®

Check for
updates

Deep Learning-Based Vulnerable
Function Detection: A Benchmark

Guanjun Lin', Wei Xiao?, Jun Zhang'® and Yang Xiang!

1 School of Software and Electrical Engineering, Swinburne University of Technology,
Hawthorn, Melbourne, VIC 3122, Australia
junzhang@swin.edu.au
2 School of Computer Science and Engineering, Changchun University of Technology,
Changchun, Jilin Province, China

Abstract. The application of Deep Learning (DL) technique for code
analysis enables the rich and latent patterns within software code to
be revealed, facilitating various downstream tasks such as the soft-
ware defect and vulnerability detection. Many DL architectures have
been applied for identifying vulnerable code segments in recent litera-
ture. However, the proposed studies were evaluated on self-constructed /-
collected datasets. There is a lack of unified performance criteria, acting
as a baseline for measuring the effectiveness of the proposed DL-based
approaches. This paper proposes a benchmarking framework for building
and testing DL-based vulnerability detectors, providing six built-in main-
stream neural network models with three embedding solutions available
for selection. The framework also offers easy-to-use APIs for integra-
tion of new network models and embedding methods. In addition, we
constructed a real-world vulnerability ground truth dataset containing
manually labelled 1,471 vulnerable functions and 1,320 vulnerable files
from nine open-source software projects. With the proposed framework
and the ground truth dataset, researchers can conveniently establish a
vulnerability detection baseline system for comparison and evaluation.
This paper also includes usage examples of the proposed framework,
aiming to investigate the performance behaviours of mainstream neu-
ral network models and providing a reference for DL-based vulnerability
detection at function-level.

Keywords: Vulnerability detection + Neural network * Function-level
detection

1 Introduction

Deep Learning (DL), a breakthrough technique which has achieved promising
results in many fields such as image processing and natural language process-
ing (NLP), has also been widely applied for software code analysis [3] and
for vulnerability detection [17,18,20,21]. Various DL architectures, including
the Multi-Layer Perceptron (MLP) [10,29], the Convolutional Neural Network

© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ICICS 2019, LNCS 11999, pp. 219-232, 2020.
https://doi.org/10.1007/978-3-030-41579-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41579-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-41579-2_13

220 G. Lin et al.

(CNN) [11,16,27,32], and the Long-Short Term Memory (LSTM) [18,20,21]
have been adopted for learning latent vulnerable code patterns from different
software code representations (e.g., the Abstract Syntax Trees (ASTs) or the
Control Flow Graphs (CFGs)). However, the aforementioned approaches were
evaluated on self-constructed /-collected datasets, and /or compared with conven-
tional code analysis methods. There is a lack of a unified benchmarking dataset
for evaluating the effectiveness of these DL-based approaches and there is also
the absence of a baseline system which can be easily replicated to act as a reliable
performance metric for comparison and evaluation.

In this paper, we take a step forward to bridge this gap by proposing a
benchmarking framework based on Keras [7] with TensorFlow [2] backend, pro-
viding one-click execution scripts for establishing a DIL-based baseline system
for vulnerability detection. The framework encapsulates six mainstream neural
network models and can be easily extended to support different code embed-
ding schemes and neural models. We also constructed a vulnerability dataset at
two levels of granularity i.e., the file-level and the function-level. The dataset is
labeled based on the information provided by the Common Vulnerabilities and
Exposures (CVEs)! and the National Vulnerability Database (NVD)?, which are
publicly available vulnerability data repositories. With this dataset and the pro-
posed framework, a DL-based baseline system for vulnerability detection can be
conveniently established for performance comparison and evaluation. We have
published the proposed framework and dataset at Github®. In summary, the
contributions of this paper are two-fold:

— We developed a modularized benchmarking framework encapsulating six
mainstream neural network models and two different code embedding
schemes, providing one-click execution for building and testing vulnerability
detection models. To guarantee the extendability, the framework offers APIs
for easy integration of more neural network models and to support more code
embedding solutions.

— We constructed a real-world vulnerability ground truth dataset for perfor-
mance evaluation of vulnerability detection solutions. We manually checked
nine open-source projects across 1,089 popular releases and labelled /collected
1,471 vulnerable and 59,297 non-vulnerable source code functions. We also
record 1,320 vulnerable and 4,460 non-vulnerable files.

The rest of this paper is organized as follows: Sect.2 reviews the existing
studies which applied DL techniques for vulnerability detection. Section 3 details
the design and implementation of the proposed framework. We also introduce our
proposed dataset and the known datasets in this field. In Sect. 4, we provide case
studies to demonstrate how the proposed framework facilitates the building of
the baseline systems using the different datasets. Section 5 concludes the paper.

! https://cve.mitre.org)/.
2 https://nvd.nist.gov/.
3 https://github.com/DanielLin1986 /Function-level- Vulnerability- Detection.

https://cve.mitre.org/
https://nvd.nist.gov/
https://github.com/DanielLin1986/Function-level-Vulnerability-Detection

Deep Learning-Based Vulnerable Function Detection: A Benchmark 221

2 Related Work

The successes of neural techniques in many areas, particularly in the field of NLP,
motivated researchers to apply neural networks for code analysis for the detection
of software defects and vulnerabilities. Early researchers adopted fully connected
networks (a.k.a the Deep Neural Networks (DNNs) or the MLP) for detect-
ing vulnerabilities in PHP applications [29], Linux programs [10] and Android
applications [9,23]. Nevertheless, the approaches proposed by these studies are
task-/project-specific. Thus, no performance comparison was made among these
studies.

Later studies generally built on the assumption that software code con-
tains semantics and syntactic resembling the natural languages. Therefore, ideas
and techniques from the NLP field have been applied for learning code seman-
tics indicative of software vulnerabilities. The CNN (e.g., the text-CNN [13]),
which can learn high-level representations from small context windows, has been
applied for detecting vulnerabilities at assembly level [16] and at source code
function-level [11,27]. Another line of studies applied variants of Recurrent Neu-
ral Network (RNN) (e.g., the bidirectional LSTM network) for learning vul-
nerable code patterns [17-21]. The authors assumed that the vulnerable code
semantics could be revealed by analyzing a long-range code context which could
be achieved by using the LSTM network.

Most recently, researchers proposed more expressive models by constructing
complex network structures. Wu et al. [32] added convolutional layers on top of
an LSTM network for identifying vulnerable Linux programs. Le et al. [15] built
their model on a Maximal Divergence Sequential Auto-Encoder (MDSAE) for
extracting representations from sequences of machine instructions. Choi et al.
[6] and Sestili et al. [28] applied the memory network [30,31] for detecting buffer
overflow vulnerabilities. However, due to each study using self-constructed/-
collected dataset, there was no systematic performance comparison conducted
across different approaches to indicate their effectiveness.

3 Benchmarking Framework

In this section, we introduce the design of the proposed benchmarking framework
and our proposed dataset which can be utilized for establishing a baseline system
for vulnerability detection. We also suggest a new metric for evaluating the
performance vulnerability detectors.

3.1 Architecture and Implementation

Fig. 1 illustrates the modularized implementation of the proposed framework. It
consists of three modules: the code encoding/embedding module, the training
module and test module. It is a common practice to convert text/code tokens
to vector representations so that they are acceptable by the underlying Machine
Learning (ML) algorithms. More importantly, we aim at preserving the text/code

222 G. Lin et al.

I Model pool |
| ! }
1 DNN !
‘ . ! ' |
, " Encoding : LSTM : 1
Raw input } ; ' ! }
777777777777777777777 o ; Visualizati

sequences }:, \ ; GRU ‘ Isualization }
i Word2vec ' ' ; |
}‘\ ,,,,,,,,,,,,,,,,,,,,,, ' Bi-LSTM ' Representations | |
i 1 A extraction |
! Glove ! Bi-GRU ! i

‘ I — A
! FastText ‘ Text-CNN - |] >

I i
! API N AP i
T — |
|
est [Trained model (text-CNN) > Logs
sequences | | | !
Code Encoding/ Training Test
Embedding Module Module Module

Fig.1. The proposed benchmarking framework consists of three modules: the code
encoding/embedding module, the training module and the test module. In the train-
ing phase, it allows users to choose different embedding schemes and different neural
network models for building vulnerability detectors. In the test phase, it enables users
to test the trained network model or to obtain representations from an arbitrary layer
of a trained network. The framework provides APIs for easy integration of word/code
embedding schemes and neural network models.

semantics while converting the text/code tokens to meaningful vector represen-
tations which we call the embeddings. The encoding/embedding module is built
to serve this purpose. The module wraps mainstream word embedding schemes
to enable the textual inputs i.e., the raw input code sequences to be converted
to meaningful embeddings when we plot these embedding in a vector space,
the semantically similar code tokens will be in close proximity in that vector
space. This allows the neural network models to learn from a rich source. At this
stage, the framework encapsulates three popular word embedding models: the
Word2vec [22] model, the GloVe [24] model and FastText model [5].

In the training phase, the training module allows users to choose one of the
built-in neural network models from the model pool for building a vulnerabil-
ity detector. The framework provides six mainstream neural models: the DNN,
the text-CNN and four RNN variants (i.e., the LSTM [12], the Gated Recurrent
Unit (GRU) [14], and their bidirectional forms (the Bi-LSTM and the Bi-GRU)).
During the test phase, users can feed the test data to a trained model and obtain
detection results. The results are provided in a user-friendly format, including
the confusion matrix and a CSV file recording the provability of each test sam-
ple containing the vulnerable code. Additionally, users can use trained neural
networks as feature generators for generating neural representations from an
arbitrary layer of a network. With this functionality, the generated represen-
tations can be used as features for downstream tasks (e.g., to train a random

Deep Learning-Based Vulnerable Function Detection: A Benchmark 223

forest classifier). The test module also provides Keras APIs for visualizing train-
ing /validation processes and supports TensorBorad* logging system.

The framework provides one-click execution Python scripts, allowing users to
invoke different modules of the framework to accomplish various tasks by spec-
ifying script arguments/parameters. For example, users can specify arguments
such as —train or —test to switch the framework to training or test model. In
addition, the script arguments allow users to select different built-in code embed-
ding schemes and network models. A configuration file which contains plain text
parameters is provided to offer more detailed options for model performance
optimization. Users can either use the default settings for model training or
customize the training process by fine-tuning the training settings and model
hyperparameters.

We also provide easy-to-use APIs so that users can easily integrate new
embedding schemes or implement their network models for training. The embed-
ding API requires a Python dictionary object known as the embedding index.
It is a table containing mappings between code tokens and the corresponding
vector representations learned by the embedding method. The network model
API accepts a Python class whose constructor takes one parameter which is the
instance of the configuration file. Any models implemented using Keras or Ten-
sorFlow can be encapsulated in a Python class and invoked by the framework.

3.2 Dataset

The Proposed Dataset. The dataset we construct consists of nine popular
open-source software projects written in C programming language, as listed in
Table 1. It provides dual-granularity labelled samples, namely the vulnerable and
non-vulnerable labels at function and file level. The vulnerable functions and
files are labelled based on the description of the NVD and CVE web pages. In
this paper, we focus on the vulnerabilities disclosed in the open-source projects
because their source code is publicly available.

Typically, a vulnerability description on the NVD/CVE page specifies the
exact location of the vulnerable code fragments in a particular version of a pro-
gram. If the vulnerable code fragments are within a function boundary, we down-
load the corresponding version of the source code of the program and label the
source code function as vulnerable. Meanwhile, we label the file which contains
the vulnerable function as vulnerable. A vulnerable file can contain at least one
vulnerable function. For example, the vulnerable code fragments can span across
multiple functions but they are within a file boundary, we only label the file as
vulnerable. On the cases where the vulnerability description does not mention
the location of vulnerable code fragments, we check the program’s Github and
search the commit messages using the CVE ID as the keyword. We read through
the commit message(s) of the returned result and identify the commit(s) that
contain(s) the fix of the CVE. By analyzing the diff files, we identify the code
fragment(s) associated with the CVE fix and the diff files allow us to track

4 https://www.tensorflow.org/guide /summaries_and_tensorboard.

https://www.tensorflow.org/guide/summaries_and_tensorboard

224 G. Lin et al.

Table 1. The number of vulnerable and non-vulnerable functions/files involved in the
nine open-source projects in the proposed dataset.

Open-source File-level Function-level

projects
of non-vulnerable |# of vulnerable # of non-vulnerable |# of vulnerable
files collected files labeled functions collected |functions labeled

Asterisk 862 84 17,755 94

FFmpeg 553 293 5,552 249

HTTPD 248 141 3,850 57

LibPNG 34 44 577 45

LibTIFF 94 151 731 123

OpenSSL 867 150 7,068 159

Pidgin 448 42 8,626 29

VLC Player 616 45 6,115 44

Xen 738 370 9,023 671

Total 4,460 1,320 59,297 1,471

the code prior to the fix. Then, we download the code before the fix and label
them accordingly. By using this method, we can label some vulnerable files and
functions which are not clearly described on the NVD and CVE pages. For the
vulnerabilities which are not related to any functions or files (e.g., vulnerabili-
ties caused due to the misconfiguration or incorrect settings). We simply discard
these CVEs.

To collect the non-vulnerable files and functions, we download the latest
release of the software projects at the time of writing. We assume that all the
known vulnerability records in the CVE and NVD have been fixed in the latest
release of a software project. To obtain the non-vulnerable files, we exclude the
vulnerable files (despite these files have been fixed in the latest version) and
use the remaining files as the non-vulnerable files. To obtain the non-vulnerable
functions, we collect all the functions from the non-vulnerable files and label
them as non-vulnerable.

The Synthetic Dataset. The synthetic vulnerability datasets provided by the
Software Assurance Reference Dataset (SARD) project [1] contains artificially
constructed test cases to simulate known vulnerable source code settings and
patterns. The project consists of stand-alone test suits for C/C++ and Java,
which are known as the Juliet Test Suites [4]. Each test site contains one main
function so that the code can be compiled. In this paper, we collected all the C
test cases from the SARD project and extracted 100,000+ functions from the
test cases, forming a large synthetic function pool, as shown in Table 2.

The proposed dataset and the SARD project dataset form the base for bench-
marking the proposed DL-based vulnerability detection framework. We aim to
provide case studies of our framework and evaluate the performance behaviours
of each neural network model on the proposed dataset containing real-world
vulnerability samples and the SARD dataset having only synthetic samples.

Deep Learning-Based Vulnerable Function Detection: A Benchmark 225

Table 2. The number of vulnerable and non-vulnerable functions extracted from the
SARD project.

Dataset # of test | # of vulnerable | # of non-vulnerable
cases C functions C functions
The SARD project | 64,099 83,710 52,290

3.3 Performance Metrics

Precision, recall and F1-score are mainstream performance metrics for measuring
the success of classification tasks. However, in the vulnerability detection sce-
nario, one may face the severe data imbalance issue since there are significantly
more non-vulnerable samples than the vulnerable ones in practice. For instance,
the ratio of non-vulnerable functions to vulnerable ones is approximately 40 in
our proposed dataset. Using metrics such as precision and recall would under-
estimate the detector’s performance because the classifier tends to fit the data
distribution of the majority class and by default, it uses the 0.5 as the decision
boundary in the cases of binary classification. Therefore, in this paper, we apply
the top-k percentage precision (P@KY%) and top-k percentage recall (RQK%)
as the metrics for evaluating the performance of vulnerability detectors. Similar
metrics are usually adopted in the context of information retrial system such
as search engines for measuring how many relevant documents are acquired in
all the top-k retrieved documents [8]. We use these metrics in the vulnerability
detection context to simulate a practical case where the number of functions to
be retrieved for inspection accounted for a small proportion of total functions
due to the constraints of time and resources.

In the vulnerability detection context, the top-k percentage refers to a list
of retrieved functions accounted for k% of the total functions in the test set
which are ordered by their probabilities of being vulnerable. The P@QKY% denotes
the proportion of actual vulnerable functions identified by the detector in the
top-k% retrieved function list. The R@K% refers to the proportion of actually
found vulnerable functions which are in the top-k% returned function list. For
measuring the vulnerable class, the P@K% and R@QKY% can be calculated using
following equations:

PO = rpawgs+ rrawe 5= mramey rvarn Y

where TPQE% is the true positive samples which are the actual vulnerable func-
tions identified by the detector when retrieving k% most likely vulnerable func-
tions. For example, there are 10,000 functions in a test set. After prediction,
we examine 1% (k = 1) of the total functions which are the most likely to be
vulnerable. That is, we retrieve top 100 functions ranked by their probability of
being vulnerable and identify how many of these functions are actually vulner-
able. Similarly, the FP@Qk% denotes the false vulnerable functions found by the

226 G. Lin et al.

Table 3. The number of vulnerable and non-vulnerable functions partitioned on two
datasets: the proposed dataset and the SARD dataset.

Dataset Training set Validation set Test set

of vul. | # of total | # of vul. | # of total | # of vul. | # of total
functions | functions | functions |functions |functions |functions

The proposed | 883 36,458 294 12,155 294 12,155
dataset
The SARD | 20,941 45,000 7,119 15,000 6,940 15,000
dataset

detector when returning k% most probable vulnerable functions. The FNQk%
refers to the true vulnerable samples missed by the detector when returning k%
functions.

4 Evaluation

This section evaluates the proposed benchmarking framework using the afore-
mentioned real-world dataset and the SARD synthetic dataset for establishing
baseline systems.

4.1 Experiment Settings and Environment

We set up two baseline systems using the proposed framework on two datasets.
The first baseline system uses our constructed dataset, consisting of nine real-
world open-source projects. It aims to investigate how the neural network mod-
els perform in a real-world scenario where severe data imbalance issue existed.
The second baseline system uses the synthetic function samples from the SARD
dataset. We extract functions from the test cases of the SARD project and ran-
domly selected a subset of functions to form the dataset. The second baseline
system aims to examine the behaviour of neural network models in an ideal
scenario, so the dataset should not have data imbalance issue.

In this paper, we build the vulnerability detector at function-level and the
Word2vec embedding scheme is chosen for embedding the code tokens. We use
all the samples from our proposed dataset. For the SARD project, we randomly
selected 35,000 vulnerable and 40,000 non-vulnerable C function samples from
the test cases downloaded from the SARD data repository”®. For both datasets,
we partition the samples into the training, validation and test sets with the
ratio of 6:2:2. The number of vulnerable and non-vulnerable samples in each set
is listed in Table 3. For all the neural network models applied for case studies, we
use the Stochastic Gradient Descent (SGD) optimizer with all default settings
provided by Keras and the loss function to minimize is the binary cross-entropy.

5 https://samate.nist.gov/SARD /testsuite.php#sardsuites.

https://samate.nist.gov/SARD/testsuite.php#sardsuites

Deep Learning-Based Vulnerable Function Detection: A Benchmark 227

The neural models were implemented using Keras (version 2.2.4) [7] with
a TensorFlow backend (version 1.13.1) [2]. The Word2Vec embedding software
was provided by the gensim package (version 3.4.0) [26] using all default settings.
The computational system used was a server running CentOS Linux 7 with two
Physical Intel(R) Xeon(R) E5-2690 v3 2.60GHz CPUs and 256GB RAM with
NVIDIA GTX 1080Ti GPUs.

4.2 Case Studies — The Bi-LSTM Network

In this case, we build the vulnerability detector using Bi-LSTM network and
perform training and test on two datasets — the proposed dataset and the SARD
dataset. We partition them into three sets according to Table 2. The Bi-LSTM
network we design has seven layers. The first layer is the Word2vec embedding
layer which converts the input code sequences to meaningful embedding vectors.
The second and the third layers are bidirectional LSTM layers each of which con-
tains 64 LSTM cells. A bidirectional layer contains a forward and a backward
LSTM network so that the combined output can obtain information from both
the preceding and succeeding context simultaneously. This allows the Bi-LSTM
network to facilitate the learning of vulnerable code patterns which are associ-
ated with multiple lines of code [18,21]. We concatenate the output of the LSTM
networks of two directions and use a pooling layer for downsampling features.
The last three layers of the network are dense layers, aiming to further converge
the outputs to a single probability.

As the results are shown in Table4, the Bi-LSTM network achieved better
performance on the synthetic samples from the SARD dataset. When retriev-
ing less than 50% of functions ranked by the probability of being vulnerable, the
detector could identify all the vulnerable functions. When returning 50% of func-
tions, all the vulnerable functions were found (represented by a 100% recall). In
contrast, the Bi-LSTM network underperformed on the proposed dataset consist-
ing of real-world function samples. When retrieving 1% of total functions which
were considered being vulnerable, only 54% were actually vulnerable. However,
when returning 20% of total functions, 87% of actual vulnerable functions could
be identified and 99% of vulnerable function were found when retrieving only
50% of functions.

Table 4. The comparative results of the Bi-LSTM network on two datasets when
retrieving different percentages of function samples ordered by their probabilities of
being vulnerable.

Dataset Precision and recall calculated when top k% functions were retrieved
1% 10% 20% 50%
Precision | Recall | Precision | Recall | Precision | Recall | Precision | Recall
The proposed dataset| 54% 22% 18% 5% 10% 87% 5% 99%
The SARD dataset 100% 2% |100% 22% |100% 43% 193% 100%

228 G. Lin et al.

4.3 Case Studies — The Text-CNN

Using the identical data partition setting mentioned in the previous case study,
we build the vulnerability detector using the text-CNN implemented by Kim
[13]. The only difference is that the convolution layer we use contains only 16 fil-
ters with four different sizes being 3, 4, 5 and 6, respectively. A filter can extract
features from a small context window and various filters of different sizes are able
to obtain different levels of features from the code sequences. This is different
from the Bi-LSTM network which learns the long-range contextual dependen-
cies from the code through the LSTM cells in the bidirectional structure. The
filters of the text-CNN focus on extracting local features from small code con-
texts. Subsequently, the extracted features are passed to the pooling layers. After
the pooling layers, the three dense layers are converted the features to a single
probability.

Table 5. The comparative results of the text-CNN on two datasets when retrieving dif-
ferent percentages of function samples ordered by their probabilities of being vulnerable.

Dataset Precision and recall calculated when top k% functions were retrieved
1% 10% 20% 50%
Precision |Recall | Precision | Recall | Precision | Recall | Precision | Recall
The proposed dataset |70% 29% 120% 81% [11% 90% 5% 97%
The SARD dataset |100% 2% 100% 22% |100% 43% 91% 98%

Table 5 shows the results of using text-CNN as the vulnerability detector.
Similar to the results achieved by the Bi-LSTM network, the text-CNN per-
formed well on the SARD dataset. The only difference between the Bi-LSTM
network and the text-CNN on the SARD dataset is that when retrieving 50% of
potentially vulnerable functions, the text-CNN could correctly identify 98% of
actual vulnerable functions in the test set. Compared to the result achieved by
the Bi-LSTM network (being 100%), the text-CNN underperformed. However,
on our proposed dataset containing real-world samples, the text-CNN outper-
formed the Bi-LSTM network when returning less than 20% of the vulnerable
functions. In particular, when retrieving 1% of vulnerable functions, the text-
CNN could find 29% of total vulnerable functions. In contrast, the Bi-LSTM
could identify only 22% of total vulnerable ones.

4.4 Case Studies — The DNN

Keeping the data partition setting unchanged, we build the vulnerability detector
using the network containing fully connected layers i.e., the DNN. In contrast
to the Bi-LSTM network and the text-CNN, the DNN is a generic structure
not specifically designed for processing sequential data nor for spatial data. It is
also “input structure-agnostic”. Namely, the network can take data of different

Deep Learning-Based Vulnerable Function Detection: A Benchmark 229

formats as inputs [25]. A DNN consists of multiple dense layers which map the
inputs to space where data of different classes are more separable. In a sense,
dense layers can be used to learn a non-linear function (with the non-linearity
introduced by the activation functions) which better fits the complex and latent
patterns of the data.

The DNN we use contains 6 layers. Identical to the Bi-LSTM network and
the text-CNN, the first layer is the embedding layer for converting the code
sequences to meaningful embeddings. The second layer flattens the outputs of
the embedding layer so that the outputs can be 2-D tensors acceptable by the
subsequent dense layers. The first dense layer contains 128 neurons. The number
of the neurons in the second layer reduces to half and the same settings are
applied for the third layer. The last layer has only one neuron which converges
the outputs of the previous layer to a single probability.

Table 6. The comparative results of the DNN on two datasets when retrieving different
percentages of function samples ordered by their probabilities of being vulnerable.

Dataset Precision and recall calculated when top k% functions were retrieved
1% 10% 20% 50%
Precision |Recall | Precision | Recall | Precision | Recall | Precision | Recall
The proposed dataset|44% 18% |15% 62% [10% 80% 5% 96%
The SARD dataset |100% 2% 100% 22% |100% 43% |93% 100%

Table 6 lists the results of using DNN as the vulnerability detector on both
the SARD and the proposed datasets. In contrast to the Bi-LSTM network and
the text-CNN, the DNN underperformed on the proposed real-world dataset,
achieved only 44% precision and 18% recall when retrieving 1% of the total
functions which are most likely vulnerable. However, when retrieving 50% of the
total functions, the performance of DNN was identical to that of the Bi-LSTM
network and the text-CNN. On the SARD dataset, the DNN performed similarly
compared with the other two networks.

4.5 Discussion

This section discusses the possible causes of the performance behaviours of
the three network structures described in the aforementioned case studies. As
shown in Tables4, 5 and 6, when using the SARD dataset which consists of
synthetic function samples, all the networks achieved similar and satisfactory
performance. In contrast, the same networks underperformed on the proposed
real-world dataset. The underlying reason is that the synthetic function samples
are artificially constructed, following a template-like coding format. Therefore,
the vulnerable and non-vulnerable code patterns can be easily learned and differ-
entiated by the chosen neural networks. Whereas, the proposed dataset contains
real-world function samples from open-source projects among which the code

230 G. Lin et al.

structure and logic vary significantly. Thus, the vulnerable code patterns are
diverse and hidden in the complex code logic, which are difficult to be captured
by the neural network models.

When using the proposed real-world dataset, different network structures
exhibited varying performance behaviours, demonstrating that network struc-
tures of different types have different capacities in terms of learning vulnerable
code patterns. Compared with the Bi-LSTM network and the text-CNN, the
DNN underperformed on the proposed real-world dataset. This indicated that
the DNN which contains only the fully connected dense layers was less effective
for learning the characteristics of the potentially vulnerable code. Nonetheless,
the Bi-LSTM network and the text-CNN which are specifically designed for
processing sequential and spatial data (i.e., the code sequences in our context)
facilitated the learning of vulnerable code patterns, resulting in more accurate
vulnerability detection on the real-world samples. The Bi-LSTM network which
has bidirectional LSTM layers and the text-CNN which equips with multiple fil-
ters, are capable of handling the contextual dependencies among the elements in
a sequence. Noticeably, the text-CNN achieved the best performance on the pro-
posed dataset when retrieving less than 20% of the total functions. This revealed
that the high-level features which were extracted from small context windows by
the filters of the text-CNN contributed to more effective learning of vulnerable
code patterns.

5 Conclusion and Future Work

In conclusion, we propose a DL-based framework, providing easy-to-use Python
scripts for building/testing vulnerability detectors. To evaluate the usability of
the framework and the performance of the built-in neural networks, we apply
two datasets for a comprehensive benchmark. The first dataset is the SARD
dataset containing synthetic vulnerability samples and the second one is a real-
world vulnerability dataset which we manually constructed by labelling more
than 1,300 vulnerable files and functions. We performed three case studies using
the DNN;, the Bi-LSTM network and the text-CNN network. The experiments
showed that their performance behaviours were identical on the SARD synthetic
dataset, indicating that the network structures were not an important variable
affecting the performance on the synthetic vulnerability samples. Nevertheless,
the performance behaviours of the three networks on the proposed real-world
dataset revealed that the network models which were context-aware i.e., the
text-CNN and the Bi-LSTM networks facilitated the detection of the real-world
vulnerable samples.

The proposed real-world vulnerability dataset is still in a preliminary stage,
requiring further effort to improve. Our future work will focus on collecting vul-
nerable and non-vulnerable code at binary-level, since many software tools are
closed-source. Additionally, the current dataset does not include the patched
vulnerabilities as the non-vulnerable samples. Being able to differentiate the
vulnerabilities from their patched versions can be a key performance metric for

Deep Learning-Based Vulnerable Function Detection: A Benchmark 231

evaluating the effectiveness of the deep learning-based detectors. Thus, obtain-
ing the patched vulnerable functions and files should also be our future work.
Furthermore, we will continue to label more vulnerable samples and meanwhile,
adding vulnerability type and severity information to the labeled vulnerabilities
so that the dataset can be more useful to the research in this field.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Software assurance reference dataset project. https://samate.nist.gov/SRD/

(2019). Accessed: 20 Aug 2019

Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: OSDI,
vol. 16, pp. 265-283 (2016)

Allamanis, M., Barr, E.T., Devanbu, P., Sutton, C.: A survey of machine learning
for big code and naturalness. ACM Comput. Surv. (CSUR) 51(4), 81 (2018)
Black, P.E., Black, P.E.: Juliet 1.3 Test Suite: Changes From 1.2. US Department
of Commerce, National Institute of Standards and Technology (2018)
Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. arXiv preprint arXiv:1607.04606 (2016)

Choi, M.J., Jeong, S., Oh, H., Choo, J.: End-to-end prediction of buffer
overruns from raw source code via neural memory networks. arXiv preprint
arXiv:1703.02458 (2017)

Chollet, F., et al.: Keras. https://github.com/fchollet /keras (2015)

Manning, C.D., Raghavan, P., Schiitze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2009)

Dong, F., Wang, J., Li, Q., Xu, G., Zhang, S.: Defect prediction in android binary
executables using deep neural network. Wireless Pers. Commun. 102(3), 2261-2285
(2018)

Grieco, G., Grinblat, G.L., Uzal, L., Rawat, S., Feist, J., Mounier, L.: Toward
large-scale vulnerability discovery using machine learning. In: Proceedings of the
Sixth ACM Conference on Data and Application Security and Privacy, pp. 85-96.
ACM (2016)

Harer, J.A., et al.: Automated software vulnerability detection with machine learn-
ing. arXiv preprint arXiv:1803.04497 (2018)

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735-1780 (1997)

Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882 (2014)

Kostadinov, S.: Understanding GRU networks, December 2017. https://www.
towardsdatascience.com. Accessed 30 Apr 2019

Le, T., et al.: Maximal divergence sequential autoencoder for binary software vul-
nerability detection. In: Proceedings of the 7th International Conference on Learn-
ing Representations (2018)

Lee, Y.J., Choi, S.H., Kim, C., Lim, S.H., Park, K.W.: Learning binary code with
deep learning to detect software weakness. In: KSII The 9th International Confer-
ence on Internet (ICONI) 2017 Symposium (2017)

Li, Z., et al.: SySeVR: A framework for using deep learning to detect software
vulnerabilities. arXiv preprint arXiv:1807.06756 (2018)

Li, Z., et al.: VulDeePecker: a deep learning-based system for vulnerability detec-
tion. In: Proceedings of NDSS (2018)

https://samate.nist.gov/SRD/
http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1703.02458
https://github.com/fchollet/keras
http://arxiv.org/abs/1803.04497
http://arxiv.org/abs/1408.5882
https://www.towardsdatascience.com
https://www.towardsdatascience.com
http://arxiv.org/abs/1807.06756

232

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

G. Lin et al.

Lin, G., et al.: Software vulnerability discovery via learning multi-domain knowl-
edge bases. IEEE Transactions on Dependable and Secure Computing (2019).
https://doi.org/10.1109/TDSC.2019.2954088

Lin, G., Zhang, J., Luo, W., Pan, L., Xiang, Y.: POSTER: vulnerability discovery
with function representation learning from unlabeled projects. In: Proceedings of
the 2017 SIGSAC Conference on CCS, pp. 2539-2541. ACM (2017)

Lin, G., et al.: Cross-project transfer representation learning for vulnerable function
discovery. IEEE Trans. Ind. Inform. 14(7), 3289-3297 (2018)

Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

Peng, H., Mou, L., Li, G., Liu, Y., Zhang, L., Jin, Z.: Building program vector rep-
resentations for deep learning. In: Zhang, S., Wirsing, M., Zhang, Z. (eds.) KSEM
2015. LNCS (LNATI), vol. 9403, pp. 547-553. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-25159-2_49

Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word represen-
tation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532-1543 (2014)

Ramsundar, B., Zadeh, R.B.: TensorFlow for Deep Learning: From Linear Regres-
sion to Reinforcement Learning. O’Reilly Media, Inc., Newton (2018)

Rehiifek, R., Sojka, P.: Software Framework for Topic Modelling with Large Cor-
pora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, ELRA, Valletta, Malta, pp. 45-50, May 2010. http://is.muni.cz/
publication /884893 /en

Russell, R., et al.: Automated vulnerability detection in source code using deep
representation learning. In: 2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA), pp. 757-762. IEEE (2018)

Sestili, C.D., Snavely, W.S., VanHoudnos, N.M.: Towards security defect prediction
with Al arXiv preprint arXiv:1808.09897 (2018)

Shar, L.K., Tan, H.B.K.: Predicting common web application vulnerabilities from
input validation and sanitization code patterns. In: 2012 Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering, pp.
310-313. IEEE (2012)

Sukhbaatar, S., Weston, J., Fergus, R., et al.: End-to-end memory networks. In:
Advances in Neural Information Processing Systems, pp. 2440-2448 (2015)
Weston, J., Chopra, S., Bordes, A.: Memory networks. arXiv preprint
arXiv:1410.3916 (2014)

Wu, F., Wang, J., Liu, J., Wang, W.: Vulnerability detection with deep learning.
In: 2017 3rd IEEE International Conference on Computer and Communications
(ICCC), pp. 1298-1302. IEEE (2017)

https://doi.org/10.1109/TDSC.2019.2954088
http://arxiv.org/abs/1301.3781
https://doi.org/10.1007/978-3-319-25159-2_49
https://doi.org/10.1007/978-3-319-25159-2_49
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
http://arxiv.org/abs/1808.09897
http://arxiv.org/abs/1410.3916

	Deep Learning-Based Vulnerable Function Detection: A Benchmark
	1 Introduction
	2 Related Work
	3 Benchmarking Framework
	3.1 Architecture and Implementation
	3.2 Dataset
	3.3 Performance Metrics

	4 Evaluation
	4.1 Experiment Settings and Environment
	4.2 Case Studies – The Bi-LSTM Network
	4.3 Case Studies – The Text-CNN
	4.4 Case Studies – The DNN
	4.5 Discussion

	5 Conclusion and Future Work
	References

