itive ratios are, respectively, 4, 5 and 4 + 2

√
2, while a lower bound of 1+

√
5

2 for
any deterministic online algorithm was shown in [15,20].

Koehler and Khuller [15] further studied the case when g is bounded and
provided a

(
log pmax

pmin

)
-competitive algorithm. Moreover, if we can see the future,

in particular a lookahead of 2pmax, then it is possible to get an algorithm with
a constant competitive ratio of 12.

On the other hand, Ren and Tang [20] studied the non-clairvoyant case where
the processing length of each job is not known until it completes execution. A
lower bound (resp. upper bound) of 1+

√
5

2 (resp. 1 + 1+
√
5

2) is given in [20].
A summary of the results can be found in the following Table 2.

Table 2. Results of online mininimization of busy time

Jobs g Assumption Results

Rigid Arbitrary Upper bound min{g, 5 log pmax} [22]

Lower bound g [22]

One-sided clique Upper bound 1 + 1+
√
5

2
[22]

Lower bound 2 [22]

Clique Upper bound 2(1 + 1+
√
5

2
) [22]

Flexible Unbounded Clairvoyant Upper bound 4 [10]

5 [15]

4 + 2
√

2 [20]

Lower bound 1+
√
5

2
[15,20]

Non-clairvoyant Upper bound 1 + 1+
√
5

2
[20]

Lower bound 1+
√
5

2
[20]

Bounded Upper bound
(
log pmax

pmin

)
[15]

Lookahead of 2pmax Upper bound 12 [15]

Lookahead of pmax Lower bound
√

2 [15]

224 V. Chau and M. Li

3.2 Maximizing the Throughput

In this variant, we are given a budget T and a machine can be busy for T
time-units. The objective is to maximize the number of jobs completed.

It is worth noticing that the throughput maximization problem is at least as
hard as the busy time minimization problem. Indeed, if one can efficiently solve
the throughput maximization problem, then we can perform a binary search on
the budget of the busy time until we get the minimum busy time such that all
jobs are scheduled.

Offline Algorithm. Mertzios et al. [18] showed that when jobs have common
release time or common deadline (one-sided clique instance), it can be solved
optimally in polynomial time by sorting the jobs in non-increasing order of their
processing times, and then selecting them within the budget on the busy time
and with less than g selected jobs. However, for the general clique instance,
there is only a 4-approximation algorithm. Finally, for the proper clique instance,
they proposed a dynamic programming algorithm whose running time is O(n3g)
(Table 3).

Table 3. Results of offline throughput maximization of busy time

Assumption Results

Clique instance 4-approximation [18]

One-sided clique instance O(n log n) [18]

Proper clique instance O(n3g) [18]

Online Algorithm. In the online setting, Shalom et al. [22] showed that any
online deterministic algorithm could not have a competitive ratio better than
gT , where T is the budget and subsequently proposed an algorithm with the
same competitive ratio. They considered feasible instances for which there exist
offline schedules that schedule all jobs. In particular, they investigated the one-
sided clique instances, showed a lower bound of 2−2/(g+1) for any deterministic
online algorithm and gave a constant competitive online algorithm with the ratio
depending on g, but at most 9/2 in general (Table 4).

Table 4. Results of online throughput maximization of busy time

Assumption Results

General case Upper bound gT [22]

Lower bound gT [22]

Common release time Upper bound 9/2 [22]

Lower bound 2 − 2/(g + 1) [22]

Active and Busy Time Scheduling Problem: A Survey 225

3.3 Open Questions

As mentioned in [18], the authors considered the case where scheduling a job
incur a unit profit. A natural extension is to consider the weighted case where
each job is associated with a weight and the goal is to schedule a set of jobs with
the highest profit.

4 Active Time

The active time model is similar to the busy time model. The main difference is
that we only have a single machine and preemption of jobs is allowed. Moreover,
we consider that each job Jj is characterized by a set of feasible intervals Tj =⋃

k[rjk, djk]. In the following, we differentiate between the general interval case
where there are at least two distinct feasible intervals for a same job, and the
single interval case.

In this model, we consider that the time horizon of a schedule is divided into
time-slots. A time-slot is considered active as long as at least one job is scheduled
on it and there are at most g different jobs. Preemption of jobs occurs at integral
point. The goal is to schedule all the jobs while minimizing the number of active
time slots.

4.1 Minimizing the Active Time Length

Chang et al. [5] considered that jobs are composed of a set of time intervals in
which it can be feasibly scheduled. They showed that the problem is NP-hard
when g ≥ 3 with unit processing time jobs: they made a reduction from the 3-
Exact Cover problem. However, the problem can be solved in polynomial time
when g = 2. They cleverly transformed the scheduling problem into the degree-
constrained subgraph problem. Then, by computing the maximum cardinality
matching of this graph, we can get the minimum number of active slots used by
any schedule corresponding to the graph. Surprisingly, when jobs have a single
interval of availability for arbitrary g, the problem can be solved in linear time.

For the case when jobs have arbitrary processing time, they proposed a 2-
approximation algorithm which is based on the LP rounding technique. It is
subsequently simplified by Kumar and Khuller in [16] by proposing a combina-
torial algorithm although the approximation ratio remains the same.

Fong et al. [10] studied the case where g is unbounded and jobs form a
proper instance. They showed that without preemption, they are able to solve
it in polynomial time via dynamic programming.

226 V. Chau and M. Li

4.2 Batch Scheduling

The batch scheduling problems are extensively studied in the literature. However,
most of the results are about optimizing classical objective functions such as
minimizing makespan, minimizing total completion time etc. In our case, we
aim to minimize the number of batches such that all jobs are scheduled. A batch
is a set of at most g jobs which all start and finish at the same time. Note that
this variant is slightly more restrictive than the active time model, because it
is required to schedule all jobs at the same time (when they are in the same
batch). See Fig. 1 for an illustration of the difference of the two models.

J2 J4

J2 J4
J3

J3

active time

batch scheduling

J3

J2 J4

4 53210 6

J1

J1

J1

Fig. 1. Illustration of the difference between the active time model and the batch
scheduling problem. We have 4 jobs with their respective availability windows [0, 2),
[0, 3), [2, 4) and [3, 6). The processing time of the three jobs is 2 each. The optimal
solution of the active time model is using 5 time-units while the batch scheduling
needs to use 6. Moreover, a solution for the batch scheduling model is also feasible for
the active time model, but the reverse is not true.

Chang et al. [5] studied this variant and gave a polynomial-time algorithm
when jobs have the same processing time, with a further improvement that
reduces the running time from O(n8) to O(n3) [14]. Moreover, Koehler and
Khuller [14] also considered the case when g is unbounded and gave a faster
algorithm (Table 5).

Active and Busy Time Scheduling Problem: A Survey 227

Table 5. Results of offline mininimization of active time

Interval g Assumption Results

General 2 Arbitrary pj O(
√
Ln) [5]

≥ 3 pj = 1 ∀j NP-complete [5]

Arbitrary Time not slotted Polynomial (LP) [5]

Single Arbitrary pj = 1 ∀j O(n) [5]

Arbitrary pj 2-approximation [6,16]

Unbounded Proper and non-preemption O(n3) [10]

Minimize number of batches (of active time)

Single Arbitrary pj = p ∀j O(n8) [5]

O(n3) [14]

Unbounded pj = p ∀j O(n2) [14]

4.3 Open Questions

Complexity of the Problem. An extensive literature exists for the busy time
model while there are only a few papers on the active time model. Although the
active time model can be seen as a special case of the busy time model, it is not
known whether this problem can be solved optimally in polynomial time.

Throughput Maximization. Chang et al. [5] studied this criterion, but only in
the context of batch scheduling. Exploring the general case of the active time
model is an interesting direction. The throughput maximization problem is at
least as hard as minimizing the active time length. By considering this variant,
a polynomial-time algorithm will settle the complexity status of the problem.

5 Concluding Remarks

We present an overview of recent research on the busy time and active time
scheduling model. While minimizing the busy time length has been extensively
studied; other criteria would also be worth exploring. We propose a few potential
future directions for each model.

References

1. Alicherry, M., Bhatia, R.: Line system design and a generalized coloring prob-
lem. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 19–30.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39658-1 5

2. Amur, H., Cipar, J., Gupta, V., Ganger, G.R., Kozuch, M.A., Schwan, K.: Robust
and flexible power-proportional storage. In: Proceedings of the 1st ACM Sympo-
sium on Cloud Computing, pp. 217–228. ACM (2010)

https://doi.org/10.1007/978-3-540-39658-1_5

228 V. Chau and M. Li

3. Bampis, E.: Algorithmic issues in energy-efficient computation. In: Kochetov, Y.,
Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds.) DOOR 2016. LNCS,
vol. 9869, pp. 3–14. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
44914-2 1

4. Baptiste, P.: Scheduling unit tasks to minimize the number of idle periods: a poly-
nomial time algorithm for offline dynamic power management. In: Proceedings
of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, pp.
364–367. Society for Industrial and Applied Mathematics (2006)

5. Chang, J., Gabow, H.N., Khuller, S.: A model for minimizing active processor time.
Algorithmica 70(3), 368–405 (2014). https://doi.org/10.1007/s00453-013-9807-y

6. Chang, J., Khuller, S., Mukherjee, K.: Lp rounding and combinatorial algorithms
for minimizing active and busy time. J. Sched. 20(6), 657–680 (2017)

7. Chen, S., Ljubić, I., Raghavan, S.: The regenerator location problem. Netw.: Int.
J. 55(3), 205–220 (2010)

8. Flammini, M., Marchetti-Spaccamela, A., Monaco, G., Moscardelli, L., Zaks, S.:
On the complexity of the regenerator placement problem in optical networks.
IEEE/ACM Trans. Netw. (TON) 19(2), 498–511 (2011)

9. Flammini, M., et al.: Minimizing total busy time in parallel scheduling with appli-
cation to optical networks. Theor. Comput. Sci. 411(40–42), 3553–3562 (2010)

10. Fong, K.C.K., Li, M., Li, Y., Poon, S.-H., Wu, W., Zhao, Y.: Scheduling tasks
to minimize active time on a processor with unlimited capacity. In: Gopal, T.V.,
Jäger, G., Steila, S. (eds.) TAMC 2017. LNCS, vol. 10185, pp. 247–259. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-55911-7 18

11. Gerards, M.E., Hurink, J.L., Hölzenspies, P.K.: A survey of offline algorithms for
energy minimization under deadline constraints. J. sched. 19(1), 3–19 (2016)

12. Irani, S., Pruhs, K.R.: Algorithmic problems in power management. ACM Sigact
News 36(2), 63–76 (2005)

13. Khandekar, R., Schieber, B., Shachnai, H., Tamir, T.: Minimizing busy time in
multiple machine real-time scheduling. In: IARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2010)

14. Koehler, F., Khuller, S.: Optimal batch schedules for parallel machines. In: Dehne,
F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 475–486.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40104-6 41

15. Koehler, F., Khuller, S.: Busy Time scheduling on a bounded number of machines
(Extended Abstract). Algorithms and Data Structures. LNCS, vol. 10389, pp. 521–
532. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62127-2 44

16. Kumar, S., Khuller, S.: Brief announcement: a greedy 2 approximation for the
active time problem. In: SPAA, pp. 347–349 (2018)

17. Kumar, V., Rudra, A.: Approximation algorithms for wavelength assignment. In:
Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 152–163. Springer,
Heidelberg (2005). https://doi.org/10.1007/11590156 12

18. Mertzios, G.B., Shalom, M., Voloshin, A., Wong, P.W., Zaks, S.: Optimizing busy
time on parallel machines. Theor. Comput. Sci. 562, 524–541 (2015)

19. Oprescu, A.M., Kielmann, T.: Bag-of-tasks scheduling under budget constraints.
In: 2010 IEEE Second International Conference on Cloud Computing Technology
and Science, pp. 351–359. IEEE (2010)

20. Ren, R., Tang, X.: Online flexible job scheduling for minimum span. In: Proceedings
of the 29th ACM Symposium on Parallelism in Algorithms and Architectures, pp.
55–66. ACM (2017)

https://doi.org/10.1007/978-3-319-44914-2_1
https://doi.org/10.1007/978-3-319-44914-2_1
https://doi.org/10.1007/s00453-013-9807-y
https://doi.org/10.1007/978-3-319-55911-7_18
https://doi.org/10.1007/978-3-642-40104-6_41
https://doi.org/10.1007/978-3-319-62127-2_44
https://doi.org/10.1007/11590156_12

Active and Busy Time Scheduling Problem: A Survey 229

21. Saradhi, C.V., et al.: A framework for regenerator site selection based on multi-
ple paths. In: 2010 Conference on Optical Fiber Communication (OFC/NFOEC),
Collocated National Fiber Optic Engineers Conference, pp. 1–3. IEEE (2010)

22. Shalom, M., Voloshin, A., Wong, P.W., Yung, F.C., Zaks, S.: Online optimization
of busy time on parallel machines. Theor. Comput. Sci. 560, 190–206 (2014)

23. Shi, W., Hong, B.: Resource allocation with a budget constraint for computing
independent tasks in the cloud. In: 2010 IEEE Second International Conference on
Cloud Computing Technology and Science, pp. 327–334. IEEE (2010)

24. Winkler, P., Zhang, L.: Wavelength assignment and generalized interval graph
coloring. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 830–831. Society for Industrial and Applied Mathematics
(2003)

A Note on the Position Value for
Hypergraph Communication Situations

Erfang Shan1,2(B), Jilei Shi1,3, and Wenrong Lv1

1 School of Management, Shanghai University,
Shanghai 200444, People’s Republic of China
efshan@shu.edu.cn, shijilei1987@163.com,

wenrongga@163.com
2 Department of Mathematics, Shanghai University,

Shanghai 200444, People’s Republic of China
3 Ningbo University of Finance and Economics,

Ningbo 315175, People’s Republic of China

Abstract. The position value Meessen [3] is an important allocation
rule for communication situations. The axiomatic characterization of the
position value for arbitrary graph communication situations were given
by Slikker [8]. However, the characterization of the position value for
arbitrary hypergraph communication situations remains an open prob-
lem. This note provides an axiomatic characterization of the position
value for arbitrary hypergraph communication situations by employing
component efficiency and partial balanced hyperlink contributions given
in Shan et al. [6].

Keywords: TU-game · Position value · Hypergraph communication
situations

1 Introduction

A communication situation is one in which participants with an economic or
social problem obtain a payoff through cooperation, and their cooperation is
restricted to the given network structure. The seminal work on games in which
restrictions in the cooperation are given by a graph is due to Myerson [4]. The
nodes in the graph represent the players and the links the communication links
between the players. One of the most famous allocation rules for graph com-
munication situations is the Myerson value [4], which is defined as the Shapley
value [7] of the so-called Myerson restricted game. Myerson [5], Borm et al. [1],
and Slikker and van den Nouweland [9] provided various characterizations of this
allocation rule.

Meessen [3] proposed an alternative allocation rule for the class of graph
communication situations, called the position value. Borm et al. [1] provided a

Research was partially supported by NSFC (grant number 11971298).

c© Springer Nature Switzerland AG 2020
D.-Z. Du and J. Wang (Eds.): Ko Festschrift, LNCS 12000, pp. 230–237, 2020.
https://doi.org/10.1007/978-3-030-41672-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41672-0_14&domain=pdf
https://doi.org/10.1007/978-3-030-41672-0_14

A Note on the Position Value for Hypergraph Communication Situations 231

characterization of the position value for graph communication situations with
trees. An elegant characterization of this rule for arbitrary graph communica-
tion situations was given by Slikker [8]. van den Nouweland et al. [10] extended
the position value to hypergraph communication situations. They also gave an
axiomatic characterization of the position value for cycle-free hypergraph com-
munication situations. However, an axiomatic characterization of the position
value for arbitrary hypergraph communication situations has not yet been found
and remains an open problem.

In this note we provide an axiomatic characterization for arbitrary hyper-
graph communication situations in terms of component efficiency and partial
balanced hyperlink contributions. Component efficiency states that for each com-
ponent of the hypergraph the total payoff to its players equals the worth of that
component. The partial balanced hyperlink contributions deals with the payoff
difference a player experiences if another player breaks one of his hyperlinks. The
property is proposed in [6] for the degree value on hypergraph communication
situations. It is different from the balanced link contributions due to Slikker [8],
the intrinsical difference between the two balanced properties is whether the pay-
off difference of a player experiences is totally or partially attributing to another
player.

2 Preliminaries

A n-person cooperative game with transferable utility, or simply a TU-game, is
a pair (N, v) where N = {1, 2, . . . , n} is a finite set of players and v : 2N → R a
characteristic function on the power set 2N of N with v(∅) = 0. For any coalition
S ⊆ N , the real number v(S) represents the worth of coalition S and |S| denotes
the cardinality of S. For nonempty T ⊆ N , the subgame of v with respect to T
is vT (S) = v(S), for all S ⊆ T . A game (N, v) is zero-normalized if for any i ∈ N ,
v({i}) = 0. Throughout this paper, we consider only zero-normalized game.

For a game (N, v), a payoff vector x = (x1, x2, . . . , xn) ∈ R
n assigns a payoff

xi to each player i ∈ N . A single-valued solution, also called value or allocation
rule, is a mapping f that assigns to every (N, v) a payoff f(N, v) ∈ R

n.
For any T ⊆ N , the unanimity game (N,uT) corresponding to T is the game

defined by uT (S) = 1 if T ⊆ S and uT (S) = 0 otherwise (see [7]). It was proved
that each (N, v) can be decomposed into a linear combination of unanimity
games; formally,

v =
∑

T⊆N :T �=∅
λT (v)uT ,

where λT (v) =
∑
S⊆T

(−1)|T |−|S|v(S), called Harsanyi dividends [2]. The well-

known single-valued solution is the Shapley value [7], which is given by

Shi(N, v) =
∑

T⊆N :i∈T

1
|T |λT (v). (1)

232 E. Shan et al.

A hypergraph on N is a pair (N,H), where H ⊆ HN := {e ⊆ N | |e| ≥
2} i.e., H is a family of non-singleton subsets of N , called hyperlinks. If N is
clear from the context, we write H instead of (N,H). We call each hyperlink a
conference, the communication is only possible within a conference. In particular,
a hypergraph (N,H) is a graph if |e| = 2 for all e ∈ H.

For each player i ∈ N , let Hi = {e ∈ H | i ∈ e} is the set of hyperlinks contain-
ing i in (N,H). For any S ⊆ N , the subhypergraph (S,H(S)) is the hypergraph
induced by S where H(S) = {e ∈ H | e ⊆ S}. We say that (N,A) is a subhyper-
graph of (N,H) if A ⊆ H. We say that nodes i and j are connected in H if there
exists a vertex-hyperlink alternative sequence i = i1, e1, i2, e2, . . . , ik, ek, ik+1 = j
such that il, il+1 ∈ el for l = 1, 2, . . . , k. A hypergraph is connected if every pair
of nodes are connected. A set S is connected in H if H(S) is a connected sub-
hypergraph. Connectedness in H induces a partition of N into components. A
component is a maximal set of nodes of N in which every pair of nodes are
connected. Let N/H be the set of components of (N,H) and S/H instead of
S/H(S) the set of components of (S,H(S)).

A hypergraph communication situation is a triple (N, v,H), where (N, v) is
a TU-game and (N,H) is a hypergraph describing a communication possibil-
ity. The family of all hypergraph communication situations with fixed player
set N is denoted by HCSN . An allocation rule or value f(N, v,H) on hyper-
graph communication situations is a n-dimensional vector function f defined on
HCSN .

The Myerson value [4] and the position value [1,3] are two important alloca-
tion rules widely used in communication situations. [10] generalized the Myerson
value and the position value towards hypergraph communication situations. The
Myerson value for hypergraph communication situations is defined as follows.

μi(N, v,H) = Shi(N, vH), for any i ∈ N,

where vH(S) =
∑

T∈S/H v(T) for any S ⊆ N . The game (N, vH) is called the
hypergraph-restricted game.

The position value for hypergraph communication situations is given by

πi(N, v,H) =
∑

e∈Hi

1
|e|She(H, vN), for any i ∈ N, (2)

where vN (A) =
∑

T∈N/A v(T) for any A ⊆ H. The game (H, vN) is called a
hyperlink game.

3 A Characterization of the Position Value

In this section we shall provide an axiomatic characterization of the position
value π for hypergraph communication situations by two important axioms.

Consider the following properties for an allocation rule f defined on a class
of hypergraph communication situations HCSN . The first axiom is the classical
axiom–component efficiency in [4] below.

A Note on the Position Value for Hypergraph Communication Situations 233

Component efficiency: An value f on HCSN is component efficient if for any
hypergraph communication situation (N, v,H) ∈ HCSN , T ∈ N/H, it holds
that ∑

i∈T

fi(N, v,H) = v(T).

It states that the members of a component ought to allocate to themselves the
total worth available to them.

The second property in [6] deals with the gains players contribute to each
other. In the property, we consider the influence of asymmetry among hyperlinks,
since hyperlinks may have the different numbers of players.

Partial balanced hyperlink contributions: An value f on HCSN satisfies
partial balanced hyperlink contributions if for any (N, v,H) ∈ HCSN and any
i, j ∈ N , it holds that

∑

e′∈Hj

1

|e′| [fi(N, v,H) − fi(N, v,H \ {e′})] =
∑

e∈Hi

1

|e| [fj(N, v,H) − fj(N, v,H \ {e})].

The partial balanced hyperlink contributions states that the contribution or
threat from a player towards another player equals the reverse contribution or
threat, where the contribution or threat of a player towards another player is
the sum of a portion payoff differences a player can inflict on another player by
building or breaking one of his hyperlinks.

Note that if H is a graph, then the property reduces to balanced link contri-
butions. But, in general, this property is obviously different from the balanced
link contributions.

In order to show that the position value π satisfies component efficiency and
partial balanced hyperlink contributions, we first give a key lemma below.

Lemma 1. For any (N, v,H) ∈ HCSN , i ∈ N ,

πi(N, v,H) =
∑

K⊆H,e∈Ki

(∑

e∈Ki

1
|e|

)λK(vN)
|K| , (3)

where Ki = K ∩ Hi

Proof. Since every TU-game can be written as a linear combination of unanim-
ity games. Hence, for any hypergraph communication situation (N, v,H), the
hyerplink game (N, vN) corresponding to v can be expressed as

vN =
∑

K⊆H

λK(vN)uK .

234 E. Shan et al.

According to the Eqs. (1) and (2), for any i ∈ N , we have

πi(N, v,H) =
∑

e∈Hi

1
|e|She(H, vN)

=
∑

e∈Hi

1
|e|

∑

K⊆H:e∈K

λK(vN)
|K|

=
∑

K⊆H:e∈K

∑

e∈Ki

1
|e|

λK(vN)
|K|

=
∑

K⊆H,e∈Ki

(∑

e∈Ki

1
|e|

)λK(vN)
|K| .

By Lemma 1, we show that π satisfies the two properties above.

Lemma 2. The position value π for any hypergraph communication situations
(N, v,H) ∈ HCSN satisfies component efficiency and partial balanced hyperlink
contributions.

Proof. We first show that π satisfies component efficiency. By Eq. (2), for any
(N, v,H) ∈ HCSN , C ∈ N/H, we have

∑

i∈C

πi(N, v,H) =
∑

i∈C

∑

e∈Hi

1
|e|She(H, vN) =

∑

e∈H(C)

|e| 1
|e|She(H, vN)

=
∑

e∈H(C))

She(H(C), vN),

where the third equality follows the definition of the Shapley value and the fact
that, for all e ∈ H(C) and K ⊆ H \ {e},

vN (K ∪ {e}) − vN (K) = vN
(
(K ∩ H(C)) ∪ {e}) − vN

(
K ∩ H(C)

)
.

Hence, by efficiency of the Shapley value,
∑

i∈C

πi(N, v,H) =
∑

e∈H(C))

She(H(C), vN) = vN (H(C)) = v(C).

Next we show that the position value π satisfies partial balanced hyperlink
contributions. For any e ∈ H and K ⊆ H \ {e} ⊆ H, let Ki = K ∩ Hi, Kj =
K ∩ Hj . For any i, j ∈ N , i 	= j, by Lemma 1, we have

A Note on the Position Value for Hypergraph Communication Situations 235

∑

e′∈Hj

1
|e′| [πi(N, v,H) − πi(N, v,H \ {e′})]

=
∑

e′∈Hj

1
|e′|

[∑

K⊆H:e∈Ki

(∑

e∈Ki

1
|e|

)λK(vN)
|K|

−
∑

K⊆H\{e′}:e∈Ki

(∑

e∈Ki

1
|e|

)λK(vN)
|K|

]

=
∑

e′∈Hj

1
|e′|

[∑

K⊆H:e∈Ki,e′∈K

(∑

e∈Ki

1
|e|

)λK(vN)
|K|

]

=
∑

K⊆H:e∈Ki,e′∈Kj

(∑

e′∈Kj

1
|e′|

)(∑

e∈Ki

1
|e|

)λK(vN)
|K| .

Similarly, we have

∑

e∈Hi

1
|e| [πj(N, v,H) − πj(N, v,H \ {e})]

=
∑

K⊆H:e∈Ki,e′∈Kj

(∑

e′∈Kj

1
|e′|

)(∑

e∈Ki

1
|e|

)λK(vN)
|K| .

Therefore,

∑

e′∈Hj

1
|e′| [πi(N, v,H) − πi(N, v,H \ {e′})]

=
∑

e∈Hi

1
|e| [πj(N, v,H) − πj(N, v,H \ {e})].

This complete the proof of Lemma 2.

The following result shows that the two properties can completely charac-
terize the position value for hypergraph communication situations. Its proof is
similar to the proof of Theorem 3.1 in [8] which characterizes the position value
for arbitrary (graph) communication situations.

Theorem 1. The position value for hypergraph communication situations is the
unique allocation rule that satisfies component efficiency and partial balanced
hyperlink contributions.

Proof. By Lemma 2, it is proved that the position value for hypergraph games
satisfies component efficiency and partial balanced hyperlink contributions. It
remains to show that the position value is the unique value that satisfies the two
properties. Suppose f is an allocation rule satisfies the two properties, we show
that f = π. We proceed by induction on |H|. For |H| = 0, the assertion imme-
diately follows from component efficiency. Next we may assume that f coincides

236 E. Shan et al.

with the position value π if |H| ≤ k − 1. We consider the case when |H| = k.
For any component C ∈ N/H, let C = {1, 2, . . . , c}. By the two properties and
the induction hypothesis, we immediately obtain the following system of linearly
independent equations,

∑

e∈H2

1
|e|f1(v,H) −

∑

e∈H1

1
|e|f2(v,H)

=
∑

e∈H2

1
|e|π1(v,H \ {e}) −

∑

e∈H1

1
|e|π2(v,H \ {e}),

· · ·
∑

e∈Hc

1
|e|f1(v,H) −

∑

e∈H1

1
|e|fc(v,H)

=
∑

e∈Hc

1
|e|π1(v,H \ {e}) −

∑

e∈H1

1
|e|πc(v,H \ {e}),

∑

i∈T

f(v,H) = v(T),

where write fi(v,H) and fi(v,H \ {e}) instead of fi(N, v,H) and fi(N, v,H \
{e}), respectively, for i = 1, 2, . . . , c. It is easily verified that the above system
has a unique solution. Since the position value satisfies component efficiency
and partial balanced hyperlink contributions, the position value is a solution of
the above system. Consequently, we conclude that f = π for any hypergraph
communication situations with |H| = k.

Note that the axiomatic characterization of the position value for graph com-
munication situations is an immediate consequence of Theorem 1.

Theorem 2 [8]. The position value for graph communication situations is the
unique allocation rule that satisfies component efficiency and balanced link con-
tributions.

References

1. Borm, P., Owen, G., Tijs, S.: On the position value for communication situations.
SIAM J. Disc. Math. 5(3), 305–320 (1992)

2. Harsanyi, J.C.: A bargaining model for cooperative n-person games. In: Tucker,
A.W., Luce, R.D. (eds.) Contributions to the Theory of Games IV, pp. 325–355.
Princeton University Press, Princeton (1959)

3. Meessen, R.: Communication games, Masters thesis, Department of Mathematics.
University of Nijmegen, The Netherlands (1988). (in Dutch)

4. Myerson, R.B.: Graphs and cooperation in games. Math. Oper. Res. 2(3), 225–229
(1977)

5. Myerson, R.B.: Conference structures and fair allocation rules. Int. J. Game Theory
9(3), 169–182 (1980)

A Note on the Position Value for Hypergraph Communication Situations 237

6. Shan, E., Zhang, G., Shan, X.: The degree value for games with communication
structure. Int. J. Game Theory 47, 857–871 (2018)

7. Shapley, L.S.: A value for n-person games. In: Kuhn, H., Tucker, A. (eds.) Con-
tributions to the Theory of Games II, pp. 307–317. Princeton University Press,
Princeton (1953)

8. Slikker, M.: A characterization of the position value. Int. J. Game Theory 33(4),
505–514 (2005)

9. Slikker, M., van den Nouweland, A.: Social and Economic Networks in Cooperative
Games. Kluwer Academic Publishers (2001)

10. van den Nouweland, A., Borm, P., Tijs, S.: Allocation rules for hypergraph com-
munication situations. Int. J. Game Theory 20(3), 255–268 (1992)

An Efficient Approximation Algorithm
for the Steiner Tree Problem

Chi-Yeh Chen and Sun-Yuan Hsieh(B)

Department of Computer Science and Information Engineering,
National Cheng Kung University, No. 1, University Road, Tainan, Taiwan, ROC

chency@csie.ncku.edu.tw, hsiehsy@mail.ncku.edu.tw

http://www.csie.ncku.edu.tw

Abstract. Given an arbitrary weighted graph, the Steiner tree problem
seeks a minimum-cost tree spanning a given subset of the vertices (ter-
minals). Byrka et al. proposed an interactive method that achieves an
approximation ratio of 1.3863 + ε. Moreover, Goemans et al. shown that
it is possible to achieve the same approximation guarantee while only
solving hypergraphic LP relaxation once. However, solving hypergraphic
LP relaxation is time consuming. This article presents an efficient two-
phase heuristic in greedy strategy that achieves an approximation ratio
of 1.4295.

Keywords: Steiner trees · Approximation algorithms · Graph Steiner
problem · Network design

1 Introduction

The Steiner tree problem is one of the classic and most fundamental NP-
hard problems. The Steiner tree problem is NP-hard [19] and it is NP-hard
to approximate the Steiner tree problem within a factor 96/95 [13]. Numer-
ous variants of the Steiner tree problem include the terminal Steiner tree
problem [11,12,15,18,33–35], the partial-terminal Steiner tree problem [25],
the Steiner tree problem with distances 1 and 2 [5,7,34], the internal Steiner
tree problem [26,27], the prize-collecting Steiner tree problem [2,13], the group
Steiner tree problem [14,17,20,22,23], and the Steiner forest problem [1,4,13].
The applications include VLSI routing [29], wireless communications [32,36],
transportation [28], wirelength estimation [10], and network routing [31].

In Euclidean and rectilinear minimum cost Steiner trees problem, a near-
optimal solution of can be efficiently found [3]. In arbitrary weighted graphs,
a sequence of improved approximation algorithms appeared in the litera-
tures [6,9,24,30,37–41] in which the best approximation ratio achievable within
polynomial time was improved from 2 to 1.39. Byrka et al. developed an LP-
based algorithm that achieves approximation ratio of ln 4 + ε [9]. However, the

This article appeared in 2019 the 2nd International Conference on Information Science
and Systems (ICISS), under the title “An Efficient Approximation Algorithm for the
Steiner Tree Problem”.

c© Springer Nature Switzerland AG 2020
D.-Z. Du and J. Wang (Eds.): Ko Festschrift, LNCS 12000, pp. 238–251, 2020.
https://doi.org/10.1007/978-3-030-41672-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41672-0_15&domain=pdf
http://orcid.org/0000-0001-9664-8538
http://orcid.org/0000-0003-4746-3179
https://doi.org/10.1007/978-3-030-41672-0_15

An Efficient Approximation Algorithm for the Steiner Tree Problem 239

linear program is solved many times. Goemans et al. [21] shown that it is possible
to achieve the same approximation guarantee while only solving hypergraphic
LP relaxation once. Borchers and Du [8] show that ρk ≤ 1+ �log2 k�−1 where ρk

is the worst-case ratio of the cost of optimal k-restricted Steiner tree to the cost
of optimal Steiner tree. We can obtain a 1+ ε approximation from hypergraphic
LP relaxation in which k = 21/ε. The number of variables and constraints will
consequently be more than n21/ε

where n is the number of terminals [16]. There-
fore, solving hypergraphic LP relaxation is time consuming. To overcome this
problem, this article then presents an efficient two-phase heuristic for the general
Steiner tree in greedy strategy that achieves an approximation ratio of 1.4295.

2 Notation and Preliminaries

Given an arbitrary weighted graph G = (V,E, c) with nonnegative edge costs
c : E → R

+ and a vertex subset R ⊆ V , the Steiner tree problem asks for a
minimum-cost subtree spanning the vertex subset R (terminals). Any tree in G
spanning R is called a Steiner tree, and any non-terminal vertices contained in
a Steiner tree are referred to as Steiner points. The graph G is assumed to be a
complete graph and let GR be a complete graph that induced by R.

For any graph H, let MST (H) be a minimum spanning tree of a graph H
and cost(H) be the sum of the costs of all edges in H. We thus abbreviate
mst(H) = cost(MST (H)), i.e., the cost of a minimum spanning tree of H.

A terminal-spanning tree is a Steiner tree that does not contain any Steiner
points. Let mst denote the cost of minimum terminal-spanning tree MST (GR).
A full component is a minimum-cost Steiner tree spanning subset R′ ⊂ R in
which all terminals are leaves. Any Steiner tree can be decomposed into full com-
ponents by splitting all the non-leaf terminals [38]. The proposed algorithm iter-
atively chooses full components to improve a minimum-cost terminal spanning
tree. The full components do not share Steiner points since it can be assumed
to have its own copy of each Steiner point.

Let Γ (K) denote the terminal set of a given full component K. Let E0(R′)
denote the set of zero-cost edges in which all edges connect all pairs of terminals
in R′. For brevity, let E0(H) = E0(Γ (H)). We call a Steiner tree S is a well
solution if any two full components in this Steiner tree has at most one share
terminal. In other words, |Γ (Ki) ∩ Γ (Kj)| ≤ 1 for any two full components
Ki and Kj in S. Let Loss(K) be the minimum-cost sub-forest of K. A simple
method of computing Loss(K) is given by the following lemma.

Lemma 1 [38]. For any full component K, Loss(K) = MST (K ∪ E0(K)) −
E0(K).

The cost of Loss(K) is denoted by loss(K). Let C[K] be a loss-contracted
full component that can be obtained by collapsing each connected component
of Loss(K) into a single node. An optimal k-restricted Steiner tree is denoted
by Optk. Let optk and lossk denote the cost and loss of Optk, respectively. Let
opt denote the cost of the optimal Steiner tree. For brevity, this article uses
T/E0(R′) to denote the minimum spanning tree of T ∪ E0(R′) for R′ ⊂ R.

240 C.-Y. Chen and S.-Y. Hsieh

The gain of a full component K with respect to T is defined as

gainT (K) = cost(T) − mst(T ∪ E0(K)) − cost(K),

and the load of of a full component K with respect to T is defined as

loadT (K) = cost(K) + mst(T ∪ E0(K)) − cost(T).

Let ΨT1,T2(K) = cost(T1) − cost(T2) − mst(T1 ∪ E0(K)) + mst(T2 ∪ E0(K)).
The following lemma shows that if no full component can improve a terminal-
spanning tree T , then cost(T) ≤ optk.

Lemma 2 [38]. Let T be a terminal-spanning tree; if gainT (K) ≤ 0 for any
k-restricted full component K, then cost(T) ≤ optk.

3 Two-Phase Algorithm

The k-restricted two-phase heuristic (k-TPH) is described in Algorithm 1. Let T t

be the terminal-spanning tree at the end of iteration t and let Kt be the chosen
full component at the end of iteration t. The concept of first phase is to find a
terminal-spanning tree Tbase such that no full component can improve it. Then,
we can use the terminal-spanning tree Tbase as based criterion for the second
phase. The solution in the first phase is denoted by S1, and the solution in the
second phase is denoted by S2. The first phase is a loss-contracting algorithm.
The criterion function of K with respect to T t−1 is defined as

r =
gainT t−1(K)

loss(K)
.

In a loss-contracting algorithm, a chosen full component Ki may be mod-
ified by other chosen full component. That is, when C[Kt] is added to T t−1,
some edges {e1, e2, . . .} in T t−1 that are corresponding to C[Ki] are deleted.
The components are obtained by Ki − {e1, e2, . . .} and each component can be
replaced by a full component with same terminals. Then, the full component Ki

can be replaced by these full components. That is because we want to ensure
that 1

2 · cost(S1) ≤ cost(Tbase). If no edge in T t−1 is corresponding to C[Ki], we
keep a basic component from Ki that is a Steiner point directly connect to two
terminals in which an edge belongs to Loss(Ki) and another edge belongs to
Ki − Loss(Ki) (see Fig. 1). It guarantees that the chosen full components never
be chosen again. However, it may bring that some Steiner points are leaves in S1.
Fortunately, these Steiner points can be removed. Therefore, this article assume
that no Steiner point is leaf in S1.

The second phase is the k-restricted enhanced relative greedy heuristic
(k-ERGH), which is described in Algorithm 2, to obtain a Steiner tree S2.
The k-ERGH iteratively finds a full component K for modifying the terminal-
spanning trees T 0

origin = MST (GR) and T 0
base. When a full component Kt has

been chosen, the algorithm contracts the cost of the corresponding edges in

An Efficient Approximation Algorithm for the Steiner Tree Problem 241

a b

c

Fig. 1. A full component K: squares denote terminals, circles denote Steiner and bold
black edges indicate K − Loss(K). A subgraph B = ({a, b, c} , {{a, c} , {b, c}}) is a
basic component in K where an edge {a, c} belongs to Loss(K) and another edge
{b, c} belongs to K − Loss(K).

T t−1
origin to zero, that is, T t

origin = MST (T t−1
origin ∪ E0(Kt)). Similarly, T t

base =
MST (T t−1

base ∪ E0(Kt)). The criterion function of K with respect to T t−1
origin and

T t−1
base is defined as

f(K) =
loadT t−1

base
(K)

ΨT t−1
origin,T t−1

base
(K)

.

The following steps analyze the complexity of k-TPH. Let n be the number of
terminals. In the first phase, the number of iterations cannot exceed the number
of full Steiner components O(nk). The gain of a full component K can be found
in time O(k) after precomputing the longest edges between any pair of nodes
in the current minimum spanning tree, which may be accomplished in time
O(n log n) [38]. Thus, the runtime of all the iterations in the first phase can be
bounded by O(kn2k+1 log n). We also can obtain the runtime of all the iterations
in the second phase is bounded by O(kn2k+1 log n). Thus, the total runtime is
O(kn2k+1 log n).

4 Approximation Ratio of the k-TPH

This section shows the approximation result of the k-TPH. The following lemma
shows that the first phase never repeatedly choose the same full component even
it has been replaced by some full components.

Lemma 3. The first phase never choose the chosen full components again.

Proof. Assume that the first phase choose a full component Kt = K. If no chosen
full component modifies edges of C[Ki] in MST (T

⋃t′

i=1 C[Ki]), gainT (K) ≤ 0
and the first phase never choose the full component K again.

242 C.-Y. Chen and S.-Y. Hsieh

Algorithm 1. The k-restricted two-phase heuristic (k-TPH)
1: ——————–The first phase——————–
2: T 0 = MST (GS)
3: for t = 1, 2, . . . do
4: Find a k-restricted full component Kt = K with maximizes

r =
gainT t−1(K)

loss(K)

5: if r ≤ 0 then
6: Tbase = T t−1 and exit for-loop
7: end if
8: if there exist some edges {e1, e2, . . .} ⊆ T t−1 − MST (T t−1 ∪ E0(Kt)) and

{e1, e2, . . .} ⊆ C(Ki) for i �= t then
9: Some components are obtained by Ki −{e1, e2, . . .} and each components can

be replaced by a full component with same terminals.
10: Replaced the full component Ki by these full components.
11: (for convenient to describe algorithm, we reuse the notain Ki to represent

these full components.)
12: end if
13: T t = MST (T 0 ∪ C[K1] ∪ · · · C[Kt])
14: S1 = MST (T 0 ∪ K1 ∪ · · · ∪ Kt)
15: if no edge in T t is corresponding to C[Ki] for i �= t then
16: Keep a basic component from Ki.
17: (we also reuse the notain Ki to represent this basic component.)
18: end if
19: end for
20: ——————–The second phase——————–
21: S2 = k-ERGH(Tbase)
22: return the minimum-cost tree S between S1 and S2.

Algorithm 2. The k-restricted enhanced relative greedy heuristic (k-ERGH)
Require: Tbase.
1: T 0

base = Tbase and T 0
origin = MST (GS)

2: for t = 1, 2, . . . do
3: Find a k-restricted full component Kt = K which minimizes

f(K) =
load

T t−1
base

(K)

Ψ
T t−1

origin,T t−1
base

(K)

4: T t
origin = MST (T t−1

origin ∪ E0(Kt))

5: T t
base = MST (T t−1

base ∪ E0(Kt))
6: if c(T t

origin) = c(T t
base) then

7: return MST (T 0
origin ∪ K1 ∪ K2 · · · ∪ Kt)

8: end if
9: end for

An Efficient Approximation Algorithm for the Steiner Tree Problem 243

If MST (T
⋃t′

i=1 C[Ki]) does not contain some edge e ∈ C[K] in the iteration
t′ > t, the full component K is divided into two components by removing the edge
e. Let A and B be two connected components of K − {e}. The full component
Kt is replaced by two full components KA and KB with terminals sets Γ (A) and
Γ (B), respectively. We have T t′

= MST (T
⋃t−1

i=1 C[Ki]∪KA∪KB

⋃t′

i=t+1 C[Ki]),
gainT t′ (K) ≤ gainT t′ (A ∪ B) ≤ gainT t′ (A) + gainT t′ (B) and loss(K) =
loss(A) + loss(B). Finally,

gainT t′ (K)
loss(K)

≤ gainT t′ (A) + gainT t′ (B)
loss(A) + loss(B)

≤ max
{

gainT t′ (A)
loss(A)

,
gainT t′ (B)

loss(B)

}

.

We knows that cost(KA) ≤ cost(A) and gainT t′ (KA) ≤ 0. The full compo-
nent KA is superior to A. We also can obtain that KB is superior to B. The first
phase never choose the full component K again.

If no edge in T t′
is corresponding to C[K], we keep a basic component in

K. Then, we can find a full component that superior to K. The chosen full
components never be chosen again. ��
Lemma 4. cost(T 0

base) ≥ 1
2 · cost(S1).

Proof. The cost of the Steiner tree in the first phase is

cost(S1) = cost(T 0
base) +

∑

Kj∈S1

loss(Kj).

Since loss(K) ≤ 1
2 · cost(K) [38] for any full component K,

cost(S1) ≤ cost(T 0
base) +

∑

Kj∈S1

1
2

· cost(Kj)

≤ cost(T 0
base) +

1
2

· cost(S1)

which yields cost(T 0
base) ≥ 1

2 · cost(S1). ��
Lemma 5. If no full component can improve the terminal-spanning tree T ,

loadT

(
n⋃

i=1

Ki

)

≥
n∑

i=1

loadT (Ki)

for full components K1,K2, . . . ,Kn.

244 C.-Y. Chen and S.-Y. Hsieh

Proof. The proof can be obtained by the following chain of inequalities:

loadT

(
n⋃

i=1

Ki

)
= cost

(
n⋃

i=1

Ki

)
+ mst

(
T ∪

n⋃
i=1

E0 (Ki)

)
− cost(T)

=

n∑
i=1

cost(Ki) + mst

(
T ∪

i⋃
j=1

E0 (Kj)

)
− cost

(
T/

i−1⋃
j=1

E0 (Kj)

)

≥
n∑

i=1

cost(Ki) + mst (T ∪ E0 (Ki)) − cost(T)

=

n∑
i=1

loadT (Ki).

��
The following lemma guarantees that the solution of k-TPH at the second

phase is a well solution.

Lemma 6. For any chosen full components Ki and Kj, |Γ (Ki) ∩ Γ (Kj)| ≤ 1.

Proof. Assume that |Γ (Ki) ∩ Γ (Kj)| = 2 and j < i. The terminal-spanning
trees T i−1

origin − MST (T i−1
origin ∪ E0(Ki)) and T i−1

base − MST (T i−1
base ∪ E0(Ki)) con-

tain a zero-cost edge that is from E0(Kj). Since no full component can improve
T 0

base, we have MST (T 0
base ∪ K) = T 0

base ∪ Loss(K) for any full component
K. We can find a edge e ∈ Ki − Loss(Ki) such that ΨT i−1

origin,T i−1
base

(Ki) =
ΨT i−1

origin,T i−1
base

(A) + ΨT i−1
origin,T i−1

base
(B) and loadT i−1

base
(Ki) ≥ loadT i−1

base
(A ∪ B) ≥

loadT i−1
base

(A) + loadT i−1
base

(B) (from Lemma 5) where A and B are two connected
components of Ki − {e}. Finally,

loadT i−1
base

(Ki)

ΨT i−1
origin,T i−1

base
(Ki)

≥
loadT i−1

base
(A) + loadT i−1

base
(B)

ΨT i−1
origin,T i−1

base
(A) + ΨT i−1

origin,T i−1
base

(B)

≥ min

{
loadT i−1

base
(A)

ΨT i−1
origin,T i−1

base
(A)

,
loadT i−1

base
(B)

ΨT i−1
origin,T i−1

base
(B)

}

which contradicts the choice of Ki. ��

Lemma 7. For any Steiner tree S, loadT 0
base

(S) ≥ loadT i−1
base

(
S/

⋃i−1
j=1 E0 (Kj)

)
.

Proof. Since no full component can improve the terminal-spanning tree T 0
base,

cost(S)−cost(T 0
base)−mst

(
S ∪ ⋃i−1

j=1 E0 (Kj)
)

+mst
(
T 0

base ∪ ⋃i−1
j=1 E0 (Kj)

)
≥

0. The proof can be obtained by the following chain of inequalities:

An Efficient Approximation Algorithm for the Steiner Tree Problem 245

load
T0

base
(S) = cost(S) − cost(T

0
base)

= mst

⎛
⎝S ∪

i−1⋃
j=1

E0 (Kj)

⎞
⎠ − mst

⎛
⎝T

0
base ∪

i−1⋃
j=1

E0 (Kj)

⎞
⎠

+cost(S) − cost(T
0
base) − mst

⎛
⎝S ∪

i−1⋃
j=1

E0 (Kj)

⎞
⎠ + mst

⎛
⎝T

0
base ∪

i−1⋃
j=1

E0 (Kj)

⎞
⎠

≥ mst

⎛
⎝S ∪

i−1⋃
j=1

E0 (Kj)

⎞
⎠ − mst

⎛
⎝T

0
base ∪

i−1⋃
j=1

E0 (Kj)

⎞
⎠

= load
T

i−1
base

⎛
⎝S/

i−1⋃
j=1

E0 (Kj)

⎞
⎠ .

��
Lemma 8. If loadT i−1

base/E0(C)(K) ≤ ΨT i−1
origin,T i−1

base/E0(C)(K) for any full compo-
nents C and K,

loadT i−1
base/E0(C)(K)

ΨT i−1
origin,T i−1

base/E0(C)(K)
≥

loadT i−1
base

(K)

ΨT i−1
origin,T i−1

base
(K)

.

Proof. Since loadT i−1
base/E0(C)(K) ≤ ΨT i−1

origin,T i−1
base/E0(C)(K) and cost(T i−1

base/

E0 (C)) − mst(T i−1
base ∪ E0 (C) ∪ E0 (K)) ≤ cost(T i−1

base) − mst(T i−1
base ∪ E0 (K)),

the proof can be obtained by the following chain of inequalities:

load
T

i−1
base

/E0(C)
(K)

Ψ
T

i−1
origin

,T
i−1
base

/E0(C)
(K)

=
cost(K) + mst(T i−1

base ∪ E0 (C) ∪ E0 (K)) − cost(T i−1
base/E0 (C))

cost(T i−1
origin) − cost(T i−1

base/E0 (C)) − mst(T i−1
origin ∪ E0(K)) + mst(T i−1

base ∪ E0 (C) ∪ E0(K))

≥ cost(K) + mst(T i−1
base ∪ E0 (K)) − cost(T i−1

base)

cost(T i−1
origin) − cost(T i−1

base) − mst(T i−1
origin ∪ E0(K)) + mst(T i−1

base ∪ E0(K))

=

load
T

i−1
base

(K)

Ψ
T

i−1
origin

,T
i−1
base

(K)
.

��
Based on the analysis in [41], the bound on the cost of our solution is as

follows.

Theorem 9. The k-TPH finds a Steiner tree S such that

cost(S) ≤
(

ln
mst − cost(T 0

base)
optk − cost(T 0

base)
+ 1

)

· (
optk − cost(T 0

base)
)

+ cost(T 0
base).

Proof. Let Mi = cost(T i
origin) − cost(T i

base) and mi = Mi−1 − Mi. Hence,

f(Ki) =
load

T
i−1
base

(Ki)

mi
. Let Opti−1

k =
(
Optk/

⋃i−1
l=1 E0 (kl)

)
− ⋃i−1

l=1 E0 (Kl). For
i = 1, . . . , r + 1 and loadT 0

base
(Optk) ≤ Mi−1, we have

246 C.-Y. Chen and S.-Y. Hsieh

loadT 0
base

(Optk)

Mi−1
=

loadT 0
base

(Optk)

ΨT i−1
origin,T i−1

base
(Optk)

Lem7≥
loadT i−1

base
(Opti−1

k)

ΨT i−1
origin,T i−1

base
(Opti−1

k)

=

∑
Xj∈Opti−1

k
loadT i−1

base/
⋃j−1

l=1 E0(Xl)
(Xj)

∑
Xj∈Opti−1

k
ΨT i−1

origin/
⋃j−1

l=1 E0(Xl),T
i−1
base/

⋃j−1
l=1 E0(Xl)

(Xj)

≥
∑

Xj∈Opti−1
k

loadT i−1
base/

⋃j−1
l=1 E0(Xl)

(Xj)
∑

Xj∈Opti−1
k

ΨT i−1
origin,T i−1

base/
⋃j−1

l=1 E0(Xl)
(Xj)

Lem8≥
∑

Xj∈Opti−1
k

loadT i−1
base

(Xj)
∑

Xj∈Opti−1
k

ΨT i−1
origin,T i−1

base
(Xj)

≥ min
Xj∈Opti−1

k

{
loadT i−1

base
(Xj)

ΨT i−1
origin,T i−1

base
(Xj)

}

≥
loadT i−1

base
(Ki)

mi
.

Replacing mi = Mi−1 − Mi into the above inequality yields

Mi ≤ Mi−1

(

1 −
loadT i−1

base
(Ki)

loadT 0
base

(Optk)

)

(1)

for i = 1, 2, . . . , t. From the inequality (1),

Mr ≤ M0

t∏

i=1

(

1 −
loadT i−1

base
(Ki)

loadT 0
base

(Optk)

)

.

Taking the natural logarithms of both sides and using the inequality
ln(1 + x) ≤ x,

ln
M0

Mr
≥ −

t∑

i=1

ln

(

1 −
loadT i−1

base
(Ki)

loadT 0
base

(Optk)

)

≥
∑t

i=1 loadT i−1
base

(Ki)

loadT 0
base

(Optk)
. (2)

Since k-TPA interrupts at Mt = c(T t
origin) − c(T t

base) = 0, there exists Mr >
loadT 0

base
(Optk) ≥ Mr+1 for some r < t.

The value mr+1 can be split into two values m∗ and m′ such that

m∗ = Mr − loadT 0
base

(Optk), (3)

m′ = loadT 0
base

(Optk) − Mr+1, (4)

An Efficient Approximation Algorithm for the Steiner Tree Problem 247

According to inequality (3), we have

M∗
r+1 = Mr − m∗ = Mr − Mr + loadT 0

base
(Optk) = loadT 0

base
(Optk). (5)

The value loadT r
base

(Kr+1) also can be split into w∗ and w′ such that
loadT r

base
(Kr+1)

mr+1
= w∗

m∗ = w′
m′ . Since

loadT r
base

(Kr+1)

mr+1
= w∗

m∗ , inequality (2) implies
that

ln
M0

M∗
r+1

≥
∑r

i=1 loadT i−1
base

(Ki) + w∗

loadT 0
base

(Optk)
. (6)

Since
loadT r

base
(Kr+1)

mr+1
≤ load

T0
base

(Optk)

Mr
≤ 1, we have

w′ ≤ m′. (7)

The ratio related to the cost of approximate Steiner tree after r+1 iterations
is at most

cost(S2) − cost(T 0
base)

optk − cost(T 0
base)

=
mst(T 0

origin ∪ ⋃t
i=1 Ki) − cost(T 0

base)
loadT 0

base
(Optk)

Lem6≤
∑r+1

i=1 loadT i−1
base

(Ki) + Mr+1

loadT 0
base

(Optk)

=

∑r
i=1 loadT i−1

base
(Ki) + w∗ + w′ + Mr+1

loadT 0
base

(Optk)
(6)

≤ ln
M0

M∗
r+1

+
w′ + Mr+1

loadT 0
base

(Optk)
(7)

≤ ln
M0

M∗
r+1

+
m′ + Mr+1

loadT 0
base

(Optk)

(4)
= ln

M0

M∗
r+1

+ 1

(5)
= ln

M0

loadT 0
base

(Optk)
+ 1

= ln
cost(T 0

origin) − cost(T 0
base)

optk − cost(T 0
base)

+ 1

= ln
mst − cost(T 0

base)
optk − cost(T 0

base)
+ 1

which yields

cost(S) ≤ cost(S2)

≤
(

ln
mst − cost(T 0

base)
optk − cost(T 0

base)
+ 1

)

· (
optk − cost(T 0

base)
)

+ cost(T 0
base). (8)

��

248 C.-Y. Chen and S.-Y. Hsieh

According to Lemmas 2 and 4, we have cost(T 0
base) ≤ optk and cost(T 0

base) ≥
1
2 · cost(S1) ≥ 1

2 · optk. Assume that cost(T 0
base) = α · optk for α ∈ (

1
2 , 1

)
. The

following result can be obtained.

Theorem 10. If cost(T 0
base) = α·optk for α ∈ (

1
2 , 1

)
, the k-TPH finds a Steiner

tree S such that

cost(S) ≤
(

ln
mst − α · optk
optk − α · optk

+ 1
)

· (optk − α · optk) + α · optk.

and

cost(S) ≤ 2 · α · optk.

Proof. From Theorem 9, we have

cost(S) ≤
(

ln
mst − α · optk
optk − α · optk

+ 1
)

· (optk − α · optk) + α · optk.

According to Lemma 4, cost(S) ≤ 2 · cost(T 0
base) = 2 · α · optk. ��

5 Performance of the k-TPH in General Graphs

The following corollaries gives a bound on the cost of the Steiner tree generated
by k-TPH.

Corollary 11. The k-TPH has an approximation ratio of at most 1.4295.

Proof. Since mst ≤ 2 · opt (see [39]), Theorem 10 yield

cost(S)
opt

≤
(

ln
2 · opt − α · optk
optk − α · optk

+ 1
)

· (1 − α)
optk
opt

+ α · optk
opt

=

(

ln
2
ρk

− α

1 − α
+ 1

)

· (1 − α) ρk + α · ρk

and
cost(S)

opt
≤ 2 · α · ρk,

where ρk is the worst-case ratio of optk

opt . Borchers and Du [8] show that ρk ≤
1 + �log2 k�−1 and limk→∞ ρk = 1. When k → ∞, the approximation ratio of
the k-TPH converges to

A(α) =
(

ln
2 − α

1 − α
+ 1

)

· (1 − α) + α.

and

B(α) = 2 · α.

Since A(α) is decreasing in α and B(α) is increasing in α, solving A(α) = B(α)
yeilds α∗ ≈ 0.7147. The k-TPH has an approximation ratio of at most A(α∗) ≈
1.4295. ��

An Efficient Approximation Algorithm for the Steiner Tree Problem 249

References

1. Agrawal, A., Klein, P., Ravi, R.: When trees collide: an approximation algorithm
for the generalized steiner problem on networks. SIAM J. Comput. 24(3), 440–456
(1995)

2. Archer, A., Bateni, M., Hajiaghayi, M., Karloff, H.: Improved approximation algo-
rithms for prize-collecting steiner tree and TSP. SIAM J. Comput. 40(2), 309–332
(2011)

3. Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman
and other geometric problems. J. ACM 45(5), 753–782 (1998)

4. Bateni, M., Hajiaghayi, M., Marx, D.: Approximation schemes for steiner forest on
planar graphs and graphs of bounded treewidth. J. ACM 58(5), 21:1–21:37 (2011)

5. Berman, P., Karpinski, M., Zelikovsky, A.: 1.25-approximation algorithm for steiner
tree problem with distances 1 and 2. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth,
C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 86–97. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03367-4 8

6. Berman, P., Ramaiyer, V.: Improved approximations for the steiner tree problem.
J. Algorithms 17(3), 381–408 (1994)

7. Bern, M., Plassmann, P.: The steiner problem with edge lengths 1 and 2. Inf.
Process. Lett. 32(4), 171–176 (1989)

8. Borchers, A., Du, D.Z.: The k-steiner ratio in graphs. SIAM J. Comput. 26(3),
857–869 (1997)

9. Byrka, J., Grandoni, F., Rothvoss, T., Sanitá, L.: Steiner tree approximation via
iterative randomized rounding. J. ACM 60(1), 6:1–6:33 (2013)

10. Caldwell, A.E., Kahng, A.B., Mantik, S., Markov, I.L., Zelikovsky, A.: On wire-
length estimations for row-based placement. In: ISPD 1998: Proceedings of the
1998 International Symposium on Physical Design, pp. 4–11. ACM, New York,
NY, USA (1998)

11. Chen, Y.H., Lu, C.L., Tang, C.Y.: On the full and bottleneck full steiner tree
problems. In: Warnow, T., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp.
122–129. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45071-8 14

12. Chen, Y.H.: An improved approximation algorithm for the terminal steiner tree
problem. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O.
(eds.) ICCSA 2011, Part III. LNCS, vol. 6784, pp. 141–151. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21931-3 12

13. Chleb́ık, M., Chleb́ıková, J.: The steiner tree problem on graphs: Inapproximabil-
ity results. Theor. Comput. Sci. 406(3), 207–214 (2008). Algorithmic Aspects of
Global Computing

14. Demaine, E.D., Hajiaghayi, M., Klein, P.N.: Node-weighted steiner tree and group
steiner tree in planar graphs. ACM Trans. Algorithms 10(3), 13:1–13:20 (2013)

15. Drake, D.E., Hougardy, S.: On approximation algorithms for the terminal steiner
tree problem. Inf. Process. Lett. 89(1), 15–18 (2004)

16. Feldmann, A.E., Könemann, J., Olver, N., Sanità, L.: On the equivalence of the
bidirected and hypergraphic relaxations for Steiner tree. Math. Program. 160(1),
379–406 (2016)

17. Ferreira, C.E., de Oliveira Filho, F.M.: New reduction techniques for the group
steiner tree problem. SIAM J. Optim. 17(4), 1176–1188 (2006)

18. Fuchs, B.: A note on the terminal steiner tree problem. Inf. Process. Lett. 87(4),
219–220 (2003)

https://doi.org/10.1007/978-3-642-03367-4_8
https://doi.org/10.1007/3-540-45071-8_14
https://doi.org/10.1007/978-3-642-21931-3_12

250 C.-Y. Chen and S.-Y. Hsieh

19. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. W.H. Freeman,
New York (2002)

20. Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm
for the group Steiner tree problem. In: Proceedings of the Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 1998, pp. 253–259. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA (1998)

21. Goemans, M.X., Olver, N., Rothvoß, T., Zenklusen, R.: Matroids and integrality
gaps for hypergraphic steiner tree relaxations. In: Proceedings of the Forty-Fourth
Annual ACM Symposium on Theory of Computing,TOC 2012, pp. 1161–1176.
ACM, New York, NY, USA (2012)

22. Halperin, E., Kortsarz, G., Krauthgamer, R., Srinivasan, A., Wang, N.: Integrality
ratio for group Steiner trees and directed steiner trees. SIAM J. Comput. 36(5),
1494–1511 (2007)

23. Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: Proceedings
of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC
2003, pp. 585–594. ACM, New York, NY, USA (2003)

24. Hougardy, S., Prömel, H.J.: A 1.598 approximation algorithm for the Steiner prob-
lem in graphs. In: SODA 1999: Proceedings of the Tenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 448–453. Society for Industrial and Applied
Mathematics, Philadelphia, ACM, New York (1999)

25. Hsieh, S.Y., Gao, H.M.: On the partial terminal Steiner tree problem. J. Super-
comput. 41(1), 41–52 (2007)

26. Hsieh, S.-Y., Gao, H.-M., Yang, S.-C.: On the internal Steiner tree problem. In:
Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 274–283.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72504-6 25

27. Huang, C.W., Lee, C.W., Gao, H.M., Hsieh, S.Y.: The internal Steiner tree prob-
lem: hardness and approximations. J. Complex. 29(1), 27–43 (2013)

28. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. Annuals of
Discrete Mathematics, vol. 53. Elsevier Science Publishers, Amsterdam (1992)

29. Kahng, A.B., Robins, G.: On Optimal Interconnections for VLSI. Kluwer Aca-
demic, Boston (1995)

30. Karpinski, M., Zelikovsky, A.: New approximation algorithms for the Steiner tree
problems. J. Comb. Optim. 1, 47–65 (1997)

31. Korte, B., Prömel, H.J., Steger, A.: Steiner trees in VLSI-layout. Paths, Flows,
and VLSI-Layout, pp. 185–214 (1990)

32. Liang, W.: Constructing minimum-energy broadcast trees in wireless ad hoc net-
works. In: Proceedings of the 3rd ACM International Symposium on Mobile Ad
Hoc Networking and Computing, MobiHoc 2002, pp. 112–122. ACM, New York,
NY, USA (2002)

33. Lin, G.H., Xue, G.L.: On the terminal steiner tree problem. Inf. Process. Lett.
84(2), 103–107 (2002)

34. Lu, C.L., Tang, C.Y., Lee, R.C.T.: The full Steiner tree problem. Theor. Comput.
Sci. 306(1–3), 55–67 (2003)

35. Martinez, F.V., de Pina, J.C., Soares, J.: Algorithms for terminal Steiner trees. J.
Theor. Comput. Sci. 389(1—-2), 133–142 (2007)

36. Min, M., Du, H., Jia, X., Huang, C.X., Huang, S.C.H., Wu, W.: Improving con-
struction for connected dominating set with Steiner tree in wireless sensor net-
works. J. Glob. Optim. 35(1), 111–119 (2006)

37. Prömel, H.J., Steger, A.: RNC-approximation algorithms for the steiner problem.
In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 559–570.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0023489

https://doi.org/10.1007/978-3-540-72504-6_25
https://doi.org/10.1007/BFb0023489

An Efficient Approximation Algorithm for the Steiner Tree Problem 251

38. Robins, G., Zelikovsky, A.: Tighter bounds for graph Steiner tree approximation.
SIAM J. Discrete Math. 19(1), 122–134 (2005)

39. Takahashi, H., Matsuyama, A.: An approximate solution for the Steiner problem
in graphs. Math. Jpn. 24, 573–577 (1980)

40. Zelikovsky, A.: An 11/6-approximation algorithm for the network Steiner problem.
Algorithmica 9(5), 463–470 (1993)

41. Zelikovsky, A.: Better approximation bounds for the network and euclidean
Steiner tree problems. In: Technical report CS-96-06. University of Virginia. Char-
lottesville, VA, USA (1996)

A Review for Submodular Optimization
on Machine Scheduling Problems

Siwen Liu1,2(B)

1 School of Management, Hefei University of Technology, Hefei, Anhui, China
liusiwen67@126.com

2 Department of Computer Science, University of Texas at Dallas,

Richardson, TX, USA

Abstract. This paper provides a review of recent results on machine
scheduling problems solved by methods of submodular optimization. We
present some basic definitions of submodular functions and their connec-
tion to scheduling models. Based on the classification of problem features,
we conclude different scheduling models, applications of these scheduling
scenarios, approaches of submodular optimization, and the performance
of corresponding algorithms. It is shown that the use of these submod-
ular optimization methodologies yields fast and efficient algorithms for
specific scheduling models such as controllable processing time, unreli-
able job processing, and common operation scheduling. By identifying
the trends in this field, we discuss some potential directions for future
research.

Keywords: Submodular optimization · Machine scheduling · Review

1 Introduction

The submodular functions are set functions characterized by diminishing return
property. In other words, the marginal gain of adding an element to a smaller
subset of S is higher than that of adding it to a larger subset of S. Recently,
submodular optimization (SO) has emerged as one of the most popular optimiza-
tion tools in Computer Science. It appears in a variety of applications includes
machine learning problems [18], mobile robotic sensing, door-to-door marketing
[45], and image segmentation [17]. Due to the structure and characteristic of
submodular functions, in these applications, algorithms developed based on the
concepts of SO proved their efficiency and effectiveness (see, e.g., [7,42], and
[12]).

Machine scheduling is a classical research field in combinatorial optimiza-
tion and remains a constant research subject in the last three decades. There
are different types of approaches proposed to solve scheduling problems over
these years. These approaches can be divided into three categories: exact algo-
rithms (e.g., branch-and-bound algorithm [40,41], dynamic programming algo-
rithm [44,46]), heuristic algorithms [23,24], meta-heuristic algorithms [6,11,20].
c© Springer Nature Switzerland AG 2020
D.-Z. Du and J. Wang (Eds.): Ko Festschrift, LNCS 12000, pp. 252–267, 2020.
https://doi.org/10.1007/978-3-030-41672-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41672-0_16&domain=pdf
https://doi.org/10.1007/978-3-030-41672-0_16

A Review for Submodular Optimization on Machine Scheduling Problems 253

Though SO is found applicable in a large number of research topics in computer
science, in the past two decades, it is noticed that there exists some specific
scheduling scenarios can be effectively handled using the notion of SO. [43] were
among the first who solve the scheduling of controllable processing time (SCPT)
models by methods of SO. Since then, there is an increasing amount of inves-
tigation about how to solve the scheduling problem using SO methods. Among
these research work, the main field still exists in SCPT problems while some
other scheduling problems are also proposed, such as speed scaling machines
scheduling problems, unreliable jobs scheduling problems, common operation
scheduling problems. Figure 1 shows the distribution of machine scheduling lit-
erature using the approach of SO reviewed in this paper. It can be seen from
this figure that there is already some existing research (more than 10) about
SCPT using SO. Thus, SCPT scheduling articles are illustrated separately in
Sect. 3, while other scheduling articles are reviewed in Sect. 4. Considering the
mathematical characteristics of submodular functions, it can somehow combine
with these scheduling models, which extends the existing scheduling methods to
SO. However, it is worth noticing that there is no existing survey paper about
submodular approaches applied in more general scheduling problems.

Fig. 1. Distribution of different scheduling publications using SO

In traditional scheduling problems, the job processing time is always assumed
to be fixed and known in advance. However, there are different types of uncer-
tain processing time scheduling models, which include machine deterioration,
worker’s learning effect, and machine maintenance. Another type of model deals
with scheduling with controllable processing time (SCPT). In real-life appli-
cations, the use of an additional resource such as facilities, energy, human-
resource may decrease jobs’ original processing times. In a typical SCPT prob-
lem, compressing the job’s processing time can reduce the planned comple-
tion time of a schedule. Meanwhile, it also causes an extra cost due to the
usage of resources. Despite the similarity to project planning, this phenomenon
is commonly observed in scheduling and sequencing problems in manufactur-
ing enterprises. SCPT models are initially investigated and analyzed by [38].
Though SCPT scheduling problems were primarily studied, the traditional ways

254 S. Liu

to solve SCPT models focus on dynamic programming algorithms [8], assignment
problem formulation [9], and heuristic algorithm [25]. Since 2005, [28] started
to combine the SCPT models with SO-based approaches, and they extended
their research by considering different SCPT models and SO-based approaches
(Table 4).

Table 1. List of abbreviations

Abbreviations Expressions

SCPT Scheduling with controllable processing times

SO Submodular optimization

SIC Scheduling with imprecise computation

GA Greedy approach

COS Common operation scheduling

LP Linear programming

UJP Unreliable job scheduling problem

SSP Speed scaling machines scheduling problem

Shabtay and Steiner [26] surveyed SCPT problems, and they gave a unified
framework for SCPT by providing an up-to-date survey of the results and per-
formance. SO-based approaches were not mentioned and specified in this paper.
Later in [34], they provided a general SCPT model and presented how to handle
this typical scheduling problem by methods of SO. They demonstrated that this
model could be reformulated as maximization linear programming problems over
a submodular polyhedron intersected with a box. According to this formulation,
they addressed a decomposition algorithm for solving the relevant problems both
on a single machine and parallel machines. After that, [36] gave another survey
on the preemptive models of SCPT and scheduling with imprecise computation
(SIC). Different from their previous survey paper, they reviewed recent results on
SCPT and emphasized on the methodological aspects. Besides, they mentioned
SIC models and SCPT models actually studying the same range of problems
and established relations between the SCPT and SIC models. Some scheduling
problems with other characteristics solved by SO have appeared recently. How-
ever, throughout these previous survey papers, only SCPT problems using the
methods of SO have been addressed.

We conceive our survey as a convincing example of the connection between
more general machine scheduling problems and SO. This paper, which builds
upon the classification of different scheduling features, makes another contri-
bution toward the potential research fields of scheduling models, which can be
solved by SO. We also highlight some important results and introduce the solu-
tion performance by the methods of SO.

This paper is organized as follows: Sect. 2 describes the notations and some
preliminaries about submodular concepts applied in the paper. Sect. 3 sum-

A Review for Submodular Optimization on Machine Scheduling Problems 255

marizes the submodular approaches in controllable processing time scheduling
problems, single machine, and parallel machine scheduling problems are both dis-
cussed. Sect. 4 introduces some other scheduling problems which are also involved
in submodular optimization. Finally, concluding remarks are made in Sect. 5.

2 Preliminaries

There are many different classification factors to divide the scheduling prob-
lems, such as the number of stages jobs need to be processed, the number of
machines at each stage, the jobs release dates/due dates requirements, different
job processing times functions, and the number of objectives to optimize or the
type of the objectives. Regarding there is a limited number of papers about the
submodular method applied in scheduling problems, we aim to find the poten-
tial scheduling categories which can be solved using SO. Therefore, this paper is
developed with the characteristics of scheduling problems.

Table 2. Notations list

Notations Description

N Job set

n Number of jobs

m Number of machines

i Index for machines

j Index for jobs

Mi The ith machine, i ∈ 1, 2, ..., m

Jj The jth job, j ∈ 1, 2, ..., n

lj Lower bound of the processing time of job Jj , j ∈ 1, 2, ..., n

uj Upper bound of the processing time of job Jj , j ∈ 1, 2, ..., n

pj Actual processing time of job Jj , j ∈ 1, 2, ..., n

xj Compression amount of job Jj , j ∈ 1, 2, ..., n

wj Non-negative cost unit compression cost of job Jj , j ∈ 1, 2, ..., n

rj Release dates of job Jj , j ∈ 1, 2, ..., n

dj Due dates of job Jj , j ∈ 1, 2, ..., n

ωj Weight of job Jj , j ∈ 1, 2, ..., n

Tj Tardiness of job Jj , j ∈ 1, 2, ..., n

spj Success probability of job Jj , j ∈ 1, 2, ..., n

rwj Reward of job Jj , j ∈ 1, 2, ..., n if it is processed successively

sj Processing speed of job Jj , j ∈ 1, 2, ..., n

An adapted version of the notations in this paper is introduced as follows
and presented in Table 2. In all the scheduling problems considered the number

256 S. Liu

of jobs and the number of machines are assumed to be finite and denote as n and
m, respectively. N = {1, 2, ..., n} is used to denote a job set contains n jobs. The
subscript j refers to a job, while i refers to a machine. Besides, to explain the
scheduling problems addressed in this paper intuitively, the commonly utilized
three-field notation α|β|γ first proposed by [15] is also introduced. The first field
α describes the machine(shop) environment. The β field includes one or multiple
processing restrictions and constraints for processing while the objectives are
specified in the γ field. Table 3 gives a description of the three fields. For example,
a parallel machine scheduling problem with different release dates and precedence
constraints to minimize the makespan can be expressed as Pm|rj , prec|Cmax.

Table 3. Description of α, β, γ fields

α β γ

Notation Description Notation Description Notation Description

1 Single rj Release dates Cmax Makespan

Pm Identical d Common due dates
∑

Cj Total completion time

Qm Uniform dj Due dates Emax Maximum earliness

Rm Unrelated pmtn Preemptive schedule Lmax Maximum lateness

prec Precedence constraints
∑

ωjCj Total weighted completion time

In the following, we give some basic definitions and concepts related to sub-
modular optimization follow the contents in Krause and Golovin [19]. Let N be
a finite set, commonly called the ground set and 2N denote the family of all
subsets of N . Functions f : 2N → R is a set function that assign each subset
S ⊆ N a value f(S).

For a set function f : 2N → R, S ⊆ N , and e ∈ N , let Δf (e|S) := f(S ∪
e) − f(S) be the discrete derivative of f at S with respect to e. A set function
is called submodular if the following inequality

f(A ∪ B) + f(A ∩ B) ≤ f(A) + f(B) (1)

holds for every A ⊆ B ⊆ N . Or

Δ(e|A) ≥ Δ(e|B) (2)

for every A ⊆ B ⊆ N and e ∈ N . For a submodular function f defined on 2N

such that f(∅) = 0, the pair (2N , f) is called submodular system on N , whereas f
is referred to as the rank function of the system. Besides, a submodular function
is said to be monotone iff all its discrete derivatives are non-negative, i.e., iff
for every A ⊆ N and e ∈ N it holds that Δ(e|A) ≥ 0. Equivalently, a function
f : 2N → R is monotone if for every A ⊆ B ⊆ N , f(A) ≤ f(B).

For a submodular system (2N , f), the following two polyhedra are

P (f) = {p ∈ R
N |p(X) ≤ f(X),X ∈ 2N} (3)

B(f) = {p ∈ R
N |p ∈ P (f), p(N) = f(N)} (4)

A Review for Submodular Optimization on Machine Scheduling Problems 257

called a submodular polyhedron and base polyhedron, respectively. In the case
where |N | = 2, the submodular polyhedron P (f) and the base polyhedron B(f)
are represented in Fig. 2. It can be seen that B(f) is the set of all maximal
vectors in P (f).

Fig. 2. The submodular polyhedron P (f) and the base polyhedron B(f)

3 Review of SCPT Problems Using so

In this section, we first give the formal description of the SCPT problem and the
objectives involved with controllable processing time. Meanwhile, the applica-
tions of SCPT problems existing in different manufacturing scenarios are illus-
trated. Based on the preliminary knowledge, some related definitions and concep-
tions of the submodular approaches used in the SCPT problem are introduced.
Afterward, a detailed review of the submodular approaches applied in different
SCPT production scenarios is given.

In scheduling problems with controllable processing times, the actual dura-
tion of the jobs are not fixed in advance but have to be chosen from a given
interval. For a typical SCPT model, there are n jobs to be scheduled on a single
machine or m parallel machines, the actual processing time of a job Jj is within
[lj , uj]. The compression amount of the longest processing time uj down to pj is
denoted as xj and calculated by xj = uj −pj . On the one hand, the compression
decreases the processing time. On the other hand, it results in additional costs.
Use wj to express the non-negative unit compression cost, wjxj is the additional
compression cost. Besides, preemption is allowed during the processing of any
job Jj , which means that the processing can be interrupted on any machine at
any time and resumed later, possibly on a different machine or on the same
machine. It is assumed that a job can only be processed on one machine at a
time, and machine processes at most one job at a time.

As a result of compressing processing time, two types of decisions have to be
made in a typical SCPT model: (i) how to assign the actual processing time for
each job, and (ii) how to optimize the objective while remaining the restrictions
satisfied. Usually, the quality of the resulting schedule is measured with respect to
the cost of assigning the actual processing times that guarantee a certain schedul-
ing performance. The wide used objectives in these type of scheduling problems
include the following but not limited: Cmax,

∑
wjxj , Lmax, maxj∈Nxj/wj .

258 S. Liu

The research into SCPT problems has been active since the 1980s, see surveys
by Nowicki and Zdrzalka [22]. After that, SCPT problems are found to be appli-
cable in many practical scenarios include manufacturing, make-or-buy decision
making, supply chain management, and imprecise computation. In the survey
paper of Shabtay and Steiner [26], they concluded the application of submodular
approaches in SCPT problems. It is later mentioned in Shioura et al. [36] that
the SCPT and the SIC actually studies the same range of problems, and often
apply the same methods. Thus, in this paper, the term SCPT is adopted as the
main contents, and SIC will be specified when we only refer to the situation in
SIC.

Some application examples of SCPT are introduced from the following three
aspects.

Example 1: In manufacturing enterprises, each product Jj has a standard
requirement time for its processing, which can be denoted as uj . Nevertheless, an
additional resource (workforce, better equipment condition, new technology) can
effectively speed up the original manufacturing process. As a result, the standard
processing time can be decreased to pj , and xj is the amount of compression
time, but still, the processing requirement can never be less than a lower bound
lj . The compression cost wjxj in this example indicates the resource cost spent
to accelerate the process.

Example 2: In operations management, especially in supply chain logistics,
managers always need to make make-or-buy decisions in order to balance the
internal production and outsourcing. It may be profitable for a contractor to
process only a part of the order internally for pj time units instead of its full
processing requirement uj using its own facilities and to hire a subcontractor
to perform the remaining part of the order for xj = uj − pj time units. A
low-risk strategy is achieved by setting the lower bounds lj of internal produc-
tion reasonably close to the size of the order uj . To maximizing the profit, the
subcontractor’s fee

∑
wjxj is taken into account at the planning stage.

Example 3: In computing, in systems that support imprecise computations, a
task with processing requirement uj can be decomposed into a mandatory part
which takes lj time, and an optional part which may take up to uj − lj . If instead
of an ideal computation time uj a task is executed for pj = uj − xj time, then
the computation is imprecise, and xj corresponds to the error of computation.
In this application, total compression cost

∑
wjxj is the total weighted error.

Nemhauser and Wolsey [21] were among the first who noticed that the SCPT
models could be handled by methods of Submodular Optimization (SO). Sys-
tematic development of a general framework for solving the SCPT problems via
submodular methods has been initiated by Shakhlevich and Strusevich [28] and
further advanced in their afterward publications. As a result, a powerful toolkit
of the SO techniques can be used for designing and justification of algorithms
for solving a wide range of SCPT problems.

A Review for Submodular Optimization on Machine Scheduling Problems 259

We give the formal description of the controllable processing times scheduling
problems (SCPT) as follows: There is a set of n jobs N = {1, 2, ..., n} to be
scheduled either on a single machine M1 or on parallel machines M1,M2, ...,Mm,
where m ≥ 2. The processing time of each job Jj is not known in advance
but has to be chosen from a given interval [lj , uj]. Let pj denote the actual
processing time, the value xj = uj − pj is called the compression amount of job
Jj . Compression may decrease the completion time of each job Jj but incurs
additional cost wjxj , where wj is a given non-negative unit compression cost.

Moreover, each job j ∈ N is given a release date rj , before which it can not be
processed, and a deadline dj , by which its processing must be completed. In the
processing of any job, preemption is allowed, which means that the processing
can be interrupted on any machine at any time and resumed later, possibly on a
different machine. It is assumed that a job can only be processed on one machine
at a time, and machine processes at most one job at a time. A schedule is called
feasible only if two conditions are both satisfied: (i) job processing time of any
job Jj : j ∈ N is within the interval [lj , uj]; (ii) the starting time and finishing
time of any job Jj : j ∈ N is within the time interval [rj , dj].

Connecting scheduling problems with the basic conceptions of submodular
functions, some related definitions are explained. Let N = 1, 2, ..., n be a ground
set to denote the job set, where n is a positive integer which indicates the job
number, and 2N denote the family of all subsets of N . For a subset X ⊆ N ,
let R

X denote the set of all vectors p with real components pj , where j ∈ X.
For two vectors p = (p1, p2, ..., pn) ∈ R

N and q = (q1, q2, ..., qn) ∈ R
N , we write

p ≤ q if pj ≤ qj for each j ∈ N .
Assuming that the objective is to minimize the total compression cost, the

main problem of the controllable processing time scheduling problem can be
represented as follows:

(LP) : min
∑

j∈N

wjxj

s.t.p(X) ≤ ϕ(X),X ∈ 2N ,

lj ≤ pj ≤ uj , j ∈ N

(5)

where ϕ : 2N → R is a submodular function which is also called the rank function
with ϕ(∅) = 0, w ∈ R

N
+ is a nonnegative weight vector, and u, l are upper and

lower bound vectors, respectively. We refer to Eq. (5) as Problem (LP). This
problem can be established as a mathematical model for many SCPT problems
and transformed to maximize a linear function over a submodular polyhedron
intersected with a box.

In Table 4, we give a detailed summary of SCPT problems using the tool of
SO. The machine environment, problem features, the objectives, and the time
complexity of its solution are listed. Shakhlevich and Strusevich [28] first com-
bined a range of single machine preemptive SCPT models with SO in their paper.
For each model, they studied a single criterion problem to minimize the com-
pression cost of the processing times subject to the non-identical release date
rj and due date dj constraints. Their main contribution is that they formulated

260 S. Liu

Table 4. Previous literature about solving SCPT problems using SO

Publications Problems Time complexity

Machine Features Objectives

[28] 1 rj , d
∑

wjxj O(n log n)

1 rj (Cmax,
∑

wjxj) O(n log n)

1 dj

∑
wjxj O(n2)

1 dj (Lmax,
∑

wjxj) O(n2)

Pm d
∑

wjxj O(n)

Pm - (Cmax,
∑

wjxj) O(n log n)

[29] Qm rj , dj

∑
wjxj O(mn4)

Qm d
∑

wjxj O(n log n + nm)

Qm - (Cmax,
∑

wjxj) O(n log n + nm4)

[27] 1 - (maxj∈Nfj(Cj),
∑

wjxj) O(n3L)

1 fj(Cj) ≤ U
∑

wjxj O(n log n +
∑

log mj)

1
∑

wjxj ≤ V maxfj(Cj) O(L + n2+ (
∑

log mj +
n log n) log L)

[30] Pm rj (Cmax,
∑

wjxj) O(n2 log m)

Qm - (Cmax,
∑

wjxj) O(nm log m)

Qm rj (Cmax,
∑

wjxj) O(n2m)

[31] Qm d
∑

wjxj O(n log n) or
O(n + m log m log n)

Pm rj , d
∑

wjxj O(n log m log n)

Qm rj , d
∑

wjxj O(nm log n)

[33] 1 rj , dj

∑
wjxj O(n log n)

[37] 1 rj , d xj/wj O(n log n)

Pm d xj/wj O(n)

Pm rj , d xj/wj O(n2)

Qm d xj/wj O(n log n + nm)

Qm rj , d xj/wj O(mn2)

pmtn and pj = uj − xj are omitted in the Features

each single criterion problem as minimizing a linear function over a polyma-
troid, and this justified the greedy approach to its solution. Two objectives are
applied to measure the quality of a schedule: the makespan Cmax = maxj∈NCj ,
i.e., the maximum completion time of all jobs, and the maximum lateness
Lmax = maxj∈N{Cj − dj}. Both single criteria and bicriteria models are con-
sidered in their paper.

For the single criteria model 1|rj , pj = uj − xj , Cj ≤ d, pmtn|∑ wjxj and
1|rj , pj = uj − xj , Cj ≤ dj , pmtn|∑ wjxj , they first replaced the processing
constraints by a monotone submodular set function ϕ(X) : 2N → R, then
they proposed a balanced 2–3-tree to implement Greedy Algorithm (GA) in

A Review for Submodular Optimization on Machine Scheduling Problems 261

O(n log n) time and O(n2) time for the common due date and arbitrary due date,
respectively. Based on the results for single criteria, they further investigated
bicriteria problems, typically 1|rj , pj = uj − xj , Cj ≤ d, pmtn|(Cmax,

∑
wjxj)

and 1|rj , pj = uj − xj , Cj ≤ dj , pmtn|(Cmax,
∑

wjxj). They are solvable by
GA in O(n2) time. As for the parallel machines scheduling problems with
equal release dates, the same procedure is applied and solve the problem
Pm|pj = uj − xj , Cj ≤ d, pmtn|∑ wjxj in O(n) time and Pm|pj = uj −
xj , pmtn|(Cmax,

∑
wjxj) in O(n log n) time.

Shakhlevich and Strusevich [29] extended the former mentioned work [28]
in a way that they provided a more general approach to solving preemptive
scheduling problems with uniform parallel machines and controllable processing
times. For the single criterion circumstance with arbitrary release dates and
due dates and common due dates, they developed a combinatorial structure of
generalized polymatroid and solve these problems in O(mn4) and O(n log n+nm)
time, respectively. For the bicriteria circumstance with no release date and due
date constraints, they addressed an algorithm that constructs the trade-off curve
between the compression cost and the makespan.

As a generalized version of [29], Shioura et al. [30] and [31] both investigated
the parallel machine SCPT problems. Different from [29], [30] considered all
bicriteria problems (Cmax,

∑
wjxj) and only release dates constraints are taken

into account. They first reformulated the SCPT models in terms of optimiza-
tion over submodular polyhedra, then gave the corresponding efficient frontier
in the form of break points. As for [31] in which the objective is to maximize
the total compression cost

∑
wjxj , they presented a decomposition recursive

algorithm for solving the original submodular optimization for a linear function.
Their results in [31] not only contributed to the SO but also extended the toolkit
in SCPT scheduling problems. The obtained time complexity of this decompo-
sition recursive algorithm outperforms those previously algorithms in this field
of scheduling literature.

In the paper of Shakhlevich et al. [27], they only considered single
machine circumstances. Their main model is a bicriteria SCPT model, they
solved this model by determining the trade-off between the two objectives
(maxfj(Cj),

∑
wjxj) in which fj(Cj) refers to the makespan Cj or tardiness

max{Cj − dj , 0}. They represented the feasible region as a submodular polyhe-
dron. Additionally, they considered a pair of associated single criterion problems,
in which one of the objective functions is bounded while the other one is to be
minimized. Thus, the corresponding problems can be solved by the greedy algo-
rithm that runs two orders of magnitude faster than known previously.

Shioura et al. [37] considered a series of common due date SCPT prob-
lems both on a single machine and parallel machines. The main difference
between the previous work and [37] is the objective. Their objective in this
paper is to minimize the maximum compression cost xj/wj while the tradi-
tional stream of research on SCPT focus on the total compression cost

∑
wjxj .

In their paper, they outlined general principles aimed at solving problems
α|rj , pj = uj − xj , Cj ≤ d, pmtn|Φmax for α ∈ {1, P,Q}. It is proved that

262 S. Liu

the running times are effectively reduced compared to the best-known running
time in previous literature.

Later in the paper of Shioura et al. [36], they provided a review of solu-
tion approaches on SCPT problems. The main aspects they included in this
paper are parametric flow techniques and methods for solving mathematical
programming problems with submodular constraints. Three different types of
methodologies are introduced: Flows in networks, Optimization over submodu-
lar polyhedra, and submodular optimization via decomposition algorithm. These
reviewed methodologies can generalize fast algorithms that outperform those cor-
responding fixed processing time SCPT problems on a single or parallel machine
for a single criterion or bicriterion. Additionally, the best possible algorithms for
a range of SCPT problems on parallel machines are concluded.

4 Review of Other Scheduling Problems Using SO

4.1 Common Operation Scheduling

Common operation scheduling (COS) problems are identified in many real-world
applications: movie shooting [10,13], progressive network recovery [39], and pat-
tern sequencing in stock cutting [5]. The specific application in manufacturing
exists in material cutting or component dismantling process. The main charac-
teristic of the COS problems is that distinct jobs may share the same operation,
and when one operation is finished, all jobs share this operation are finished at
the same time. In the paper of [2], they introduced an industrial application in
cut sequencing: the manager needs to decide the optimal pattern to cut given
large plates (stock items) into objects (small items). Besides, the sequence of
jobs influences the final production quality. Thus, a feasible solution generally
includes the cutting patterns corresponds to operations and the sequence of the
jobs on each operation.

Denote the job tardiness as Tj = max{Cj − dj , 0}, the job weight ωj , this
paper is aiming to minimize the weighted number of tardy jobs:

∑
ωjtj where

tj = 1 if Tj > 0 and tj = 0 otherwise. Arbib, Felici, and Servilio [2] formulated
the problem they investigated as follows: Schedule a set of o operations O on Qm,
give each operation a machine and a starting time so that precedence relations
among operations are respected and

∑
ωjtj is minimized. They transformed

this formulation to SET COVERING with inequalities increasingly exponen-
tially with the number of jobs. Separation/lifting of cover inequalities is realized
through the constrained maximization of a submodular set function. A heuristic
and a branch-and-cut algorithm are then proposed to solve the model, and a
series of computational experiments are carried out. It can be observed in the
results that the method outperforms previous method for two cases: 1|cos|∑ ωjtj
and P2|cos, pj = 1|∑ ωjtj .

4.2 Unreliable Jobs

In the typical production in an unsupervised automated manufacturing shop,
jobs are assigned to a set of parallel machines and automatically loaded on the

A Review for Submodular Optimization on Machine Scheduling Problems 263

machine whenever the machine becomes idle. If the production of a job Jj fails,
the remaining jobs on that machine cannot be processed and can only be resumed
until the machine is cleared at the end of the unsupervised shift. In this model,
each job Jj has a success probability spj and a reward rwj if it can be processed
successively. In the paper of [1], they considered this model, and their objective
is to maximize the expected reward.

Denote the sequence of jobs assigned to a machine as σ, and σj is the job
in jth position in σ. Thus, the expected reward ER[σ] for a machine can be
expressed as

ER[σ] = spσ(1)rwσ(1) + spσ(1)spσ(2)rwσ(2) + spσ(1) · · · spσ(k)rwσ(k) (6)

The objective value is the sum of expected reward on m machines: ER[ζ] =
ER[σ1] + ER[σ2] + · · · + ER[σm]. A solution to this problem consists of an
assignment and a sequence of the n jobs to m machines. Agnetis et al. [1] denotes
this problem as UJP (m). For the single machine case, they formulated UJP (1)
as maximizing a submodular function over a polymatroid and solved this prob-
lem using greedy algorithm. For the parallel machines case, they first proved
this problem is NP-hard even for two machines. Then, a round-robin heuris-
tic algorithm is proposed to solve the parallel machines circumstance. Through
the experimental results comparing to the performance of a upper bound, the
proposed heuristic algorithm proved its superiority in solving UJP (m).

4.3 Speed Scaling Machines

In the scheduling models with speed scaling machines (SSP), machines are able
to work at different voltage levels, which enable the manufacturing process to
achieve a lower level of energy consumption. SSP is also known as “energy-aware
scheduling”[3], “green scheduling”[4]. Since [16] first proposed the concept of
SSP, this topic has been well studied due to the increasing demands for energy
saving in manufacturing enterprises. Different from most of the previous litera-
ture, [32] and [35] provided new insights into solving this sort of SSP models by
connecting its link to submodular constraints. Except for different release dates
and due dates, they also considered controllable processing times in their paper.
They developed a new methodological framework for handling the SSP problem.
Based on submodular optimization, algorithms with lower time complexity are
proposed for both single- and multiple machines.

Formally, a set of n jobs have to be processed on a set of m parallel machines.
Each job has a release date rj and a due date dj . Let vj denote the volume of
computation of job Jj , the actual processing time can be rewritten as pj = vj/sj .
The cost of keeping the processing speed of this job equal to speed sj for one
unit is fj(sj). The objective function becomes

F̂ =
n∑

j=1

pjfj(
vj

pj
) (7)

264 S. Liu

In the paper of [32] and [35], they formulated this problem as minimizing above
F̂ in the form of min-cost maxflow problem with a non-linear convex separation
objective function. Linking this problem to a non-linear convex minimization
problem under submodular constraints, they adapted a decomposition algorithm
and implemented O(n4) and O(n2) time algorithms for original SSP problem on
parallel machines and single machines, respectively.

4.4 Submodular Search in Scheduling

In the paper of [14], they proposed a submodular search model which can be
formally described as follows: there is a finite set S of hiding places, a submodular
cost function f : 2S → [0,∞), and a supermodular weight function g : 2S →
[0,∞). For each search, π of S has to be chosen, and denote Sj = Sπ

j the union of
j and all the locations that precede j in π. Thus, the search cost of j under π is
f(Sπ

j) and the probability that all the objects are in Sπ
j is g(Sπ

j). Their objective
is to find an ordering of S that finds all the objects with minimal expected cost,
which can be written as

c(π) =
n∑

j=1

(g(Sπ
j) − g(Sπ

j − j))f(Sπ
j) (8)

This model can be found in many scheduling problems: single machine scheduling
with precedence constraints 1|prec|∑ ωjCj , scheduling with more general costs
1|prec|∑ ωjh(Cj) in which h are some monotonically increasing functions of the
completion times of jobs, and scheduling with subset weights 1|prec|∑ ωACA

where A is a subset of all jobs. Considering these problems are NP-hard,
[14] developed an efficient combinatorial 2-approximation algorithm using the
notion of series-parallel decomposability to solve above-mentioned precedence-
constrained scheduling problems.

5 Conclusion

In this paper, we reviewed recent articles on machine scheduling problems solved
by methods of submodular optimization. We presented the notations, problem
representations, and concepts of submodularity for relevant machine schedul-
ing models. The classification adopted in this paper is the scheduling features.
Through the analysis, we find that the SCPT models are the most intensively
investigated. For single machine or parallel machines, single criterion or bicrite-
rion, with or without release dates and due dates constraints, a general SO-based
framework can be proposed to solve the relevant SCPT scheduling problems. The
details of these SCPT models and performances of the algorithms are discussed.
Other scheduling problems solved by submodular optimization exist in common
operation scheduling, unreliable job scheduling, speed scaling machines schedul-
ing, and submodular search in scheduling. Though there is limited relevant lit-
erature on these topics, it is worth noticing that the application of submodular

A Review for Submodular Optimization on Machine Scheduling Problems 265

optimization extends traditional scheduling methods and improve the solution
qualities.

For potential future research, it is interesting to study constraints such as
fuzzy processing, learning/deteriorating effect in SCPT models. As for other
scheduling models, different objectives (time-dependent or resource-dependent),
multi-objective models, and different machine environments (parallel machines,
flow shop, or job shop) can also be taken into account. Moreover, it is challenging
to see whether there exist algorithms based on submodular optimization which
perform better for these proposed scheduling models.

References

1. Agnetis, A., Detti, P., Pranzo, M., Sodhi, M.S.: Sequencing unreliable jobs on
parallel machines. J. Sched. 12(1), 45 (2009)

2. Arbib, C., Felici, G., Servilio, M.: Common operation scheduling with general pro-
cessing times: a branch-and-cut algorithm to minimize the weighted number of
tardy jobs. Omega 84, 18–30 (2019)

3. Bambagini, M., Lelli, J., Buttazzo, G., Lipari, G.: On the energy-aware partitioning
of real-time tasks on homogeneous multi-processor systems. In: 2013 4th Annual
International Conference on Energy Aware Computing Systems and Applications
(ICEAC), pp. 69–74. IEEE (2013)

4. Bampis, E., Letsios, D., Lucarelli, G.: Green scheduling, flows and matchings.
Theor. Comput. Sci. 579, 126–136 (2015)

5. Belov, G., Scheithauer, G.: Setup and open-stacks minimization in one-dimensional
stock cutting. INFORMS J. Comput. 19(1), 27–35 (2007)

6. Chaudhry, I.A., Khan, A.A.: A research survey: review of flexible job shop schedul-
ing techniques. Int. Trans. Oper. Res. 23(3), 551–591 (2016)

7. Chen, Y., Krause, A.: Near-optimal batch mode active learning and adaptive sub-
modular optimization. ICML (1) 28(160–168), 8–1 (2013)

8. Chen, Z.L., Lu, Q., Tang, G.: Single machine scheduling with discretely controllable
processing times. Oper. Res. Lett. 21(2), 69–76 (1997)

9. Cheng, T., Chen, Z., Li, C.L.: Parallel-machine scheduling with controllable pro-
cessing times. IIE Trans. 28(2), 177–180 (1996)

10. Cheng, T., Diamond, J., Lin, B.: Optimal scheduling in film production to minimize
talent hold cost. J. Optim. Theor. Appl. 79(3), 479–492 (1993)

11. Edis, E.B., Oguz, C., Ozkarahan, I.: Parallel machine scheduling with additional
resources: notation, classification, models and solution methods. Eur. J. Oper. Res.
230(3), 449–463 (2013)

12. Epasto, A., Lattanzi, S., Vassilvitskii, S., Zadimoghaddam, M.: Submodular opti-
mization over sliding windows. In: Proceedings of the 26th International Confer-
ence on World Wide Web, pp. 421–430 (2017). International World Wide Web
Conferences Steering Committee

13. Fink, A., Voß, S.: Applications of modern heuristic search methods to pattern
sequencing problems. Comput. Oper. Res. 26(1), 17–34 (1999)

14. Fokkink, R., Lidbetter, T., Végh, L.A.: On submodular search and machine
scheduling. Math. Oper. Res. 44(4), 1431–1449 (2019)

15. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.R.: Optimization and approxi-
mation in deterministic sequencing and scheduling: a survey. In: Annals of Discrete
Mathematics, vol. 5, pp. 287–326. Elsevier (1979)

266 S. Liu

16. Ishii, H., Martel, C., Masuda, T., Nishida, T.: A generalized uniform processor
system. Oper. Res. 33(2), 346–362 (1985)

17. Jegelka, S., Bach, F., Sra, S.: Reflection methods for user-friendly submodular
optimization. In: Advances in Neural Information Processing Systems, pp. 1313–
1321 (2013)

18. Kim, G., Xing, E.P., Fei-Fei, L., Kanade, T.: Distributed cosegmentation via sub-
modular optimization on anisotropic diffusion. In: 2011 International Conference
on Computer Vision, pp. 169–176. IEEE (2011)

19. Krause, A., Golovin, D.: Submodular function maximization (2014)
20. Masdari, M., Salehi, F., Jalali, M., Bidaki, M.: A survey of pso-based scheduling

algorithms in cloud computing. J. Netw. Syst. Manag. 25(1), 122–158 (2017)
21. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for

maximizing submodular set functions–i. Math. Program. 14(1), 265–294 (1978)
22. Nowicki, E., Zdrza�lka, S.: A survey of results for sequencing problems with con-

trollable processing times. Discret. Appl. Math. 26(2–3), 271–287 (1990)
23. Ou, J., Zhong, X., Wang, G.: An improved heuristic for parallel machine scheduling

with rejection. Eur. J. Oper. Res. 241(3), 653–661 (2015)
24. Pei, J., Pardalos, P.M., Liu, X., Fan, W., Yang, S.: Serial batching scheduling of

deteriorating jobs in a two-stage supply chain to minimize the makespan. Eur. J.
Oper. Res. 244(1), 13–25 (2015)

25. Shabtay, D., Kaspi, M.: Minimizing the total weighted flow time in a single machine
with controllable processing times. Comput. Oper. Res. 31(13), 2279–2289 (2004)

26. Shabtay, D., Steiner, G.: A survey of scheduling with controllable processing times.
Discret. Appl. Math. 155(13), 1643–1666 (2007)

27. Shakhlevich, N.V., Shioura, A., Strusevich, V.A.: Single machine scheduling with
controllable processing times by submodular optimization. Int. J. Found. Comput.
Sci. 20(02), 247–269 (2009)

28. Shakhlevich, N.V., Strusevich, V.A.: Pre-emptive scheduling problems with con-
trollable processing times. J. Sched. 8(3), 233–253 (2005)

29. Shakhlevich, N.V., Strusevich, V.A.: Preemptive scheduling on uniform parallel
machines with controllable job processing times. Algorithmica 51(4), 451–473
(2008)

30. Shioura, A., Shakhlevich, N.V., Strusevich, V.A.: A submodular optimization app-
roach to bicriteria scheduling problems with controllable processing times on par-
allel machines. SIAM J. Discret. Math. 27(1), 186–204 (2013)

31. Shioura, A., Shakhlevich, N.V., Strusevich, V.A.: Decomposition algorithms for
submodular optimization with applications to parallel machine scheduling with
controllable processing times. Math. Program. 153(2), 495–534 (2015)

32. Shioura, A., Shakhlevich, N.V., Strusevich, V.A.: Energy saving computational
models with speed scaling via submodular optimization. In: Proceedings of Third
International Conference on Green Computing, Technology and Innovation, pp.
7–18 (2015)

33. Shioura, A., Shakhlevich, N.V., Strusevich, V.A.: Application of submodular opti-
mization to single machine scheduling with controllable processing times subject
to release dates and deadlines. INFORMS J. Comput. 28(1), 148–161 (2016)

34. Shioura, A., Shakhlevich, N.V., Strusevich, V.A.: Handling scheduling prob-
lems with controllable parameters by methods of submodular optimization. In:
Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds.) DOOR
2016. LNCS, vol. 9869, pp. 74–90. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-44914-2 7

https://doi.org/10.1007/978-3-319-44914-2_7
https://doi.org/10.1007/978-3-319-44914-2_7

A Review for Submodular Optimization on Machine Scheduling Problems 267

35. Shioura, A., Shakhlevich, N.V., Strusevich, V.A.: Machine speed scaling by adapt-
ing methods for convex optimization with submodular constraints. INFORMS J.
Comput. 29(4), 724–736 (2017)

36. Shioura, A., Shakhlevich, N.V., Strusevich, V.A.: Preemptive models of scheduling
with controllable processing times and of scheduling with imprecise computation:
a review of solution approaches. Eur. J. Oper. Res. 266(3), 795–818 (2018)

37. Shioura, A., Shakhlevich, N.V., Strusevich, V.A.: Scheduling problems with control-
lable processing times and a common deadline to minimize maximum compression
cost. J. Glob. Optim., 1–20 (2018). https://doi.org/10.1007/s10898-018-0686-2

38. Vickson, R.: Two single machine sequencing problems involving controllable job
processing times. AIIE Trans. 12(3), 258–262 (1980)

39. Wang, J., Qiao, C., Yu, H.: On progressive network recovery after a major disrup-
tion. In: 2011 Proceedings IEEE INFOCOM, pp. 1925–1933. IEEE (2011)

40. Wang, S., Liu, M.: A branch and bound algorithm for single-machine production
scheduling integrated with preventive maintenance planning. Int. J. Prod. Res.
51(3), 847–868 (2013)

41. Wang, S., Liu, M., Chu, C.: A branch-and-bound algorithm for two-stage no-wait
hybrid flow-shop scheduling. Int. J. Prod. Res. 53(4), 1143–1167 (2015)

42. Wang, Y., Liu, Y., Kirschen, D.S.: Scenario reduction with submodular optimiza-
tion. IEEE Trans. Power Syst. 32(3), 2479–2480 (2016)

43. Wolsey, L.A., Nemhauser, G.L.: Integer and Combinatorial Optimization, vol. 55.
Wiley, Hoboken (1999)

44. Yin, Y., Wang, Y., Cheng, T., Wang, D.J., Wu, C.C.: Two-agent single-machine
scheduling to minimize the batch delivery cost. Comput. Ind. Eng. 92, 16–30 (2016)

45. Zhang, H., Vorobeychik, Y.: Submodular optimization with routing constraints.
In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

46. Zhao, K., Lu, X.: Approximation schemes for two-agent scheduling on parallel
machines. Theor. Comput. Sci. 468, 114–121 (2013)

https://doi.org/10.1007/s10898-018-0686-2

Edge Computing Integrated
with Blockchain Technologies

Chuanwen Luo1(B), Liya Xu2, Deying Li1, and Weili Wu3

1 School of Information, Renmin University of China,
Beijing 100872, People’s Republic of China

chuanwen luo@163.com, deyingli@ruc.edu.cn
2 School of Information Science and Technology, Jiujiang University,

Jiujiang 332005, People’s Republic of China
xuliya603@whu.edu.cn

3 Department of Computer Science, University of Texas at Dallas,
Richardson, TX 75080, USA

weiliwu@utdallas.edu

Abstract. With the rapid increasing of the number of devices connected
to the Internet of Things (IoTs), the traditional centralized cloud com-
puting system is unable to satisfy the Quality of Service (QoS) for many
applications, especially for areas with real-time, reliability and security.
The edge computing as an extension of the cloud computing is intro-
duced, which lies in its ability to transfer the sensitive data from cloud
to the edge for increasing network security and to realize high frequency
interaction and real-time transmission of data. However, that the edge
servers maintain sensitive privacy information generates many impor-
tant security issues for the edge computing network. Moreover, the data
produced by IoT devices are separated into many parts and stored in
different edges servers that are located in different locations, which is
hard to guarantee data integrity due to data loss and incorrect data
storage in edge servers. As the emergence of blockchain technologies,
the various security problems and data integrity of the edge comput-
ing can be addressed by integrating blockchain technologies. In this
paper, we present a comprehensive overview of edge computing inte-
grated with blockchain technologies. Firstly, the blockchain technologies
and the architecture of the edge computing are introduced. Secondly,
the motivations and architecture of the edge computing integrated with
blockchain are introduced. Thirdly, the related works about the edge
computing integrated with blockchain that have been investigated are
introduced. Finally, the research challenges are discussed.

Keywords: Edge computing · Blockchain · Internet of Things

1 Introduction

In the traditional cloud computing, all data produced by Internet of Thing (IoT)
devices have to be uploaded to centralized servers, and the cloud servers pro-
vide services of storage and computing etc and send results back to the IoT
c© Springer Nature Switzerland AG 2020
D.-Z. Du and J. Wang (Eds.): Ko Festschrift, LNCS 12000, pp. 268–288, 2020.
https://doi.org/10.1007/978-3-030-41672-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41672-0_17&domain=pdf
https://doi.org/10.1007/978-3-030-41672-0_17

Edge Computing Integrated with Blockchain Technologies 269

devices [1], as shown in Fig. 1(a). The cloud computing can provide users the
infinite computing and storage resource which are available on demand no mat-
ter where and when the users send request to cloud. Meanwhile, most users
have no knowledge of where their data or application programming are stored
or operated in cloud server. With rapid expanding of the number of IoT devices,
a large huge volume of data produced by heterogeneous IoT devices is transmit-
ted to cloud for computing and storage service, which require high performance
for cloud platform and a large demand for network bandwidth and have poten-
tially centralized risk [2]. Therefore, with techniques and IoT devices are getting
more involved in human’s life, the centralized cloud computing paradigm can
hardly solve existing challenges such as security in centralized cloud, realtime
data delivery and processing, and mobility support, etc.

Cloud Server

(a) The architecture of cloud computing

Cloud Server

Edge Server

Edge Server

Edge Server

Edge Server

Edge Server

Edge Server

(b) The architecture of edge computing

Fig. 1. Compare the central cloud computing with the distributed edge computing.

To solve these problems, the edge computing (also called fog computing) as
an evolving architecture that combines cloud computing and IoT is introduced,
which are deployed between central cloud server and IoT devices [3,4], as shown
in Fig. 1(b). The edge computing can push the frontier of computing applications,
the privacy data storage and realtime data processing and analysis away from
centralized cloud to the edge servers of the network, which can retain the core
advantages of cloud computing and transfer the realtime control and sensitive
data storage to the edge servers. Nonetheless, the security and privacy issues,
e.g. authentication, intrusion detection, access control, etc, in edge computing
architecture can hardly be resolved [5], since various software and applications
are embedded in heterogeneous edge servers and the migration of services across
edge servers is vulnerable. As the emergence of the blockchain technologies, the
edge computing integrated with blockchain technologies is becoming a effective
method to solve the above problems.

270 C. Luo et al.

Blockchain as an underlying technology with digital cryptocurrency is first
proposed by Nakamoto in 2008 and is implemented in 2009 for Bitcoin [6].
Blockchain can be defined as a distributed decentralized shared tamper-resistant
database which can be maintained, shared, replicated and synchronized by mul-
tiple participants in the Peer-to-Peer (P2P) network, as shown in Fig. 2(a). It
can facilitate establishing secure, trusted and decentralized intelligent system for
solving the security and privacy problems in edge computing [7]. Consequently,
the edge computing integrated with blockchain technologies can provide sensitive
information hiding and reliable access and control of the network in distributed
edge servers and cloud servers, as well as provide quick search in IoT devices, as
shown in Fig. 2(b).

Blockchain

Blockchain

Blockchain

Blockchain

Blockchain

Blockchain

(a)

Cloud Blockchain

Edge Blockchain

Light Blockchain

Cloud Server

Cloud Server

Cloud Server

Edge Server

Edge Server

Edge ServerEdge Server

Edge Server

Edge Server

(b)

Fig. 2. The Peer-to-Peer blockchain network structure [8] and the infrastructure of
edge computing integrated with blockchain.

So far, there are many related works on the application of edge computing
integrated with blockchain to different areas, such as [9–11]. This survey aims to
envision the potential contribution of blockchain technologies for revolutionizing
the edge computing and current challenges for their integration. In this survey, we
will review the blockchain technologies and the general architecture of the edge
computing. Then the motivations on why to integrate the blockchain technologies
into the edge computing and the integrated architecture of the edge computing
are introduced. Then, we review the literature that has already been proposed
about the edge computing integrated with blockchain technologies. Finally, we
will give the challenges for the integration of edge computing and blockchain.

The rest of the paper is organized as follows. In Sect. 2, we introduce the
technologies about blockchain. In Sect. 3, the structure of edge computing is
introduced. In Sect. 4, we present the motivations and architecture, overview and
challenges of edge computing integrated with blockchain. Section 5 concludes the
paper.

Edge Computing Integrated with Blockchain Technologies 271

2 Technologies of Blockchain

The blockchain is a distributed database that does not need third party ver-
ification and a central authority [6]. The distributed database transforms all
transaction data of the network into associated strings stored in a block which
is constructed in a certain period of time and points to the previous data block
with hash pointer, and all blocks form a single and complete chain, as shown in
Fig. 3. The distributed database is also verified by the public/private key pair
of asymmetric encryption in cryptography to encrypt internal data and ensure
data security.

Previous block hash

Block hash value

Block header

Nonce Time

Merkle root hash

Hash01 Hash23

Hash0 Hash1 Hash2 Hash3

TX0 TX1 TX2 TX3

Hash45 Hash67

Hash4 Hash5 Hash6 Hash7

TX4 TX5 TX6 TX7

Hash89 Hash1011

Hash8 Hash9 Hash10 Hash11

TX8 TX9 TX10 TX11

Block Block Block

Previous block hash

Block hash value

Block header

Nonce Time

Merkle root hash

Previous block hash

Block hash value

Block header

Nonce Time

Merkle root hash

Fig. 3. The data structure of the blockchain [6].

2.1 The Key Technologies of Blockchain

The key components of blockchain are decentralized shared storage, consensus
protocols, cryptograph and smart contracts. According to these technologies, we
obtain that the characterizations of the blockchain are decentralized, synchro-
nized and immutability.

2.1.1 Decentralized Shared Storage
In the traditional storage system, e.g. Google, Dropbox, there is a centralized
cloud server to store, manage and process data, which may suffer from potential
security threats. The blockchain which is used in the P2P network, provides a
decentralized storage method to guarantee the decentralized control to solve the
problems generated from the traditional cloud storage system [12]. In the net-
work, all users own the same distributed ledger which is stored with blockchain
structure, as shown in Fig. 2(a). The ledger records the transactions, such as
exchange of data or assets, among the participants in the network, which can be
shared, replicated and synchronized. All transactions are stored in blocks of the
blockchain, and all users hold all transactions. A transaction in the blockchain

272 C. Luo et al.

network can be conducted between any two participants without authentication
by the third party, which can reduce the server costs and mitigate the perfor-
mance limitation of the central server [13].

2.1.2 Consensus Protocols
Blockchain is formed by a lot of blocks and each of them has a set of transac-
tions, where each transaction can be seen as information, value or other data
transferred between different entities by broadcasting in the network. Each block
must contain a consensus protocol to be considered valid in the blockchain. In
the P2P network, the end users who are equal to each other verify the same
block in the blockchain, and they jointly maintain a consensus protocol to ensure
that all users trust each other. The existing common consensus mechanisms in
blockchain include Proof of Work (PoW) [6], Proof of Stake (PoS) [14], Prac-
tical Byzantine Fault Tolerance (PBFT) [15], Proof of Storage [16], Delegated
Proof of Stake (DPoS) [17], Proof of Space [18] and so on. To know more about
consensus protocols, one can refer to [19].

PoW is to define an expensive computer calculation of users, each of which
completes a certain difficult problem to get a result, and others can easily check
the result to verify whether or not it satisfies the corresponding problem. A
group of trustless transactions bundled together into a block is created on a
distributed blockchain when PoW is performed and a reward is given to the first
user who solves the problem for each block. Because the PoW is dependent on
the power energy consumption, which produces a lot of energy cost for the whole
network. The PoS as an alternative mechanism for PoW is introduced to replace
most PoW’s work, which generates the next block based on users’ shareholding
in the network. For example, in PPcoin, the shareholding is currency amount
times holding period, called coin age [16].

2.1.3 Cryptograph
Digital signature is a string of numbers that can only be generated by the sender
of the information and cannot be forged by others [20]. Each user in the network
has a pair of private and public keys that are generated randomly. The private
key is saved by user and is used to sign transactions. The transactions that
are signed with private key are broadcasted to the whole network, and they
are verified by public key. For example in Fig. 4, when Alice wants to send
transactions to Bob, she first executes hash function for transactions in block
for obtaining hash abstract. Then she signs the hash abstract with her private
key and sends the hash abstract and the transactions in block to Bob. After
receiving the message, Bob decrypts the hash abstract with Alice’s public key
and computes the hash function from the original transactions. Then he verifies
them to judge whether or not they are the same transactions.

In each block of the blockchain, hash pointer is a pointer which points to the
previous block storage location and its location data, as shown in Fig. 3. The hash
pointer can not only tell you where the block is stored, but also give you a way
to verify whether or not the data has been tampered by invaders. For example,

Edge Computing Integrated with Blockchain Technologies 273

Transactions
in Block

Hash
Function Hash

Abstract

Sign

Private Key

Alice

Encrypted
Hash

Abstract

Internet

Encrypted
Hash

Abstract

Decrypt

Public Key
of Alice

Bob

Hash
Abstract

Transactions
in Block

Hash
Function

Verify

Transactions
in Block

Transactions
in Block

Fig. 4. Digital signature used in blockchain.

in Bitcoin, if the adversary tempered with the transactions in the k-th block
in the blockchain, then the hash abstract in the k + 1-th block can not match
the new hash abstract generating from the k-th updated block. Therefore, the
adversary can not temper with any transaction information without undetected.
The definition of the Merkle tree was first proposed by Merkle in [21]. As shown in
Fig. 3, a Merkle tree is a tree structure that is used to store the transaction data,
on which every leaf node is a transaction and every non-leaf node is the hash value
of the two children. The Merkle tree structure can improve the storage and search
efficiency. For example, if the adversary updated a transaction information, then
the hash value in the upper layer can not match the original value. Even if he
continues to modify the hash value of the upper layer, the updated value is
finally passed to the root of the Merkle tree which is not tempered. Therefore,
we can detect any modification of transactions only through storing the root of
the Merkle tree. At the same time, any transaction information can be accessed
in the running time of the depth of the Merkle tree.

2.1.4 Smart Contracts
The smart contracts also called digital contract or blockchain contract are first
proposed by Szabo in [22], which are self-executing contracts with the terms
of the agreement between participants in the P2P network and are written as
program code stored on blockchain. Smart contracts allow transactions to be
conducted in anonymous between involved participants without the need for a
third party authority [23].

We illustrate the operation mechanisms of smart contracts when they are
used in decentralized cryptocurrencies like Bitcoin [24], as shown in Fig. 5.

274 C. Luo et al.

Smart
contract New block

Time

User
Transaction requests

Trigger conditions

Blockchain

Database

Fig. 5. The decentralized cryptocurrency system with smart contract.

After the smart contract is signed by all participants, they are attached to the
blockchain in the form of the program codes. A smart contract program of user
is executed when it received transaction requests or other trigger conditions.

3 The General Architecture of Edge Computing

The term of the edge computing is proposed for improving applications over
Content Delivery Networks (CDNs) [25], which is to achieve massive scalability
through taking advantage of proximity and resources of edge servers in CDNs.
In the last decade, the edge computing has been widely used in IoT networks.

Cloud Server

Edge Servers

IoT Devices

Fig. 6. The general architecture of the edge computing.

In the existing cloud-based IoT networks, the IoT devices have the limited
resource and lower computation [26]. Therefore, the IoT devices can not bear

Edge Computing Integrated with Blockchain Technologies 275

the storage and processing of a large amount of data, since the IoT devices
produce an amount of data exponentially with the growth of the technologies.
The cloud computing for IoT applications helps enterprises and their end users
to liberate from the specification uses of storage, computation constraint and
network communication costs and other details. However, the cloud computing
for IoT applications have the poor real-time dynamic and can hardly satisfy their
requirements of location awareness, privacy security and mobility support [27].
Therefore, the edge computing is an emerging computing model that transfers
part of cloud computing and storage to the edge services to solve the latency-
sensitive applications and improve the QoS of mobility support, privacy security
and location awareness for IoT networks [28].

The general architecture of the edge computing is depicted in Fig. 6, which is
composed of three layers: IoT devices, edge servers and cloud servers. The IoT
devices are any devices that allow people and things to be connected each other
in the internet/networks [29], which are attached to one of the edge servers. The
edge devices can be interconnected and each of them is linked to the cloud servers
that can support many applications, such as real-time data processing and sen-
sitive information storage. The cloud servers provide the high-performance com-
puting, managing and storage for a large quantity of data produced by IoT
devices but there is no strict requirement for realtime. Compared with the cur-
rent cloud computing, the edge computing has many advantages: low latency,
scalability and effective use of resources, privacy security [30].

Low Latency. In the traditional centralized cloud computing, the data pro-
duced by IoT devices should be uploaded to the cloud servers for acquiring
services such as data processing, storage and management. Then the results
computed by cloud servers are returned to the IoT devices. This interaction pat-
tern can not meet many applications with high timeliness requirements, such as
unmanned driving and realtime voice translation. In the edge computing, the
edge servers are more closer to the IoT devices than the cloud servers, which can
provide the efficient communication with low latency.

Scalability. With the massive growth of IoT devices, the performance of the
cloud servers can not satisfy the requirements of data processing and storage
of a large of number of data generated by IoT devices. Therefore, we need to
deploy many distributed edge servers for dealing with a part of data produced
by IoT devices, which can expand the access IoT devices and data processing
capacity in the networks.

Versatility. The scalability of the edge computing also provides versatility for
the edge computing. The enterprises can easily to invest in ideal markets through
working with local edge data centers without spending on the expensive infras-
tructure. The edge servers enable them to serve for users with a small physical
distance or latency. In addition, they have the flexibility to move to other mar-
kets when the economic environment changes.

Bandwidth Saving. There is a lot of data that can be computed locally at
edge servers without having to be uploaded to the cloud servers. For example, the

276 C. Luo et al.

environment monitoring data produced by intelligent robots and road conditions
generated by unmanned vehicles can be processed in the edge servers, which can
also avoid the waste of bandwidth in the network.

Privacy Security. Since the edge servers have the capability of computing and
storage, the sensitive privacy information about users can be stored in the edge
servers without being uploaded in the centralized cloud together with the data
generated by IoT devices, which can avoid the privacy information disclosure
when the centralized cloud is invaded.

Fault Tolerance. With many edge servers which have capability of data storage
and processing, it is difficult to shut down the server completely by any fault.
The produced data can be rerouted in many ways to ensure that users maintain
access to the requirements.

4 Integration of Edge Computing and Blockchain

In this section, we will introduce the motivations, general architecture, related
works and challenges for the edge computing integrated with blockchain tech-
nologies. Firstly, we will introduce the motivations to show why the edge com-
puting need to be integrated with blockchain technologies in Sect. 4.1. Secondly,
the general architecture of the integration of edge computing and blockchain
technologies is introduced in Sect. 4.2. Thirdly, we briefly review the literature
about the edge computing integrated with blockchain technologies in Sect. 4.3.
Finally, we give the challenges for their integration in Sect. 4.4.

4.1 Motivations

The edge computing is proposed to improve the performance of the existing cen-
tralized cloud computing. Although it can improve the security of the sensitive
information compared with the cloud computing, there still exist many security
problems in edge computing, such as authentication of IoT devices and edge
servers, and malicious attacks [31,32].

With the development of the blockchain techniques, the blockchain can solve
the security problems with regard to the immutability and the general resistance
to attacks and provide decentralized shared data storage scheme which allows
the network to be permissionless and censorship-resistant in the edge comput-
ing. Every block in the chain contains hash abstract of the previous block, which
enables blocks to be traced back all of the blocks in the blockchain. Therefore,
it is impractical to modify transactions between IoT devices in a block once it
is created. When the transactions between IoT devices are generated, they are
remained within the blockchain throughout its life and are easy to be searched,
which allows the blockchain to become the trust database [33]. The consensus
mechanisms of blockchain can provide the new method for managing the dis-
tributed database and provide the fresh payment mode for the network services

Edge Computing Integrated with Blockchain Technologies 277

in the edge computing. Blockchain has been widely used in providing trustwor-
thy and authorized identity registration and ownership tracking of assets, which
can maintain the integrity of the transactions in the distributed edge computing,
such as TrustChain [34]. For example, a malicious insider to the cloud provider
maybe launch severe attacks for the cloud servers, such as data integrity break-
ing. The decentralized blockchain can avoid the data integrity breaking since all
participants of cloud servers maintain the same ledger and each block points to
the hash abstract of the previous block.

In the edge computing, one of the key challenges for IoT devices is to enable
and control autonomous and self-organized machine-to-machine communication
[35]. Besides, since the edge servers may be deployed in the places without rigor-
ous surveillance and protection, the edge servers may encounter many malicious
attacks, such as distributed Denial-of-Service (DoS) attacks, jamming attacks
and sniffer attacks [1]. The communication security problems in the edge com-
puting which are produced between edge servers and IoT devices or among edge
servers are important challenges [32]. This is because that the edge servers may
be deployed in the openness and heterogeneous environment, which produces
many trustworthy problems. The digital signature of cryptograph used in the
blockchain is core part to solve the problem of communication security, which
can guarantee that the identifies of IoT devices are verifies and identified and
that the messages are not tempered during transmission. From the IoT devices’
perspective, a security and transparency mechanism is needed to achieve secure
communication. The smart contract can operate transparently and distributed
data securely [36]. For example, the secure update scheme for IoT devices that
utilizes the smart contract to check a firmware version, validate the correctness
of firmware, and download the latest firmware for the embedded devices. In the
proposed scheme, the smart contract allows devices to store the hash of the lat-
est firmware updated on the network and the devices can be found by the smart
contract’s address [37].

4.2 General Architecture

According to the structure of the edge computing in Fig. 6, the IoT is divided
into three layers, i.e. IoT device layer, edge layer and cloud layer. Therefore,
blockchain can be integrated in every layer to improve the performance of the
network.

Figure 7 illustrates the basic architecture of the integration of edge comput-
ing and blockchain. In the architecture, each IoT device is connected to an edge
server and communicate with the edge server. Each edge server together with
IoT devices attached to it form a local network. Each edge server is a manager to
control the IoT devices in the local network. The IoT devices are registered with
certification authority by the edge server. Any pair of devices in the network
communicate with each other supported by the edge servers. In the network, the
basic communication primitive for exchanging information among IoT devices
or IoT device to edge server or among servers, can be seen as a transaction.
The edge server is a blockchain manager that is responsible for managing the

278 C. Luo et al.

blockchain, which includes creation, verification and storage of the individual
transactions and blocks of transactions. Blockchain stored at cloud servers can
form a decentralized storage system with blockchain incentives, which is an effec-
tive combination of blockchain and storage system. Compared with the existing
centralized cloud computing, the distributed blockchain cloud has the following
advantages: higher reliability, higher availability of services, higher fault toler-
ance and lower cost.

Since the IoT devices belong to the different local networks, the communica-
tion between IoT devices can be divided into two categories: Device-to-Device
(D2D) communication in the same local network and D2D communication in the
different local networks. In the first case, the transaction request from source is
forward to its manager, where it is authenticated. Then they are broadcasted
to the whole network by the internet. In the second case, as the devices are not
registered with the same manager, the transaction of any two devices across the
local network is authenticated by their respective manager. All of transactions
among IoT devices are mined in a block of blockchain stored in edge servers.

Cloud blockchain
of cloud servers

Edge blockchain
of edge servers

Light blockchain
of IoT devices

Fig. 7. The architecture of the edge computing integrated with blockchain.

In the network, the IoT devices produce a massive of data which is needed to
transmit to the edge servers for processing and analysis. The edge servers quickly
processes the data with high real-time requests and store the sensitive data with
blockchain, where the requests can be as transactions stored in the blockchain
held by edge servers. Then it forwards the pre-processed encrypted data with
low real-time and security to the cloud servers for further processing and storage.
Afterwards, the data is stored in the distributed cloud servers with blockchain.
Therefore, based on the different the capabilities on computation power, storage

Edge Computing Integrated with Blockchain Technologies 279

space and source management for the devices in the different layers, three types of
blockchain can be constructed in the network: light blockchain, edge blockchain
and cloud blockchain.

Light Blockchain. Since the IoT devices has limited storage space and com-
munication power, the consensus protocols that require high computing power
or the large of storage space such as PoW and PoS are not suitable for the IoT
device layer. Therefore, the edge server as a manager to control the transactions
exchange and manage the blockchain which records the transactions of among
the IoT devices. For the fundamental applications, e.g. transaction search, the
simple light blockchain should be maintained by the IoT devices which only
stores the header information of the blockchain stored in the edge servers [38].

Edge Blockchain. The edge blockchain that is maintained by all edge servers
is a decentralized chain which stores the transactions among IoT devices and
between IoT devices and edge servers which require unified, consistency and
transparent. The edge servers have computational capabilities and storage space
for correlative services. Each edge server has a management controller and stor-
age pool. The management controller works as a third party to manage trans-
actions from IoT devices. As the resources of IoT devices such as storage space,
computation power and memory are constrained, a variety of transactions should
be stored in edge servers. When the transactions are generated by IoT devices,
then they are broadcasted to the internet supported by the edge servers. For secu-
rity and privacy protection, the transactions produced by IoT devices are anony-
mous and encrypted, and attached with digital signatures of IoT devices. The
edge servers working as blockchain managers will periodically integrate received
transactions into a block with the consensus protocol (e.g. Proof of Storage [7])
and broadcast the block to other edge servers for verification. The edge servers
with the most contribution in the network is rewarded over a period of time,
which is an incentive to encourage edge servers to provide enough support for
maintaining the blockchain.

Cloud Blockchain. The cloud blockchain is a decentralized distributed stor-
age chain in which all data produced by IoT devices are stored in utilizing
blockchain. All data blocks are instantiated and distributed to all cloud servers
in the network, which allows us to store the data in an efficient, verifiable, and
permanent way. The digital signature and hashes are used in blockchain to ensure
the integrity of data. Once a data block has been inserted into the chain, the
data in any block of chain can not be modified, since any block points to the hash
value of its previous block, which can prevent the data in the block from being
tampered with. For example, the healthcare data can be stored in the cloud
in utilizing blockchain, which can provide security storage for the healthcare
data [39].

4.3 State of the Art

In the following, we elaborate on the role of the edge computing integrated
with blockchain in the following scenarios to demonstrate how the blockchain

280 C. Luo et al.

technologies are implemented in edge computing-based IoT networks: smart city,
smart transportation, industrial IoTs, smart home and smart grid.

4.3.1 Smart City
With the development of blockchain, IoTs and other new generation technologies,
smart city has become a predicable mode to solve the problems of urban devel-
opment in the future [40]. It can improve the efficiency of urban management
and operation, and promote the sustainable and leap forward development of the
city by comprehensively and transparently perceiving information, quickly and
safely transmitting information, intelligently and efficiently processing informa-
tion. The fresh form of urban development makes the city automatically perceive,
effectively decisions making and control [41].

In [42], Sharma et al. proposed a blockchain-based distributed cloud architec-
ture with a Software Defined Networking (SDN) with blockchain technologies,
which consists of three layers, IoT devices, edge servers and cloud servers, and can
solve many problems of the traditional cloud computing such as real-time data
transmission, scalability, security and high availability. Rahman et al. leveraged
blockchain technologies and edge computing to design an infrastructure that
meets the security and privacy requirement of smart contract in massive smart
cities [43]. The geo-tagged multimedia transactions were handled by edge servers
and the key information were extracted by artificial intelligence technology. Then
the processing results were saved in blockchain and distributed cloud storage to
support the services of sharing economy. Khan et al. presented an architecture
of the edge computing based on the blockchain technologies in [44], which can
achieve granular and security management of data in different administrative
departments of districts. They applied a proof of concept on a well-designed case
that allows citizen to take part in administrative measure by consensus. This use
case emphasizes the necessity to retain and process citizen participation data at
the local level by deploying regional chain codes, and to share consistent results
only through permission chain codes. Some IoT devices generate and process
sensitive personal data with security and privacy issues. In [45], Damianou et
al. presented a hybrid blockchain-based architecture for the edge computing-
based IoT networks to address the issues of IoT devices related to the limited
storage capacity, security and privacy through combining edge computing with
blockchain technologies. In [46], the authors proposed a BLockchain-ENabled
Decentralized Microservices Architecture which is implemented in a hierarchical
blockchain-based edge computing to protect data processing among different ser-
vice providers and entities in a smart public safety system. In [47], the authors
proposed a video surveillance system which uses blockchains, edge computing,
InterPlanetary File System (IPFS) technology and convolution neural networks.
The reliability and robustness of the system is improved by the blockchain tech-
nologies. The edge computing is used to gather information from the large-scale
wireless sensors and to process and analyze the sensory data. IPFS and CNNs
are respectively used to achieve massive video data storage and real-time mon-
itoring. Kotobi and Sartipi [48] leveraged mobile Communications, Computing,

Edge Computing Integrated with Blockchain Technologies 281

and Caching (3C) systems to enhance the bandwidth and latency of wireless
communications. They stated the huge data transmission and processing burden
required for smart city applications, which will deplete current wireless infras-
tructure unless using edge computing and caching to address the issues. Then
they designed a blockchain database to solve the problem of security from com-
munication between the smart city and home devices and sensors.

4.3.2 Smart Transportation
The smart transportation system combining block chain and edge computing is a
hot spot in the field of transportation research and development in the world [49].
It combines users and providers to establish a real-time, accurate and efficient
comprehensive transportation management system that can play a role in a wide
range and all-round way [50].

In [51], Li et al. proposed an efficient and privacy preserving carpooling
scheme to support conditional privacy, one-to-many proximity matching, des-
tination matching and data auditability by combining the vehicular fog comput-
ing and blockchain technologies, where the fog servers are RSUs that are used
to match passengers with drivers and to construct a private blockchain. In [52],
Liu et al. respectively proposed blockchain-inspired data coins and energy coins
in the Electric Vehicle Cloud and Edge computing (EVCE) on the basis of the
distributed consensus protocol that used the data contribution frequency and
energy contribution amount to realize proof of work. In [53], Nguyen et al. pro-
posed a blockchain-based Mobility-as-a-Service (MaaS) to improve transparency
and trust between providers by eliminating the intermediate layer which are used
to manage and control the relationships between transportation providers and
passengers. In the proposed blockchain-based MaaS, the smart contracts are exe-
cuted on the edge servers, which can directly connect travelers to providers in
a more efficient way, and achieve many advantages including validation, confir-
mation and formation. In [54], Zhou et al. presented a secure and high efficiency
Vehicle-to-Grid (V2G) energy trading mechanism by considering blockchain
technologies, contract theory and edge computing, which is called consortium
blockchain-based secure energy trading. Then an incentive mechanism was pro-
posed by considering the situation of information asymmetry. Afterward, they
presented an edge computing-based task offloading mechanism to improve the
success probability of block creation and proposed an optimal pricing strategy
for the edge computing services.

4.3.3 Industrial IoTs
The integration of the edge computing and blockchain provides a secure and
unified platform for the current cloud computing, data processing, and access
control, enabling the rapid distribution of computing services to edge servers,
which greatly promotes the development of the Industrial IoTs.

Blockchain mining tasks require powerful computing capabilities, and deploy-
ing equipment that meets this computing power is costly. Therefore, offloading
mining tasks to the edge servers to make full use of the limited computing

282 C. Luo et al.

power of IIoT for mining will be a promising solution. In order to solve the
data processing and mining tasks in IIoT authorized by the blockchain, Chen
et al. [55] proposed a multi-hop collaborative distributed computing offloading
algorithm. Aimed at minimizing the cost of the IIoT equipment, they set the
offloading problem as a game problem, and the IIoT equipment can indepen-
dently decide to obtain the maximum benefit. In addition, they used message
exchange between IIoT devices to propose an efficient distributed algorithm to
achieve low complexity Nash equilibrium. In [56], the authors proposed an IIoT
architecture based on edge intelligence and blockchain authorization to imple-
ment flexible and secure edge service management. In order to reduce the cost
of edge services and improve service capabilities, they designed a cross-domain
shared edge resource scheduling mechanism and a credit differential edge trans-
action approval mechanism. In order to solve the problem of edge computing
security in IIoT, the authors [57] leveraged self-authenticated cryptography tech-
nology to achieve the registration and authentication of network entities, and
designed a blockchain-based identity management and access control mecha-
nism. They proposed a lightweight key agreement protocol based on self-certified
public keys, which provide authentication, auditability, and confidentiality for
IIoT. Gai et al. [58] combined edge computing, blockchain and IIoT to design a
new model called Blockchain-based Internet-of-Edge (BIoE) model. This model
makes full use of the advantages of edge computing and blockchain to propose a
privacy protection mechanism for scalable and controllable IoT systems. In [59],
the authors proposed the concept of the IIoT bazaar. This is a decentralized
industrial edge application market that creates transparency for all stakeholders
through blockchain technology. It can implement tracking applications installed
on edge devices. Edge devices with limited computing power can be integrated
into the IIoT Bazaar ecosystem through fog computing. Users can easily interact
with edge devices through Augmented Reality (AR).

4.3.4 Smart Home
The researchers in literature [60] introduced a new security framework, which
improves the integrity, confidentiality and availability by integrating blockchain
technology into smart home. Tantidham and Aung [61] used Ethereum
blockchain technology to design a smart home emergency service system. This
system can decentralize process some untrusted services for example access con-
trol services between Home Service Providers (HSPs) and smart home IoT
devices. Their SHS includes: (1) Smart Home Sensor Manager, Raspberry Pi
(RPi) is used as an edge IoT gateway to collect data related to the environment;
(2) HSP miners deploying Meteor and Ethereum platforms; (3) providing home
users and HSP employees Web-based application. In [62], the authors designed
a new architecture based on blockchain technology. They introduced edge com-
puting and a new algorithm to improve the quality of data transmission and the
detection of erroneous data. In [63], the authors had designed a framework based
on blockchain technology. This framework allows medical institutions to collect
some quality of life information from the home environment through smart sen-

Edge Computing Integrated with Blockchain Technologies 283

sors and share some safety information with other communities. In particular,
this framework collects data that is beneficial to treatment by authorizing some
sensors that can track the quality of life, such as physiological characteristics
and environmental quality, and stores these data in secure and dedicated edge
services.

4.3.5 Smart Grid
In [64], the authors proposed a model permissioned blockchain edge model, in
which they leveraged blockchain techniques and edge computing to solve two
key issues that is privacy security and energy security in smart grid. Wang et al.
[65] leveraged edge computing to propose a blockchain through mutual authen-
tication and key agreement protocol for smart grid. The benefits of this protocol
was that can achieve conditional anonymity and key management without other
complex cryptographic primitives. Aimed at addressing the tamper-resistant,
reliable and distributed ledger issues, a smart-toy-edge-computing-oriented data
exchange prototype was proposed by means of signing smart contract to solve
the problem of distrust between participants [66]. This solution also helps to
achieve P2P data exchange between isolated smart toy and other edge devices
in IoT systems. In [67], the authors proposed a framework named SURVIVOR to
achieve energy transaction in V2G scenario. The decisions of Energy transaction
are made by electric vehicles closer to the edge nodes. The blockchain is used to
ensure the security of energy transactions. It selected the approval node among
all existing nodes and was responsible for verifying the transaction based on the
utility function.

4.4 Challenges

Although the emergence of blockchain technology provides new ideas and
research directions for edge computing, there are many significant research chal-
lenges to be addressed. In this section, we propose some of research challenges
for the edge computing integrated with blockchain technologies.

Scalability. IoT devices have limited storage which are usually requirements for
blockchain based networks. Although D2D transactions and data produced by
IoT devices can be transferred to edge servers for processing and storage. How-
ever, the smart contract of blockchain requires every participants to maintain a
same distributed ledger, and sometimes every transaction in the ledger should
be traced. Therefore, with more and more devices connected to the network,
a massive of transactions will be produced and stored every participant, which
needs higher operation performance of IoT devices and servers. Therefore, it is
difficult to optimize the overall efficiency of the network, which restricts the scal-
ability of IoT networks. Therefore, how to extend the scalability of the network
by using the current implementations is an important challenge.

Consensus Optimization. In the edge computing, many applications require
quick response of processing results from edge servers to the IoT devices, such

284 C. Luo et al.

as accident warnings in smart transportation. However, the existing consensus
mechanisms require verification of most participating nodes to complete mining,
which will generate serious network latency. Meanwhile, the existing consensus
mechanisms such as PoW and PoS can not be available for light servers with
limited storage and computation power. Therefore, how to design new consensus
mechanisms to balance the realtime of applications and latency produced by
consensus mechanisms and to adapt to the light servers is an important challenge
for the edge computing integrated with blockchain.

Interoperability and Cost Standardization. Since the edge computing is
heterogeneous hierarchical, the protocols implemented at different layers need
to interoperate by providing conversion mechanisms. As the IoT devices have
limited resources, mining and transaction data storage must transfer to the
edge servers. It means that any transaction between two IoT devices must be
implemented by one or two intermediate edge servers. Therefore, the interaction
patterns are needed for data communication and management effectively. More-
over, the edge computing incorporates the combination of various application
platforms, which may need to take cooperation to complete a service. Thus, the
interaction models for diverse applications running varying and heterogeneous
platforms are needed. Moreover, with the huge amounts of data produced by IoT
devices, the processing and storage capacity of edge servers can not satisfy the
requirement. Therefore, they have to transfer precessed data to the cloud servers
for further processing and storage. However, since the intelligent settlement of
service fee generated by using smart contract, the cost distributed standards are
needed to complete the intelligent service of the networks.

Security. Although the blockchain can provide the security approaches for the
edge computing, the blockchain itself is vulnerable to attack, such as denial of
service, man in the middel and Sybil. The data protection for the IoT devices and
the edge servers without unauthorized access is a important challenge, since the
security cryptographic software are required to integrate into IoT devices and
edge servers and the limitation of their storage resource restrict the improvement
of the security software. And there are some other security challenges, such as
communication security and privacy protection of devices.

5 Conclusion

In this paper, we give a comprehensive review for the edge computing inte-
grated with blockchain, including architectures, technologies and the related
works. Particularly, the general architecture of edge computing integrated with
blockchain are introduced, in which three categories of blockchain can be con-
structed based on the architecture of the edge computing and enabling tech-
nologies: light blockchain, edge blockchain and cloud blockchain. In addition,
we summarize the related research papers about the edge computing integrated
with blockchain technologies to show how the edge computing integrated with
blockchain is to be implemented in real-work applications, which consists of

Edge Computing Integrated with Blockchain Technologies 285

smart cities, smart transportation, Industrial IoTs, smart home, and smart grid.
Finally, we conclude the challenges about the integration of edge computing and
blockchain.

References

1. Yu, W., et al.: A survey on the edge computing for the Internet of Things. IEEE
Access 6, 6900–6919 (2017)

2. Li, C., Zhang, L.-J.: A blockchain based new secure multi-layer network model for
Internet of Things. In: 2017 IEEE International Congress on Internet of Things
(ICIOT), pp. 33–41. IEEE (2017)

3. Garcia Lopez, P., et al.: Edge-centric computing: vision and challenges. ACM SIG-
COMM Comput. Commun. Rev. 45(5), 37–42 (2015)

4. Lin, J., Wei, Y., Zhang, N., Yang, X., Zhang, H., Zhao, W.: A survey on Internet of
Things: architecture, enabling technologies, security and privacy, and applications.
IEEE Internet Things J. 4(5), 1125–1142 (2017)

5. Yang, R., Yu, F.R., Si, P., Yang, Z., Zhang, Y.: Integrated blockchain and edge
computing systems: a survey, some research issues and challenges. IEEE Commun.
Sur. Tutor. 21(2), 1508–1532 (2019)

6. Nakamoto, S., et al.: Bitcoin: a peer-to-peer electronic cash system (2008)
7. Kang, J., et al.: Blockchain for secure and efficient data sharing in vehicular edge

computing and networks. IEEE Internet Things J. 6(3), 4660–4670 (2018)
8. Biswas, S., Sharif, K., Li, F., Nour, B., Wang, Y.: A scalable blockchain framework

for secure transactions in IoT. IEEE Internet Things J. 6(3), 4650–4659 (2018)
9. Sharma, P.K., Chen, M.-Y., Park, J.H.: A software defined fog node based dis-

tributed blockchain cloud architecture for IoT. IEEE Access 6, 115–124 (2017)
10. Stanciu, A.: Blockchain based distributed control system for edge computing. In:

2017 21st International Conference on Control Systems and Computer Science
(CSCS), pp. 667–671. IEEE (2017)

11. Xiong, Z., Feng, S., Niyato, D., Wang, P., Han, Z.: Optimal pricing-based edge
computing resource management in mobile blockchain. In: 2018 IEEE International
Conference on Communications (ICC), pp. 1–6. IEEE (2018)

12. Jiang, P., Guo, F., Liang, K., Lai, J., Wen, Q.: Searchain: blockchain-based private
keyword search in decentralized storage. Futur. Gener. Comput. Syst. (2017)

13. Zheng, Z., Xie, S., Dai, H.-N., Chen, X., Wang, H.: Blockchain challenges and
opportunities: a survey. Int. J. Web Grid Serv. 14(4), 352–375 (2018)

14. King, S., Nadal, S.: PPCoin: peer-to-peer crypto-currency with proof-of-stake. Self-
published paper, 19 August 2012

15. Castro, M., Liskov, B., et al.: Practical Byzantine fault tolerance. In: OSDI, vol.
99, pp. 173–186 (1999)

16. He, K., Chen, J., Ruiying, D., Qianhong, W., Xue, G., Zhang, X.: DeyPoS: dedupli-
catable dynamic proof of storage for multi-user environments. IEEE Trans. Com-
put. 65(12), 3631–3645 (2016)

17. Larimer, D.: Delegated proof-of-stake (DPOS). Bitshare whitepaper (2014)
18. Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. In:

Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 585–605.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7 29

19. Chalaemwongwan, N., Kurutach, W.: State of the art and challenges facing con-
sensus protocols on blockchain. In: 2018 International Conference on Information
Networking (ICOIN), pp. 957–962. IEEE (2018)

https://doi.org/10.1007/978-3-662-48000-7_29

286 C. Luo et al.

20. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)

21. Merkle, R.C.: Protocols for public key cryptosystems. In: 1980 IEEE Symposium
on Security and Privacy, p. 122. IEEE (1980)

22. Szabo, N.: Smart contracts: building blocks for digital markets. EXTROPY: J.
Transhumanist Thought (16), 18:2 (1996)

23. Wang, S., Yuan, Y., Wang, X., Li, J., Qin, R., Wang, F.-Y.: An overview of smart
contract: architecture, applications, and future trends. In: 2018 IEEE Intelligent
Vehicles Symposium (IV), pp. 108–113. IEEE (2018)

24. Delmolino, K., Arnett, M., Kosba, A., Miller, A., Shi, E.: Step by step towards
creating a safe smart contract: lessons and insights from a cryptocurrency lab.
In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K.
(eds.) FC 2016. LNCS, vol. 9604, pp. 79–94. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53357-4 6

25. Rabinovich, M., Xiao, Z., Aggarwal, A.: Computing on the edge: a platform for
replicating internet applications. In: Douglis, F., Davison, B.D. (eds.) Web Content
Caching and Distribution, pp. 57–77. Springer, Dordrecht (2004). https://doi.org/
10.1007/1-4020-2258-1 4

26. Liono, J., Jayaraman, P.P., Qin, A.K., Nguyen, T., Salim, F.D.: QDaS: quality
driven data summarisation for effective storage management in Internet of Things.
J. Parallel Distrib. Comput. 127, 196–208 (2019)

27. Vaquero, L.M., Rodero-Merino, L.: Finding your way in the fog: towards a com-
prehensive definition of fog computing. ACM SIGCOMM Comput. Commun. Rev.
44(5), 27–32 (2014)

28. Hajibaba, M., Gorgin, S.: A review on modern distributed computing paradigms:
cloud computing, jungle computing and fog computing. J. Comput. Inf. Technol.
22(2), 69–84 (2014)

29. Kumar, J.S., Patel, D.R.: A survey on Internet of Things: security and privacy
issues. Int. J. Comput. Appl. 90(11) (2014)

30. Satyanarayanan, M.: The emergence of edge computing. Computer 50(1), 30–39
(2017)

31. Stojmenovic, I., Wen, S., Huang, X., Luan, H.: An overview of fog computing and
its security issues. Concurr. Comput. Pract. Exp. 28(10), 2991–3005 (2016)

32. Mukherjee, M., et al.: Security and privacy in fog computing: challenges. IEEE
Access 5, 19293–19304 (2017)

33. Veena, P., Panikkar, S., Nair, S., Brody, P.: Empowering the edge-practical insights
on a decentralized Internet of Things. IBM Institute for Business Value (2015)

34. Otte, P., de Vos, M., Pouwelse, J.: Trustchain: a sybil-resistant scalable blockchain.
Futur. Gener. Comput. Syst. (2017)

35. Restuccia, F., Kanhere, S.D., Melodia, T., Das, S.K.: Blockchain for the Internet
of Things: present and future. arXiv preprint arXiv:1903.07448 (2019)

36. Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the Internet
of Things. IEEE Access 4, 2292–2303 (2016)

37. Lee, B., Lee, J.-H.: Blockchain-based secure firmware update for embedded devices
in an Internet of Things environment. J. Supercomput. 73(3), 1152–1167 (2017)

38. Dorri, A., Kanhere, S.S., Jurdak, R., Gauravaram, P.: LSB: a lightweight scalable
blockchain for IoT security and anonymity. J. Parallel Distrib. Comput. 134, 180–
197 (2019)

39. Esposito, C., De Santis, A., Tortora, G., Chang, H., Choo, K.-K.R.: Blockchain: a
panacea for healthcare cloud-based data security and privacy? IEEE Cloud Com-
put. 5(1), 31–37 (2018)

https://doi.org/10.1007/978-3-662-53357-4_6
https://doi.org/10.1007/978-3-662-53357-4_6
https://doi.org/10.1007/1-4020-2258-1_4
https://doi.org/10.1007/1-4020-2258-1_4
http://arxiv.org/abs/1903.07448

Edge Computing Integrated with Blockchain Technologies 287

40. Gaur, A., Scotney, B., Parr, G., McClean, S.: Smart city architecture and its appli-
cations based on IoT. Procedia Comput. Sci. 52, 1089–1094 (2015)

41. Tang, B., Chen, Z., Hefferman, G., Wei, T., He, H., Yang, Q.: A hierarchical dis-
tributed fog computing architecture for big data analysis in smart cities. In: 2015
Proceedings of the ASE BigData & SocialInformatics, p. 28. ACM (2015)

42. Sharma, P.K., Park, J.H.: Blockchain based hybrid network architecture for the
smart city. Futur. Gener. Comput. Syst. 86, 650–655 (2018)

43. Rahman, M.A., Rashid, M.M., Hossain, M.S., Hassanain, E., Alhamid, M.F.,
Guizani, M.: Blockchain and IoT-based cognitive edge framework for sharing econ-
omy services in a smart city. IEEE Access 7, 18611–18621 (2019)

44. Khan, Z., Abbasi, A.G., Pervez, Z.: Blockchain and edge computing-based archi-
tecture for participatory smart city applications. Concurr. Comput. Pract. Exp.,
e5566 (2019)

45. Damianou, A., Angelopoulos, C.M., Katos, V.: An architecture for blockchain over
edge-enabled IoT for smart circular cities. In: 2019 15th International Conference
on Distributed Computing in Sensor Systems (DCOSS), pp. 465–472. IEEE (2019)

46. Xu, R., Nikouei, S.Y., Chen, Y., Blasch, E., Aved, A.: BlendMAS: a blockchain-
enabled decentralized microservices architecture for smart public safety. arXiv
preprint arXiv:1902.10567 (2019)

47. Wang, R., Tsai, W.-T., He, J., Liu, C., Li, Q., Deng, E.: A video surveillance
system based on permissioned blockchains and edge computing. In: 2019 IEEE
International Conference on Big Data and Smart Computing (BigComp), pp. 1–6.
IEEE (2019)

48. Kotobi, K., Sartipi, M.: Efficient and secure communications in smart cities using
edge, caching, and blockchain. In: 2018 IEEE International Smart Cities Conference
(ISC2), pp. 1–6. IEEE (2018)

49. Sharma, P.K., Moon, S.Y., Park, J.H.: Block-VN: a distributed blockchain based
vehicular network architecture in smart city. JIPS 13(1), 184–195 (2017)

50. Sherly, J., Somasundareswari, D.: Internet of Things based smart transportation
systems. Int. Res. J. Eng. Technol. 2(7), 1207–1210 (2015)

51. Li, M., Zhu, L., Lin, X.: Efficient and privacy-preserving carpooling using
blockchain-assisted vehicular fog computing. IEEE Internet Things J. 6(3), 4573–
4584 (2019)

52. Liu, H., Zhang, Y., Yang, T.: Blockchain-enabled security in electric vehicles cloud
and edge computing. IEEE Netw. 32(3), 78–83 (2018)

53. Nguyen, T.H., Partala, J., Pirttikangas, S.: Blockchain-based mobility-as-a-service.
In: 2019 28th International Conference on Computer Communication and Networks
(ICCCN), pp. 1–6. IEEE (2019)

54. Zhou, Z., Wang, B., Dong, M., Ota, K.: Secure and efficient vehicle-to-grid energy
trading in cyber physical systems: integration of blockchain and edge computing.
IEEE Trans. Syst. Man Cybern. Syst. 50(1), 43–57 (2019)

55. Chen, W., et al.: Cooperative and distributed computation offloading for
blockchain-empowered industrial Internet of Things. IEEE Internet Things J. 6(5),
4833–8446 (2019)

56. Zhang, K., Zhu, Y., Maharjan, S., Zhang, Y.: Edge intelligence and blockchain
empowered 5G beyond for the industrial Internet of Things. IEEE Netw. 33(5),
12–19 (2019)

57. Ren, Y., Zhu, F., Qi, J., Wang, J., Sangaiah, A.K.: Identity management and access
control based on blockchain under edge computing for the industrial Internet of
Things. Appl. Sci. 9(10) (2019). https://doi.org/10.3390/app9102058

http://arxiv.org/abs/1902.10567
https://doi.org/10.3390/app9102058

288 C. Luo et al.

58. Gai, K., Wu, Y., Zhu, L., Zhang, Z., Qiu, M.: Differential privacy-based blockchain
for industrial Internet of Things. IEEE Trans. Ind. Inform. (2019)

59. Seitz, A., Henze, D., Miehle, D., Bruegge, B., Nickles, J., Sauer, M.: Fog comput-
ing as enabler for blockchain-based IIoT app marketplaces-a case study. In: 2018
Fifth International Conference on Internet of Things: Systems, Management and
Security, pp. 182–188. IEEE (2018)

60. Dorri, A., Kanhere, S.S., Jurdak, R., Gauravaram, P.: Blockchain for IoT secu-
rity and privacy: the case study of a smart home. In: 2017 IEEE International
Conference on Pervasive Computing and Communications Workshops (PerCom
Workshops), pp. 618–623. IEEE (2017)

61. Tantidham, T., Aung, Y.N.: Emergency service for smart home system using
Ethereum blockchain: system and architecture. In: 2019 IEEE International Con-
ference on Pervasive Computing and Communications Workshops (PerCom Work-
shops), pp. 888–893. IEEE (2019)

62. Casado-Vara, R., de la Prieta, F., Prieto, J., Corchado, J.M.: Blockchain framework
for IoT data quality via edge computing. In: Proceedings of the 1st Workshop on
Blockchain-Enabled Networked Sensor Systems, pp. 19–24. ACM (2018)

63. Rahman, M.A., Rashid, M., Barnes, S., Hossain, M.S., Hassanain, E., Guizani, M.:
An IoT and blockchain-based multi-sensory in-home quality of life framework for
cancer patients. In: 2019 15th International Wireless Communications & Mobile
Computing Conference (IWCMC), pp. 2116–2121. IEEE (2019)

64. Gai, K., Wu, Y., Zhu, L., Xu, L., Zhang, Y.: Permissioned blockchain and edge com-
puting empowered privacy-preserving smart grid networks. IEEE Internet Things
J. 6(5), 7992–8004 (2019)

65. Wang, J., Wu, L., Choo, K.-K.R., He, D.: Blockchain based anonymous authenti-
cation with key management for smart grid edge computing infrastructure. IEEE
Trans. Ind. Inform. 16(3), 1984–1992 (2019)

66. Yang, J., Zhihui, L., Jie, W.: Smart-toy-edge-computing-oriented data exchange
based on blockchain. J. Syst. Arch. 87, 36–48 (2018)

67. Jindal, A., Aujla, G.S., Kumar, N.: SURVIVOR: a blockchain based edge-as-a-
service framework for secure energy trading in SDN-enabled vehicle-to-grid envi-
ronment. Comput. Netw. 153, 36–48 (2019)

Author Index

Allender, Eric 8

Chau, Vincent 219
Chen, Chi-Yeh 238
Chen, Xujin 187

Du, Ding-Zhu 1
Du, Dingzhu 172

Fang, Qizhi 172, 205

Gong, Suning 172

Hemaspaandra, Lane A. 19
Hirahara, Shuichi 67
Hsieh, Sun-Yuan 238
Hu, Xiaodong 187

Li, Deying 268
Li, Minming 219
Liu, Bin 205
Liu, Siwen 252
Lorenz, Jan-Hendrik 57
Luo, Chuanwen 268

Lutz, Jack H. 48
Lutz, Neil 48
Lv, Wenrong 230

Nong, Qingqin 172

Schöning, Uwe 57
Shan, Erfang 230
Shi, Jilei 230
Sun, Shu-Ming 80
Sun, Xiaoming 151
Sun, Yuan 151

Wang, Jie 1, 113
Watanabe, Osamu 67
Wu, Weili 268

Xu, Liya 268

Zhang, Feiteng 205
Zhang, Jialin 151
Zhang, Mengqi 187
Zhong, Ning 80
Ziegler, Martin 80

	Preface
	Contents
	In Memoriam: Ker-I Ko (1950–2018)
	References

	Ker-I Ko and the Study of Resource-Bounded Kolmogorov Complexity
	1 Introduction: A Brief History of Time-Bounded Kolmogorov Complexity
	2 Time-Bounded Kolmogorov Complexity and NP-Completeness
	3 Conclusions
	References

	The Power of Self-Reducibility: Selectivity, Information, and Approximation
	1 Introduction
	1.1 A Note on the Two Audiences, and How to Read This Chapter
	1.2 Self-Reducibility and SAT

	2 Definitions Used Throughout: SAT and Self-Reducibility
	3 Challenge Problem 1: Is SAT Even Semi-feasible?
	3.1 Needed Definitions
	3.2 Can SAT Be P-Selective?

	4 Challenge Problem 2: Low Information Content and SAT, Part 1: Can SAT Reduce to a Tally Set?
	4.1 Needed Definitions
	4.2 Can SAT Reduce to a Tally Set?

	5 Challenge Problem 3: Low Information Content and SAT, Part 2: Can SAT Reduce to a Sparse Set?
	5.1 Needed Definitions
	5.2 Can SAT Reduce to a Sparse Set?

	6 Challenge Problem 4: Is #SAT as Hard to (Enumeratively) Approximate as It Is to Solve Exactly?
	6.1 Needed Definitions
	6.2 Food for Thought
	6.3 Is #SAT as Hard to (Enumeratively) Approximate as It Is to Solve Exactly?

	7 Going Big: Complexity-Class Implications
	8 Conclusions
	A Solution to Challenge Problem 1
	B Solution to Challenge Problem 2
	C Solution to Challenge Problem 3
	D Solution to Challenge Problem 4
	D.1 Why One Natural Approach Is Hopeless
	D.2 XYZ Idea/Statement
	D.3 Invitation to a Second Bite at the Apple
	D.4 Proof Sketch of the Theorem

	References

	Who Asked Us? How the Theory of Computing Answers Questions about Analysis
	1 Introduction
	2 Algorithmic Information and Algorithmic Dimensions
	3 Point-to-Set Principles
	4 Fractal Products
	5 Fractal Intersections
	6 Kakeya Sets and Generalized Furstenberg Sets
	7 Fractal Projections
	8 Conclusion
	References

	Promise Problems on Probability Distributions
	1 Introduction
	2 Preliminaries
	3 On the Hardness of Probability Distributions
	4 Approximating the Restart Time
	5 Conclusion and Outlook
	References

	On Nonadaptive Reductions to the Set of Random Strings and Its Dense Subsets
	1 Introduction
	2 Reducing from the Worst-Case to the Average-Case: Limits of Black-Box Reductions
	3 A Motivation for Investigating Non-black-box Reductions Further
	4 Our Results
	5 Why Are the Reductions of ch6Hirahara18spsfocsspsconf Non-black-box?
	6 Our Techniques
	7 Some Evidence for the Tightness of Our Upper Bounds
	References

	Computability of the Solutions to Navier-Stokes Equations via Effective Approximation
	1 Introduction
	1.1 Overview

	2 Representing Divergence-Free L2 Functions on
	3 Computability of Helmholtz Projection
	4 Computability of the Linear Problem
	5 Extension to the Nonlinear Problem
	5.1 Representing and Operating on Space Hs2, 0()
	5.2 Some Classical Properties of Fractional Powers of A
	5.3 Proof of Proposition4
	5.4 Proof of Proposition5
	5.5 The Inhomogeneous Case and Pressure

	A Proof of Proposition1
	B Proof of Lemma1
	C Proof of Lemma2
	References

	AutoOverview: A Framework for Generating Structured Overviews over Many Documents
	1 Introduction
	2 AutoOverview: A General Framework
	2.1 Text Wrangling
	2.2 Hierarchical Topic Clustering
	2.3 Document Summarizing
	2.4 Statistics and Trends of Entities
	2.5 Cluster Summarizing
	2.6 Cluster Titling
	2.7 Assembling

	3 Evaluation Methods
	3.1 Readability
	3.2 Information Coverage
	3.3 Topic Diversity
	3.4 Overall Quality

	4 Topic Clustering
	4.1 LDA Clustering
	4.2 Spectral Clustering
	4.3 Affinity Propagation Clustering

	5 Text Summarization and Title Generation
	5.1 Single-Document Summarization
	5.2 SWR
	5.3 Multi-Document Summarization
	5.4 Hierarchical and Structural Summarization

	6 Title Generation
	6.1 DTATG
	6.2 Dependency Trees and Trimming
	6.3 DTATG-generated Titles

	7 NDORGS: The First Implementation of AutoOverview
	7.1 Data Sets
	7.2 Programming Modules
	7.3 Settings and Parameters
	7.4 Text Clustering Evaluations for Deciding K
	7.5 Evaluations of Overall Quality of SOVs

	8 Statistics and Trends of Entities
	9 Final Comments
	References

	Better Upper Bounds for Searching on a Line with Byzantine Robots
	1 Introduction
	1.1 Problem Description
	1.2 Evaluation Functions
	1.3 Our Results
	1.4 Related Works
	1.5 Organization

	2 Notations
	3 An Algorithm Framework for Byzantine Robot Searching Problem
	4 Two Different Base Algorithms
	4.1 A Base Algorithm with Lg
	4.2 A Base Algorithm with Lg

	5 Competitive Ratio Lg for Small Lg and Lg
	6 Conclusions and Open Problems
	References

	A Survey on Double Greedy Algorithms for Maximizing Non-monotone Submodular Functions
	1 Introduction
	2 Maximizing Non-monotone Submodular Set Functions
	3 Maximizing Non-monotone Submodular Integer Lattice Functions
	4 Maximizing Submodular Continuous Functions
	References

	Sequential Location Game on Continuous Directional Star Networks
	1 Introduction
	2 Model
	3 Sequential Location on Directional Stars
	4 Sequential Location in Normal Directional Stars
	4.1 Case 1: n08mu(mod6mus+t)
	4.2 Case 2: n18mu(mod6mus+t) and t1
	4.3 Case 3: Out-Stars

	5 Conclusion
	References

	Core Decomposition, Maintenance and Applications
	1 Introduction
	2 Basic Definitions and a Problem Statement
	3 Core Decomposition
	3.1 A Linear-Time Algorithm
	3.2 External-Memory Algorithms and I/O Efficient Algorithms
	3.3 Distributed Algorithms
	3.4 Core Decomposition on Uncertain Graphs
	3.5 Core Decomposition Under Additional Constrains

	4 Core Maintenance
	4.1 Streaming Algorithms
	4.2 Distributed Algorithms
	4.3 Parallel Algorithms
	4.4 Order-Based Algorithms

	5 Applications
	References

	Active and Busy Time Scheduling Problem: A Survey
	1 Introduction
	2 Preliminaries
	3 Busy Time
	3.1 Minimizing the Busy Time Length
	3.2 Maximizing the Throughput
	3.3 Open Questions

	4 Active Time
	4.1 Minimizing the Active Time Length
	4.2 Batch Scheduling
	4.3 Open Questions

	5 Concluding Remarks
	References

	A Note on the Position Value for Hypergraph Communication Situations
	1 Introduction
	2 Preliminaries
	3 A Characterization of the Position Value
	References

	An Efficient Approximation Algorithm for the Steiner Tree Problem
	1 Introduction
	2 Notation and Preliminaries
	3 Two-Phase Algorithm
	4 Approximation Ratio of the k-TPH
	5 Performance of the k-TPH in General Graphs
	References

	A Review for Submodular Optimization on Machine Scheduling Problems
	1 Introduction
	2 Preliminaries
	3 Review of SCPT Problems Using so
	4 Review of Other Scheduling Problems Using SO
	4.1 Common Operation Scheduling
	4.2 Unreliable Jobs
	4.3 Speed Scaling Machines
	4.4 Submodular Search in Scheduling

	5 Conclusion
	References

	Edge Computing Integrated with Blockchain Technologies
	1 Introduction
	2 Technologies of Blockchain
	2.1 The Key Technologies of Blockchain

	3 The General Architecture of Edge Computing
	4 Integration of Edge Computing and Blockchain
	4.1 Motivations
	4.2 General Architecture
	4.3 State of the Art
	4.4 Challenges

	5 Conclusion
	References

	Author Index

