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Preface

This book contains the papers that were selected for presentation and publication at the
21st International Conference on Information and Communications Security
(ICICS 2019) – which was held in Beijing, China, December 15–17, 2019. ICICS 2019
was organized by the School of Software and Microelectronics, Peking University, the
Institute of Information and Engineering, Chinese Academy of Sciences, and the
Institute of Software, Chinese Academy of Sciences.

ICICS, which was launched in Beijing in 1997, aims at bringing together leading
researchers and practitioners from both academia and industry to exchange their
experiences and insights related to computer and communications security. We orga-
nized ICICS 2019 in the same venue as ICICS 1997, to commemorate late Prof. Sihan
Qing, a cybersecurity pioneer and a founder of ICICS.

This year’s Program Committee (PC) consisted of 73 members with diverse
backgrounds and broad research interests. In response to the call for papers, 199 papers
were submitted to the conference. The number of submissions was among the top in
ICICS history. The review process was double-blind, and the papers were evaluated on
the basis of their significance, novelty, and technical quality. Most papers were
reviewed by three or more PC members. The PC meeting was held electronically, with
intensive discussion over a period of two weeks. Finally, 47 papers were selected for
presentation at the conference (with an acceptance rate of 23.6%).

This year we set the best paper and best student paper awards for the first time with a
monetary prize generously sponsored by Springer. The paper “Prototype-based
Malware Traffic Classification with Novelty Detection” authored by Lixin Zhao, Lijun
Cai, Aimin Yu, Zhen Xu, and Dan Meng received the best paper award. Two papers
shared the best student paper award: “AADS: A Noise-Robust Anomaly Detection
Framework for Industrial Control Systems” authored by Maged Abdelaty, Roberto
Doriguzzi-Corin, and Domenico Siracusa; and “Automated Cyber Threat Intelligence
Reports Classification for Early Warning of Cyber Attacks in Next Generation SOC”
authored by Wenzhuo Yang and Kwok-Yan Lam. These papers received very positive
comments by the reviewers, and we appreciated their contributions to ICICS 2019.

This year we had two outstanding keynote talks: “Towards Leakage Resilient User
Authentication” presented by Prof. Robert Deng from Singapore Management
University, Singapore, and “Can’t You Hear Me Knocking: Novel Security and
Privacy Threats to Mobile Users” by Prof. Mauro Conti from University of Padua,
Italy. Our deepest gratitude to Robert and Mauro for their excellent presentations.

ICICS 2019 was made possible by the joint efforts of many individuals and orga-
nizations. We sincerely thank the authors of all submissions. We are grateful to all the
PC members for their great effort in reading, commenting, debating, and finally
selecting the papers. We thank all the external reviewers for assisting the PC in their
particular areas of expertise. We also thank the ICICS Steering Committee, the general
chairs (Qingni Shen and Zhen Xu), the publicity chairs (Qi Li and Weizhi Meng), the



publication chair (Dongmei Liu), and the Local Organizing Committee. Finally, we
thank everyone else, speakers and session chairs, for their contribution to the program
of ICICS 2019.

We would also like to thank the sponsors for their generous support: Ali, TCG,
Microsoft, Intel, AWS, 360, Neusoft, Nationz Technology, Octa Innovation,
SANGFOR, China International Talent Exchange Foundation, and Springer.

December 2019 Jianying Zhou
Xiapu Luo
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Prototype-Based Malware Traffic
Classification with Novelty Detection

Lixin Zhao1,2, Lijun Cai1, Aimin Yu1(B), Zhen Xu1, and Dan Meng1

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{zhaolixin,cailijun,yuaimin,xuzhen,mengdan}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

Abstract. Automated malware classification using deep learning tech-
niques has been widely researched in recent years. However, existing
studies addressing this problem are always based on the assumption of
closed world, where all the categories are known and fixed. Thus, they
lack robustness and do not have the ability to recognize novel malware
instances. In this paper, we propose a prototype-based approach to per-
form robust malware traffic classification with novel class detection. We
design a new objective function where a distance based cross entropy
(DCE) loss term and a metric regularization (MR) term are included.
The DCE term ensures the discrimination of different classes, and the MR
term improves the within-class compactness and expands the between-
class separateness in the deeply learned feature space, which enables the
robustness of novel class detection. Extensive experiments have been con-
ducted on datasets with real malware traffic. The experimental results
demonstrate that our proposed approach outperforms the existing meth-
ods and achieves state-of-the-art results.

Keywords: Malware classification · Convolutional Neural Network ·
Novelty detection

1 Introduction

Malware has long been one of the major security threats in the cyber space.
They are responsible for a large number of malicious activities such as identity
theft, Phishing, and Distributed Denial of Service (DDoS) attacks. As the carrier
of Internet communication, network traffic plays an important role in malware
detection.

The malware detection can be accomplished at different levels of detail. Most
of current network security devices use signature based techniques, which rely
on a database of known malware samples. They search for distinct patterns
to characterize the malware. These techniques are able to achieve high preci-
sion and low number of false alerts, but their detection ability is bounded to
the known samples and patterns included in the database. Another category of
c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ICICS 2019, LNCS 11999, pp. 3–17, 2020.
https://doi.org/10.1007/978-3-030-41579-2_1
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techniques is machine learning based detection. The main goal of this kind of
techniques is to build a classification model that can identify different types of
malware. According to whether labels are needed during model training, they
can work in unsupervised or supervised ways. The unsupervised methods are
typically used to detect new threats. They use cluster based mechanisms and
assume that samples from the same class are closer to each other than those
belonging to different classes in feature space. Unfortunately, this may not hold
true in higher-dimensional feature space such as network traffic data. Hence,
unsupervised methods often suffer from lower precision which limits their prac-
tical usefulness. By contrast, the supervised methods train classifiers under the
supervision of known malicious samples and achieve better efficacy results. Thus
they are more widely used in the field of malware detection, especially after
the emergence of deep learning techniques. However, when building classifiers,
existing studies are often based on the assumption of closed world that all the
categories appear in the testing phase have already appeared in the training
phase. This assumption, which does not conform to the actual situation, lim-
its their detection capabilities to known categories of malware and reduces their
detection accuracy. The above facts highlight the need to build a robust classifier
for both known classes classification and novel class detection.

In this paper, we propose an effective prototype-based approach for malware
traffic classification in the open world setting, where traffic from unknown or
novel malware may emerge in the testing phase. In our approach, Convolutional
Neural Network (CNN) is applied to learn feature representation for each net-
work flow (i.e., continuous packets with same 5-tuple (ip src, port src, ip dst,
port dst, protocol)). At the top of CNN, multiple prototypes, each of which can
be viewed as the mean of each class in the deeply learned feature space, are
assigned to represent different classes. The classification is performed by find-
ing the nearest prototype in the feature space. Here, from the perspective of
probability, our approach projects samples into a low-dimensional feature space
and makes the samples of each category obey Gaussian distribution, and the
prototype act as the mean of Gaussian distribution for each category. We design
a new objective function, which contains two terms namely distance based cross
entropy loss (DCE) and metric regularization (MR). The former one ensures
that different classes are discriminable. The latter one enables the closeness
between samples and their respective prototypes. Moreover, it can also improve
the within-class compactness and expand the between-class separateness in the
learned feature space, which makes the representation more suitable for novelty
detection. Under the supervision of our objective function, the CNN along with
the prototypes can be learned jointly from the raw network data.

In summary, this paper has the following major contributions:

– we propose a new prototype-based approach for malware traffic classification.
The newly proposed objective function motivates the CNN to extract more
discriminative features for network flows, which makes the model more robust
and suitable for unknown or novel malware traffic detection.
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– we conduct extensive experiments to evaluate our approach on public mal-
ware traffic datasets. The experimental results show significant improvement
compared to existing state-of-the-art malware traffic classification methods.

2 Related Work

2.1 Malware Traffic Detection and Classification

The topic of malware traffic detection and classification have long been concerned
by researchers. Traditionally, flow level statistical features combined with vari-
ous machine learning algorithms such as SVM, Random Forest, Logistic Regres-
sion and so on are tend to be used for malware detection and classification
[1,2,4,5,18,21]. They think that the flow statistical patterns like packet size,
inter-packet time, transmitted bytes etc. presented by different applications are
distinguishable. However, this may not hold true, because this coarse-grained
statistical features lead to large within-class scatter and small between-class
separation. Thus, it is hard to construct classifiers with high accuracy. Recently,
deep learning techniques have achieved great success in the field of computer
vision and speech. Attracted by their powerful ability of representation learn-
ing, researchers start trying to use deep learning based techniques to solve the
problem of malware traffic detection and classification [9,12,15,16,20,24]. Com-
pared to traditional flow statistical features, the features learned by deep neural
network are more discriminative. Unfortunately, to our best knowledge, all the
existing relevant studies perform classification under the assumption of closed
world that all the categories are known and fixed. Therefore, they can not cor-
rectly classify the traffic data generated by previously unknown malware.

2.2 Prototype Learning

Prototype indicates an average or best exemplar of a category, and it can pro-
vide a concise representation for the entire category of instances [11]. A typi-
cal method of prototype learning is K-Nearest-Neighbor (KNN) [6]. To reduce
the huge computing and storage costs for KNN, a technique called learning
vector quantization (LVQ) is proposed by [10]. Afterwards, a great number of
variations of LVQ are proposed by researchers. For prototype learning, most
of studies accomplished by optimizing the customized objective function like
in [7,8,17,22,23]. In addition, some researchers have also combined prototype
learning with probabilistic models and neural networks for classification task [3].
Different from previous works, we learn prototypes to distinguish different cate-
gories on one hand, and make the feature representations have small within-class
diversity and large between-class separation that are more suitable for novel class
detection on the other hand.
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3 Proposed Approach

3.1 Problem Formalization

Given a training dataset D = {(x1, y1), (x2, y2), ..., (xn, yn)}, where xi ∈ R
d is

a training instance and yi ∈ Y = {1, 2, ..., k} is the label of xi. In the testing
phase, the labels of an open dataset D0 = {(xi, yi)}∞

i=1 need to be predicted,
where yi ∈ Y0 = {1, 2, ..., k, ...,K} with K > k. Our goal is to learn a robust
classifier C : x → Y

′
= {1, 2, ..., k, novel}, where the option novel indicates that

the label was unseen in the training phase and thus the corresponding instances
are from unknown malware.

3.2 Approach Overview

Recent research work has successfully demonstrated the superiority of deep neu-
ral network with regard to classification performance on high-dimensional data.
In addition, The flexibility of network design and training facilitates the feature
learning by utilizing custom loss functions. Thus, we employ a CNN to learn
more discriminative feature representation for each raw input. Specifically, given
an input x, the deeply learned features are denoted as f(x; θ), where θ denotes
the parameters of the CNN. For purpose of obtaining distinguishing character-
istics of class from training instances so that it has the ability to detect novel
class, we define and maintain a class-distribution of instances, what we call a
prototype, as Pi = 1

|Ψi|Σx∈Ψi
f(x, θ), for each observed class yi. The symbol Ψi in

the formula above denotes the training instances belonging to class yi.
In the training phase, the CNN and the prototypes P = {Pi} are jointly

trained based on raw input data. In the testing phase, instances are classified by
nearest prototype matching, that is, a testing instance is labeled as the class of
the prototype that has the smallest Euclidean distance from it. This is different
from the traditional CNN which employs a softmax layer for linear classification
on the learned features.

3.3 Objective Function Definition

Since the similarity between the instances and the prototypes are measured by
Euclidean distance, we naturally think of using a distance based loss function
to train the CNN model over the training data. Considering that for a given
instance x, the smaller the distance between f(x, θ) and the prototype Pi, the
greater the probability that it belongs to class yi. Hence, the probability of an
instance x belonging to the class yi can be measured as follows.

p(x ∈ yi|x) ∝ −||f(x, θ) − Pi||22 (1)

Furthermore, we normalize the distance measure in Eq. 1 to satisfy the sum-to-
one property of the probability and further define it as:

p(yi|x) =
exp(−γ||f(x, θ) − Pi||22)

Σk
j=1exp(−γ||f(x, θ) − Pj ||22)

(2)
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where k is the number of observed classes in the training dataset and γ is a hyper-
parameter that controls the strength of distance used. Based on the probability
of p(yi|x), we can define the Distance based Cross Entropy (DCE) as follows.

LDCE(x; θ, P ) = −logp(yi|x) (3)

From Eq. 1–3, we can observe that minimizing the DCE loss decreases the dis-
tance between the instance x and the prototype Pi associated with it.

The DCE loss defined above performs classification based on the distance
measurement between sample and prototype, and it would make sure that sam-
ples from different classes are discriminable. However, CNN training based solely
on this loss may lead to over-fitting, because distribution information from sam-
ples of a class is included in a prototype, and the corresponding samples in the
class may contain noise, which is a common situation in network traffic data. In
order to alleviate this and make the learned feature representation more robust,
we propose to impose a new metric regularization term on the learned features.
This metric regularization term enforces the CNN model to be more discrim-
inative so that the feature representations have small within-class scatter and
large between-class separation. Specifically, we expect that the distances between
similar samples (i.e., from same class) are smaller than those between dissimilar
ones (i.e., from different classes). To this end, we explicitly constrain the dis-
tances between the similar samples and prototypes (i.e., they share same class)
to be smaller than an up-threshold τ1, and urge the distances between dissimilar
samples and prototypes (i.e., they belong to different classes) to be larger than
a down-threshold τ2. That is,{ ||f(x, θ) − Pi||22 < τ1, label(x) = label(Pi),

||f(x, θ) − Pi||22 > τ2, label(x) �= label(Pi).
(4)

Obviously, τ2 should be larger than τ1.
To reduce the number of free parameters, we introduce an intermediate

threshold parameter τ and a margin α. We can simplify the constraint in (4) by
setting τ1 = τ − α and τ2 = τ + α as follows:

α − ȳ(τ − ||f(x, θ) − Pi||22) < 0 (5)

where ȳ ∈ {−1, 1} indicates whether instance x and prototype Pi share the
same class or not. In Eq. 5, the scale of α should be comparable to the value of
τ − ||f(x, θ) − Pi||22, so we further transform Eq. 5 into Eq. 6.

α − ȳ(1 − ||f(x, θ) − Pi||22
τ

) < 0 (6)

Hence, we can select the value of margin α from (0, 1). By applying this constrain
to each similar and dissimilar pair between prototype and sample, we define
the metric regularization term using hinge loss function, which is formulated as
follows:

LMR(x; θ, P ) = Σk
i=1h(α − ȳ(1 − ||f(x, θ) − Pi||22

τ
)) (7)
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where h(x) = max(0, x) is the hinge loss function and k is the number of classes
in the training dataset.

Finally, our objective function is the combination of the DCE loss term and
MR term, which is defined as follows:

J =min(LDCE(x; θ, P ) + λLMR(x; θ, P ))

=min(−logp(yi|x) + λΣk
i=1h(α − ȳ(1 − ||f(x, θ) − Pi||22

τ
)))

(8)

where λ is a tradeoff parameter that controls the relative importance of the
two terms. From the perspective of probability, we can regard the MR term
as maximum-likelihood regularization like [13,14]. Obviously, this optimization
problem can be solved by Stochastic Gradient Descent (SGD) method.

3.4 Novel Class Detection

Traditional softmax based classifiers make partition for the whole feature space,
and any sample from unseen classes will certainly be projected to some region
under the partition. Thus, these samples will still be labeled as some known
classes in the training dataset. This closed world property limits its detection
for novel class.

In our approach, we adopt a threshold based nearest prototype matching
mechanism for classification of known classes and rejection for novel class. We
give a threshold Ti, which is determined based on the training data, for each
known class yi in the training dataset. Since the samples of each class approxi-
mately follow Gaussian distribution in the learned feature space, and the proto-
types are the means of the samples in each class. We define the threshold Ti for
class yi as the average distance between all samples in class yi and the prototype
Pi plus a generalization interval. It is can be formulated as follows:

Ti =μ(yi) + ησ(yi)

=
1

|Ψi|Σx∈Ψi
||f(x, θ) − Pi||22 + ηstd({||f(x, θ) − Pi||22,∀x ∈ Ψi})

(9)

where Ψi is the training set of class yi, η is a generalization coefficient for the
generalization interval term. Particularly, the generalization interval is defined
as the sample standard deviation of {||f(x, θ) − Pi||22,∀x ∈ Ψi}.

In the testing phase, each testing instance x is firstly projected to the learned
feature space using the trained CNN. Then, we compute the squared Euclidean
distance Sx,i from f(x, θ) to prototype Pi for each class yi, and we find the
minimum Sx,i with the corresponding class yi. Here, we denote them as Ŝx and
ŷ. Also, we denote the corresponding threshold for class ŷ as T̂ without loss of
generality. Finally, the prediction label for instance x can be given by:

y =
{

ŷ, Ŝx ≤ T̂ ,

−1, Ŝx > T̂ .
(10)

where y = −1 indicates that the instance x is determined to come from a novel
class.
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4 Experimental Evaluation

Table 1. Statistics of datasets MCFP and USTC-TFC2016.

MCFP Flows USTC Flows

Artemis 12654 Geodo 1000

Sennoma 10003 Htbot 1000

Dynamer 11777 Miuref 1000

Tinba 12862 Neris 1000

Ursnif 11000 Nsisay 1000

CCleaner 11538 Shifu 1000

Miner 9864 Virut 1000

Downloader 10239 Zeus 1000

CoreBot 9892

Dridex 11319

Total 111148 Total 8000

4.1 Datasets

MCFP dataset. We use the malware traffic data maintained by the Malware
Capture Facility Project1 as one of the two malware traffic datasets to evaluate
our approach. The captured traffic of various malware is kept in separated pcap
files, from which we randomly selected 10 kinds of malware to build the MCFP
dataset. There are more than 100 thousands network flows in total after the
raw traffic is parsed. We mainly evaluate and compare the performance of our
approach with existing relevant methods on this dataset.

USTC-TFC2016 dataset. This dataset2 is mainly used to evaluate our app-
roach’s ability to detect novel classes. The original version of this dataset con-
tains 10 kinds of malware traffic which are kept in separated pcap files like
MCFP. We manually exclude 2 kinds of malware namely Tinba and Cridex that
have already existed in the MCFP. Then, we parse the raw traffic and select
1000 flows uniformly at random from each one of the rest 8 kinds of malware to
build this dataset. The detailed statistics of the datasets are listed in Table 1.

1 Malware Capture Facility Project (https://www.stratosphereips.org/datasets-
malware) is responsible for making the long-term captures. This project is con-
tinually obtaining malware and normal data to feed the Stratosphere IPS.

2 https://github.com/yungshenglu/USTC-TFC2016.

https://www.stratosphereips.org/datasets-malware
https://www.stratosphereips.org/datasets-malware
https://github.com/yungshenglu/USTC-TFC2016
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4.2 Implementation Details

Preprocessing. In our approach, we classify malware traffic at flow granularity.
Considering that only fixed-size input is accepted by CNN while the flow lengths
are often varied, we transform raw network flows of varying lengths to satisfy
the input structure of CNN. Specifically, we keep the first 32 packets of each
flow, and for each packet, we keep the first 512 bytes starting from transport
layer header. Zero will be padded if the flow length is less than 32 packets or
the IP packet length is less than 512 bytes. After this transformation, each flow
is represented as a matrix with size 32 × 512. To obtain a better performance,
we normalize all the packet bytes in the matrix by dividing them by 255, the
maximum value of a byte, and then resize the normalized matrix to 128 × 128.

Input:1*128*128

C1:feature maps
32*120*120 S2:feature maps

32*24*24
C3:feature maps

64*20*20
S4:feature maps

64*5*5 F5:layer 
256

F6:layer 
256

F7:layer 
2

Convolutions Max pooling Convolutions Max pooling Full Connection Full Connection

Full Connection

W1 W2 W3 W4 W5 W6

W7

Fig. 1. The CNN architecture used in our approach. It is composed of two convolution
layers, two max-pooling layers and three fully connected layers.

CNN Architecture. The architecture of CNN used for feature learning in our
work is shown in Fig. 1. The layers of the CNN comprise a convolutional layer C1

with 32 feature maps, a max pooling layer S2, a second convolutional layer C3

with 64 feature maps, a second max pooling layer S4, and three fully connected
layers F5, F6 and F7 with 256 units, 256 units and 2 units respectively. The sizes
of the kernels for the C1 and C3 are 9 × 9 and 4 × 4 respectively.

Parameter Settings. For our CNN model training, the learning rate is set
to 0.001, the weight decay is set to 0.0005 and the minibatch size is 64. For
the hyper-parameters settings, we set the strength parameter γ = 1.0 in the
DCE loss term, τ = 10, α = 0.5 respectively in the MR term, and we set the
generalization coefficient η = 3 for novelty detection. The tradeoff parameter λ
in the final objective function is set to 0.5.

4.3 Evaluation Metrics

Three commonly used metrics including precision, recall and overall accuracy
are adopted to quantitatively evaluate and compare the classification results.



Prototype-Based Malware Traffic Classification with Novelty Detection 11

The precision and recall are computed for per class as follows:

precision =
TP

TP + FP
, recall =

TP

TP + FN
(11)

Besides, the overall accuracy is defined as the number of correctly classified
samples, regardless of which class they belong to, divided by the total number
of testing samples.

4.4 Evaluation Results and Comparisons

We compare the performance of our approach with the following relevant meth-
ods that focus on malware traffic detection and classification.

– [1]: Flow statistical features with various machine learning methods are
applied for encrypted malware traffic classification. We choose Random For-
est algorithm with enhanced features for comparison, which works best as
described in [1]. Particularly, we excluded the TLS related features from the
enhanced feature set, because they are missing in most of the flows in our
datasets.

– [9]: A deep learning method works on handcrafted features for intrusion detec-
tion.

– [24]: A CNN-based malware traffic classification method for representation
learning. We use the tools provided by them to parse and preprocess the raw
pcap files in our dataset to satisfy the input structure of their model. The
flow number generated by each file is slightly different from ours. We ignore
this difference and just focus on the per class precision, recall and overall
accuracy.

Since to our best knowledge, all the existing relevant studies perform traffic clas-
sification under assumption of closed world, which means that they can not deal
with the novel class in the testing data (i.e., all the samples from novel classes
will be classified into known classes). Thus, we compare the classification perfor-
mance of different methods on known classes only (a closed world scenario). The
comparison is performed on the MCFP dataset and all the results are achieved
through 5-fold cross testing.

The comparison results are detailed in Table 2, from which we can observe
that traditional machine learning algorithm with flow statistical features [1] per-
form poorly on diverse malware traffic flows, because the within-class compact-
ness and between-class separateness can not be obtained by coarse-grained flow
statistical features. Similar classification performance is obtained by applying
deep learning techniques on the handcrafted features, because the final feature
representations used for classification are learned from the low-dimensional hand-
crafted features in an unsupervised manner, which make them not robust enough.
By contrast, methods using CNN as feature extractor provide better performance
than traditional statistical based approach. This indicates that deep neural net-
work can learn superior features from high-dimensional traffic data. Furthermore,
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our approach (column DCE+MR in Table 2) consistently outperforms [24] in per
class precision, recall and overall accuracy. This result can be mainly attributed
to the use of prototypes in the learned feature space. In addition, we also evalu-
ate the performance of model that is trained under the supervision of DCE loss
term only (column DCE in Table 2). The results indicate that the MR term can
prevent over-fitting and make the deeply learned features more robust.

Table 2. Classification results comparison on MCFP dataset. All the classifications are
performed in a closed world setting. [1], [9], [24] are the comparing works. DCE+MR
denotes our proposed work and DCE denotes that CNN is trained using DCE loss term
only. All the results are obtained through 5-fold testing.

[1] [9] [24] DCE DCE+MR

% pre. rec. acc. pre. rec. acc. pre. rec. acc. pre. rec. acc. pre. rec. acc.

Arte. 79.8 82.1 80.2 85.5 86.1 80.6 95.6 90.4 90.7 90.5 91.0 91.8 99.0 99.1 99.2

Senn. 86.6 78.3 76.7 82.5 96.3 97.2 96.7 98.0 99.3 99.1

Dyna. 82.2 79.2 83.4 79.1 92.1 94.6 93.4 95.3 99.1 99.2

Tinba 89.2 80.9 85.7 81.1 90.3 89.8 95.7 89.7 99.6 99.0

Ursnif 86.8 76.4 87.1 79.0 89.9 92.9 97.1 94.4 99.1 99.1

CCle. 70.8 88.1 76.2 85.5 90.2 90.4 96.2 91.1 99.2 99.4

Miner 85.8 75.2 78.8 76.9 95.1 95.1 88.9 96.8 99.4 99.3

Down. 71.4 77.7 81.1 77.2 88.2 84.9 81.2 81.8 99.5 99.2

Core. 79.9 84.8 78.2 81.9 86.3 88.5 98.2 98.5 99.6 99.1

Drid. 72.6 77.7 75.2 73.7 84.7 83.5 82.1 83.4 100 99.4

(a) (b)

Fig. 2. Intuitive display of data distribution before and after projection. (a) data distri-
bution in the original feature space. (b) data distribution in the deeply learned feature
space. We can see that, more discriminative features are learned and they are robust
to novel class samples.
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Novel Class Detection Evaluation. To test the performance of our app-
roach in the presence of novel classes (an open world scenario), we perform a
5-fold cross testing on the MCFP dataset, meanwhile, all the samples in USTC-
TFC2016 dataset are used as novel class data in each fold testing. Thus, the
number of output classes extends from N to N+1. An intuitive display of the
sample distributions before and after projection are shown in Fig. 2. Here, the
CNN model used to transform the raw inputs is selected from one in 5-fold cross
testing. For the raw inputs in Fig. 2(a), we project them onto 2-dimensional fea-
ture space using Principal Component Analysis (PCA) method provided by the
library scikit-learn [19]. The samples from novel classes are denoted as black
circles, and samples from 10 known classes are denoted by circles of other colors.
Obviously, from Fig. 2(b) we can see that samples from different classes have
distinct clusters in the deeply learned feature space, and samples from novel
classes are well separated from other clusters which helps novel class detection.

Table 3 lists the test results of our approach. We can see that all the preci-
sion, recall and overall accuracy are still kept high for both the known classes
and novel class. This indicates that under the supervision of our objective func-
tion (DCE+MR), more discriminative features can be learned and they are also
robust enough for the samples from novel classes. Similar to the results in Table 2,
the performance of DCE is not as good as DCE+MR, which once again confirms
the importance of the MR term. In addition, we have manually checked the mis-
classified samples in the novel classes and found that most of them are short
flows (i.e., number of packets are less than 6). That means a large number of
zeros are padded to represent each flow, which do not contribute to distinguish
different flows.

Table 3. Novel class detection performance. All the classifications are performed in an
open world setting, where all the samples in the USTC-TFC2016 dataset are used as
novel class samples in each testing fold. DCE+MR denotes our proposed work and DCE
denotes that CNN is trained using DCE loss term only. All the results are obtained
through 5-fold testing.

DCE DCE+MR

% pre. rec. acc. pre. rec. acc.

Arte. 80.4 88.6 80.5 95.3 98.4 96.7

Senn. 75.4 85.5 94.6 98.0

Dyna. 78.7 87.7 96.3 98.3

Tinba 85.8 88.7 97.1 98.4

Ursnif 79.1 82.3 97.0 98.2

CCle. 80.2 91.9 95.9 98.2

Miner 80.8 85.3 97.7 97.9

Down. 77.1 81.0 93.5 98.0

Core. 81.0 90.4 95.5 97.9

Drid. 79.0 82.8 95.9 98.2

Novel 81.3 62.5 99.1 92.5
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(a)

(b)

(c)

Fig. 3. The influence of hyper-parameters λ, τ and η on classification performance.
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The Influence of Hyper-parameters. The λ used for balancing the impor-
tance of DCE loss term and MR term in our objective function, the τ used
in the MR term, and the η used for novel class detection are the three main
hyper-parameters in our approach. To test their sensitivity, we vary these hyper-
parameters and observe the influence on classification performance. Here, we
evaluate the classification performance in the open world scenario based on
the overall accuracy metric. Firstly, we vary the value of λ from the set of
{0.01, 0.1, 0.5, 1} and the results are shown in Fig. 3(a), from where we can see
that the change of λ has little influence on the overall accuracy as it remains
basically unchanged. Then, we vary the value of τ from the set of {1, 5, 10, 15, 20}
and the results are shown in Fig. 3(b). We can see from the Fig. 3(b) that too
small a value of τ may drop the classification performance, since the deeply
learned features are not discriminative enough among different classes, while too
large a value of τ may lead to over-fitting, which will drop the classification
performance as well. Finally, we vary the value of η from the set of {1, 3, 5, 7, 9}
and the results are shown in Fig. 3(c). In Fig. 3(c), we can see that the value of
η has a clear impact on the overall accuracy. If η is too small, many of samples
from known classes will be misclassified as novel class. Conversely, if the η is too
large, a large proportion of novel class samples will be misclassified as existing
classes. All the results shown in the Fig. 3(a)–3(c) are obtained through 5-fold
testing.

5 Conclusion

In this paper, we propose a new prototype-based malware traffic classification
approach with novel class detection ability. It breaks the closed world assumption
that all the categories are known and fixed, which is the basis of the existing
relevant studies. Our approach directly learns a prototype for each class and then
perform classification based on nearest prototype matching. A new objective
function is proposed to increase the within-class compactness and expand the
between-class separateness so that the deeply learned features are discriminative
enough to novel class samples. We conduct extensive experiments to evaluate our
approach in both the closed world and open world scenarios using two public
datasets with real malware traffic. The experimental results show the superiority
of our approach compared with existing studies.

Acknowledgements. This work is supported by the strategic Priority Research Pro-
gram of Chinese Academy of Sciences, Grant No. XDC02040200.

References

1. Anderson, B., McGrew, D.: Machine learning for encrypted malware traffic clas-
sification: accounting for noisy labels and non-stationarity. In: Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 1723–1732. ACM (2017)



16 L. Zhao et al.

2. Bekerman, D., Shapira, B., Rokach, L., Bar, A.: Unknown malware detection using
network traffic classification. In: 2015 IEEE Conference on Communications and
Network Security (CNS), pp. 134–142. IEEE (2015)

3. Bonilla, E.V., Robles-Kelly, A.: Discriminative Probabilistic Prototype Learning
(2012)

4. Celik, Z.B., Walls, R.J., McDaniel, P., Swami, A.: Malware traffic detection using
tamper resistant features. In: MILCOM 2015–2015 IEEE Military Communications
Conference, pp. 330–335. IEEE (2015)

5. Chen, Z., et al.: Machine learning based mobile malware detection using highly
imbalanced network traffic. Inf. Sci. 433, 346–364 (2018)

6. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. The-
ory 13(1), 21–27 (1967)

7. Decaestecker, C.: Finding prototypes for nearest neighbour classification by means
of gradient descent and deterministic annealing. Pattern Recogn. 30(2), 281–288
(1997)

8. Huang, Y.-S., et al.: A simulated annealing approach to construct optimized pro-
totypes for nearest-neighbor classification. In: Proceedings of 13th International
Conference on Pattern Recognition, vol. 4, pp. 483–487. IEEE (1996)

9. Javaid, A.Y., Niyaz, Q., Sun, W., Alam, M.: A deep learning approach for net-
work intrusion detection system. In: EAI International Conference on Bio-inspired
Information & Communications Technologies (2016)

10. Kohonen, T.: Learning vector quantization. In: Kohonen, T. (ed.) Self-Organizing
Maps. Springer Series in Information Sciences, vol. 30, pp. 175–189. Springer, Hei-
delberg (1995). https://doi.org/10.1007/978-3-642-97610-0 6

11. Kuncheva, L.I., Bezdek, J.C.: Nearest prototype classification: clustering, genetic
algorithms, or random search? IEEE Trans. Syst. Man Cybern. Part C Appl. Rev
28(1), 160–164 (1998)

12. Li, Z., Qin, Z., Huang, K., Yang, X., Ye, S.: Intrusion detection using convolutional
neural networks for representation learning. In: Liu, D., Xie, S., Li, Y., Zhao, D.,
El-Alfy, E.-S.M. (eds.) ICONIP 2017, Part V. LNCS, vol. 10638, pp. 858–866.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70139-4 87

13. Liu, C.-L., Sako, H., Fujisawa, H.: Discriminative learning quadratic discriminant
function for handwriting recognition. IEEE Trans. Neural Networks 15(2), 430–444
(2004)

14. Liu, C.-L., Sako, H., Fujisawa, H.: Effects of classifier structures and train-
ing regimes on integrated segmentation and recognition of handwritten numeral
strings. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1395–1407 (2004)
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Abstract. In this paper, we present a mimicry attack to transform mal-
ware binary, which can evade detection by API call sequence based mal-
ware classifiers. While original malware was detectable by malware clas-
sifiers, transformed malware, when run, with modified API call sequence
without compromising the payload of the original, is effectively able to
avoid detection. Our model is effective against a large set of malware
classifiers which includes linear models such as Random Forest (RF),
Decision Tree (DT) and XGBoost classifiers and fully connected NNs,
CNNs and RNNs and its variants. Our implementation is easy to use
(i.e., a malware transformation only requires running a couple of com-
mands) and generic (i.e., works for any malware without requiring mal-
ware specific changes). We also show that adversarial retraining can make
malware classifiers robust against such evasion attacks.

Keywords: Adversarial machine learning · Evasion attacks · API call
sequence · Dynamic analysis

1 Introduction

Pitfalls of signature-based malware detection gave rise to cloud-based analysis
and white-listing [13]. While signature-based detection remains the first line of
defense, malware detection can be automated by analysing them in the cloud-
based backend, extracting relevant features from a known set of malware, and
training a machine learning classifiers which can generalize well for new and
unseen malware [5].

It is possible to systematically exploit machine learning models and evade
detection by such models. These exploits consist of methods of slightly but care-
fully modifying the sample under test, resulting in misclassification by the model
(also referred to as the target model) even though the unmodified sample was
classified correctly. Such modified samples are called adversarial examples. Over
time, researchers presented novel ways of generating adversarial examples [3].
Researchers also come up with countermeasures to make machine learning more
robust against such adversarial examples [14].

Majority of the work on generating adversarial examples to attack machine
learning based classifiers, is limited to image classification. However, images are
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fundamentally different from executables. An image consists of a fixed set of pix-
els, and each pixel is an integer value that varies over a wide range of possible
values. Generating adversarial examples for image classification typically involves
slightly modifying pixel values, which results in misclassification. A slight mod-
ification in malware may adversely affect malware functionality to the point of
making it useless. Therefore methods to generate adversarial examples for image
classification are not directly transferable to malware domain.

It is not practical to assume too much information about the target model
that we are trying to attack. While an adversary might be able to observe outputs
(i.e., malicious or benign labels for submitted executables) of a commercial anti-
malware product, internal specifications of such models are well-kept secrets.
Researchers generate adversarial examples in ‘black-box’ setting to make their
attack practical. While exact black-box setting varies across different work, typ-
ically researchers try to assume the least possible information about the target
classifier.

To the best of our knowledge, Grosse et al. [6]’s work is the first one to
craft adversarial examples for malware classifiers in a black box setting. Static
features are extracted, and a substitute model is trained for Android malware.
Extracted features include permissions, hardware components, API calls, net-
work addresses. Information about the substitute model is used to generate
adversarial examples systematically. Limitations of generating adversarial exam-
ples in malware domain are observed – specifically, modifying anything in mal-
ware can cause it to lose its functionality. Malware modification is restricted only
to the addition of new features instead of removing or changing features that are
already present. Misclassification rates of 60%-80% were achieved for different
classifiers in [6].

1.1 Problem Statement

Given a machine learning classifier f that uses dynamic API calls as features
and a set of malware M that is correctly getting classified by f , our objective is
to find a systematic method to modify each m ∈ M such that modified malware
m′ corresponding to each m can evade detection by f with high probability. The
method should not use any information about f other than the fact that it used
API call sequences as features and the method should be generic enough to work
uniformly across each m ∈ M without requiring specific changes to the method
for different malware.

1.2 Contribution of This Work

This paper makes the following contributions.

– We demonstrate a systematic and automatic method to evade detection by
API call sequence based malware classifiers while still preserving its malicious
functionality.
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– Unlike previous work, which requires generating malware-specific configura-
tion files, our implementation is generic and removes the overhead of per-
malware configuration files.

– We show that adversarial malware generated by our method can be used to
retrain the classifiers to make them robust against such evasion attacks.

– In this work, we show the evasion at two different levels - feature level, in
which during the execution of malware we keep on generating adversarial
sequences and executable level, in which we use IAT hooking to modify an
executable.

Rest of the paper is organized as follows: Sect. 2 describes our design and
implementation of our attack. Section 3 describes evaluation results. Section 4
describes related work in the area of adversarial example generation. Section 5
concludes the work and talks about future work.

2 Proposed Methodology

2.1 Preparing Target Models

We generate adversarial examples for a malware classifier that uses API call
sequence made by an executable during the execution. We call it the target
model. We assume the target model as a black-box, i.e., we do not use any infor-
mation about the target model in designing our attack except for the fact that
it uses API calls as its features. We do not exploit any property of the model
directly but analyse benign and malware executables and try to mimic benign
like behavior in malware executables by using elementary techniques. While sim-
ilar works propose complex methods, we will justify our reasoning behind using
elementary techniques. First, we test our methodology by generating adversarial
sequences for already extracted sequences and show that it can produce results
comparable to previous work. Then we test it by modifying the malware which
when executed, will dynamically produce adversarial sequence to evade detec-
tion. In both cases, we evaluate our adversarial examples against the target
models.

Dataset Collection and Feature Extraction. Malicious executables are col-
lected from CDAC Mohali [12], and some malware repositories including Mal-
share [11] and VirusShare [17]. Malware are submitted to Virustotal. Virustotal
is an ensemble of more than 70 Antivirus engines. Only files which get a malware
tag from at least one engine are filtered for the training set. Finally, we are left
with 20, 000 binaries having 10, 000 malware and 10, 000 benignware.

To extract the features, executables in the dataset are executed in Cuckoo
sandbox for 30 s each. The configuration for creating a sandbox environment are
3.4 GHz Intel Core i7 processor, 100 GB storage, and 4 GB primary memory. We
use Windows 7 as the host operating system for the Cuckoo sandbox. Cuckoo
generate reports comprising of analysis results in the JSON format. We use
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scripts to extract the API call sequence from Cuckoo reports. To truly capture
the malicious activity, the firewall and updates in our host machine are disabled,
which would make the system vulnerable to as many exploits as possible.

Classification. We have trained eight different models namely Random For-
est, Decision Tree, XGBoost, Neural Network (NN), Convolutional Neural Net-
work (CNN), Standard Recurrent Neural Network (RNN) and its two variants;
Gated Recurrent Unit Network (GRU) and Long Short-Term Memory Network
(LSTM). We implement the non-linear models using Keras deep learning library
in Python [1] and linear models using scikit-learn library [2]. We use 70% data
for the training purpose and 30% data for the testing purpose. To minimize
the risk of overfitting, we use 10 fold cross-validation for linear models. Each
model takes a sequence of 300 API calls at a time, which is also referred to
as its window size. Since ASCII API names cannot be given directly as input,
we map each API to a unique integer in the range of (0,300). Each ASCII API
name is integer encoded using the same mapping which is then given as input
to the model. Analysed malware consists of a good mixture of different types
of malware, including TrojanDropper, TrojanDownloader, Worm, Trojan, Virus,
Virtool, PWS, and Backdoor. Table 1 show the accuracy % for various models
when used on our dataset.

Table 1. Target model accuracies

Classifier type Accuracy (%)

NN 94.65%
CNN 94.66%
RNN 92.93%
GRU 93.56%
LSTM 94.27%
Random Forest 92.77%
Decision Tree 88.77%
XGBoost 90.26%

2.2 Evasion of Target Model

Till now, the target model is trained using the API call sequences. Now, we
try to evade the prepared target model using two categories of implementation,
which are feature level evasion and executable level evasion.

Feature Level Evasion. Let us denote the set of all API calls by A. Let
us denote the set of all l-length sequences of integer-encoded API calls by Sl.
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Let us denote the target classifier by a function f which takes a sequence of
integer encoded API calls as input and returns a binary value; 1 if it is malware
and 0 if it is benign. Mathematically,

f : Sl → {0, 1} (1)

N-gram is a sequence of n API calls. A single API call is referred to as unigram;
a sequence of two is referred to as bigram; a sequence of three is referred to as
trigram and so forth. Let us denote the set of all N-grams of APIs by NG, the
domain of malicious executables by M and the domain of benign executables
by B. Each domain comprises of elements where each element is a sequence of
API calls made by an executable of that domain. Let us introduce a Fraction
Function F, defined as

F : {M,B} × NG → R (2)

For a d ∈ {M,B} and an ng ∈ NG,

F (d, ng) =
Number of sequences in d having ng as a subsequence

Number of sequences in d

Here subsequence means continuous sequence of API calls and not to be confused
with subsequence as in Longest Common Subsequence. For example, F (M,ng)
is a fraction of malware whose API call sequence has ng as a subsequence.

The idea is to start with S, f(S) = 1 (malware), and iteratively modify
it till we get a sequence S′ such that f(S′) = 0 (benign). Since modifying
already present API calls in S can fatally harm malware functionality, we restrict
ourselves to only additive modifications, i.e., we can only add new API calls
without changing anything in the already present ones.

Algorithm 1. Feature Level Attack
Input: f(Model), x(Input API call sequence of length l), A(Set of API calls),
⊥(Concatenation operation)
1: x∗ ← x
2: while f(x∗) = malicious do
3: i ← random(0, l − 1)
4: api ← arg maxapi∈A(F (B, x∗[i] ⊥ api) − F (M,x∗[i] ⊥ api))
5: x∗ ← x∗[1 : i] ⊥ api ⊥ x∗[i + 1 : l − 1]
6: end while

Algorithm 1 describes our approach. At each iteration, we randomly select
index i, and add an API api ∈ A, which maximizes the Fraction Function dif-
ference between benign and malware domain. The motivation is to introduce
a feature which is more probable to occur in benign executables than in mali-
cious ones, mimicking benign behavior in a malicious sequence. The iterative
heuristic is inspired by Rosenberg et al. [15]’s work. Next section presents the
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detailed arguments about why our additive modification will preserve malicious
functionality.

One could argue that iterative loop in Algorithm 1 goes on till it changes
classification model’s decision which makes it unclear whether the choice of API
call in step 4 is significant at all or decision randomly changes at some point due
to exhaustive iterations. While Rosenberg et al. [15]’s work does not provide any
explanation about it, our result section provides detailed analysis showing that
choice of API calls in step 4 is actually significant from the perspective of the
target model.

Executable Level Evasion: The idea is to enhance the malware executables
such that they mimic benign behavior. It is achieved by making malware peri-
odically call smartly chosen API calls in between the original API calls so that
overall sequence looks more like benign. The extra code, which is referred to as
adversarial code, is attached to the malware whose job is to follow the original
API call sequence of malware and periodically make smartly chosen API calls in
between. It requires us to periodically transfer control back and forth between
the original malware code and adversarial code. It is achieved by hooking Import
Address Table (IAT) of Portable Executables (PE). Once the adversarial code
gets control, it should observe previously made API calls and choose an adver-
sarial call to make. Once it chooses an API call to make, it must make that call,
which will be a dynamic choice. Once it performs its job, it must transfer control
back to the original code.

IAT Hooking: The external calls to runtime libraries are funneled through
an indirect jump to the address specified in the Import Address Table (IAT).
Our implementation plays with this IAT entry to periodically transfer control
to the adversarial code. Typically these IAT entries contain the address of the
corresponding API in the loaded runtime libraries. However, our implementation
makes sure that it points to a specific location in the adversarial code instead.
This specific location is unique to each API.

Let us understand the design with the help of an example. Figure 1 shows
a call to CreateFile. The call transfers control to a jump instruction in IAT.
However, our implementation modifies its corresponding IAT entry such that
at runtime instead of jumping to CreateFile in Kernel32.dll, it jumps to
some location in the adversarial code. This process of diverting control flow is
typically referred to as IAT hooking. Our IAT hooking implementation serves
two purposes; firstly, it helps in keeping track of which API calls are made,
and secondly it can periodically transfer control to adversarial code. We extend
an Open Source framework IAT Patcher [19] to automatically hook malware
executables en-masse. Figure 1 shows that the arguments are pushed before the
call instruction. When control returns to the original code, it expects CreateFile
to be executed from kernel32.dll and the return value is set.
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Fig. 1. Architecture of IAT hooks

Preserving Malware Functionality: An IAT hook will redirect control in
adversarial code to an identical looking function (API). CreateFileA is a Win-
dows API which is declared in Kernel32.dll as:

1 HANDLE CreateFileA(

2 LPCSTR FileName ,

3 DWORD DesiredAccess ,

4 DWORD ShareMode ,

5 LPSECURITY_ATTRIBUTES SecurityAttributes ,

6 DWORD CreationDisposition ,

7 DWORD FlagsAndAttributes ,

8 HANDLE TemplateFile

9 );

Our framework will patch the IAT entry of CreateFileA with address of
wrap CreateFileA function which is defined in the adversarial code as:

1 HANDLE wrap_CreateFileA (

2 LPCSTR FileName ,

3 DWORD DesiredAccess ,

4 DWORD ShareMode ,

5 LPSECURITY_ATTRIBUTES SecurityAttributes ,

6 DWORD CreationDisposition ,

7 DWORD FlagsAndAttributes ,

8 HANDLE TemplateFile

9 )

10 {

11 HANDLE return_val = CreateFileA(FileName ,

12 DesiredAccess ,ShareMode , SecurityAttributes ,

13 CreationDisposition , FlagsAndAttributes ,

14 TemplateFile);

15 // logic to book -keep API call made by

16 the original code

17 // logic to make smartly chosen API call

18 return return_val

19 }
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One can make the following observations in the above discussion. Redirec-
tion of control flow due to IAT hooking happens to a function having identical
arguments and return values, i.e., from CreateFileA to wrap CreateFileA. Con-
trol will return to the original malware code when wrap CreateFileA returns.
wrap CreateFileA would pass received arguments to a call to CreateFileA and
would store the return value received. In the end wrap CreateFileA will return
the value originally returned by the call to CreateFileA. Arguments received
in wrap CreateFileA, and the return value of the call to CreateFileA is never
modified during the execution of wrap CreateFileA.

These observations support our argument that when control returns to the
original code in step 3 in Fig. 1, it receives return value identical to what it
would have received in the absence of IAT hook. However, the execution of
adversarial code between steps 2 and 3 in Fig. 1 can change machine state and
can make malware behavior unpredictable. Here the state is referring to the
combined state of registers, memory and secondary storage. It is easy to see
that malware functionality will remain preserved if no state change happens in
between steps 2 and 3. Since we control the implementation of the adversarial
code, we can control what kind of state changes occur during the execution
of that code. We argue that malware functionality will remain preserved in all
possible state changes that can happen during the execution of adversarial code
by exhaustively going through all possible state changes that can occur.

– Register state changes: All Windows APIs use the stdcall calling con-
vention as opposed to cdecl which is the default C/C++ calling conven-
tions. The hook functions also use stdcall calling convention. As control
flow redirection happens in the form of a function call and return, both caller
and callee will take respective responsibility of saving and restoring necessary
register state information at the time of the call and return respectively, and
we do not need to take care of it explicitly.

– Primary and secondary memory state changes: Memory state can
change in one of the following cases.
1. Memory accesses on stack and heap: Although adversarial code

implementation allocates memory on the stack, as per the calling con-
vention ( stdcall), callee function automatically takes the responsibility
of cleaning up the stack. Adversarial code implementation never directly
modifies the allocated memory location through pointers. Heap modifica-
tions are limited to newly allocated memory regions in adversarial code.
Any change in these memory regions cannot change the malware behavior
because it would never access it.

2. Resource handles: In Windows, a process owns handles to a diverse set
of resources including open files, sockets, special objects, devices, registry
keys, processes, and threads. Accessing these handles can change memory
state. For example, accessing a handle to an open file and reading from
it or writing to it can modify the memory state. So we do not access any
handles owned by original malware code, and always open/access/close
handles that are not used by original malware code.



26 F. Fadadu et al.

3. Page replacements: Adversarial code’s memory access lead to page
replacements which can result in memory state changes, but there is no
reason that it can lead to malware behavior change.

Special Case of GetProcAddress(): Apart from directly calling Windows
APIs, an executable can get a pointer to an API by calling GetProcAddress and
then it can directly jump to that address instead of funneling through indirect
jump described in IAT hooking. We will not be able to hook these function
calls using IAT hooking. Using GetProcAddress is common practice by both
malicious as well as benign executables. We are still able to redirect control flow
as executables can only get such pointers using getProcAddress, and we can
still hook getProcAddress. We modify the hook for getProcAddress such that
instead of returning the address of the original function, it will return the address
of that function’s hook which is part of the adversarial code.

Choice and Dynamic Invocation of an API Call: Our target model utilizes
the set of all the API calls that appear at least once in our dataset, which turns
out to be slightly more than 300. Since it is a black-box setting, we can not
assume the set of API calls used by the target model as part of our attack. Set
of API calls used by our adversarial code consists of 200 API calls taken from
Microsoft documentation. It makes our attack stronger than that of Rosenberg
et al. [15] as their attack uses the information about the set of API calls used by
the target model to exploit the target model. The choice of API call remains the
same as our feature level implementation. Once a choice is made, the adversarial
code must dynamically make that call. It is achieved by having a generic interface
which can invoke any of the 200 functions. Following is a snippet from our generic
interface implementation.

1 void make_adversrial_call(string apiname)

2 {

3 ...

4 if(apiname == "GetUserNameA"){

5 CHAR lpBuffer [128];

6 DWORD cbBuffer;

7 GetUserNameA(lpBuffer , &cbBuffer);

8 }

9 ...

10 }

Here ‘CHAR’ and ‘DWORD’ are Windows defined data types. One can
observe that all the necessary arguments need to be declared (also initialized
in some cases) before making the call.

To conclude, our design uses a combination of IAT hooking and a generic
function invoking interface to insert benign-looking API calls during malware
execution periodically. It is a best-effort approach, which means that though it
does not guarantee a 100% success rate, it can significantly decrease the proba-
bility of being detected by a target model.



Evading API Call Sequence Based Malware Classifiers 27

3 Experimental Results and Comparison

We use the following metrics to evaluate our implementation.

1. Effectiveness: We use same effectiveness metric as Rosenberg et al. [15]’s
work which defines effectiveness as “the number of malware samples in the
test set which were detected by the target classifier, for which the adversarial
sequences generated by the given algorithm were misclassified by the same
classifier.”

effectiveness =
|{f(x) = Malicious ∧ f(x′) = Benign}|

|{f(x) = Malicious}|
2. Time taken: It is the time taken to modify one sequence such that it gets

misclassified iteratively.

3.1 Feature Level Evasion Results

To the best of our knowledge, Rosenberg et al.’s work is the only work which
has done comparable work. Their work does not show the time taken by their
approach for a single example. Our work takes less than 1 s to generate an
adversarial sequence. Table 2 shows the effectiveness comparison of our results
with the reported effectiveness. We are able to achieve comparable results to
Rosenberg et al. while greatly simplifying the method. At each iteration, choice
of API call in their work requires taking derivative of the loss function and back-
propagating gradients through layers by applying the chain rule of derivation.
Compared to that our fraction function greatly reduces the complexity of code
written to choose an API call.

Table 2. Effectiveness results for feature and executable level implementation

Classifier type Feature level evasion Executable level evasion
Rosenberg et al. Our work Our work

NN 95.66% 100.00% 81.30%
CNN 100.00% 100.00% 83.26%
RNN 100.00% 100.00% 89.90%
GRU 100.00% 100.00% 91.79%
LSTM 99.99% 100.00% 91.29%
Random Forest - 100.00% 87.36%
Decision Tree - 100.00% 85.35%
XGBoost 100.00% 81.85%
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Fig. 2. Heat-map for attention to the input 300 API calls

To show that choice of API call in step 4 of Algorithm 1 is actually signif-
icant, we added an additional attention layer to our LSTM network after the
LSTM layer and analysed attention weights corresponding to each of the 300
APIs. First, we plotted a heatmap of one random API call sequence before and
after perturbation by Algorithm 1. Figure 2 shows a heat-map with 300 columns
and 3 rows. Each column refers to one of the 300 API calls in the sequence. Top
and bottom rows depict weights (magnified by 100 times) corresponding to each
API call before and after perturbation by Algorithm 1 respectively. More is the
weight; more attention is to be given to that API. Middle row depicts the API
call sequence where each red column corresponds to perturbed API call inserted
by Algorithm. One can observe that perturbation leads to a change in atten-
tion, and noticeable attention is given to perturbed APIs. To back our claim,
we empirically analysed 3000 perturbed API call sequences to know how impor-
tant the target model considers perturbed API calls. We find that the average
proportion of perturbed API calls in the perturbed sequence is 23.6%. But if
we only consider top 10% API calls based on the importance, the proportion of
perturbed API calls increases to 32.5%, i.e., we see 37% rise in the proportion
of perturbed API calls.

3.2 Executable Level Evasion Results

An executable, whether malicious or benign, contains quite a lot of conditional
jump instructions whose branching decision is made at run time. We find that
there are conditional jumps in a typical malware whose jump decision depends
on a number of factors, including operating system version, the value of a partic-
ular registry entry, or the presence of a particular vulnerability. These conditions
will vary across different execution environments across different systems, which
would result in variation in the overall API call sequence across different exe-
cutions. Our work does not make any such assumptions and works well even
if API call sequence changes significantly. Also, our approach uses elementary
mathematics, which is primitive enough to attach to malware binaries without
introducing severe bugs.

Our results are shown in Table 2. To summarize, the attack is not as effective
at the executable level because of the way we added API calls. In feature level,
we are completely unconstrained and can add API calls at any given location,
and we can keep on adding API calls in no particular sequence till we get a
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misclassification. Whereas at Executable level we can only add API calls in the
temporal order.

3.3 Comparison to Previous Work

We have found three shortcomings of Rosenberg et al.’s work. First, it involves
analysing a malicious file in a Virtual Machine snapshot, extracting API call
sequence, generating adversarial sequence corresponding to the original sequence
and giving it as a configuration file to the modified malware. When modified
malware is run again in the same Virtual Machine, it traces configuration file
and inserts adversarial API calls such that generated API call sequence matches
with the one present in the configuration file. It might work if modified malware
is executed in the same machine as original malware. If modified malware is
executed in a different machine, it might result in different API call sequence
than that made by original malware, and it won’t match anymore with the
configuration file generated previously. To understand this, consider typical API
calls under Windows including but not limited to directory traversals, network
retries, listening events. The occurrence of these API calls can change from
execution to execution. Also consider variations in different machines, including
version changes, or presence of particular software that malware tries to exploit.
All these things can lead to change in the API call sequence made by the malware,
which could make the behavior of modified malware unpredictable.

Second, in their work, malware is analysed for 1 min, and adversarial sequence
is generated corresponding to the original sequence. Modified malware, when run
will only be able to generate an adversarial sequence for that one minute sequence
and if anti-malware product analyses that malware for more than one minute,
it might be able to detect it easily.

Third, their work has an overhead of generating configuration files for each
malware under consideration individually.

Our work gets rid of all three shortcomings by dynamically choosing API
calls to make at execution time. The simplicity of the code (argmax over fraction
function) to choose API call in Algorithm 1 makes it possible to put it directly
as a part of executable and invoking it whenever an adversarial API call needs to
be chosen rather than relying on configuration files. Also, adversarial sequences
will keep on generating till malware is running, unlike their work, which would
stop generating adversarial sequence after 1 min or so.

3.4 Adversarial Retraining

Retraining on adversarially crafted inputs has shown to defend against such
evasive techniques in previous works. Adversarially crafted inputs are generated
against target classifier, and target classifier is retrained using these inputs. To
evaluate our models against adversarial retraining, we add 3, 000 adversarial
sequences to our original training set. We retrain our target models using the
updated training set. We evaluate adversarially trained models against another
test set of 5,000 adversarially crafted sequences made by modified malware.
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Table 3 shows the results. Retraining on adversarial examples work turns out to
be effective in our case. Our attack is based on the frequency analysis, which can
be done in many other ways. For adversarial retraining to work, it has to know
all such techniques or at least similar techniques. Adversarial retraining might
not work if frequency analysis is done differently for training and testing.

Table 3. Evasion effectiveness after adversarial retraining

Classifier type Effectiveness

NN 0.00%
CNN 0.00%
RNN 0.04%
GRU 0.00%
LSTM 0.00%
Random Forest 0.00%
Decision Tree 0.00%
XGBoost 0.00%

4 Related Work

In [7], the authors use a machine learning model that uses a binary feature vec-
tor corresponding to API calls made by the executable being classified. They
use a linear classifier. The evader changes the feature vector at a cost measured
by the number of values changed in the binary vector. Their classifier does not
consider API call sequences but only the use of an API as a feature. However,
they mention that other types of features such as call sequences can be similarly
considered for evasion. They show that as they increase the number of changes
done by the evader to the feature vector, the evasion rate increases and the
classifier accuracy comes down from 95% to 43%. To enhance the robustness
of their classifier against this kind of attacks, they reformulate their classifica-
tion problem with a regularization term and show that an evader’s success rate
drastically reduces at a given evasion cost. Our work shows the success of our
evasion techniques for both linear classifiers and non-linear ones, including deep
network architectures.

In [8], four commercial anti-virus products, and two machine learning based
malware classifiers were put to the test against evasion techniques including
byte sequence occlusion by replacing byte sequences in malware by sequences
from benign-ware and replacing shellcode by return-oriented programming. They
show that such modifications can mislead binary n-gram based classifier and
deep convolutional network-based classifiers. However, their evasions were more
misleading for anti-virus products than the machine learning based classifiers.
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Their goal was not to find effective evasion techniques but to create a framework
to compare various anti-malware products against evasive adversaries.

In [10], the authors use the insertion of byte sequences in the malware and
successfully evade the convolutional network-based classifier with an evasion
rate of 99.21%. Since the modifications are at the end of the binary file or
unused parts of sections and found through fast gradient sign method after
embedding of the byte sequence of the binary to a differential domain, their
success rate in evading is above 99%. However, this method will only work for
CNN or similar classifier - not likely to succeed in linear classifiers. They show
that the convolution activations move away from malware features to the added
byte sequences while processing the modified malware - which leads to the success
of evasion.

In [18] authors introduce a genetic algorithm based modification of PDF files
infected with malware using features from benign pdf files - and get a 100%
evasion against two well known successful classifiers for detecting PDF malware.
For every step of modification, they check that they do not lose the malicious
functionality of the file.

In [4], authors use a reinforcement learning based evader - defender game-
like setting to achieve evasion, but their evasion rate is low (around 15–25%
evasion rate). They only manipulate static features such as section names, section
deletion, adding phantom library functions in the import address table, etc.

Kreuk et al. [9] generate adversarial examples for a whole binary classifier.
Such classifier takes a byte sequence of executables as inputs. The authors modify
byte values by restricting modifications to a new section of some bytes in the
executable. These bytes do not take part in the execution of malware in any way.
Although they achieve a misclassification rate of 100%, such an attack might be
easy to circumvent by removing unused sections from the executable.

In [16], the authors talk about distillation defense, ensemble defense, and
weight decay defenses. The ensemble defense seems to work the best for them.
However, in our work, since evasion seems to mislead all kinds of classifiers, it is
unlikely to be defeated by ensemble defense.

All the previous work try to evade detection for classifiers based on static
features. To the best of our knowledge, Rosenberg et al. [15] is the first work that
evades detection by malware classifiers trained on dynamic features. We consider
attacks targeting dynamic features based malware classifiers more severe than
static features as static features based models can also be evaded by polymor-
phic and metamorphic techniques. Our work targets model trained using API call
sequence made during the execution of Windows executables. We successfully
modify the sequence such that the modified sequence will be classified as benign.
This work, like most of the other works, restricts itself to only additive modifica-
tions to features. Apart from the limitations described individually, a lot of the
work, except Rosenberg et al., has a common limitation that writers do not back
the validity of their approach by actually modifying malware and limits their
experiments on only extracted features. An adversarial scheme’s credibility lies
in whether a malware running in a target detection environment, can reproduce
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the modified feature level behavior or not. Anything can go wrong while modi-
fying the executable and things that seem feasible while working with abstract
features might not even be possible to reproduce by modifying executable.

On the other hand, Rosenberg et al.’s work has a severe hidden assump-
tion that target execution environment is completely known in their black-box
setting. Dynamic behavior of malware can change due to changes in execution
environment including a change in operating system version, change in registry
keys and its corresponding values, presence or absence of some software compo-
nent (e.g., whether macros are enabled in Microsoft Office), or content of any file
that malware is accessing. Their attack will easily fail if such changes occur. Sec-
ondly, their work also depends on a configuration file which needs to be changed
for each new malware.

In conclusion, our work addresses the following challenges which are not
addressed by Rosenberg et al.’s work. Firstly, an adversarial attack must be
resilient to a slight change in the target execution environment, which includes
changes in operating system version, presence, absence or slight modification in
registry keys, presence or absence of a particular software (e.g. Microsoft Office)
or any kind of change that can result in the change of the API call sequence.
Secondly, An adversarial attack implementation should be generic and should
not require any specific change for different malware. Our work addresses these
issues, and present an attack in a stronger black-box environment than the one
assumed by Rosenberg et al.’s work.

5 Conclusion and Future Work

In this work, we demonstrate an attack that can evade API call sequence based
malware classifiers. To perform this attack, we generate eight target machine
learning models that use dynamic features based on API call sequences. The
models are trained using 300 API call sequences. We present two categories of
evasion techniques on the target models. One is feature level evasion, and the
other is executable level evasion. For feature level evasion the effectiveness of
the attack on all target models is 100%, and for executable level evasion, the
highest effectiveness of the attack is 91.79%. In our work, we also implement
a defense mechanism for evasion attacks using adversarial retraining for all the
eight models. Similar techniques can be applied to evade classifiers that use
features other than API call sequences. A unified framework can be developed
that can modify malware to evade detection from multiple types of classifiers
by mimicking benign behavior. Future work involves making malware detection
schemes robust to such mimicry attacks. All the code and dataset are available
upon request from the authors for artifact validation.
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Abstract. Sandbox-enabled dynamic malware analysis has been widely
used by cyber security teams to handle the threat of malware. Corre-
spondingly, malware authors have developed various anti-sandbox tech-
niques to evade the analysis. Most of those evasion techniques are well
studied and can be defeated with appropriate mitigation strategies. How-
ever, one particular technique is usually overlooked and can be extremely
effective in defeating sandbox-based malware analysis, i.e., usage arti-
facts analysis. This technique leverages a variety of system artifacts that
are expected to exist in a real system as a result of typical user activi-
ties for sandbox environment identification. To tackle this drawback of
lacking authentic system artifacts in existing sandbox designs, in this
paper we propose a novel system UBER for automatic artifact gener-
ation based on the emulation of real user behavior. Instead of cloning
real usage artifacts or directly simulating user behaviors, UBER gen-
eralizes the user’s computer usage pattern with an abstract behavior
profile, employs the profile to guide the simulation of user actions and
the generation of artifacts, and then clones the system with generated
artifacts into the sandbox environment. We implement a prototype of
UBER and verify the effectiveness of the generated artifacts. The exper-
imental results further demonstrate that UBER can effectively mitigate
the system artifacts based sandbox evasion and significantly increase the
difficulty for the attacker to distinguish the sandbox from the real user
system.

Keywords: Malware analysis · Evasive malware · Anti-analysis ·
Virtualization

1 Introduction

Malware sandboxes have become a highly desirable and widely utilized tool
through which most cyber security teams regularly perform malware analysis.
They can provide effective analysis of malware by monitoring its runtime behav-
iors at various levels. Sandboxes allow inexperienced analysts to identify mali-
cious features, which could not be obtained through malware reverse engineering.
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In addition, many security companies adopt sandboxes for unknown downloads
analysis [1–3].

However, the arm race between attacker and defender never stops. As cyber
security teams begin to rely more and more on sandbox-based dynamic anal-
ysis, malware authors have begun to develop ever-more sophisticated evasion
techniques to circumvent sandboxes. Specific environment indicators, such as
system settings [4], analysis instrumentation files or drivers [5], user-like mouse
clicking and scrolling movements [11] and derived sandbox configuration [10], as
well as timing attacks [6], CPU virtualization [8] and process introspection [7]
could be adopted by malware to identify sandbox environments.

Many of these evasion techniques have been identified and well documented
by security teams. Furthermore, researchers have proposed several mitigation
approaches, such as state modification, multi-platform record&replay and bare
metal analysis, to make sandbox environment indistinguishable from the real
system [9]. However, all these anti-sandbox techniques are ineffective in miti-
gating usage artifacts analysis based sandbox evasion [17], which leverages user
usage artifacts to determine whether malware is running on actual system or
sandbox.

In this paper, we seek to tackle the drawback of lacking real user activ-
ity related system artifacts in existing sandbox systems. One straightforward
strategy is to construct the sandbox by directly cloning the real user system.
However, there are several limitations with this approach. First, copying arti-
facts from real user system could potentially threat user privacy. Second, the
artifacts in the cloned system would become outdated eventually without con-
sistent user interactions, and it is unrealistic to clone the real system for each
analysis. Another alternative strategy is to directly simulate real user interac-
tions within the sandbox environment. Although this approach does not suffer
from privacy issues, it is unclear whether the generated artifacts are sufficiently,
as many artifacts are accumulated through the history of persistent user access.
Motivated by these two strategies, we propose a novel architecture, the User
Behavior Emulator (UBER), which employs a user behavior profile to generate
“real” user activities. Specifically, instead of cloning artifacts from real system or
directly simulating user behaviors, UBER generalizes the user’s computer usage
pattern into an abstract behavior profile, emulates the user actions based on the
profile to generate system artifacts, and finally copies the generated artifacts to
the sandbox environment.

The main intuition behind the proposed strategy is that simulating user
actions from usage pattern allows to faithfully replicate real user behavior, thus
generating realistic usage artifacts. For example, in a Windows system, multiple
artifacts, such as the registry entries, the system logs and the cached files, could
be generated due to real user actions. Due to the considerations of user privacy,
UBER only records a user’s application usage times with the tracker software
(e.g. ManicTime1) to generalize usage pattern. For the application operation,

1 https://www.manictime.com/.

https://www.manictime.com/
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UBER relies on the statistics data from public websites (e.g. Alex2, Google
Trends3) and performs generic user actions, such as accessing top sites, searching
common terms. Thus, UBER generates realistic artifacts based on specific usage
pattern with generic operations. These artifacts collectively present a holistic
profile of the system usage pattern.

To avoid runtime conflicts between the malware and UBER, we deploy UBER
on one always-on system, which is cloned to the malware analysis sandbox on
demand. In this way, the sandbox environment is rendered indistinguishable
from the real system. Since there is clear distinction of system artifacts between
a sandbox system running specialized analysis software and the real system, the
artifacts in the cloned system will become obsolete eventually without persistent
real user actions. Therefore, UBER uses a scheduler to perform the cloning
regularly so that the artifacts are not outdated. Given that a sandbox-based
malware analysis system is usually rolled back to its initial state after each
malware analysis [10], UBER mainly replaces this initial state with the always-
on system that possesses the most up-to-date and realistic artifacts.

To demonstrate the effectiveness of the proposed architecture, we implement
a prototype of UBER with python script. To assess the usefulness of the gener-
ated artifacts, we deploy UBER on a virtual machine with fresh installed Win-
dows Operating System (OS), and manually operate the cloned fresh virtual
machine as “real system” simultaneously. After running these two systems for
one month, we compare the artifacts accumulation process of them. Overall
comparable amounts of system artifacts are accumulated in both systems, which
indicates that UBER can effectively generate realistic artifacts through the emu-
lation of real user operations.

In conclusion, this paper makes the following contributions:

– We present a comparative study of the malware sandbox evasion techniques
that leverage system artifacts indicating normal usage for sandbox detection.

– As a countermeasure, we propose the User Behavior Emulators (UBER) for
realistic usage artifacts generation based on the predefined user profile with-
out violating user privacy. UBER manages to create high-fidelity sandbox
environments that are indistinguishable from real systems.

– We implement a prototype of UBER and our evaluation results demonstrate
its effectiveness in mitigating the system artifacts based sandbox evasion.

2 Threat Model

Sandbox evasion malware usually leverages a variety of techniques to determine
whether it is running in a sandbox before performing malicious behavior. This
kind of malware would camouflage as “benign” through executing normal func-
tion when identifying sandbox system. The ability of hindering malware anal-
ysis could greatly harm the effectiveness of current computer system defense

2 https://www.alexa.com/topsites.
3 https://trends.google.com/trends/.
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mechanisms. In this paper, we focus on the sandbox evasion malware that lever-
ages system artifacts indicating normal user usage to distinguish the sandbox
environments from the real systems. In general, UBER aims at preventing the
malware from distinguishing a sandbox system from the real system through
usage artifacts analysis.

3 System Design

To defeat the sandbox evasion with usage artifacts analysis, we develop a user
behavior emulation system UBER for automatic artifacts generation. Figure 1
shows the system architecture of UBER.

In the following, we first give an overview of UBER and then elaborate on the
design details. Data Collector gathers the raw user data (e.g., the web access
log) which characterizes user behavior. User Profile Generator performs sta-
tistical and correlation analysis on the raw data to generate an abstract profile
that serves as a generalized representation of typical user activities and outputs a
configuration file that describes the user profile. This configuration file is then fed
to the Artifact Generation OS, which uses the Event Generator to create
events following the configuration and executes them via the Event Executor.
Finally, continuous operation of the Event Generator results in various seem-
ingly “real” system artifacts in the Artifact Generation OS, which can then
be cloned to create the malware sandbox analysis environment with realistic OS
image.

Malware Sandbox
Analysis OS

Artifact Generation OS

User Profile 
Generator

Configure file

Event 
Execution

Event 
Generator

Activity X
Activity Y
Activity Z

Data 
Collector

Scheduler

Make Clone

Fig. 1. UBER architecture

3.1 Data Collector

This component gathers the information needed to derive the user profile. First,
it records the user’s application usage times with a tracker software and then
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categorizes each application into the activity types defined by UBER. Second, it
collects useful information from several public web usage repositories to define
the operations of each activity type. In this paper, we define the activity types
according to an individual’s real computer usage experience in combination with
public stats of popular web4 and application activities5. As an example, we col-
lect data from public statistics website (e.g. Alexa, Google Trends) to construct
generic user web activities.

3.2 User Profile Generator

This component translates the information gathered by Data Collector into
various user activities. It outputs a configuration file that defines how the emu-
lation software will perform user actions. Particularly, the configuration file con-
sists of the application and web usage behavior with corresponding execution
probabilities, which are derived from a statistical analysis of the information
collected by Data Collector. These probability values indicate the likelihood
that a user would perform specific activities (application or web).

Figure 2 shows an example of configure file which represents one common
staff who regularly starts to work approximately at 8am and 1pm of everyday.
In this configure file, the web browsing usage of 60 indicates that this particular

# System usage (Start Time,Duration)
onTimes: 0800+0100-0100,210
onTimes: 1300+0030-0030,270

# Activity type of user (Type,Probability)
ActivityTypes: web,60|app,40

# Sub-activities for Web Activity
WebActivityTypes: searching,60|webmail,20|new,10|miscellaneous,10

# Sub-activities for App Activity
AppActivityTypes: productivity,70|Leisure,20|miscellaneous,10

# Browsers for Web Activity
Browsers: iexplore,10|chrome,50|firefox,40

# WebSites for Sub-activities of Web Activity
SearchSites: www.google.com,70|www.bing.com,30
WebMailSites: mail.google.com,60|outlook.live.com/mail,20|mail.yahoo.com,20
NewsSites: www.cnn.com,60|www.bbc.com,20|www.foxnews.com,10
MiscSites: (Pull from Alex)

# Actions for Sub-activities of Web Activity
SearchTerms: (Pull from Google Trend)

Fig. 2. Configure file example

4 https://www.infoplease.com/science-health/internet-statistics-and-resources/most-
popular-internet-activities.

5 https://www.microsoft.com/en-us/store/most-popular/apps/pc.

https://www.infoplease.com/science-health/internet-statistics-and-resources/most-popular-internet-activities
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user will likely spend approximately 60% of computer usage time performing
web browsing task.

3.3 Artifact Generation OS

The Artifact Generation OS directly runs the emulation software to generate
realistic usage artifacts. Furthermore, to keep system artifacts up-to-date, the
emulation software is executed continuously based on the configuration file. This
software consists of two modules: Event Selector and Event Executor. We do
not execute the malware on this OS to eliminate runtime conflicts. To maintain
the applicability of the artifacts, the virtual machine (VM) running this OS is
never reverted to the previous snapshots. In the following, we first introduce the
artifacts we have identified that characterize the usage history of a real system,
and then present the workflow of the Event Selector and Event Executor.

System Artifacts. We identify and collect a multitude of useful system arti-
facts that can be leveraged by the malware to differentiate the sandbox from
the real system. Table 1 presents a list of the system usage artifacts used in our
experiments.

Table 1. A list of system artifacts

Category Artifacts Description

File system Downloaded files # of download files in computer

Browser Total URLs visited # of unique visited URLs

Unique domains # of unique visited domains

Cookies # of cookie in browsers

CookiesTime # of days since first cookies

Bookmarks # of bookmarks in browsers

Temporary internet files # of temporary files generate by browser

Network ARP entries # of ARP entries

DNS records # of DNS resolver entries

Bytes sent # of count data sent

Active connections # of active TCP/UDP connections

Registry MUI Cache # of MUI entries

Userassist entries # of Userassist entries

MRU entries # of MRU entries

Registry size Size of registry (in bytes)

System System log entries # of system events

Application log entries # of application events

File System: Typically, a variety of files are created and modified during
the normal usage of a computer system.
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Browser: A user’s daily browsing also generates multiple traces that indicate
the browser usage history. In particular, normal browser usage usually results in
abundant other files such as the temporary internet files, bookmarks and cookies.
These files serve as a strong indicator of the regular browser usage, which can
be used by the malware to identify normal user activities. Furthermore, the
stored bookmarks and cookies in the browser could serve the same purpose as
the temporary internet files.

Network: Various network related artifacts are associated with an authentic
system. The amount, type and variety of network information from a sandbox
system will be vastly different from the real system that has been used to browse
web sites, execute various client applications and install OS/application updates.

Registry: The Windows Registry contains a lot of information about the
computer system and its usage. Among these, three registry items, Userassist,
Most Recently Used (MRU) and MUICache keys, are particularly informative.
Userassist keys contain information about the applications accessed via the GUI.
Most Recently Used (MRU) keys contain information of the recently accessed
or saved files, such as zip files (.zip), text files (.txt) or graphic files (.jpg, .png,
etc.). MUICache key is another way to determine the software previously run
on the system. Due to the running specialized analysis software and the lack-
ing of abundant operations, fairly limited number of these registry entries are
accumulated in the sandbox systems.

System: The event logs of the Windows systems contain plenty of informa-
tion about the current state and past usage of the system. Event log records
various types of events, such as the application, security, setup and update, etc.
Considering that the event categories are diverse among different systems, we
only enumerate the number of the application and system events to generalize
usage pattern.

Event Selector and Event Executor. The workflow of the Event Selector
and Event Executor is illustrated in Fig. 3.

Event Executor

Event Selector

Pre-defined User 
Actions

Probability &
Randomization

Activities Sub-Activities

Configure File

Execution Results

events

Fig. 3. Workflow of event selector and event executor
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Event Selector: This module makes decisions on which events will be per-
formed according to the configuration file. Each event generates different subse-
quent events which are based on the output of each primary event. The Proba-
bility and Randomization function within this module mainly takes probabilities
and additional variables provided by the configure file to select the activities and
the corresponding sub-activities. This function mainly determines the event to be
executed based on the probability that indicates which and how user actions will
be performed. In this paper, event represents specific behaviors of sub-activity.

The Probability and Randomization function works by following the
Algorithm 1. This function takes configuration file, the predefined activity
/sub-activity types as inputs, and outputs the list of selected events based on
the usage pattern. It firstly loads configuration file to obtain the probability and
average duration of the activities and sub-activities. Then, it selects the activ-
ity and further sub-activity according to corresponding probability. Finally, it
selects specific new sub-activity based on the operation results of sub-activity.
In the above process, we record the time of each sub-activity and activity and
make sure these times do not exceed the limits defined in the configuration file.

Algorithm 1. Probability and Randomization function
Input: Configuration file of user profile, config; Predefined user activity types, types;

Predefined sub-activity types, subtypes;
Output: Selected event list, E;
1: Loading user profile from config to User;
2: E = ∅;
3: while sys.runtime<User.sys.time do
4: select type from types based on User.type.probability;
5: while type.runtime>User.type.time do
6: select another type from types;

7: while type.runtime<User.type.time do
8: selects subtype from type.subtypes;
9: while subtype.runtime>User.subtype.time do

10: select another subtype from type.subtypes;

11: while subtype.runtime<User.sbutype.time do
12: perform operation of subtype;
13: E = E ∪ subtype;
14: Obtain results from subtype operation;
15: while results contains subtypenew do
16: perform operation of subtypenew;
17: E = E ∪ subtypenew;
18: Obtain results from subtypenew operation;

19: Recording runtime for each subtype;

20: Recording runtime for each type;
return E;

Event Executor: This module is responsible for executing the events deter-
mined by the Event Selector. Each event performs predefined user actions.
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Event Selector provides all the variables needed to perform corresponding
actions. The outputs of these actions, such as results returned from a particular
web search, are then returned to the Event Selector to make a new decision.
Once the new decision is made, it is returned to the Event Executor module
again and the process continues.

3.4 Malware Sandbox Analysis OS

The Malware Sandbox Analysis OS is where the malware is executed and the
runtime information is gathered to derive the behavior of mawlare. It is a real-
time clone of the Artifact Generation OS including the already generated
realistic artifacts, leading to the inability of malware identifying the analysis
environments. The emulation software should not be executed on this VM, as
the software would compete resources with the malware, influence the obtained
malicious features and even interfere with subsequent analysis. Furthermore,
malware can further evade detection through identifying the execution of the
emulation software.

3.5 Scheduler

The Scheduler is responsible for creating a copy of the Artifact Generation
OS that is used as the malware analysis sandbox. Once copied, the configurations
of the Malware Sandbox Analysis OS sandbox are also updated to use the
most recent OS image. The copy process can be done in several minutes, which
allows a newly updated VM to be used before each analysis. However, performing
a VM copy for each analysis significantly increases the analysis time and may
not be feasible in practice. An alternative solution is to clone the VM following
a schedule (e.g. daily) or use a service to monitor the analysis system usage and
replicate the VM during the system downtime. Our implementation of UBER
performs the cloning on schedule when the malware analysis sandbox is idle.

4 Implementation

We implemented a prototype of UBER on Window OS using python script.
UBER uses python packages selenium [20], pywin32 [21] and pywinauto [22]
to implement the automated control of the browser and other applications. The
implementation architecture is shown in Fig. 4. We recruit several volunteers and
collect their computer application usage pattern via using the application usage
tracker software ManicTime and then obtain generalized user profiles. Although
these profiles represent realistic computer usage pattern, they may not be uni-
versally suitable. Taking the configuration file and the data from Google Trends
and Alexa sites, UBER randomly selects the browser or application activity and
further selects sub-activities to emulate user operations.
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Fig. 4. Implementation process of UBER

To emulate realistic user activities, UBER performs all user interactions
including scrolling, mouse clicking and keyboard input in human-like speed. In
addition, UBER emulates user behavior based on user profile which ensures the
execution of web and application activities in human-like habits and ways. We
manually parse the commonly accessed website, e.g., such as Google, Bing, CNN,
and BBC, to help UBER extract meaningful URLs from the searching results and
news pages. For example, UBER selects Internet Explorer browser to perform
Google search. It employs the method “find elements by xpath(”// ∗ [@id =′

rso′]/div/div//∗/div[@class =′ rc′]/div[1]/a”)” provided by selenium to extract
effective Google searching results. Then, UBER selects one or multiple result
pages to browser. We also manually parse the GUI elements from popular appli-
cations such as Notepad and PDF reader to help UBER perform realistic oper-
ations. Moreover, it also extracts the text paragraphs from the pre-chosen web-
sites and then performs text editing using applications such as Office Word
and Notepad. To determine the application to be executed, UBER looks up the
Windows registry items to extract installed application list, and then randomly
selects one.

5 Evaluation

In this section, we first demonstrate the differences of system usage artifacts
between the sandbox environments and the real systems. We then evaluate the
effectiveness of UBER in artifacts generation and comparison with other miti-
gation strategies.
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5.1 Artifacts Difference

We implement an automation script with NirSoft6 to collect the artifacts intro-
duced in Sect. 3.3 from the Windows OS. Specifically, we use the script to col-
lect the artifacts from multiple available sandbox systems and real user systems.
Table 2 shows the average values of each artifact for the two categories of sys-
tems along with their differences. We can see that there exists clear distinction
in these artifacts between a sandbox system and a real system. This demon-
strates that the identified artifacts can serve as strong indicators of the sandbox
environment, which can be exploited by the malware to differentiate a sandbox
from the real system.

5.2 Measurement

To assess the effectiveness of UBER in defeating artifacts analysis-based sand-
box evasion, we extracted the artifacts from several VMs with fresh installations
of Windows OSes as baseline. They include Windows 10, Windows 7, Windows
Vista, Windows 8, Windows 8.1 and Windows XP, which covers all available
Windows versions commonly used by normal users, according to a recent statis-
tical report [19]. In this experiment, the host system is a PC installing Ubuntu
18.04 LTS, and is featured with Intel Xeon(R) E5-2620 CPU @ 2.40GHz x 12
and 16 GB memory. The VMs are deployed using VirtualBox 6.0, each of which
is configured with 3 vCPUs and 4GB memory.

The objective of this experiment is to demonstrate that the artifact values
from the sandbox systems are indistinguishable from the real systems once we
deploy UBER in the sandboxes. Specifically, We deploy UBER on the VMs
with freshly installed OSes, which serve as the sandbox systems as previously
mentioned. As for comparison, we manually operate another set of cloned VMs
that represent “real systems” with normal user access. We then continuously
run these machines for one month and use our automatic script to calculate
the artifacts values from these systems. The results are summarized in Table 3.
We observe that the sandbox systems with UBER deployed have comparable
amount of artifacts accumulated as real systems we manually access. Although
there is variation of the artifact values between these two systems, they both
possess realistic usage artifacts. In particular, the values of “CookiesTime” and
“Arp Entries” in both systems are the same since they are created on the same
day and stay in the same LAN network. In Table 3, the “Cookies” and “DNS
Records” may be quite different among these two systems, this is mainly caused
by that UBER accesses different URLs from real users. However, the malware
cannot identify sandbox environment only through the different of URL access
pattern because of it exists huge difference among different users. In conclusion,
UBER is able to faithfully emulate real user operations and generate realistic
artifacts in the sandboxes to make them indistinguishable from real systems.

6 https://www.nirsoft.net/.

https://www.nirsoft.net/
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Table 2. Artifacts difference between Sandbox and Real System

Artifacts Sandbox Real systems Difference

Downloaded files 0 27 27

Total URLs visited 3 301 298

Unique domains 1 55 54

Cookies 0 71 71

CookiesTime N/A 310 310

Bookmarks 0 921 921

Temporary internet files 0 851 851

Arp entries 0 13 13

DNS records 0 44 44

Bytes sent 2,731,035 43,007,337 40,276,302

Active connections 8 54 46

MUI cache 2 211 209

Userassist entries 33 62 29

MRU entries 57 433 376

Registry size 52,521,688 73,218,690 20,697,002

System log entries 774 1715 841

Application log entries 293 1290 997

Table 3. Artifacts comparison between baseline, baseline with UBER and baseline
with user operation

Artifacts Baseline Baseline + User operation Baseline + UBER

Downloaded files 0 27 34

Total URLs visited 3 1786 1766

Unique domains 1 373 354

Cookies 5 31 55

CookiesTime 0.8 30 30

Bookmarks 0 151 164

Temporary internet files 19 57 55

Arp entries 8 8 8

DNS records 8 10 14

Bytes sent 2,124,684 5,225,592 5,012,932

Active connections 6 50 46

MUI cache 14 26 24

Userassist entries 43 73 74

MRU entries 17 128 136

Registry size 87,030,444 92,026,650 91,356,255

System log entries 813 845 921

Application log entries 694 1124 1208
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5.3 Comparison with Other Mitigation Solutions

A variety of mitigation solutions have been proposed to combat malware sand-
box evasion. Ether [23] provides a hypervisor-based analysis environment, which
employs hardware-assisted virtualization to remove the emulation and software
indicators. BareCloud [24] proposes a bare-metal analysis environment, which
runs on real hardware devices and is able to provide transparent analysis. It
executes malware in different analysis environments to investigate the evasion
behaviors. The bare-metal method manages to create high-fidelity sandbox envi-
ronment by eliminating the virtualization-related artifacts. However, these two
mitigation methods are ineffective when encountering sandbox evasion malwares
that utilize system artifacts. Due to the lack of real user activities, the system
artifacts indicating past user access are seldomly generated in the sandbox sys-
tems. As a countermeasure, we propose UBER to generate realistic usage arti-
facts through user behavior emulation, which is orthogonal but complementary
to existing mitigation solutions.

6 Limitations and Discussions

UBER is not a complete solution to counter sandbox evasion. When combined
with existing mitigation solutions, it is an indispensable complement to create
authentic sandbox systems that highly resemble real systems.

Data Collection. The effectiveness of UBER depends on the collected data. It
is usually sufficient to create realistic user profiles with generic operations from
the publicly available data. However, if one malware targets a specific individual
or organization, generic profiles may be invalid. Defining user profiles of specific
targets could be used to hurdle this kind of targeted malwares.

Software Specific Artifacts. UBER generates the most commonly identified
user artifacts by emulating the relevant activities. This approach is not applicable
to generating artifacts associated with proprietary, customized or otherwise less
popular software. These softwares usually generate their own unique artifacts. To
defeat the sandbox evasion that utilizes these software specific artifacts, we can
modify UBER to emulate the software usage to generate those unique artifacts.

UBER Detection. The execution of UBER in the Artifact Generation OS
could also leave footprints, which can in turns be exploited by the malware
to identify the sandbox. These footprints could be eliminated by removing the
python because UBER is implemented all through python scripts. Moreover,
the supporting software for sandbox deployment may generate traces. To alle-
viate this, we can adopt the techniques employed by the malware to conceal
the emulation behaviors. In the case where UBER produces fixed patterns in
the generated artifacts, we can adjust the installation and operation of UBER
(e.g., randomizing the activity selection) to reduce the likelihood of sandbox
identification.
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Validation of Artifacts. As stated in Spotless Sandboxes [17], the lack of
normal usage in existing sandbox analysis system makes its environmental char-
acteristics be very different from real system. UBER tries to fix this defects
through user behavior emulation. In this paper, we verify that the generated
usage artifacts are similar to real system in terms of statistical features. In fact,
the attack surface of usage artifacts is huge. With the evolution of evasion tech-
niques, malware could identify sandbox environment by leveraging a variety of
artifacts, or even validating the content of artifacts like the correctness of docu-
ments. Therefore, we plan to integrate methods like FORGE [26] into UBER to
generate validated artifacts for confusing malware in the future.

7 Related Work

Sandbox Evasion. There is a wide variety of literature outlining both sand-
box evasion techniques and corresponding mitigation strategies. Chen et al. [14]
points out the widely application of sandbox evasion in nowadays advanced per-
sistent threat (APT). Dilshan [11] provides an overview of the most common
methods resisting sandbox evasion. Hassan et al. [12] details one common eva-
sion technique: delaying malicious behavior execution to evade sandbox-based
dynamic analysis. Chailytko et al. [13] lists many sandbox evasion techniques as
well as ways to defeat them. These techniques include identifying features cre-
ated by sandbox environment, configuration files, communication channels and
other unique traces the analysis software would leave. Aim at countering usage
artifacts analysis based evasion techniques, this paper proposes an anti-evasion
technique through user behavior emulation, which could make complement to
existing anti-evasion strategies.

Emulation. When emulation is discussed, it typically regards to hardware emu-
lation liking testing applications on different platforms, or software emulation to
identify function bugs and other deficiencies in software. Kruegel [15] discussed
some ways of sandbox evasion towards hardware emulation through virtualiza-
tion, as well as methods to subvert them. Kaur et al. [16] and Renu et al. [18]
both introduce one of the components of UBER, the selenium web driver. In
these papers, emulation and replication software is for quality control and soft-
ware development functionality. However, UBER takes another way and applies
these emulation software to trick malware of “realistic” execution environment.

System Artifacts. The identification of historical usage artifacts on one sys-
tem has been recognized as sandbox evasion techniques. Spotless Sandboxes [17]
identified many common, and easily accessible, historical usage artifacts gener-
ated by OS through normal user activities. Spotless Sandboxes found that the
type of activities conducted on a sandbox OS varies greatly from a typical sys-
tem, so do the generated artifacts. UBER follows this idea and tries to make
up this defects by generating “real” historical artifacts through user activities
emulation based on predefined usage pattern.
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8 Conclusion

With the widely application of sandbox-based malware analysis, ever-more
sophisticated evasion techniques have been developed by malware authors to
evade the sandbox. Among them, one effective approach is to leverage various
artifacts generated during the normal usage of a system, which cannot be mit-
igated by state-of-the-art defense strategies. In this paper, we investigate the
useful system artifacts and propose a novel anti-evasion system UBER, which
can effectively generate realistic usage artifacts based on predefined user profile.
We implement a prototype of UBER and our evaluation indicates that UBER can
generate artifacts through user behavior emulation. We do not intend to defeat
all sandbox evasion techniques with UBER. Nevertheless, UBER serves as an
essential supplement to the existing anti-evasion arsenal. Furthermore, UBER
is flexible to leverage tailored user behavior data to construct user profiles of
specific individuals or organizations, which can further improve its capability of
handling increasingly sophisticated and targeted sandbox evasion techniques. In
the future, we plan to integrate UBER into real-world malware analysis systems
(e.g., Cuckoo Sandbox [25]) to build up high-fidelity sandbox environment.

Acknowledgements. This work is partially supported by ONR grants N00014-16-1-
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Decker, B., Zúquete, A. (eds.) CMS 2014. LNCS, vol. 8735, pp. 63–72. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44885-4 5

15. Kruegel, C.: Full system emulation: achieving successful automated dynamic anal-
ysis of evasive malware. In: Proceedings BlackHat USA Security Conference, pp.
1–7 (2014)

16. Kaur, H., Gupta, G.: Comparative study of automated testing tools: selenium,
quick test professional and testcomplete. Int. J. Eng. Res. Appl. 3(5), 1739–1743
(2013)

17. Miramirkhani, N., Appini, M.P., Nikiforakis, N., Polychronakis, M.: Spotless sand-
boxes: evading malware analysis systems using wear-and-tear artifacts. In: 2017
IEEE Symposium on Security and Privacy (SP), pp. 1009–1024. IEEE (2017)

18. Renu, P., Temkar, R.: Intelligent testing tool: selenium web driver. Int. Res. J.
Eng. Technol. (IRJET) 4(6), 1920–1923 (2017)

19. GlobalStats - Desktop Windows Version Market Share Worldwide. https://gs.
statcounter.com/os-version-market-share/windows/desktop/worldwide. Accessed
14 Aug 2019

20. Python package selenium. https://pypi.org/project/selenium. Accessed 14 Aug
2019

21. Python package pywin32. https://pypi.org/project/pywin32/. Accessed 14 Aug
2019

22. Python package pywinauto. https://pypi.org/project/pywinauto/. Accessed 14
Aug 2019

23. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: malware analysis via hard-
ware virtualization extensions. In: Proceedings of the 15th ACM Conference on
Computer and Communications Security, pp. 51–62. ACM (2008)

24. Kirat, D., Vigna, G., Kruegel, C.: Barecloud: bare-metal analysis-based evasive
malware detection. In: 23rd USENIX Security Symposium (USENIX Security 14),
pp. 287–301 (2014)

https://doi.org/10.1007/978-3-319-45719-2_8
https://doi.org/10.1007/978-3-662-44885-4_5
https://gs.statcounter.com/os-version-market-share/windows/desktop/worldwide
https://gs.statcounter.com/os-version-market-share/windows/desktop/worldwide
https://pypi.org/project/selenium
https://pypi.org/project/pywin32/
https://pypi.org/project/pywinauto/


50 P. Feng et al.

25. Cuckoo, Automated Malware Analysis. https://cuckoosandbox.org/. Accessed 14
Aug 2019

26. Chakraborty, T., Jajodia, S., Katz, J., Picariello, A., Sperli, G., Subrahmanian,
V.S.: FORGE: a fake online repository generation engine for cyber deception. IEEE
Trans. Dependable Secur. Comput. 1(1), 1–16 (2019)

https://cuckoosandbox.org/


IoT and CPS Security



AADS: A Noise-Robust Anomaly
Detection Framework for Industrial

Control Systems

Maged Abdelaty1,2(B), Roberto Doriguzzi-Corin1, and Domenico Siracusa1

1 Fondazione Bruno Kessler, Trento, Italy
{mabdelaty,rdoriguzzi,dsiracusa}@fbk.eu

2 University of Trento, Trento, Italy

Abstract. Deep Neural Networks are emerging as effective techniques
to detect sophisticated cyber-attacks targeting Industrial Control Sys-
tems (ICSs). In general, these techniques focus on learning a “normal”
behavior of the system, to be then able to label noteworthy deviations
from it as anomalies. However, during operations, ICSs inevitably and
continuously evolve their behavior, due to e.g., replacement of devices,
workflow modifications, or other reasons. As a consequence, the quality of
the anomaly detection process may be dramatically affected with a con-
siderable amount of false alarms being generated. This paper presents
AADS (Adaptive Anomaly Detection in industrial control Systems), a
novel framework based on neural networks and greedy-algorithms that
tailors the learning-based anomaly detection process to the changing
nature of ICSs. AADS efficiently adapts a pre-trained model to learn
new changes in the system behavior with a small number of data sam-
ples (i.e., time steps) and a few gradient updates. The performance of
AADS is evaluated using the Secure Water Treatment (SWaT) dataset,
and its sensitivity to additive noise is investigated. Our results show an
increased detection rate compared to state of the art approaches, as well
as more robustness to additive noise.

Keywords: Anomaly detection · Domain shift · Few-shot learning ·
Industrial control networks

1 Introduction

Cyber-attacks against Industrial Control Systems (ICSs) are extremely danger-
ous. They not only cause service downtime or material losses in industrial pro-
duction, but also have a negative impact on the daily life of citizens.

A notable example is the blackout attack against the Ukrainian power grid
perpetrated in late 2015 [20] using the BlackEnergy (BE) malware. The attackers
intruded remotely into the computers of three regional power distribution compa-
nies in a coordinated attack. They executed a malicious code to alter the firmware
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of specific control devices and to instruct unscheduled disconnections from servers.
The attack affected thousands of users and left them without electricity.

Another example is the Stuxnet worm used to attack the Iranian nuclear pro-
gram [24] in 2010. The worm infected the code running inside the Programmable
Logic Controllers (PLCs), collecting information on the ICS and damaging the
centrifuges inside the plant by repeatedly changing their rotation speed.

These harmful attacks have motivated the development of intrusion detection
solutions for ICSs. Among the different approaches proposed in the scientific
literature, a popular and powerful technique is called one-class classification. At
the training stage, solutions based on one-class classification build the model of
the normal behavior of the ICS (the class of “normality”). At the production
stage, the detection system uses the model to verify whether the behavior of
the live system matches the expected normal behavior. Deviations from the
normality, usually determined through thresholds on the classification error, are
flagged as anomalies.

These algorithms have the advantage of detecting any abnormal behavior,
including zero-days anomalies/attacks and faulty devices. However, real-world
ICSs are dynamic and noisy environments, where the processes and workflows
are often changed based on new production requirements, and where various
sources of noise, in particular, the electromagnetic noise, can interfere with the
communication within the ICS. In such a scenario, the main challenges are:
timely updating the model of normality upon changes in the production work-
flow, and periodically updating the thresholds used for the detection. Previous
works either do not tackle such challenges [16,22], or require highly specialized
human intervention to update the parameters of the model [13].

This paper tackles the aforementioned challenges by proposing AADS
(Adaptive Anomaly Detection in industrial control Systems). AADS combines a
greedy approach and a neural network to model the normal behavior of the ICS.
AADS implements the few-time-steps learning algorithm based on the few-shot
learning paradigm [2,4] to quickly update the model with the latest changes.
The proposed framework employs an adaptive detection threshold to minimize
the false alarms caused by noisy communication between the devices in the ICS.

We evaluated AADS using the data collected from the SWaT testbed, a
water treatment testbed for research in the area of cybersecurity [12,15]. Such a
dataset comprises a training set containing only normal records, and a test set
with normal and anomalous records. The anomalies in the test set are real-world
attacks targeting the integrity and the availability of the testbed [23]. AADS
has been compared with state-of-the-art solutions in terms of anomaly detec-
tion accuracy and robustness to Gaussian noise. To the best of our knowledge,
AADS is the first approach proposed in the ICS domain based on the one-class
classification that tackles the problem of timely updating the model of normality
according to operational and environmental changes.

The contributions of this paper can be summarized as follows:

– A neural network designed following the wide and deep model, previously
used in other contexts [10]. A wide branch in the neural network is used
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to efficiently memorize the existing relations between the different features,
while a deep branch generalizes the model to unknown relations.

– The few-time-steps learning algorithm that quickly re-trains the neural net-
work to learn new characteristics of the normal behavior upon changes in the
ICS.

– An adaptive technique that dynamically tunes the detection threshold based
on the classification error observed on the live ICS, hence taking into account
unexpected noise conditions in the communication channels between devices.

The rest of this paper is organized as follows: Sect. 2 reviews state-of-the-art
works on anomaly detection in ICSs. The problem statement is presented in
Sect. 3. Section 4 introduces the proposed anomaly detection framework. Exper-
imental setup and the evaluation results are presented in Sect. 5. Finally, we
conclude this paper and point to possible future directions in Sect. 6.

2 Related Work

This section reviews recent research studies on anomaly detection in ICSs. Par-
ticular attention is given to those works focussing on water treatment plants and
validated using the SWaT dataset, as their performance is discussed in Sect. 5
for state-of-the-art comparison.

Due to the lack of labeled data, solutions for anomaly detection in ICSs are
typically based on unsupervised learning. In [13], Goh et al. present an approach
based on a Recurrent Neural Network (RNN) and the Cumulative Sum (CuSum)
technique to detect the anomalies. CuSum sets upper and lower control limits
for the prediction error in each sensor and actuator. An anomaly is detected
when the prediction error is outside such limits. Besides suffering from a high
false-positive rate, the main limitation of this approach is that it requires an
expert human intervention to tune and update the CuSum limits.

Kravchik et al. [16] propose a solution for detecting anomalies using con-
volutional and recurrent neural networks. The key aspect of this work is the
proposed statistical approach for anomaly detection based a normalized value
of the prediction error. The normalization is computed by using the mean and
standard deviation of the prediction error of the benign samples recorded during
the normal operations of the water treatment plant, as recorded in the SWaT
dataset. However, the authors do not explain how such statistical properties are
updated in the case of changes in the production environment, quite frequent in
real-world environments, such as the replacement of a sensor with a new model
or the variation of operation parameters of one or more actuators.

The anomaly detection solution proposed in [6] is based on an Multilayer
Perceptron (MLP) and relies on a threshold applied to a weighted sum of the
prediction errors of all sensors and actuators. Low weights are assigned to those
devices whose normal behaviors are hard to predict. However, this can lead to
false negatives for attacks and anomalies involving such devices.

TABOR [22] is an anomaly detection solution validated on the SWaT dataset.
TABOR combines three different models, namely: Probabilistic Deterministic
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Finite Automaton (PDFA), and a Bayesian Network (BN). The final anomaly
detection is based on a combination of results from the two models. Also, in this
case, the authors do not address the problem of updating the model in case of
changes in the normal operations of the ICS. Updating the model here appears
significantly cumbersome due to the complex characterization of the interaction
between sensors and actuators needed to build the model.

In summary, a common drawback of these works is that they are not flexible
enough to quickly and efficiently adapt to changes in the production environ-
ment. In a water treatment plant, examples of such changes are: increasing the
size of a water tank or replacing a motorized valve with another with different
operation modes. Instead, our approach is based on a novel algorithm called few-
time-steps, presented in Sect. 4.4, that fine-tunes the neural network according
to the changes in the normal behavior of the ICS. The proposed algorithm uses
a small amount of data to update the weights of the neural network and requires
minimal human intervention.

3 Problem Statement

Unsupervised anomaly detection solutions for ICSs are usually built using the
so-called one-class classification technique. The basic idea is to build a model
of the normal behavior of the industrial process and to consider anomaly every
event that does not fit the model. The main challenge with such approaches is
dealing with the so-called domain shift, in which a model trained on a source
distribution is used in the context of a different (but related) target distribution.
Generally, the domain shift problem originates from a variation in measurements
or their meaning across both training and test sets [14,19]. The tangible effect of
these variations is an increase of false alarms generated by the anomaly detection
system due to normal events classified as anomalies.

In an ICS scenario, we can observe the domain shift when the distribution of
readings from control devices change over the time due to modifications (even
minimal) in the control system such as the installation of new devices, or changes
in the operation modes and firmware updates on existing devices.

The domain shift problem is present in the SWaT dataset, where we can
observe changes in the normal behaviour of some devices across the training
and test sets. For instance, during the normal operation, the pump P102 has a
single state on the training set P102 ∈ {1}, then it takes an additional “normal”
state on the test set P102 ∈ {1, 2}. Also, the probability distribution of some
sensors changes between the two sets. For example, in the training set the out-
put of the Analyzer Indication Transmitter AIT201 ∈ [251, 272], while in the
test set AIT201 ∈ [168, 267] with a substantial different distribution, as illus-
trated in Fig. 1. Another non-trivial and representative example is the presence
of redundant devices, such as the redundant pump P102 in the SWaT testbed.
A redundant pump is always off until the primary pump stops working unex-
pectedly. In this case, the PLC turns on the redundant pump instantaneously to
take over the work of the primary pump. If such a process is not covered in the
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Fig. 1. The probability density function for sensor AIT201. It provides an indication
about changes in the normal behavior between the training set and the test set.

training set, the forecasting model will consider the operations of the redundant
pump as anomalies.

The characterization of the normal behavioral evolvement is still a challenge
for the implementation of the anomaly detection solutions in real-world systems
[17,18]. Current research in anomaly detection in ICSs have tackled the domain
shift problem by only focusing on adjusting the parameters of the detection
algorithms, as explained before in Sect. 2. However, we argue that tuning the
detection parameters without updating the model of normality is not sufficient
to cope with dynamic environments such as ICSs.

In the next section, we present our solution for anomaly detection in
ICSs that encompasses a lightweight technique, called few-time-steps learning,
which is inspired by the few-shot learning paradigm [2,26]. The few-time-steps
learning technique updates the initial model of the industrial process throughout
its evolvement in the hardware and software configuration, hence minimizing the
number of false positives caused by the domain shift phenomena.

4 The AADS Framework

AADS defines a model of the normal behavior of the ICS combining a neu-
ral network with a database-like approach. Deep learning techniques are used to
characterize the continuous readings of sensors, whose values are usually sampled
by a PLC very frequently, while the database memorizes the states of actuators,
as commanded by the PLC. AADS includes the few-time-steps learning algo-
rithm to update the model based on the normal behavioral evolvement of the
ICS. The detection of anomalies is determined with a threshold that is automat-
ically adjusted using the prediction error.
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4.1 Anomaly Detection in Sensors

The normal behavior of sensors is modeled by means of a wide and deep neural
network. The architecture of the proposed neural network, shown in Fig. 2 and
detailed in Table 1, is inspired by the recommender system introduced in [10],
where the authors jointly trained wide and deep neural networks to recommend
apps based on the user’s query and preferences. Our neural network has two
goals, memorization through the wide branch and generalization through the
deep branch. Memorization means learning the relationship between feature-
pairs in the training set, hence recording the co-occurrence of combinations of
sensors values. Generalization means the ability to explore relationships that did
not exist in the training set.

Fig. 2. Architecture of the wide and deep neural network. The prediction of the sensors
states is computed combining the information from both sensors and actuators.

Neural Network Architecture. The design presented below is tailored to the
SWaT testbed; however, it can be generalized to other ICSs. The SWaT testbed
consists of 25 sensors (e.g., flow meters, level transmitters, pH analyzers) and 26
actuators (e.g., pumps, motorized valves).

The neural network takes as input an array X of data samples collected
during a time window of length Win seconds, corresponding to Win samples, as
the dataset was collected at a sampling rate of one sample per second. The size
of X is m×Win, where m is the number of features for each sample representing
the state of 25 sensors and 26 actuators taken at time t. Please note that we use
the features from both sensors and actuators because the behavior of the sensors
depends on their current states and the actions taken by actuators. The output
Y is the predicted readings from sensors during a future time window Wout. The
two time-windows Win and Wout are separated by a time interval called horizon
H. This separation prevents the forecasting model from copying the last values
of the input time window Win into Wout, as pointed out by the authors of [6].
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As shown in Fig. 2, the neural network architecture comprises two convolu-
tional layers and seven fully connected layers. The fully connected layer DL1
defines the so-called wide branch used for the memorization of the normal state
of sensors and actuators using cross products between the input features.

The deep branch provides the level of generalization necessary for correctly
handling the events not covered in the training set, aiming to minimize the pre-
diction error in the case of new input states. The deep branch is formed with
a sequence of one fully connected layer (DL2), two one-dimensional convolu-
tional layers (CN1 and CN2) each one followed by a max-pooling layer (MP1
and MP2), and finally an additional fully connected layer (DL3). Layer DL2
transforms the input size by increasing the size by a factor of three, acting
as a feature enrichment technique. As shown in other works (e.g., [16]), one-
dimensional Convolutional Neural Networks (CNNs) are particularly suited for
modeling time series data. The purpose of layers CN1 and CN2 is to model the
data collected from sensors and actuators in a specific time window. For max
pooling, we down-sample the output of each convolutional layer using a pool
size 2× 2. The final fully connected layer DL3 re-shapes the output of the deep
branch to allow its concatenation with the output of the wide branch.

Both branches are aggregated in another fully connected layer (DL4) followed
by a dense output section consisting of the three fully connected layers DL5,
DL6 and DL7. The output section learns the most relevant information from
the aggregation layer in order to predict the normal behaviour of sensors.

Each fully connected layer can be described as Y = ReLU(WTX+b), where
Y is the output, X input, W is an array of weights the model learns during the
training, and b is the bias. As per convention for neural networks, we intro-
duce non-linearity in the model by using the rectified linear activation function
ReLU(x) = max{0, x}. Similarly, the convolutional layers can be described as
Yk = ReLU(Conv(X,Wk,bk)), where Yk is the output of the convolution on
the input X using the kth filter with weights Wk and bias bk.

Cost Function. The neural network presented above has been trained to min-
imize the Mean Square Error (MSE) cost function by iteratively updating all
the weights and biases contained within the model. The cost function computes
the error between the prediction of the model and the corresponding observed
sensor values. Hence, minimizing the cost, we reduce the prediction error. At the
training stage, the cost function for a batch size of s samples (i.e., s different
time windows) can be formally written as:

c =
1
s

s∑

t=1

( 1
mse

mse∑

i=1

(Yt[i] − Ỹt[i])2
)

(1)

where Yt[i] is the predicted value for sensor i at sample t (i.e. time-step t), while
Ỹt[i] is the corresponding observed sensor value. mse is the number of sensors in
the ICS (25 in the case of the SWaT testbed).
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Table 1. AADS wide and deep neural network.

Layer Trainable parameters Output shape

Input – [m,Win]

– Array of shape [m = 51,Win]

Wide branch

Fully connected (DL1)+ReLU 4 + Win · 4 [m, 4]

Deep branch

Fully connected (DL2)+ReLU 180 + Win · 180 [F, 180]

Convolution1D (CN1)+ReLU 64 · (m · 2 + 1) [64, 179]

– 64 kernels of shape [m, 2]

– (1, 1) stride, no padding

MaxPooling1D (MP1) – [64, � 179
2 �] = [64, 89]

– (64, 2) pool-size

Convolution1D (CN2)+ReLU 128 · (64 · 2 + 1) [128, 88]

– 128 kernels of shape [64, 2]

– (1, 1) stride, no padding

MaxPooling1D (MP2) – [128, 88
2 ] = [128, 44]

– (128, 2) pool-size

Fully connected (DL3)+ReLU 4 + 128 · 4 [44, 4]

Concatenation of Wide and Deep branches – [F + 44, 4] = [95, 4]

Fully connected (DL4)+ReLU 80 + 95 · 80 [80, 4]

Output section

Fully connected (DL5)+ReLU 65 + 80 · 65 [65, 4]

Fully connected (DL6)+ReLU 50 + 65 · 50 [50, 4]

Fully connected (DL7)+ReLU 25 + 50 · 25 [25, 4]

Output – [mse = 25,Wout = 4]

4.2 Anomaly Detection in Actuators

Actuators in the SWaT testbed include pumps and motorized valves. The pumps
are arranged in pairs of primary and redundant hot-standby pumps. A redun-
dant pump is turned on only in the case the respective primary pump stops
working. This operational mode complicates building a forecasting model that
predicts the actuator states, as some actuators (such as the redundant pumps),
are rarely used during the normal operations. As a consequence, after experienc-
ing several prediction errors using Deep Learning (DL)-based approaches due to
lack of records, we designed a light and straightforward greedy approach based
on querying a database containing all the normal actuator states. The database
entries are 26-tuples, each one containing an ordered combination of states of the
26 actuators in the SWaT testbed. The database, denoted as A in this paper, is
filled with all the 146 combinations labeled as normal in the SWaT training set.
An example of tuple is provided in Table 2.
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Table 2. Example of tuple in the database of actuators normal states.

Actuator labels MV101 P101 P102 MV201 P201 ... P501 P502 P601 P602 P603

Tuple 2 2 1 2 1 ... 2 1 1 1 1

At testing time, the combinations in the test set with no occurrences in the
training set are marked as anomalies, as explained in Sect. 4.3.

4.3 Detection Logic

Given an observation time window Wt = [t, t + Wout] of Wout samples, the
objective is to determine whether an anomaly is present in the sensors and
actuators values observed in Wt. For the actuators, AADS checks whether the
Wout observed combinations are present in the database A built at the training
stage. An anomaly is reported when none of the Wout combinations belongs
to A. In the case of the sensors, the observed values are compared with those
predicted by the wide and deep neural network presented in Sect. 4.1. A threshold
T on the MSE is used to perform the comparison. More precisely, a sequence
of Wout sensors samples observed starting from time t determines an anomaly
when MSEt > T .

To reduce the false positives caused by sudden changes in the underlying
physical process (as also reported in [16]), AADS reports an anomaly at time t
only if the anomaly condition has been continuously observed for Wanom sam-
pling intervals:

Lt =

⎧
⎪⎨

⎪⎩

1, if MSEi > T ∀ i ∈ [t − Wanom, t]
1, if νi �∈ A∀ i ∈ [t − Wanom, t]
0, otherwise

(2)

where νi is the combination of the actuators values observed at time i, while
Lt = 1 defines the anomaly condition at time t. Wanom is one of the hyper-
parameters used to tune AADS, as reported in Sect. 5.

4.4 Few-Time-Steps Learning

The few-time-steps algorithm has been designed to easily update a trained
instance of AADS in a production environment.

The algorithm updates the database A and tunes the output section of the
pre-trained wide and deep neural network upon a false alarm. When a false
alarm is caused by changes in the normal operating condition of the ICS (e.g.,
changes in the hardware/software configurations), it can be recognized by the
operator and used to update the neural network model. While state-of-the-art
approaches need expert human intervention to fine-tune the detection thresh-
old and other hyperparameters, the few-time-step approach only requires the
operator to inform AADS about the false alarms.
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Algorithm 1. Few-time-steps learning algorithm
1: μinit ← load the pre-trained model;
2: μu ← freeze all parameters of μinit except layers DL5, DL6 and DL7;
3: for each t do
4: if Lt == 1 and Lt is false alarm then
5: for i ∈ [t − Wanom, t] do
6: if νi �∈ A then
7: A = A ∪ νi;
8: end if
9: end for

10: l ← compute MSE for time steps in [t − Wanom, t];
11: if l > T then
12: epochs ← number of fine-tuning epochs;
13: for epoch in epochs do // Loop to fine-tune the dense output

section
14: l ← compute MSE for time steps in [t − Wanom, t];
15: Do one SGD step to minimize l;
16: μu ← update parameters of layers DL5, DL6 and DL7;
17: end for
18: end if
19: end if
20: end for

In lines 5–9 of Algorithm 1, we add the new combinations of the actuator
states to database A, while in lines 10–18, we fine-tune the output section of the
neural network. Specifically, in line 15, the Stochastic Gradient Descend (SGD)
[11] is employed to fine-tune the output section through multiple gradient steps.
We calculate the prediction loss for the data samples collected during the time
interval [t−Wanom, t] and that caused the false alarm. The optimizer minimizes
this loss by tuning the parameters of the output layers DL5,DL6, and DL7.
After 100 optimization steps (around 250 ms in total on our testing environment
described in Sect. 5.1), the updated model μu replaces the previous one in the
anomaly detection process. The idea of weights fine-tuning is quite similar to
basic few-shot learning [26].

4.5 Threshold Selection

The industrial environments are usually subject to various sources of noise.
In particular, the electromagnetic noise can interfere with the communication
within the ICS, hence compromising the operations of anomaly detection sys-
tems [8,27]. The main challenge is finding the correct threshold needed to classify
an event either as anomaly or as normal activity. Previous works tackled this
problem empirically, by tuning the threshold at test time as a hyper-parameter
[6,13,16]. While this technique produces good results in the laboratory when
using static datasets such as SWaT, online systems can hardly afford long thresh-
old tuning sessions for updating the thresholds upon new noise levels. Instead,
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we use an adaptive technique that dynamically tunes the threshold based on the
prediction error observed on a set of normal records.

In our implementation, AADS uses the initial threshold T = T0 computed as
the maximum validation error observed during the training of the model with the
normal records. Every record with a prediction error greater than T0 is classified
as an anomaly. In a second phase, T is updated by using a set of normal records,
called threshold set, collected during the ICS operations. Similarly to what done
by Singh et al. in the context of anomaly detection in smart homes [25], T is
computed as T = μ+σ, where μ and σ are the mean and the standard deviation
of the prediction error obtained on the threshold set. In this regard, the mean
μ roughly estimates the threshold for the prediction error above which a record
is anomalous. The standard deviation is added to reduce the false positives,
particularly frequent in noisy communication systems.

In our experiments, we use a portion of the SWaT test set as our threshold set
to update the value of T . We demonstrate the effectiveness of this solution in the
next section, where we compare the performance of AADS and a state-of-the-art
solution by using increasing levels of additive noise.

5 Experimental Evaluation

This section presents the experimental setup and the results obtained after apply-
ing the few-time-steps learning to detect anomalies in the SWaT dataset.

5.1 Experimental Setup

AADS has been implemented in PyTorch 1.0 [7] and validated using a Singu-
larity container [9] running in a shared machine configured with 24 shared CPU,
64 GB virtual RAM and an NVIDIA 12 GB K80 GPU.

Prior to our experiments, we normalized the 51 features of the SWaT dataset
between 0 and 1. Moreover, we empirically chose the hyper-parameter values
based on the results of a preliminary tuning. For the input time window Win,
the learning rate α and the dropout probability δ, we adopted a grid search
strategy to explore the set of hyper-parameters using F1 score as the performance
metric. Specifically, we experimented using Win ∈ {50, 60, 70, 90, 120}, SGD with
α ∈ {0.1, 0.01, 0.001} and decay on plateau, and δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. On
the other hand, the output time window and the horizon have been set based
on the setup used by Shalyga et al. in [6].

The final set of hyper-parameters that maximizes the F1 score is the follow-
ing:

Win = 60, Wout = 4, H = 50, Wanom = 50, α = 0.01, δ = 0.4

These hyper-parameters are kept constant throughout our experiments pre-
sented below in this section.
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5.2 Methodology

As per convention in the literature, we evaluate AADS using the following
metrics:

Pr =
TP

TP + FP
Re =

TP

TP + FN
F1 Score = 2 · Pr · Re

Pr + Re

where Pr = Precision, Re = Recall, F1 = F1 Score, TP = True Positives, FP
= False Positives, FN = False Negatives. Such metrics allow us to assess the
overall performance of the proposed framework as well as to compare AADS
with the state-of-the-art.

We also measure the sensitivity of AADS to noise. It is worth recalling
that industrial control systems operate in hostile environments [21], where the
communication channels are often subject to interference (e.g., in the case of
employing wireless communication devices [3]). For evaluation purposes we add
Gaussian noise to sensor readings of the SWaT dataset with mean μ = 0 and
standard deviation σ ∈ {1, 2, 3, 5, 10, 15}. The noise distribution and the values
of μ and σ have been selected based on similar assumptions made in other
works [8,27] regarding the noise in communication channels of networked control
systems.

In this research, we do not evaluate the robustness of AADS against adver-
sarial noise, i.e., the noise added to the communication channels by an attacker
intending to perturb the detection accuracy. Indeed, the defense against adver-
sarial attacks in ICS is a complex problem, and its discussion is outside the scope
of this work.

The validation presented below is divided into three different experiments. In
Experiment 1, we compare the performance of AADS with three relevant works
in the state-of-the-art in terms of precision, recall, F1 score, and the number of
attacks correctly detected. In Experiments 2 and 3, we evaluate the robustness
of AADS to additive noise applied on the SWaT training and test sets, and we
compare the results with the framework proposed in [16].

5.3 Experiment 1: Detection Accuracy

AADS matches existing state-of-the-art detection accuracy on the SWaT test
set, while correctly recognizing 33 out of 36 attacks in the test set (see Table 3).
It is worth noting that AADS also detects a higher rate of attacks during their
execution (97% against 93% of [16]), hence allowing the operator to activate the
adequate countermeasures more promptly. A full comparison between AADS,
[16] and the other three state-of-the-art solutions considered in this experiment
is provided in Table A.1 of Appendix A.

To measure the contribution of the few-time-steps algorithm to the detection
accuracy of AADS, we repeated the experiment disabling the algorithm. As the
SWaT test set contains normal records that are not present in the training set,
the model of normal behavior built with the training set leads to several false
positives and, more precisely, to a low F1-score measure of 0.66. Instead, when
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Table 3. A comparison between our results and state of the art. In brackets, the
number of attacks detected after their end.

Architecture Precision Recall F1 Detected attacks

AADS 0.866 0.861 0.863 33(1)
MLP [6] 0.967 0.696 0.812 25
CNN [16] 0.867 0.854 0.860 31(2)
TABOR [22] 0.861 0.788 0.823 24

enabling the few-time-steps algorithm, the database of actuators combinations
and the weights of the output section of the neural network model are updated
with new information of the normal behavior available in the test set, leading to
a higher detection accuracy.

The update process is fast. In fact, with our setup, the execution of one cycle
of the few-time-step algorithm with 50 samples takes 2.7 ms on average. In an
online system, the algorithm can be triggered by the operator upon identifying
a false alarm. It is important to stress that this is the only requirement for the
operator, unlike other solutions where an in-depth knowledge of the underlying
algorithms is necessary to update thresholds or other parameters.

5.4 Experiment 2: Additive Noise on the Test Set

In this experiment, we measure the robustness of AADS to synthetic noise
added to the sensors readings in the SWaT test set. In our experiments, we
generate various levels of white Gaussian noise by varying the standard deviation
σ ∈ {1, 2, 3, 5, 10, 15}, and we compare AADS with our implementation of the
CNN proposed in [16]. Figure 3 shows the values of F1-score and number of
detected attacks as functions of σ.
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Fig. 3. Performance after adding Gaussian noise to the test set.
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The solid line with filled circles in the figure shows that the detection accuracy
of AADS does not decrease, even in the presence of noise. This is thanks to
the mechanism presented in Sect. 4.5, which dynamically tunes the detection
threshold based on the prediction error. However, the number of detected attacks
drops from 33 with no noise, to 24 with σ = 2 and σ = 10 (dashed line with
filled circles in the figure).

On the other hand, the performance of the state of the art approach drops
drastically (solid line with empty circles). This is mainly due to the statistical
approach and to the static threshold employed to detect the anomalies, empir-
ically selected as the value T ∈ [1.8, 3] that maximizes the F1-score. The low
values of the F1-Score for σ > 0 are due to a low precision measure (around 0.31
on average), meaning that the CNN classifies most of the records as anomalies,
mostly false positives. This is the reason why the 36 attacks in the SWaT test
set are almost all correctly classified (dashed line with empty circles). However,
as everything looks like an anomaly, in a real-world deployment, the output of
the CNN would be unusable.

5.5 Experiment 3: Additive Noise on both Training and Test Sets

In a real-world scenario, the data used to build the model of normal behavior can
also be affected by noise. Here, we repeat the experiment presented in Sect. 5.4
by adding white Gaussian noise not only to the test set, but also to the sensors
records in the training set before training the neural network. The results are
presented in Fig. 4.
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Fig. 4. Performance after adding Gaussian noise to both training and test set.

Adding noise to the training records allows AADS to build a more precise
representation of the normal behavior under noisy conditions. The benefits are
observed for both AADS and the CNN used for comparison in terms of more
stable F1-score measure (solid lines in Fig. 4). However, AADS is less prone to



AADS: A Noise-Robust Anomaly Detection Framework 67

false alarms, with a precision measure of 0.97 on average compared to 0.80 on
average obtained with the CNN.

Also, in this experiment, we can notice an increase in the number of attacks
detected by the CNN when increasing the standard deviation of the Gaussian
noise. Although less prominent than in experiment 2, this behavior is a conse-
quence of the static threshold adopted in [16], which causes an increase in the
total number of true and false positives.

6 Conclusion

In this paper, we have presented AADS, a framework for anomaly detection
in Industrial Control Systems (ICSs) grounded on the one-class classification
paradigm. AADS has been designed to mitigate two major problems affect-
ing similar solutions proposed in the state-of-the-art literature. The first, called
domain shift, can be observed when changes in the normal behaviour of the ICS
are not correctly handled by the detection system. The results are usually an
increase in the number of false alarms. The second problem is caused by the elec-
tromagnetic noise affecting the communication within the ICSs, which prevents
the detection system from segregating the anomalies from normal operations
correctly.

We have tackled the aforementioned problems by introducing a fast and
automated mechanism for updating the model of the ICS based on the detected
false alarms caused by changes in the normal behaviour, such as planned updates
in the hardware and software configuration. Additionally, AADS dynamically
adjusts the detection threshold using the statistical properties of small sets of
normal records. With respect to state-of-the-art results, AADS detects a larger
number of attacks and is more robust to noisy data samples.

In a real-world deployment, the operator would be only required to recognize
the false alarms and to signal them to AADS, unlike other solutions where an in-
depth knowledge of the underlying algorithms is necessary to update thresholds
or other parameters. In this regard, minimizing the human intervention without
exposing the system to poisoning attacks is an interesting direction for future
research.

We also plan to improve the threshold selection method, by studying how to
apply a dedicated threshold to each sensor/actuator. Finally, we are interested in
extending our threat to model stealthy attacks [5] and in analysing the robustness
of AADS to adversarial machine learning attacks [1].

Acknowledgment. The authors would like to thank the Center for Research in Cyber
Security at the Singapore University of Technology and Design for providing the SWaT
dataset.
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Appendix A Point Recall Comparison

Table A.1. Recall for each attack in the SWaT dataset.

Attack
scenario1

Attack description MLP [6] TABOR [22] CNN [16] AADS

1 Open MV-101 0 0.049 0.995 0.953

2 Turn on P-102 0.764 0.930 1 1

3 Increase LIT-101 by 1mm every second 0 0 0.2252 0.296

4 Open MV-504 0 0.328 0 0

6 Set value of AIT-202 at 6 0.952 0.995 0.903 0.903

7 Water level LIT-301 increased above HH 0.909 0 1 0.012

8 Set value of DPIT as <40 kpa 0.984 0.612 1 0.969

10 Set value of FIT-401 at >0.7 0.976 0.994 1 0.931

11 Set value of FIT-401 at 0 0.989 0.998 1 1

13 Close MV-304 0 0 0 0

14 Do not let MV-303 open 0 0 0 0.012

16 Decrease water level LIT-301 by 1mm each
second

0.60 0 0.236 0

17 Do not let MV-303 open 0 0.597 0.631 0.539

19 Set value of AIT-504 at 16 uS/cm 0.97 0.004 02 0.434

20 Set value of AIT-504 at 255 uS/cm 0 0.997 1 0.973

21 Keep MV-101 on continuously; set value of
LIT-101 at 700mm

0.98 0.083 0.907 0.908

22 Stop UV-401; set value of AIT502 at 150; force
P-501 to remain on

0.978 0.998 1 0.958

23 Set value of DPIT301 at >0.4 bar; keep MV302
open, P602 closed

0.711 0 1 0.954

24 Turn off P-203 and P-205 0.918 0 0.169 0.225

25 Set value of LIT-401 at 1000; P402 is kept on 0.294 0 0.019 0.899

26 P-101 is turned on continuously; set value of
LIT-301 at 801mm

0.998 0.999 1 0.766

27 Keep P-302 on; set value of LIT401 at 600mm
until 1:26:01

0 0.196 0.063 0.547

28 Close P-302 0.0324 0.936 1 1

29 Turn on P-201; turn on P-203; turn on P-205 0.87 0 0 02

30 Turn P-101 and MV-101 on; set value of
LIT-101 at 700mm;

0.834 0.999 1 1

31 Set LIT-401 at less than L 0.786 0 0.303 0.626

32 Set LIT-301 at above HH - 0 0.935 0.838

33 Set LIT-101 at above H - 0.890 0.883 0.151

34 Turn P-101 off 0.331 0.990 0.6 0.01

35 Turn P-101 off; keep P-102 off 0.84 0.258 0 0.042

36 Set LIT-101 at less than LL 0.808 0.889 0.878 0.9

37 Close P-501; set value of FIT-502 at 1.29 at
11:18:36

0.842 0.998 0.895 0.915

38 Set value of AIT402 at 260; set value of AIT502
at 260

0.767 0.996 0.864 1

39 Set value of FIT-401 at 0.5; set value of
AIT-502 at 140 mV

0.836 0.369 0.908 1

40 Set value of FIT-401 at 0 0.784 0.997 1 1

41 Decrease LIT-301 value by 0.5mm per second 0 0 0.638 0.626
1 Identifiers of attack scenarios from the SWaT dataset documentation [15].
2 The attack is detected after its end.
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Abstract. Industrial control system (ICS) devices with IP addresses are
accessible on the Internet and become an essential part of critical infras-
tructures. The adoption of ICS devices also yields cyber-attacks targeted
specific port based on proprietary industrial protocols. However, there is
a lack of comprehensive understanding of these ICS threats in cyberspace.
To this end, this paper uniquely exploits active interaction on ICS-related
ports and analysis of long-term multi-port traffic in a first attempt ever
to capture and comprehend ICS automated attacks based on private pro-
tocols. Specially, we first propose a minimal-interaction scheme for ICS
honeypot(MirrorPot), which can listen on any port and respond automat-
ically without understanding the protocol format. Then, we devise a pre-
processing algorithm to extract requests payload and classify them from
long-term honeypot-captured data. Finally, to better characterize the ICS
attacks based on private industrial protocols, we propose a Markov state
transition model for describing their attack complexity. Our experiments
show that there are several unknown probing methods have not been
observed by previous works. We concur that our work provides a solid first
step towards capturing and comprehending real ICS attacks based on pri-
vate protocols.

Keywords: ICS honeypot · Automated attacks · Private protocol

1 Introduction

With the networking trend for the industry, more and more industrial control
system (ICS) devices appear online with little security measures. Today, ICS
has become an essential part of the country’s critical infrastructure, such as

c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ICICS 2019, LNCS 11999, pp. 71–88, 2020.
https://doi.org/10.1007/978-3-030-41579-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41579-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-41579-2_5


72 J. You et al.

power grids, gas pipelines, and even aerospace. Computer network modernizes
conventional industry by ICS devices, like Remote Terminal Units(RTUs), Pro-
grammable Logic Controllers (PLCs) and Intelligent Electronic Devices (IEDs).
ICS devices use the Transport Control Protocol and Internet Protocol (TCP/IP)
stack to exchange data, but additional security concerns may rise by this con-
vergence. The supervisory control and data acquisition (SCADA) [4] is one of
the most commonly used types of modern industrial control systems. It is devel-
oped as a universal means of remote access to a variety of local control modules.
ICS devices could be from different manufacturers and allowed access through
standard industrial protocols, such as S7comm [41], Modbus/TCP [37], and Eth-
erNet/IP [20]. Engineers can control large-scale processes that include multiple
sites and work over vast distances [5]. Although some organization has updated
their protocols to a secure version [29], the renewal cycle of ICS devices is still
too long to apply the update in time. Therefore, industrial protocols used in
online devices do not typically require authentication to execute commands on
a control device remotely [36]. Nmap [18] and more recently ZMap [10] are
used to identify vulnerabilities and characterize ICS online devices by sending
crafted packets towards IPV4 network hosts automatically. Moreover, Shodan
[3], a search engine that crawls the Internet for devices, provides search services
by listing available industrial devices.

Honeypots are commonly defined as “an information system resource whose
value lies in unauthorized or illicit use of that resource” [35]. Obviously, the
interaction towards system resources is the core of a honeypot. Although most
of the honeypot tools integrate the default interaction capability, their main
contribution is designing a software framework for users to simulate or deploy
the resource more easily, such as Honeyd [26], Cowrie [23], Conpot [28], Open-
canary [27]. Moreover, some new honeypot frameworks were proposed to adapt
to application fields, like wireless network [40], social network [22], blockchain
network [33].

When it comes to specific services, no matter how the framework changes,
the library used for interaction is the decisive factor for honeypot [39]. These
libraries are the realizations of specific communication protocols, which can be
divided into two fractions: common protocols and private protocols. Common
protocols set the standard to build common services, such as SSH, HTTP, and
FTP. Their libraries are often official and consistent with each other. Specific
to ICS honeypots, unlike the fully transparent common protocols, industrial
protocols often partly or entirely private due to the customization by various
manufacturers. There are usually not official libraries for most of the industrial
protocols to build ICS services. Building unknown heterogeneity ICS services
consume a lot of human and material resources due to the difficulties in the
operation of reverse engineering and purchasing physical ICS devices. Purchas-
ing physical ICS devices to build honeypot is not affordable, let alone covering
all the specific industrial protocols. Therefore, there is not enough dataset and
methodology for attack analysis based on unknown industrial protocols, par-
ticularly for small manufacturers. It is a big challenge for ICS honeypots and
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this dilemma forced us to seek an innovative way to capture threat data for
ICS devices.

Thus, we propose a minimal-interaction scheme supporting interactions on
any port and respond automatically without understanding the protocol for-
mat. Due to the attack surface of ICS devices, we only focus on automated
attacks based on industrial protocols. Our goal is to capture and analyze attack
sequences to take the first look at those unknown ICS attacks based on pri-
vate protocols. As a result, it is enough for an ICS honeypot to use a minimal-
interaction scheme. In our experiment, we specify 26 ports, which include default
ports of multiple ICS private protocols and some special ports as control groups.

Overall, the major contributions of this work are summarised as follows,

– Designing a novel minimal-interaction scheme for ICS honeypots and deployed
seven instances for 418 days.

– Proposing a preprocessing algorithm to (1) filter noise, (2) extract 78 910
unique ICS-related sessions and (3) provide a probability model based on
request entropy to distinguish between common attacks around ICS-related
ports (common attacks) and proprietary ICS attacks towards specific port
(proprietary attacks).

– Characterizing common attacks and proprietary attacks using Markov state
transition graphs.

The remainder of the paper is structured as follows. Section 2 surveys related
work. Section 3 elaborates on our methodology. Section 4 details our data anal-
ysis and characterization. Section 5 discusses ICS attack patterns based on the
Markov transition graph, and finally, Sect. 6 concludes.

2 Related Work

There is a long history of developing analysis and interaction libraries for indus-
trial protocols. It is the prerequisite for understanding the ICS network. The
first ICS Honeypot project [25] was developed by the Cisco Critical Infrastruc-
ture Assurance Group (CIAG). Released in March of 2004, it combines Honeyd
[26] and custom Modbus library to simulate a programmable logic controller
(PLC). Conpot [28] is a low-interaction industrial honeypot, introduced by the
Honeynet Project, that integrated modbus-tk, BACpype library, and customized
S7 library. Most of the researches regard default libraries in Conpot as a base-
line, either increase the interaction level of specific protocols [6,42] or optimize
network deployment structure [2,13,19,21]. As Table 1 shows, ICS honeypots
focus primarily on S7comm, Modbus, IEC104, Bacnet, ENIP, which caused by
the existence of opensource libraries, such as SNAP71, modbus-tk2, BACpype3,
Conpot-s74, cpppo5.
1 http://snap7.sourceforge.net/.
2 https://github.com/ljean/modbus-tk.
3 https://github.com/JoelBender/bacpypes.
4 https://github.com/mushorg/conpot/tree/master/conpot/protocols/s7comm.
5 https://github.com/pjkundert/cpppo.

http://snap7.sourceforge.net/
https://github.com/ljean/modbus-tk
https://github.com/JoelBender/bacpypes
https://github.com/mushorg/conpot/tree/master/conpot/protocols/s7comm
https://github.com/pjkundert/cpppo
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Table 1. Libraries used in ICS honeypot

Library Updated Language Related work

S7comm
CryPLH* Aug-2014 / [6]
HosTaGe-ics* Apr-2016 / [38]
SNAP7 May-2019 C/C++ [8,14]
Conpot-s7 Aug-2019 Python [7,21]
Xpot* Oct-2016 / [16]
Modbus
modbus-tk Aug-2019 Python [7,21,34]
pymodbus Apr-2019 Python [30,32,34]
Bacnet
bacpypes Apr-2019 Python [7,21]
IEC-61850
SHaPe* Jan-2015 / [15]
OpenMUC Dec-2018 C [13,19]
ENIP
cpppo Jul-2019 Python [2]
*means the library is not open-source

The aforementioned researches are limited by libraries, and thus restrict the
research scope into some popular protocols. To capture and analyze attacks
based on unknown protocols, Vlad et al. [31] built ICS services in passive mode
to analyze global ICS threat related to Modbus, IEC-104, DNP3, and ICCP. But
their honeynet could only receive a one-off request without response. Therefore
they cannot be indexed by Shodan. The most similar related work to ours [11]
describes the authors’ experiences with network telescopes to detect global prob-
ing of CPS. In contrast, our work uses a minimal-interaction scheme that does
not have such library-based limitations and can complement existing interaction
approaches by extending the coverage of private protocols. And we uniquely built
large amounts of unknown ICS services to capture persistent connection traffic
and gives a comprehensive understanding of ICS threats by describing attack
patterns in detail with the Markov transition graph.

3 Methodology

As shown in Fig. 1, this section makes a detailed description of our methodology
of honeypot design, preprocessing algorithm and Markov state transition graph
that aim at (1) capturing multi-port ICS attacks at Internet-scale, (2) cleans-
ing raw data and characterizing the packets to make preparations for practical
analysis on attack pattern, (3) describing the attack patterns of common attacks
and proprietary attacks.
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Capture phase

Data Capturing

Preprocessing phase Analysis phase

Request Entropy
Computing

Session Tracking

Common Attacks around 
ICS-related Ports

Noise Filtering Proprietary Attacks 
towards Specific Ports

Fig. 1. Methodology overview

3.1 Honeypot Architecture

Build Unknown ICS Services. Industrial protocols run as application-layer
services over standardized TCP/IP protocols. ICS devices use them to send
configurations and control commands for interacting with one another [12].
The basic idea of our minimal-interaction scheme is to construct the response
for each port and return the payload in the original format as passed in the
request. Although industrial protocols have different packet structures to encap-
sulate their payload, those automated attacks confirm the response by matching
the ICS header and function code [17]. Therefore, we build ICS services on
TCP/UDP sockets with the copied payload. In short, our honeypot generates
the response purely based on the request, but not parse it. The advantage of the
minimal-interaction scheme is illustrated with an example from the test of an
open-source ICS-related Nmap scripts6. Generally, device services can be identi-
fied by ‘-sV’ command and device attributes can be identified by custom scripts
using ‘–script’ command. As Table 2 shows, on the one hand, responding with
null will lead to difficulties in determining the service version. On the other
hand, responding with a fixed string like ‘OK’ will mislead Nmap to identify a
service as a wrong service type. What’s more, ‘Null’ and ‘OK’ scheme are both
incapable of responding to custom scripts. And Fig. 2 shows, responding with
copied payload can successfully deceive automated scripts to some degree. We
selected 26 ports for different ICS services. The rationale for this selection stems
from the fact that those ports are widely used in a lot of ICS devices and cover
well-known manufacturers, such as Siemens, Schneider. Building services and
capturing traffic are achieved with individual components for every protocol.

Is minimal-interaction scheme enough for capturing ICS automated attacks?
We believe the answer is yes. Unlike the traditional computing devices, ICS
devices are heterogeneous and customized by different manufacturers. The real-
ization mechanism of their interaction is often private. It is the essential reason
why is it difficult to realize ICS honeypots and why are the ICS automated
attacks mostly very simple. Due to the attack surface of ICS devices, most of
6 ICS Protocal Detect Nmap Script, https://github.com/cckuailong/ICS-Protocal-

Detect-Nmap-Script.

https://github.com/cckuailong/ICS-Protocal-Detect-Nmap-Script
https://github.com/cckuailong/ICS-Protocal-Detect-Nmap-Script
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Table 2. Test results from different schemes

Nmap command Interaction scheme Test results

nmap -sV -p 1911 [IP] No Response(Null) SERVICE: mtp?
Responding with ‘OK’ SERVICE: zabbix
Responding with Copied Payload SERVICE: Niagara Fox

nmap -p 1911 –script fox-info [IP] No Response(Null) fox-info: Null
Responding with ‘OK’ fox-info: Null
Responding with Copied Payload fox-info: shown in Fig. 2(C)

Fig. 2. Comparison of different interaction schemes using ‘fox-info.nse’ nmap script

the automated attacks are launched using private protocol, and ultimately try to
send simple requests for device information without authentication or get login
credentials. The payload header is often considered as the protocol identifier
by scripts to confirm the service types. Our goal is to capture the activities of
automated scripts and extract the attack sequences from them. Therefore, inter-
action with attackers is not complicated and just reply a response to prevent the
request thread from blocking. As a result, minimal-interaction scheme is enough
for capturing ICS automated attacks.

Data Capture and Collection. To avoid loss of potentially-revealing infor-
mation, data capturing is realized at two levels. On the one hand, raw traffic is
recorded as “.pcap” files at the network level. On the other hand, the interaction
data is recorded in the log at the application level. Each honeypot transmit-
ted captured traffic to a central server periodically. Having all traffic captured
at multiple locations for a long time enables us to gain enough data based on
private protocols around the world.

Deployment. We deployed 7 instances to collect ICS automated attacks. Table 3
summarizes our experimental setup and honeypots scattered across countries. In
an attempt to make the honeypots popular, we tried to host the honeypots at
Internet Service Providers(ISP) providing static IP addresses. Most honeypots
were deployed in 2016. The longest duration of our honeypots is 418 days, and
the setup was not changed during our experiments, especially 2016-12-13 to
2018-2-4.
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Table 3. Setup of MirrorPot experiments

No Location Deployed IP Addr Duration

1 London (UK) 2016/10/10 139.*.*.* 17 days
2 Shanghai (CN) 2016/10/17 218.*.*.* 10 days
3 Beijing (CN) 2016/12/13 123.*.*.* 477 days
4 Beauharnois (CA) 2016/12/14 198.*.*.* 257 days
5 Los Angeles (US) 2017/01/10 23.*.*.* 29 days
6 San Diego (US) 2017/07/4 71.*.*.* 35 days
7 Dalian (CN) 2018/06/15 43.*.*.* 16 days

3.2 Preprogressing Algorithm and Request Entropy Model

For better handling of captured data, the traffic is fragmented into packets.
Each packet contains source IP, source port, destination IP, destination port,
and payload. Because honeypot instances were hosted on remote server rooms
by cloud service providers, the captured traffic may contain the noise generated
by daily operation and maintenance. In order to wipe out the noise, we have
adopted a variety of filtering to narrow down the scope of the source host and
removed intranet probing and misoperation activities from the traffic.

To infer the attack pattern more exactly, we introduce the concept of request
entropy, which used to quantify the concentration of attacks. We formulate and
compute two metrics that aim at measuring the degree of dispersion among
ports and inspecting how much variety we see in the request payloads. The first
metric is the request entropy of packet numbers. Let D = {d1, d2, d3, ..., dk}
represent the set of unique ports exposed by MirrotPot and Di a subset of those
targeted by source packet si. The idea behind this metric stems from the fact
that a malicious source will access a destination at random [9]. Thus, the model
estimates the distribution of a port dk capturing such a source packet si as

Pcounts(si → dk) =
ns(dk)∑

∀dj∈Di

ns(dj)
(1)

where ns(dk) is the number of packets si that have accessed dk. The second
metric is the request entropy of packet types. As mentioned in Sect. 3.1, the
payload header is typically used to make inferences related to specific protocol
traffic.

We group attack packets by the first 4 bytes of request payloads. That is,
the packets of each group share the same header. Thus, the model estimates the
distribution of a port dk capturing such a source packet si in the group as

Ptype(si → dk) =
ms(dk)∑

∀dj∈Di

ms(dj)
(2)
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where ms(dk) is the number of packet types sharing the same header as si that
have accessed dk. Algorithm 1 operates honeypot-captured data based on packet-
based parameters. First, it extracts effective sessions from traffic flows. Second,
it provides an effective mechanism to group attack packets. Due to the request
entropy, packets are divided into common attacks and proprietary attacks by
a threshold. We enforce the value here, which proved to be correct by manual
verification. These two attack patterns will be explained in detail in Sect. 5.

Algorithm 1. Preprocessing and packet classification algorithm
Input:

List of ICS Service Ports, IcsPorts; List of honeypot IPs, HoneyIP ;
Threshold value, Tth;
The honeypot-captured traffic flows, Flows;
(The minimum unit of Flows is packet which contains ip.src, port.src, ip.dst,
port.dst and payload)

Output:
Proprietary attack Flag, Proprietary_flag;

1: PacketGroup = [Port1, Port2, ..., Port26];
2: for packet ∈ Flows do
3: if ip.dst ∈ HoneyIP then
4: if payload �= null then
5: PacketGroup ← packets.GroupBy(port.dst);
6: end if
7: end if
8: end for
9: for packets ∈ PacketGroup do

10: UniquePackets = packets.deduplication();
11: for packet ∈ UniquePackets do
12: Proprietary_flag ← 0;
13: if Pcounts(si → dk) · Ptype(si → dk) > Tth then
14: Proprietary_flag = 1;
15: end if
16: end for
17: end for

3.3 Markov Chain Representation of the Attack Pattern

The attack pattern is concealed in continuous packets of Algorithm 1 output.
Therefore, in this section, we mainly discuss how to generate a state transition
graph based on these packet sequences. A Markov chain is a stochastic process
with the Markov property, defining serial dependence only between adjacent
periods (as in a “chain”). It can be utilized to describe systems that follow a
chain of linked events, where what happens next depends only on the current
state of the system. The Markov chain model consists of multiple variables,
including the nodes set S representing individual request types, the edge set E
used to connect the nodes representing the correlation between request types, the
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transition probability set T representing the probability of transferring from the
current state to the next state. Introduce the Markov process, consider the next
state is are only relevant to the current state, but not relevant to the previous
state. The transition probability can be expressed as:

p(xi+1|xi, xi−1, ..., x1) = p(xi+1|xi) (3)

Therefore, the probability value can be computed by the proportion of occur-
rence number for adjacent requests transferring. Since the Markov chain can
effectively model the discrete-time random variables or stochastic processes, we
use it to describe the causal knowledge in the request sequences. As shown in
Fig. 3, each state in the chain should be a state for the attack process. To describe
the process more completely, we have added two new states. The “Start” state
represent the begin of a unique attack sequence. The “Stop” state represent
the end of a unique sequence. Other states are defined by unique request pay-
loads. The transition between states indicates the conditional probability that
the attacker will transfer from the current state to the next state. Moreover, the
Markov property requires that the sum of all transition probabilities for a given
state must equal to 1.

Fig. 3. Markov chain representation of attack patterns

4 Results

In this section, we present the results of our analysis of the traffic captured by
our honeypots. In particular, we focus on two aspects: (a) the distribution of
attack for each port, (b) the characteristics of ICS automated attacks.
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4.1 General Overview

Fig. 4. Packets captured by each port Fig. 5. Distribution of ICS-related attacks

MirrorPots were port scanned at an almost constant pace during the whole dura-
tion of the experiments. Even though only ICS-related ports were exposed, the
conventional probing is still the most frequent one, probably caused by a large
number of real-world objects are connected to the Internet using conventional
protocols. With 89.5% of all observed packets, TCP is the dominant protocol,
followed by UDP(1.1%) and ICMP(9.4%), we total captured 56 643 490 attack
attempts and 1 493 389 of them at least contain a payload. Even though hon-
eypots are not entirely passive on ICS-related ports and encourage connecting
hosts to exchange more packets, only 5.3%(78 910) of them were captured from
the exposed ports.

Figure 4 shows the number of attacks with packet payloads for each desti-
nation port (Top 16). Port 22(SSH) and 23(Telnet) are the most active ports
with nearly quintuple the third. It indicated that ssh-based and telnet-based
attempts are widespread in the wild. Also, the third-place port 53413 is well
known as the Netcore/Netis routers backdoor, which is caused by an open UDP
port listening at port 53413 in the router. Thus, it is a strong indication that
the IoT-related attacks are the most frequent ones, probably caused by the enor-
mous success of such attacks against smart devices. Among the top 16 ports, only
port 502(Modbus) and port 20000(DNP3) are ICS-related. Modbus was designed
in 1979 to control and monitor Modicon (now Schneider Electric) PLCs. The
protocol quickly became the de facto standard for industrial networks. Mod-
bus has also been seen in building infrastructure, transportation, and energy
management systems. Distributed Network Protocol (DNP3) was developed by
GE-Harris Canada (formerly known as Westronic, Inc.) in 1990 and was subse-
quently widely deployed by electrical and water companies. Although attacks on
ICS-related ports are not many, there is still some significant threat intelligence
among them.
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4.2 Packets Classification and Inference

After a brief analysis of holistic data, we will now turn to effective ICS automated
attacks. We define the ICS attacks as common attacks and proprietary attacks
by Algorithm 1, then give an overview of attacks by the attack sources, attack
repetition, and coverage scale on ports. Figure 5 depicts the outcome of the
execution of the proposed model on ICS-related packets with payloads. Our
findings revealed that 20% of packets belong to proprietary attacks.

Fig. 6. Session counts based on typical
industrial protocols

Fig. 7. Connection relation between source
IP and exposed ports

Attack Sources. There are 2710 unique source IP addresses, including 2147
common attacks and 857 proprietary attacks. Although not a reliable indicator
(since attackers can easily tunnel through IPs located anywhere in the world),
we also gathered statistics on the location of source IPs. Moreover, we found
that 90% of the connections originated in China, US, Germany, Switzerland,
Netherlands, and UK. Apart from MirroPot locations, major attacks origin from
Germany, Switzerland, and the Netherlands.

Attack Repetition. We further investigated how often honeypots (i.e., an IP
address) were attacked, as shown in Fig. 6. More than 50% of IP sources appeared
only once; a further 30% appeared twice. 90% of the IP sources appeared less
than 26 times, hardly one time for each port. It means that the vast majority
of attacks are one-off operations, and in many cases, the proprietary attacks in
the wild is a non-persistent threat. These observations may be biased due to
the total session counts, so we have repeated the measurements on some single
ports. Figure 6 includes the comparison of S7comm, Modbus, IEC104, Bacnet,
and DNP3 protocols. Interestingly, while these protocols showed a similar trend,
these ports seem to be more attractive with more interactions over once. As
plotted on the figure, the S7comm seems relatively unique. 80% of the IP sources
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appeared more than four times, and 20% of them even contacted honeypot more
than ten times probably because S7comm is a private protocol of Siemens, the
leading German engineering company.

Coverage Scale on Ports. In an attempt to understand the preferences and
coverage scale of the ICS attacks, we inspected how much variety we see in
the request payloads. The more adversaries vary their requests, the clearer the
intention is on ICS devices. Indeed, the previously inferred ICS-related sessions
appear to originate from common sources. To prove its correctness, we extract
the connection relation between source IP and each exposed port. Figure 7 pro-
vides a holistic depiction of the connection relations, where the yellow nodes
represent exposed ports, the purple nodes represent the unique source IP, and
the nodes/edges weigh represent the number of packets received. One can notice
the appearance of a large source IP cluster shared by nearly all the 26 ports,
which illustrates that most attackers treat these ports equally importantly. The
large cluster may well be the source of ICS-related probing script, who is search-
ing for ICS devices in the wild automatically. Apart from that, port 102, 502,
1911, 37777, 47808, 20000 linked distinctly with there own single-destination
cluster, which illustrates that these ports are higher value than others.

Following the observation from above, those sources which have a broad
coverage scale on ports mainly refer to some device search engines, like Shodan.
They searched Internet-connected devices and shared their findings to the public.
Interestingly, 5 of our MirrorPot instances were listed on the website of Shodan
and marked with “Industrial Control System”. It also demonstrates that our
honeypots are effective.

5 Attack Patterns on ICS-Related Ports

Based on the above results, we elaborate on attack patterns using the Markov
transition graph. To verify our work, we made a detailed comparison of some
results on well-known industrial protocols. Moreover, we extract a large number
of proprietary attacks that have not been observed by previous works.

5.1 Common Attacks Around ICS-Related Ports

On ICS-related ports, there are some attacks without a strong purpose, which
dubbed as common attacks around ICS-related ports. They can be easily finger-
printed and extracted using the request entropy model. Common attacks have no
specific destination ports but access ports in a large range. Figure 8 shows typi-
cal common attacks around ICS-related ports. Each node is tagged by protocol
parsing tools. We found that “HTTP/1.1” was the most popular attack pattern,
followed by “RPC proc-0”, “TLS SSLv1 Client Hello”, “Mongo test .$cmd server-
Status”. In addition to these conventional protocol request, there are some hex
codes, such as “0x0d0a0d0a”, “0x446d6454” and “0x48454c50”. Common attacks
are related to the intention that detect service version on specific ports, because
these payloads are very similar to Nmap detection using ‘-sV’ command. It also
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Fig. 8. Attack pattern of common attacks around ICS-related ports

reflects the technical maturity of attacks based on conventional protocols and
the preferences for web-based attacks and database attacks.

5.2 Proprietary Attacks Based on Well-Known Industrial Protocols

In order to verify our request entropy model, this section mainly explains the
data quality of Mirrorpot and introduces some new findings. In view of the
number of industrial protocols and the complexity of interactions, we select two
well-known proprietary industrial protocols (Modbus and S7comm) as samples.
Both of them can be parsed by Wireshark [24], a free and open-source packet
analyzer. By manual verification, we found that the S7comm(COTP) packets
classified as common attacks are another type of attack based on conventional
protocols, called MMS protocol (Microsoft Media Server Protocol). Moreover,
the Modbus packets classified as common attacks are marked with “Malformed
Packet” by Wireshark. It indicates that those packets are not valid requests, like
“0x5700000000111107”.

To validate the capture performance, the analysis results of these parsed pro-
tocols can be compared against the baseline: an Internet-wide view of ICS devices
[21]. The latter launched 20 instances of Conpot, so-called high-interaction hon-
eypots, to probing activities for ICS devices. As shown in Table 4, MirrorPot
has enough number of instances and longer durations of the experiment than
the baseline experiment. In every point of view, the Modbus traffic captured by
MirrorPot has better quality than the baseline experiment. Besides, we reveal
some new attackers’ intentions, such as “Read Coils”, “Read Holding Registers”
and “Read File Record”. We can safely claim that the proposed MirrorPot has
similar capabilities to Conpot, or even better.
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Table 4. Comparison of capture performance between mirropot and conpot

Conpot MirrorPot

Duration 10 weeks 418 days
Instances 20 7
Modbus Connections 1954 17353
BACnet Connections 520 1950
S7comm Connections 2778 10382(COTP)
Modbus fuction(0x01) Captured Captured
Modbus fuction(0x03) Captured Captured
Modbus fuction(0x11) None Captured
Modbus fuction(0x14) None Captured
Modbus fuction(0x2B) None Captured
COTP connection 0x102 Captured Captured
COTP connection 0x200 Captured Captured
S7comm system status list Captured None

Fig. 9. Attack pattern of well-known
industrial protocols

Fig. 10. Attack pattern of unparsed pri-
vate protocols

Figure 9(a) shows that the typical ICS attack pattern mostly contains sev-
eral start directions and shares multiple paths, like Modbus. The graph can
reveal facts and show the transition relationship of each attack. Take Mod-
bus as an example, and we can be directly aware of the high-complexity
attack pattern. The sensitive operations function “0x14” is highly dependent on
previous requests. We can speculate that previous requests are commonly used
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to check devices information and prepare for sensitive operations. Besides Mod-
bus, some private industrial protocols use an authentication mechanism based
on underlying protocols. In that case, MirrorPot can not capture the data from
the complete application layer. As Fig. 9(b) shows, due to the failure of COTP
handshakes, MirrorPot never receives a complete S7comm packet. However, for-
tunately, underlying protocols also indicate some valuable operations.

Table 5. Overview 1 of proprietary
attacks on each port

Industrial protocol Port number Proprietary
attack identifier

S7comm 102 0x0300;0x0502

Modbus 502 0x0000;· · ·
RealPort 771 0xfb01

Redlion-crimson3 789 0x0004

Codesys 1200 0xbbbb

Tridium Fox 1911 0x666f

PCworx 1962 0x0101

GPRS Tunneling 2123 0x3201

GPRS Tunneling 2152 /

IEC104 2404 0x6804

Codesys 2455 0xbbbb

GPRS Tunneling 3386 0x3201

Tridium Fox 4911 0x666f

Table 6. Overview 2 of proprietary
attacks on each port

Industrial protocol Port number Proprietary
attack identifier

melsec-q-udp 5006 0x5700

melsec-q-tcp 5007 0x7b01

Hart IP 5094 0x0100

OMRON FINS 9600 0x4649;0x8000

Vxworks WDB 17185 0x1111

GE SRTP 18245 0x1a09

DNP3 20000 0x0564;

ProConOS 20547 0xcc01

Lantronix 30718 0x0001

Profinet 34962 /

Dahua 37777 0xc100;0xa001;
0xa400;0xa400

ENIP 44818 0x6300

Bacnet 47808 0x810a

5.3 Proprietary Attacks Based on Private Protocols

For those unparsed industrial protocols, we can not understand the specific
meaning of payloads. Thus, we propose the Markov state transition model to
describe their attack process and features. Then we can infer something useful
from them. As Tables 5 and 6 shows, we extracted the proprietary attacks iden-
tifier for each port. We can speculate that proprietary attacks based on various
private protocols have widely existed. Although most of them only contain one
single attack path with a unique request, there are still a large number of valid
interactions for specific ICS devices.

There are various industrial protocols available online [1]. We select five pro-
tocols from them. As shown in Fig. 10, these attack patterns are relatively simple.
For Realport, Tridium Fox and PCworx, the attack pattern contains only one sin-
gle path, which indicates that there are not sophisticated script-based attacks or
there are some authentication mechanisms for them. For Redlion-crimson3 and
Codesys, the attack pattern is similar to Modbus, which means attackers have
a good understanding of these protocol specifications. Especially for Codesys, it
is evident that attackers have the capacity to find Codesys devices and exploit
the devices according to their demand.
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6 Conclusion

The industrial protocols in use today were designed over twenty years ago and
were initially intended for closed, serial systems. However, despite the lack of
built-in security, these protocols have been layered on top of Ethernet and
TCP/IP to support long-distance communication, which leads to remote attacks
based on private industrial protocols. In this paper, we first design MirrorPot
that tracks ICS script-based attacks. We deploy seven honeypots for 418 days
to reveal the attack pattern based on private protocols. Second, we devise a pre-
processing algorithm for filtering non-ICS interaction traffic and extract unique
attack payloads. Finally, through the analysis of the Markov state transition
graph, we find more than 20 common attack patterns on ICS-related ports,
which contains little unique request and single transition path. We character-
ized what ICS attackers query for based on private industrial protocols. Similar
to the well-known industrial protocols like Modbus, different proprietary attacks
launched by various scripts due to the disparities in understanding the proto-
cols. Based on the good performance in private industrial protocols, we believe
MirrorPot is a realistic option for researchers to capture ICS-related activities
at Internet-wide and a good baseline for evaluating the capture performance of
ICS honeypots.
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Abstract. With the spread of the Internet of Things (IoT), the IoT operating
systems have correspondingly increased and broughtmore potential security risks.
For instance, it is not hard to find that many driver layer codes in IoT operating
systems could come directly from open source projects, where the vulnerabilities
would also be propagated. These vulnerabilities could leak sensitive information
and even lead to arbitrary code execution. However, existing clone detecting tools
have limitations, especially for clones with minor modifications. In this paper,
we propose a method that can detect not only exact clones, but also clones with
additions, deletions, and partial modifications. The proposed method uses code
patches and program slicing to get precisely fingerprint of the restructured clones.
Then the fingerprint matching is achieved through a greedy-based optimization
algorithm. Afterwards, the detecting tool called RCVD is implemented based on
the proposed method. Finally, the experimental results indicate that the method
has a significant effect on detecting restructured cloning vulnerabilities. By this
means, the Orange Pi and WisCam have been detected dozens of clone-caused
vulnerabilities in the code of driver.

Keywords: Code clone detection · IoT operating system · Restructured cloning
vulnerability · Fingerprint matching · Program slicing

1 Introduction

Unlike traditional PC terminals, the IoT hardware devices are more diverse, and most of
whose operating systems are platform-customized [14]. This character results in a large
increase in the number of IoT operating systems, while the codes of these operating
systems have high similarity. Considering two similar IoT devices A and B, if the operat-
ing system used by A already has mature open source code, then B’s author can quickly
generate a customized operating system from A’s operating system by simply modifying
the source codes. (such as the driver layer, file system or the architecture-related code).
At the same time, vulnerabilities in the open source operating system code would also
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be introduced into B, which are the so called clone-caused vulnerabilities [3]. Although
the open source code will be patched after the vulnerability is disclosed, a large number
of previous researches [1, 7–13] show that developers rarely upgrade and maintain the
cloned codes, leaving great security threats.

There exists a bunch of approaches to detect code clone. The earlier tools include
CCFinder [4] by Kamiya et al. and Deckard [5] by Jiang et al. The main goal of these
tools is to detect similarities between codes, while the vulnerabilities are seldom con-
cerned. Li et al. [19] first noticed the copy-paste related bugs in the operating system,
and implemented the tool CP-Miner to detect such bugs. The research about cloning vul-
nerabilities has been on the rise since 2007, with the appearing of optimized algorithm
[18] and various tools [1–3, 6–9, 11]. These tools detect cloning vulnerabilities from
different granularity, and make use of Abstract Syntax Tree (AST), Program Depen-
dence Graph (PDG), etc. to characterize the fingerprint of vulnerabilities. In addition,
detecting methods based on machine learning [2, 3, 10] have also emerged.

These researches provide us with a variety of detection methods. However, they can-
not effectively detect restructured cloning vulnerabilities in IoT driver layer codes. The
restructured cloning vulnerability represents clone with additions, deletions, or partially
modifications that retains the vulnerability. The mentioned detecting tools only treat the
exact same syntax as clones, thus they tend tomiss this kind of vulnerabilities. According
to this paper, the state-of-the-art tool VUDDY just detects 9 exact and renamed clones
in Orange Pi, while there are 8 restructured clones that remain invisible to VUDDY.
However, the proposed method can detect all the restructured clones and 5 exact and
renamed clones with the precision about 86%.

The main contributions of this paper are as follows:

Vulnerability Fingerprint Based on Program Slicing. The security patches of vul-
nerable codes are used to locate the position of the key codes related to vulnerability
and the vulnerable code fragments are obtained by taking advantage of static program
slicing. These code fragments could be considered as the minimal part of code which
can characterize a vulnerability.

Greedy-Based Algorithm for Fingerprint Matching. The fingerprint is generated by
the granularity of line, so it is necessary to compare the fingerprint with the target code
line by line, which is time consuming. Therefore, we use greedy-based algorithm to
match the fingerprint, ensuring that the detection time is linear with the lines of tested
code and the number of fingerprints.

Restructured Cloning Vulnerabilities Detector. Basing on VUDDY [1] and joern
[21], the proposed method is called Restructured Cloning Vulnerabilities Detector
(RCVD). When it comes to the evaluation of the method, the empirical results show
that it can effectively detect the exact, renamed and restructured cloning vulnerabilities.

The remainder of the paper is organized as follows: Sect. 2 gives a brief introduction
to code clone detection and program slicing. Then we proposed our method in Sect. 3.
Moreover, we evaluate our method in Sect. 4, and introduce the related work about
vulnerable code clone detection in Sect. 5. At last, we conclude this paper in Sect. 6.
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2 Background

In this section, a general introduction to some common concepts and the process of
code clone detection is given first, followed by the demonstration of the program slicing
technique.

2.1 Code Clone Detection

Clone Type. A code fragment is recognized as a cloned one if it satisfies several given
definition of similarity [17]. Currently widely accepted types of code clone mainly
include four types [1]:

Type-1: Exact Clones. The code is copied directly without any modifications.
Type-2: Renamed Clones. These are syntactically identical clones except for the
modification of identifiers, literals, types, whitespace, layout and comments.
Type-3: Restructured Clones.Based on the cloning of Type-2, copied code fragments are
further modified such as added, deleted or modified statements. The proposed method
covers Type-1, Type-2 and Type-3 clones.
Type-4: Semantic Clones. The two code fragments implement the same function and
have the same semantics, but their grammars are different.

Now, most of the researches are focus on first three types. For the fact that vulner-
abilities are sensitive to grammars, two pieces of code with the same function may not
have the same vulnerabilities. Although Yamaguchi, et al. [22] propose the method to
detect Type-4 clones, their method relies heavily on costly operations, and the accuracy
of detection is not precisely given in their analysis.

Detection Granularity. Different detection methods apply different granularities,
which influences the accuracy of detection result. At present, the code clone detection
is mainly composed of five different granularities [1].

Token: This is the smallest meaningful unit that makes up a program. For example, in
the statement ‘int x;’ three tokens exist: ‘int’, ‘x’ and ‘;’.
Line: This is a sequence of tokens delimited by a new-line character.
Function: This is a collection of consecutive lines that perform a specific task.
File: This contains a set of functions.
Program: This is a collection of files.

Detection Method. The common detection method includes two stages: feature gener-
ation and clone matching. At the first stage, features are extracted from code database,
which usually includes hash [1], code gadgets [3], tokens [4] and patches [8]. Then the
features are generally considered as fingerprints that represent the target codes. The sec-
ond stage is to compute the similarity between fingerprints and tested codes, where the
similarity algorithm used also has two types: precise matching (i.e. VUDDY matches
the exact hash) and fuzzy matching (i.e. SourcererCC has a similarity threshold). In this
paper, this two-stage method is adapted with precise matching.
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2.2 Program Slicing

Program slicing is a technique for extracting code snippets from a target program, which
would affect specific data. The specific data may consist of variables, processes, objects
or anything that users are interested in. It has been seeing a rapid development since the
original definition by Weiser [15]. At first, slicing is static, and could only be applied to
the source code. Then Korel and Laski [16] introduced dynamic slicing, which works
on a specific execution of the program.

Typically, the program slicing is based on a slicing criterion, which consists of a
pair <p, V>, where p is a program point and V is a subset of program variables [23].
In addition, program slicing includes backward and forward ways. A backward slice
consists all statements that the slicing criteria may depend on, while a forward slice
includes all statements depending on the slicing criterion.

There are twomajor kinds of approaches in program slicing. The firstmethod is based
on iteration of dataflow equations. It first computes directly relevant statements for each
node in the CFG (Control Flow Graph), and then the indirectly relevant statements. The
process stops when there are no more relevant statements. The second method slices via
graph reachability, which is also the most popular method. The detail of this method is
shown in algorithm 1. PDG is the Program Dependence Graph of target code, n is the
node to be sliced. Output S is the result of slicing. DominatorList (PDG, n) represents
all the dominator node of n in the PDG. If node m is the dominator node of n, then it
is obvious that the entire path from entry point of PDG to node n must pass through
node m.

Algorithm 1. Program slicing via graph reachability 
Input: PDG, n
Output: S
Slice(PDG, n)
{
1. Put n in S
2. for i in DominatorList(PDG, n) do
3.     if i not in S then
4.         put i in S
5. for j in DominatorList(PDG, i) do
6.             Slice(PDG, j)
7. end for
8.     else 
9. return 
10.     end if 
11. end for 
}

The method base on graph reachability is more intuitive, easy to calculate and more
practical. Therefore, this method is also applied for program slicing in the proposed
method.
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3 Method

The main idea of RCVD is to use code patches and program slicing to obtain code
fragments related to vulnerabilities and then abstract the code fragments into precisely
fingerprint.

3.1 Overall Structure

There are two stages in RCVD as shown in Fig. 1: fingerprint database generating and
clone detection. The first stage includes the establishment of vulnerability database, pro-
gram slicing and fingerprint generating. The second stage includes code preprocessing
and fingerprint matching. The details of each sub-step are described in the following
figure.

Fig. 1. Overall structure of RCVD: fingerprint database generating and clone detection.

3.2 Establishment of Vulnerability Database

Code Collection. First, the source code database is formed by collecting open source
projects. In order to retrieve the information about vulnerabilities more conveniently,
the codes are crawled from open source projects hosted on GitHub, which also makes it
easier to get patch information from the commit history.

Vulnerability Code Extraction. Then the vulnerability related codes need to be
extracted to form the vulnerable code database. The commit history in git contains the
information about code patching and vulnerabilities. Therefore, we could take advan-
tage of vulnerability related keywords to retrieve them. After that, the vulnerable codes,
patches and the type of vulnerabilities are saved as the vulnerable code database.
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3.3 Patch-Based Program Slicing

The driver layer codes in IoT operating system have a large amount of restructured clone
that current methods cannot effectively detect. Obviously, it is impossible to detect these
clones with granularity of Function or higher. The granularity of Token will discard
a lot of information about program, thus it is not suitable for detecting clone-caused
vulnerabilities. Therefore, we propose taking the Line as granularity and use program
slicing to get the discontinuous code fragments, which would preserve the vulnerability
related codes better, not only in order to detect the exact and renamed clones, but also
to detect the restructured clones.

To determine the slicing criterion, the most intuitive idea is that the codes added or
deleted in the patches are related to the vulnerability. However, we could only get the
variables related to vulnerability from added codes, while the actual lines of relevant
code are not available. Thus utilizing patches with added codes may introduce codes
unrelated to vulnerability, which would greatly increase false positive. Therefore, we
only take the deleted code as the slicing criterion and retrieve the corresponding forward
slices and backward slices. Table 1 is a simple example of double free, which is patched
in Linux v5.3-rc7. We take the deleted 1556 line as the slicing criterion, and get seven
lines of code as the result.

Table 1. Snippet of the code with double free patched in Linux v5.3-rc7 and the result of patch-
based program slicing

Commit
If 'fb_alloc_cmap()' fails, 'fbi->pseudo_palette' is freed and 
'fb_alloc_cmap()' will return code less than zero.
This leads to a double free of 'fbi->pseudo_palette'.

Patch

@@ -1553,7 +1553,6 @@ static int 
au1200fb_init_fbinfo(struct au1200fb_device *fbdev)

1553 if (fb_alloc_cmap(&fbi->cmap, 
AU1200_LCD_NBR_PALETTE_ENTRIES, 0) < 0) {

1554 print_err("Fail to allocate colormap (%d
etries)",

1555 AU1200_LCD_NBR_PALETTE_ENTRIES);
1556 - kfree(fbi->pseudo_palette);
1557 return -EFAULT;
1558 }

Sliced
Code

1. struct fb_info *fbi = fbdev->fb_info;
2. fbi->fbops = &au1200fb_fb_ops;
3. bpp = winbpp(win->w[fbdev->plane].mode_winctrl1);
4. fbi->pseudo_palette = kcalloc(16, sizeof(u32), 

GFP_KERNEL);
5. if (!fbi->pseudo_palette) {
6. if (fb_alloc_cmap(&fbi->cmap,

AU1200_LCD_NBR_PALETTE_ENTRIES, 0) < 0) {
7. kfree(fbi->pseudo_palette);
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3.4 Fingerprint Generation

Abstraction. In order to eliminate the impact of renamed clones, we need to abstract the
code fragments [1]. First, the parameters from the arguments of function are all replaced
with symbol FPARAM. Then all the local variables that appear in the body of a function
are substituted with symbol LVAR. Next, the data types are all replaced with symbol
DTYPE. Last, the names of called function are substituted with symbol FUNCCALL.

The slice results may only contain a few lines of code, which may lead to a large
number of false positive. Therefore, two intuitive indicators are proposed for filtering:
the lines of sliced code and the percentage of the lines of sliced code to the total lines of
the function. For example, if a function has 10 lines and the sliced code contains 3 lines,
then the percentage is 30%. In the process of fingerprint generation, those fingerprints
that are too short or take a small percentage will be ignored.

Hash. Directly comparison between two lines of code maybe time consuming, so it is
necessary to covert the code to a shorter string.Moreover, two different lines of code need
to be completely different after conversion and the cost should be minimized. Therefore,
hash algorithm would be an ideal choice. Furthermore, the comparison aims at finding
the exact vulnerability which requires precise matching between the hash values of
each line. Since MD5 hash algorithm is naturally suitable for the requirement, it is then
employed in this process. We calculate the MD5 for each line of code to generate the
fingerprint. An example for abstraction and hash is shown in Table 2.

Table 2. The result of abstraction and fingerprint generation for the sliced code in Table 1

Abstraction

1.DTYPE*LVAR=FPARAM->fb_info;
2.LVAR->fbops=&au1200fb_fb_ops;
3.LVAR=FUNCCALL(win->w[FPARAM-

>plane].mode_winctrl1);
4.LVAR->pseudo_palette=

FUNCCALL(16,sizeof(DTYPE),GFP_KERNEL);
5.if(!LVAR->pseudo_palette){
6.if(FUNCCALL(&LVAR-

>cmap,AU1200_LCD_NBR_PALETTE_ENTRIES,0)<0){
7.FUNCCALL(LVAR->pseudo_palette);

Fingerprint

1.388d86029226687be5c9c1615fd35699
2.68df8e9ba0be6a602fff2d6e053d96b2
3.a3de00e7f6f0aeb7d0b895280f6ba768
4.729c49af63ff5c6939027f0cc97fc504
5.c0d99c692805f1e2356fab0fc9f27155
6.52352f2bd0966543686470c3a7221748
7.f4bc70d18fa8d5272d3c45e658039350
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3.5 Greedy-Based Fingerprint Matching Algorithm

Normally, once the target code contains the subsequence, which is the same as one of the
fingerprints, it’s not hard to conclude that the target code may contain vulnerability. In
other words if a fingerprint is the subsequence of target code, then the target code is likely
to have the same vulnerability with this fingerprint. Therefore, fingerprint matching can
be treated as a problem of the existence of subsequence. At present, greedy algorithm is
usually used to solve such problems.We also propose a greedy-basedmatching algorithm
to realize the process of matching.

Algorithm 2. Greedy-based matching algorithm 
Input: C, F
Output: matching result R
1. Lc = length of C
2. Lf = length of F
3. R = False 
4. if Lc < Lf then
5.     R = False 
6. else 
7. m = 0 
8.     for n = 0, 1, …,Lc do
9.         if C[n] == F[m] then
10. m = m + 1 
11. end if 
12. if m == Lf then
13. R = True 
14. break 
15. end if 
16.     end for 
17. end if 
18. Output R

Algorithm 2 introduces the pseudocode for matching algorithm. C is the target code
and F is the fingerprint. The output R will be True if code C contains the fingerprint
F, else it will be False. If the length of C is less than the length of F, it’s impossible
for C to match the F. If the nth element of C is the same as the mth element of F, the
n and m will increase by one at the same time. Otherwise, only n will increase. If F
is completely matched, then the fingerprint matching is considered as successful and
returns True. From Algorithm 2, it’s explicit that the time complexity is independent of
fingerprint length and it has a linear relationship with the lines of code and the number
of fingerprints.

4 Experimental Evaluation

In order to prove the effectiveness of ourmethod for detecting restructured clones, RCVD
is implemented. Since the deep learning based detecting tool VulDeePecker does not
open its source code, RCVD would only be compared with ReDeBug and VUDDY.
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4.1 Experimental Setup

System Environment. The execution and detection performance of RCVD are evalu-
ated by conducting experiments on a machine running Ubuntu 18.04, with a 32-core
Intel Xeon E5-2620 CPU operating at 2.10 GHz, 16 GB RAM, and 500G HDD.

Dataset and Keywords. In order to detect the restructured clone in driver layer codes
of IoT operating systems, the source code of Linux is collected from GitHub for finger-
print generating. What’s more, the source code of OrangePiRDA_kernel and WisCam
are chosen for detection. The Orange Pi [24] is a commercial IoT device with its own
operating system that can be used as a computer, wireless server, HD player, and so on.
WisCam [26] is ultra-low-cost Modular Based Evaluation Kit to help the developer to
design Wi-Fi video product with Linux OS. Moreover, the source code of their oper-
ating system can be obtained from GitHub. As for the vulnerable code retrieving, two
different keyword lists are applied. The first list contains keywords related to popular vul-
nerabilities includinguse-after-free, double free, heap-based buffer
overflow, stack-based buffer overflow, integer overflow, OOB,
out-of-bounds read and out-of-bounds write. The second one is Common
Vulnerabilities and Exposures (CVE) [25] list as used in VUDDY.

Metrics. Normally, excessive false positives in vulnerability detection will increase the
workload of manual audit, and we hope to find vulnerabilities as many as possible.
Therefore, the evaluation of detecting tools mainly uses precision (P = T P

T P+FP ) and

false negative rate (FNR = FN
FN+TP ). Let TP be the number of sames with vulnerabilities

detected correctly, FP be the number of samples with false vulnerabilities detected. As
it is very challenging to find literally every vulnerability (including unknown vulnera-
bilities) in the target program, we cannot easily determine false negatives. Therefore,
we count FN by comparing different detection results. For example, FN is the number
of TP clones detected by other tools rather than RCVD.

4.2 RCVD vs ReDeBug

First, RCVD is compared with ReDeBug, which can also detect restructured clones.
The code of Linux and keywords related to popular vulnerabilities are used to retrieve
the vulnerable code. For RCVD, let’s set the minimum of sliced codes to 6, and set the
percentage of sliced codes more than 30%. As a result, the proposed method gets 790
fingerprints. For ReDeBug, it gets 8443 patches using its default parameters (n-gram of
4 lines).

The detection results are shown in Fig. 2. Surprisingly, ReDeBug can only detect the
same one exact clone in both projects while RCVD detects 114 exact and restructured
clones. After analyzing the detection results that missed by ReDeBug, it turns out that
ReDeBug could not deal with Type-2 clones with slight modifications in variable names
or data types. The abstraction in RCVD is resistant to thesemodifications therefore it can
detect much more than ReDeBug. Although ReDeBug claims that it can detect Type-3
clones, it cannot find any restructured cloning vulnerabilities while RCVD finds 35 in
this experiment.
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(a) Orange Pi (b) WisCam 
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Fig. 2. Detection results for different types of clones in RCVD and ReDeBug

The precision and FNR of two tools is further illustrated as Table 3. RCVD could
detect much more clones than ReDeBug with a rather high precision and low FNR. The
only vulnerability missed by RCVD is due to the length of sliced codes is less than 6.
The 89% and 94.6% precision of RCVD in two projects indicate that it is more effective
than ReDeBug. However, ReDeBug is much faster than RCVD. Thematching algorithm
in the proposed method determined that the detection time keeps a linear relationship
with the lines of target code, thus it takes a rather long time to detect codes of 10M lines.

Table 3. Detection results of RCVD and ReDeBug

Tools Time(s) Detected TP FP FN P FNR

Detection results for OrangePiRDA_kernel (about 10M lines
of code)

RCVD 3598 69 62 7 1 89.9% 1.5%

ReDeBug 980 4 1 3 62 25% 99.1%

Detection results for WisCam (about 10M lines of code)

RCVD 4268 92 87 5 1 94.6% 1.1%

ReDeBug 819 4 1 3 87 25% 98.9%

4.3 RCVD vs VUDDY

Then RCVD was compared with the state-of-the-art tool VUDDY. The code of Linux
and CVE list are used to retrieve vulnerable codes. For the reason that the amount of
vulnerable codes retrieved by CVE list is relatively small, the minimum percentage is set
as 10% and the minimum length is set as 5, and finally it gets 194 fingerprints. VUDDY
does not provide the complete tool, but provides an online service, thus the codes and
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results could only be detected and filtered with the CVEs appeared in Linux. In addition,
VUDDY does not provide the exact detection time in their online service.

Figure 3 shows the test results for different types of clones. RCVDdetects 14 restruc-
tured cloning vulnerabilities in total, in contrast, VUDDY can detect none of them due
to its design. After analyzing these 14 cases, some negligible modifications are found to
be enough to prevent VUDDY from detecting. The most typical example is in function
atl2_probe of Orange Pi, it just adds a semicolon after the ‘switch’ statement with-
out any other changes. As for the exact and renamed clones, VUDDY detects 20 clones
while RCVD can only detect 12 clones, let alone missing 8 of them. This is because the
fingerprints are filtered in advance.

(a) Orange Pi (b) WisCam 
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Fig. 3. Detection results for different types of clones in RCVD and VUDDY

Through the comparison with detection results of keyword in Fig. 3, we could infer
that the number of detected vulnerabilities is positively related to the number of fin-
gerprints. Given the items in database are ample enough, RCVD could always detect
more vulnerabilities. Additionally, if third-party users customize the cloned codes and
introduce extra vulnerability, the newly emerged vulnerability would still be detected as
long as the corresponding fingerprints exist in our database.

VUDDY abandons the detection of Type-3 in exchange for accurate detection of
Type-1 and Type-2 clones. RCVD implements the detection of Type-3 even though the
users customize the code. Frankly it’s hard to conclude which kind of vulnerability is
more severe, all we can see is RCVD’s improvement in numbers of total detected clones
compared with VUDDY and ReDeBug. After all, since there’s no existing detecting
tools that can handle this problem with practical resources, it would be our further work
to find the breakthrough. Correspondingly, as shown in Table 4, RCVD detects more
clones than VUDDY in Orange Pi andWisCam with a high precision, so it is reasonable
to believe that RCVD has more advantages in detecting vulnerabilities.

4.4 Case Study

There was a use-after-free vulnerability caused by race condition in Linux v5.3, which
was cloned by Orange Pi in the module of wireless shown in Table 5. It only changed the
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Table 4. Detection results of RCVD and VUDDY

Tools Times(s) Detected TP FP FN P (%) FNR (%)

Detection results for OrangePiRDA_kernel (about 10M lines of
code)

RCVD 1253 15 13 2 4 86.6 30.7

VUDDY Not
Known

9 9 0 8 100 47.1

Detection results for WisCam (about 10M lines of code)

RCVD 1764 16 13 3 4 81.3 23.5

VUDDY Not
Known

11 11 0 6 100 35.3

function, which named min_t to min, while retained the vulnerability. RCVD detects
it correctly with the fingerprint in Sect. 4.2.

A tiny race window could result in a use-after-free bug of the current_beacon.
Since current_beacon is not locked, several threads may obtain it at the same time.
During the execution of function b43_write_beacon_template, if other threads
release current_beacon, then use-after-free occurs when current_beacon is
used. Unfortunately, Orange Pi retains the vulnerability without any patches. We could
exploit this vulnerability to launch denial of service attack or execute arbitrarily code
remotely on Orange Pi through its wireless module. However, VUDDY and ReDeBug
cannot detect it, leaving a significant security risk to the operating system.

5 Related Work

As we all know, the earlier clone detecting tool is CCFinder [4] proposed in 2002. It
measured the similarity of the sequence of tokens by a suffix-tree algorithm, which is
computationally costly and consumes a large amount of memory. SourcererCC [20] uses
a bag-of-tokens strategy to manage minor to specific changes in clones, which allows it
to detect Type-3 clone. However, it is mainly designed to measure similarity and is not
suitable for vulnerable code clone detection. Li etc. proposed the CP-Miner [19], the first
vulnerable code clone detector. It parses a program and compares the token sequence
with a heuristic algorithm. It can be seen that the early tools are still at the exploratory
stage, with relatively high complexity.

Then the related researches begin to increase gradually and so as the tools.
SecureSync [6] uses two models: xASTs and xGRUMs, which use AST and directed
graphs to describe the vulnerabilities caused by code base reuse andAPI reuse. CBCD [7]
utilizes PDG to parse the vulnerability code, and divides the graph into sub-graphs with
a small number of nodes, finds vulnerability through the isomorphic matching algorithm
of the graph. ReDeBug [8] uses a sliding window algorithm for Token streams and a
Bloom filter to find clones of vulnerability code. It supports large amount of code detec-
tion and has high detection efficiency, but it cannot cope with Type-2 clone. CLORIFI
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Table 5. Use-after-free vulnerability in Linux v5.3 and OrangePiRDA_kernel

Vulnerable 
function in 
Linux driv-
ers/net/wireless/
b43/main.c

@@ -1601,12 +1601,26 @@ static void 
b43_write_beacon_template(struct b43_wldev *dev, u16

ram_offset, u16 shm_size_offset){
1     unsigned int rate;
2     u16 ctl;
3     int antenna;
4     struct ieee80211_tx_info *info =
5             IEEE80211_SKB_CB(dev->wl->current_beacon);
6     bcn = (const struct ieee80211_mgmt
7  *)(dev->wl->current_beacon->data);
8 len = min_t(size_t, dev->wl->current_beacon->len,
9             0x200 - sizeof(struct b43_plcp_hdr6));
10     rate = ieee80211_get_tx_rate(dev->wl->hw,
11             info)->hw_value;
12     b43_write_template_common(dev, (const u8 *)bcn,
13             len, ram_offset, shm_size_offset, rate);
14    ...

The cloned 
code in Or-
angePiRDA
_kernel driv-
ers/net/wireless/
b43/main.c

static void b43_write_beacon_template(struct b43_wldev 
*dev, u16 ram_offset, u16 shm_size_offset){

1     unsigned int i, len, variable_len;
2     const struct ieee80211_mgmt *bcn;
3     const u8 *ie;
4     bool tim_found = false;
5     unsigned int rate;
6     u16 ctl;
7     int antenna;
8     struct ieee80211_tx_info *info =
9 IEEE80211_SKB_CB(dev->wl->current_beacon);
10    bcn = (const struct ieee80211_mgmt 
11 *)(dev->wl->current_beacon->data);
12 len = min((size_t) dev->wl->current_beacon->len,
13 0x200 - sizeof(struct b43_plcp_hdr6));
14    rate = ieee80211_get_tx_rate(dev->wl->hw, 
15 info)->hw_value;
16    b43_write_template_common(dev, (const u8 *)bcn,
17            len, ram_offset, shm_size_offset, rate);
18   ...

[9] uses the n-token algorithm to process the input code and uses the Bloom filter to find
clones of the vulnerability code. It also verifies the vulnerability with concolic test to
reduce false positives. However, it cannot detect Type-2 clone either. CVdetector [10]
traverses the grammar of vulnerability code fragments, constructs vulnerability feature
matrix and feature vector of key nodes by analysis tree, and detects various types of
vulnerability codes by applying clustering algorithm. This method implemented a linear
relationship between overhead and amount of code.

In order to improve the effect of detector for different vulnerabilities, VulPecker [2]
combines Token, AST, PDG and etc., extracts vulnerability fragment features according
to its type, selects corresponding algorithms from similarity comparison algorithms,
and detects the reuse of vulnerability code by using support vector machine. It improves
the accuracy of detection, but brings about a large computational overhead. VUDDY
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[1] focuses on Type-1 and Type-2, and generates the fingerprint with the granularity
of Function. It utilizes the abstraction to eliminate the influence of renamed clone,
which is also applied to this paper. In addition, there are detection methods based on
machine learning. Lin etc. [13] extract the features fromAST and use LSTM to learn the
representation. VulDeePecker [3] is the first to use deep learning for testing. It extracts
features automatically but can only handle with the vulnerabilities about API.

Through the introduction of the development of vulnerable code cloning detection
technology, we can infer that it is an inevitable trend to extract code fragments or features
by program analysis. Compared with code clone detection, the vulnerable code detection
needs more information about semantic or grammar. Therefore, the proposed method
uses program slicing based on patches to obtain the vulnerability related code fragments,
which is not achieved by previous work. In addition, the proposed matching algorithm
achieves a linear relationship between time complexity and the lines of target code.

6 Conclusion

In this paper, the method of cloning vulnerability detection is discussed. Applying pro-
gram slicing and greedy-based matching algorithm to code similarity-based method, the
tool for restructured cloning vulnerability detection is implemented with low false neg-
ative and high precision on IoT driver layer codes. It sacrifices some detection accuracy
and realizes a better detection of reconstructed clones. Experiment shows that although
RCVD introduces some false positive, it could detect 49 restructured cloning vulnera-
bilities totally while other two tools cannot detect. In addition, it could detect exact and
renamed clones, which also proves the adaptability of this method to different types of
clone. It’s reasonable to believe RCVD can be a realistic solution for the security of IoT
operating systems.

So far, thework can also be extended inmultiple directions. Firstly, semantic analysis
can be used to solve the false positive introduced by patches. In addition, extending the
fingerprint database and proposing faster algorithm for fingerprint matching would be
of great value. Moreover, the quality of fingerprints may also be improved.
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Abstract. While visible light communication (VLC) is expected to have
a wide range of applications in the near future, the security vulnerabili-
ties of this technology have not been well understood so far. In particular,
due to the extremely short wavelength of visible light, the VLC channel
presents several unique characteristics than its radio frequency counter-
parts, which impose new features on the VLC security. Taking a physical-
layer security perspective, this paper studies the intrinsic secrecy capac-
ity of VLC as induced by its special channel characteristics. Different
from existing models that only consider the specular reflection in the
VLC channel, a modified Monte Carlo ray tracing model is proposed
to account for both the specular and the diffusive reflections, which is
unique to VLC. Based on this model the upper and the lower bounds
of the VLC secrecy capacity are derived, which allow us to evaluate
the VLC communication confidentiality against a comprehensive set of
factors, including the locations of the transmitter, receiver, and eaves-
dropper, the VLC channel bandwidth, the ratio between the specular
and diffusive reflections, and the reflection coefficient. Our results reveal
that due to the different types of reflections, the VLC system becomes
more vulnerable at specific locations where strong reflections exist.

Keywords: Physical layer security · Indoor VLC · Multipath
reflection · Secrecy capacity

1 Introduction

Visible light communication (VLC), which integrates communication and illumi-
nation, has now become a very active research topic in the area of wireless com-
munication. Compared with its radio frequency (RF) counterparts, VLC enjoys
many nice features, such as license free, interference free, reusable spectrum, wider
bandwidth, higher transmission rate, higher energy efficiency and so on. Because
of these nice features, VLC has been considered to be a promising and urgently-
needed solution for offloading the crowded RF traffic in 5G systems.

While VLC is expected to have a wide range of applications in the near future,
the security vulnerabilities of this technology have not been well understood
so far. In typical VLC systems, data is transmitted by modulating the output
intensity of the emitters, and the data signal is captured using photo-diodes as
receivers. Contrary to the initial belief that VLC is intrinsically secure because
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the propagation of visible light is directive and can be confined within a closed
space, recent studies have revealed that this is not necessarily true, especially in
public areas [12,21]. Without any sort of wave-guiding transmission media, the
light illumination that a VLC link piggybacks on is diffusive in most real-world
applications, which makes VLC links inherently susceptible to eavesdropping by
an unintended receiver in the same room. This broadcast threat applies to most
public indoor environments, such as libraries, meeting rooms, shopping centers
or aircrafts. Even worse, eavesdropping from outside of the room is possible when
there are windows on the wall [6,12,32].

In particular, due to the extremely short wavelength of visible light (0.38 ∼
0.69 µm), the VLC channel presents several unique features than its RF counter-
parts. For example, a VLC channel is a mix of both specular reflection and diffuse
reflection, which allows a VLC signal to be overheard (or seen) at much more loca-
tions than a RF signal, even when an eavesdropper is outside the main-lobe of the
intended VLC communication. As a result, in contrast to the conventional multi-
path RF channel, a VLC channel is no longer a discrete sequence of a small number
of signal paths, but rather a continuous combination of signal paths reflected by
the entire environment. Such a drastic change on channel characteristics imposes
new security features on VLC communication, and requires a different method to
investigate than its well-studied RF counterparts.

With that in mind, in this work we attempt to investigate the intrinsic confi-
dentiality of VLC communication as induced by its special channel characteris-
tics. We consider the issue of communication confidentiality, because eavesdrop-
ping has been foreseen as the most common threat faced by VLC communications
once they are deployed [6,13,21]. In contrast to many existing confidentiality
studies that take measures at upper layers of the network protocol stack, such
as access control, password protection, and end-to-end encryption, our investiga-
tion takes a physical-layer security perspective and targets at the fundamental
issue of VLC channel’s secrecy capacity, by characterizing how easily a VLC
signal would be overheard when it is transmitted over the channel. Note that
our study aims at understanding the intrinsic security limits faced by the VLC
signal itself, which is independent from any cryptographic measures that could
be added on the upper layers. In practice, our study may lead to a better design
of VLC transceivers that possess certain built-in eaversdropping-proofness, and
may be used orthogonally with upper-layer cryptographic methods to further
enhance the security of VLC systems.

So far, the study on the secrecy capacity of VLC in the literature is still
quite preliminary. Most of the existing models consider the VLC channel as a
wiretap channel under line of sight, and have ignored the different types of signal
reflections on the channel. In contrast, our study in this paper aims to exploit
the unique characteristics of VLC channel in calculating its secrecy capacity.
To the best of our knowledge, this is the first work that considers the impact
of both the specular and the diffusive reflections on secrecy capacity of indoor
VLC. More specifically, the main contributions of our study are as follows:

1. We consider both the specular and diffusive reflections using the Monte Carlo
ray tracing approach.
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2. We propose an analytical approach to synthesize the VLC channel impulse
response using gamma probability distribution function fitting.

3. We propose a simple way to calculate the secrecy capacity when considering
multiple reflections.

4. We analyze how multiple reflections affects the secrecy capacity for an indoor
VLC system with a transmitter, a legitimate receiver, and an eavesdropper.

The reminder of this paper is organized as follows. Section 2 describes the
related work. VLC system models are presented in Sect. 3, Sect. 4, and Sect. 5,
respectively. Experimental design are presented in Sect. 6. Evaluations and Dis-
cussions are analyzed in Sect. 7, followed by Conclusions in Sect. 8.

2 Related Work

While the research on VLC has achieved significant development in many
fields, such as channel modelling [5,7,11,15], modulation [35], channel estima-
tion [8,27,30], and channel capacity analysis [17,28], the security aspect of VLC
has not been well understood so far. Existing research on VLC security is pre-
liminary, as evidenced by the limited number of related works and the narrow
scope of problems addressed in the literature. In [21], the authors discussed dif-
ferent scenarios of VLC sniffing, and the results of the experiment suggested
that VLC channels should not be considered intrinsically secure. Yin and Haas
also confirmed the vulnerabilities of multiuser VLC networks by providing an
analytical framework to characterize the secrecy performance [33]. Actually due
to the broadcast feature of VLC, an unintended receiver within the same com-
munication room may receive the information without being noticed, and this
kind of threat could even apply to a scenario that the unintended receiver from
outside of the room could eavesdrop merely through the windows or door gaps.
The feasibility of such an attack was verified in [32], where an attacker outside
a room was able to accurately figure out the program being played on a TV set
in the room just by observing the change of light intensity illuminated by the
TV through the window. Eavesdropping outside the direct beam of the light was
also verified by testbed in [12].

For most cases of securing a VLC system, conventional cryptographic meth-
ods have been implemented at upper layers of the protocol stack to provide
data confidentiality, integrity, and authenticity for VLC applications [1,2,24].
But it is facing great challenges with the elevated capability of computation.
As a promising complement to it, physical layer security, mainly represented
by non-cryptographic methods, exploits the noise and the structure of the VLC
channel to limit the amount of information that can be overheard by unautho-
rized eavesdroppers [19,22,34].

From an information-theoretic point of view, the physical-layer security was
first introduced by Wyner as a wiretap channel model [31]: an eavesdropper sniffs
a degraded signal from the main channel. The secrecy capacity is derived as the
difference between the information capacity for the two channels. Different with
RF communication, which is typically modeled as a Gaussian broadcast channel
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with an average power constraint at the transmitter side, the signal in VLC
is typically modulated onto the intensity of the emitted light, it must satisfy
average, peak as well as non-negative amplitude constraints, imposed by practical
illumination requirements [17,25,28]. Due to the fundamental differences, results
on the secrecy capacity obtained for RF networks can not be directly applied to
VLC networks.

Fig. 1. A typical indoor VLC network
system with Alice, Bob and Eve con-
sidering reflections.

Fig. 2. Reflection pattern is described
by Phong’s model.

By considering one transmitter, one legitimate user and one eavesdropper in
a VLC system, lower and upper bounds on the secrecy capacity of the amplitude-
constrained Gaussian wiretap channel was recently studied in [29], with the use
of the derived capacity lower and upper bounds in [23]. Mostafa et al. analyzed
the achievable secrecy rate for single-input single-output (SISO) and multiple-
input single-output (MISO) scenarios, and proposed various beamforming and
jamming schemes to enhance the confidentiality of VLC links [22]. In addition,
Arfaoui et al. derived in closed-form the achievable secrecy rate as a function
of the discrete input distribution for wiretap channel under the amplitude con-
straints of the input signal [3,4]. To address the issue of a priori knowledge
of locations or channel state information of eavesdropper, in [9,10], Cho et
al. investigated the secrecy connectivity in VLC in the presence of randomly
located eavesdroppers, and they also study how the multipath reflections affect
the secrecy outage probability. However, when considering the multipath reflec-
tions, they only deal with the impact of the main channel without considering
of the inter-symbol interference from multipath reflections.

3 VLC Channel Modelling

In a typical indoor VLC system (Fig. 1), data signal is transmitted by modulating
the output intensity of the emitter (Alice), and then it is captured using simple
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photo-diodes as receivers (Bob or Eve). As the indoor optical wireless channel
is significantly different from the RF channel, statistical propagation models
developed for the RF, which characterize the multipath fading, can’t be directly
applied to VLC. Accounting for the multiple types of reflections in the indoor
VLC system requires a distinct channel modeling that is able to capture the
unique characteristics of a VLC channel. In particular, a VLC channel response
could be decomposed into the line of sight (LOS) path component and the non-
line of sight (NLOS) path component, which are described respectively as follows.

According to [15], the emitter source is modeled as a generalized Lambertian
radiation pattern

P (m,φ) =
m + 1

2π
cosm(φ) (1)

where m is the Lambertian order defining the radiation lobe, which specifies
the directivity of the source, φ is the angle between the initial direction of ray
and the direction of maximum power, which specifies the emitting angle. The
coefficient (m + 1)/2π ensures that integrating radiation intensity pattern over
the surface of a hemisphere can obtain the source power. m = 1 corresponds to
a traditional Lambertian source.

So, the LOS path gain can be calculated as

hLOS = P (m,φ)AD cos(θ)
1
d2

δ(t − d

c
) (2)

where AD is the detecting surface area of the receiver, θ is the incident angle
between incident light and the receiver normal direction, product of both gives
the effective collection area of the receiver. d is the LOS distance between the
emitter and receiver, which depicts the geometric attenuation. Dirac delta func-
tion gives the time delay.

Multipath channel gain due to the reflections by the walls was studied in
[5]. The proposed deterministic model calculated the reflection channel gain
by partitioning a wall into many elementary reflectors and summing up the
impulse response contributions from different reflectors as secondary sources
until reaching the time limit. However, there is a problem with this model, in
that they only take into account diffusive reflection and can’t simulate specular
reflection when light reaches a wall. In reality, for grazing incidence there is
strong specular reflection with quite different behavior. If there are polished
surface, such as windows or mirrors, the specualar reflection is dominant over
diffusive reflection. In order to consider the high specular reflection of smooth
surfaces, here we use the Phong’s model to approximate the reflection patterns
(Fig. 2), considered as the sum of the diffusive component and the specular
component [18,27]. In this model, the surface characteristics are defined by two
parameters: the percentage of incident signal that is reflected diffusely rd and
the directivity of the specular component of the reflection m′′. Due to the high
attenuation, in this paper, we consider only the first reflection since the channel
gain of the higher order reflections is small enough to be neglected [27].
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So, the NLOS path gain can be described as

hNLOS =

n∑

j=1

P (m, φEj)ΔA cos(θEj)
1

d2
Ej

ρ
[
rdP (m′, φjR) + (1 − rd)P (m′′, φjR − θEj)

]

AD cos(θjR)
1

d2
jR

δ

(
t − dEj + djR

c

)

(3)
where the wall is divided into n grid reflectors, each of which has an area of
ΔA, ρ is the surface reflection coefficient, m′ gives the directivity of the diffu-
sive reflection component and m′′ gives the directivity of the specular reflection
component, φ and θ represent emitting angle and incident angle, respectively.

Therefore, the channel gain considering both the LOS and NLOS can be
described as

H = hLOS + hNLOS . (4)

We use a modified Monte Carlo ray-tracing statistical approach to numerically
calculate the channel impulse response, as explained later in the experimental
section.

4 Channel Impulse Response Fitting and Synthesizing

Although the channel impulse response with multiple reflections could be numer-
ically calculated using different approaches, there is lacking an analytical expres-
sion for it in current literature. The main drawback of the numerical methods
is their excessive computational time complexity. Due to the additional NLOS
reflections, numerical computation of the impulse response of a single VLC chan-
nel turns out to be very time consuming, and it becomes even more prohibitive
when one needs to calculate the channel response as a function of the VLC
link location over the entire communication space, e.g., to characterize the spa-
tial distribution of the VLC channel secrecy capacity. Therefore, for the very
first time, we propose a fast analytical approach to synthesize channel impulse
response using gamma probability distribution function fitting.

When analyzing the numerically calculated channel impulse response
(Fig. 3(a)), we notice that it could be divided into two distinct components,
LOS and NLOS. The LOS component is a scalar channel gain related to the
propagation attenuation of the VLC signal over the distance between the trans-
mitter and the receiver, and can be easily calculated according to the channel
model and system geometry. On the other hand, however, the NLOS compo-
nent is much more complicated, as it presents some time-series structure, as
shown in Fig. 3(b), where the NLOS impulse response has been normalized by
the total NLOS light intensity. Based on the fact that the integral of the normal-
ized NLOS time series equals to one, we hypothesize that this time series can
be fitted analytically by some probabilistic distribution function. Physically, this
hypothesis reflects the insight that the NLOS channel response is actually the
distribution of the reflected light power over different time delays [26]. To verify
our hypothesis, we have tested a number of probabilistic distribution functions,
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among which the gamma distribution turns out to be the most promising one
for the fitting.

A gamma distribution can be parameterized in terms of a shape parameter α
and a rate parameter β. The corresponding probability density function (PDF)
in the shape-rate parametrization is

f(x;α, β) =
βαxα−1e−βx

Γ (α)
; x > 0;α, β > 0 (5)

where Γ (α) is the gamma function. Given a numerically computed NLOS channel
response, its fitted gamma distribution expression (i.e., the fitted parameters
(α, β)) can be obtained by nonlinear regression. For instance, Fig. 3(c) plots the
fitted gamma distribution function for the numerically calculated and normalized
NLOS channel impulse response in Fig. 3(b). The fitting in this case turns out
to be very accurate according to the mean square error (mse < 0.0002). To
graphically assess how well the numerical calculation matches with the fitted
gamma distribution, a scatter quantile-quantile (Q-Q) plot is shown in Fig. 3(d),
where the calculated set (X) and fitted set (Y) of quantiles are plotted against
each other. The cross points (+) are referred to as percentiles, below which a
certain proportion of the data fall. Ideally, if X and Y quantiles come from the
same distribution, then all + marks should be aligned along the diagonal line (the
red line in the figure). Indeed, it can be observed in Fig. 3(d) that most of the +
marks are aligned well with the diagonal line, except a couple exceptions, which
are just a little off the diagonal line. This observation confirms that the fitted
gamma distribution matches reasonably well with the numerical calculations. In
order to statistically verify the accuracy of gamma fitting for more general cases,
we compared the calculated NLOS channel response against their gamma fitting
outcomes in Figs. 3(e) and (f) for 2401 VLC channels, which are taken over a
49-by-49-grid area with a distance interval of 0.1 m per grid, in an indoor VLC
communication environment. According to the spatial distribution of the mse
in Fig. 3(e) and the mse histogram and cumulative density function (CDF) in
Fig. 3(f), it can be observed that more than 2200 (i.e., over 90% of the tested
VLC channels) channel impulse responses fitting achieve mse less than 0.0005.
This exemplifies the accuracy and reliability of the proposed gamma distribution
fitting in general cases.

Now we can analytically express the channel impulse response as a LOS
scalar plus a NLOS gamma distribution, for which the key parameters include
LOS intensity ILOS , NLOS intensity INLOS , the time delay Δt between NLOS
and LOS, α, and β. Based on the fitted channel response parameters, the channel
impulse response at a given receiver location can be represented analytically as

H = ILOSδ(t − d

c
) + INLOSf(t − d

c
− Δt;α, β) (6)

where d
c is the light propagation delay between the transmitter and the receiver

by following the LOS path, and f is the Gamma distribution function. The fitted
analytic model allows us to efficiently obtain the channel impulse response at an
arbitrary location, rather than time-consuming numerical calculations.



112 J. Chen and T. Shu
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Fig. 3. A typical example of channel impulse response fitting. (a) a numerically calcu-
lated channel impulse response with LOS and NLOS; (b) the NLOS impulse response
normalized with total NLOS intensity; (c) the fitted NLOS impulse response; (d) Q-Q
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5 Secrecy Capacity Analysis

Consider an indoor VLC system consisting of a transmitter Alice, an intended
receiver Bob, and an eavesdropper Eve, as shown in Fig. 1. Due to the diffu-
sive and specular reflections of light, the signal transmitted from Alice to Bob
may also be overheard by Eve. The received signals at Bob and Even can be
represented respectively by{

YB = HBX + ZB , ZB ∼ N(0, σ2
B)

YE = HEX + ZE , ZE ∼ N(0, σ2
E)

(7)

where X denotes the transmitted light intensity from Alice, HB and HE denote
the main channel gain, defined between Alice and Bob, and the eavesdropping
channel gain, defined between Alice and Eve, respectively. ZB and ZE are zero-
mean additive white Gaussian noise (AWGN) at Bob and Eve, respectively,
which are assumed to be independent from each other. The variance of noise
σ2

k(k = B,E) is given by [16]

σ2
k = σ2

thermal + σ2
shot + WISI (8)

where σ2
thermal and σ2

shot denote variances of the thermal noise in the receiver
electronic circuits and the shot noise caused by ambient illumination from other
light sources, respectively. These two noises are well modeled by an additive white
Gaussian process. WISI denotes the inter-symbol interference (ISI) caused by the
multiple reflections in a VLC channel, which may become significant under high

Fig. 4. Impact of ISI on system model caused by reflection. S stands for Symbol, t
stands for inter symbol time interval.
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symbol transmission rate. This is illustrated in Fig. 4, where the ISI for symbol 4
(S4) accounts for the accumulated power from all previous symbols (S1, S2, S3)
over S4’s reception window [4t, 5t], where t = 1/B is the reception time duration
of a symbol at the receiver and B is simply the symbol rate of the VLC channel
(binary intensity modulation is assumed). From this figure, it is clear that the
received signal power and the ISI of a symbol (light pulse) can be calculated
by partitioning the channel impulse response into two parts according to the
symbol’s reception window: The first part, denoted by N1 in the figure, accounts
for the first t seconds of the channel response inside the reception window, as
measured beginning from the LOS component. The integral of N1 contributes
to the received signal power of the symbol. On the other hand, the second part,
denoted by N2 in the figure, includes all the remainder outside the reception
window, whose integral amounts to the ISI (WISI) to the received symbol. So,
Hk and σ2

k can be represented by{
Hk = N

(k)
1

σ2
k = σ2

thermal + σ2
shot + N

(k)
2

k = B,E. (9)

where N
(k)
1 and N

(k)
2 are the integral of N1 and N2 defined w.r.t. the channel

response at receiver k, respectively.
According to [29], the secrecy capacity C in this VLC network can be math-

ematically expressed as

C = max
fX (x)

[I(X; YB) − I(X; YE)], s.t.

{∫ A

0
fX(x)dx = 1; 0 ≤ X ≤ A

E(X) =
∫ A

0
xfX(x)dx = ξA; ξ ∈ (0, 1]

(10)
where fX(x) denotes the PDF of X, I(X;Y ) denotes the mutual information
between two variables X and Y. A denotes the maximum peak optical inten-
sity of the transmitter, ξ is the dimming target. For a practical system, the
maximum optical intensity will be constrained by A and the dimmable average
optical intensity will be constrained by ξ to satisfy the consistent illumination
requirements.

Since the secrecy capacity is related to the information capacity of the com-
munication channel, before determining the secrecy capacity in VLC networks
it is essential to obtain the information capacity of the VLC channel with aver-
age, peak and non-negative constraints. However, to the best of our knowledge,
the exact information capacity of the VLC channel with such constraints still
remains unknown, even for the simplest SISO case, except that some lower and
upper bounds have been derived [23,29]. In this paper, as we aim to study the
impact of multiple reflections on secrecy capacity, our analysis will be based
on the lower and upper bounds of the secrecy capacity. In particular, account-
ing for the new structure of the received signal and ISI (Eq. (9)) as induced by
the multiple types of reflections in the VLC channel, and by following a similar
derivation process in [29], we obtain a new set of lower bound and upper bound
on the VLC channel secrecy capacity when the diffusive reflection and the spec-
ular reflection in the channel are considered. For simplicity when deriving the
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lower bound of secrecy capacity, we chose the average-to-peak optical intensity
ratio ξ = 0.5 and re-wrote the objective function in Eq. (10) in entropy as

C = max
fX(x)

[H(YB) − H(YE)] − H(YB|X) + H(YB |X) (11)

then using the entropy power inequality in [14], the lower bound can be derived as

C ≥ 1
2
ln

[
3σ2

E(H2
BA2 + 2πeσ2

B)
2πeσ2

B(H2
Eξ2A2 + 3σ2

E)

]
. (12)

The dual expression of the secrecy capacity is employed when deriving the
upper bound as in [23]. Given an arbitrary conditional PDF gYB |YE

(yB |yE), we
have the relative entropy equation

I(X;YB |YE) + EXYE
D(fYB |YE

(yB |YE)||gYB |YE
(yB |YE))

= EXYE
D(fYB |XYE

(yB |X,YE)||gYB |YE
(yB |YE)).

(13)

According to the non-negative property of the relative entropy, we have

I(X;YB |YE) ≤ EXYE
D(fYB |XYE

(yB |X,YE)||gYB |YE
(yB |YE)). (14)

Considering the constrains in Eq. (10), we can find an unique PDF fX′(x)
that maximizes I(X;YB |YE), which will lead to the secrecy capacity

C ≤ EX′YE
D(fYB |XYE

(yB |X,YE)||gYB |YE
(yB |YE)). (15)

Table 1. Numerical calculation parameters

Parameter Value

Room Room size 5 × 5 × 3 m2

Reflection coefficient (ρ) 0.8

Diffusive percentage (rd) 75%

Emitter Emitter height 3 m

Emitted optical power 1 W

Number of rays 68000

Modulation bandwidth 500 MHz

Lambertian order (m, m′, m′′) (1, 1, 250)

Receiver Receiver height 0.85 m

Receiver effective area 10−4 m2

Receiver FOV 60◦

Resolution (Δt) 0.2 ns
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Using the principle of dual expression of the secrecy capacity and following
a similar derivation process in [29], the upper bound can be derived as

C ≤ 1
2
ln

⎡
⎢⎢⎣

(
H2

E

H2
B

σ2
B + σ2

E

)
(H2

BA2ξ + σ2
B)

σ2
B

(
H2

EA2ξ + 2
H2

E

H2
B

σ2
B + σ2

E

) (
1 +

H2
Eσ2

B

H2
Bσ2

E

)
⎤
⎥⎥⎦ . (16)

6 Numerical Experiment Design

To simplify our analysis, but without loss of generality, we design an indoor
VLC environment with 5 m in length, 5 m in width, and 3 m in height. Similar
to Fig. 1, the emitter is fixed at the center of ceiling and the receiver is placed
on the receiver plane with a height of 0.85 m that is close to the height of a
regular desk. We partition the receiver plane into small grid area with length
of 0.1 m, resulting in 49-by-49-grid points taken as potential receiver location.
Additional parameters assumed in the calculation are listed in Table 1. The
default parameter value will be taken from the table hereafter if not specified.

We use a modified Monte Carlo ray tracing model from [20,27] for numerical
calculation of the channel impulse response. Our calculation is implemented
using Matlab R2017a. Firstly, a large number of rays are randomly generated
according to the radiation pattern from the emitter. When a ray impinges on a
wall, the reflection point is converted into a new optical source, so a new ray is
generated with the same distribution as the reflection pattern of that wall. In
order to consider both the specular and diffusive reflections, when a ray arrives
at the wall, a random number in the range (0, 1) is generated. If the generated
number is smaller than the diffusive percentage rd, the reflection for this ray is
determined to be purely diffusive; otherwise, it becomes a specular reflection.
After each reflection the power of the ray is reduced by the reflection coefficient
of the wall. Since this model implements both diffusive and specular reflections,
so it can represent real world scenarios more plausibly.

Then for each of the calculated 2401 channel impulse responses from 49-
by-49-grid receivers, we use the nonlinear regression model in Matlab to fit the
NLOS part of channel impulse response as gamma probability distribution. Once
we get the seven key parameter sets, including receiver location coordinates, LOS
intensity, NLOS intensity, the time delay Δt between NLOS and LOS, α, and β,
the synthesized channel impulse response could be substituted into Eqs. (12) and
(16) to calculate the corresponding secrecy capacity lower and upper bound. In
order to quantitatively present the secrecy capacity bounds, we set the dimming
target ξ as 0.5 during calculation.

7 Evaluations and Discussions

In order to test the key factors that impact the secrecy capacity, we create dif-
ferent scenarios by changing the locations of Bob and Eve, shown as in Fig. 5.
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It shows the planimetric position of Alice (yellow illuminant), Bob (black tri-
angle), and Eve (empty triangle), with Alice locates on the ceiling, Bob and
Eve locates on the receiver plane. In the following subsections, some additional
numerical results are provided to show the security performance of the indoor
VLC system with multiple reflections considered.

7.1 Spatial Characteristics of Secrecy Capacity

Since the channel impulse response could be synthesized at any possible loca-
tion in the indoor VLC system, the spatial character of secrecy capacity can
be calculated accordingly. Figure 7 shows the spatial characteristics of secrecy
capacity bounds calculated for Eve locating at each grid point with an spatial
interval of 0.01 m, when Alice locates at A1 and Bob locates at B1. The upper
two panels depict the spatial pattern of the upper bound and lower bound, both
of which present similar spatial characteristics. Those red region show the vul-
nerable area of the VLC system, where the secrecy capacity approaches zero.
They are mostly either following the diagonal line of the experimental plane or
nearby the walls. The strong reflections from two adjacent walls might account
for this quincunx pattern of the vulnerable zone. When receiver is approaching
the walls, the intensity of NLOS part increases significantly, and it could become
as strong as, or even stronger than, the intensity of LOS part. It would partially
explain those vulnerable areas nearby the walls. The bottom two panels show
the horizontal and diagonal cross section of the spatial secrecy capacity bounds.
The relative quantity of secrecy capacity bounds is increasing from center to
edge as Eve is getting far away from Bob. It’s worthwhile to point out that there
is a secrecy capacity cutoff on both sides, and it turns out to be result of the
fixed modulation bandwidth as approaching the walls, which will be discussed
in the next subsection. In real world application, it is also consistent with our
real life experience as we always want the intended receiver placed at location
with the best communication channel. When we have the main communication
channel set up, the spatial characteristics would be used to identify the possible
vulnerable area where eavesdropping likely takes place, which could be exploited
to counter data sniffing. Based on the limited vulnerable area, additional detec-
tion mechanism could be instrumented to tell when an eavesdropping attack is
under way.

7.2 Secrecy Capacity vs. Modulation Bandwidth

When considering the impact of multiple reflections on secrecy capacity, inter-
symbol time interval (i.e., reception time duration of a symbol) is another sig-
nificant factor for calculating ISI on secrecy capacity. It is determined by the
reciprocal of symbol rate, as stated in Sect. 5. For simplicity, the binary inten-
sity modulation is assumed during calculation, so the symbol rate is equivalent
to modulation bandwidth if neglecting roll off factor. As long as the modula-
tion bandwidth is determined, the inter-symbol time interval for each receiver
at different location will be fixed as the same. However, the time delay from
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Fig. 5. Planimetric locations of Alice,
Bob, and Eve for different experimental
scenarios. Ax refers to Alice, Bx refers to
Bob, and Ex refers to Eve.

300 350 400 450 500 550 600 650 700
Bandwidth (MHz)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S
ec

re
cy

 C
ap

ac
ity

 (n
at

s/
tra

ns
m

is
si

on
)

Secrecy Capacity VS. Bandwith

(A1, B1, E5)
(A1, B1, E4)

Lower bound
Upper bound

Fig. 6. Secrecy capacity bounds changes
with modulation bandwidth when Alice
locates at A1, Bob locates at B1, and Eve
locates at E4 and E5.

LOS to NLOS for channel impulse response of each receiver at different location
will be different because of the different reflection path. So, given a location of
receiver, if we change the modulation bandwidth, the impact on secrecy capacity
will be identified once the inter-symbol time interval becomes comparable to the
time delay from LOS to NLOS for channel impulse response. Figure 6 shows the
change of secrecy capacity bounds with the bandwidth when Alice locates at A1,
Bob locates at B1, and Eve locates at E4 and E5, respectively.

As we move Eve from E4 to E5, the eavesdropping channel is degraded, so there
is an increase of secrecy capacity as expected. From both scenarios, we see a step
function shaped change of secrecy capacity when increasing the modulation band-
width.This is because for a given location ofEve, the time delay fromLOS toNLOS
for channel impulse response is determined, there is an increase of secrecy capacity
as increase of bandwidth when the inter-symbol time interval is approaching the
time delay. Once the inter-symbol time interval gets less than the time delay, the
secrecy capacity will get saturated. It acts like a cutoff frequency of secrecy capac-
ity due to the impact of reflections. This cutoff frequency varies for each location
of Eve, and it increases as Eve getting far away from the center. It could partially
explain the drastic drop or rise of secrecy capacity nearby the walls as we discussed
in previous subsection (Fig. 7), because we used 500 MHz fixed modulation band-
width for those scenarios. So, when we deploy a VLC system, we will have to con-
sider not only the quality of the communication channel, but also the modulation
bandwidth, as a higher modulation bandwidth would eliminate the feasibility of
eavesdropping nearby the reflector, even though it could be far away from the main
communication channel.
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Fig. 7. Spatial characteristics of secrecy capacity bounds when Alice locates at A1,
Bob locates at B1, and Eve locates at any place.

7.3 Secrecy Capacity vs. Diffusive Percentage

As discussed before, each reflection is supposed to be comprised of specular
and diffusive reflections depending on the roughness of the wall. Intuitively, the
more rough the wall is, the more diffusive part the reflection will contain. As
the increase of the diffusive percentage, we would expect to see the correspond-
ing increase of secrecy capacity, which is verified in Fig. 8 when Alice locates at
A1, Bob locates at B1, and Eve locates at E6. Since the numerically calculated
channel impulse response using statistic approach for a given location varies from
time to time, We calculate secrecy capacity bounds ten times for each diffusive
percentage, and get the 95% confidence interval. There is a distinct increasing
trend with larger uncertainty as the increase of diffusive percentage. Obviously,
it would be difficult for eavesdropper to sniff effective data when most of the
emitted energy are diffusely reflected. As a testbed exemplification in [12], dif-
ferent flooring materials (e.g., acrylic glass, vinyl plank, glazed tile, carpet, and
laminate flooring) result in variable decoding bit error rate for eavesdropper,
which imposes potential eavesdropping vulnerability. Thus, for indoor VLC sys-
tem implementation, the construction material and design should be taken into
consideration in case of security vulnerability.
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7.4 Secrecy Capacity vs. Reflection Coefficient

On the other hand, when considering the property of the wall, the reflection coef-
ficient is another significant factor that could impact the intensity of reflection.
As for each reflection, the total emitted energy would be reduced by the reflec-
tion coefficient. Figure 9 shows the change of secrecy capacity with the reflection
coefficient when Alice locates at A1, Bob locates at B1, and Eve locates at
E6. We can see a decreasing trend of the secrecy capacity with the increase of
reflection coefficient, which is consistent with our intuition that high reflection
coefficient would generate strong reflection and result in secrecy vulnerability.
Considering the feasibility of vulnerability due to the high reflection coefficient,
it would suggest to choose materials with low reflection coefficient to reduce the
impact of reflections on secrecy capacity when designing an indoor VLC system.
But in the real world application, according to [18], since the VLC uses a wide
spectrum in 380 ∼ 750 nm, spectral reflectance of indoor reflector (e.g., ceiling,
floor, plaster wall, plastic wall) varies a lot, which will make the design of indoor
VLC system more complicated by inducing spectrum information.
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Fig. 8. Secrecy capacity bounds change
with the percentage of diffusive reflection
when Alice locates at A1, Bob locates at
B1, and Eve locates at E6. Error bar rep-
resent 95% confidence interval.
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8 Conclusions

In this paper, the impact of multiple reflections on secrecy capacity of indoor
VLC system is investigated. Base on the established indoor VLC system model
with three entities, the system security performance is evaluated against a com-
prehensive set of factors, including the locations of the transmitter, receiver,
and eavesdropper, the VLC channel bandwidth, the ratio between the specular
and diffusive reflections, and the reflection coefficient, according to the calcu-
lated lower and upper secrecy capacity bounds. Both the specular reflection and
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diffusive reflection are considered in the system model, as the increase of the
specular reflection part, the VLC system becomes more vulnerable. The spatial
characteristics of secrecy capacity are also discussed, which could be used to
identify possible vulnerable areas. Due to the addition of LOS and NLOS com-
ponents, we have found areas with strong reflections, which makes feasible that
if an eavesdropper located on those areas, he could sniff data at least partially
due to reflection. The possible sniffing attack could also be used as an exploit
on insidious attacks such as blocking and spoofing in future complex systems.
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Abstract. Security is of primary importance to vehicles. The viability
of performing remote intrusions to the in-vehicle network has been man-
ifested. For unmanned autonomous cars, limited work has been done
to detect such intrusions, while existing intrusion detection systems
(IDSs) embrace limitations against strong adversaries. We hence con-
sider the very nature of autonomous car and leverage the road context to
design a novel IDS, named Road context-aware IDS (RAIDS). Given an
autonomous car driving along continuous roads, road contexts and gen-
uine frames transmitted on the car’s in-vehicle network should resemble
a regular and intelligible pattern. RAIDS employs a lightweight machine
learning model to extract road contexts from sensory information (e.g.,
camera images and sensor values) used to control the car. With the
road context, RAIDS validates corresponding frames observed on the
in-vehicle network. Anomalous frames that substantially deviate from
road context will be discerned as intrusions. We have built a prototype
of RAIDS with neural networks, and done experiments on a Raspberry
Pi with extensive datasets and meaningful intrusion cases. Evaluations
show that RAIDS significantly outperforms state-of-the-art IDS without
any road context by up to 99.9% accuracy and short response time.

Keywords: Autonomous car · Road context · Intrusion detection

1 Introduction

Security is critical for vehicles. A modern automobile embodies a protocol, like
the prevalent Control Area Network (CAN) [11], for in-vehicle communications
among its electrical subsystems, such as the steering wheel, brake, and engine,
each of which is monitored and controlled through an electronic control unit
(ECU). Researchers managed to manifest concrete intrusions to ECUs of manned
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vehicle to cause a breakdown or traffic accident [3,6,12,25]. Today, many prac-
titioners and researchers are developing self-driving autonomous cars, which,
undoubtedly, demand particular care for security and safety [14,17]. However,
limited work has been done on designing an intrusion detection system (IDS) for
the in-vehicle network of autonomous car. Existing IDSs even have limitations
against strong adversaries. Take the state-of-the-art CIDS [6] for example. In
accordance with its knowledge of all existing ECUs, CIDS tracks down anomalies
when an original ECU stops sending frames or an ECU belonging to adversaries
injects frames. Nevertheless, CIDS should be oblivious of a compromised ECU
sending forged frames. If a strong adversary can manipulate an original ECU to
deliver fake frames, CIDS would malfunction as the fingerprint of the ECU is
not peculiar. As a result, such an attack model is beyond the capability of CIDS.

There is a fact that has not been considered in designing IDS to protect
in-vehicle network: all frames transmitted on the CAN bus are generated due to
the decisions made by the vehicle driver and it is the road context that guides a
driver to make those decisions. Human drivers have highly individualized experi-
ences and habits, and react differently to the same road context, like a stop sign
or a road bend. It is hence impractical to design an IDS with road context for
manned vehicles. By contrast, an autonomous car is orthogonal to manned vehi-
cles concerning the very nature of ‘driver’. In an autonomous car, decisions are
made by a well-trained self-driving model upon dynamic road contexts obtained
through multiple sensors [2,4]. Therefore, the road context and correspond-
ing control signals, which eventually result in frames transmitted on the CAN
bus, shall resemble a regular and intelligible pattern. Given an intrusion with
forged frames upon continuous road contexts, a violation of the pattern can be
perceivable.

Motivated by this observation, we develop a holistic IDS, i.e., Road context-
aware IDS (RAIDS), for autonomous cars to detect anomalous CAN frames
forged by strong adversaries. Main ideas of RAIDS are summarized as follows.

– RAIDS is a two-stage framework that mainly consists of two neural networks
to extract road context from sensory information (e.g., images taken by cam-
eras, distances to front objects, etc.) and validate the genuineness of CAN
frames, respectively, for the purpose of intrusion detection. Both neural net-
works are designed to be lightweight and efficient regarding the computational
resources of an in-vehicle embedded computing system.

– To extract road contexts, the neural network at the first stage of RAIDS
processes camera images and other sensory information that are concurrently
used by the self-driving model to control the car. The second stage of RAIDS
is a binary classifier that verifies whether the frames observed on the CAN
bus are abnormal or not with regard to the extracted road contexts.

We have built a prototype of RAIDS1. A convolutional neural network (CNN)
makes the backbone of RAIDS’s first stage for extracting and abstracting road
contexts from camera images. The second stage of RAIDS mainly leverages linear

1 The source code of RAIDS is available at https://github.com/cd-wang/RAIDS.

https://github.com/cd-wang/RAIDS
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layers to efficiently discern anomalous CAN frames with extracted road context.
To evaluate RAIDS, we follow state-of-the-art work [21] and implement an IDS
that learns from historical CAN frames without road context. We run both IDSs
in a Raspberry Pi with extensive datasets. On defending two types of intrusions,
i.e., abrupt and directed intrusions, RAIDS substantially outperforms the IDS
without road context by up to 99.9% accuracy and short response time.

The rest of this paper is as follows. In Sect. 2, we present the background and
related works of RAIDS. In Sect. 3, we show the motivation and attack model
for RAIDS. In Sect. 4, we detail the design of RAIDS. In Sect. 5, we present the
evaluation results of RAIDS, and conclude the paper in Sect. 6.

2 Background and Related Works

IDS. Multiple IDSs have been proposed targeting the in-vehicle network [6,
11,13,15,19]. An automobile is made of multiple electrical subsystems, each of
which has an ECU to communicate with other subsystems to control the vehicle.
ECUs encapsulate data in frames and put them on the CAN bus. A CAN frame
contains no identity information of sender or receiver for simplicity. The lack of
identity in CAN frames facilitates adversaries in fabricating hazardous messages.
Worse, modern vehicles are being connected to the outside world via multiple
channels, which leave exploitable attack vectors for adversaries to leverage.

Many IDSs analyze normal CAN frames to detect anomalous ones. Müter and
Asaj [15] found that CAN frames are more ‘regular’ than frames found on com-
puter networks, which leads to a relatively low entropy for CAN frames. Hence
injecting or dropping CAN frames should increase the entropy of in-vehicle net-
work and in turn expose an intrusion. Song et al. [19] worked in a similar fashion
but used the time interval between CAN frames to inspect suspicious frames.
Taylor et al. [21] emphasized on the data carried in CAN frames and proposed a
recurrent neural network (RNN)-based anomaly detector. Their RNN is trained
with historical normal CAN frames to predict forthcoming frames and apprehend
abnormal ones. Nonetheless, their experiments for detecting anomalous frames
were done by manually flipping unused bits of data in a CAN frame to emulate
an ‘unusual case’. Such a manipulation is irrational as skilled adversaries must
have a good knowledge of transmitted data and tend to fabricate meaningful but
harmful frames. Wasicek et al. [25] proposed to learn the ‘intra-vehicle context’
by collecting the values of multiple sensors installed in a vehicle’s subsystems
and building reference models to detect anomalies. Note that their ‘context’
is the internal context inside a vehicle, not road context. Meanwhile, Cho and
Shin [6] proposed Clock-based IDS (CIDS) that used the clock skew of ECUs to
fingerprint them. Leveraging the unique clow skew of each ECU, CIDS can not
only detect the occurrence of intrusions, but also locate the compromised ECU.

Autonomous Car and Neural Network. We consider an autonomous car
that is computer-controlled most of the time except for emergency cases, such
as an intrusion to in-vehicle network. Multiple sensors are installed to control
an autonomous car, including cameras, ultrasonic distance sensors, radar, etc.
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Such sensory information reflects and resembles real-world road context, and
advises the self-driving model to generate control signals. Control signals are
transformed to data encapsulated in frames transmitted on the CAN bus.

Numerical sensor values, like the distance to front objects, are computer-
readable and can be directly utilized by the self-driving model of autonomous
car. The camera images, however, must be processed to acquire high-level infor-
mative properties. Nowadays, neural networks have emerged as the mainstream
approach that deals with images for self-driving. For example, the convolutional
neural network (CNN) has been proved to be effective in extracting image fea-
tures to maneuver the autonomous car [2,10]. A CNN makes use of convolutional
layers that apply multiple kernels to extract embedded visual features. A kernel
is a small matrix of numbers. An image can be viewed as a large matrix that
comprises many small sub-matrices with the kernel size. Convolutional layer con-
volves each kernel over sub-matrices to do matrix multiplication. The output of a
convolutional layer is thus a feature map that bundles results of convolving mul-
tiple kernels. In a CNN, feature maps of several convolutional layers, after being
computed through hidden layers for reduction of computations and avoidance of
overfitting, will eventually make a vector that resembles the features per image.
Such a feature vector is expressive and meaningful in image understanding [4].

3 Problem Formulation

Motivation. Most IDSs were designed regarding human-driven vehicles.
Many technology giants, startups, and academic researchers are developing
autonomous cars, which, undoubtedly, demand particular care for security and
safety.

Limited work has been done on detecting intrusions to the in-vehicle network
of autonomous car. Worse, state-of-the-art IDSs embrace limitations against
strong adversaries. For example, CIDS [6] is able to detect intrusions when a
foreign ECU injects messages or an existing ECU stops sending messages based
on its knowledge of fingerprints (i.e., clock skews) of ECUs. However, if adver-
saries compromise an ECU to send fake messages, CIDS will be ineffective as the
fingerprint is not suspicious. CIDS should be oblivious of compromised ECUs
sending fake messages. Such intrusion cases are beyond the capability of CIDS.

In practical, CAN frames are generated when drivers encounter dynamic
road contexts. Assume that a stop sign is ahead. A driver must decelerate and
then stop the car for a moment. The ECU of accelerator accordingly produces
CAN frames with decreasing speed values. Fig. 1(a) and (b) illustrate how two
human drivers react when they move towards a stop sign. One driver gradually
reduces speed. The other one does so only when being close to the stop sign.
Because human drivers have different experiences and habits, they have different
reactions that entail distinct CAN frames.

When a car is controlled by a well-trained self-driving model, its behav-
iors should be smooth and stable. As shown by Fig. 1(c), an autonomous car
shall start to reduce speed on spotting a stop sign and steadily slow down in
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60km/s

30km/s

10km/s

(a)

50km/s

48km/s

5km/s

(b)

45km/s

15km/s

5km/s

(c)

Fig. 1. An illustration of reactions of human-driven and autonomous cars on a stop
sign: (a) Human-driven car 1; (b) Human-driven car 2, and (3) Autonomous car

order to approach the stop line. This results in CAN frames with consistently
decreasing speed values. Concretely, the road context (i.e., a stop sign) and
CAN frames (i.e., decreasing speed values) construct a regular and consistent
pattern for autonomous car. Assume that adversaries compromise the accelerator
of autonomous car and continually put CAN frames with non-decreasing speed
values. These abnormal frames are easy to be ruled out as they significantly
deviate from the pattern supposed for a stop sign.

To sum up, given a specific road context, the consequential CAN frames
generated by an autonomous car are regular and predictable. If we monitor
ongoing road context and validate against observed CAN frames, anomalous
frames shall be detectable. This observation motivates us to design a new IDS.

Attack Model. Several network connections exist in an automobile to help
it communicate with the outside world. These connections yet provide attack
vectors for adversaries to exploit. We assume that strong adversaries further
have good knowledge of in-vehicle network, including the format and frequency of
CAN frames issued by an ECU, and also manage to force an ECU to encapsulate
and send their data in CAN frames. With such knowledge, adversaries are able
to remotely access and manipulate critical ECUs of an autonomous car, such as
the steering wheel, brake, and accelerator. In this paper, we consider an attack
model that is beyond the capability of state-of-the-art IDSs, i.e., forgery attack.

The process of a forgery attack is as follows. Once adversaries compromise
an ECU, they first intercept the normal frames sent and received by the ECU
to study the ECU’s behavior and data format. Then adversaries start forging
and sending CAN frames strictly with the original frequency. The data put in
forged frames is yet made either inappropriate or opposite due to the malicious
intentions of adversaries. For example, upon a left turn, adversaries may replace
CAN frames of the steering wheel with right turn angles so as to wreck the car.

Forgery attack has two variants.

– Abrupt intrusion: adversaries abruptly place anomalous CAN frames with
abnormal data at a random time to cause a disorder.
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Fig. 2. An illustration of RAIDS’s architecture

– Directed intrusion: adversaries monitor the road context at runtime and, upon
a specific scenario, like a road bend or traffic light, place anomalous CAN
frames that significantly violate the road context.

Assuming the autonomous car is unaware of any intrusion, the impact of directed
intrusion is more detrimental, as the CAN frames it imposes shall inflict a sudden
flip to the vehicle’s state, like the aforementioned right turn upon a left turn.

4 RAIDS

4.1 Overview of RAIDS

The essence of RAIDS is to leverage the ongoing road context to validate whether
CAN frames on the in-vehicle network are normal or not for an autonomous car.
If CAN frames closely match the corresponding road context, RAIDS deems that
there is no security threat. Otherwise, RAIDS will report an intrusion.

Figure 2 illustrates the architecture of RAIDS. As shown by the leftmost
of Fig. 2, the ongoing road context is reflected by a variety of sensory informa-
tion, such as the distances to surrendering objects and camera images show-
ing the front scene. Numerical sensory information is computer-readable while
camera images must be processed. The self-driving model depends on sensory
information to decide how to maneuver the autonomous car. Such sensory infor-
mation is also delivered to RAIDS. RAIDS is mainly composed of two neural
networks. One neural network is responsible for processing the camera images
which cannot be instantly utilized. The image is first preprocessed through tech-
niques like normalization and centering. Then RAIDS uses one neural network,
as shown at the central part of Fig. 2, to extract and abstract image features.
These image features will be concatenated with other numerical sensory infor-
mation to make a vector of road context. On the other hand, as illustrated by
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the lower half of Fig. 2, the self-driving model produces control signals upon
the sensory information, which eventually conveys a number of CAN frames
transmitted on the in-vehicle network. These CAN frames are formulated into
another vector that is fed along with the vector of road context as two inputs to
the second neural network of RAIDS. As shown by the rightmost of Fig. 2, with
well-trained parameters learned from historical road contexts and CAN frames,
the second neural network shall tell whether abnormal frames emerge on the
CAN bus or not. RAIDS immediately informs the self-driving model once an
anomaly is detected.

Fig. 3. An illustration of the impact of road context on CAN frames

If an intrusion is reported, RAIDS suggests that the self-driving model should
(1) first disable external network connections to block remote adversaries, (2)
stop the vehicle for emergency if possible, and (3) raise a switch request to human
driving. These steps aim to mitigate the impact of intrusions.

4.2 Road Context

We define the road context as the information an autonomous car is encounter-
ing when it is cruising. In summary, the road context includes but is not limited
to, (1) road conditions, like traffic lights, the bend, joint, and fork of roads, (2)
pedestrians, vehicles, obstacles, and bumps around the car, (3) weather condi-
tions, like the rain, fog, and snow, and (4) the sunrise, sunset, and tunnel lights.
These road contexts are perceived by sensors installed in the car, including cam-
eras, ultrasonic distance sensors, water sensor, etc.

The road context determines control signals issued by the self-driving model.
Different road contexts entail different signals, which in turn generate different
CAN frames. Figure 3 instantiates the impact of road curves on the control
signal. As shown in Fig. 3(a), on a highway that is straight, the self-driving model
demands the autonomous car to move straightforward and run at a velocity of
70km/h. By contrast, upon a road bend as illustrated in Fig. 3(b), the framework
shall decrease the car’s velocity to 45 km/h and turn to the left with an angle of
30◦. Assuming that on the road shown in Fig. 3(b), a frame with a steering angle
of 0◦ for moving straightforward, rather than the rational frame of left turn with
30◦, emerges on the CAN bus, an intrusion should have taken place because the
anomalous frame is not congruent with the ongoing road context.

CAN frames are ever-changing due to dynamic road contexts from time to
time. The tight relation between road context and CAN frames indicates that
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road context must be exploited as a crucial parameter to detect intruions ini-
tiated onto the in-vehicle network. We hypothesize that the self-driving model
of autonomous car is intact and always makes wise and regular decisions upon
dynamic road contexts. In other words, an autonomous car is a contrast to
manned vehicles in which human drivers may behave inconsistently from time
to time even regarding the same road context. In addition, we note that the
focus of this paper is on detecting security threats imposed by adversaries onto
ECUs and in-vehicle network of a self-driving automobile. Readers may refer to
other studies for the vulnerability exploration of deep learning models that drive
a vehicle [20,24] and intrusion detections for the traffic systems [8].

Kernel (3×3)
Subsampling step: 2

Original image 
(640×480)

Preprocessed 
image (100×100)

Convolutional layer 1 
(50×50×24)

Depth (24)

Feature map Kernel (3×3)
Subsampling step: 2

Depth (64)

Convolutional layer 2 
(25×25×64)

Feature vector 
(100×1)

ReLU

Fig. 4. The architecture of RAIDS’s CNN

4.3 Extracting Road Context

We first extract the road context to use it for intrusion detection. As a matter of
fact, most of the road context is reflected by the front scene that autonomous car
is facing, including the aforementioned road condition, traffic light and weather.
Such a scene is tracked by multiple sensors. Numerical sensory information, like
the distance to front objects, can be directly utilized by RAIDS since they are
both human- and computer-readable. The images captured by cameras, however,
need to be converted into a format that RAIDS can deploy. As a result, the
difficulty of obtaining road context lies in how to process camera images.

As mentioned in Sect. 2, the feature vector obtained in a deep neural network
is a promising abstraction of road context contained in an image for RAIDS to
leverage for intrusion detection. Concretely, we construct a CNN as the back-
bone of the first stage of RAIDS to extract and abstract the road context
from camera images. Figure 4 sketches the architecture of the CNN employed
by RAIDS to process images. It mainly consists of two convolutional layers.
After being preprocessed, the first convolutional layer would apply 24 kernels,
each of which is 3 × 3 with a subsampling step2 of 2, to generate a feature map
2 A subsampling of 2 means that the convolutional layer moves each kernel by 2, rather

than 1, when sliding over the large matrix of image, to reduce the dimensionality of
feature map but without losing important information of the image. So the size of
feature map for one kernel is 100

2
× 100

2
= 50 × 50.
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(50 × 50 × 24). This feature map goes through a rectified linear unit (ReLU),
which is the activation function used in our implementation, and then reaches
the second convolutional layer. The second convolutional layer applies 64 ker-
nels, each of which also has 3 × 3 size with a subsampling step of 2. The second
feature map is hence 25 × 25 × 64, and would entail a feature vector of 100 ×
1 after passing one dropout layer and two dense layers.

Figure 5 exemplifies the feature maps visualized after two convolutional layers
for two images from Udacity dataset [23] when they are being processed by the
CNN of RAIDS. A comparison between Fig. 5(a) and (b) confirms that different
road contexts lead to different intermediate features. In the end, the feature
vector of each image would be assembled with numerical sensor values into a
new vector as one of the inputs to the second stage of RAIDS.

Original image After the 1st 
convolutional layer

After the 2nd 
convolutional layer

(a) Straight Road

Original image After the 1st 
convolutional layer

After the 2nd 
convolutional layer

(b) Road Bend

Fig. 5. An illustration of extracting features from images by RAIDS’s CNN

The CNN extracting image features for RAIDS works synchronously with the
self-driving model of autonomous car, because RAIDS should verify CAN frames
produced by the self-driving model on the same road context. RAIDS’s CNN is
simpler than the self-driving model’s. The reason is twofold. First, the self-driving
model does not terminate with image features but has to accordingly do further
computations to determine control signals subsuming left or right steering with
a degree, acceleration with a velocity, brake with a force, etc. Second, the feature
vector generated by the CNN of RAIDS can be coarse-grained as long as they
are sufficiently accurate for detecting intrusions at the second stage of RAIDS.

4.4 Intrusion Detection with Road Context

After obtaining the vector of road context and CAN frames corresponding to the
road context, we can establish a model between them by learning over historical



Road Context-Aware Intrusion Detection System for Autonomous Cars 133

records of road contexts and CAN frames. With the model, RAIDS validates
whether observed CAN frames approximately match the newly-arrived image
and sensor values. A substantial discrepancy would lead to a report of intrusion.

As historical records of sensory information and CAN frames are known
as normals, how to detect intrusions on the in-vehicle network regarding road
context turns to be a problem of developing a supervised learning model to
check CAN frames upon forthcoming sensory information. Assume that N items
of sensory information are used for training. The ith sensory information (0 ≤
i < N) has a vector of road context ri obtained from the first stage of RAIDS.
Still for the ith sensory information, CAN frames issued by ECUs like steering
wheel, accelerator, and brake have been collected and presented in a vector ci. In
the perspective of supervised learning, we can make a label λi (‘1’ for normal and
‘0’ for anomaly) for ri and ci. Given these N tuples forming a training dataset,

{〈r0, c0, λ0〉, 〈r1, c1, λ1〉, ..., 〈ri, ci, λi〉, ..., 〈rN−1, cN−1, λN−1〉}, (1)

RAIDS’s supervised learning attempts to seek out a model,

g(ri, ci) ≈ λi, (0 ≤ i < N). (2)

Or put in another way,
g : R × C → Λ, (3)

in which R, C, and Λ are the domain spaces of road contexts, CAN frames, and
labels, respectively.

The function g should be one that the best describes the relationship between
R, C, and Λ. For a new element of R × C, which will be forthcoming road
context rx and its corresponding vector of CAN frames vx, RAIDS computes
g(rx, vx) and obtains a label λx. If λx is ‘0’, RAIDS deems there would be no
intrusion at that moment. Otherwise, RAIDS informs the self-driving model of
a possible intrusion on the CAN bus. Consequently, the second stage of RAIDS
is formatted as a problem of binary classification. In the prototype of RAIDS,
we build a classifier that is mainly composed of two linear layers. There are
two reasons to do so. First, ri, vi, and λi are numerical vectors. Linear layers
are sufficient to speculate their relationship. Second, linear layers bring about
relatively simpler computations, which are especially efficient concerning the
response time of IDS and the computational resources of an embedded computing
system.

4.5 Training and Testing

We have built the first and second stages of RAIDS3 with a CNN and a binary
classifier, respectively, based on Keras [7] and PyTorch [16] frameworks. We
follow an end-to-end learning fashion [2] to train RAIDS. The loss function is
BCELoss (Binary Cross-Entropy loss) provided by PyTorch for binary classi-
fication [18]. We would use six datasets to evaluate RAIDS (more details can
3 The source code of RAIDS is available at https://github.com/cd-wang/RAIDS.

https://github.com/cd-wang/RAIDS
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be found in Sect. 5). In each dataset, we use 70% images and CAN frames for
training while the 30% remainders are used for the purpose of testing. We note
that because datasets have different image sizes, RAIDS would have different
implementation variants to deal with respective datasets.

5 Evaluation

We have performance evaluations to answer three questions.

Q1. Does RAIDS achieve high accuracy in intrusion detection? Is the perfor-
mance of RAIDS stable over different datasets?

Q2. How is the efficacy of RAIDS? Does it cost reasonable response time to
detect an intrusion in an embedded computing system?

Q3. Is RAIDS effective in detecting intrusions under more difficult road con-
texts. e.g., nighttime road conditions?

5.1 Evaluation Setup

Datasets. We have used six datasets from five sources. Their descriptions are
presented in Table 1. Except Udacity sim with images recorded in a synthesized
simulator, all other datasets were collected in the real world. They all contain a
large number of records with images and data conveyed in CAN frames.

Road Context. We place emphasis on the road conditions reflected by camera
images, such as lane lines, road bends, and turns. There are two reasons to do
so. First, not all datasets provide numerical sensor values. Second, less sensory
information imposes more challenges in precisely obtaining road context.

At the standpoint of adversaries, we would focus on intrusions onto the steer-
ing wheel. The reason is threefold. First, the steering angle is one vital control
signal for autonomous car and attracts wide attention for research. Second, the
steering angle is ever-changing along the road while the control signals from
accelerator and brake remain relatively stable for a moving vehicle. Figure 6
sketches two curves for the steering angle and vehicle speed at runtime, respec-
tively, with one Udacity sub-dataset (HMB 6). It is evident that the curve of
vehicle speed is much smoother than that of steering angle. Therefore, an intru-
sion to compromise steering angle is more difficult to be detected. Third, some
datasets, like Chen 2017 and Chen 2018, only include the runtime values of
steering angle.

Intrusions. We consider forgery attacks in evaluation. We have performed
abrupt and directed intrusions to the steering angles with each dataset. In con-
trast to existing works that encapsulated meaningless data in CAN frames or
fabricated artificial CAN frames, our intrusions generate a CAN frame with an
allowable value that yet does not match the ongoing road context. The right-
most two columns of Table 1 brief how we manipulate steering angles to produce
abrupt and directed intrusion cases. Note that six datasets have different ranges
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Table 1. The datasets and intrusions used to evaluate RAIDS

Datasets Sources Genuine steering

angle ranges in

radian

Manipulations of

abrupt intrusion

Manipulations of directed

intrusion

Udacity Udacity

self-driving

challenge [23]

[−2.05, 1.90] Randomly select

30% images and for

an image, add or

subtract a random

value in [0.1, 0.9] to

its corresponding

angle

Select the largest 15%

and smallest 15% angles.

Flip the sign of a selected

angle if its absolute value

is larger than 0.3. If not,

add or subtract a random

value in [0.5, 1]

Udacity sim Udacity

simulator [22]

[−0.94, 1.00]

Apollo Road Hackers

platform in

Baidu Apollo

Project [1]

[−0.38, 0.21] Randomly select

30% images and for

an image, add or

subtract a random

value in [0.08, 0.5]

to its corresponding

angle

Chen 2017 Recorded by

Sully Chen in

2017 and

2018,

respective [5]

[−1.99, 0.55] Randomly select

30% images and for

an image, add or

subtract random

value in [0.2, 0.9] to

its corresponding

angle

Chen 2018 [−2.01, 0.68]

Comma.ai Comma.ai

highway

driving [9]

[−1.64, 1.29] Randomly select

30% images and for

an image, add or

subtract a random

value in [0.25, 1] to

its corresponding

angle

for steering angles. For example, for the HMB 6 sub-dataset of Udacity shown
by Fig. 6(a), steering angles fall in [−0.17, 0.11] while the range for Chen 2018
is [−1.99, 0.55]. For each dataset, we apply appropriate values to modify the
steering angles so as to make intrusion cases that are not trivial to be perceived.

Competitor. We implement an IDS without considering the road context
(referred to as IDS wo rc) for comparison. It is identical to the start-of-the-art
IDS proposed by Taylor et al. [21]. IDS wo rc depends on learning CAN frames
with RNN to determine whether an arriving frame contains genuine data or not.
For IDS wo rc, 70% of each dataset is used for training while 30% is for testing,
the same as what we do with RAIDS. For both RAIDS and IDS wo rc, training
is performed in a Linux server while testing is done in a Raspberry Pi 3 Model
B+. Python 3.5 is installed in the server and Raspberry Pi. We assume that an
embedded system with Raspberry Pi’s computing powers is within the in-vehicle
network gateway [11] where an IDS resides to protect the in-vehicle network.
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(b) The Curve of Vehicle Speed over Time

Fig. 6. Curves of steering angle and vehicle speed with Udacity’s HMB 6 dataset

Metrics. The main metric we use to compare RAIDS and IDS wo rc is the
detection accuracy in testing, i.e., the ratio of detected normal and intrusion
cases against overall cases. A higher detection accuracy means a better effective-
ness of IDS. We also measure the ratios of undetected intrusion cases as well as
false alarms by which an IDS wrongly labels a normal CAN frame to be anoma-
lous. To study the efficiency of RAIDS, we record the average and maximum
response time RAIDS spends in processing all cases of a dataset.

5.2 Detection Accuracy

Detection Accuracy. Figure 7 summarizes the detection accuracies of RAIDS
and IDS wo rc with six datasets under abrupt and directed intrusions. The
first observation obtained from Fig. 7 is that, RAIDS consistently achieves high
detection accuracies across different datasets under both abrupt and directed
intrusions. In particular, the highest accuracy for RAIDS is 99.9% with Apollo
under directed intrusion while its lowest accuracy is 89.5% with Comma.ai
under abrupt intrusion. IDS wo rc’s highest accuracy is 84.5% with Apollo
under directed intrusion while its lowest accuracy is 71.8% with Comma.ai under
abrupt intrusion. The significant gap between RAIDS’s and IDS wo rc’s accura-
cies confirms the high effectiveness of RAIDS. RAIDS leverages the road context
for intrusion detection while IDS wo rc solely relies on the data of historical CAN
frames to apprehend the newly-arrived CAN frame. As shown in Fig. 6(b), the
runtime volatile curve of steering angle alone is difficult to be modeled, unless
it is associated with corresponding road context, like what RAIDS does. So
the model built by IDS wo rc lacks reliability. RAIDS, nonetheless, extracts a
feature vector of road context from each image and involves it for validating
corresponding CAN frames. RAIDS thus establishes a sound model that maps
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a specific road context, like a road bend, to CAN frames. In summary, if adver-
saries put frames with abnormal data on the CAN bus, the unreliable model of
IDS wo rc is ineffective in identifying the anomaly; however, on account of using
road context, RAIDS has a much higher likelihood of detecting the intrusion.
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Fig. 7. The accuracies of two IDSs under two types of intrusions with six datasets

The second observation obtained from Fig. 7 is that the detection accuracy
under directed intrusion is consistently higher than that under abrupt intrusion,
especially for RAIDS. For example, with Udacity, Apollo and Comma.ai datasets,
the accuracy of RAIDS under directed intrusion is 4.0%, 5.4% and 7.2% higher
than that under abrupt intrusion, respectively. As mentioned, directed intrusion
should be more hazardous than abrupt intrusion because the former intends to
incur a sudden change at a specific occasion onto the in-vehicle communications.
Such a sudden change yet brings in more significant violation to ongoing road
context, which exactly matches the capability of RAIDS and can be easily cap-
tured. This explains why RAIDS yields higher detection accuracy under directed
intrusion. Also, as shown in Fig. 6(a), there exist dramatic increase and decrease
of steering angle at runtime in reality. Consequently, IDS wo rc does not raise
much difference in accuracy, i.e., at most 5.4% with Apollo.

Unreported Intrusions. We also record the percentages of detected and unre-
ported intrusions as well as detected normals and false alarms for six datasets
under two types of intrusions. These results help us gain a deeper understanding
of the accuracies of RAIDS and IDS wo rc. They are detailed in Fig. 8. Let us
first focus on the percentages of detected intrusion cases as the percentage of
false alarms are generally low. One observation is that, in all 16 diagrams, RAIDS
detects most of the intrusion cases while IDS wo rc even cannot report half of
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Fig. 8. The percentages of unreported intrusions and false alarms for two IDSs under
abrupt and directed intrusions: (a) and (b) for Udacity; (c) and (d) for Udacity sim;
(e) and (f) for Apollo; (g) and (h) for Chen 2017; (i) and (j) for Comma.ai.
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Fig. 9. The average and maximum response time of RAIDS under two intrusions

them. For example, in Fig. 8(i), the percentages of detected and unreported intru-
sion cases are 87.2% and 12.8%, respectively, for RAIDS with Chen 2018 under
abrupt intrusion; however, they are 35.0% and 65.0% for IDS wo rc, respectively.
In other words, without road context, IDS wo rc ignores many intrusion cases.
This in turn justifies the importance of road context in intrusion detection. In
addition, as to Apollo with the aforementioned 99.9% accuracy under directed
intrusion, Fig. 8(f), tells that there is hardly unreported intrusion or false alarm.
This reaffirms the highest accuracy achieved by RAIDS.

Second, let us make a comparison between abrupt and directed intrusions.
Take Chen 2018 for example again with Fig. 8(i) and (j). The percentage of
detected intrusion cases for RAIDS increases from 87.2% under abrupt intru-
sion to 96.5% under directed intrusion. Such an increase confirms that directed
intrusion is likely to incur intrusion cases that are easier to be perceived. Com-
paratively, the percentage of detected intrusion cases for IDS wo rc jumps from
35.0% under abrupt intrusion to 42.5% under directed intrusion. Although the
difference is considerable (42.5% − 35.0% = 7.5%), it is less than that of RAIDS
(96.5% − 87.2% = 9.3%). These numbers agree with the second observation we
have with Fig. 7, and explain why the accuracy of IDS wo rc does not increase
as much as that of RAIDS from abrupt intrusion to directed intrusion.

5.3 Response Time

With Raspberry Pi, we have measured the response time of RAIDS in detect-
ing intrusions for six datasets. The two diagrams in Fig. 9 capture the average
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and maximum response time of processing all records of images and correspond-
ing CAN frames under abrupt and directed intrusions, respectively. The results
shown in Fig. 9 state that none of the average response time is greater than
0.40 s. More important, the maximum response time, which meas the worst-case
response time, is mostly no greater than 0.52 s, except with Chen 2018 for which
RAIDS cost 0.66 s under abrupt intrusion. Concretely, the short response time
justifies the efficiency of RAIDS.
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Fig. 10. A comparison between daytime and nighttime datasets for RAIDS: (a) Detec-
tion accuracy and (b) Unreported intrusions and false alarms with Comma.ai night

The average response time does not deviate much from the maximum
response time because each record contains almost the same quantity of data,
i.e., image and CAN frames, for RAIDS to handle. The marginal deviation is
mainly caused by other running programs and system scheduling in a real embed-
ded computing system. Note that we have used an economical Raspberry Pi for
testing. The computational resources of Raspberry Pi include an inexpensive
1.4 GHz ARM CPU and 1 GB DRAM. With regard to employing RAIDS in
real-world autonomous cars, a more powerful embedded system with high-end
CPU and larger RAM space could be leveraged to reduce the response time,
which surely improves the efficiency and applicability of RAIDS.

5.4 The Impact of Daytime and Night

It is non-trivial to extract meaningful features from nighttime images due to the
generally low visibility of road conditions. Comma.ai provides a sub-dataset with
nighttime images and CAN frames (referred to as Comma.ai night). We have
done abrupt and directed intrusions with it. Due to space limitation, we present
the results under directed intrusion. Figure 10(a) captures the comparison of
IDS wo rc’s and RAIDS’s accuracies between daytime Comma.ai and nighttime
Comma.ai night. The accuracy of IDS wo rc does not fluctuate much since it
is oblivious of the change of day and night. Nevertheless, due to the weaker
perception of road context at night, the accuracy of RAIDS drops by 3.3%.

A comparison between Fig. 8(l) for Comma.ai and Fig. 10(b) for
Comma.ai night shows that, the percentages of unreported intrusions and false
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alarms for RAIDS increase by 4.6% and 2.7%, respectively. Thus, a bit more mis-
takes (undetected intrusions and false alarms) were made due to the relatively
obscure nighttime road contexts. This explains the accuracy drop of RAIDS for
nighttime images.

6 Conclusion

In this paper, we investigate how to effectively detect intrusions to the in-vehicle
communications of autonomous car. In an autonomous car, a self-driving model
reads sensory information reflecting ever-changing road contexts and generates
control signals that are eventually transformed into CAN frames. We accordingly
develop RAIDS. RAIDS extracts and abstracts road contexts from sensory infor-
mation into a feature vector. It then leverages such an expressive feature vector
of road context to assert the genuineness of observed CAN frames. We have built
a prototype for RAIDS through lightweight neural networks, and evaluated it in
an embedded computing system with extensive datasets. Experimental results
confirm that RAIDS achieves up to 99.9% accuracy with short response time.
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Abstract. Serving as a facility to collect and analyze security data,
monitor anomaly activities, Security Operation Center (SOC) provides
defense measures to protect the enterprise and government system from
malicious intrusion. As the cyber attacks are increasingly sophisticated
and harmful, it becomes a global trend to share cyber threat intelligence
(CTI) between SOCs and other security departments. Security analysts
can get a comprehensive understanding of diverse cyber attacks’ fea-
tures and make early warning and quick response for potential attacks
by CTI analysis. More CTI reports generation and frequent CTI sharing
cause an urgent need for much higher analysis efficiency capacity that
traditional SOC does not have. Facing the big data challenge and limited
professional security analysts resources, next generation SOC (NG-SOC)
should emphasize greatly on processing security data like CTI reports
automatically and efficiently through data mining and machine learning
techniques. This paper presents a practical and efficient approach for
gathering the large quantities of CTI sources into high-quality data and
enhancing the CTI analysis ability of NG-SOC. Specifically, we first pro-
pose a multi-classification framework for CTI reports by combining two
document embedding models and six machine learning classifiers respec-
tively to group the same and similar threat reports together before they
are analyzed. We collect 25092 CTI reports from open sources and label
the reports based on their threat types and attack behaviors. Experiment
results show that three classifiers can achieve higher prediction accuracy,
which makes it applicable to process the massive volume of CTI reports
efficiently for security analysts in NG-SOC and give early warning to help
related users take proactive countermeasures to mitigate hidden costs or
even avoid potential cyber attacks.
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1 Introduction

Cyber security is gaining more and more significance on the national agenda. One
of the issues of cyber security is the need for monitoring systems and detecting
attacks, which is a problem with ever-increasing scope and complexity. A reliable
and efficient security department that can mitigate or protect the enterprises and
countries from the intrusion of cyber attacks plays a more and more important
role in security defense. Since 1988, the first computer emergency response team
(CERT) was built to detect and defend incidents at Carnegie Mellon University
(CMU). Then SOC, another more technical focused and broader extend security
organization of CERT came out. SOC is an institution that collects and analyzes
security data from networks, specific servers and databases on a daily basis,
monitors anomaly activities and provides security services like protection tactics
to the specific users.

Though security organizations like CERT and SOC can monitor and respond
to cyber attacks, it is challenging to fight against the increasingly sophisti-
cated threats only relying on traditional heuristic and signature-based measures
[29]. The attack time speeds up, more threat variants appear than before, and
attacks belonging to the same threat type tend to initiate invasion by analo-
gous approaches that exploit systems with the same vulnerabilities causing huge
losses in a large scale. A famous example is that two ransomwares WannaCry
and Petya [27] consecutively attacked many Microsoft Windows-based systems
in May and June 2017. Though Microsoft had released patches for the vul-
nerability in April 2017, many computers of hospitals, schools and companies
still had been attacked. It is because these organizations did not know the ran-
somware and their systems were unpatched. Besides, multi-vectored and multi-
staged cyber attacks including advanced persistent threats (APT), polymorphic
threats, zero-day threats and composite threats [29] increase the pressure on the
defender. Countries and companies who are not familiar with the features of the
emerging and existing cyber attacks are easily attacked. Therefore, SOCs and
other security departments pay more and more attention to threat information
sharing and proactive defense.

Serving as an approach for providing early warning of possible attacks,
cyber threat intelligence (CTI) analytics helps recognize existing and emerg-
ing cyber attacks in an more efficient manner, which allows targeted users to
make quick countermeasures to protect their systems and important informa-
tion. CTI records threat static attributes like alias, reported time, MD5 hashes,
affected systems and so on. CTI also contains threat dynamic attributes like
specific attack behaviors. CTI can be used to extract threat actions like tactics,
techniques and procedures (TTPs) of the cyber attacks by natural language
processing (NLP) and information retrieval (IR) techniques for understanding
the attack cycle [9]. It can also be applied to extract the indicators of com-
prise (IOCs) of attacks for efficient unstructured CTI text gathering [12,31].
There are many countries willing to exchange security intelligence and share the
successful detection method, which aims at defeating cyber attacks and mitigat-
ing hidden costs effectively. Many security companies and organizations release
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threat intelligence reports and blogs on the open source to provide convenience
to the users. These CTI documents also benefit SOC as a new source to help
the analysts grasp the attributes of different attacks much easier and faster than
before and give the targeted enterprises guidance to make early security defense
decisions.

CTI can be collected from different sources, one important way is the open
source (also publicly available source). VirusShare is one of the open sources
that had merged more than 34 million threat samples from different security
scanning engines or platforms by August 2019. There exists large volume of CTI
data that need to be collected and analyzed in the big data society. Besides, the
global trend of CTI sharing is also bound to generate large amounts of data which
traditional SOC cannot afford to ignore but yet may not have the capacity to
handle. Apart from the big data issue, there exists a data redundancy problem.
Many same or similar CTI documents are uploaded at different times and some
threat reports with different names may have the same attributes. These situa-
tions are common on websites like ThreatExpert, Symantec, McAfee, 360 Netlab
Blog. Lacking professional security analysts in SOC and the increasing capability
of capturing network information in the big data society make it become a key
challenge for next generation SOC (NG-SOC) to efficiently gather and automat-
ically filter the massive amount of CTI information. Facing the challenges of big
data and data redundancy problem, NG-SOC should apply more machine-based
techniques to automatically collect, classify and analyze security data then deter-
mine whether a cyber system would be a likely target of some emerging threats
so that to devise prioritized reactive countermeasures promptly.

Many machine learning and data mining algorithms show an ability of pro-
cessing and analyzing data automatically and efficiently. Support vector machine
(SVM) is used in [9] to classify CTI relevant and irrelevant articles for filtering
the unrelated data. Several different machine learning techniques are used to
categorize different cyber attacks from Open Source Intelligence (OSINT) data
[20]. Deliu et al. [3] utilized Latent Dirichlet Allocation (LDA) and SVM to
automatically filter the large volume of unrelated data and collect the CTI data
from hacker forums. Classifying CTI sources before they are analyzed is neces-
sary to save the human and computing resources of the security organizations.
Inspired by these works, we try to use machine learning methods to classify the
unprocessed CTI from publicly available sources to improve the efficiency of CTI
analysis.

When dealing with CTI documents, there exists another challenge. The cyber
threat intelligence reports are in textual format. An efficient and suitable “trans-
lation tool” is needed to transfer the CTI texts into machine-readable language.
Because most machine learning classification algorithms require fixed-length
numeric representations to be the input of the models. There are many text
representation methods. A typical representative of one-hot encoding is bag of
words (BOW), which constructs a dictionary first for all the tokens in the cor-
pus and then builds a matrix for all the documents [7]. This method is simple to
use but ignores the semantics of the texts and tends to produce sparse matrices
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that waste storage space. We have tried to use another approach, topic model-
ing algorithms like LDA [2] to cluster the CTI reports by the document-topic
distribution. But the words that describe different threats are too similar in the
reports since most of them are security-related words. It is difficult to classify
the reports by the similar topic words generated from LDA model. Then inspired
by [11], we choose one of the states of the art text representation algorithms—
paragraph vectors, also known as doc2vec, to represent the various length CTI
documents by fixed-length vectors to fit the requirement of machine learning clas-
sifiers. Doc2vec is an unsupervised deep learning approach that learns knowledge
and the semantic relations among words in the documents through deep neural
networks in an efficient way. The similarity of different words and documents
can be shown in a multidimensional vector space. Detailed techniques will be
explained later in the paper.

In this paper, we present an approach for speeding up the CTI report anal-
ysis process of NG-SOC. The key objectives are to automatically process CTI
reports, summarize the massive number of such reports into a machine-readable
data structure and group the repeated documents and similar threat documents
together. Specifically, the contributions of this paper are as follows:

– We investigate different open sources threat intelligence documents, collecting
25092 threat intelligence reports from ThreatExpert for text classification.
Then we use a semi-automatic method to label the collected CTI data by
Jaro-Winkler Distance algorithm.

– Different CTI sources own different attributes, so selecting predefined features
is time-consuming and not universal to different types of dataset. So we firstly
propose to combine document embedding and machine learning classifiers
to group the CTI documents for solving the big data and data redundancy
problems.

– The previous works related to CTI are mainly about how to extract useful
indicators or develop CTI sharing tools. But works of effectively gathering the
CTI and filtering the large quantities of data to high-quality knowledge are
limited or with low classification accuracy. We apply multi-class classification
to group the same CTI documents or similar threats together before they
are analyzed. We have trained six classifiers by supervised machine learning
algorithms, including K-Nearest Neighbors (KNN), Logistic Regression (LR),
Decision Tree (DT), Support Vector Machines (SVM), LinearSVM (LSVM),
Multiple Layer Perception Neural Networks (MLP-NN) to classify the CTI
reports and using 10 fold cross validation in the experiment to compare their
performance. Three classifiers achieve reasonable classification accuracy above
90%.

We want to speed up the cyber security analysis process to improve the efficiency
of the CTI analytics and make NG-SOC has the ability to handle big data
automatically. It’s of great significance to develop the theory for automatically
analyzing such threat information. This will help companies and individual users
get early advice from NG-SOC to determine whether they are potential targets
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of a specific threat and take proactive defense to mitigate hidden costs or even
prevent the invasion in the future.

This paper proceeds as follows: Sect. 2 shows the relevant technique back-
ground, Sect. 3 introduces the whole framework of the proposed method.
Section 4 presents the experiment design and results analysis. Section 5 then
reviews the related works. Finally, Sect. 6 makes a conclusion and summarizes
the future work.

2 Background

2.1 Security Operations Center

The typical security operations center (SOC) is supervised by security experts for
detecting anomalous activities and analyzing the security data from networks,
servers and databases of a specific company to provide protection measures about
defending potential attacks on a daily basis. SOC is always developing to cope
with the changing challenges and it has experienced different generations [16,17].
SOC has changed from using single, simple and passive response measures to
applying diverse, systematic and proactive defense in the evolutionary process.

However, the attackers also keep updating their intrusion methods and many
new threat variants come out. Besides the internal data, next generation security
operations center (NG-SOC) should collect external data to grasp the emerging
threat trend and find the relationship between the known and unknown threats
to provide more powerful and efficient countermeasures to the target users. The
explosive growth of data amount and increasingly sophisticated threats both
require that NG-SOC should emphasize more on proactive defense with the
help of cyber threat intelligence [1]. In NG-SOC, security analysts should get
technical details and understand the attack cycles by CTI analysis to prevent
unauthorized access and protect the data confidentiality of the company.

2.2 Cyber Threat Intelligence

In 2013, an analyst from Gartner called Rob McMillan described CTI as
“evidence-based knowledge, including context, mechanisms, indicators, impli-
cations and actionable advice, about an existing or emerging menace or hazard
to assets that can be used to inform decisions regarding the subject’s respond to
that menace or hazard” [13]. As the description, CTI is evidence-based knowl-
edge. It is textual information that can provide detailed attributes of an attack
and help the users detect the attacks and make decisions against threats.

CTI can be collected from different sources, including open sources or public
CTI feeds, community or industry groups as information sharing and analysis
centers, external sources such as media reports and news, security systems (IDS,
firewall, endpoint), CTI-specific vendors and so on. As reported in the CTI
survey of SANS 2019 [21], open source or public CTI feeds are the most popular
CTI data gathering sources. The main reason is that open source data is easy to
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access and costs little. It is easy to manage the unprocessed CTI data and realize
reasonable allocation of resources by classifying them into sub-types based on
their threat types and attack behaviors.

2.3 Threat Intelligence Reports

In this study, we focus on improving the CTI classification work efficiency before
they have been processed. As mentioned, we choose the open source cyber threat
intelligence because they are easy to access at low cost. We have investigated
some publicly available websites like ThreatExpert, Symantec, McAfee and 360
Netlab Blog that can provide the users with cyber threat intelligence service.
The CTI sources from these websites can be summarized as two types:

Type 1 source: automatic scanning service and intelligence reports providers,
e.g. ThreatExpert (now owned by Symantec) and Symantec (see Fig. 1), where
users can test whether a file is infected or contains some threats by uploading the
document onto the websites. Technical threat intelligence reports can be seen in
this kind of source. The reports are organized with a consistent content format.
The features and behaviors of the malware are described clearly based on one
specific threat in each report.

Fig. 1. An example of cyber threat intelligence report from Symantec.
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Type 2 source: cyber security news and threat intelligence blogs providers,
e.g. 360 Netlab Blog and threatpost. These websites show the cyber security news
and summary the attributes of a kind of threat and some technical details. Threat
intelligence information from this type of sources tends to present the content
in a narrative way. This kind of source can help analysts get more background
information. We use the CTI reports of type 1 source in our work because they
contain more technical details, own consistent format and focus one specific
threat rather than a general category, which ensures the quality of CTI.

As mentioned in the introduction, the challenges for threat analysis are the
big data and redundancy problem. As one of the main sources of CTI data, the
above problem also exists in open source websites. The main purpose of this work
is to build a model that can classify the threat intelligence documents according
to their threat types to help the SOC team members save security analysis time
to give early warnings of potential cyber attacks. Since the CTI reports are text
files, text representation methods are needed to transfer the text into numeric
representation of fixed-length as the input of the machine learning classifiers
[11]. We will introduce the background of text representation in the following
sections.

2.4 Text Representation

Bag of Words. Bag of words (BOW) is a model that is often mentioned in
information retrieval and text analysis. It is a simple but effective way to rep-
resent the occurrence of different words in a sentence or document. In BOW, a
text is regarded as a “bag”, the words in this text are treated as elements in the
“bag”. There is a dictionary to index all the words that appear at the target
texts and only the counts of the words are indicated [7]. Though it is easy to
implement and effective, BOW ignores the order and semantics of the words in
the text [11]. It is not flexible, as the length of the vector is equal to the number
of words in the vocabulary. If the size of the vocabulary changes, the dimension
of the vector also needs to change. There will be many zeros to generate sparse
vectors if the size of the vocabulary is large. The three shortcomings are solved
by a new text representation approach, word2vec [14,15].

Word2vec. Using word vectors standing for different words in a sentence has
been studied in many works. In 2013, Mikolov et al. [14] proposed two new
log-linear word2vec models with low computational complexity to learn the dis-
tributed representations of the words. One of the models is continuous bag-of-
words (CBOW), it can predict a word based on its surrounding words in the
documents. Another model is continuous skip-gram model, contrary to CBOW,
can learn the word vectors of the context words by making a specific word as
the input of the model.

Word2vec is a model trained by a three-layer neural networks. This model
learns the relation between different words in a sentence based on a large amount
of data and each word is represented as a multidimensional vector. The similarity
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between different words can be learned through the model. Famous examples are
that after being trained by a huge volume of data, the word2vec model can learn
the knowledge that “king” to “queen” is like “man” to “woman” and different
countries to their capitals show similar vector mapping relations. As our dataset
is textual format, we need to apply method like word2vec that can transfer
the CTI reports into fixed-length vectors. Word2vec is a good way to represent
the word by multidimensional vector and show word similarity by mining the
semantics from many sentences. But for representing documents by vectors, a
more suitable approach is needed.

Doc2vec. Paragraph Vector (PV) in [11], also known as doc2vec, is an unsuper-
vised method that converts variable-length pieces of texts to fixed-length vectors
based on the idea of word2vec. In word2vec algorithm, each word is represented
as a word vector (w1,w2,w3, ...,wN), and a matrix W is built up by the word
vector columns. The difference is that doc2vec adds a new matrix D to index
the paragraph vectors. D can be regarded as another special word, it can also
be considered as the theme of a document. Doc2vec also has two models like
word2vec, called Distributed Memory version of Paragraph Vector (PV-DM)
and Distributed Bag of Words of Paragraph Vector (PV-DBOW) respectively.
We will show the detail of how to train the doc2vec models in Sect. 3.

3 Framework of Proposed Method

In this section, we explain the whole work process of our proposed method for
threat intelligence report classification, including data collection, class labeling,
data preprocessing, text vectorization and classifier training.

3.1 Data Collection

As mentioned in the background, we choose open source threat intelligence doc-
uments from ThreatExpert [26]. We collected 25092 cyber threat intelligence
reports from ThreatExpert, which are recorded from August to November, 2016.
There are 3473 documents without a clear threat type. Before classification, there
exist 1712 threats and their reports numbers ranging from 1 to 9914 (as shown in
Fig. 2). We found that there are many repeated reports for “W32.Kwbot.Worm”,
so we remove 8500 same reports of this type to balance the data. We extract
alias files from ThreatExpert for grouping the threat intelligence reports based
on whether the CTI reports have the same alias, which will provide convenience
in the next step for class labeling.

3.2 Class Labeling

In our work, we choose the threat intelligence reports from ThreatExpert mainly
because the reports of this source own unified content structure (refer to Fig. 1),



Automated Cyber Threat Intelligence Reports Classification 153

Fig. 2. Threat intelligence reports (number of the same reported threats >= 10) dis-
tribution on ThreatExpert.

which describes the malware attributes like discovered or updated time, threat
names, threat type, file MD5 hashes, SHA-1, size, alias, and technical details.
According to the naming rules of ThreatExpert (or Symantec now), we can
know some threats’ threat type and attack target system from their names, e.g.
“W32.Kwbot.Worm”, “Trojan-Spy”, “Adware.MokeAd”. The prefix in a threat
name shows its affected platform or threat type, suffix will be used to indicate
the variants information and some number may demonstrate the threat size. So
we can know or infer the threat types of most reports from their names. For the
reports who do not show threat type from their names, we can manually label
them based on the content of the reports.

First, we use string distance algorithm—Jaro-Winkler Distance [10] to deter-
mine whether threat names are similar. Threats with the same or similar names
are considered as the same group and the corresponding CTI reports are labeled
as the same class. Then, the malware aliases are extracted from reports for label-
ing the reports with the same alias. For example, the three reports with different
ID, file 44, file 472 and file 6684 have the same alias for “Mal/Behav-009” (bold
letters) in Table 1. We still use Jaro-Winkler Distance to cluster reports with the
same aliases. Threats with the same aliases or similar aliases that belong to the
same threat type are given the same labels. After the first two steps, most of the
reports are labeled. We manually label the remaining reports as new classes or
the same classes as the labeled data based on their contents. Their contents give
the technical details about their attack behavior, which can provide information
to help us label these reports. Finally, we get 101 categories. These labels will
be considered as benchmarks when evaluating the experiment results of different
text classifiers.

Table 1. Example of three different reports show the same alias.

CTI Report ID Alias

44 Mal/Behav-009, Mal/Behav-009, Trojan-Banker.Win32.Banbra

472 Trojan-Downloader.Win32.Banload, Mal/Behav-009, Mal/Behav-009

6684 Win32.SuspectCrc, Mal/Behav-009, Mal/Behav-009, Suspicious.MH690
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3.3 Data Preprocessing

The threat intelligence reports we collected are HTML files, so we remove the
HTML signals and convert them into TXT files first. For the convenience of the
later process, we then merge the 25092 documents into one TXT file.

Filtration. In this stage, we remove unimportant content or interference
information including punctuation, stop words, non-alphabetical tokens, roman
numerals, hexadecimals, URL and declaration of the web-pages. Words that con-
sist of less than three letters are removed. We also ignore tokens like “system,
bytes...” that have high document frequency but are less meaningful to save
storage space and reduce the computational complexity.

Tokenization. Because there are malware behavior descriptions that are rele-
vant to the modification or generation of system paths and have file names in
the technical details of the reports. While doing tokenization, we keep the paths
and file names together with the punctuation as the original format, e.g. keeping
“hkey local machine\software” and “mydailyhoroscope.exe” as special tokens.
By doing this, we can group the threats with similar behavior.

Lemmatization. We do lemmatization in the last step of our data prepro-
cessing to transfer the tokens into lowercase and revert them to the base or
dictionary form. This step can also decrease the number of tokens to save space
and improve computational efficiency.

3.4 Text Vectorization

As mentioned, there are two models of doc2vec algorithm. We compare the two
models of doc2vec by a comparative experiment before the main classification
experiment and choose PV-DBOW to transfer the processed threat intelligence
reports into numeric representations. The processed TXT file is converted to
CSV file. We retrain a new doc2vec model based on our dataset because there
are many domain-specific words. The model is trained for thirty epochs and all
the texts are converted into vectorized features with 300 dimensions.

Doc2vec applies stochastic gradient descent and backpropagation neural net-
works [23] to train the word vectors and paragraph vectors then get word matrix
W and paragraph matrix D respectively. Two softmax weight parameters U and
b of the model will be got from the training process. A binary Huffman tree [8]
construct the hierarchical softmax, which is used to encode the input texts in
a fast way. When predicting the PV of a new document, gradient descent is
used again for calculate Dnew until the values of W, U , and b becoming steady.
This is the training process of Distributed Memory version of Paragraph Vector
(PV-DM), which is similar to CBOW in word2vec. Distributed Bag of Words
of Paragraph Vector (PV-DBOW) model learns weight parameters but ignores
W. A text window is utilized to randomly pick words to train the classifier in
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each iteration of stochastic gradient descent. Compared with PV-DBOW, PV-
DM takes up more storage space to memory all word vectors but often performs
higher prediction accuracy according to the authors’ experiment in [11]. But we
choose PV-DBOW in this work based on a comparative experiment result.

3.5 Classifier Training

We use supervised learning to train the CTI classifiers in our work.
After preprocessing and transferring the reports into numerical representa-
tions, we get a 25083 × 300 dimension feature matrix X and a 25083 ×
1 dimension label vector Y. All the instances can be represented as
(x(1),y(1)), (x(2),y(2)), ..., (x(25083),y(25083)), with each x consists of 300 val-
ues. We have chosen the following six classification algorithms to train the CTI
reports classifiers.

K-Nearest Neighbors. K-Nearest Neighbors (KNN) is one of the most com-
monly used classification technique. We choose it because KNN shows good
performance for checking the similarity between different instances by a simple
algorithm. In the training process, KNN first sets the number of k and chooses
an instance A to compute the distance between A and other labeled instances.
The nearest k instances of A are selected and if most of the instances belong
to threat type i over the k nearest neighbors, A will be assigned as label i. We
use Minkowski distance rather than Euclidean distance in our work to compute
the distance between different instances because our feature matrix is more than
two dimensions.

Decision Tree. Decision Tree (DT) is a rule-based classification algorithm.
When training a classifier, DT classifies the reports from the root nodes and
down to the sub-nodes. The label will be known by making decisions according
to the rules of different nodes until the leaf nodes. We have 300-dimensional
data and train the model using the Gini index. Each dimension is regarded as
an attribute and the rule in each node is learned by computing the Gini index.
The classifier is trained first by splitting data based on the condition of the root
node and leaf node, then prune it to avoid overfitting.

Logistic Regression. Logistic Regression (LR) is a binary classifier at first
to identify whether a sample belongs to a specific class or not (whether ypre is
equal to 1 or not) with the predict hypothesis representation as Eq. (1).

hθ(x) =
1

1 + e−θTx
(1)

Where θ is the parameter vector can be learned from the training process. The
prediction value ypre of a sample is decided by a threshold α. If hθ(x) is larger
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than α, ypre is equal to the positive class 1. Otherwise, ypre belongs to the non-
positive class 0. LR can also be used for multi-class classification by “one-vs-rest”
principle. This means classifier h

(i)
θ (x) will be trained for every class i. A sample

will be classified for many times until y
(i)
pre maximize the value of h

(i)
θ (x).

Support Vector Machine. Support vector machine (SVM) is another popular
algorithm that can be used for text classification. The main target of SVM is
to find a hyperplane, also called decision boundary in machine learning, that
can maximize the margin in Fig. 3 to better classify the data. Figure 3 shows an
example of linear SVM whose decision boundary is linear. B1 and B2 are two
decision boundaries. b11 and b12 is a pair of hyperplanes for B1. The distance
between the two hyperplanes is the margin. We can see from Fig. 3 that the mar-
gin of B1 is bigger than B2. The goal of SVM is to get the maximum margin,
which is equal to 2

‖w‖2 . The boundary with bigger margin has a better gener-
alization error than the one with a smaller margin [28], which means that the
boundary with bigger margin will not be affected very much when there is some
small interference near the two hyperplanes. In our work, we train two kinds
of SVM classifiers, one is Linear SVM and another one is SVM with Gaussian
radial basis function (RBF) kernel [19].

Fig. 3. An example for Linear SVM.

Multi-Layer Perceptron Neural Networks. Multi-Layer Perceptron Neural
Networks (MLP-NN) is a model that can train non-linear classifiers. There will
be three main modules in this model, including input, hidden layers and output
as shown in Fig. 4. We use X and Y to denote the input and output result respec-
tively. The features are represented as x1 to x300 in one text instance. Arrows
between input and output are called linkages. Each linkage will be assigned a
random weight when the neural network training algorithm starts. In Fig. 4, the
light yellow neurons consist of two hidden layers in this MLP-NN model. The
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value of each input neuron multiple the corresponding weight and add together,
the sum s is sent to the next layer. a11 denotes the first value of the first hidden
layer beside the bias value 1. It is calculated by the activation function with s as
input. We use “relu” activation that a is equal to the maximum value between
0 and s in our experiment.

MLP-NN can learn the deep relation between the input and output with more
than one hidden layer, and it is a flexible model that can adjust the activation
function and neuron numbers in each layer according to the learning perfor-
mance. But more parameters will be generated than the other five classification
algorithms.

Input X

x1

1

x3

x300

x2

1

a11

a1m

1

a2n

a12

a21

f(x)
a22

...

...
...

Output
Y

Fig. 4. An example for MLP-Neural Networks with two hidden layers.

4 Experiments

In this section, we show the experiment results of the six trained classifiers and
compare their performance by different evaluation approaches. Before compar-
ing the performance of the six classifiers, we implement another experiment to
evaluate the capability of the two doc2vec models. Later we analyze the two
experiment results and make a summary.

We use doc2vec python package in gensim [22] to train a new model for
representing the CTI documents and apply packages in scikit learn library [18]
to train our classifiers with Python 3.7.2. We tune the parameters for SVM
with RBF kernel, “C = 10, gamma = 10”, and C is equal to 10 for LSVM also.
We use 100000 for the parameter C in LR. C is a parameter that controls the
degree of regularization to mitigate overfitting, the smaller, the stronger of the
effect. Two hidden layers for MLP-NN with 300 and 100 neurons respectively are
settled for a better prediction result and not too slow computing speed. We use
the default settings in scikit learn for the other parameters of the six classifiers.
We use recall, precision and F score to evaluate the performance of the different
classifiers in our experiments.
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4.1 Experiment Results

We first evaluate the two models PV-DM and PV-DBOW of doc2vec by compar-
ing their performance combined with the six mentioned classifiers and choose the
better one for the later experiment. We trained the two doc2vec models both for
30 epochs, and randomly split our dataset into two parts, 70% training set and
30% testing set. The experiment result can be seen in Table 2 that PV-DBOW
is much better than PV-DM for the data we collected.

Table 2. Compare the two doc2vec models: PV-DM and PV-DBOW combined with
the six classifiers.

PV-DM PV-DBOW

Recall Precision F Score Recall Precision F score

KNN 0.7385 0.7180 0.7219 0.9088 0.8937 0.8991

DT 0.5648 0.5676 0.5659 0.8622 0.8695 0.8653

LR 0.7684 0.7705 0.7673 0.8998 0.8795 0.8871

LSVM 0.7612 0.7506 0.7371 0.8909 0.8620 0.8677

SVM (RBF) 0.5934 0.3521 0.4419 0.9095 0.8867 0.8959

MLP-NN 0.7944 0.7813 0.7872 0.9039 0.8832 0.8899

Based on the first experiment result, we select the PV-DBOW algorithm to
convert the threat intelligence reports into vector features as the input of the six
classifiers, including K-Nearest Neighbors (KNN), Decision Tree (DT), Logistic
Regression (LR), Support Vector Machines (SVM), Linear SVM (LSVM), Mul-
tiple Layer Perception Neural Networks (MLP-NN). In the second experiment,
10-fold cross validation is used to split our dataset into 10 equal parts, and train
each classifier for ten times. Every tenth of the data is treated as the testing
data for a time during each training process for a specific classifier. We can get
average evaluation scores to judge the six models in a more convincing way by
using this cross validation method.

Table 3 shows the result of the second experiment. We can see that SVM
with RBF kernel achieves the highest recall at 90.76%. KNN and MLP-NN also
have good performance for getting higher recalls, precisions and F scores and
more stable classification accuracy based on the ten times training. The results
of DT are not as good as other classification models but still not too bad.

4.2 Experiment Analysis

In the first experiment, the performance of PV-DM is not as good as PV-DBOW.
In the original paper, the authors who proposed doc2vec show that the ability of
PV-DM is better in the case that meaning of the whole text should be learned.
But in our study, PV-DBOW performs better maybe because all the texts are
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Table 3. Experiment results of the six classification models with PV-DBOW algorithm
on the data collected from ThreatExpert from August to November, 2016.

Classification model Recall Precision F score

PV-DBOW + KNN 0.9063± 0.0281 0.8907± 0.0357 0.8961± 0.0329

PV-DBOW + DT 0.8593± 0.0420 0.8640± 0.0438 0.8606± 0.0430

PV-DBOW + LR 0.8979± 0.0300 0.8769± 0.0393 0.8847± 0.0354

PV-DBOW + LSVM 0.8860± 0.0284 0.8539± 0.0396 0.8615± 0.0337

PV-DBOW + SVM(RBF) 0.9076± 0.0280 0.8816± 0.0360 0.8916± 0.0333

PV-DBOW + MLP-NN 0.9027± 0.0282 0.8905± 0.0335 0.8923± 0.0312

highly related with threat analysis, the words have been used are similar. Another
reason may be that learning the accurate meaning and the relations among
the words needs more data to train the model. We will try it later to check
this. PV-DBOW is a model that ignores the order of the whole text but uses
a window to learn the semantic relations between different words. It consumes
less storage space and the code for PV-DBOW use less time to tune than PV-
DM. For the second experiment, SVM (RBF), MLP-NN and KNN all show
good performance with recall more than 90% and KNN uses the least training
time. Decision tree classifier has a recall of 85.93% as the lowest one among the
six classifiers. Because its classification method is rule-based, and the decision
conditions for DT are abstract numbers instead of specific semantic description
in this work.

Combining the two experiment results, we can see that there is a most obvious
change of the prediction accuracy of SVM (RBF) classifier when transform the
document representation model from PV-DM to PV-DBOW. We also spend the
most time to tune the parameters of SVM (RBF) than other models. So we
conclude that SVM with RBF kernel is much more sensitive to the parameters’
change and is easy to overfit when tuning the parameters just for pursuing the
best prediction score blindly without considering the stability of the classifier. In
summary, our proposed method that applying the doc2vec algorithm to vectorize
the CTI texts and then using machine learning models to classify the reports
has a quite good performance and makes it possible to process the documents
automatically and efficiently. This method can classify the huge amount of CTI
reports based on their threat types and attack behaviors, which will save a
lot of time for security analysts to do the further analysis works in security
organizations like SOC.

5 Related Works

In this chapter, we first review the threat analysis works that deal with data in
textual format. Then we review the existing CTI analysis works that are related
with our project.
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5.1 Security Analysis Based on Textual Dataset

As many security data from network traffic, system or network logs and publicly
available sources are in textual format, the approaches of handling text data have
been studied and applied in many research works for security analysis. In 2007,
Elovici et al. [4] presented a system called eDare to detect the unknown mali-
cious code in network traffic using three ML techniques: decision tree, Bayesian
networks, artificial neural network. They extracted n-grams and Win32 executa-
bles Portable Executable header as the feature. Their experiment results show
that the advantage of using ML algorithms as plug-ins is obvious and the final
detection decision with significantly higher accuracy compared with the previous
works. Gegick et al. [5] also used text-mining techniques, but they applied NLP
to mine the bug report instead of the source code.

Another work proposed an approach to extract access control policies (ACP)
from natural-language (NL) software documents and make annotations in the
sentences with semantic meaning [30]. Three evaluations show that their app-
roach, called Text2Policy, has good performance in identifying ACP sentences
and with the accuracy of 86.3% in extracting ACP rules and 81.9% for extract-
ing action steps, respectively. In 2014, Scandariato et al. [24] used bag-of-words
and two machine learning classifiers (Naive Bayes and Random Forest) to ana-
lyze the source code and forecast whether a software component is vulnerable.
The first two experiments show their model has good performance to predict
vulnerabilities but the third indicates that they need more features of different
applications to build a merged prediction model.

The above works all use different text representation methods to transfer
the textual security-related data to machine-readable languages and then apply
ML techniques to accelerate the threat analysis process. Facing the CTI data,
we also try to use text representation approaches to vectorize them first. But
different to the mentioned works, we use the doc2vec algorithm to transfer the
CTI reports in to fixed-length vectors directly instead of defining some features
and extracting the predefined features, which is more efficient and universal to
data collected from different sources.

5.2 Cyber Threat Intelligence Analysis

There exist many works for explaining what CTI is and what it can be used for.
As introduced in background, cyber threat intelligence (CTI) is textual knowl-
edge, also evidence-based knowledge [13] collected from huge amount security
dataset and combined with the intelligence of human. According to the survey
of SANS in 2015 [25], the usage and definitions of CTI are stated and the report
shows that many organizations are trying to develop tools that can integrate CTI
information easier and faster. Because they have seen the ability of CTI analysis
for improving threat detection accuracy and speeding up attack response time.
Another survey reviews the different types of threat intelligence especially tech-
nical threat intelligence and describes the current status of CTI sharing [29]. The
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authors of this work also found that the unstructured format and redundancy
problems limit the further development of CTI.

Most of the existing research works about CTI analysis focus on extracting
indicators of compromise (IOCs) or tactics, techniques and procedures (TTPs).
IOCs and TTPs are key information in CTI that can help the security analysts
find the interrelationships among cyber attacks from different sources and know
the features and attack actions of the threats. In [12], Liao et al. presented a
solution called iACE to extract IOCs in CTI and gather the huge amount of
technical articles that contain IOCs by mining the relation between OpenIOCs
through a graph similarity method. iACE can recover a large amount of IOCs
and convert them into machine-readable format fully automatically by using
graph mining to analyze the dependency graphs constructed from sentences of
interest. Their evaluation shows that iACE has good performance when applied
to 71000 articles over 13 years, which is helpful as the first step for fully auto-
mated cyber threat intelligence gathering. Though the work shows high accuracy
and coverage, there are still errors or missing analysis for some IOCs. This is
mainly due to the limitation of the optical character recognizer tools. Besides,
better preprocessing is needed to filter original polluted contents. In another
work of extracting IOCs from technical articles and industry reports [31], Zhu
and Dumitras used NLP techniques to represent target features applied the
extracted information to construct malicious actions of different stages of the
attack chain. They want to prevent cyber attacks by analyzing the attack steps.
Husari et al. also used NLP techniques, but they extracted the predefined threat
action from CTI reports. Then they converted threat action into a threat shar-
ing standard language by STIX 2.1 and constructed the TTPs for defending the
cyber attacks in a timely manner [9]. They evaluated their tool by 17000 threats
reports from Symantec and got 84% precision and 82% recall on average.

There are some research works about collecting CTI data from different
sources. Ghazi et al. collected threat intelligence documents from open source,
but they collected both unstructured and structured data. They applied named
entity recognition (NER) and combined machine learning method to train a
model to extract the predefined entities with the precision about 70% [6]. Deliu
et al. utilized SVM and LDA to extract CTI from hacker forums for getting rel-
evant and actionable intelligence in an efficient way [3]. In the work of [20], the
authors applied seven machine learning models and used 1432 attacks to train
classifiers for identifying cyber attackers from open source intelligence. They just
simply classify the attacks and the accuracy is not as high as our works.

Unlike most of the existing works, we focus on classifying the CTI documents
before they are analyzed to extract technical or tactical indicators. This will make
the analysis more efficient and save more human and computing resources. We
propose the method for automated processing threat intelligence documents by
combining the doc2vec algorithms and machine learning classifiers to improve
the efficiency of documents analytics for NG-SOC. The experiment results are
better than the previous CTI classification works. Based on the result, security
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analysts can analyze and summarize the attributes and behavior of different
kinds of threats without wasting too much time reading all the reports.

6 Conclusion and Future Work

The traditional protection mechanism of a system can automatically discover
low-level threats and make quick reactions. However, the more sophisticated
cyber threats the more difficult it is for the system to make early warnings auto-
matically. If with limited knowledge of the emerging threats, the situation is
very severe. Besides, the attackers may use the same method to attack differ-
ent institutions at different times. Therefore, integrating different cyber threat
resources and accelerate the CTI analysis process are extremely urgent.

The main goal of this work is to present our effort in proposing an automatic
approach for processing, grouping and extracting information from cyber threat
intelligence sources for NG-SOC to realize high efficiency on data analytics and
facilitate proactive defense. The experiment results show that the proposed CTI
documents classification methods perform well with the highest prediction recall
at 91%. Utilizing the document representation models to represent the texts as
vectors is a satisfactory way to map the words and documents to numeric repre-
sentations. It can not only fit the machine learning classifiers input requirement
but also realize dimension reduction for documents with many words. Selecting
a better classification model after experiments to reorganize the reports with the
same or similar threat type together can save much time for threat intelligence
analysis, especially in today’s data fast-growing society. Based on the threat
intelligence reports classification results, the analysts can analyze the threat
attributes much easier and faster. Security organizations can give the companies
or individual users early warning to make a decision and then help them take
proactive defense to mitigate the cost or even avoid the occurrence of a cyber
attack.

However, open source is just one way among all the sources that can provide
CTI data. Though combining doc2vec algorithm with machine learning tech-
niques can help us classify cyber threat intelligence reports with the uniform
format, further work like collecting more different types of CTI documents from
different origins, utilizing standard threat language like STIX2.1 to construct
a threat operation platform containing different indicators and historical events
of different threats still need to be realized. More different CTI data sources and
analysis techniques need to be studied for doing a more comprehensive analysis
in the future to promote the better defense of cyber attacks.
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Abstract. User identification process is an important security guard
towards discovering insider threat and preventing unauthorized access
in enterprise networks. However, most existing user identification
approaches based on behavior analysis fail to capture latent correlations
between multi-domain behavior records due to the lack of a panoramic
view or the disability of dealing with heterogeneous data. In light of
this, this paper presents HeteroUI, a framework based on heterogeneous
information network embedding for user identification in enterprise net-
works. In our model, multi-domain heterogeneous behavior records are
first transformed into a heterogeneous information network, then the
embeddings of entities will be trained iteratively according to a joint
objective combining with local and global components for more accu-
rate user identification. Experimental results on the CERT insider threat
dataset r4.2 demonstrate that HeteroUI exhibits excellent performance in
discovering user identities with the mean average precision reaching over
98%. Besides, HeteroUI has a certain contribution to inferring potential
insiders in a multi-user and multi-domain environment.

Keywords: User identification · Heterogeneous information network
embedding · Joint objective · Latent correlations

1 Introduction

With the evolution of insider threat, user identification plays a more and more
significant role in protecting information assets of enterprise networks. Existing
user identification mechanisms only work at the start of login. Such as pass-
word input, fingerprint recognition, which can be easily cracked or deceived by
inputting the password obtained in an illegal way, or using a fingerprint model.
By contrast, user and entity behavior analysis (UEBA) [1] based approaches
are attracting the eyes of researchers because they have the following certain
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advantages. (1) It is hard to be stolen or imitated since everyone has its own
behavioral features. (2) It provides continuous identity authentication during the
whole login session.

In order to accurately confirm the identity of a user through behavior analy-
sis, analysts need to extract comprehensive and appropriate features from a mess
of behavior records, then compare the similarity between the current behav-
ior and the historical behavior model as the basis for identification. Existing
approaches can be classified into two types. Some of them typically focus on
a particular domain or specific behavior records, such as file access analysis,
which lacks a panoramic view required to build a comprehensive behavior model.
Others usually rely on feature engineering to aggregate behavior features from
different domains, which require artificial empirical knowledge and neglect the
latent correlations between multi-domain behaviors. As a result, it is a mount-
ing challenge to provide an automatic and reliable solution that takes correlation
information into consideration for user identification in a multi-user and multi-
domain environment.

Behavior records in enterprise networks are mostly formatted by structured
log events, making it even harder to capture latent correlations. In recent years,
the extensive research of heterogeneous network representation learning has pro-
vided us with a good perspective to solve this problem. Heterogeneous informa-
tion network (HIN) [2] is an effective tool for dealing with multi-domain het-
erogeneous data, because it contains multiple types of nodes and/or edges. We
can obtain rich structural and semantic information by mining the interactions
between entities within a heterogeneous information network.

Motivated by the excellent performance of HIN in many varied tasks, this
paper proposes HeteroUI, a framework for user identification in enterprise net-
works. Specifically, we first transform behavior records into a heterogeneous
information network, where each node represents an event of a particular type
and each edge interprets the relationship between entities. Then we train the
embeddings of entities iteratively through a joint objective combining with local
and global components: (1) the local component focuses on interactions between
each user and it’s behavior entities, aiming to learn user’s normal behavior pat-
tern. (2) the global component utilizes meta paths [3] to capture latent corre-
lations between different types of entities in the whole network. By combining
both components, the learned embeddings can better preserve proximities and
semantic information, thus paving the way for subsequent prediction and analy-
sis. To the best of our knowledge, applying HIN to learn user behavior model as
well as inferring potential insiders based on audit logs has not been extensively
studied yet. The contributions of this paper are summarized as follows:

1. We present a framework called HeteroUI that is able to process multi-domain
heterogeneous behavior records and take the interaction between different
domains into consideration for user identification.

2. HeteroUI is an innovative attempt to combine with local and global embed-
ding models for comprehensive user characterization. We designed a cus-
tomized neural network for local embedding and performed meta paths
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selection for global embedding so that HeteroUI can be more suitable for
this task.

3. We propose a mechanism based on similarity calculation to deal with sus-
picious cases. Once a potential insider is identified, HeteroUI can provide
valuable clues for forensic analysis.

4. We conduct a series of experiments on the CERT dataset r4.2. The results
demonstrate that HeteroUI achieves superior performance compared with
three baselines in inferring potential insiders.

2 Related Work

The relevant efforts on user identification in enterprise networks mainly encom-
pass three aspects as follows:

Data Pre-processing. Raw logs and behavior records are always manifested
in various formats. To deal with inconsistent log data from different sources,
Tuor et al. [4] accumulated counts of 408 “activities” a user has performed
over some fixed time window (e.g. 24 h) and enumerate them in the form of
tree structure, Pei et al. [5] leveraged raw log parsers to extract specific fields
from each input entry for log correlation. To facilitate event correlation analysis,
HeteroUI follows a similar way to [5] that utilizes a set of pre-defined fields to
capture pivotal information of each behavior record, but unlike previous efforts,
HeteroUI regards fields of each normalized behavior record as unique entities to
build heterogeneous information network for multi-domain event correlation.

Behavior Modeling. Establishing normal behavior model is necessary for user
identification. Early research tends to exploit behavior data from a particu-
lar domain. For example, in order to protect important files against theft or
destroy, Wang et al. [6] try to construct file behavior model using file access
path and file action in two dimensions of time and space. However, the accuracy
of these methods is usually disappointing for lacking a panoramic view. Other
work focuses on aggregating inconsistent log data from heterogeneous tracking
sources to build comprehensive user profile. Tuor et al. [4] try to create multi-
dimensional numeric feature vectors by merging categorical user attribute fea-
tures and continuous “count” features for user representation and then feed them
into the neural network. These feature-driven approaches are meritorious with
the help of artificial empirical knowledge, but they usually neglect the latent
correlations among multi-domain behaviors. HeteroUI addresses this issue by
leveraging a joint embedding objective function combining with local and global
models following the idea of Chen et al. [7], which can learn representations of
entities with rich structural and semantic information automatically.

Forensic Analysis. Traditional user identification methods can only judge
whether the current behaviors belong to a specific user without relevant clues
of potential operational users and fine-grained suspicious behaviors, which is
not quite enough. Thus, it is imperative to provide actionable intelligence or
pertinent evidence for forensic analysis. In recent years, workflow construction
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has been studied largely for anomaly diagnosis, such as in [8]. However, they
are prone to high cost of overhead and severe delay. HeteroUI avoids the pitfall
by leveraging a similarity calculation mechanism, which allows us to provide
relevant clues about a potential insider to security officers in time for further
investigation.

The proposed framework HeteroUI extends existing embedding methods and
employs a task-guided embedding model involving the three collaborative aspects
mentioned above.

3 Preliminaries

In this section, we first introduce the concept of heterogeneous information net-
works and meta paths, then introduce the embedding representation of entities
and the user identification problem.

3.1 Heterogeneous Information Network

Definition 1. Heterogeneous Information Network (HIN) is defined as a graph
G = (V,E) in which nodes and edges between them can have various types. Nodes
are mapped to their type by a node mapping function gv : V → A where A is the
set of all node types and similarly an edge mapping function ge : E → R maps
edges to their type where R is the set of all possible edge types. By definition we
have |A| > 1 or |R| > 1. Furthermore, SG = (A,R) denotes the network schema.

Figure 1 shows the network schema we formulated in this paper to represent
multi-domain behavior records. It is centered by a super node PC, the informa-
tive types of behavior records collected from this PC can be represented as its
neighboring nodes. The node types A in this task include PC, user, file, HTTP,
email, logon, and device, while the set of edge types R includes pc

visit→ file,
pc

contact→ email, and so on.

PC

devicefile

email

userHTTP

logon

Fig. 1. Network schema of the heterogeneous information network. Each node denotes
a node type, and each edge denotes an edge type.
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Definition 2. Meta Paths in HIN define higher-order relations between two
node types. Having the network schema SG = (A,R), a meta path schema is
demonstrated as A1

R1→ A2
R2→ ...

Rm→ Am+1.

Different meta paths will lead to different semantic meanings. For example,
in network schema Fig. 1, the meta path PC

contact→ email
contact← PC can capture

latent correlation between two PCs which have a same email recipient. However,
there can be infinite potential meta paths given a network schema. In this paper,
we only consider length-1 paths in the original network and length-2 meta paths
and perform meta paths selection to find the optimal set of them.

3.2 Representation Learning on HIN

Definition 3. Given a heterogeneous information network denoted as a graph
G = (V,E). Representation learning aims to learn a function f : V → Rd that
projects each node v ∈ V to a vector in a d-dimensional space Rd, where d � |V |.

Throughout this paper, we use a matrix U to represent the embedding table
for nodes. The size of the matrix is N ×d, where N is the total number of nodes
(including all node types), and d is the number of dimensions. So the feature
vector for node n is denoted as un, which is a d-dimensional vector.

3.3 Problem Definition

Unlike other user identification methods that model this task as a binary classi-
fication problem, our proposed HeteroUI regards it as a ranking prediction task.
For a PC p, when a new period of behavior records are provided, we refer to the
user account that appeared in these records as “the observed user”. While our
model will return a rank of predicted users based on these behaviors.

In a normal scenario, we hope the observed user is top-ranked in the predicted
user list. This indicates an excellent user characterization and identification abil-
ity of our model. However, if the observed user doesn’t appear at the top of the
list, which is called “a suspicious case”, we consider the observed user to be a
potential insider. In this case, a severe deviation occurs between the observed
user’s current behavior pattern and his/her normal behavior pattern.

4 The HeteroUI Framework

Figure 2 shows an overview of the HeteroUI framework. HeteroUI is structured
hierarchically, which consists of four layers (data preparation layer, construc-
tion layer, joint training layer, and detection layer, respectively), detailed in the
following subsections.

– Data Preparation layer. This layer maintains a multi-domain historical
events database and preprocesses new behavior records. The input of this
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layer is a set of behavior records in a new time period of a certain PC, we
refer to the user account that appeared in these records as the observed user
Q. The output of this layer is a window of the historical behavior records for
all PCs and the normalized new behaviors records of a certain PC, denoted
by training set S and test set C respectively.

– Construction layer. In this layer, we try to construct the heterogeneous
information network G with all kinds of entities (PC, file, email, etc.) based
on S following the network schema in Fig. 1. The output of this layer is a
randomly initialized embedding table U for all entities in G.

– Joint Training layer. This layer maps each node of network G into a d-
dimensional vector through a joint objective combining with local and global
embedding models. After the iterative training process, we use the user pre-
dictor to perform prediction on the test set C.

– Detection layer. This layer determines whether the observed user Q is sus-
picious by comparing it with the predicted user candidates. If suspicious,
HeteroUI provides relevant clues to security officers for forensic analysis.

Events
Normalization

New Behavior Events

HIN Construction (G)

Training set (S)
Test set (C)

Joint Training Objective

Global Embedding

Suspicious?

Relevant Clues

Local Embedding

(U) (U)

Yes

No

User Predictor

Initialized embedding table (U)

PC_1 PC_2 ... PC_n

Multi-domain Events DatabaseData Preparation
Layer

Construction
Layer

Joint Training
Layer

Detection
Layer

Predicted users (A)

Fig. 2. Overview of HeteroUI. The flow of execution is indicated by arrows. The output
of each layer is shown in the parentheses (i.e. S, C, U, A).
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4.1 Data Preparation Layer

The multi-domain events database stores the normalized historical behavior
records for all PCs in the whole enterprise chronologically, which serves as the
behavioral baseline for building normal user models. The raw behavior records in
a new time period of a PC contain five types of event types, including logon, file,
email, HTTP, and device. In this paper, we assume that each PC corresponds
to one user. Thus we can get the only user account as our inspected target from
these behavior records, denoted by the observed user Q.

When the new behavior records arrive, the data preparation layer is responsi-
ble for parsing and normalizing them using network-specific configuration infor-
mation. To capture the pivotal information of each event, HeteroUI parses an
event record into several pre-defined fields as shown in Table 1, where each field
is normalized for self-identifying. For example, the subject is normalized as a
user identifier and the object is normalized as a behavior identifier. In particu-
lar, for logon events, we use timestamp as its behavior identifier because we are
more concerned about the time period when the user logs on. As timestamp is
continuous, we partition the value range into several segments such that a large
amount of continuous value is reduced to a smaller set of discrete intervals.

Table 1. Pre-defined fields for an event.

Field Explanation

Subject The initiator of the event (i.e. a user)

Device Device where the event took place (i.e. a pc)

Object The receptors of the event (e.g. files, urls, emails)

Timestamp Time when the event took place

4.2 Construction Layer

The main purpose of the construction layer is to build a suitable HIN based on
the training set S. The training set contains historical behavior data for all PCs,
meaning that we will construct the HIN including all of their information, and
learn their behavior patterns simultaneously in the training process. The het-
erogeneous information network G is constructed following the network schema
defined in Fig. 1. For each PC, denoted by p, we represent its neighbors in the
network G as Xp =

{
X

(1)
p ,X

(2)
p , ...,X

(T )
p

}
, where X

(T )
p is a set of neighbor nodes

in tth node type. And we use ap to denote the true user of p.

4.3 Joint Training Layer

The joint training layer maps each node of network G into a d-dimensional
vector through a joint objective combining with local and global embedding
models, then use the user predictor to perform prediction on the test set C.
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The local embedding model focuses on interactions between super node p and
its neighboring nodes, aiming to embed regular user behavior patterns. While
the global embedding model utilizes meta paths to capture latent correlations
between different types of entities. The principles and architectures of them are
introduced separately as below.

Node
Type-(1)

Mean
Pooling

Node
Type-(n-1)

Node
Type-(n)

Node
Type-(2)

Mean
Pooling

Mean
Pooling

Mean
Pooling

Weighted Combination

User-(2)User-(1) User-(i) User-(n-1) User-(n)

Dense

Fig. 3. Local embedding architecture for user identification.

Local Embedding. Figure 3 shows the architecture of the local embedding
model. With the embedding table U as input, the local embedding model needs
to build feature representation for super node p based on its observed neighbors
in the network G gradually, then rank the candidate users based on dot product
similarity. Details of this process are as follows.
Forward Training: There are two stages of aggregation to build up the feature
representation of a super node p based on node embeddings.

In the first stage, it builds a feature vector for each of the tth node type by
averaging node embeddings in X

(t)
p (see Eq. 1).

V (t)
p =

∑

n∈X
(t)
p

un/
∣∣∣X(t)

p

∣∣∣ (1)

where V
(t)
p is the feature representation of the tth node type (e.g. email node

type), and un is the nth node embedding (e.g. email node).
In the second stage, it builds the feature representation of super node p using

a weighted combination of feature vectors of different node types (see Eq. 2).

Vp =
∑
t

wtV
(t)
p (2)
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Ranking: After obtaining the feature representation of super node p, we are able
to rank candidate users (e.g. user a) based on the dot product operation. The
similarity score is defined as follows:

S (p, a) = uT
a Vp = uT

a

(∑
t

wtV
(t)
p

)
(3)

Backward Propagation: To learn the parameter U and W , we adopt stochastic
gradient descent (SGD) [9] based on the max-margin objective. For each pair of
positive sample (p, a) and negative sample

(
p, a

′
)
, the hinge loss is defined as:

max
(
0, S(p, a

′
) − S (p, a) + ξ

)
(4)

where ξ is a positive number usually referred as margin [10]. A loss penalty will
incur if the score of positive pair (p, a) is not at least ξ larger than the score of
(p, a

′
).

Global Embedding. Most of the existing network embedding models are based
on the idea that embeddings of nodes can be learned by neighbor prediction,
which is to predict the neighborhood given a node (i.e. the linking probability
P (j|i) from node i to node j). In order to embed latent correlations among nodes
induced by meta paths, our global embedding model generalizes existing network
embedding techniques [11] following the neighbor prediction framework. Details
of this process are as follows.
Forward Training: Given a network schema SG = (A,R), the potential meta
paths can be infinite. When considered a specific embedding task, we have to
select a limited number of useful meta paths. This process will be discussed later,
and we assume a set of meta paths R has been selected for now. Then we begin
to model the conditional neighbor distribution of nodes. Note that the neighbor
distribution of nodes will be conditioned on both the node i and the given path
type r, which is defined as Eq. 5:

p (j|i; r) =
exp

(
uT
i uj

)
∑

j′ ∈DST (r) exp
(
uT
i uj

) (5)

where ui is the embedding of node i, and DST (r) denotes the set of all possible
nodes in the destination side of path r.

Considering that the number of nodes of DST (r) may be very large and
the evaluation of Eq. 5 can be prohibitively expensive, we apply negative sam-
pling [12] and form the following approximation term:

log P̂ (j|i; r) ≈ log σ
(
uT
i uj + br

)

+
k∑

l=1

Ej′∼P r
n(j′)

[
log σ

(−uT
i uj′ − br

)] (6)
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where j
′

is the negative node sampled from a pre-defined noise distribution
P r
n(j

′
) for path r, and a total of k negative nodes are sampled for each positive

node i. Furthermore, a bias term br is added to adjust densities of different
paths.
Backward Propagation: To learn the parameters U and br, we also adopt stochas-
tic gradient descent (SGD) [9] with the goal of maximizing the likelihood
function.

Joint Training. Local and global embedding models capture different perspec-
tives of a network, which motives us to combine them in a unified objective. The
joint training objective uses a weighted linear combination of the two compo-
nents with a regulation term (see Eq. 7).

f = (1 − ω) flocal + ωfglobal + λ
∑
i

‖ui‖22 (7)

where ω ∈ [0, 1] is a trade-off factor for local and global components. When
ω = 0, only local embedding is used; and when ω = 1, only global embedding is
used. The regularization term is added to avoid overfitting.
Meta Paths Selection: Now we introduce the meta paths selection. Specifically,
we employ two steps to select relevant paths in a greedy fashion: (1) Single
path performance. We run HeteroUI with a single path at a time, then rank
all the candidate paths according to their performance. (2) Greedy additive
path selection. We add each path into the selected pool following the ranking
and run HeterUI for each additive combination. The paths set R with the best
performance will be used.

The joint training process will be performed iteratively. For each iteration,
we sample an embedding model based on the Bernoulli distribution with ω as
the parameter, then perform the training process and update the embedding
table U and relevant parameters.

Finally, we use the well-trained user predictor to perform prediction on the
test set C and pass the output A to the detection layer, the result is a ranking
of potential users corresponding to the inspected behaviors.

4.4 Detection Layer

As of now, we have obtained the prediction result A of the test set C. The last
step is to determine whether the observed user Q is suspicious by comparing it
with the predicted user candidates.

First, we need to set a threshold as the cutoff in the prediction output. In
this work, we consider the observed user Q to be normal if it is among the top K
predicted users with high probabilities. Otherwise, we consider Q as a potential
insider. Under this circumstances, HeteroUI calculates the dot product similarity
scores between each behavior entity and the real user entity in turn, and rank the
scores in ascending order, the top-ranked behaviors can be provided to security
officers as clues for forensic analysis. Note that the model can be incrementally
updated to accommodate changes in users’ normal behaviors.
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5 Experimental Evaluation

In this section, we are dedicated to evaluating the performance of the proposed
framework. Firstly, we demonstrate the superiority of the joint embedding model
in user characterization in normal scenarios and perform parameter tuning. Then
we compare HeteroUI with three baseline approaches in inferring potential insid-
ers under three insider threat scenarios. Finally, we provide details on meta paths
selection and case study for forensic analysis.

5.1 Dataset

The CERT dataset1 was published by Carnegie Mellon University for insider
threat detection. We utilized the r4.2 dataset for our evaluation which contains
three insider threat scenarios covering 70 insiders.

In our work, five types of events (HTTP, logon, file, device, and email) are
used to construct heterogeneous information networks. We extracted four sub-
datasets for our experiments, denoted by D0, D1, D2, D3, reflecting the normal
scenario and each of the three insider threat scenarios respectively. Table 2 sum-
marizes the four sub-datasets.

Table 2. Dataset statistics.

Dataset Number of users Number of insiders Number of events

D0 980 0 345472

D1 992 23 1727360

D2 992 16 3238801

D3 975 9 647769

5.2 Evaluation Metrics

Under normal scenarios, we adopt commonly used ranking metric: mean Average
Precision at K (mAP@K) to reflect the accuracy of top-ranked users. This metric
evaluates the effect of HeteroUI on user characterization, which is a prerequisite
for the model to catch potential insiders. The mAP@K can be computed as mean
of AP@K for each query2 in the test time period. Defined by the follows:

AP@K =
K∑

k=1

p(k) ∗ rel(k) (8)

where p(k) is the precision at cut-off k in the return list. If the true user appears
after the kth position, p(k) = 0, otherwise, p(k) = 1/k. rel(k) is an indicator that
says whether the kth position is the true user (rel(k) = 1) or not (rel(k) = 0).
1 https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=508099.
2 A query means a set of new behavior records for a certain PC to be inspected.

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=508099
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Under insider threat scenarios, we use standard metrics of precision, recall,
and F1-score to show the performance of HeteroUI and three baselines in infer-
ring potential insiders. Specifically, Precision = TP/(TP + FP ), Recall =
TP/(TP +FN) and F1−score = 2∗(Precision∗Recall)/(Precision+Recall),
where TP , FP , FN are true positive, false positive and false negative, respec-
tively. In this case, the TP means the number of true suspicious cases captured
by our model.

5.3 Parameter Study

In this subsection, we use D0 to study the hyper-parameter ω, which is the
trade-off term of the joint training objective, as well as the dimension d of the
embedding vector. The result is shown in Fig. 4. As we can see that the best per-
formance is obtained when we use ω = 0.7 and d = 128. We also demonstrate the
rationality of the joint training objective compared with using a single embed-
ding model. From Fig. 4(c) we can see that the mAP@5 is improved by more
than 10%, which shows the excellent performance of our model in discovering
user identities in normal scenarios, and this is a basis for insider threat detection.

(a) (b) (c)

Fig. 4. Hyper-parameters selection and performance comparison. (a) Choice of different
combining factor. (b) Dimension of embedding vectors. (c) Performance comparison
between HeteroUI and single embedding models.

5.4 Comparative Experiments

For a comprehensive evaluation, we experimented with HeteroUI as well as three
baselines as follows:

– Feature-based method. Considering a pair of (PC, user) as a sample, we
treat the user identification task as a supervised classification task. Referring
to the existing work [4,13,14], we extract a total of 25 numerical features
from all types of user behaviors. For the supervised algorithm, we consider
Random Forests (RF) and use grid search to find its best hyper-parameters.
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– Embedding-based method. Pre-training has been found useful to improve
neural network based supervised learning [15]. So instead of training local
embedding model from randomly initialized embedding table, we first pre-
train the embedding of nodes using global embedding model, then initialize
the local embedding training with pre-trained embedding vectors.

– LSTM-based method. LSTM networks are renowned for their ability to
remember history information using the memory gate. Following part of the
work in [4], we first create multi-dimensional feature vectors by merging cat-
egorical user attribute features and continuous “count” features for user rep-
resentation and then feed them into the LSTM networks.

Fig. 5. The performance of HeteroUI and three baseline methods on D1–D3 datasets.

Figure 5 shows the performance of these methods on D1, D2, and D3 respec-
tively. For all the approaches, we explored the parameter space and choose the
best. As for the threshold of the detection layer, a smaller K may reduce the
precision rate, while a larger K will reduce the recall rate to some extent. We
performed experiments on the D1 dataset and set K = 5 to make a trade-off.

Our proposed HeteroUI outperforms three baselines in various degrees across
all scenarios. For example, for the dataset D1, the precision of HeteroUI is 92%,
improved by 1%, 8%, and 6%, compared with the feature-based, embedding-
based and LSTM-based methods respectively. The recall of HeteroUI is 98%,
improved by 1%, 7%, and 8% in comparison. We believe this is mainly due
to the fact that HeteroUI properly models multi-domain heterogeneous behav-
ior data and uses the global embedding model to take the correlation informa-
tion into account. Besides, we also performed meta paths selection for this spe-
cific task. From Fig. 5 we also observe that the feature-based method has good
precision in all scenarios. Maybe it can be explained through the RF’s resis-
tance to class imbalance in training data [16]. In the second malicious scenarios,
the LSTM-based method manifests a remarkable precision and recall over the
other two baselines. Further research discovered that the duration of malicious
activities in the second scenario is much longer, about eight weeks on average.
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And LSTM-based method can better capture the correlations in historical
records. The embedding-based method has a pathetic precision in all datasets, we
conjecture this is due to overfitting. Although the performance of our proposed
HeteroUI fluctuates slightly in different malicious scenarios, they all remained
at a stable level and thus has the potential to detect less typical anomalies.

5.5 Details

This section reveals the result of the meta paths selection and provides a case
study on forensic analysis of suspicious circumstances.

Meta Paths Set. We first report experimental results for meta paths selection
since the selected meta paths are used in the joint training layer. We mainly con-
sider 15 types of meta paths to capture different semantic information. Figure 6
shows the results of single path performance and performance improvement when
adding them in a greedy fashion. Note that only paths that can help improve the
user identification task are shown in the figure. In the end, we choose five meta
paths for our experiments: user2url, user2email, url2email, url2dev, file2dev.

Fig. 6. The performance of single paths and the additive selection.

Case Study. In this subsection, we show a case study to demonstrate the perfor-
mance of HeteroUI in forensic analysis. We select one of the insiders “AAF0535”
that appeared in D2 on July 9, 2010, which has been successfully detected, and
display the top 5 of the suspicious entities list HeteroUI has provided. Detailed
in Table 3.

Among the list, the real anomalous behaviors are bolded. As there are a total
of 11 real anomalous behaviors of “AAF0535” on July 9, 2010, it can be seen
that about half of them are covered and three of them are top-ranked. This
indicates that HeteroUI has certain guiding significance for event-level forensic
analysis. In practice, it can be combined with other anomaly detection models
for conjoint analysis.
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Table 3. Ranking of suspicious entities of “AAF0535”.

Ranking Suspicious entities

1 http://northropgrumman.com/WboUhagvat572113271.aspx

2 Jaime Carey@raytheon.com

3 http://linkedin.com/WboUhagvat1479839504.aspx

4 http://slate.com/1933 Atlantic hurricane season/05z/jrngure696245205.jsp

5 http://job-hunt.org/WboUhagvat919122234.html

6 Limitations

Our proposed HeteroUI aims to capture potential insider threats based on het-
erogeneous audit log data from multiple sources, but we do not make a compar-
ison with mature industrial solutions, such as Darkrace.

Besides, the experiments are all based on specific insider threat scenarios in
the standard CERT dataset. Therefore, we cannot fully demonstrate the effec-
tiveness of our model in real scenarios.

In the next step, we will compare with these systems and adjust our model
in combination with other available information to meet the needs of real-world
scenarios, and make our proposed HeteroUI a better system with superior per-
formance in practical applications.

7 Conclusion

This paper presents HeteroUI, a framework for user identification in enterprise
networks. HeteroUI first transforms multi-domain behavior records into a hetero-
geneous information network, then learn embeddings of nodes iteratively through
a joint objective combining with local and global components for user identifi-
cation. Once a suspicious case is identified, HeteroUI is able to provide relevant
clues in real-time for forensic analysis. Extensive experiments have demonstrated
the superior performance of HeteroUI compared with existing baselines.

In future work, we will try other types of behavior entities and consider
attribute information to improve the precision of our model and generalize it into
real-world scenarios. Besides, the distributed architecture will also be considered
for parallel processing to improve the executive efficiency of the framework.
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Abstract. Lateral movement technology is widely used in complex net-
work attacks, especially in advanced persistent threats (APT). In order
to evade the detection of security tools, attackers usually use the legal
credentials retained on the compromised hosts to move laterally between
computers across the enterprise intranet for searching valuable informa-
tion. However, attackers cannot acquire the information about the nor-
mal action patterns of intranet users. So even the savviest attacker will
“blindly move” in the intranet, making his lateral movement usually dif-
ferent from the typical users’ behavior. In order to identify this potential
malicious lateral movement, we proposes a Continuous-Temporal Lateral
Movement Detection framework CTLMD. The remote and local authen-
tication events are represented as a Path Connection Graph and a Bipar-
tite Graph respectively. We extract normal lateral movement paths with
time constraints while abnormal lateral movement paths are generated
based on several attack scenarios. Finally, we define multiple path fea-
tures using graph embedding methods to complete the follow-up classifi-
cation task. We evaluate our framework by using injected attack data in
real enterprise network dataset (LANL). Our experimental results show
that the proposed framework can classify normal and malicious lateral
movement paths well with the highest AUC of 92%. Meanwhile, the
framework can detect the lateral movement state timely and effectively.

Keywords: Lateral movement detection · Graph embedding ·
Enterprise intranet security

1 Introduction

In recent years, the form of cyber-attacks has been characterized by high level,
continuity and concealment. At the same time, most attackers no longer aim to
destroy the target network or infrastructure, but stealing confidential data or
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core intellectual property becomes their priority tasks. So enterprise networks
are the hardest hit areas where these cyber-attacks and data breaches occur
frequently [1,2].

Research [3] shows that 80% time of an attack is spent during lateral move-
ment. Therefore, lateral movement stage is also the place where an attacker is
most easily detected. However, Lateral Movement Detection (LMD) still faces
with many challenges. Firstly, there are no fixed features to detect LMD. Sec-
ondly, attackers usually pretend to be normal users, which is difficult to attract
the attention of the IT administrator because they only check the failed login,
and do not track the successful login [4]. Finally, data sets related to LMD are
rare, which makes it hard to construct effective attack detection models using
supervised machine learning methods.

Considering a common scenario: an employee starts his work in one day. First,
he needs to log in his host. Then following the previous working mode he logs
in other remote hosts to conduct business. However, the attacker is unfamiliar
with the intranet structure and the lateral movement patterns of normal users,
so he can only lateral move randomly to obtain assets information as many as
possible. Therefore, the lateral movement caused by attackers often differs from
typical user behavior and even from typical administrator behavior [5].

Based on the above experience, we propose an assumption in our work: the
familiarity of lateral movement paths generated by normal operations of inter-
nal users should be far greater than the familiarity of lateral movement paths
generated by attackers through random walking. In other words, it measures the
extent to which the authentication events co-occur more than by chance or are
independent.

In summary, this paper makes the following contributions:

1. We propose a continuous-temporal lateral movement detection framework
(CTLMD) to classify the lateral movement paths. CTLMD analyzes lateral
movement from two behavioral perspectives at the same time: remote transfer
behavior and local login behavior.

2. We use two graph embedding methods CTDNE [6] and BiNE [7] separately
to represent vertexes in a dimensionless way, so we can quantitatively study
the lateral movement paths appearing in similar contexts in the latent space
and understand them in a more meaningful and measurable way.

3. In order to generate paths dataset, we use the breadth-first algorithm and
time constraints to search all normal lateral movement paths and inject mali-
cious paths data based on two attack scenarios.

4. We evaluate our method based on a real enterprise data (LANL). The result
shows that CTLMD can classify two type paths effectively and monitor the
status of intranet lateral movement paths in real-time.

The rest of this paper is organized as follows. Section 2 reviews related work.
Section 3 defines two graph structures to represent the authentication data.
Section 4 overviews the framework we proposed and its components in detail.
In Sect. 5, we evaluate our framework in public dataset. Finally, we summarize
the paper and discuss limitations and future work outline in Sect. 6.
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2 Related Work

2.1 Lateral Movement Detection

Traditional intrusion detection methods based on intrusion detection system
(IDS), visualization strategies, honeypot or honeynet methods and system call
are used to find solutions to internal problems [8].

There are many studies on risk reduction ferry strategies to prevent LMD.
Johnson [9] proposes a risk indicator with graph analytic metric to measure the
potential vulnerability of intranet to attacks that use lateral movement. Pope [10]
introduces a network partitioning method with dynamic authentication bipartite
graphs using the mitigation strategy to reduce the number of nodes accessible
from certain starting nodes.

The above methods are usually implemented by selecting a set of edges to
delete, which not fully utilize the nature of the intranet represented by these
authentication data and do not detect attacks of abnormal lateral movement.

There are lots of work focusing on the abnormal login behavior of users or
hosts in lateral movement. Kent [11] creates a Person’s Authentication Graphs
(PASs) for each user, then classify three types of users using machine learn-
ing. Siadati [12] develops the concept of a Network Login Structure that speci-
fies normal logins within intranet to detect credential-based lateral movement.
Eberle [13] proposes a graph-based internal threat detection method to discover
suspicious insider activity by identifying abnormal subgraphs.

This kind of user- or host-based anomaly detection is effective, but often
ignores the possible association between successive malicious operations at mul-
tiple times. Only a small part of works try to detect the lateral movement paths.

Hogan [14] attempts to find lateral movements by finding paths from outside
the network to high-value IPs. However, this work does not discuss how well the
approach does at detecting lateral movements.

2.2 Graph Embedding Application in Security

Graph embedding methods are inspired by the idea of words embedding in Natu-
ral Language Processing (NLP). As shown in Fig. 1, nodes’ degree in the authen-
tication connection graph satisfies the power law distribution.

Xu [15] proposes a prototype called Gemini using struct2vec to detect cross-
platform binary code similarity. Ding [16] develops an assembly code represen-
tation learning model named Asm2Vec. It can learn both lexical semantic rela-
tionships and the vector representation of assembly functions at the same time.
Song [17] proposes a graph-based deep learning approach DeepMem to automati-
cally generate embedding vector representations for kernel objects and recognize
these objects. It is important for collecting evidence of malicious or criminal
behaviors.



184 S. Zhao et al.

Fig. 1. The power low distribution of nodes’ degree in authentication graph.

2.3 Closest Work

Work [18] designs a new graph embedding method to detect lateral movement.
However, their task is only to detect abnormal hosts without analyzing the asso-
ciation between authentication events.

Based on the assumption that attackers’ propagation speed is slower than
the benign management tasks’ in the intranet, work [19] proposes a malicious
and benign lateral paths generation method based on the SIS virus propagation
model. They inject malicious data into the public data set. In our work, we learn
from the attack scenario construction of malicious lateral movement in this work
to get abnormal data.

Dong [20] proposes GID, an efficient graph-based intrusion detection tech-
nique that can identify abnormal event sequences from massive heterogeneous
process traces. We refer to their definition of time constraints for constructing
normal sequences and use it on lateral movement paths.

3 Graph Structure Definition

We represent the interaction between login entities in intranet over a period of
time as a collection of log events in temporal order E = {eventi | i = 1, 2, . . . , k},
where eventi is consist of 5-tuple [source user, source host, destination user,
destination host, timestamp]:

eventi = (srcUi, srcHi, dstUi, dstHi, ti) (1)

Table 1 provides several examples of login events. We define a set of intranet
users U = {u1, u2, . . . , un} and set H = {h1, h2, . . . , hm} means hosts in the
intranet. ti ∈ R

+ is the set of timestamp attributes of events.
To better characterize login events, we analyze lateral movement from two

behavioral perspectives: constructing a path connection homogeneous graph with
timestamps to analyze remote transfer behavior and a <users, hosts> bipartite
heterogeneous graph to analyze local login behavior.
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Table 1. Several examples of authentication event logs with time order.

Event srcU srcH dstU dstH t

event1 u1 h1 u1 h2 1

event2 u2 h2 u1 h3 2

event3 u1 h2 u1 h3 3

event4 u1 h3 u3 h4 5

3.1 Path Connection Graph

In order to better formalize the interaction between remote login action [source
entity →destination entity], we convert login events as a directed homogeneous
graph with timestamp attribute. Both source entity and destination entity con-
sist of a unique pair of flags 〈ui, hi〉.

Definition 1 (Temporal Path Connection Graph). Given a graph GT =
(VT , ET , T ), let VT be a set of login entities and ET ⊆ VT × VT × R

+ be the set
of temporal edges. Function T : E → R

+ maps each edge to a list of timestamp.
At the finest granularity, each edge eTi = (vp, vq) ∈ ET may be assigned a time
list [t1, t2, . . . , tk] ∈ R

+.

Definition 2 (Temporal Lateral Movement Path). In GT , a temporal path
l = (Vl, El) is a sequence of vertices 〈v1, v2, . . . , vk〉 such that edge 〈vi, vi+1〉 ∈ El

for 1 ≤ i < k − 1.

As Fig. 2a shows, GT provides the relevant login entities involved in each
potential lateral movement path. A path with connectivity in a directed graph
can directly help the security response team to increase or decrease the impor-
tance of security alter or related entity surveys. Obviously, the lateral movement
path l as defined a subgraph of GT .

3.2 Bipartite Graph

In addition to the obvious remote login connection, authentication logs also
contain the local login action [user → host]. In order to analyze the similar-
ity between users and the similarity between hosts respectively, we represent
login events as a bipartite heterogeneous graph like Fig. 2b to mine the implicit
information of users and hosts.

Definition 3 (Bipartite Graph). Given a graph GB = (U,H,EB), EB ⊆
U × H represents a directed connection between users and hosts. Edges in EB

form a |U | × |H| weight matrix W . For each none-negative weight wij ∈ W
represents the login times between user ui and host hj.
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Fig. 2. We represent the authentication logs as two forms of graph. (a) is graph GT

for remote login behavior. (b) is graph GB for local login behavior.

3.3 Problem Formulation

In this paper, we transform the LMD into a binary classification problem of
paths. Given a lateral movement path l ∈ L, our goal is to find a mapping
function f(l) → {0, 1}.

4 Detection Framework

Figure 3 is the architecture and workflow of TLMD. It mainly consists of two
phases: Graph Preprocessing Unit and Anomaly Detection Unit. We will explain
each unit in detail in the following subsections.

4.1 Graph Preprocessing Unit

The main work of this unit it to preprocess the historical authentication data
and represent the data into two types of graphs. And then we embed nodes of
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Fig. 3. The general framework of CTLMD.
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graphs into low-dimensional vectors for later calculation. Meanwhile, we extract
normal lateral movement paths based on graph GT and generate malicious lateral
movement paths according to attack scenarios for the down-stream construction
of classification model.

Paths Generation. This part is mainly responsible for abstracting all normal
lateral movement paths and injecting attack paths.

Normal Lateral Movement Abstract. One of the innovations of our work is how
to define normal lateral movement paths. A straight forward way to generate
candidate paths is to apply time constraints with breadth-first search in GT .

Definition 4 (Time Constraints of l). Given a lateral movement path l =
(Vl, El, T ) with time, the normal path must satisfy the time constraint: 0 ≤
T (vi+1, vi+2) − T (vi, vi+1) ≤ Δt for 1 ≤ i < (k − 1), which means normal
relevant events happen in time order and over a short period of time.

Attack Scenario Simulation. Due to the scarcity of real malicious lateral move-
ment data, we construct negative paths data based on two types of attack sce-
narios that is often employed by attackers, which inspired by the random walk
model of web page link jump [21] and work [12,19]. We consider the following
assumptions about attacks of two types:

* Scenario-1 Remote Jump. When attackers have compromised an intranet, they
may exploit software vulnerabilities to deploy malicious code to establish tunnels
between infected machines. If users suddenly start logging in hosts that they have
never been visited before and generate new suspicious lateral movement paths,
this situation usually indicates that users’ certificate passwords have been stolen
or the machines have been controlled by a Trojan. Moreover, attackers usually
leave backdoors in the APT attack ending phase to have long-term control over
target hosts that have been compromised. So attackers may try to create a new
user in the target host.

In this scenario, we combine 〈user, host〉 pairs randomly to generate some
new login entities on the malicious lateral movement paths. Some connections
about login entities are also generated by random jump. This kind of negative
paths thus generated is never seen in graph GT .

* Scenario-2 Random Walk. After the initial intrusion, attackers will move as
much as possible to expand the area of control. The most common way for
attackers to move is stealing credentials that have been saved on the compro-
mised hosts. Dunagan [22] refers to the process of repeatedly using stolen cre-
dentials to access additional computers as an identity snowball attack. This may
not be noticed by IT administrators or security testing products because they
only check for failed logins, not successful logins. However, even the most savvy
attackers will perform “blindly move” in intranet. So the negative paths gener-
ation is random and without time constraints as Fig. 4.
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Fig. 4. The attacker enters the enterprise intranet with random walk to obtain assets
information as far as possible without pattens.

Graph Embedding. One of the difficulties of our work is how to measure
the familiarity of a lateral movement path. To effectively solve this problem,
we use two graph embedding methods to map nodes into d-dimensional vectors
respectively. Moreover, we can use the trained node vectors to directly calculate
the similarity of the new path and realize real-time monitoring.

– CTDNE.

For the path connection graph GT , we choose CTDNE algorithm to embed nodes
with satisfying time constraints. Finally CTDNE gets the d-dimensional vector
vi representation of each login entity vi.

The embedding for static networks is usually realized by random walk to
get training corpus. Then the corpus is handed over to the model such as Skip-
Gram to get the graph embedded. However, random walk method does not take
into account the time order in which edges appear. For example, a message
propagating in a network is directed, but an unconstrained random walk may
result in a reverse corpus.

CTDNE constraint each random walk must conform to the temporal order
in which edges occur, thereby capturing the graph’s timing information into
sequences of random walks. The addition of time series information has less
embedded uncertainty, so its performance on traditional tasks is better than
algorithms such as DeepWalk [23] and LINE [24].

– BiNE.

BiNE is a graph embedding algorithm specifically for bipartite graphs, which
mapping two types of nodes into d-dimensional vectors.

One of BINE’s contributions is it distinguishes between explicit and implicit
relationships of bipartite graph. We use the BiNE algorithm to embed the <users,
hosts> bipartite graph GB . Finally we get the vector representation ui and hj

of the user ui and the host hj respectively.
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4.2 Anomaly Detection Unit

How to measure the familiarity of lateral movement path is the key part of our
work. We consider that the higher the familiarity of the path, the higher the
similarity between the elements on the path. Assigning similarity scores to each
user/host indicates the similarity between the host and the user. On the other
hand, it can interpret the correlation based on the transfer relationship between
the login entities on the path. For example, when the similarity score of the user
and the login host on the path is significantly different from previous, it indicates
that the lateral movement is not a common pattern.

Based on the login entity embedding vector v and the user host embedding
vector u,h in the previous step, we extract the following features to represent
the current state of each path l(Vl, El, T ):

Path Edge Features. CTDNE calculates the vector of the login entity v based
on the path connection graph. So we define 4 features to represent the similar-
ity of the path edge: average simE avgl, range simE rgl, inter-quartile Range
simE iqrl and average absolute deviation sim madl. The edge similarity set of
path l is simEl = {simi = cos(vi ,vi+1) | i = 1, 2, . . . , |Vl| − 1}. The path edge
features are defined as following:

simE avgl =
∑|Vl|−1

i=1 simi

|El|
(2)

simE rgl = max(simEi) − min(simEi) (3)

simE iqrl is defined as the difference between the 75% and 25% in the sam-
ples. Compared to the range feature based on only the two extreme values,
simE iqrl measures 50% dispersion of the sample center.

simE madl is defined as the median of the absolute value of the difference
between a single sample and overall median. It can better measure the discrete
case of the set value distribution.

Login Entity Features. For each login entity v in path l is equivalent to a
edge of the user ui connecting the host cj in bipartite graph GB . So we use the
possibility that BiNE predicts whether an edge should exit or not to indicate
whether the login entity in the path l is normal. For each path l = 〈v1, v2, . . . , vk〉,
we define the normal probably of each login entity is pi. The average possibility
of path l is:

pl =
∑|Vl|

i=1 pi
|Vl|

(4)

User Features. In general, normal users move laterally with a fixed task pat-
tern. We assume that the similarity between users on the normal lateral move-
ment path should be higher than that between users on the random movement
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path which may caused by attackers. The average similarity simUl between users
of path l is:

simUl =
∑|Ul|−1

i=1 cos(ui ,ui+1)
|El|

(5)

Host Features. The definition of average Host similarity simCl of path l is
similar to simUl:

simCl =

∑|Cl|−1
j=1 cos(cj , cj+1)

|El|
(6)

5 Experiment and Result

5.1 Experiment Setup

Dataset. To evaluate CTLMD, we use authentication data from Los Alamos
National Laboratory [25]. The full dataset covers 58 days of real authentication
activity from LANL’s network with 1,648,275,307 total events among 12,425
users and 17,684 computers. Each record in the authentication events has the
form time, source user, destination user, source computer, destination computer,
authentication type, logon type, authentication orientation, success/failure.

Data Preprocessing. CTLMD only needs the first five fields to form graphs
and generate the lateral movement paths. At the same time, we filter out some
noisy data like data with logout direction and the login failure events. Some
users and hosts in the intranet are only connected to a fixed number of objects.
In this case, it is difficult for attackers to move to network backbone. So we only
use the largest connected subgraph of the path connection graph everyday.

Baseline. We compare CTLMD with the following methods to illustrate the
advantages of CTLMD.

– LSTM-based. LSTM models are now widely used in machine learning tasks
such as time series analysis and sequences anomaly detection using memory
gates [26]. For the LSTM-based sequences detection, we use normal paths
data from previous days to train and classify subsequent paths.

– Feature Engineering. In order to verify the effectiveness of the graph
embedding algorithm, we extracted several common graph features of the
lateral moving path: the sum of the edge weight and the average of node
degrees etc.
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Evaluation Metrics. Common evaluation metrics are as follows:

– Acc. Accuracy is the most intuitive performance measure and it is simply a
ratio of correctly predicted observation to the total observations.

– Pre. Precision is the ratio of correctly predicted positive observations to the
total predicted positive observations.

– R. Recall is the ratio of correctly predicted positive observations to the all
observations in actual class.

– F1. It takes both true positives and true negatives into account. In other
words, it is the weighted average of Precision and Recall.

– Auc. The area under the curve ROC is an evaluation index to measure the
pros and cons of the binary classification model.

5.2 Static Training and Test

There are abnormal login events in the first 30 days of LANL, so we select 11
days of the normal authentication events on day 30–40 to analysis and extract
normal lateral movement paths separately.

The length distribution of paths on each day is shown in Fig. 5a. Obviously,
day 31–32, 38–39 are weekends when the normal paths are less than work days’.
On a working day as Fig. 5b, the most common path length is 3 and the longest is
4 to 6, which is consistent with the working lateral movement pattern of intranet
users.

In order to get the vector representation of various types of nodes in advance,
we choose a week data in day 26–32 and remove the abnormal login events to
construct graph GT and graph GB . Two sub-tasks for graph edge prediction are
designed to adjust the optimal parameters of BiNE and CTDNE algorithms as
shown in Table 2 below, so that the accuracy of each task can reach 90%. It can
guarantee that vectors of users and hosts can best represent the graph structure
relationship while dimensionality reduction.

(a) (b)

Fig. 5. Some analysis of LANL data. (a) shows the normal movement paths number
of day 30–40 when Δt =3h. (b) is the length distribution of paths in working day 30.
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For the following machine learning task, we choose the logistic regression
(LR) model to classify normal paths or malicious paths. The experimental data
included 137073 normal lateral movement paths which satisfy the time constraint
in directed graph and 130803 malicious lateral movement paths generated by
simulated attack scenarios. We use 80% of path data sets as the training set and
the remaining 20% is used as the test set.

Results. The following are the results of classification experiments and com-
parative experiments.

There are some hyper-parameters in our method, but most of them already
selected in sub-prediction tasks of BiNE and CTDNE. One of the most important
parameters is Δt. It determines which paths can represent the normal lateral
movement behavior of users in the intranet.

Table 3 is the classify results of different hyper-parameter Δt. Obviously, the
result is better when Δt = 3 h. Because the longer the interval of login events is,
the more accurate the extracted normal path pattern will be and the better the
familiarity of the lateral movement generated by normal users login action will
be described. So, it will be easier to distinguish from abnormal paths generated
by attackers. The ROC curves are shown as Fig. 6a.

To better demonstrate the validity of the framework, we compared CTLMD
with LSTM-based method and the traditional feature engineering classification.
The ROCs are shown as Fig. 6b that CTLMD performs best. LSTM model struc-
ture is too complex and there is a risk of overfitting and high computational
cost. So CTLMD has better performance for classify paths data in new days.
The result of Feature Engineering illustrates that simple graph features can not
distinguish two types of paths well.

Figure 7 is the correlation analysis heat map of path features and the path
label. As seen from the figure, the similarity of path edges directly extracted
by embedding vectors of CTDNE algorithms all contributed to the classification
of paths to some extent. Feature 5 and Feature 6 is the similarity of users and
hosts in the path, which indicates that the possibility of frequent change of login
account or host is relatively small during one lateral movement action.

Table 2. The hyper-parameters of BiNE and CTDNE.

Parameter Meaning Value

α = β Trade-off parameter in BiNE 0.01

γ Trade-off parameter in BiNE 1

ws Size of skip-gram window in BiNE and CTDNE 2

d Embedding vector dimension 128
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Table 3. Experimental results of CTLMD about different hyper-parameter Δt.

Acc Pre R F1 AUC

Δt =1h 0.87 0.82 0.84 0.83 0.88

Δt =3h 0.91 0.85 0.90 0.87 0.92

(a)

LSTM-based

(b)

Fig. 6. The results of static experiment. (a) is the ROC curves with Δt = 1 h and
Δt = 3 h. (b) is the ROC curves of CTLMD, LSTM-based and Feature Engineering.

Fig. 7. Correlation analysis heat map of path features.
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5.3 Dynamic Monitoring

Since the vector representation of Intranet nodes have been trained with the
static graphs of historical data, we can directly use node vectors to calculate the
similarity of various paths in the follow-up real-time monitoring of the status of
lateral movement paths. At the same time, the CTLMD uses the trained classifier
to detection whether the lateral movement path is malicious in real time.

Figure 8 illustrates the real-time change of path similarity more vividly.
We choose a normal lateral movement path C3412$@DOM1 C1798, C3412$@
DOM1 C3412, U42@DOM1 C3412, U42@DOM1 C561, U42@DOM1 C1025,
U42@DOM1 C529 to calculate the similarity during the path generating on
day 40. At time t6 we add a new login entity at the end of the path. It is obvious
that the similarity is directly reduced to 0.5 below.

Fig. 8. A visualization example for real-time lateral movement monitoring.

6 Conclusion

We presents a new framework CTLMD for detecting lateral movement in
intranet. In our work, the authentication events are represented as two graph
structures. Two graph embedding methods are used to define a variety of path
similarity features to represent the path familiarity. The follow-up paths detec-
tion can invoke the previously embedded vectors representation, which provides
efficient support for large-scale anomaly detection. Moreover, we propose two
attack scenarios and path time constraints first time, which provide a new pos-
sibility for lateral movement detection.

Looking at attack movement action in relation to each other can provide
researchers and practitioners with invaluable insights into the modus operandi
of attackers, highlighting important trends in the way attacks are conducted.
So, security analysts must build intranet intelligence to understand how users
and hosts communicate in the intranet and the typical mode used in the event
of credential abuse to reduce lateral movement attacks.
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However, the attack scenarios proposed in our work cannot include all attacks
related to lateral movement. In future work, we will consider more reasonable
attack scenarios and improve the extraction of path features to better charac-
terize lateral movement behavior of users.
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Abstract. The automatic detection of software vulnerability is
undoubtedly an important research problem. However, existing solutions
heavily rely on human experts to extract features and many security vul-
nerabilities may be missed (i.e., high false negative rate). In this paper,
we propose a deep learning and bytecode based vulnerability detection
system called Vulnerability Hunter (VulHunter) to relieve human experts
from the tedious and subjective task of manually defining features. To
the best of knowledge, we are the first to leverage bytecode features to
represent vulnerabilities. VulHunter uses the bytecode, which is the inter-
mediate representation output by the source code, as input to the neural
networks and then calculate the similarity between the target program
and vulnerability templates to determine whether it is vulnerable. We
detect SQL injection and Cross Site Scripting (XSS) vulnerabilities in
PHP software to evaluate the effectiveness of VulHunter. Experimental
results show that VulHunter achieves more than 88% (SQL injection)
and 95% (XSS) F1-measure when detecting a single type of vulnerabil-
ity, as well as more than 90% F1-measure when detecting mixed types
of vulnerabilities. In addition, VulHunter has lower false positive rate
(FPR) and false negative rate (FNR) than existing approaches or tools.
In practice, we apply VulHunter to three real PHP software (SEACMS,
ZZCMS and CMS Made Simple) and detect five vulnerabilities in which
three have not been disclosed before.

Keywords: Vulnerability detection · Deep learning · Bytecode

1 Introduction

Nowadays, nearly all information systems and business applications have built
software-based applications. However, because of their existing security vulner-
abilities which may be uncovered and unexploited, software are exposed to
attacks, which will have a highly negative impact on users. According to the
c© Springer Nature Switzerland AG 2020
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2018 Application Security Statistics Report from WhiteHat [3], more than 60% of
applications have long been in a vulnerable environment. Thus, security experts
have developed various solutions to detect vulnerabilities quickly and efficiently.

Vulnerability detection technology can be divided into three types depend-
ing on whether the program is running or not: dynamic analysis, static anal-
ysis, and mixed analysis [27]. The dynamic analysis method examines a pro-
gram’s behavior while it is running in a given environment. Essentially, dynamic
analysis adopts an approach similar to that of a real attacker, and many com-
mercial and open-source tools [2,4,15] and studies [16–19] have been proposed.
The static analysis method detects program vulnerabilities without executing it.
Usually, the static method analyzes the control logic and data flow of the pro-
gram, and combines data statistics and feature recognition to determine whether
the program has a vulnerability. Many systems and studies for this purpose have
been conducted, including open source tools [1,10], commercial tools [5,9], and
academic research projects [23,28,32,33]. Mixed analysis is a combination of
dynamic and static analysis.

However, existing static solutions for vulnerability detection demonstrate
over-reliance on expert experience and extract only surface source code fea-
tures. The features of the source code are strongly related to the writing style of
the code. The same vulnerability may appear in different source code, resulting
in poor generalization of the neural networks. To address these technical chal-
lenges, we propose a vulnerability detection system called Vulnerability Hunter
(VulHunter), which uses deep learning to calculate the similarity of bytecode
features. We use bidirectional LSTM to build a neural network that can input
two vectors and output a similarity value. We use graph-based static analysis
methods to extract the code slices associated with the vulnerabilities and then
transform them into bytecode slices, which are a lower-level representation of
the code. In Sect. 4.3, we further demonstrate the effectiveness of the bytecode
through experiments and explain it. We use PHP as a sample language to demon-
strate the effectiveness of our proposed approach. The PHP source code is split
into bytecode slices and word2vec [14] is used to transform them into vectors that
can be fed to neural networks. The vulnerability templates are bytecode slices
that have been processed, and each template represents a specific vulnerability.
There are multiple templates for each vulnerability. The trained neural networks
calculate the similarity between the target program and vulnerability templates
to determine whether there are any vulnerabilities. In the experiment, we mainly
detect SQL injection and XSS vulnerabilities, and there are 160 and 208 tem-
plates for the two vulnerabilities respectively. To verify the effectiveness of the
system, we evaluate VulHunter on three open source PHP software: SEACMS,
ZZCMS and CMS Made Simple. Five vulnerabilities were successfully detected,
and three of them were discovered for the first time.

In summary, the contributions of this paper can be highlighted as follows.

– To the best of our knowledge, we are the first to apply bytecode to rep-
resent vulnerability features and employ graph-based static analysis meth-
ods to extract bytecode slice, which is the smallest unit of vulnerability
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representation. The bytecode slice is converted from a few lines of source
code associated with the vulnerability to accurately represent and locate the
vulnerability.

– We propose a deep learning based approach to detect vulnerabilities. Differ-
ent from other existing studies which directly determine whether the target
program has a vulnerability, our neural networks are mainly leveraged to cal-
culate the similarity of the target program and the vulnerability templates.
When the value of similarity exceeds a certain threshold, it will determine
that the target program is vulnerable, which effectively improves the accu-
racy and recall rate of the system.

– A comprehensive experimental study on three real sample collections is per-
formed to compare with the state-of-art vulnerability detection approaches.
The promising experimental results demonstrate that our developed system
VulHunter which integrate our proposed method outperforms other alterna-
tive vulnerability detection techniques. The code, data sets and vulnerability
templates of this work is publicly available at https://github.com/Xmansec/
VulHunter.

The remainder of this paper is organized as follows. In Sect. 2, we provide
background on software vulnerability detection. In Sect. 3, we detail our method-
ology for detecting vulnerabilities and our improved technique for representing
vulnerable features. In Sect. 4 we describe the results of our experiments for
detecting SQL injection and XSS vulnerabilities in PHP software. At the same
time, we show results of comparison with other approaches and tools. In Sect. 5,
we introduce some previous work related to this paper. Finally, we conclude the
paper in Sect. 6.

2 Background

Here, we provide the background relevant to software vulnerability detection.
First, we give some examples of SQL injection and XSS vulnerabilities in
Sect. 2.1. Then, In Sect. 2.2, we introduce the graph-based static software analy-
sis methods. In Sect. 2.3, we discuss bytecode and its component in PHP. Finally,
in Sect. 2.4, we cover background on Bi-LSTM neural networks.

2.1 SQL Injection and XSS Vulnerabilities

In this paper, we use SQL injection and XSS vulnerabilities to verify the effec-
tiveness of the system. SQL injection refers to a class of code-injection attacks
in which data provided by the user is included in an SQL query in such that
part of the user’s input is treated as SQL code [24]. Figure 1(a) shows an SQL
injection vulnerability example in PHP source code. In the example, an attacker
can craft a link that paired the single quotes of id and injects an arbitrary SQL
such as http://www.xxx.com/?id=-1’ union select database() –+. With this link,
the attacker may obtain the name of the database. Cross-Site Scripting (XSS)

https://github.com/Xmansec/VulHunter
https://github.com/Xmansec/VulHunter
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2 $id=$_GET['id'];
3 $sql="SELECT * FROM users WHERE id='$id'";
4 // exploit
5 $result=mysql_query($sql);
6 $row = mysql_fetch_array($result);
7 echo $row;
8 ?>

2 $data = $_GET['id'];
3 $data = urldecode($data);
4 //exploit
5 echo "<div ". $data ."= bob />" ;
6 ?>

(a) SQL injection (b) XSS

Fig. 1. Examples of SQL injection and XSS vulnerability.

is one of the ten most critical web software security risks. There are three forms
of XSS: reflected, stored and DOM XSS. Figure 1(b) shows a reflected XSS vul-
nerability example in PHP source code. In the example, an attacker can craft a
link that injects malicious HTML and JavaScript code into the front page such
as http://www.xxx.com/?id=><script>alert(document.cookie)</script><.
This link pops up a window showing the cookies of the current website.

2.2 Graph-Based Static Analysis

Graph-based static analysis refers to modeling program properties as graphs such
as control-flow graphs (CFG), data-flow graphs (DFG) and program-dependence
graphs (PDG) [27]. These techniques rely on building a model of bugs by a set
of nodes in the graphs to identify bugs in a program. In this paper, we use a
graph-based static analysis methods for code slicing, which is an important step
in data processing. There are already some well-known algorithms to implement
it [26,30]. These methods can help us analyze the program, build a static graph
of the program, and extract the code related to the vulnerability. Therefore, we
do not need to analyze the entire program file, and can more accurately represent
and locate the vulnerability.

2.3 Bytecode

Bytecode is a form of instruction set designed for efficient execution by a soft-
ware interpreter. It is an intermediate representation output by programming
language implementations to ease interpretation or to reduce hardware and
operating system dependence by allowing the same code to run cross-platform.
Bytecode often directly executes on a virtual machine that further compiled
bytecode into machine code for improving performance. Thus, the bytecode is a
kind of code between the source code and the machine code, which can repre-
sent the semantic information of the code at a lower-level. Given its performance
advantage, many languages first convert the source code into bytecode and then
transform it into machine code or execute it directly in the virtual machine, such
as Java, Python, and PHP.
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2.4 Bi-LSTM

Many different types of neural networks have been successfully applied in numer-
ous fields. The neural networks used in VulHunter are Bidirectional Long Short-
Term Memory (Bi-LSTM) networks, which is a type of Recurrent Neural Net-
works (RNN). The problem of vanishing gradients is a key motivation behind
the application of the LSTM cell [20,21,25], which consists of a state that can be
read, written, or reset via a set of programmable gates. The multiplicative gates
allow LSTM memory cells to store and access information over long time peri-
ods, thereby mitigating the vanishing gradients problem. For example, as long
as the input gate remains closed (i.e., it has an activation near 0), the activation
of the cell will not be overwritten by the new inputs arriving in the network
and can be made available to the net much later in the sequence by opening
the output gate [22]. However, even LSTM is insufficient for vulnerability detec-
tion because the argument(s) of a program may be affected by earlier or later
statements. This result suggests that unidirectional LSTM can not learn enough
vulnerability features and that we should use Bi-LSTM. Figure 5 shows a brief
structure of neural networks in VulHunter.

LSTM ...

Concatenate(y1, y2)

LSTM

LSTM ... LSTM

LSTM ... LSTM

LSTM ... LSTM

5         ADD_STRING
6         ADD_VAR
7         ADD_CHAR
8         ASSIGN5
9         EXT_STMT

 Step1: Searching  Exploit Points  Step2:  Generating CFG and DFC

 Step3:  Generating Bytecode slices  Step4: Generating Vectors

Data Input Data Processing Model Checking Vulnerability Reporting 

Target 
Program

Vulnerability 
Templates

Vulnerability

Fig. 2. Overview of VulHunter. It has two inputs, four data processing steps, one model
checking step, and one output.

3 Methodology

In this section, we describe the methodology for our system to detect vulnera-
bilities (SQL injection and XSS) in PHP source code. In Sect. 3.1, we give an
overview of VulHunter for vulnerability detection and elaborate its steps. In
Sect. 3.2, we describe how to locate suspicious exploit points and generate byte-
code slices from source code. In Sect. 3.3, we discuss the method to transform
bytecode slices into vectors. In Sect. 3.4 we describe how to use Bi-LSTM net-
works in VulHunter. In Sect. 3.5, we present a formula for similarity calculation.

3.1 Overview of VulHunter

This subsection is an overview of VulHunter. Figure 2 shows the steps of method-
ology. VulHunter converts target program, along with the vulnerability tem-
plates, to digital vector during data processing phase. The neural networks cal-
culate the similarity between the vulnerability templates and target program in
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model check phase. When the value of the similarity exceeds a certain threshold,
the target program is deemed vulnerable. The following is a detailed process of
the vulnerability detection.

Data Processing

– Step 1: Search for exploit points from source code, which are usually some
functions or specific code (HTML tags). These points are necessary but not
sufficient conditions for the existence of vulnerabilities.

– Step 2: Based on the exploit points found in Step 1, we generate CFG and
DFG. Usually the input is the beginning of the graph, and the output is
the end of the graph. Some of the edges in the figure are the path of the
vulnerability execution.

– Step 3: According to the graph generated by Step 2, we use graph-based
static analysis methods to generate code slices, which are just some code
related to suspicious exploit points, such as variable declarations, function
calls. And then we transform code slices to bytecode slices. Bytecode slices
are the smallest unit that represents a vulnerability in this paper.

– Step 4: Bytecode slices generated by Step 3 are split into tokens by a tokenizer
and then transform them into digital vectors of length L and pre-train with
word2vec. This tool is based on the idea of distributed representation, which
maps a token to an integer.

Model Checking. Input the target vector obtained in the previous step and
vulnerability templates into the trained neural networks for similarity calcula-
tion. Finally, use the value of the similarity to determine whether it is vulnerable.

3.2 Generating Bytecode Slices

In this subsection, we describe the details how to convert the PHP source code
into bytecode slices that corresponds to step 1 to step 3 of Fig. 2. A program file

Table 1. Suspicious exploit points related to SQL injection and XSS. The suspicious
exploits of the SQL injection vulnerability are mainly functions that execute SQL, and
the XSS vulnerability is related to various HTML tags (e.g., <a>, <div>) in addition
to output functions.

Vulnerability Suspicious exploit points

SQL injection mysql connect mysql pconnect mysql change user
mysql query mysql error mysql set charset
mysql unbuffered query pg connect pg pconnect
pg execute pg insert pg put line pg query pg select
pg send query pg set client encoding pg update
sqlite open sqlite poen sqlite query sqlite array query
sqlite create function sqlite create aggregate
sqlite exec mssql connect mssql query sqlsrv connect
sqlsrv query odbc connect odbc exec

XSS echo print printf print r var dump HTML tags
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has numerous lines of code, but only a small part is related to the vulnerability.
Thus, we need to use a more concise and accurate method to represent the
vulnerability, not the entire file.

Searching Exploit Points. To generate bytecode slices, we must first examine
for exploit points. The point referring to the vulnerability are finally triggered.
It may be some functions or specific code (HTML tags). In the examples of
this paper, we focus primarily on functions related to SQL execution and front-
end display, such as mysql query() and echo in Fig. 1. Table 1 summaries the
suspicious exploit points related to SQL injection and XSS vulnerabilities in
PHP.

Generating CFG and DFG. Code slices consists of a number of lines of code
generating by graph-based static analysis methods. We construct graph based
on control flow and data flow. The input is the beginning of the graph, and
the output is the end. There are usually several methods to input data. First,
data can be obtained from HTTP(S) communication; second, data are from the
files; finally, data are from the database. For the first case, HTTP(S) methods
are generally used, such as GET, POST and PUT. For the second case, it is
generally related to the file uploaded by the user. In the third case, the data
of the user has usually been stored in the database, which is more likely to
cause secondary SQL injection or stored XSS. Figure 3 shows the details of the
whole process. The source code is represented as a structured graph, then the
execution path related to the vulnerability is determined. Finally, the code on
the execution path is extracted.

1  <?php
2  $id=$_GET['id'];
3  $sql="SELECT * FROM users WHERE 
id='$id'";
4  if(...){
5      $result=mysql_query("...");
6  }
7  else{
8      // exploit
9     $result=mysql_query($sql);
10 }
11 $row = mysql_fetch_array($result);
12 echo $row;
13 ?>

1   <?php
2   $id=$_GET['id'];
3   $sql="SELECT * FROM users 
WHERE id='$id'";
8   // exploit
9   $result=mysql_query($sql);
11 $row = mysql_fetch_array($result);
12 echo $row;
13 ?>

Program source code Graph of control flow and data flow Code slices

$id=$_GET['id'];

$result=mysql_query("...");

$row = mysql_fetch_array($result);

$result=mysql_query($sql);

$sql="SELECT * FROM users WHERE id='$id'";

echo $row;

If else

Fig. 3. Modified example of Fig. 1(a), in which the program has a SQL injection vul-
nerability. In this example, the code slices consists of five statements, namely lines 2, 3,
9, 11 and 12 of the program. When the program executes the $result=mysql query($sql)
in else code block, the vulnerability would be exploited, which is indicated by the red
arrow. We extract these lines of the program to generate code slices. (Color figure
online)
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1 <?php

2 $id=$_GET['id'];

3 $sql="SELECT * FROM users WHERE id='$id'";

4 // exploit

5 $result=mysql_query($sql);

6 $row = mysql_fetch_array($result);

7 echo $row;

8 ?>

2    0 EXT_STMT
1 FETCH_R                   $0 '_GET'
2 FETCH_DIM_R                  $1 $0, 'id'
3 ASSIGN                                         !0, $1

3    4         EXT_STMT
5 ADD_STRING                    ~3 'SELECT+%2A+FROM+users+WHERE+id%3D%27'
6 ADD_VAR                          ~3 ~3, !0
7 ADD_CHAR                       ~3     ~3, 39
8 ASSIGN                                      !1, ~3

5    9         EXT_STMT
    10         EXT_FCALL_BEGIN
    11         SEND_VAR                                  !1
    12         DO_FCALL                      $5      'mysql_query'
    13         EXT_FCALL_END
    14         ASSIGN                                        !2, $5
6  15         EXT_STMT
    16         EXT_FCALL_BEGIN

17 SEND_VAR                               !2
18 DO_FCALL                      $7    'mysql_fetch_array'
19 EXT_FCALL_END
20 ASSIGN                                     !3, $7

7  21         EXT_STMT
22 ECHO                                       !3

8  23         EXT_STMT
24  RETURN                                 1

Opcode      Return    Operands      

Fig. 4. Code slices and its corresponding bytecode slices. Each line of source code
corresponds to several lines of bytecode. The variable name is automatically replaced,
for example: !0 = $id, !1 = $sql, !2 = $result, !3 = $row.

Generating Bytecode Slices. In this step, we transform the code slices into
bytecode slices by using VLD [13]. Although there are certain specifications and
standards for programming, different programmers still have varying program-
ming habits. In other words, the same vulnerability is likely to have multiple
different representation at the source code level. Learning common vulnerability
features is difficult from the perspective of source code. Bytecode is an more
abstract representation of program. Neural networks can learn lower-level fea-
tures to avoid overfitting. Figure 4 shows code slices (showed in Fig. 3) and its
corresponding bytecode slices.

3.3 Transforming Bytecode Slices into Vectors

In this section, we transform the bytecode slices into digital vectors that cor-
responds to step 4 of Fig. 2. Given that bytecode conversion has completed
tasks, such as removing comments and replacing variable names, excess data
preprocessing is unnecessary. However, some operands are URL-encoded (e.g.,
third line of Fig. 4), so they are decoded first. Each bytecode slice needs to be
encoded into a digital vector. For this purpose, we transform bytecode slices
into token sequence, and each opcode follows the corresponding operations. All
tokens would be split by space. For example, third line of Fig. 4:

$sql=“SELECT * FROM users WHERE id=‘$id’ ”;
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Whose bytecode slices are

4 EXT STMT
5 ADD STRING ˜ 3 ‘SELECT+%2A+FROM+

users+WHERE+id%3D%27’
6 ADD VAR ˜ 3 ˜ 3, !0
7 ADD CHAR ˜ 3 ˜ 3, 39
8 ASSIGN !1, ˜ 3

They can be represented by a sequence of 17 tokens:

“EXT STMT”, “ADD STRING”, “SELECT”, “*”, “FROM”, “users”, “WHERE”,
“id”, “ADD VAR”, “˜ 3”, “!0”, “ADD CHAR”, “˜ 3”, “39”, “ASSIGN”, “!1”, “˜ 3”

This practice leads to a large corpus of tokens. In order to transform these
tokens into digital vectors, we use tokenizer to encode each token into a unique
number, which represents the position of token in the entire vector space.

Bytecode slices may have different numbers of tokens, so that corresponding
digital vectors may have different length. Bi-LSTM takes equal-length vectors
as input, so we need to make an adjustment. For this purpose, we introduce a
parameter L as the fixed length of vectors corresponding to bytecode slices. There
are two cases: when a vector is shorter than L, we pad zeros in the beginning of
the vector; when a vector is longer than L, we delete the beginning part of the
vector. We first determine the suspicious exploit points and then track the input
forward, so the later tokens are crucial. This parts of the vector are retained
when padding and deleting.

LSTM

LSTM

Input vectors

Bi-LSTM layers

Dense layer

Softmax layer

Output value

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Concatenate(y1, y2)Merge layer

Fig. 5. A brief structure of Bi-LSTM neural networks. It evaluates the similarity of
two vectors and products the result. The Bi-LSTM layers can propagate errors both
forward and backward to avoid vanishing gradients problem.
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3.4 Building Bi-LSTM Neural Networks

The core of our method is to calculate the similarity of bytecode between vulner-
ability templates and target program. Therefore, neural networks need to be able
to receive two inputs and produce one output. Figure 5 shows the structure of
neural networks, which has a number of Bi-LSTM layers, a merge layer, a dense
layer, and a softmax layer. The Bi-LSTM layers contain some complex LSTM
cells, with two directions (forward and backward). The merge layer concatenates
the outputs of the two Bi-LSTM layers and combines them into a single tensor.
The dense layer reduces the number of dimensions of the vectors received from
the Bi-LSTM layers. The softmax layer takes the low-dimension vectors received
from the dense layer as input, and is responsible for representing and formatting
the classification result, which provides feedback for updating the neural network
parameters in the learning phase.

3.5 Similarity Calculation

The same types of vulnerabilities may have many different subtypes, which indi-
cate various causes of the vulnerabilities. Therefore, we use a vulnerability tem-
plate to represent a subtype of vulnerability. The target program and vulnera-
bility templates are then used as inputs of the neural networks to calculate the
mean of similarity, denoted as S:

S =
∑N

i=1 BLNN(Ti, P )
N

(1)

where N is the number of vulnerability templates, BLNN is Bi-LSTM neural
networks, Ti is a template for a subtype of a vulnerability, and P is target
program. The output of BLNN is number between 0 (dissimilar) and 1 (similar).
When the value of S exceeds a certain threshold (we set it to 0.5), the target
program is considered to be vulnerable.

4 Experiments and Results

In the following section, we detail of our experimental steps and results. In
Sect. 4.1, we give the evaluation metrics. In Sect. 4.2, we describe the process of
data preprocessing and model training. In Sect. 4.3, we use VulHunter to detect
signal or mixed vulnerabilities and compare results with other methods and
tools. Final, we use VulHunter in practice.

4.1 Evaluation Metrics

Precision, recall, F1-measure, false negative rate (FNR), and false positive rate
(FPR) are the five metrics to evaluate vulnerability detection system. A confu-
sion matrix is used to calculate these parameters. In the confusion matrix, true
positive (TP) is the number of samples with vulnerabilities detected correctly.
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False positive (FP) is the number of samples without vulnerabilities detected
incorrectly. True negative (TN) is the number of samples without vulnerabilities
undetected. False negative (FN) is the number of samples with vulnerabilities
undetected.

– Precision (P) shows how many vulnerabilities detected by system are actual
vulnerabilities. The higher P is, the lower false alarm is:

P =
TP

TP + FP
(2)

– Recall (R) shows the percentage of detected vulnerabilities versus all vulner-
abilities presented. We want a high R value:

R =
TP

TP + FN
(3)

– F1-measure (F1) is the harmonic mean of precision and recall. We also aim
for a high F1-measure value:

F1 = 2
P · R

P + R
(4)

– The FNR measures the ratio of false negative vulnerabilities to the entire
population of samples that are vulnerable. We want a low FNR value:

FNR =
FN

FN + TP
(5)

– The FPR measures the ratio of false positive vulnerabilities to the entire
population of samples that are not vulnerable. We also want a low FPR
value:

FPR =
FP

FP + TN
(6)

4.2 Data Preprocessing and Model Training

Description of Datasets. Our experiments are mainly based on SQL injection
and XSS vulnerabilities numbered CWE-89 and CWE-79 in common weakness
enumeration (CWE) [6], which is a community-developed list of common soft-
ware security weaknesses. The PHP code data comes mainly from NVD [7],
which contains vulnerability programs in production software, and SARD [11],
which has many vulnerability cases. In NVD and SARD, each program or case
has a CWE ID that indicates which type of vulnerability it belongs to. In total,
we collected 18,989 programs, of which 912 have SQL injection vulnerabilities
and 4,352 have XSS vulnerabilities. The rest are the invulnerable programs with-
out a known vulnerability, of which 7,992 are related to SQL injection and 5,733
are related to XSS. We used ten-fold cross-validation, using 90% of the data
as a training set and 10% as a test set. The PHP source code obtained from
NVD is vulnerable, and the programs obtained from SARD have been marked
as “bad” or “good”. Thus we do not need to manually mark them as vulnerable
or invulnerable.
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Table 2. Statistics of the three datasets

Dataset Bytecode
slices

Vulnerable
bytecode slices

Invulnerable
bytecode slices

SQL-SET 8904 912 7992

XSS-SET 10085 4352 5733

MIX-SET 18989 5264 13725

Data Preprocessing. We transform source code into bytecode slices according
to steps 1 to 3 in 3.1 selection and then divide the dataset into the following
three parts: SQL injection vulnerability set, XSS vulnerability set, and mixed
types of vulnerabilities set (i.e., the sum of the first two sets). Table 2 summarizes
the number of bytecode slices in datasets. In the SQL-SET dataset, there are
1,032,509 tokens, of which 182 are different; in the XSS-SET dataset, there are
510,252 tokens, of which 168 are different. The MIX-SET is sum of SQL-SET
and XSS-SET. These symbolic representations are encoded into digital vectors
for training neural networks.

Training Neural Networks. We use the three datasets in Table 2 to train
neural networks and find the best parameters. The training process of the four
main parameters of number of Bi-LSTM layer, batch size, dropout and epoch
is shown in Fig. 6. The selection of each parameter mainly refers to the F1-
measure value and the training time. The more the number of Bi-LSTM layers,
the more complex the neural networks are, which may increase the system’s
performance and uptime. Figure 6(a) shows the process of changing the F1-
measure and number of seconds pre epoch as the number of Bi-LSTM layers
increases. When the number of Bi-LSTM layers is 2, the F1-measure is the
highest and the number of seconds per epoch is also low, so the number of Bi-
LSTM layers is set to 2. Similarly, batch size is set to 256, dropout is set to 0.2,
and epoch is set to 20.

4.3 Vulnerability Detection

In this selection, we verify the vulnerability detection capability of VulHunter
and compare with other vulnerability detection approaches or tools. We select
three open source tools called RIPS [9], sonarqube [12], phpcs-security-audit [8],
and a state-of-the-art systems called VulDeePecker [28]. RIPS, sonarqube, and
phpcs-security-audit are all PHP vulnerability detection tools recommended by
OWASP and widely used. VulDeePecker is a deep learning-based vulnerability
detection system proposed by Li et al. [28]. RIPS, sonarqube, and phpcs-security-
audit can directly detect PHP source code. VulDeePecker was originally designed
to detect buffer error vulnerability and resource management error vulnerabili-
ties in C/C++ programs. For a fair comparison, we construct neural networks
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(a) Bi-LSTM layers (b) Batch_size (c) Dropout (d) Epoch

Fig. 6. Parameter selection. This picture consists of four parts, (a) number of Bi-
LSTM layer, (b) batch size, (c) dropout, and (d) epoch, which all show the trend of
F1- measure and time as parameters change. The time of (a), (b), and (c) is the number
of seconds per epoch, and the time of the last part (d) is the number of seconds that
all epochs add up.

according to VulDeePecker’s design steps and retrain by our datasets. Table 3
shows the detection results of the system.

First, Let’s analyze the results of Vulhunter. Its performance is better at
detecting XSS vulnerabilities than detecting SQL injection vulnerabilities due
to the imbalance of SQL-SET dataset. The ratio of vulnerable bytecode slices to
the invulnerable in the XSS-SET dataset is approximately 0.76:1. However, the
ratio in the SQL-SET dataset is 0.11:1. We have also observed that detection
of mixed types of vulnerabilities is also less effective than XSS vulnerabilities
detection. The precision and F1-measure on the MIX-SET dataset are lower
than those on the XSS-SET. For mixed-type vulnerability detection, the neural
networks trained by MIX-SET may also identify a vulnerability as another type
of vulnerability, in addition to possibly erroneously determining whether target
program is vulnerable. These all increase the probability of producing errors.
Further, we observed that recall rate is very high and the FPR is very low in
the detection results of the three datasets. And the code with and without the
vulnerability often only differ between one statement and even a few characters,
which indicates that neural networks can distinguish very small vulnerability
features.

Second, we find that VulHunter and VulDeePecker are better than other
approaches or tools. That is to say, the deep learning-based algorithm for vul-
nerability detection is effective. We observed that RIPS, sonarqube and phpcs-
security-audit have very similar results on all three datasets, with higher recall,
FPR, and lower F1-measure (sonarqube is slightly superior to other two). Vul-
Hunter and VulDeePecker have more than 80% F1-measure, and both FPR and
FNR are below 10%. The highest F1-measure of the other three tools is only
60.21%, but the highest FPR is 100%. Their detection relies mainly on rules
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Table 3. Results of comparing with other approaches or tools

Approaches or tools P(%) R(%) F1(%) FPR(%) FNR(%)

SQL-SET

RIPS 13.60 95.65 23.16 69.88 4.35

Sonarqube 12.98 40.22 19.62 31.00 59.78

Phpcs-security-audit 10.60 97.83 19.13 94.88 2.17

VulDeePecker 86.02 86.96 86.86 1.63 13.04

VulHunter 78.63 100.0 88.04 3.13 0.00

XSS-SET

RIPS 43.51 97.71 60.21 96.51 2.29

Sonarqube 41.79 43.81 42.78 46.42 56.19

Phpcs-security-audit 42.06 95.41 58.39 100.0 4.59

VulDeePecker 90.04 97.25 93.51 8.19 2.75

VulHunter 99.02 92.22 95.50 0.70 7.78

MIX-SET

RIPS 31.42 75.78 44.41 63.58 24.22

Sonarqube 24.44 62.12 35.08 73.85 37.88

Phpcs-security-audit 29.89 94.70 45.43 85.43 5.30

VulDeePecker 76.43 95.47 84.89 8.19 4.53

VulHunter 85.76 97.99 91.44 6.26 2.01

defined by human experts, and FPs are easily generated when the code of the
vulnerability is not very different from the code without the vulnerability.

Third, we observed that VulHunter is better than VulDeePecker in most
cases. VulHunter has the highest precision (97.67% in XSS-SET and 85.76%
in MIX-SET) and F1-measure (95.13% in SQL-SET, 96.77% in XSS-SET, and
91.44% in MIX-SET). This result can be explained from three aspects.

– We transform the source code into bytecode slices and then use vectors at
the bytecode level to represent the vulnerability features. A lot of redundant
information, such as comments, custom variable names, is automatically pro-
cessed after the source code is converted to bytecode, thereby avoiding the
over-fitting problem caused by different writing styles.

– After converting the program to bytecode we can see many implicit functions
that are not in the source code. This means that we can find more exploit
execution paths from bytecode and extract more features, so it can avoid
many false negatives.

– We determine whether there is a vulnerability based on the similarity between
the target program and vulnerability templates calculated by the neural net-
works. Templates can preserve the features of the vulnerability so that the
neural networks only focus on the calculation of similarity. The template-
based similarity calculation method can flexibly cope with variants of differ-
ent vulnerabilities, and it only needs to add corresponding templates when
encountering new vulnerability types.
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Using VulHunter in Practice. To further demonstrate the use of VulHunter,
we used VulHunter to detect three software developed by PHP: SEACMS,
ZZCMS, and CMS Made Simple (CMSMS). These software versions are recently
released. According to the data processing steps, we extracted 681, 2,351, and
2,495 suspicious exploit points from three software and then generated byte-
code slices. Subsequently, We use VulHunter to detect vulnerabilities and man-
ually verified the results to determine that five of the vulnerabilities were real.
Table 4 shows the details of the vulnerability detection results. CVE-2018-19350,
CVE-2018-19349, and CVE-2018-20464 are vulnerabilities that have not been
published before. They were first discovered and marked in bold in the table.
CVE-2018-14962 and CVE-2018-5963 are also real vulnerabilities but have been
published by other security researchers.

Table 4. Vulnerabilities detected in real software

CVE-ID Type Software Version

CVE-2018-19350 XSS SEACMS 6.6.4

CVE-2018-19349 SQL Injection SEACMS 6.6.4

CVE-2018-14962 XSS ZZCMS 8.3

CVE-2018-5963 XSS CMSMS 2.2.8

CVE-2018-20464 XSS CMSMS 2.2.8

5 Related Work

Vulnerability detection technology is divided into three types: static analysis,
dynamic analysis, and mixed analysis [27]. Table 5 shows recent technologies on
vulnerability detection. Static analysis is divided into two types: graph-based
static analysis and static analysis with data modeling. These technologies has
been used by other researchers. For example, Song et al. proposed a method
called BitBlaze, which has a static analysis component that can detect vulnera-
bilities using CFG, DFG and weakest precondition calculation, called Vine [31].
Yamaguchiet et al. proposed a novel and comprehensive representation of source
code called code property graph that merges concepts of abstract syntax trees,
classic program analysis, program dependence graphs, and control flow graphs,
as well as help user to model templates for common vulnerabilities with graph
traversals [33]. Nguyen et al. propose an enhanced form of CFG known as lazy-
binding CFG to produce image-based representation. This technology works well
for malware detection [29].
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Table 5. Summary of recent technologies on vulnerability detection

Methods Technologies Advantages Disadvantages

Static analysis Graph-based static analysis High code

coverage

Lack of run-time

information
Static analysis with data modeling

Dynamic analysis Fuzzing: AFL, AFLFast, AFLGo, etc. Fast Low code

coverage
DTA: DTA, TEMU, DTA++, etc.

Mixed analysis Concolic: DART, CUTE, Driller Fast, high

code coverage

Path explosion

6 Conclusions and Future Work

In this paper, we present VulHunter, an automated vulnerability detection sys-
tem based on deep learning and bytecode. With graph-based static analysis
methods, VulHunter can find the code related to the vulnerability and then
transform it into bytecode slices that represent the vulnerability well. Bytecode
slices are transformed to digital vectors as inputs of neural networks. Our neural
networks are different from existing algorithms for direct classification, which
can determine whether the target program is vulnerable by calculating similar-
ity between target program and vulnerability templates. Experimental results
show that VulHunter achieves 88.04%, 95.50% and 91.44% F1-measure for SQL
injection, XSS and mixed types vulnerabilities detection respectively, which are
the highest value compared with other approaches or tools. We also tried to use
VulHunter to detect three real PHP software (i.e., SEACMS, ZZCMS and CMS
Made Simple). Note that three of the five vulnerabilities found have not been
published before.

For the future work, we will further the research from two aspects. For one
thing, we found that existing automated vulnerability detection methods are
powerless for complex vulnerabilities. Complex vulnerabilities have very long
ROC-Chains (Return Oriented Programming Chain) and are often associated
with multiple files. Therefore, it is difficult to analyze the structure and data
information of the program. In the future, we will continue to study the appli-
cation of deep learning in complex vulnerability detection. For another, due to
some indeed limitations of the static analysis method itself, the system is diffi-
cult to detect for the vulnerabilities that can occur in execution. For example,
some overflow vulnerabilities are easier to detect through dynamic fuzzing tech-
niques. Thus, we will further study the application of deep learning in dynamic
vulnerability detection, which can detect the vulnerabilities that only occurs in
execution.
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China (No. 2016QY03D0605).
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A Appendices

A.1 LSTM Networks

Long short term memory networks, usually just called LSTMs, are a special kind
of RNN, capable of learning long-term dependencies. LSTMs contain a complex
structure called LSTM cells, which are briefly reviewed below and referred to
[25] for greater details.

Each LSTM cell uses a forget gate f (i.e., the state flow of the cell), an input
gate i (i.e., the input data), and an output gate o (i.e., the output of module) to
control the data flow through the neural networks. Figure 7 shows the detailed
structure of the LSTM cell.

Fig. 7. LSTM cell

The forget gate looks at ht−1 and xt, and outputs a number between 0 and
1, which represents how many percentages of Ct−1 are retained. The value of ft
at the time t is:

ft = σ(Wf [ht−1, xt] + bf ) (7)

The input gate has two parts. First, a Sigmoid layer outputs it that decides
which values will update. Next, a tanh layer creates a vector of new candidate
values, C̃t, that could be added to the state. The values of it and C̃t at the time
t are:

it = σ(Wi[ht−1, xt] + bi) (8)

C̃t = tanh(Wc[ht−1, xt] + bc) (9)

And then the new cell state Ct is:

Ct = ft � Ct−1 + it � C̃t (10)

The output gate is based on Sigmoid layer value ot and new cell state Ct to
calculate the output ht. The ot and ht at the time t are calculated as follows:

ot = σ(Wo[ht−1, xt] + bo) (11)
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ht = ot � tanh(Ct) (12)

where σ denote Sigmoid function 1
1+exp(−x) , tanh denote the hyperbolic tangent

function exp(x)−exp(−x)
exp(x)+exp(−x) and � denote the element-wise multiplication, ht−1 is

output of cell at the time t − 1, Ct−1 is state of cell at the time t − 1, xt is input
of cell at time t, Wf , Wi, Wo, WC are the weight matrices with the forget gate,
the input gate, the output gate, and the cell state input, and bf , bi, bo, bC are
bias items of the forget gate, the input gate, the output gate, and the cell state
input.

Fig. 8. Neural networks comparison. This figure shows the comparison of DNN (green),
CNN (red), RNN (orange), and Bi-LSTM (blue) on the SQL-SET, XSS-SET, and MIX-
SET datasets. The ordinate is F1-measures, and the values shown in the figure are the
highest values that can be achieved by each network. (Color figure online)

A.2 Neural Networks Comparison

We compared three other types of neural networks: DNN, CNN, and RNN.
Similarly, they are all adjusted to determine the best F1-measure. Figure 8 shows
the comparison of the best F1-measures for the four neural networks on three
datasets. The F1-measures of the four networks are Bi-LSTM, CNN, DNN, and
RNN from high to low. The F1-measures of CNN and DNN are not much different
at only 0.02 to 0.04 lower than Bi-LSTM. But the value of RNN on the three
data sets is only 0.66, which is most likely caused by the vanishing gradients
problem (or, exploding gradient problem).
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Abstract. The application of Deep Learning (DL) technique for code
analysis enables the rich and latent patterns within software code to
be revealed, facilitating various downstream tasks such as the soft-
ware defect and vulnerability detection. Many DL architectures have
been applied for identifying vulnerable code segments in recent litera-
ture. However, the proposed studies were evaluated on self-constructed/-
collected datasets. There is a lack of unified performance criteria, acting
as a baseline for measuring the effectiveness of the proposed DL-based
approaches. This paper proposes a benchmarking framework for building
and testing DL-based vulnerability detectors, providing six built-in main-
stream neural network models with three embedding solutions available
for selection. The framework also offers easy-to-use APIs for integra-
tion of new network models and embedding methods. In addition, we
constructed a real-world vulnerability ground truth dataset containing
manually labelled 1,471 vulnerable functions and 1,320 vulnerable files
from nine open-source software projects. With the proposed framework
and the ground truth dataset, researchers can conveniently establish a
vulnerability detection baseline system for comparison and evaluation.
This paper also includes usage examples of the proposed framework,
aiming to investigate the performance behaviours of mainstream neu-
ral network models and providing a reference for DL-based vulnerability
detection at function-level.

Keywords: Vulnerability detection · Neural network · Function-level
detection

1 Introduction

Deep Learning (DL), a breakthrough technique which has achieved promising
results in many fields such as image processing and natural language process-
ing (NLP), has also been widely applied for software code analysis [3] and
for vulnerability detection [17,18,20,21]. Various DL architectures, including
the Multi-Layer Perceptron (MLP) [10,29], the Convolutional Neural Network
c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ICICS 2019, LNCS 11999, pp. 219–232, 2020.
https://doi.org/10.1007/978-3-030-41579-2_13
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(CNN) [11,16,27,32], and the Long-Short Term Memory (LSTM) [18,20,21]
have been adopted for learning latent vulnerable code patterns from different
software code representations (e.g., the Abstract Syntax Trees (ASTs) or the
Control Flow Graphs (CFGs)). However, the aforementioned approaches were
evaluated on self-constructed/-collected datasets, and/or compared with conven-
tional code analysis methods. There is a lack of a unified benchmarking dataset
for evaluating the effectiveness of these DL-based approaches and there is also
the absence of a baseline system which can be easily replicated to act as a reliable
performance metric for comparison and evaluation.

In this paper, we take a step forward to bridge this gap by proposing a
benchmarking framework based on Keras [7] with TensorFlow [2] backend, pro-
viding one-click execution scripts for establishing a DL-based baseline system
for vulnerability detection. The framework encapsulates six mainstream neural
network models and can be easily extended to support different code embed-
ding schemes and neural models. We also constructed a vulnerability dataset at
two levels of granularity i.e., the file-level and the function-level. The dataset is
labeled based on the information provided by the Common Vulnerabilities and
Exposures (CVEs)1 and the National Vulnerability Database (NVD)2, which are
publicly available vulnerability data repositories. With this dataset and the pro-
posed framework, a DL-based baseline system for vulnerability detection can be
conveniently established for performance comparison and evaluation. We have
published the proposed framework and dataset at Github3. In summary, the
contributions of this paper are two-fold:

– We developed a modularized benchmarking framework encapsulating six
mainstream neural network models and two different code embedding
schemes, providing one-click execution for building and testing vulnerability
detection models. To guarantee the extendability, the framework offers APIs
for easy integration of more neural network models and to support more code
embedding solutions.

– We constructed a real-world vulnerability ground truth dataset for perfor-
mance evaluation of vulnerability detection solutions. We manually checked
nine open-source projects across 1,089 popular releases and labelled/collected
1,471 vulnerable and 59,297 non-vulnerable source code functions. We also
record 1,320 vulnerable and 4,460 non-vulnerable files.

The rest of this paper is organized as follows: Sect. 2 reviews the existing
studies which applied DL techniques for vulnerability detection. Section 3 details
the design and implementation of the proposed framework. We also introduce our
proposed dataset and the known datasets in this field. In Sect. 4, we provide case
studies to demonstrate how the proposed framework facilitates the building of
the baseline systems using the different datasets. Section 5 concludes the paper.

1 https://cve.mitre.org/.
2 https://nvd.nist.gov/.
3 https://github.com/DanielLin1986/Function-level-Vulnerability-Detection.

https://cve.mitre.org/
https://nvd.nist.gov/
https://github.com/DanielLin1986/Function-level-Vulnerability-Detection
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2 Related Work

The successes of neural techniques in many areas, particularly in the field of NLP,
motivated researchers to apply neural networks for code analysis for the detection
of software defects and vulnerabilities. Early researchers adopted fully connected
networks (a.k.a the Deep Neural Networks (DNNs) or the MLP) for detect-
ing vulnerabilities in PHP applications [29], Linux programs [10] and Android
applications [9,23]. Nevertheless, the approaches proposed by these studies are
task-/project-specific. Thus, no performance comparison was made among these
studies.

Later studies generally built on the assumption that software code con-
tains semantics and syntactic resembling the natural languages. Therefore, ideas
and techniques from the NLP field have been applied for learning code seman-
tics indicative of software vulnerabilities. The CNN (e.g., the text-CNN [13]),
which can learn high-level representations from small context windows, has been
applied for detecting vulnerabilities at assembly level [16] and at source code
function-level [11,27]. Another line of studies applied variants of Recurrent Neu-
ral Network (RNN) (e.g., the bidirectional LSTM network) for learning vul-
nerable code patterns [17–21]. The authors assumed that the vulnerable code
semantics could be revealed by analyzing a long-range code context which could
be achieved by using the LSTM network.

Most recently, researchers proposed more expressive models by constructing
complex network structures. Wu et al. [32] added convolutional layers on top of
an LSTM network for identifying vulnerable Linux programs. Le et al. [15] built
their model on a Maximal Divergence Sequential Auto-Encoder (MDSAE) for
extracting representations from sequences of machine instructions. Choi et al.
[6] and Sestili et al. [28] applied the memory network [30,31] for detecting buffer
overflow vulnerabilities. However, due to each study using self-constructed/-
collected dataset, there was no systematic performance comparison conducted
across different approaches to indicate their effectiveness.

3 Benchmarking Framework

In this section, we introduce the design of the proposed benchmarking framework
and our proposed dataset which can be utilized for establishing a baseline system
for vulnerability detection. We also suggest a new metric for evaluating the
performance vulnerability detectors.

3.1 Architecture and Implementation

Fig. 1 illustrates the modularized implementation of the proposed framework. It
consists of three modules: the code encoding/embedding module, the training
module and test module. It is a common practice to convert text/code tokens
to vector representations so that they are acceptable by the underlying Machine
Learning (ML) algorithms. More importantly, we aim at preserving the text/code
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Fig. 1. The proposed benchmarking framework consists of three modules: the code
encoding/embedding module, the training module and the test module. In the train-
ing phase, it allows users to choose different embedding schemes and different neural
network models for building vulnerability detectors. In the test phase, it enables users
to test the trained network model or to obtain representations from an arbitrary layer
of a trained network. The framework provides APIs for easy integration of word/code
embedding schemes and neural network models.

semantics while converting the text/code tokens to meaningful vector represen-
tations which we call the embeddings. The encoding/embedding module is built
to serve this purpose. The module wraps mainstream word embedding schemes
to enable the textual inputs i.e., the raw input code sequences to be converted
to meaningful embeddings when we plot these embedding in a vector space,
the semantically similar code tokens will be in close proximity in that vector
space. This allows the neural network models to learn from a rich source. At this
stage, the framework encapsulates three popular word embedding models: the
Word2vec [22] model, the GloVe [24] model and FastText model [5].

In the training phase, the training module allows users to choose one of the
built-in neural network models from the model pool for building a vulnerabil-
ity detector. The framework provides six mainstream neural models: the DNN,
the text-CNN and four RNN variants (i.e., the LSTM [12], the Gated Recurrent
Unit (GRU) [14], and their bidirectional forms (the Bi-LSTM and the Bi-GRU)).
During the test phase, users can feed the test data to a trained model and obtain
detection results. The results are provided in a user-friendly format, including
the confusion matrix and a CSV file recording the provability of each test sam-
ple containing the vulnerable code. Additionally, users can use trained neural
networks as feature generators for generating neural representations from an
arbitrary layer of a network. With this functionality, the generated represen-
tations can be used as features for downstream tasks (e.g., to train a random
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forest classifier). The test module also provides Keras APIs for visualizing train-
ing/validation processes and supports TensorBorad4 logging system.

The framework provides one-click execution Python scripts, allowing users to
invoke different modules of the framework to accomplish various tasks by spec-
ifying script arguments/parameters. For example, users can specify arguments
such as –train or –test to switch the framework to training or test model. In
addition, the script arguments allow users to select different built-in code embed-
ding schemes and network models. A configuration file which contains plain text
parameters is provided to offer more detailed options for model performance
optimization. Users can either use the default settings for model training or
customize the training process by fine-tuning the training settings and model
hyperparameters.

We also provide easy-to-use APIs so that users can easily integrate new
embedding schemes or implement their network models for training. The embed-
ding API requires a Python dictionary object known as the embedding index.
It is a table containing mappings between code tokens and the corresponding
vector representations learned by the embedding method. The network model
API accepts a Python class whose constructor takes one parameter which is the
instance of the configuration file. Any models implemented using Keras or Ten-
sorFlow can be encapsulated in a Python class and invoked by the framework.

3.2 Dataset

The Proposed Dataset. The dataset we construct consists of nine popular
open-source software projects written in C programming language, as listed in
Table 1. It provides dual-granularity labelled samples, namely the vulnerable and
non-vulnerable labels at function and file level. The vulnerable functions and
files are labelled based on the description of the NVD and CVE web pages. In
this paper, we focus on the vulnerabilities disclosed in the open-source projects
because their source code is publicly available.

Typically, a vulnerability description on the NVD/CVE page specifies the
exact location of the vulnerable code fragments in a particular version of a pro-
gram. If the vulnerable code fragments are within a function boundary, we down-
load the corresponding version of the source code of the program and label the
source code function as vulnerable. Meanwhile, we label the file which contains
the vulnerable function as vulnerable. A vulnerable file can contain at least one
vulnerable function. For example, the vulnerable code fragments can span across
multiple functions but they are within a file boundary, we only label the file as
vulnerable. On the cases where the vulnerability description does not mention
the location of vulnerable code fragments, we check the program’s Github and
search the commit messages using the CVE ID as the keyword. We read through
the commit message(s) of the returned result and identify the commit(s) that
contain(s) the fix of the CVE. By analyzing the diff files, we identify the code
fragment(s) associated with the CVE fix and the diff files allow us to track

4 https://www.tensorflow.org/guide/summaries and tensorboard.

https://www.tensorflow.org/guide/summaries_and_tensorboard
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Table 1. The number of vulnerable and non-vulnerable functions/files involved in the
nine open-source projects in the proposed dataset.

Open-source

projects

File-level Function-level

# of non-vulnerable

files collected

# of vulnerable

files labeled

# of non-vulnerable

functions collected

# of vulnerable

functions labeled

Asterisk 862 84 17,755 94

FFmpeg 553 293 5,552 249

HTTPD 248 141 3,850 57

LibPNG 34 44 577 45

LibTIFF 94 151 731 123

OpenSSL 867 150 7,068 159

Pidgin 448 42 8,626 29

VLC Player 616 45 6,115 44

Xen 738 370 9,023 671

Total 4,460 1,320 59,297 1,471

the code prior to the fix. Then, we download the code before the fix and label
them accordingly. By using this method, we can label some vulnerable files and
functions which are not clearly described on the NVD and CVE pages. For the
vulnerabilities which are not related to any functions or files (e.g., vulnerabili-
ties caused due to the misconfiguration or incorrect settings). We simply discard
these CVEs.

To collect the non-vulnerable files and functions, we download the latest
release of the software projects at the time of writing. We assume that all the
known vulnerability records in the CVE and NVD have been fixed in the latest
release of a software project. To obtain the non-vulnerable files, we exclude the
vulnerable files (despite these files have been fixed in the latest version) and
use the remaining files as the non-vulnerable files. To obtain the non-vulnerable
functions, we collect all the functions from the non-vulnerable files and label
them as non-vulnerable.

The Synthetic Dataset. The synthetic vulnerability datasets provided by the
Software Assurance Reference Dataset (SARD) project [1] contains artificially
constructed test cases to simulate known vulnerable source code settings and
patterns. The project consists of stand-alone test suits for C/C++ and Java,
which are known as the Juliet Test Suites [4]. Each test site contains one main
function so that the code can be compiled. In this paper, we collected all the C
test cases from the SARD project and extracted 100,000+ functions from the
test cases, forming a large synthetic function pool, as shown in Table 2.

The proposed dataset and the SARD project dataset form the base for bench-
marking the proposed DL-based vulnerability detection framework. We aim to
provide case studies of our framework and evaluate the performance behaviours
of each neural network model on the proposed dataset containing real-world
vulnerability samples and the SARD dataset having only synthetic samples.
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Table 2. The number of vulnerable and non-vulnerable functions extracted from the
SARD project.

Dataset # of test
cases

# of vulnerable
C functions

# of non-vulnerable
C functions

The SARD project 64,099 83,710 52,290

3.3 Performance Metrics

Precision, recall and F1-score are mainstream performance metrics for measuring
the success of classification tasks. However, in the vulnerability detection sce-
nario, one may face the severe data imbalance issue since there are significantly
more non-vulnerable samples than the vulnerable ones in practice. For instance,
the ratio of non-vulnerable functions to vulnerable ones is approximately 40 in
our proposed dataset. Using metrics such as precision and recall would under-
estimate the detector’s performance because the classifier tends to fit the data
distribution of the majority class and by default, it uses the 0.5 as the decision
boundary in the cases of binary classification. Therefore, in this paper, we apply
the top-k percentage precision (P@K% ) and top-k percentage recall (R@K% )
as the metrics for evaluating the performance of vulnerability detectors. Similar
metrics are usually adopted in the context of information retrial system such
as search engines for measuring how many relevant documents are acquired in
all the top-k retrieved documents [8]. We use these metrics in the vulnerability
detection context to simulate a practical case where the number of functions to
be retrieved for inspection accounted for a small proportion of total functions
due to the constraints of time and resources.

In the vulnerability detection context, the top-k percentage refers to a list
of retrieved functions accounted for k% of the total functions in the test set
which are ordered by their probabilities of being vulnerable. The P@K% denotes
the proportion of actual vulnerable functions identified by the detector in the
top-k% retrieved function list. The R@K% refers to the proportion of actually
found vulnerable functions which are in the top-k% returned function list. For
measuring the vulnerable class, the P@K% and R@K% can be calculated using
following equations:

P@K% =
TP@k%

TP@k% + FP@k%
, R@K% =

TP@k%
TP@k% + FN@k%

, (1)

where TP@k% is the true positive samples which are the actual vulnerable func-
tions identified by the detector when retrieving k% most likely vulnerable func-
tions. For example, there are 10,000 functions in a test set. After prediction,
we examine 1% (k = 1) of the total functions which are the most likely to be
vulnerable. That is, we retrieve top 100 functions ranked by their probability of
being vulnerable and identify how many of these functions are actually vulner-
able. Similarly, the FP@k% denotes the false vulnerable functions found by the
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Table 3. The number of vulnerable and non-vulnerable functions partitioned on two
datasets: the proposed dataset and the SARD dataset.

Dataset Training set Validation set Test set

# of vul.
functions

# of total
functions

# of vul.
functions

# of total
functions

# of vul.
functions

# of total
functions

The proposed
dataset

883 36,458 294 12,155 294 12,155

The SARD
dataset

20,941 45,000 7,119 15,000 6,940 15,000

detector when returning k% most probable vulnerable functions. The FN@k%
refers to the true vulnerable samples missed by the detector when returning k%
functions.

4 Evaluation

This section evaluates the proposed benchmarking framework using the afore-
mentioned real-world dataset and the SARD synthetic dataset for establishing
baseline systems.

4.1 Experiment Settings and Environment

We set up two baseline systems using the proposed framework on two datasets.
The first baseline system uses our constructed dataset, consisting of nine real-
world open-source projects. It aims to investigate how the neural network mod-
els perform in a real-world scenario where severe data imbalance issue existed.
The second baseline system uses the synthetic function samples from the SARD
dataset. We extract functions from the test cases of the SARD project and ran-
domly selected a subset of functions to form the dataset. The second baseline
system aims to examine the behaviour of neural network models in an ideal
scenario, so the dataset should not have data imbalance issue.

In this paper, we build the vulnerability detector at function-level and the
Word2vec embedding scheme is chosen for embedding the code tokens. We use
all the samples from our proposed dataset. For the SARD project, we randomly
selected 35,000 vulnerable and 40,000 non-vulnerable C function samples from
the test cases downloaded from the SARD data repository5. For both datasets,
we partition the samples into the training, validation and test sets with the
ratio of 6:2:2. The number of vulnerable and non-vulnerable samples in each set
is listed in Table 3. For all the neural network models applied for case studies, we
use the Stochastic Gradient Descent (SGD) optimizer with all default settings
provided by Keras and the loss function to minimize is the binary cross-entropy.

5 https://samate.nist.gov/SARD/testsuite.php#sardsuites.

https://samate.nist.gov/SARD/testsuite.php#sardsuites
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The neural models were implemented using Keras (version 2.2.4) [7] with
a TensorFlow backend (version 1.13.1) [2]. The Word2Vec embedding software
was provided by the gensim package (version 3.4.0) [26] using all default settings.
The computational system used was a server running CentOS Linux 7 with two
Physical Intel(R) Xeon(R) E5-2690 v3 2.60GHz CPUs and 256GB RAM with
NVIDIA GTX 1080Ti GPUs.

4.2 Case Studies – The Bi-LSTM Network

In this case, we build the vulnerability detector using Bi-LSTM network and
perform training and test on two datasets – the proposed dataset and the SARD
dataset. We partition them into three sets according to Table 2. The Bi-LSTM
network we design has seven layers. The first layer is the Word2vec embedding
layer which converts the input code sequences to meaningful embedding vectors.
The second and the third layers are bidirectional LSTM layers each of which con-
tains 64 LSTM cells. A bidirectional layer contains a forward and a backward
LSTM network so that the combined output can obtain information from both
the preceding and succeeding context simultaneously. This allows the Bi-LSTM
network to facilitate the learning of vulnerable code patterns which are associ-
ated with multiple lines of code [18,21]. We concatenate the output of the LSTM
networks of two directions and use a pooling layer for downsampling features.
The last three layers of the network are dense layers, aiming to further converge
the outputs to a single probability.

As the results are shown in Table 4, the Bi-LSTM network achieved better
performance on the synthetic samples from the SARD dataset. When retriev-
ing less than 50% of functions ranked by the probability of being vulnerable, the
detector could identify all the vulnerable functions. When returning 50% of func-
tions, all the vulnerable functions were found (represented by a 100% recall). In
contrast, the Bi-LSTM network underperformed on the proposed dataset consist-
ing of real-world function samples. When retrieving 1% of total functions which
were considered being vulnerable, only 54% were actually vulnerable. However,
when returning 20% of total functions, 87% of actual vulnerable functions could
be identified and 99% of vulnerable function were found when retrieving only
50% of functions.

Table 4. The comparative results of the Bi-LSTM network on two datasets when
retrieving different percentages of function samples ordered by their probabilities of
being vulnerable.

Dataset Precision and recall calculated when top k% functions were retrieved

1% 10% 20% 50%

Precision Recall Precision Recall Precision Recall Precision Recall

The proposed dataset 54% 22% 18% 75% 10% 87% 5% 99%

The SARD dataset 100% 2% 100% 22% 100% 43% 93% 100%
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4.3 Case Studies – The Text-CNN

Using the identical data partition setting mentioned in the previous case study,
we build the vulnerability detector using the text-CNN implemented by Kim
[13]. The only difference is that the convolution layer we use contains only 16 fil-
ters with four different sizes being 3, 4, 5 and 6, respectively. A filter can extract
features from a small context window and various filters of different sizes are able
to obtain different levels of features from the code sequences. This is different
from the Bi-LSTM network which learns the long-range contextual dependen-
cies from the code through the LSTM cells in the bidirectional structure. The
filters of the text-CNN focus on extracting local features from small code con-
texts. Subsequently, the extracted features are passed to the pooling layers. After
the pooling layers, the three dense layers are converted the features to a single
probability.

Table 5. The comparative results of the text-CNN on two datasets when retrieving dif-
ferent percentages of function samples ordered by their probabilities of being vulnerable.

Dataset Precision and recall calculated when top k% functions were retrieved

1% 10% 20% 50%

Precision Recall Precision Recall Precision Recall Precision Recall

The proposed dataset 70% 29% 20% 81% 11% 90% 5% 97%

The SARD dataset 100% 2% 100% 22% 100% 43% 91% 98%

Table 5 shows the results of using text-CNN as the vulnerability detector.
Similar to the results achieved by the Bi-LSTM network, the text-CNN per-
formed well on the SARD dataset. The only difference between the Bi-LSTM
network and the text-CNN on the SARD dataset is that when retrieving 50% of
potentially vulnerable functions, the text-CNN could correctly identify 98% of
actual vulnerable functions in the test set. Compared to the result achieved by
the Bi-LSTM network (being 100%), the text-CNN underperformed. However,
on our proposed dataset containing real-world samples, the text-CNN outper-
formed the Bi-LSTM network when returning less than 20% of the vulnerable
functions. In particular, when retrieving 1% of vulnerable functions, the text-
CNN could find 29% of total vulnerable functions. In contrast, the Bi-LSTM
could identify only 22% of total vulnerable ones.

4.4 Case Studies – The DNN

Keeping the data partition setting unchanged, we build the vulnerability detector
using the network containing fully connected layers i.e., the DNN. In contrast
to the Bi-LSTM network and the text-CNN, the DNN is a generic structure
not specifically designed for processing sequential data nor for spatial data. It is
also “input structure-agnostic”. Namely, the network can take data of different
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formats as inputs [25]. A DNN consists of multiple dense layers which map the
inputs to space where data of different classes are more separable. In a sense,
dense layers can be used to learn a non-linear function (with the non-linearity
introduced by the activation functions) which better fits the complex and latent
patterns of the data.

The DNN we use contains 6 layers. Identical to the Bi-LSTM network and
the text-CNN, the first layer is the embedding layer for converting the code
sequences to meaningful embeddings. The second layer flattens the outputs of
the embedding layer so that the outputs can be 2-D tensors acceptable by the
subsequent dense layers. The first dense layer contains 128 neurons. The number
of the neurons in the second layer reduces to half and the same settings are
applied for the third layer. The last layer has only one neuron which converges
the outputs of the previous layer to a single probability.

Table 6. The comparative results of the DNN on two datasets when retrieving different
percentages of function samples ordered by their probabilities of being vulnerable.

Dataset Precision and recall calculated when top k% functions were retrieved

1% 10% 20% 50%

Precision Recall Precision Recall Precision Recall Precision Recall

The proposed dataset 44% 18% 15% 62% 10% 80% 5% 96%

The SARD dataset 100% 2% 100% 22% 100% 43% 93% 100%

Table 6 lists the results of using DNN as the vulnerability detector on both
the SARD and the proposed datasets. In contrast to the Bi-LSTM network and
the text-CNN, the DNN underperformed on the proposed real-world dataset,
achieved only 44% precision and 18% recall when retrieving 1% of the total
functions which are most likely vulnerable. However, when retrieving 50% of the
total functions, the performance of DNN was identical to that of the Bi-LSTM
network and the text-CNN. On the SARD dataset, the DNN performed similarly
compared with the other two networks.

4.5 Discussion

This section discusses the possible causes of the performance behaviours of
the three network structures described in the aforementioned case studies. As
shown in Tables 4, 5 and 6, when using the SARD dataset which consists of
synthetic function samples, all the networks achieved similar and satisfactory
performance. In contrast, the same networks underperformed on the proposed
real-world dataset. The underlying reason is that the synthetic function samples
are artificially constructed, following a template-like coding format. Therefore,
the vulnerable and non-vulnerable code patterns can be easily learned and differ-
entiated by the chosen neural networks. Whereas, the proposed dataset contains
real-world function samples from open-source projects among which the code
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structure and logic vary significantly. Thus, the vulnerable code patterns are
diverse and hidden in the complex code logic, which are difficult to be captured
by the neural network models.

When using the proposed real-world dataset, different network structures
exhibited varying performance behaviours, demonstrating that network struc-
tures of different types have different capacities in terms of learning vulnerable
code patterns. Compared with the Bi-LSTM network and the text-CNN, the
DNN underperformed on the proposed real-world dataset. This indicated that
the DNN which contains only the fully connected dense layers was less effective
for learning the characteristics of the potentially vulnerable code. Nonetheless,
the Bi-LSTM network and the text-CNN which are specifically designed for
processing sequential and spatial data (i.e., the code sequences in our context)
facilitated the learning of vulnerable code patterns, resulting in more accurate
vulnerability detection on the real-world samples. The Bi-LSTM network which
has bidirectional LSTM layers and the text-CNN which equips with multiple fil-
ters, are capable of handling the contextual dependencies among the elements in
a sequence. Noticeably, the text-CNN achieved the best performance on the pro-
posed dataset when retrieving less than 20% of the total functions. This revealed
that the high-level features which were extracted from small context windows by
the filters of the text-CNN contributed to more effective learning of vulnerable
code patterns.

5 Conclusion and Future Work

In conclusion, we propose a DL-based framework, providing easy-to-use Python
scripts for building/testing vulnerability detectors. To evaluate the usability of
the framework and the performance of the built-in neural networks, we apply
two datasets for a comprehensive benchmark. The first dataset is the SARD
dataset containing synthetic vulnerability samples and the second one is a real-
world vulnerability dataset which we manually constructed by labelling more
than 1,300 vulnerable files and functions. We performed three case studies using
the DNN, the Bi-LSTM network and the text-CNN network. The experiments
showed that their performance behaviours were identical on the SARD synthetic
dataset, indicating that the network structures were not an important variable
affecting the performance on the synthetic vulnerability samples. Nevertheless,
the performance behaviours of the three networks on the proposed real-world
dataset revealed that the network models which were context-aware i.e., the
text-CNN and the Bi-LSTM networks facilitated the detection of the real-world
vulnerable samples.

The proposed real-world vulnerability dataset is still in a preliminary stage,
requiring further effort to improve. Our future work will focus on collecting vul-
nerable and non-vulnerable code at binary-level, since many software tools are
closed-source. Additionally, the current dataset does not include the patched
vulnerabilities as the non-vulnerable samples. Being able to differentiate the
vulnerabilities from their patched versions can be a key performance metric for
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evaluating the effectiveness of the deep learning-based detectors. Thus, obtain-
ing the patched vulnerable functions and files should also be our future work.
Furthermore, we will continue to label more vulnerable samples and meanwhile,
adding vulnerability type and severity information to the labeled vulnerabilities
so that the dataset can be more useful to the research in this field.
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Abstract. Demirci-Selçuk meet-in-the-middle (DS-MITM) attack is an
effective and generic method for analyzing iterative block ciphers. It
reaches the best results on attacking AES in the single-key model. In
ASIACRYPT 2018, a tool for finding DS-MITM attack automatically
based on general constraint programming was put forward, which can
not only enumerate DS-MITM distinguishers, but also partly automate
the key-recovery process. However, the constraint programming models
generated by this tool do not consider the key-bridging technique, which
has been shown to be effective in reducing the complexities of many
cryptanalytic attacks. In this work, we build a general constraint model
for SKINNY-128–384 (the same target as the ASIACRYPT 2018 paper)
integrated with the key-bridging technique. As a result, the time com-
plexity of the key-recovery attack on SKINNY-128–384 is significantly
reduced from 2382.46 to 2366.28.

Keywords: Demirci-Selçuk meet-in-the-middle attack · Constraint
programming · MILP · Key-bridging · SKINNY

1 Introduction

The Demirci-Selçuk meet-in-the-middle (DS-MITM) attack [8] was first intro-
duced at FSE 2008 to attack the Advanced Encryption Standard (AES) [7]. The
distinguisher employed in a DS-MITM attack exploits the highly restricted range
of a sequence of differences produced by the encryption of a set of carefully con-
structed plaintexts, and therefore is differential in nature. The DS-MITM attack
is progressively improved with a series of novel techniques (multiset tabulation,
differential enumeration, and key-bridging, etc.), and eventually sets the record
for cryptanalysis of AES in the single-key model [9–11,14,24]. Besides, the DS-
MITM attack has been applied to many block ciphers [4,12,13,22,23,27] and
some generic structures [18,33].
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To facilitate the evaluation of the security of block ciphers against the
DS-MITM attack, automatic searching tools are developed by the commu-
nity. In [9,10], Derbez and Fouque presented a tool implemented in C/C++,
which identifies DS-MITM attacks on a target with dedicated search algorithms.
Another tool based on general constraint programming was proposed at ASI-
ACRYPT 2018 by Shi et al. [27]. In this approach, the problem of finding good
attacks is converted into general constraint programming (GCP) models (MILP,
SAT/SMT, or classic CP), and the resolution (the task of finding desired attacks)
is delegated to off-the-shelf optimizers, which keeps the cryptanalysts focusing
on stating the problem at a higher level without bothering the details of how to
solve it [5,15,16,26,28–30,32]. Despite this attractive feature, current constraint
programming based tools suffer from several important drawbacks.

In [27], the attacks are built with two strategies. In the first strategy, valid
DS-MITM distinguishers of a target are enumerated in advance by listing all
solutions of the underlying GCP model that only describes the distinguisher
part. Then key-recovery attacks are built upon these distinguishers, from which
we can pick the optimal one. In practice, we typically impose some heuristic
conditions on the distinguishers since a complete listing is often infeasible. In
the second strategy, the GCP model takes the key-recovery part into account
and produces key-recovery attacks directly. However, current modeling method-
ology only deals with basic key-recovery techniques without considering the
key-bridging technique, leaving a space for further improvement with manual
analysis.

The so-called key-bridging technique was firstly employed in the context of
DS-MITM attack by Dunkelman et al. in ASIACRYPT 2010 [14]. In brief, the
key-bridging technique exploits the relations of the subkey words created by the
key schedule algorithm to reduce the amount of information to be guessed. This
is a generic technique which can be applied in many key-recovery attacks based
on statistical distinguishers [4,19,25,31].

Our contributions. In this work, according to the tweakey schedule of
SKINNY-128–384, we integrate the key-bridging technique into the constraint
programming based framework for automatic DS-MITM cryptanalysis proposed
at ASIACRYPT 2018 by introducing more types of variables into the constraint
system to describe the relations of the subkey bytes. With this approach, we
automatically and successfully find an DS-MITM attack on SKINNY-128–384,
where the number of key bytes to be guessed in the key-recovery is decreased
from 47 to 45 and thus the overall time complexity of the attack is significantly
reduced by a factor of 216.18.

Interestingly, it turns out that the distinguisher used in this improved attack
is inferior to the one used in [27] if we do not consider the key-recovery. This
fact shows the importance of considering distinguishers and key-recovery attacks
as a whole to avoid missing optimal attacks.

Organization. In Sect. 2, we give a brief description of our target SKINNY-128–
384. The constraint programming based method for automatic DS-MITM crypt-
analysis is reviewed in Sect. 3. In Sect. 4 we extend the constraint programming
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based framework with the so-called key-bridging technique, apply it to SKINNY-
128–384 and report on improved results. We conclude in Sect. 5 with some open
questions.

2 The SKINNY Family of Block Ciphers

SKINNY [2] is a family of lightweight tweakable block ciphers designed based on
the TWEAKEY framework [21], which have been employed in the construction
of several authenticated encryption schemes and hash functions participating the
NIST lightweight cryptography competition [1,3,17,20].
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Fig. 1. The tweakey schedule and encryption process of SKINNY-128–384.

As in the ASIACRYPT 2018 work [27], our target is SKINNY-128–384 (the
version of 128-bit block size and 384-bit tweakey). The high level structure of
the tweakey schedule and how the sub-tweakeys(KT ) step into the encryption
process is depicted in Fig. 1.

To be more specific, the internal state of the encryption process of SKINNY-
128–384 is arranged into a 4 × 4 matrix whose entries are 8-bit bytes. SKINNY-
128–384 has three 128-bit tweakey registers named as TK1, TK2, and TK3,
and its tweakey schedule are depicted in Fig. 2, where s = 8 and PT =
[9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7].

Extracted
8s-bit subtweakey

PT

LFSR

LFSR

Fig. 2. The tweakey schedule of SKINNY-128–384, and there is no LFSR for TK1.

The round function of SKINNY is composed of SubCells (SC), AddConstants
(AC), AddRoundTweakey (ART), ShiftRows (SR), and MixColumns (MC), which
is illustrated in Fig. 3.

Finally, we refer the reader to [2] for a more detailed description of SKINNY-
128–384.
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Fig. 3. The round function of SKINNY.

3 Constraint Programming Aided DS-MITM Analysis

In this section, we give a general description of the DS-MITM analysis, and
recall how to model the attack with general constraint programming. We refer
the reader to [27] for a more systematic exhibition of the topic.

3.1 The DS-MITM Attack

In a DS-MITM attack, a cipher E is decomposed into three consecutive keyed
permutations as E = E2 ◦ E1 ◦ E0. As in most key-recovery attacks based on
statistical distinguishers, a DS-MITM distinguisher is placed at E1, the key bits
involved in E2 and E0 are guessed to peel off the outer rounds (E2 and E0)
surrounding E1, such that the distinguishing property can be tested against the
current key guess. Guesses that fulfill the distinguishing property are kept as
candidate keys. Therefore, the key to understand the DS-MITM attack is to
understand the mechanism of its distinguishers.

Definition 1 (δA-set [6]). A δA-set is a set of data in F
16
28 traversing all pos-

sible values at the byte positions indicated by A, while keeping the value at the
remaining byte positions constant.

Note that for the sake of simplicity, we confine our definition over F16
28 , which

is enough for our purpose. A DS-MITM distinguisher is a chosen-plaintext distin-
guisher of a keyed permutation E1(·). Given a δA-set {U0, U1, · · · , UN−1} with
N plaintexts, we can obtain the corresponding ciphertexts {V 0, V 1, · · · , V N−1}.
Let us extract the sequence of differences

ΔA→B
E1

= [V 0[B] ⊕ V 1[B], V 0[B] ⊕ V 2[B], · · · , V 0[B] ⊕ V N−1[B]],

where B indicates which bytes are taken out from V j = E1(U j). If the value
of the sequence ΔA→B

E1
can be determined by d c-bit words, then there are at

most 2cd possible values for the sequence. While for a random permutation F ,
ΔA→B

F have 2c|B|(2c|A|−1) possible values. If 2cd < 2c|B|(2c|A|−1), the keyed per-
mutation E1 can be distinguished from the random permutation F . Therefore,
a DS-MITM distinguisher of E1 can be regarded as a triple (A,B,DegE1

(A,B)),
where d = DegE1

(A,B) is called the (A,B)-degree of E1.
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Given a distinguisher (A,B,DegE1
(A,B)), we can perform a key-recovery

attack on E = E2 ◦ E1 ◦ E0 as follows. First, we precompute all the 2cd possible
values of the differential sequence ΔA→B

E1
and store them in a look-up table T.

Then we prepare a set of plaintexts with the potential to create a δA-set with
the encryption of E0.

At this point, we can guess the key information kE0 involved in E0 to produce
the hypothetic δA-set, and collect the corresponding plaintexts and ciphertexts.
Next, we guess the necessary key information kE2 involved in E2 to decrypt the
collected ciphertexts and compute the hypothetic differential sequence ΔA→B

E1
. If

the computed value of the sequence is in the look-up table T, we keep the guess
of kE0 and kE2 as a candidate, otherwise, the guess is discarded.

3.2 Programming the DS-MITM Attack with Constraints

As described in [27], to model the DS-MITM attack with constraint program-
ming, we independently introduce three types of 0–1 variables for each word (in
this work it is always a byte) of the states involved in E1. The sets of variables
of type-X, type-Y , and type-Z are denoted by Vars(X), Vars(Y ), and Vars(Z),
respectively. Similarly, we introduce two sets of variable of type-M and type-W
for E0 and E2. Now, we are ready to impose the constraints:

• Impose a set of constraints over Vars(X) to describe the so-called forward
differential.

• Impose a set of constraints over Vars(Y ) to describe the so-called backward
determination relationship.

• Impose a set of constraints over Vars(Z) linking Vars(X) and Vars(Y ) such
that a type-Z variable is equal to 1 if and only if the corresponding type-X
and type-Y variables are 1 simultaneously.

• Impose a set of constraints over Vars(M) to describe the so-called backward
differential.

• Impose a set of constraints over Vars(W ) to describe the so-called forward
determination relationship.

The solutions of Vars(X), Vars(Y ), and Vars(Z) determine the shape of the DS-
MITM distinguisher, while Vars(M) and Vars(W ) indicate the key information
involved in the outer rounds.

Note that the model can be built with MILP, SAT/SMT, or classic CP
according to the situation. In [27], Shi et al. applied the CP-based automatic
tool with MILP to analyze SKINNY-128–384, and a 10.5-round distinguisher was
identified, based on which a key-recovery attack on 22-round SKINNY-128–384
is constructed. However, the models given in [27] are blind to the relationship
between the key information involved in E0 and E2. Therefore, if one wants
to take the key-bridging technique into account, he has to perform it manually
according to the attack produced by the tool.
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4 Constraint Programming for SKINNY-128–384 with
Key-Bridging

In this section, we show how to extend the constraint programming based frame-
work proposed at ASIACRYPT 2018 [27] for automatic DS-MITM cryptanalysis
by integrating the key-bridging technique into it.

The method for modeling the distinguisher part and outer rounds follows the
procedure described in Sect. 3. Hence we omit the details and refer the reader
to [27] for more information. Here we only review the meaning of the solution of
the CP model constructed for SKINNY-128–384 in [27].

The solution of the original CP model gives a DS-MITM distinguisher and
indicates which subkey bytes should be guessed when a key-recovery attack is
performed based on the distinguisher.

MC

Round 0

SC,AC

ART, SR

MC

Round 1

SC,AC

ART, SR

MC

Round 2

SC,AC

ART, SR

MC

Round 3

12 13 14 15
8 9 10 11
4 5 6 7
0 1 2 3

Fig. 4. The sample solution for E0 with A = [13].

SC,AC

ART, SR

MC

Round i

MC

Round i + 1

SC,AC

ART, SR

MC

Round i + 2

SC,AC

ART, SR

MC

Round i + 3

Fig. 5. The sample solution for E2 with B = [4], where i = r0 + r1.

For example, Figs. 4 and 5 give the sample solutions for E0 and E2 (only
the segment relevant to guessed subkeys are extracted), which indicates that we
should guess 10 subkey bytes involved in E0, and 5 subkey bytes involved in E2.
In fact, the objective function of the original model is to minimize the number
of subkey bytes. However, the actual number of guessed bytes can be different
with key-bridging technique.
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4.1 Modeling the Key-Bridging

In SKINNY-128–384, the 3 × 128 = 384-bit master key is loaded into three
128-bit tweakey registers TK10, TK20, and TK30, where each register can be
conceptually regarded as a 4 × 4 matrix. The round function of the tweakey
schedule transforms the registers TK1i, TK2i, and TK3i into TK1i+1, TK2i+1,
and TK3i+1. In each round, the first two rows of SKi = TK1i ⊕TK2i ⊕TK3i (8
bytes in total) are extracted as a subkey and are exclusive-ored into the state.

According to the tweakey schedule algorithm of SKINNY-128–384, with the
knowledge of three bytes TK10[j], TK20[j] and TK30[j] of the master key for
some j ∈ {0, · · · , 15}, one can derive SKi[li,j ], where li,j = P−i

T [j], and P−i
T

means the operation that the inverse operation P−1
T is applied for i times. We

define Ω(j) to be the set of all subkey bytes that can be derived from the
knowledge of TK10[j], TK20[j] and TK30[j]. Then we have

Ω(j) = {SK0[l0,j ],SK1[l1,j ],SK2[l2,j ], · · · : li,j = P−i
T [j]},

and Ω(0) ∪ Ω(1) ∪ · · · ∪ Ω(15) covers all SKi[j].
The objective function of the original constraint programming model [27]

constructed for E = E2 ◦ E1 ◦ E0 is set to minimize the number of guessed
SKi[j]. This configuration is heuristic in nature, and the real number of bytes
have to be guessed can be much smaller when the key-bridging technique is
considered.

Let the number of rounds of E0, E1, and E2 be r0, r1, and r2 respectively,
and let GSK be the set of all SKi[j]’s that should be guessed according to the
solution of the CP model. Then we have

(Ω(0) ∩ GSK) ∪ · · · ∪ (Ω(15) ∩ GSK) = GSK.

Let us see how to guess to fully derive Ω(j)∩GSK for each j ∈ {0, · · · , 15}. First,
for a given j, with the knowledge of TK10[j], TK20[j] and TK30[j], Ω(j) can
be fully determined. Hence if |Ω(j) ∩ GSK| ≥ 3, we can guess the three bytes
(TK10[j], TK20[j] and TK30[j]) of Ω(j) to determine Ω(j) ∩ GSK. If |Ω(j) ∩
GSK| ≤ 2, we can guess the |Ω(j) ∩ GSK| bytes of Ω(j) ∩ GSK. If we set

ρj =
{ |Ω(j) ∩ GSK|, 0 ≤ |Ω(j) ∩ GSK| ≤ 2

3, 2 < |Ω(j) ∩ GSK| ≤ r0 + r2
, (1)

the number of bytes to be guessed is
∑15

j=0 ρj . Therefore, taking key-bridging
into account, we should minimize

∑15
j=0 ρj in the model instead of minimizing

the number of bytes in GSK as was done in [27].
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Next, we show how to model ρj . According to Eq. (1), the range of ρj is
{0, 1, 2, 3}. For each j, we introduce three 0–1 variables αj , βj , and γj for ρj
such that ρj = αj + βj + γj , and

⎧⎪⎨
⎪⎩

αj = 0 if |Ω(j) ∩ GSK| < 3,

βj = 0 if |Ω(j) ∩ GSK| < 2,

γj = 0 if |Ω(j) ∩ GSK| < 1.

(2)

Let ηj = |Ω(j)∩GSK|, Eq. (2) can be described by the following linear inequalities
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηj − 3αj ≥ 0,

ηj − (r0 + r2 − 2)αj − 2 ≤ 0,

ηj − 2βj ≥ 0,

ηj − (r0 + r2 − 1)βj − 1 ≤ 0,

ηj − γj ≥ 0,

ηj − (r0 + r2)γj ≤ 0.

(3)

Finally, we can set the objective function to minimize
∑15

j=0 ρj .

4.2 Improved DS-MITM Attack on SKINNY-128–384

By solving the model built according to the previous section, we identify a new
22-round DS-MITM attack on SKINNY-128–384 with a 10.5-round distinguisher

(A,B,Deg(A,B)) = ([14], [13], 45)

which is visualized in Fig. 6. The time complexity of the precomputation is
28×45 × 28 × 45

16×22CE ≈ 2365.03CE , and the memory complexity is (28 − 1)× 8×
28×45 ≈ 2370.99 bits, where CE is the time complexity of one 22-round encryp-
tion. The subkey bytes that should be guessed are shown in Fig. 8, which are
derived automatically by the model according to the values of the type-M and
type-W variables depicted in Fig. 7. Also, from Fig. 7, we can see that the data
complexity of the attack is 28×12 = 296 chosen plaintexts.

Note that in Fig. 8, there are 53 subkey bytes marked with orange, meaning
that a naive strategy needs to guess 53 bytes. However, our model with key-
bridging awareness automatically finds out that we only needs to guess 45 bytes
to determine all these 53 bytes. Therefore, the time complexity of the one-line
key-recovery phase can be estimated as 28×45×28× 107

16×22CE ≈ 2366.28CE , while
the time complexity of the previously best attack is 2382.46CE [27].

The visualization of correlation among subkeys is depicted in Fig. 9.
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Round 0 Round 1
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Round 2 Round 3
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Round 4 Round 5
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MC

Round 6 Round 7

SC,AC

ART, SR
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ART, SR

MC

Round 8 Round 9

SC,AC

ART, SR

Round 10

Fig. 6. The distinguisher (A,B,Deg(A,B)) of SKINNY with A = [14], B=[13], and
Deg(A,B) = 45. The bytes marked with forward slashes and backward slashes show
forward differential and backward determination relationship respectively. The bytes
marked with red color are those need to be guessed, and the bytes marked with blue
color are those should have been guessed but removed by cipher-specific constraints
[27]. (Color figure online)
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· · · 10.5-round Distinguisher · · · MC
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Fig. 7. Key-recovery attack of 22-round SKINNY based on the distingisher in Fig. 6,
where the bytes marked with red color in the first 3 rounds indicate the backward
differential, and the in the last 8.5 rounds the bytes marked with red color indicate the
forward determination relationship in key-recovery. (Color figure online)
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Fig. 8. The solution for our model of DS-MITM key-recovery attack on SKINNY-128–
384, where the subkey bytes should be known are marked with orange color. (Color
figure online)
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Fig. 9. SKINNY’s key schedule. The subkey bytes in GSK are marked with green color,
and the bytes derived from the same master key bytes share the same index. (Color
figure online)
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5 Conclusion

In the analysis of SKINNY-128–384, we extend the constraint programming
based framework for automatic DS-MITM cryptanalysis by taking the key bridg-
ing technique into account. As a result, we successfully identify an improved
attack. At this point, we would like to propose some open questions. Since the
tweakey schedule algorithm of SKINNY-128–384 is completely linear, the model
for key bridging is relatively easy to establish. Is it possible to build a general
constraint programming model for ciphers with non-linear key schedule?
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Abstract. In recent years, cache attacks against micro architectures
have posed a daunting threat to modern processors such as x86 and
ARM. Of the attacks, flush-based cache attacks have attracted increasing
attention from researchers due to their low noise, high resolution and high
efficiency. However, existing defenses against flush-based cache attacks
have some problems such as lack of platform versatility, high overhead,
and low detection accuracy. In this study, we find that flush-based cache
attacks have a fundamental feature of flushing a cache line multiple times
at regular intervals. Based on this feature of flush-based cache attacks, we
propose a hardware/software collaborative design of real-time safeguard
on the ARM-FPGA embedded SoC, called SecFlush. SecFlush detects
attacks using a hardware monitoring module, and defends against attacks
by prohibiting malicious processes from performing flush operations in a
kernel driver. It also provides a flush API for users to call the driver. The
experimental results show that SecFlush can reduce the success rate of
flush-based cache attacks to less than 1% within 6.01 ms. The evaluation
results show that the time overhead is only about 5%–21%.

Keywords: Cache attack · Spectre attack · Hardware/Software
collaboration · Real-Time detection and defense · ARM-FPGA
embedded SoC

1 Introduction

As a variety of mobile terminals such as smart phones, wearable devices, and
in-vehicle devices carry more and more private data in our lives, security and
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privacy issues on these devices are becoming increasingly important. Since mobile
terminal devices are mostly based on ARM cores, how to protect private data
used on ARM has become an urgent problem. If no protection is provided, there
will be serious security risks such as buffer overflow and side channel attacks.

Side channel attacks nowadays can collapse the strongest of crypto-
algorithms and pose a great threat to network and system security. Cache side
channel attacks are a specific type of implementation-level attacks that exploit
the different access times within the memory hierarchy to retrieve sensitive data.
They were first proposed by Kocher in 1996 [18]. As a micro-architecture attack,
its departure point is the difference in access time between cache and memory.
Attackers use the difference to collect the state of the cache and guess sensitive
information.

In the past few years, cache attacks have made significant achievements on
both x86 and ARM processors. They can be separated into three categories: time-
driven attacks [2,8,10,22], trace-driven attacks [1,9,19,30] and access-driven
attacks [13,16,20,23,27]. Access-driven attacks are the main stream attack meth-
ods, which include Evict+Time, Prime+Probe, Flush+Reload, Evit+Reload,
and Flush+Flush attacks. Spectre [17] and Meltdown [21] attacks are new
types of attacks that combine CPU micro-architecture vulnerabilities with cache
attacks. Their targets are not limited to encryption keys, but all private data in
the kernel, so they are more powerful than other cache attacks.

At the initial stage of cache attack studies, time-driven cache attacks were
performed on encryption algorithms, but these attacks introduced great quantity
of noise. Later on, more fine-grained access-driven attacks were proposed, in
which the evict operation was the main technical means. However, this method is
complicated and noisy because of the obscure eviction strategy. In 2011, Gullasch
et al. introduced the flush instruction clflush into cache attacks on x86 processors
and retrieved AES keys [20]. Flushing means writing the data in the cache back
to memory, and quickly clearing contents of a cache line. Cache attacks such as
Flush+Reload [27], Flush+Flush [13], Spectre [17] and Meltdown attacks [21]
all need to perform the flush operation, so we refer to them as ‘flush-based cache
attacks’. Nowadays, due to their high efficiency and high resolution, flush-based
cache attacks have gradually become the trend of cache attacks.

There are many state-of-the-art countermeasures against cache attacks.
Because the nature of cache attacks is the uneven time of accessing data, the
existing defense schemes are mainly built on three ideas: eliminating imbalance
[14,15,24], isolating [12,25,29], and detecting malicious processes [3,11,28]. How-
ever, they have the following shortcomings.

– Interference with normal processes or lack of versatility: Eliminating
imbalances is to eliminate the time differences between cache hits and cache
misses by injecting noise and constant time instructions. However, noise injec-
tions have low efficiency because they interfere with normal processes. On the
other hand, constant time instructions do not have hardware or software ver-
satility.



Hardware/Software Co-design Defense Against Flush-Based Cache Attacks 253

– Performance loss in time or space: The idea of isolation is to isolate
time or space among processes. If different processes cannot share cache, the
attack process cannot affect the normal processes. However, not sharing can
result in a lot of performance loss in time or space.

– High false negatives and false positives: Detecting malicious processes
means identifying malicious behavior by collecting runtime data against an
attack. However, such real-time monitoring is usually slow to detect malicious
behavior, prone to false negatives and false positives, and often unable to
defend against attacks trying to avoid detection.

In this paper, we analyze the general characteristics of the attack processes,
especially of the flush operation, and find that flush-based cache attacks always
flush a cache line multiple times at regular intervals. Based on this essential
feature, we propose a real-time safeguard, SecFlush, that can detect malicious
flush behaviors through a hardware design, and defend against the flush-based
cache attacks by prohibiting malicious processes from executing flush operations
in the kernel driver. Finally, we verify the effectiveness of our defense scheme by
performing two flush-based cache attacks, Flush+Reload and Spectre.

Our hardware-based detection has the advantages of fast calculation, high
efficiency and convenient timing. What’s more, because we focus on the root
cause of flush-based cache attacks, it is difficult for attackers to evade the hard-
ware detection mechanism. More importantly, since the flush operation is one
of the operations indispensable to flush-based cache attacks, flush-based attacks
that cannot flush will fail. Therefore, it is also difficult for attackers to evade the
software defense mechanism.

Contributions. Our contributions are summarized as follows:

– We analyze the general characteristics of flush-based cache attacks and pro-
pose a hardware/software co-design of real-time safeguard, SecFlush, that
uses hardware to detect anomalies and software to defend against attacks.

– We perform Flush+Reload attack, Spectre attack and SecFlush safeguard on
the ARM-FPGA embedded SoC platform.

– We verify the effectiveness of the SecFlush defense mechanism and evaluate
the detection time and the performance overhead.

Outline. The rest of this paper is organized as follows. Section 2 introduces some
basic concepts of the cache structure under ARM on Zynq-7000 SoC and flush-
based cache attacks. Section 3 describes the flush features of flush-based cache
attacks. Section 4 proposes our system design for hardware detection of anomalies
and software defense against attacks. Section 5 conducts detailed experiments to
verify the effectiveness of the SecFlush safeguard. In Sect. 6 we evaluate the
detection time and the performance overhead. We discuss the implications and
future work in Sect. 7. Finally, Sect. 8 concludes this paper.
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2 Preliminaries

2.1 The Cache Architecture Under ARM on Zynq-7000 SoC

Cache is located between CPU and memory. Its main purpose is to alleviate
the problem that the CPU’s calculation speed is inconsistent with the memory
access speed. In order to enhance system performance, modern CPUs employ
cache to buffer frequently used data in small and fast internal memories. How-
ever, since cache is shared by all processes, it is the relevant point of memory
data. Therefore, cache is one of the main targets of side channel attacks. As
cache speeds up the access to data and instructions, an attacker can use timing
measurements to infer the data processed by other applications.

In our study, we used Xilinx Zc706 Evaluation Board of Zynq-7000 SoC.
The cache of this ARM Cortex-A9 MPCore processor is divided into L1 and L2
levels. The processor has two CPU cores, each CPU core has a 64KB L1 cache,
including 32KB instruction cache and 32KB data cache. The instruction cache
and the data cache can work simultaneously. L2 cache mixes instructions and
data. It is shared between two CPU cores, and the capability is 512 KB [5,6].

2.2 Flush-Based Cache Attacks

Flush-based cache attacks are mainly divided into two types, general cache
attacks and cache attacks combined with micro-architecture vulnerabilities. In
the two kinds of flush-based cache attacks, the following two techniques are
typical.

Flush+Reload Attack. The Flush+Reload attack was proposed by Yarom
and Falkner in 2014 [27]. This is a high-precision and low-noise attack which
exploits the availability of shared memory, especially the shared libraries between
the attacker and the victim program. Flush+Reload works as follows.

1. Flush a specific cache line.
2. Call an encryption program.
3. Re-access the cache line and time it. If the time is short, then there is a cache

hit, thus the victim program has accessed the cache line during execution.

Spectre Attack. The Spectre attack was proposed by Kocher in 2018 [17]. It
combines cache attacks such as Flush+Reload with the vulnerability that the
processor speculatively executes at the conditional branch, greatly increasing the
ability of cache attacks. There are five main steps.

1. Flush a lot of cache lines to prepare an initial state of cache.
2. Flush the destination address of the branch instruction out of cache, so that

the CPU performs branch prediction.
3. Incorrectly induce branch predictor multiple times using input that satisfies

the conditional branch.
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4. Using input that does not satisfy the conditional branch, the program makes
a false prediction and extracts sensitive data into the cache.

5. Access cache lines and time. If the access time is short, then the cache line
is hit, thus it is sensitive data.

3 Feature Detection of Flush-Based Cache Attacks

3.1 Feasibility of Feature Detection

In order to ensure cache consistency, that is, data in the memory is consistent
with data in the cache, it is necessary to flush all cache lines rapidly, whether in
DMA, multi-core heterogeneous processors or symmetric multi-processor archi-
tecture. These are scenarios of normal flush. On the other hand, due to branch
predictor training or encryption, flush-based cache attacks will perform flush
operations at certain time intervals. What’s more, attackers usually flush cache
lines multiple times to increase the success rate.

Flush-based cache attacks use flush to evict cache lines, thus flush is an
indispensable step in flush-based cache attacks. If we can identify the features
of the flush operation, we can detect all flush-based cache attacks in time.

3.2 Features of Flush+Reload and Spectre Attacks

In order to identify the characteristics of the attack process, we implemented
Flush+Reload attack and Spectre attack on the ARM Cortex-A9 core. Then,
we collected the time intervals of the flush operation in the two attacks, and
plotted the relationship between the time intervals and the number of times in
Fig. 1. We refer to these time intervals as loops. Table 1 shows the average values
of different flush loops. The data is uniformly stipulated to the Global Timer
frequency of 333 MHz which will be introduced in Sect. 4.

LoopFR is the time interval between flush operations in Flush+Reload
attack. It refers to the process of flushing data in T-table out of cache, call-
ing AES encryption, re-accessing the data and timing. LoopFR is a malicious
loop. We collect 256 sets of LoopFR data and plot LoopFR in blue curve.

With regard to Spectre attack, we take Kocher’s POC code as an example
[17]. The following three cycles can be identified. LoopSP1 is the time interval
between the previous time the attacker flushes cache lines and the next time he
does so while he is preparing an initial state. Normal programs flush rapidly in
the same way. LoopSP2 is the time interval between the time when the attacker
flushes the destination address of the branch instruction out of the cache and
the next time he does it. Put it another way, LoopSP2 refers to the whole
process of the attacker performing the branch prediction training several times
and executing attacks. LoopSP3, as we define it, refers to a complete Spectre
attack, including 256 LoopSP1s, 30 LoopSP2s, access to cache lines and timing.

We collected 10240 sets of LoopSP1 data, 1200 sets of LoopSP2 data, 40
sets of LoopSP3 data and plotted the loops. In Fig. 1, LoopSP1 is displayed
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Fig. 1. Flush features of Flush+Reload attack and Spectre attack. The data is uni-
formly stipulated to the Global Timer frequency of 333MHz. (Color figure online)

as red, which has the shortest time. It is a normal flush; Because of training
branch predictor, LoopSP2, shown as green, takes a longer time than LoopSP1.
LoopSP2 is a malicious flush; LoopSP3, shown as pink, has the longest time. We
think LoopSP3 is the maximum time interval for flush-based cache attacks to
perform flush operations, so a loop longer than LoopSP3 is safe.

Table 1. The average time interval for different flush loops. The data is uniformly
stipulated to the Global Timer frequency of 333MHz and in clock units.

Flush loop Average time intervals

Spectre LoopSP1 570

Spectre LoopSP2 1,019

Flush+Reload LoopFR 3,385

Spectre LoopSP3 224,943

3.3 Detect Malicious Process

All flush-based cache attacks have the fundamental feature of flushing caches at
regular intervals. Although the loops of different attacks such as LoopSP2 and
LoopFR have different values, the values are all within a certain range. So we set
two thresholds T1 and T2, so that all malicious loops fall within the thresholds.
Therefore, the value of T1 should be between LoopSP1 and LoopSP2, and the
value of T2 should be between LoopFR and LoopSP3.
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In addition, we also set a threshold of malicious number to determine mali-
cious process. In order to prevent false positives, we decide that only processes
with malicious flush times greater than malicious number are considered to be
malicious processes.

In order to obtain accurate statistics of the keys, the Flush+Reload attack
requires multiple encrypting. In order to induce the branch predictor to make
erroneous predictions, the Spectre attack requires multiple branch prediction
training. We believe that the process which trains or encrypts more than 5 times
is a malicious process. As to the final threshold selection, malicious number is
specified as 5.

4 Proposed Scheme

4.1 System Architecture

Figure 2 shows the overall system architecture, which is divided into three levels.
User layer: user processes, three timer APIs, flush API, and Monitor. Operating
system layer: three Timer Drivers and FlushDefender. Hardware layer: Global
Timer, PMCCNTR Timer and caches are the modules that come with the sys-
tem. New Timer and FlushDetector are the modules we implement using the
FPGA and they are connected to system via the AXI-GP interface. The yel-
low modules of FlushDetector and FlushDefender represent the components of
SecFlush.

Users can call Timer Drivers and FlushDefender through Timer APIs and
Flush API. Timer Drivers are used to obtain precise current time, which can be
obtained by calling Global Timer, PMCCNTR Timer or New Timer. FlushDe-
tector is a hardware detection module that records the basic data of each flush
operation, such as current time and the process’s pid. It compares the recorded
data with features of flush-based cache attacks to infer whether the process per-
forms an attack. The basic function of FlushDefender is to quickly flush L1 and
L2 cache lines. What’s more, FlushDefender can detect abnormalities by calling
FlushDetector. If FlushDefender gets an alarm from FlushDetector, it will record
the current process as a malicious process, and defend against the flush-based
cache attack by disabling the malicious process from performing flush opera-
tions. Additionally, it reports the malicious process’s pid to Monitor via netlink.
Monitor is a user-level application that receives messages from the kernel layer.

4.2 Detect Attacks

FlushDetector detects cache attacks through hardware based on the basic fea-
tures of the flush-based cache attacks. Since the hardware can easily record
time, no additional timers are needed. Algorithm1 shows its working steps.
Flush counter is the frequency of malicious flushes of the current process.
Clock counter is increased by one in each clock, which shows the current time.

First, FlushDetector receives the pid of the current process from axi bus as
current pid and start working. Then, it clears an axi bus register called alarm ,
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Fig. 2. Overall system architecture.

records the current time as last time, and calculates the time interval of the
current process flushing. If the time interval is between T1 and T2, then there
is a malicious flush, and flush counter is incremented by one. If flush counter is
equal to malicious number, alarm is pulled high. If time interval is less than
T1, flush counter remains unchanged. If time interval is greater than T2, there
is no attack and flush counter is cleared.

Algorithm 1. FlushDetector Hardware Module.
Input: clk, rstn, s axi wdata
Output: alarm

1 clock counter = clock counter + 1 in each clock;
2 current pid = s axi wdata;
3 alarm= 0;
4 last time = clock counter ;
5 time interval = clock counter - last time;
6 if T1 <time interval <T2 then
7 flush counter = flush counter + 1;
8 if flush counter == malicious number then
9 alarm = 1;

10 end
11 else if time interval <T1 then
12 flush counter = flush counter ;
13 else
14 flush counter = 0;
15 end
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4.3 Defend Against Attacks

Since there is no user layer flush command on ARM Cortex-A9 MPCore, we
designed the FlushDefender kernel driver module. FlushDefender implements
the basic functions of flushing L1 and L2 cache lines quickly. The ARM proces-
sor provides registers for cleaning cache hierarchy, CP15 coprocessor and PL310
cache controller [4,7]. In FlushDefender, we use CP15 coprocessor to flush L1
cache line, and the input address is a virtual address. We use PL310 cache con-
troller to flush L2 cache line, and the input address is a physical address. More-
over, FlushDefender interacts with hardware and user layers to defend against
flush-based cache attacks. The detailed working steps are shown in Algorithm 2.

First, FlushDefender gets current pid from the kernel’s pointer current. Then,
it writes current pid to a bus register via iowrite32() function, calling FlushDe-
tector to detect attacks. The virtual address is then converted to a physical
address. Next, if the current process is not a malicious process, FlushDetec-
tor cleans and invalidates L1 and L2 data cache lines. Then, we propose two
defense methods. The first method is to read the value of the specific bus regis-
ter alarm by ioread32() function, which is the detection result of FlushDetector.
If the alarm register is pulled high, the current process is logged as a malicious
process and the malicious pid is sent to Monitor via send usrmsg() function
of netlink mechanism. We call this approach ‘hardware alarm register defense’.
Another method is to trigger an interrupt through alarm register, then record
the malicious process and alarm the Monitor in an interrupt service routine. We
call this method ‘hardware interrupt defense’.

4.4 Precise Timing

Precision Timers can record the time of accessing data, accordingly determine a
cache hit or miss. We implement three kernel drivers and their APIs for accurate
timing operations, namely PMCCNTR Timer, Global Timer and New Timer.
PMCCNTR Timer and Global Timer are the timers that come with the system,
New Timer is a timer we implement using the FPGA. They are described in
detail below.

PMCCNTR Timer. The full name of PMCCNTR is Performance Monitors
Cycle Counter Register, which can be used to count the clocks of a processor
[4]. PMCCNTR Timer clock frequency is 667M. Its counting process is shown
in Algorithm 3.
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Algorithm 2. FlushDefender Kernel Driver Module.
Input: virtual address of the cache line to be flushed
Output: malicious pid

1 current pid = current–>pid ;
2 use the iowrite32() function to write current pid to the axi bus register, alarm ,

calling FlushDetector;
3 convert the virtual address to a physical address;

4 if current pid != malicious pid then
5 /*flush the cache line begin*/;

6 run dsb instruction;
7 run isb instruction;
8 turn off IRQ and FIQ interrupts;

9 /*clean and invalidate the Level 1 data cache line*/;
10 select the Level 1 data cache;
11 clean and invalidate the Level 1 data cache by the cache line aligned virtual

address;

12 /*clean and invalidate the Level 2 data cache line*/;
13 force write-through behavior and disable cache linefill;
14 clean the Level 2 cache line by the physical address;
15 invalidate the Level 2 cache line by the physical address;
16 run dsb instruction;
17 enable write-back behavior and cache linefill;
18 perform the Level 2 cache sync operation;
19 run dsb instruction;
20 run isb instruction;

21 turn on IRQ and FIQ;
22 run dsb instruction;
23 run isb instruction;
24 /*flush the cache line end*/

25 end

26 /*hardware alarm register defense*/;
27 use the ioread32() function to read alarm register to see if there is an attack;
28 if alarm == 1 then
29 malicious pid = current pid ;
30 send the malicious pid from kernel to the Monitor using send usrmsg()

function;

31 end

32 /*hardware interrupt defense*/;
33 trigger an interrupt through the alarm register;
34 /*inside the interrupt service routine*/;
35 malicious pid = current pid ;
36 send the malicious pid from kernel to the Monitor using send usrmsg() function;
37 /*inside the interrupt service routine*/;
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Algorithm 3. PMCCNTR Timer.
Output: current time

1 enable all counters and export of events;
2 enable PMCCNTR and PMNx event counters;
3 clear the overflow bits of PMCCNTR and PMNx event counters;
4 read current time from CP15 coprocessor;
5 transfer time from the kernel to user space via copy to user() function;
6 disable all counters;
7 reset all counters;
8 disable export of events;

Global Timer. Global Timer is a global timer that comes with the ARM
Cortex-A9 MPCore. It has a 64-bit register that records current high-precision
time [4]. Global Timer clock frequency is 333M. Its counting process is shown in
Algorithm 4.

New Timer. New Timer is the hardware peripheral timer we implement
through FPGA, running at system frequency which can be set manually. It
is incremented by one per clock. Similar to Global Timer, New Timer also has a
64-bit register to record current time. We set the clock frequency of New Timer
to 50 M. Also, the counting process is shown in Algorithm 4.

Algorithm 4. Global Timer and New Timer.
Output: current time

1 ioremap the physical address to a virtual address;
2 time[0] = ioread32(virtual address);
3 time[1] = ioread32(virtual address + 4);
4 current time = (time[1] � 32) | time[0];
5 transfer 8 bytes of time from kernel to user space via the copy to user()

function;

5 Experiments and Results

5.1 Experiment Setup

Our experimental platform is ARM-FPGA Embedded SoC. Specifically, it
is Xilinx Zc706 Evaluation Board of the Zynq-7000 SoC, which combines
ARM Cortex-A9 MPCore (dual-core) with FPGA [26]. The device type is
xc7z045ffg900-2. Embedded Linux kernel version is linux-xlnx-xilinx-v2015.4,
cross compiler is arm-xilinx-linux-gnueabi, and gcc version is 4.6.1.
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5.2 Flush+Reload Attack

We attacked OpenSSL T-table implementation of AES encryption primitive,
which is vulnerable to cache attacks [23]. The principle of attack is as follows: In
the first round of encryption, the process needs to look up T0[x0] in the T-table.
Since the key is all zeros, x0 = k0 ⊕ p0 = 0 ⊕ p0 = p0, T0[p0] will be loaded into
the cache when the encryption program is executed. Next, we record a 16*16
matrix, the horizontal axis is the first byte of the plaintext, p0. The vertical axis
is the first address of the cache line to be flushed in the T-table, probe. P0 is
increased from 0 to 240, and the step size is 16. Probe is increased from &T0[0]
to &T0[240], and the step size is the size of a cache line, i.e. 64bits. The matrix
records the number of cache line hits after encrypting the plaintext containing p0
1000 times. Therefore, if the attack is successful, the data on the (p0, &T0[p0])
matrix element is the largest, that is, the data on the main diagonal of the matrix
is the largest.

Figure 3 shows the comparison experiments of Flush+Reload attack using
PMCCNTR Timer, Global Timer, New Timer and the comparison experiments

(a) PMCCNTR Timer. (b) Software.

(c) Global Timer. (d) Hardware Interrupt.

(e) New Timer. (f) Hardware Alarm Register.

Fig. 3. Comparison experiments of the Flush+Reload attack and defenses. Subgraphs
(a), (c), and (e) are matrix diagrams of the attack. The timers are PMCCNTR Timer
(667 MHz), Global Timer (333 MHz) and New Timer (50MHz). Subgraphs (b), (d),
and (f) are matrix diagrams of defenses, and they are protected by software, hardware
interrupt, and hardware alarm register methods. The timer is Global Timer (333 MHz).
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of defenses using software, hardware interrupt, and hardware alarm register
methods. There are six matrix diagrams with 16 * 16 small squares. The hor-
izontal axis is p0, the vertical axis is probe, and the shade of the square color
represents the number of cache hits. Therefore, if the attack is successful, the
color of the square on the main diagonal is the darkest.

In order to verify the effectiveness of the SecFlush safeguard, we used PMC-
CNTR Timer (667 MHz), Global Timer (333 MHz) and New Timer (50 MHz) to
perform Flush+Reload attack. The results of Flush+Reload attack are shown
in Fig. 3(a), (c), and (e). We can see from the results of the experiments that
the color of the main diagonal in the three subgraphs is more and more diffcult
to identify. Since in terms of frequency, PMCCNTR Timer>Global Timer>New
Timer, we can conclude that the higher the frequency of a timer, the higher the
accuracy of the time, the more obvious the effect of an attack will be.

In addition to the hardware interrupt and hardware alarm register methods,
we also used a software method to implement the detection and defense mecha-
nism of Algorithms 1 and 2 for comparison. Based on Global Timer (333 MHz),
we defended against Flush+Reload attack using three methods: software, hard-
ware interrupt, and hardware alarm register. The defense results are shown in
Fig. 3(b), (d), and (f). It can be seen that the shade levels of the three matrix
diagrams all become random, showing that the three methods can reduce the
Flush+Reload attack to less than 0.1%.

5.3 Spectre Attack

We ported Spectre attack to the ARM-FPGA embedded SoC [17]. The attack
was successful with all three timers. Figure 4(a) shows the 10 * 10 secret bytes
obtained by Spectre attack. They are “a...a” to “j...j”. The timer was Global
Timer (333 MHz).

We verified the effectiveness of the SecFlush safeguard. Specifically, we deter-
mine the success rate of the attack based on the number of secret bytes extracted
by CPU conditional branch prediction. The defense results are shown in Fig. 4(b),
(c), (d). We can see that software and hardware alarm register defense methods
can reduce the attack success rate to less than 0.1%. However, the hardware
interrupt defense method cannot handle the malicious process so timely. Some-
times the first byte of the attack will succeed, with a success rate of less than
1%. We suspect that this is due to speculative execution. What’s more, because
the time difference between LoopSP1 and LoopSP2 is less than that between
LoopSP1 and LoopFR, the attack features of Spectre are less obvious than that
of Flush+Reload, so the Spectre attack is more difficult to detect timely.
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(a) Attack. (b) Software defense.

(c) Hardware interrupt defense. (d) Hardware alarm register defense.

Fig. 4. Comparison experiments of the Spectre attack and defenses. The timer is Global
Timer (333 MHz). Subgraphs (a) is the result of the attack, attacking out 100 bytes.
Subgraphs (b) is the result of using software defense, attacking out 0 byte. Subgraphs
(c) is the result of using hardware interrupt defense, attacking out 1 byte, “a”. Sub-
graphs (d) is the result of defense using the hardware alarm register, attacking out 0
byte.

6 Evaluation

6.1 Detection Time

Since cache attacks are high-speed attacks, if an attack cannot be detected
in time, there may be false negatives. Therefore, the detection mechanism
needs to meet the real-time requirements. Table 2 reports the detection time
for Flush+Reload and Spectre attacks using three defense methods: software,
hardware interrupt, and hardware alarm register. Detection time is defined as
the period of time from when the cache attack is initiated to when the Moni-
tor receives an alarm. We use Global Timer (333 MHz) for timing. As can be
seen from Table 2, in terms of the time being detected, Spectre attack is larger
than Flush+Reload attack. The experiments show that our detection scheme can
detect attacks within 6.01 ms, and achieve the purpose of real-time detection.



Hardware/Software Co-design Defense Against Flush-Based Cache Attacks 265

Table 2. Detection time for Flush+Reload and Spectre attacks using software, hard-
ware interrupt, and hardware alarm register defense methods. Global Timer (333MHz)
is used for timing. The numbers are in clock units.

Attack Software Interrupt Alarm register

Flush+Reload 132,357 (0.40 ms) 91,534 (0.27 ms) 80,660 (0.24 ms)

Spectre 1,048,560 (3.15 ms) 2,001,042 (6.01 ms) 1,065,915 (3.20 ms)

6.2 Performance Overhead

We choose undefended flush time as a benchmark to evaluate the performance
overhead. We use New Timer (50 MHz) for timing. Figure 5 is the time distri-
bution of 1000 flush operations performed by undefended (red line), software
(pink line), hardware interrupt (black line), and hardware alarm register (blue
line) defense schemes respectively. As can be seen from Fig. 5, in the undefended
scenario, the overhead of flushing L1 and L2 is just 2.236µs. The hardware inter-
rupt defense has the least time overhead, about 5% larger than the benchmark.
The hardware alarm register defense and the software defense are 21% and 27%
larger than the benchmark, respectively.

Fig. 5. Time distribution of undefended and software, hardware interrupt, hardware
alarm register defense schemes for performing flush operations. The timer is New Timer
of 50 MHz. (Color figure online)
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7 Discussion and Future Work

7.1 Potential Smart Attacks

There may be some clever attacks trying to bypass SecFlush, such as slowing
down the attack so that the time between two flushes is greater than T2. But
if the attacker attempts to do this, he will not succeed in the attack. Because
the data in the cache has the feature of temporal locality, what lies in the cache
is data that has recently been used. Thus, slowing down attacks will cause data
in the cache to undergo changes so large that the attacker cannot observe the
cache state he expected for previously. This means that the attacker cannot get
data he needs and the attack will have no chance of success.

7.2 Architectural Improvements

Modern processors have instructions or registers for flushing, such as the clflush
instruction on the Intel x86 processor, the DC CIVAC instruction on the ARMv8-
A processor, and the CP15 coprocessor, PL310 cache controller on the ARMv7-
A processor, which makes processors vulnerable to flush-based cache attacks.
Although our secure flushing is implemented by modifying the ARM MPCore
hardware peripherals on the ARM-FPGA embedded SoC, we propose that our
implementation of the flush API can be put into the processor’s hardware archi-
tecture as a reference for designing more optimized FLUSH instructions.

8 Conclusion

This paper designs the hardware/software collaborative safeguard, SecFlush, on
the ARM-FPGA embedded SoC. Flush-based cache attacks have a fundamental
feature of periodic flushing at certain intervals. SecFlush takes advantage of this
feature to detect attacks in hardware and defend against attacks by prohibiting
malicious processes from performing flush operations in software. The exper-
imental results show that SecFlush can accurately defend against flush-based
cache attacks in a short period of time with low performance overhead.
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Abstract. Side-Channel Analysis (SCA) plays a crucial role in hard-
ware security evaluation. However, side-channel acquisitions (a.k.a.
traces) usually contain noises that often impose negative effects on key-
recovery efficiency. In this paper, we propose convolutional denoising
autoencoder (CDAE) for noise reduction in SCA. CDAE is composed of
multiple layers of convolution operators, learning an end-to-end mapping
from noisy traces to clean traces by minimizing the �2 loss of noisy-clean
trace pairs. The convolutional layers capture the abstraction of the traces
while eliminating noises. We argue that CDAE is very suitable for pro-
filed SCA especially when the attacker has a large amount of traces in the
offline profiling phase. Once the network training is done, our denoising
network can be applied to individual new noisy traces for the attacker
to launch online attacks. To validate the effectiveness of our method, we
train CDAE to denoise traces and then perform Template Attacks (TA)
in three high noise jamming scenarios, including unprotected (GPU and
FPGA based) and protected (MCU based) AES implementations. Our
method can significantly outperform the state-of-the-art Singular Spec-
trum Analysis (SSA) denoising method on both information theoretic
metrics and security metrics. Results show that CDAE achieves at least
∼ 4× Signal-to-Noise Ratio (SNR) gain, thus TA with denoising prepro-
cessing requires at most 50% of the traces in the attack phase.

Keywords: Side-channel analysis · Convolutional denoising
autoencoder · Preprocessing tool · Security evaluation · Deep learning

1 Introduction

For the past two decades, Side-Channel Analysis (SCA) has attracted much
attention in the embedded security areas. SCA succeeds in the fact that physical
leakages of a cryptographic device depend on the internally used secret key.
By passively monitoring physical leakages, such as execution time [8], power
consumption [7], and electromagnetic emission [1], the attacker can recover the
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secret information without tampering with the system. This property makes
SCA become a serious practical threat to cryptographic embedded systems.

To perform a successful SCA against embedded cryptographic implementa-
tions, several steps are generally required.

– Good measurement. Measurements with too much noise usually result in a
failure of SCA. For instance, the position and inclination angle of the elec-
tromagnetic probe is quite sensitive to acquire good-quality physical leakages
(e.g. electromagnetic emission).

– Preprocessing. After the measurement step, traces are sent to preprocessing,
including trace synchronization, denoising, and feature selection. All these
efforts aim at facilitating SCA efficiency.

– Modeling. In this step, the attacker builds models to extract information from
the leakages. Profiled (i.e. supervised) and non-profiled (i.e. unsupervised)
attacks are often used according to the attacker’s ability.

– Exploitation. After the modeling, the attacker can launch a key enumeration
algorithm using the extracted leakage characteristics to find the right key.

Generally, for the last two steps, there are already a plethora of distinguish-
ers in the toolbox, including profiled attacks and non-profiled attacks. There
have been studies shown that modeling and exploitation of side-channel leak-
ages are close to optimal [5], but the evaluation of measurement setups and
preprocessing methods have still great research potential. From this perspec-
tive, the preprocessing step is of great importance, especially when targeting
modern embedded systems and System-on-Chip devices with parallel comput-
ing and high clock frequencies. Indeed, noise is a fundamental ingredient for
most countermeasures against SCA. First of all, electronic noise naturally exists
in cryptographic devices, especially for hardware implementations (e.g. FPGA),
which may drown out useful side-channel informations. Secondly, measurements
are usually inevitably mixed with much environmental noise, which brings more
difficulty to SCA. Finally, to protect the cryptographic device from SCA, man-
ufacturers often protect their products with artificial algorithm noise, such as
masking and hiding. As a result, various noises significantly reduce the Signal-
to-Noise Ratio (SNR) of side-channel leakages and consequently, increase the
attack complexity in terms of computational time and number of traces needed
for a successful attack.

For the above reasons, a number of denoising methods have been proposed
to reduce noises in side-channel traces after the acquisition. Le et al. [9] use
fourth-order cumulant to reduce noise in SCA. In [3,17], wavelet-based denois-
ing methods are proposed targeting noise components of high frequency. Other
filtering-based methods are also investigated, such as Kalman filter [18] and
Fourier Transform [13]. These sophisticated filtering-based methods generally
benefit from acquisition devices with a high sampling rate. Moreover, their
parameters sometimes are ad-hoc which needs prior knowledge of the device,
thus decreasing the generality. The state-of-the-art denoising methods include
Singular Spectrum Analysis (SSA) [4] and Independent Component Analysis
(ICA) [11]. However, ICA takes at least N traces to recover one original trace
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made of N sources, which is impractical in profiled attacks because it signifi-
cantly reduces the amount of traces for profiling. SSA can be applied to single
measurement (compared with ICA) and is insensitive to sampling rate (com-
pared with filtering-based methods), which makes it a robust tool for denoising
preprocessing. However, SSA denoises each trace independently by decomposi-
tion and reconstruction of one trace at a time, thus lacking the overall noise
distribution estimation of the whole trace set.

Fig. 1. The overall workflow of CDAE and its application in profiled SCA.

Thus, a question arises from the above situation: how far can we reach for
the task of denoising in SCA, especially when we obtain a large amount of traces
in profiled attacks? In this paper, we report for the first time that deep learning
based denoising can significantly outperform the existing denoising methods in
profiled SCA. Specifically, we achieve this by training the convolutional denois-
ing autoencoder (CDAE) to learn a special non-linear mapping from noisy traces
to clean traces in the profiling phase. Once the training is done, the denoising
network can be applied as a black box, which takes a single noisy trace in and
gets a single clean trace out. From the realistic evaluator’s point of view, our
method is a good frontend preprocessing tool that only aims at denoising, where
the backend SCA distinguishers benefit key recover efficiency without any spe-
cial changes to the algorithms. Noted that deep learning based profiled attacks
predict key probability more or less in a black-box manner, while CDAE only
denoises traces and leaves the attacker free to exploit leakages and recover the
key. The overall workflow of CDAE and its deployment in SCA are described in
Fig. 1. The contributions of this paper are summarized as follows:

– We propose a Convolutional Denoising Autoencoder (CDAE) based denoising
method for preprocessing in profiled SCA. Unlike classic denoising approaches
that are motivated by signal processing aspects, our method is a data-driven
approach which is adaptive to the target implementation. The method is easy
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to deploy, where the network is built on standard encoder-decoder architec-
tures with symmetric skip connections and trained by minimization of the �2
loss between noisy traces and clean traces.

– To estimate the clean traces, we design a noisy-clean training pair generation
algorithm to provide the CDAE with noisy traces as input and estimated
clean traces as output. The algorithm is suitable for unprotected and masking
scenarios.

– We validate the effectiveness of our method under three high noise jamming
scenarios. Experiments show that our method has at most 20 times SNR gain
and 10 times TA efficiency gain with respect to the number of traces.

2 Backgrounds

Notations. In the rest of this paper, we use capital letters for random variables
and small caps for their realizations. Vectors and matrices are denoted with bold
notations, functions with sans serif fonts and sets with calligraphic ones.

2.1 Side-Channel Analysis

Side-Channel Analysis (SCA) aims at exploiting noisy observations of the crypto-
graphic implementation to recover its secret key. Usually, the divide-and-conquer
strategy is applied to separately recover different subkey bytes of the secret key.
For instance, the attacker recovers an 8-bit subkey byte one at a time iteratively to
recover the whole 128-bit secret key in AES-128 cryptographic implementations.

Profiled SCAs are the most powerful ones that assume the attacker can priorly
use an open copy of the target device to offline learn the leakage distribution in a
supervised way and to online attack the target device with the learned models. In
profiling phase, the attacker has a device with knowledge about the secret key and
acquires N traces Xprofiling = {xi}N

i=1. Each trace xi is corresponding to sensitive
variable vi = φ(pi, k) in one encryption (or decryption) with known key k ∈ K,
plaintext (or ciphertext) pi and priori leakage model φ (e.g. Hamming weight). In
thiswork,we consider the tracesmeasured frompower consumption or electromag-
netic radiation using probes with an oscilloscope. Once the acquisition is done, the
attacker profiles suitable models and computes the estimation of probability:

Pr[x|V = v] , (1)

from a profiling set {xi, vi}N
i=1.

The most widely used profiled attack is Template Attacks (TA) [2]. The
attacker estimates conditional probability Eq. (1) by assuming that x follows a
multivariate Gaussian distribution and estimating the average trace x̄ and the
covariance matrix Σ for each possible sensitive variable v. Equation (1) then
turns into:

Pr[x|V = v] =
exp(−1

2 · (x − x̄)� · Σ−1 · (x − x̄))
√

(2π)N · |Σ| . (2)
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The pooled and reduced techniques can be sometimes useful by replacing covari-
ance matrices by averaging covariance matrix and identity matrix. Notice that
the attacker can launch a High Order Template Attack (HOTA) if the leakage
exist in high order moments of sample points, such as defeating mask counter-
measures.

In the attack phase, the attacker acquires a small new set of traces Xattack =
{xi}Q

i=1 with a fixed unknown key k∗. With the help of the established models,
the attacker can easily calculate the estimated posterior probabilities dk among
|K| guesses via the Bayes’ Theorem, then select the key that maximizes it fol-
lowing the Maximum Likelihood strategy:

k∗ = arg max
k∈K

Q∏

i=1

Pr[x = xi|vi = φ(pi, k)] · Pr[vi = φ(pi, k)]
Pr[x = xi]

. (3)

Equation (3) stands only when acquisitions are independent which is a practical
condition in reality.

2.2 Evaluation Metrics

In this work, we follow the methodology in [4] to evaluate the denoising effect.
The evaluation of a cryptographic implementation usually lies in two aspects.
From the information theory perspective, one should know how much leakage
information is leaking from the device under test (DUT). From the security
perspective, one should know how easy it is to exploit the leakage information
by the attacker. In the context of this paper, we use the information theoretic
metrics to evaluate the denoising effect, which is independent of the attacker.
Afterward, real profiled attacks are launched to evaluate the efficiency gain with
respect to the number of traces due to the denoising preprocessing. The two
types of metrics are introduced briefly below.

Information Theoretic Metrics. Information theoretic metrics are used to
accurately and quantitatively measure the amount of leakages from the DUT.
The Signal-to-Noise Ratio (SNR) is a common choice for this purpose. SNR is
the ratio of signal variance and noise variance. For a observation x at time t of
an event v, it is defined as:

SNR =
V̂ar[Ê[x[t]|v]]
Ê[V̂ar[x[t]|v]]

, (4)

where Ê and V̂ar denote the sample mean and variance from the trace set,
respectively. SNR quantifies the amount of leakage information of a single point
in traces. The higher the SNR, the more information is leaked. Another general
approach is Pearson’s correlation coefficient (PCC) which measures the correla-
tion between observation x and event v, it is defined as:

PCC =
Ĉov[x[t], v]

√
V̂ar[x[t]] · V̂ar[v]

, (5)



274 G. Yang et al.

where Ĉov denotes the sample covariance from the trace set. The improvement
of PCC and SNR would improve the success rate of the attack.

Security Metrics. To further evaluate the denoising effect, it is necessary
to put it in real side-channel attacks to see how much information gain can
the attacker exploit after denoising preprocessing. The guessing entropy (GE)
[19] is a commonly used security metric for SCA. Given Q amount of traces in
the attacking phase, the attacker estimates the key guessing vector kguess =
[k1, k2, . . . , k|K|] in the decreasing order, where |K| is the size of keyspace. The
GE is the average rank of true key k∗ in kguess.

3 The Proposed Preprocessing Method

3.1 Denoising Network Architecture

Researchers have applied deep neural networks to multiple denoising tasks, e.g.
image denoising [12] and speech enhancement [10], in which encoder-decoder net-
work is often used as a common choice. Among all the deep learning based denois-
ing methods, we prefer deep feed-forwarded convolutional denoising autoencoder
(CDAE) as the basic architecture of the denoising network. The network is com-
posed of multiple layers of convolution and deconvolution operators, learning
end-to-end mapping F from noisy traces to clean traces. The network architec-
ture is detailed in Fig. 2. The Conv encoder (yellow blocks in Fig. 2) consists of
convolutional layers acting as feature extractor, which captures the abstraction
of traces while eliminating noises. The Conv decoder (green blocks in Fig. 2)
consists of deconvolutional layers to recover clean trace details. Unless other-
wise specified, the convolutional kernel size is 3 and the number of kernels
is {16, 32, 64, 128, 128, 64, 32, 16, 1}. Symmetric skip connections are linked for
convolutional and deconvolutional layers for faster converges and passing traces
details from the convolutional layers to deconvolutional layers. Specifically, we
use four convolutional layers and four deconvolutional layers. Each layer is acti-
vated by LeakyReLU function and then fed into BatchNormalization layer. Max-
Pooling and UpSampling are used to extract trace details and control the feature
map size.

For the training of denoising network, firstly we use Algorithm 1 and Algo-
rithm 2 in Sect. 3.2 to generate noisy-clean training pairs and normalize the noisy
traces and clean traces into [−1, 1] range with min-max normalization. Then the
training pairs are fed into the network with 90% for training and 10% for valida-
tion in case of over-fitting. During the training, the network weights are recorded
for the best validation loss and an early stopping threshold of 10 epochs which
monitors the validation loss and stops the training if the loss doesn’t fall.

Once the training is done we reconstruct the network with the best-recorded
weights. We feed the network with noisy trace sets Xprofiling and Xattack, then we
can obtain the denoised trace sets F(Xprofiling) and F(Xattack). Finally, we inverse
the min-max normalization to rescale the traces to the original range. It should
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Fig. 2. The architecture of the proposed denoising network. (Color figure online)

be pointed out that the denoising process remains a black box to the backend
attacker who launches a key recovery attack. This means that the attacker can
select different tools (e.g. TA) to launch a profiled SCA with denoised trace sets
F(Xprofiling) and F(Xattack).

3.2 Clean Trace Estimation

To train a denoising autoencoder, one should feed the network with noise cor-
rupted data as input and the ground truth as output so the network can learn
the denoising mapping by optimizing the loss of noisy-clean training pairs. How-
ever, unlike the denoising task in image processing and other applications, the
ground truth (i.e. clean trace) in SCA is never been promised as priori. The
truth is, due to the physical limitation of measurement, the attacker only gets
plenty of quite noisy traces for profiling. More specifically, at time t, the noisy
trace x of sensitive variable v consists of clean trace part and noise part, which
can be described as:

x[t] = ft(v) + εt =

Clean trace
︷ ︸︸ ︷
ft(φ(p, k)) +

Noise
︷︸︸︷
εt , (6)

where v is the sensitive variable (i.e. class label), ft is a time-dependent function
mapping from v to actual leakage which is hard to defined mathematically, φ
is a priori leakage model (e.g. identity function), εt is a time-dependent and
v-independent noise.

To tackle the barrier of unknown clean trace, the most intuitive but effective
way is to take the average trace as the estimation of clean trace. Average trace is a
proper approximation of clean trace under Gaussian noise assumption. Equation
(7) describes sample mean Ê[x[t]|v] related to sensitive variable v at time t:

Ê[x[t]|v] = Ê[ft(v)|v] + Ê[εt|v]. (7)

Since ft(v) is not a variable for certain v at time t, substitute Ê[ft(v)|v] =
ft(v) for Eq. (7), then Eq. (6) turns into:

x[t] =

Clean trace
︷ ︸︸ ︷
Ê[x[t]|v] − Ê[εt|v] +

Noise
︷︸︸︷
εt . (8)
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Consider continuous time, then we can extend Eq. (8) to:

x =
Clean trace

︷ ︸︸ ︷
x̄ − ε̄ +

Noise
︷︸︸︷
ε , (9)

where x̄ is the sample average trace, ε̄ is the noise mean.
Traditional assumption is ε follows a zero mean multivariate Gaussian dis-

tribution. Then x̄ = x − ε is the unbiased estimation of clean trace because
ε̄ = 0. In this paper, we make no assumption about the noise. Under such cir-
cumstances, x̄ = x+ ε̄ − ε is biased estimation of clean trace in Eq. (9) because
ε̄ could be non-zero and biased. Albeit biased, x̄ can still be treated as the clean
trace. Since ε is independent to sensitive variable v, then ε̄ stays stable for every
trace x with different sensitive variables. Considering profiled attack is essen-
tially a classification task, to estimate the clean trace for each class (sensitive
variable) is equivalent to estimate the within-class center, which is important
for some classifiers. As long as the clean trace is discriminative, the biased clean
trace is also discriminative which is sufficient for classification.

Unprotected Scenario. For profiled SCA against unprotected implementa-
tions, the estimation of the clean trace is simple and straightforward. The clean
trace of each class1 is the sample mean from traces within the class. Once the
clean trace is estimated, we can generate training pairs for the denoising autoen-
coder as described in Algorithm 1.

Algorithm 1. Noisy-clean training pair generation for unprotected implemen-
tation
Input: profiling set Xprofiling = {xi}N

i=1, sensitive variable set V = {vi}N
i=1

Output: noisy-clean training set Xtrain = {(xi, x̄i)}N
i=1

1: Initialize clean trace set S as empty set
2: for all v ∈ GF (28) do
3: Calculate average trace x̄ = Ê[x|v]
4: Append x̄ into S
5: end for
6: Initialize Xtrain as empty set
7: for all xi ∈ Xprofiling do
8: x̄i = S[vi]
9: Append (xi, x̄i) into Xtrain

10: end for
11: return Xtrain = {(xi, x̄i)}N

i=1

1 Totally 256 classes for AES implementation in this paper because there are 256
elements in Galois field GF (28).
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Masked Scenario. For profiled SCA against masking implementations, the
estimation of clean trace follows the same methodology. In 1st-order masked
scenario, the trace x = xv‖xm horizontally contains two independent part: (1)
masked sensitive variable part xv, where v = φ(p, k,m) and m is the mask, (2)
mask part xm. For each part, the trace component is as follows:

xv[t] =

Clean trace
︷ ︸︸ ︷
ft(φ(p, k,m)) +

Noise
︷︸︸︷
εt , (10)

xm[t] =

Clean trace
︷ ︸︸ ︷
gt(ϕ(m)) +

Noise
︷︸︸︷
εt . (11)

According to the discussion in Sect. 3.2, x̄v and x̄m are biased estimation as
follows:

x̄v = xv + ε̄ − ε, (12)
x̄m = xm + ε̄ − ε. (13)

Algorithm 2 illuminates how to generate noisy-clean training pairs for 1st-
order masking implementation.

Algorithm 2. Noisy-clean training pair generation for 1st-order masking imple-
mentation
Input: profiling set Xprofiling = {xv,i‖xm,i}N

i=1, sensitive variable set V = {vi}N
i=1,

mask set M = {mi}N
i=1

Output: noisy-clean training set Xtrain = {(xi, x̄i)}N
i=1

1: Clip Xprofiling into sensitive variable part Xpv = {xv,i}N
i=1 and mask part Xpm =

{xm,i}N
i=1

2: Initialize clean trace sets Sv and Sm as empty set
3: for all v, m ∈ GF (28) do
4: Calculate average trace x̄v = Ê[xv,i|v] and average trace x̄m = Ê[xm,i|m]
5: Append x̄v, x̄m into Sv, Sm respectively
6: end for
7: Initialize Xtrain as empty set
8: for all xi ∈ Xprofiling do
9: x̄i = Sv[vi]‖Sm[mi]

10: Append (xi, x̄i) into Xtrain

11: end for
12: return Xtrain = {(xi, x̄i)}N

i=1

3.3 Objective Function

The input of our network is a noisy trace x = x̄− ε̄+ε. Discriminative denoising
networks aim to learn a highly non-linear mapping function F(x) ≈ x̄ to predict
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the clean trace. We employ Euclidean distance (i.e. �2 loss) between clean and
denoised traces as objective function.

�2 Loss. The network is trained using the back-propagation algorithm with
mean-square error (MSE) as error-criterion. Stochastic gradient descent over
a mini-batch is used to update the network parameters.

L(Θ)MSE =
1

2N

N∑

n=1

‖F(x;Θ) − x̄‖22 (14)

In Eq. (14), N is the size of mini batch, F(x;Θ) is the output (i.e. denoised
trace) of the network and Θ collectively represents the learnable weights and
bias parameters in the network. The Θ can be obtained as:

Θ � arg min
Θ

L(Θ). (15)

Connection with SCA. Our denoising network with �2 distance-based objec-
tive function can be explained as the optimization step of profiled SCA in theory.
Recall Eq. (4) of SNR, the optimization of L(Θ) is equivalent to reduce the vari-
ance of noise Ê[V̂ar[F(x)[t]|v]]. Hence in information theoretic metrics, the SNR
and PCC of denoised traces will increase.

From the attacker’s point of view, after the denoising preprocessing, the
denoised traces are more closed to the within-class center, which makes the
classification easier. For example, TA uses Mahalanobis distance (F(x) − x̄)�

Σ−1(F(x)−x̄) to make discriminative predictions. When Σ is identity, the Maha-
lanobis distance will reduce to Euclidean distance which is L(Θ)MSE. That is
explained why the reduced TA performs well in our experiments.

4 Experimental Results

4.1 Experimental Setup

To evaluate the efficiency of the CDAE framework in the context of profiled
SCA, three different (software and hardware) platforms have been considered.
Since denoising is our main concern, we specially choose the following target
devices with considerable high noise: (1) our home-made AES parallel imple-
mentation on GPU, (2) public dataset DPAv2 of AES parallel implementation
on FPGA and (3) public dataset ASCAD of 1st-order masking AES implemen-
tation on AVR microcontroller. SNR and PCC are used as evaluation metrics
from the information theoretic point of view, to measure the information gain
after denoising2. Guessing entropy (GE) is used to evaluate how much attack
efficiency gains for a real attacker with the help of our denoising method. Specif-
ically, we run the Template Attacks (TA), reduced Template Attack (TA.r) and
2 We stress that the information gain remains consistency in F(Xprofiling) and

F(Xattack) since early-stopping is used to prevent over-fitting.
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pooled Template Attack (TA.p) 100 times with randomly selected sub-samples
of attack set for evaluation. For each attack, we pre-select {5, 25, 50} PoIs with
the highest PCC and record the best results of the minimum number of traces to
achieve GE < 2. Singular Spectrum Analysis (SSA) [4] is used as a state-of-the-
art denoising preprocessing method in profiled SCA for comparison. It should
be noted we strictly follow the algorithm and recommended parameter setting
of SSA in [4].

In this work, all experiments are conducted on an Intel(R) Xeon(R) CPU
E5-2667 v4 @3.20GHz 32 core machine with two NVIDIA TITAN Xp GPUs.
We use the Keras library (version 2.2.2) with the TensorFlow library (version
1.10.0) as the backend for CNN. All the data and code are available at https://
github.com/fr4nky4ng/CDAE-Towards-Empowering-Denoising-in-SCA.

4.2 Results on Unprotected AES Parallel Implementation on GPU
(AES GPU)

Graphics Processing Unit (GPU) has been widely used for general-purpose
computing, including computationally-intensive algorithms such as the cryp-
tographic algorithms. Recent works [6] show that GPU based cryptographic
implementation is vulnerable by non-profiled attacks through electromagnetic
side-channels. In [6], up to 11,000 traces are needed to perform the non-profiled
attack, which indicates the noise in traces is very high. We target an NVIDIA
GeForce GT620 graphics card (GPU) connected to the host with a PCIe bus.
The AES parallel implementation (32 threads in a warp) and trace acquisition
details are stated in [6]. We use the same trace set as in [6] and make it publicly
available at https://github.com/fr4nky4ng/AES GPU.

We aim at the leakage operation of the last round 16th byte register writing:
v = Sbox−1[c[16] ⊕ k∗], where c[16] is the 16th ciphertext byte. Each trace
contains 350 relevant sampling points. There are 34,511 traces for profiling and
5,000 traces for the attack. We call this homemade dataset AES GPU in brief.
The training pair is generated by Algorithm 1. During the network training, we
use Adam optimizer with a learning rate of 0.001. The mini-batch size is 256 and
the maximum iterative epoch is 100. We stop the training at epoch 49 where
over-fitting occurs.

Results. We examine SNR and PCC of denoised traces from our method, SSA
method and original noisy traces as shown in Fig. 3. It can be seen that our
method significantly improved the SNR and PCC on the points of interest (PoI).
For instance, at point 276, the peak SNR and PCC are significantly improved
by 20 times and 4.5 times respectively.

Detailed power distribution at PoI 276 can be found in Appendix A Fig. 6.
Kernel density estimation (KDE) [14] is used to estimate the probability density
function of the power, where each colored line represents the KDE of one class
because there are 256 classes in GF (28). After denoising, the power distribu-
tion is more scattered and discriminative because the variance of the noise is
suppressed.

https://github.com/fr4nky4ng/CDAE-Towards-Empowering-Denoising-in-SCA
https://github.com/fr4nky4ng/CDAE-Towards-Empowering-Denoising-in-SCA
https://github.com/fr4nky4ng/AES_GPU
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(a) SNR (b) PCC

Fig. 3. Comparison of SNR and PCC.

In general, higher SNRs should translate into more successful attacks. This
has been practically verified by running TA and evaluating the Guessing Entropy
of true key. In Table 1, only 40–50 denoised traces are necessary to reach GE <
2, which gains up to a factor of 10. With the help of GPU acceleration, The
preprocessing time of CDAE Timepre = 1m57s is faster compared to 6 min of
the SSA Python implementation.

Table 1. Results on AES GPU.

Method SNR PCC GE Timepre

TA TA.r TA.p

Original 0.020 0.098 650 700 80 0 s

SSA [4] 0.029 0.117 >1000 540 60 6 m12 s

Ours 0.466 0.468 50 40 45 1m57 s

4.3 Results on Unprotected AES Hardware Implementation on
FPGA (DPAv2)

The second dataset is from the DPA Contest v2 (DPAv2) on the public website
[20]. It provides measurements of an unprotected hardware parallel implementa-
tion of the AES-128 algorithm on the SASEBO GII FPGA board. We pre-select
leakage related to consecutive 1000 points for each trace. Previous works [15]
showed the most suitable leakage operation is the register writing in the last
round: v = Sbox−1[c[12] ⊕ k∗] ⊕ c[8], where c[12] and c[8] are 12th and 8th
ciphertext bytes. In our experiment, there are 90,000 traces for profiling and
10,000 for attack. The training pair is generated by Algorithm 1. The convolu-
tional kernel size is 11 in CDAE because the length of traces in DPAv2 is longer.
We use Adam optimizer with learning rate 0.0001. The mini-batch size is 256
and the maximum iterative epoch is 100. We stop the training at epoch 90 where
over-fitting occurs.
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Results. As shown in Fig. 4, our method improves the SNR and PCC of the
original traces at a factor of 4.2 and 1.8 respectively, where the SSA only improves
the SNR and PCC at a factor of 1.4 and 1.2. An interesting phenomenon is that
the traces denoised by our method still maintain the leakage characteristics.
The curve of SNR/PCC is not changed but only enhanced, in comparison sharp
fluctuations can be observed on the SNR/PCC of SSA denoised traces. Our
method only amplifies the SNR and PCC, which is a good advantage for the
backend attacker who doesn’t want the leakage distribution interfered.

(a) SNR (b) PCC

Fig. 4. Comparison of SNR and PCC.

The detailed power distribution is shown in Appendix A Fig. 7. The traces
of DPAv2 are quite noisy due to 16 S-boxes are implemented in parallel and we
only target one S-box. The sensitive variables of the other 15 S-boxes would be
seen as noise. After denoising preprocessing, the power of v = 0 (the black line
stands alone in Fig. 7) is more discriminative than before.

The further attack results of TA in Table 2 show the improvement of infor-
mation gain translate into the efficiency gain of TA. Only 450 denoised traces
are needed to recover the key, where SSA and original traces need 800 and
950 traces. Considering the total amount of traces is large (100,000 traces), our
method takes 17 min for preprocessing which is acceptable. For comparison, SSA
takes 52 min for denoising all 100,000 traces.

Table 2. Results on DPAv2

Method SNR PCC GE Timepre

TA TA.r TA.p

Original 0.014 0.044 >3000 950 2400 0 s

SSA [4] 0.020 0.051 2240 800 1500 52m22 s

Ours 0.059 0.078 >3000 450 1000 17m41 s
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4.4 Results on Masking AES Software Implementation
on ATMega8515 (ASCAD)

Finally, we test our method on the public ASCAD database [16]. ASCAD is
introduced for providing a benchmark to evaluate deep learning based SCA.
The dataset is measured from the electromagnetic radiations of a masking AES
software implementation on an 8-bit AVR microcontroller (ATMega8515). Each
trace has 700 sampling points which contain information on the masked S-box
output: v = Sbox(p[3] ⊕ k[3]) ⊕ r[3] and S-box output mask: m = r[3], where
p[3] is the 3rd plaintext byte. There are 50,000 traces for profiling and 10,000 for
attack. The training pair is generated by Algorithm 2. The weight factor in loss
is the sum of the SNRs on both parts. We use Adam optimizer with learning
rate 0.0001. The mini-batch size is 256 and the maximum iterative epoch is 100.
We stop the training at epoch 75 where over-fitting occurs.

Results. A careful observation of Fig. 5 shows that the SNR and PCC of the
mask part on the left side and the masked S-box output part on the right side are
both improved after using our denoising network. For the masked S-box output
part, the peak SNR and PCC of v are improved by 5.9 times and 1.04 times
respectively. For the mask part, the peak SNR and PCC of m are improved
by 1.60 times and 1.26 times respectively. Interestingly, the noise level of both
parts is reduced simultaneously at one single training. However, the denoising
effect of the masked S-box output part is more effective. because the SNR of
original traces on this part is higher than on the mask part, the network pays
more attention to this part to minimize �2 loss. SSA fails to denoise the traces
because of SNR and PCC both decrease.

A detailed look of the power distribution at point 517 of the masked S-box
output part and point 156 of the mask part is shown in Appendix A Fig. 8. At
point 517 of masked S-box output v and 156 of mask m, we notice that the
distribution is Gaussian-like. After denoising, the distributions of 256 classes are
scattered. This means the variance of the noise is suppressed and the signals are
more distinguishable which is good for profiled attacks.

We use PCA-TA (use PCA to extract principal components then launch TA)
and High Order Template Attacks (HOTA) as a benchmark test. The reason is
two-fold: (1) Since ASCAD traces are measured from a 1st-order masking AES
implementation, it is natural to use HOTA to generate the 2nd-order moments
and then perform TA. (2) According to the experiments in [16], PCA-TA is
utilized as recommended profiled attacks, even better than CNN based profiled
attacks for synchronized ASCAD traces.

The denoising and attack results are shown in Table 3. It only takes 13 min
45s to train and denoise all 60000 traces for CDAE. We can find that PCA-TA is
only suitable when using the covariance matrix. For all the PCA-TA and HOTA,
our method takes the least traces (A minimum of 160) to reach GE less than 2.
For both attacks, SSA fails and GE decreases slowly, even worse than attacking
results without preprocessing.
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(a) SNR before CDAE denoising (b) SNR after CDAE denoising

(c) PCC before CDAE denoising (d) PCC after CDAE denoising

Fig. 5. Comparison of SNR and PCC (The results of SSA are omitted in the figure for
clarity because SSA fails and the SNR and PCC are not improved).

Table 3. Results on ASCAD.

Method SNRv/SNRm PCCv/PCCm GE Time

PCA HO

TA TA.r TA.p TA TA.r TA.p

Original 6.29/1.27 0.44/0.31 310 Failed Failed Failed 600 600 0 s

SSA [4] 1.56/0.94 0.37/0.26 Failed Failed Failed Failed 1750 5000 15m52 s

Ours 37.2/2.03 0.46/0.39 160 Failed Failed 7000 400 500 13m45 s

5 Conclusion

In this paper, we propose CDAE as novel denoising preprocessing tool in the con-
text of profiled SCA for the first time. In particular, we validate the effectiveness
of CDAE under three high noise jamming circumstances with quite a high noise
level and show that our method can significantly outperform the state-of-the-
art SSA denoising method on both information theoretic metrics and security
metrics. Unlike classic denoising methods, our method is a data-driven approach
which learns the unique noise distribution to adaptively reduce the noise of the
DUT. We argue that CDAE is very suitable for profiled attacks especially when
the attacker has a large amount of traces in the offline profiling phase. Once
the network training is done, our denoising network can be applied to individual
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traces for the attacker to launch online attacks. We demonstrate that the �2
loss is a special case of Mahalanobis distance which is the foundation of TA. It
would be interesting to use Mahalanobis distance as the objective function of
our denoising network, in order to directly develop a neural network enhanced
Template Attacks.

Acknowledgment. This work was supported in part by the National Natural Science
Foundation of China (No. 61632020) and Beijing Natural Science Foundation (No.
4192067).

Appendix A. Kernel Density Estimation of Univariate
Distribution at PoI

(a) KDEs before denoising (b) KDEs after denoising

Fig. 6. Power distribution of sensitive variable v at PoI 276 (256 classes). (Color figure
online)

(a) KDEs before denoising (b) KDEs after denoising

Fig. 7. Power distributions of sensitive variable v at PoI 330 (256 classes). (Color figure
online)
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(a) KDEs at PoI 517 before denoising (b) KDEs at PoI 517 after denoising

(c) KDEs at PoI 156 before denoising (d) KDEs at PoI 156 after denoising

Fig. 8. Power distributions of masked Sbox output v at PoI 517 and mask m at PoI
156. (Color figure online)
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Abstract. FPGA is widely used in the cryptographic devices, such as
security co-processor and crypto engine, due to its high speed and cus-
tomizability. Side-channel analysis is the state-of-the-art method which
could recover the secret information in the FPGA through measuring and
analysing the power consumption or the electromagnetic radiation. There-
fore, side-channel analysis may lead to a potential threat of the security of
FPGA. We find that an excessively high operating frequency could cause
a pretty serious security vulnerability in the FPGA implementation of a
cryptographic algorithm with side-channel countermeasures. And then,
how to evaluate the security of the implementation at different operat-
ing frequencies is an important question in the practical application. After
investigating the physical reason of the information leakage of the FPGA,
we propose a generic evaluation methodology derived from CPA and MIA
that can be utilized to analyze the security of FPGA implementation of
a cryptographic algorithm with side-channel countermeasures at different
operating frequencies. By this methodology, the evaluator only needs to
collect the measurements when the FPGA operates at an arbitrary fre-
quency rather than collecting the measurement of all possible frequencies
exhaustively. Finally, several experiments in an FPGA with AES cryp-
tographic algorithm protected with a masking countermeasure are con-
ducted to illustrate the feasibility of this methodology.

Keywords: FPGA · Side-channel analysis · Operating frequency ·
Higher-order masking

1 Introduction

FPGA is widely used in the cryptographic device, such as security co-processor
and crypto engine, due to its high speed and customizability. Physical Attack is
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one of the most powerful kinds of attack against cryptographic devices, which
do not targets the algorithm itself but attempt to recover information about
the secret by attacking the implementation of the algorithm. In the past decade
years, Side-Channel Attacks (SCAs) [5,6,10–12,24] have become a threaten-
ing physical analysis method of the cryptographic device, which gain the secret
through measuring the power consumption, electromagnetic radiation or other
side channel information. Masking [2,7,18,20,22,23] is one of the most efficient
algorithm-based countermeasures in SCAs. The goal of the masking is to make
the physical power consumption of a cryptographic device independent of the
intermediate value of the cryptographic algorithm, and it is achieved by ran-
domizing these intermediate values. However, though the masking scheme is
considered secure theoretically, it still has many vulnerabilities due to weak
implementations.

Glitches can be seen as unwilling transitions in a combinational circuit.
Due to the uncontrolled glitches occurring in the masked circuit, the FPGA
implementation of maskings faces many challenges [14,15]. However, the secu-
rity risks induced by glitches can be eliminated with Threshold Implementation
(TI) [4,19]. TI ensures the security of first order masking scheme in presence
of glitches. Considering the development of TI, the security risks induced by
glitches could be mitigated. Thus we do not concentrate on the vulnerabilities
derived from glitches in this paper.

Besides glitches, the vulnerabilities caused by the other aspects of the imple-
mentation of the masking schemes have been studied. Moradi et al. [17] have
studied the information leakage caused by an amplified setup in hardware cryp-
tographic devices. They have discussed that the operating frequency of the real
circuit and the measurement setup have an impact on the vulnerability of the
masking schemes. The paper shows that an inappropriate operating frequency of
a cryptographic device can cause severe security problems. However, the theoret-
ical relationship between the quantity of leakage and the operating frequency of
the cryptographic device is still uncertain. In this paper, we try to construct an
evaluation methodology which can be utilized to detect the information leakage
of the masked circuit operating at different frequencies.

In the aspect of leakage detection or evaluation, Welch’s T-test [16], Corre-
lation Power Analysis (CPA) distinguisher [5] and Mutual Information Analy-
sis (MIA) distinguisher [3] are extensively used. Durvaux et al. [8] studied the
features of different detection methods and proposed an improved t-test and
an innovative correlation-based method. The leakage detection methods can be
used to detect the Points-Of-Interests (POIs) [9], which is a complementary task
in most side-channel attacks. In this paper, we focus on evaluating the quantity
of the leakage that can be utilized to perform an attack successfully under the
premise of knowing these POIs.

After studying the feature of the side-channel leakage of FPGA in depth, we
notice that the quantity of information leakage has a direct relationship with the
operating frequency. When the evaluator performs univariate MIA or CPA on
FPGA implementation of masking schemes, the number of traces will decrease



Practical Evaluation Methodology of Higher-Order Maskings 289

with the operating frequency becoming higher. Besides, the FPGA circuit can
be attacked by MIA or CPA easily when the circuit operates at a high frequency
(e.g. 48 MHz, 24 MHz). However, the circuit is secure when the operating fre-
quency is rather low (e.g. 2 MHz). So the security of the FPGA implementation
of masking schemes has a significant relationship with the operating frequency,
so selecting an appropriate operating frequency is significant for the designer of
a masking scheme, especially when implemented with FPGA.

We propose a generic methodology that can be used for side-channel leakage
evaluation on FPGA, by which the designer or the implementor of a masking
scheme can evaluate the security and estimate the number of traces needed
to successfully attack the FPGA implementation of this scheme when the cir-
cuit operates at different frequencies. Moreover, the evaluator only needs to
collect the measurements when the FPGA operates at an arbitrary frequency
rather than collecting the measurement of all possible frequencies exhaustively.
Also, this methodology is appropriate for real applications (e.g. smart card, IoT
devices) that work at any operating frequency though it’s rather high.

2 Preliminaries

2.1 Measurement Setup

All practical experiments in this paper are conducted with the SASEBO-GII
board [1], which is equipped with a Xilinx Virtex-5 FPGA chip. The SASEBO-
GII board is specially designed for the side-channel analysis on the cryptographic
design implemented with FPGA. Figure 1 partly shows the shape of the power
consumption of a FPGA implementing an AES cryptographic algorithm, where
the cycle of the AES can be obviously identified.

Physical power consumption traces are collected by means of a KEYSIGHT
InfiniiVision DSOX3034A digital oscilloscope at a sampling rate of 2GSa/s and
a bandwidth limit of 20 MHz to reduce the environmental noise.

S-Box 
operation 

starts

Fig. 1. SASEBO-GII (Xilinx Virtex-5 FPGA) physical power trace of AES.

2.2 CPA and MIA Distinguishers

In this section, we introduce the notations throughout this paper. We use bold
capital letters for matrixes and bold small letters for vectors. The detailed
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description of the notation is shown in Table 1. Moreover, we introduce some
background information about MIA and CPA distinguishers, which are the fun-
damentals of the proposed methodology in this paper.

Table 1. Notations

Notations Descriptions

k Vector of key hypothesis

kguess Key guess

kc Correct key

kw Wrong key

P Random plaintext

ρ Correlation coefficient

Cov(X, Y ) Covariance of X and Y

Pr(X = x) Probability that X = x

m Number of power consumption traces

s Time samples

T Matrix of physical power consumption traces

t′
m Row m of T , that is, the mth traces

ts Column s of T , that is, vector of point s (a particular time instant)
in different traces

tm,s The power consumption value at row m column s of T

D Matrix of differential power consumption traces, the meanings of
d′

m, ds and dm,s are similar to t′
m, ts and tm,s

P Matrix of reconstructed power consumption traces, the meanings of
p′

m, ps and pm,s are similar to t′
m, ts and tm,s

SBox(x) AES S-box function

F Set of valid operating frequencies of cryptographic devices

f Operating frequency

|·| Number of elements in a set

tc Length of clock cycle, which is equals to 1
f

τ Duration of differential power consumption traces d′
m

Leakage Model: L(x) denotes the information leakage when x = I(kguess, P ),
where kguess ∈ k is the key guess, k is the set of the key hypothesis, P is a
random plaintext, I denotes the computation of intermediate value. In the real
cryptographic device, P is a random number in GF (2n), where n is the length
of the plaintext block, information leakage L(x) = LM [I(kguess, P )], where LM

denotes the leakage model, which is an estimation of L.

Correlation Power Analysis (CPA) Distinguisher: T denotes the matrix
of physical power consumption traces (size m × s), where m is the number of
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traces and s is the number of time samples. ts denotes the column s of T (i.e.
The vector of point s in different traces). CPA distinguisher ρ(ts, L(x)) denotes
the correlation between ts and L(x).

ρ(X,Y ) =
cov(X,Y )

σXσY
,

where cov(X,Y ) represents the covariance of X and Y , σX and σY denote the
standard deviation of X and Y respectively.

Mutual Information Analysis (MIA) Distinguisher: MIA distinguisher
MI(tS , L(x)), which is similar to CPA, denotes the mutual information of ts and
L(x). The mutual information can be calculated as follows:

H(X) denotes the entropy of a random variable X, and H(X|Y ) denotes the
conditional entropy of X given another variable Y , then H(X) and H(X|Y ) can
be expressed as:

H(X) = −
∑

i

Pr(X = xi) log Pr(X = xi),

H(X|Y ) = −
∑

i,j

Pr(X = xi, Y = yj)

log Pr(X = xi|Y = yj).

The mutual information can be expressed as:

MI(X,Y ) = H(X) − H(X|Y ).

3 Vulnerability of Masked Circuits

In a masked circuit, the information leakage generated at a specific clock cycle
still exists at the next several clock cycles, we call this phenomenon the per-
sistence of leakage. The concept of the persistence of leakage is similar to the
memory effect which is mentioned in [17], however, it can be observed without
an amplified setup which is necessary to the memory effect. The persistence of
leakage can be utilized to describe the physical reason and feature of the infor-
mation leakage and explain why the results of CPA or MIA are changed when the
operating frequency is altered. Besides, the concept of the persistence of leakage
is the foundation of the evaluation methodology proposed in this paper. Though
provably secure, a masking scheme can be vulnerable due to the persistence of
leakage.

Figure 2 shows the main process of AES cryptographic algorithm, where the
S-box is unmodified in the original algorithm without masking countermeasures.

Figure 3 shows the masking scheme which is proposed by Regazonni [22],
where the mask and plaintext are manipulated in a similar manner. From Fig. 3
we can see that the mask and the output of the AddRoundKey, which is called
the intermediate value, are the inputs of the masked S-box, if these processes are
parallel in the implementation, the circuit is vulnerable to zero-offset attack [25].
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AddRoundKey

Sbox

ShiftRows

MixColumns

Keyi

Plaintext

Ciphertext

Fig. 2. Main process of AES cryptographic algorithm

Thus the mask and intermediate value cannot be manipulated in parallel due
to safety factors. The most practical method to solve this problem is to process
the mask and the intermediate value in different clock cycles. However, there
may occur some security problems due to the persistence of leakage though the
mask and the intermediate value are processed in serial, especially in continuous
cycles. Figure 4 shows the main process of RSM masked S-box, which is part of
the whole masking scheme proposed by Nassar [18]. The RSM masking scheme
is secure against zero-offset attack. However, if the scheme is implemented where
the mask and the intermediate value are processed in continuous cycles, there
may also be a high-order leakage due to the persistence of leakage.

AddRoundKey

Masked Sbox

ShiftRows

MixColumns

ShiftRows

MixColumns

MaskPlaintext

Ciphertext

Keyi

Fig. 3. Main process of Regazzoni masking scheme

Therefore, we conducted several experiments to verify the vulnerabilities from
the persistence of leakage and identified the information leakage that can be
utilized to perform univariate attacks with our measurement setup, from which
we can see that the persistence of leakage is widespread in the real circuit.
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AddRoundKey

Masked
Sbox

ShiftRows

Mask0

Mask1

Fig. 4. Main process of RSM masked S-box

3.1 Persistence of Leakage

To analyze the persistence of leakage, the experiment is conducted on the AES
hardware implementation of the Regazonni masking scheme. For the purpose
of the experiments is to verify the existence of the persistence of leakage, the
implementation is a single round of AES where the S-boxes are executed seri-
ally. The univariate MIA is utilized to analyze the power consumption of the
implementation. Each differential power trace is computed with the Hamming
weight of the intermediate value unaltered, which depends on the actual data.
So differential power traces indicate the data-dependent portion which can be
seen as the information leakage in physical power consumption traces. We utilize
the differential power trace to verify the effect of the persistence of leakage on
the cryptographic circuit. Differential power consumption D can be calculated
as follows:

Tj = {ti |HW [I(kc, Pi)] = j },

d′
j = lim

|Tj |→∞,|T0|→∞
(

∑
t∈Tj

t

|Tj | −

∑
t∈T0

t

|T0| ), (1)

where Tj is a set of physical power consumption traces t with the same Hamming
weight j of the intermediate value. |·| denotes the number of elements in a set.

The differential power consumption D1 and D2 are calculated with interme-
diate values I1 = x1 ⊕SBox(x1) and I2 = x2 ⊕SBox(x2) respectively, where x1

and x2 denote two inputs of the AES S-box. The result is shown as Fig. 5, and
two peaks correspond to two sets of differential power consumption traces D1

and D2. From Fig. 5 we can see that the peak of D1 continues to the position of
D2 due to the influence of the persistence of leakage, and two peaks overlap in
a single clock cycle. Thus, higher-order leakage that can be utilized to perform
univariate attacks is generated in this situation.

3.2 Cause of Persistence of Leakage and Power Consumption of
FPGA

In this paper, we try to investigate the information leakage from the power
consumption of FPGA, so the feature of the power consumption traces is a sig-
nificant problem. According to [13], FPGA can be seen as a CMOS circuit, and
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the power consumption of CMOS circuits is the sum of static power consumption
and the dynamic power consumption. The major part of the power consumption
in CMOS circuits is the dynamic power consumption, and it has a direct rela-
tionship with the data that is processed by the CMOS circuit, so the dynamic
power consumption is the crucial factor that generates the information leakage.

D1 D2

Fig. 5. The traces in two boxes correspond to two sets of differential power consumption
traces D1 and D2, and each trace corresponds to a row of D1 or D2.

The main reason for the dynamic power consumption is the charging current
of the output capacitance CL. Therefore, the persistence of leakage can be seen
as a result of the charging time of CL. The charging time of CL depends on
the voltage, the resistance and the capacitance of the CMOS circuit which have
no relationship with the operating frequency, so it remains unchanged when the
operating frequency of the FPGA is altered. Therefore, the duration τ of the
persistence of leakage does not depend on the operating frequency.

4 Evaluation Methodology

The duration τ keeps constant if the power consumption traces collected with
unaltered measurement setup. With the measurement setup in this paper, τ is
approximately 6 ns. The power consumption D of different shares overlap in a
single clock cycle. Then the masked circuit generates higher-order leakages. As
shown in Fig. 5, the operating frequency f influences the distance tc between
two peaks of D1 and D2 instead of the duration τ that one peak decreases to
zero. So the overlapping area of different shares becomes larger with f increasing
and the masked circuit is easier to be attacked. However, the exact relationship
between f and the quantity of the information leakage is still unclear.

The power consumption traces collected under a specific f cannot be utilized
to evaluate the information leakage if f is changed. To evaluate the security
of the masking scheme implemented with different operating frequencies F , the
evaluator has to collect the power consumption traces after altering the imple-
mentation with different f every time. If the evaluator is to evaluate the security
of the masking scheme implemented with |F | different operating frequencies, he
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has to alter the implementation |F | times, where |·| denotes the number of ele-
ments in a set. The total number of traces needed is as follows:

Ntotal =
∑

f∈F

Nf ,

where Nf is the number of traces needed to perform the evaluation with a certain
f . This process consumes plenty of extra time.

We proposed a generic evaluation methodology that can be utilized to ana-
lyze the security of the masked circuit at different operating frequencies more
easily. The evaluator can acquire and analyze a series of power consumption
traces at different operating frequencies by this methodology after simply col-
lecting Nf (instead of Ntotal) physical power consumption traces once. Through
this methodology, the designer of a higher-order masking scheme can revise
the implementation or select an appropriate operating frequency of the crypto-
graphic device. The detailed description of the methodology is stated as follows.

As shown in Fig. 5, the differential power consumption D decreases exponen-
tially after reaching the peak. It can be assumed that the persistence of leakage
disappears when the differential power decreases to zero. We utilize curve fitting
to depict the trend how D decreases. The result is as follows:

px,s = g(x)e−αs, (2)

where px,s is the reconstructed power consumption in time sample s when the
intermediate value equals to x, g(x) denotes a function with the independent
variable x, and α is a constant. We assume that the power leakage in the real
circuit satisfies the Hamming weight model (or the Hamming distance model),
then g(x) can be expressed as follows:

g(x) = Amp ◦ HW (x), (3)

where Amp is an amplify function which is related to the feature of the physical
power consumption, and it can be acquired by profiling. Then D can be re-
written as:

dx,s = Amp ◦ HW (x)e−αs. (4)

In the real masked circuit, the shares of sensitive values are processed in
adjacent clock cycles. For the shares x1 and x2 we have x = x1 ⊕ x2, and from
Eqs. (2), (3) we have:

px1,s = Amp ◦ HW (x1)e−αs, (5)

px2,s = Amp ◦ HW (x2)e−α(s+ 1
f ). (6)

Due to the persistence of leakage, the power consumption of the operation of two
shares overlaps. The reconstructed power consumption P of the masked circuit
can be expressed as:

P = P1 + P2 + Pnoise, (7)
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where Pnoise is the noise in the power consumption that satisfies Gaussian dis-
tribution and Pnoise ∼ N(μnoise, σ

2
noise). P1 and P2 represent the matrixes that

consist of px1,s and px1,s respectively.
From Eqs. (5), (6), (7), the element px,s of the reconstructed power consump-

tion P can be expressed as:

px,s = Amp ◦ HW (x1)e−αs

+ Amp ◦ HW (x2)e−α(s+ 1
f ) + Pnoise.

(8)

The leakage in the real circuit is:

L(x) = HW (x) = HW (x1 ⊕ x2). (9)

When MIA is utilized to analyze the second-order masking scheme, from Eqs.
(8), (9), we have:

MI(ps, L(x)) = MI(Amp ◦ HW (x1)e−αs

+ Amp ◦ HW (x2)e−α(s+ 1
f ) + Pnoise,

HW (x1 ⊕ x2)).

(10)

However, When CPA is utilized to analyze the scheme, the power consumption
ps should be preprocessed. From Eqs. (8), (9), we have:

ρ(p∗
s , L(X)) = ρ(Pre(Amp ◦ HW (x1)e−αs

+ Amp ◦ HW (x2)e−α(s+ 1
f )) + Pnoise,

HW (x1 ⊕ x2)).

(11)

where p∗
s = Pre(ps) and Pre is the preprocessing function [21].

According to Eq. (10), we consider the operating frequency f as an inde-
pendent variable and study the theoretical correlation between f and MI. The
function Amp and the coefficient α are acquired by profiling. The result is shown
in Fig. 6 regardless of Pnoise and there is a positive correlation between f and
MI. It is obvious that the masked circuit leaks more information and it is more
feasible to be attacked with the operating frequency of the device increasing.

We study the correlation between f and ρ by the approach which is the same
as the one used in MIA. The preprocessing function that we select is as follows:

Pre(p) =
n∏

i=1

(pi − p)2,

where p is a vector with n elements, pi represents the element of p, i = 1, 2, ..., n,
p denotes the mean of all elements of p. This function is appropriate for the
univariate CPA attack since it only concerns the power consumption at a single
time instant.
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Fig. 6. Theoretical relation between operating frequencies and mutual information.

Fig. 7. Theoretical relation between operating frequencies and correlation.

Algorithm 1. Measurement reconstruction
Input:

The physical power consumption traces Tc at a certain frequency fc;
Output:

Several sets of power consumption Pf of the cryptographic device operated at
frequency f such that f ∈ F ;

1: Acquire dx,s from Eq. 1;
2: dx,s can be expressed as dx,s = Amp ◦ HW (x)e−αs

3: for all f such that f ∈ F do

4: Pf = Amp ◦ HW (x1)e
−αs + Amp ◦ HW (x2)e

−α(s+ 1
f
)
;

5: end for
6: return Pf ;

The correlation between f and ρ is shown in Fig. 7, we can see that there is
still a positive correlation between f and ρ.

From what we have discussed above, the power reconstruction flow of the
proposed evaluation methodology is stated as Algorithm1:

After acquiring the power consumption traces Pf , the analyser should cal-
culate the mutual information MI or the correlation ρ based on Eq. (10) or
Eq. (11), then find the vulnerability of the masked circuit operating at differ-
ent frequencies. The analyser is able to revise the design and implementation
or select an appropriate operating frequency of the cryptographic device by this
methodology.
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5 Experiments

To verify the feasibility of this methodology and identify the relationship between
the operating frequency of the cryptographic device and the quantity of the
information leakage, we utilize the proposed evaluation methodology to analyze
the leakage in the ideal case and the real case respectively.

The experiment is conducted on the hardware implementation of the Rega-
zonni masking scheme. The implementation is a single round of AES where the
S-boxes of the mask and the intermediate value are executed serially. The mask-
ing scheme is implemented at the operating frequency of 24 MHz. Up to 300,000
traces were collected, and each of the traces contains 1,000 time samples (10
clock cycles).

After calculating from Eq. 2, the differential power consumption D is shown
in Fig. 8.

Fig. 8. Differential power consumption. Each trace corresponds to a row of D.

We collected the power consumption traces at a certain operating frequency
fc of 24 MHz, and then the reconstructed power consumption traces P at the
other operating frequency fo can be acquired based on Eq. (8). An example of P
(65,536 rows) with f of 12 MHz is shown in Fig. 9, where each trace corresponds
to a row of P . In this scenario, the power consumptions of two shares overlap (on
the shaded area in Fig. 9) in a single clock cycle and leak sensitive information
which can be analyzed by univariate MIA.

Fig. 9. Reconstructed power consumption. The power consumptions of two shares over-
lap on the shaded area.
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5.1 Ideal Case

In the ideal case, Pnoise can be regarded as zero. We selected several valid
operating frequencies F to acquire the power consumption Pf , where f ∈ F
and F = {2, 3, 4, 6, 8, 12, 16, 24, 48} MHz. We utilized MIA to analyze Pf under
different f .

(a) 1,000 traces. (b) 10,000 traces.

Fig. 10. Results of univariate MIA in the ideal case when the number of traces reaches
(a) 1,000 or (b) 10,000

To illustrate the relationship between the operating frequency and the quan-
tity of the information leakage, we give two examples of the results when the
number of traces reaches 1,000 and 10,000 respectively, which are shown in
Fig. 10(a) and (b). The correct key is plotted in black, while all other keys are
plotted in gray. We can see that when the number of traces reaches 1,000, the
leakage is detected if f ∈ {12, 16, 24, 48} MHz, and when the number of traces
reaches 10,000, the leakage cannot be detected only if f = 2 MHz.

To illustrate the relationship between the number of traces and the quantity
of the information leakage, we give two examples of the results when the operat-
ing frequency is 3 MHz and 24 MHz respectively, which are shown in Fig. 11(a)
and (b). From what we can see, given f = 3 MHz, the leakage is detected when
the number of traces reaches 6,000. Given f = 24 MHz, the leakage is detected
when the number of traces reaches 800.

(a) f = 3MHz. (b) f = 24MHz.

Fig. 11. Results of univariate MIA in the ideal case when the operating frequency f
is (a) 3 MHz or (b) 24MHz.
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5.2 Real Case

The real case is to estimate the number of traces to perform an attack in the
real-world situation successfully.

We performed the analysis on the reconstructed power consumption Pnoise,f

where the noise is considered. At first we calculate the SNR of the physical power
consumption T . The variance of signals in time sample s can be calculated as
follows:

σ2
Signal,s =

∑
(dm,s − ds)

2
,

where ds denotes the mean of all elements in vector ds, and dm,s denotes each
element in ds. The variance of the noise of time sample s in every trace can be
calculated as follows:

σ2
noise,s =

∑
(t(I)m,s − t

(I)
s )

2

,

where t
(I)
s denotes a vector of the sample s in each trace with the same interme-

diate value I. We assume that σ2
noise,s is independent of I, so I can be chosen

randomly. t(I)s denotes the mean of all elements in vector t
(I)
s and t

(I)
m,s denotes

each element in t
(I)
s . Then the SNR of the physical power consumption can be

calculated as follows:

SNR = 10 · log
σ2
Signal,s

σ2
noise,s

. (12)

After acquiring the SNR of the physical power consumption, we add noise
to Pf to acquire the power consumption in a real-world scenario with Algo-
rithm2. In our measurement setup, the SNR of the physical power consump-
tion T that calculated from Eq. 12 is 4.68 db. So we add noise to Pf with
SNR of 4.68 db, and then acquired the noisy power consumption Pnoise,f , where
f ∈ {2, 3, 4, 6, 8, 12, 16, 24, 48} MHz.

Algorithm 2. Noise adding
Input:

Power consumption Pf ;
Output:

Noisy power consumption Pnoise,f ;

1: Acquire σ2
noise,s =

∑
(t

(I)
m,s − t

(I)
s )

2

;
2: for all f such that f ∈ F do
3: Pnoise,f = Pf + Pnoise where Pnoise ∼ N(0, σ2

noise,s);
4: end for
5: return Pf ;

We performed univariate MIA on Pnoise,f with the same approach utilized in
the ideal case. Two examples of the results are shown in Fig. 12(a) and (b) when
the number of traces reaches 1,000 and 10,000 respectively. The correct key is



Practical Evaluation Methodology of Higher-Order Maskings 301

plotted in black, while all other keys are plotted in gray. We can see that when
the number of traces reaches 1,000, the leakage is detected if f ∈ {24, 48} MHz,
and when the number of traces reaches 10,000, the leakage is detected if f ∈
{8, 12, 16, 24, 48} MHz.

(a) 1,000 traces. (b) 10,000 traces.

Fig. 12. Results of univariate MIA in the real case when the number of traces reaches
(a) 1,000 or (b) 10,000.

Two examples of the results are shown in Fig. 13(a) and (b) when the oper-
ating frequency is 3 MHz and 24 MHz respectively. From what we can see, given
f = 3 MHz, the leakage cannot be detected even when the number of traces
reaches 50,000. However, given f = 24 MHz, the leakage is detected when the
number of traces reaches 1500.

5.3 Final Results

The persistence of leakage has a significant influence on the security of masking
schemes, and there is a direct relationship between the influence and the operat-
ing frequency of the cryptographic device. Besides the MIA analysis, we utilized
the same method to perform the CPA analysis on the circuit. The final results of
the experiments are shown in Table 2, where f denotes the operating frequency,
and NMIA or NCPA denotes the number of traces required to detect the leakage
successfully in the ideal case, while NMIA,noise or NCPA,noise denotes the num-
ber of traces required in the real case. N+ means that the correct key cannot
be recovered when the number of traces reaches N .

(a) f = 3MHz. (b) f = 24MHz.

Fig. 13. Results of univariate MIA in the real case when the operating frequency f is
(a) 3 MHz or (b) 24 MHz.
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Table 2. Experimental results

f (MHz) NMIA NMIA,noise NCPA NCPA,noise

2 107+ 107+ 107+ 107+

3 6000 105+ 107+ 107+

4 2100 27500 105+ 107+

6 2300 16000 105+ 105+

8 1300 9700 105+ 105+

12 1000 2800 92500 105+

16 900 1600 72800 90100

24 800 1500 45580 34000

48 700 800 14800 24300

According to the results of these experiments, we can draw a conclusion that
the masked circuit is easier to be attacked since the number of traces decreases
when the frequency becomes larger. Besides, the masked circuit generates infor-
mation leakage in the ideal case although the operating frequency is rather low,
while it is relatively safe in the real case. For example, in the ideal case, when
the operating frequency f = 3 MHz, the correct key can be recovered by MIA if
the number of traces reaches 6000. However, in the real case, when the operating
frequency f ≤ 3 MHz, the correct key cannot be recovered by MIA even if the
number of traces reaches 100,000.

The reason for these results is as follows: When f increases, the length of the
clock cycle tc decreases accordingly. However, the duration τ of the differential
power consumption trace is unaffected. Thus, the overlapping area of the power
consumption of different shares becomes larger, and the masked circuit is easier
to be attacked with f increasing. Besides, when the attacker performs higher-
order univariate MIA or CPA attacks, the number of traces will decrease with
the operating frequency becoming higher. So a high operating frequency leads
to the vulnerability of the masking scheme. The noise in the real case is another
significant factor that influences the efficiency of attacks.

However, a rather low operating frequency has a significant influence on the
efficiency of the cryptographic device. There is a tradeoff between the efficiency
and the safety of the cryptographic device. Thus, it is important for the designer
of masking schemes to select an appropriate operating frequency to keep the
masked circuit invulnerable.

6 Conclusion

In this paper, we find that an excessively high operating frequency could cause
a pretty serious security vulnerability in the FPGA implementation of a crypto-
graphic algorithm with side-channel countermeasures, especially masking. After
investigating the physical reason of the information leakage of the FPGA, we
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propose a generic evaluation methodology derived from CPA and MIA that can
be utilized to analyze the security of FPGA implementation of a cryptographic
algorithm with masking countermeasure at different operating frequencies.

By this methodology, the evaluator is able to quantitatively assess the secu-
rity of the FPGA in side-channel aspect and come to a conclusion of what range
of the operating frequency of the FPGA is secure. Furthermore, the evaluator
only needs to collect the measurements when the FPGA operates at an arbi-
trary frequency rather than collecting the measurement of all possible frequen-
cies exhaustively, which makes this methodology totally feasible in practice.
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mation? An a priori statistical power analysis of leakage detection tests. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 486–505. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 25

17. Moradi, A., Mischke, O.: On the simplicity of converting leakages from multivariate
to univariate. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp.
1–20. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-1 1

18. Nassar, M., Souissi, Y., Guilley, S., Danger, J.L.: RSM: a small and fast counter-
measure for AES, secure against 1st and 2nd-order zero-offset SCAs. In: Proceed-
ings of the Conference on Design, Automation and Test in Europe, pp. 1173–1178.
EDA Consortium (2012)

19. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.
1007/11935308 38

20. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A side-channel analysis
resistant description of the AES S-box. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005). https://doi.org/
10.1007/11502760 28

21. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential
power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

22. Regazzoni, F., Wang, Y., Standaert, F.X., et al.: FPGA implementations of the
AES masked against power analysis attacks. In: Proceedings of COSADE, vol.
2011, pp. 56–66 (2011)

23. Tang, M., Guo, Z., Heuser, A., Ren, Y., Li, J., Danger, J.L.: PFDA flexible higher-
order masking scheme. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
36(8), 1327–1339 (2017)

24. Tang, M., et al.: A generic TC-based method to find the weakness in different
phases of masking schemes. Tsinghua Sci. Technol. 23(5), 574–585 (2018)

25. Waddle, J., Wagner, D.: Towards efficient second-order power analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 1

https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-540-30574-3_24
https://doi.org/10.1007/11545262_12
https://doi.org/10.1007/978-3-642-42033-7_25
https://doi.org/10.1007/978-3-642-40349-1_1
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11502760_28
https://doi.org/10.1007/11502760_28
https://doi.org/10.1007/978-3-540-28632-5_1


Authentication



Privacy-Preserving eID Derivation
for Self-Sovereign Identity Systems

Andreas Abraham1(B), Felix Hörandner1, Olamide Omolola1,
and Sebastian Ramacher2

1 Graz University of Technology, Graz, Austria
{andreas.abraham,felix.hoerandner,olamide.omolola}@iaik.tugraz.at

2 AIT Austrian Institute of Technology, Vienna, Austria
sebastian.ramacher@ait.ac.at

Abstract. As centralized identity management solutions amass iden-
tity data, they increasingly become attractive targets for cyber attacks,
which entail consequences for users that range from service disruptions
to exposure of sensitive user data. Self-sovereign identity (SSI) strives to
return the control over identity data to the users by building on decen-
tralized architectures. However, the adoption of SSI systems is currently
hampered by a lack of qualified identity data that satisfies the services’
requirements. Additionally, there is a gap w.r.t the user’s privacy: Inter-
mediate components (e.g., importers or SSI network nodes) learn the
users’ sensitive attributes during the derivation of eID data.

In this work, we present a decentralized eID derivation concept that
preserves the users’ privacy while maintaining the data’s trustworthiness
without revealing the plain data to any component outside the users’ con-
trol. Our proposed system also enables users to selectively disclose only
relevant parts of the imported identity assertion according to the ser-
vice’s requirements. We also implement and evaluate a proof-of-concept
to demonstrate the feasibility and performance of our concept.

Keywords: Qualified electronic identity · Self-Sovereign Identity ·
Distributed ledger · Identity derivation · Distributed trust · Privacy

1 Introduction

Online services need to identify and authenticate users in order to authorize
them and to provide a personalized experience. These services rely on digital
identities [9], which combine identity attributes with means to authenticate the
users. To offer sensitive services, for example in the context of eGovernment, the
employed identities may need to satisfy additional requirements, which are cap-
tured by qualified electronic identities (eIDs) [22]. These qualified eIDs provide
assurance of the attributes’ correctness, bind the eID to the related person, and
ensure uniqueness.
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Companies and governments created their own identity management (IdM)
solutions to enroll and maintain their users’ digital identities or eIDs. Centralized
systems accumulate huge amounts of (sensitive) data about their users, which, of
course, attract attackers aiming to misuse or sell the stolen data, as exemplified
by two recent incidents: Attackers stole sensitive data of 143 million users from
Equifax [23] and information of 50 million users from Facebook [20]. The problem
of centralized IdM systems is that users are not in full control over their identity
data.

SSI and eIDs. The concept of self-sovereign identity (SSI) systems [4,25,30]
tackles this issue by making users the sovereign owners of their identities. SSI
extends on user-centric identity management [32], where the identity data is kept
in the users’ domain, by employing distributed ledger technology (DLT) and
decentralized public key infrastructure (DPKI), which enables service providers
(SPs) to verify the authenticity and trustworthiness of data provided by the
user. However, SSI systems currently lack qualified eID data, which represents
a hurdle for their wide-spread adoption. One promising approach to enrich SSI
systems with qualified eID data is to develop a derivation process that imports
qualified eID data from existing sources. Such a derivation process not only needs
to translate between different data formats and protocols used in the existing eID
system and the SSI system but also has to maintain the data’s trustworthiness.

Related Work. eID derivation and the import into an SSI system has
seen recent progress with conceptually different approaches. Firstly, centralized
approaches, such as ARIES and LIGHTest1, rely on a centralized component to
perform the derivation and import the transformed data into the SSI system.
In the ARIES ecosystem, a new trusted identity provider (IdP) is introduced
for each domain [8]. Similarly, LIGHTest adds a second IdP on top of existing
IdPs. Consequently, users and SPs need to place a high amount of trust in these
central services. Secondly, to reduce these trust requirements, Abraham et al. [2]
proposed a decentralized derivation process for qualified eIDs. In their concept, a
network of nodes ensures that the qualified data has been transformed correctly.
Technically, the nodes run an extended version of the redundant byzantine fault
tolerance (RBFT) [6] protocol, where the nodes perform the identity data trans-
formation, and – if the transformation was performed correctly – generate a
multi-signature [17]. This efficiently-verifiable multi-signature signifies that the
derivation has been performed correctly and that the data can be accepted as a
qualified eID.

However, for all these derivation approaches, preserving the users’ privacy
was beyond their scope: The intermediate parties involved in the transforma-
tion process (e.g. centralized importer or network nodes) access the users’ eID
attributes in plain. Additionally, when authenticating to a SP and providing
required attributes, users are forced to hand over the whole transformed iden-
tity document which may expose more attributes than strictly required by the
SP.

1 https://www.aries-project.eu/, https://www.lightest.eu/.

https://www.aries-project.eu/
https://www.lightest.eu/
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Our Contribution. In this paper, we propose a decentralized eID derivation
concept for SSI systems that tackles the above-presented privacy issues while
maintaining the trustworthiness of the transformed data.

Privacy-Preserving Derivation. Our derivation concept combines state-of-the-
art cryptographic mechanisms to preserve privacy so that no intermediate party
can access the users’ identity data in plain: Users generate non-interactive zero-
knowledge (NIZK) proofs that they correctly transformed their identity asser-
tions issued by existing eID systems. In an attestation process, the network of
SSI nodes verifies the validity of the proof, without ever learning the plain values.
After reaching a consensus, the nodes generate a multi-signature which serves
as an attestation that the resulting data has been correctly derived from a valid
qualified eID.

Selective Disclosure. Our concept also enables users to selectively disclose only
a subset of the attributes originally contained in the issued identity assertion.
Therefore, users are able to only reveal the minimal data required by the SP. In
our concept, users generate a second NIZK proof, which states that the disclosed
attributes were part of the original identity assertion without revealing the whole
assertion.

Revocation. This work also considers the issues of revoking obsolete eID data.
We propose to utilize the features of a distributed ledger (DL) to reduce the
dependence on a single point of failure (e.g., a central party that maintains
a revocation list). To address privacy concerns, the revocation list only stores
commitments of identity assertions rather than the sensitive data itself.

Implementation and Evaluation. To underline the feasibility of our concept, we
implemented a proof-of-concept (PoC) and used it to perform benchmarks in
real-world scenarios, such as the derivation and attestation process for eID data
as well as selective disclosure of attributes to a SP.

2 Background

This section describes background technologies. We recall relevant cryptographic
mechanisms in Appendix A.

The Self-Sovereign Identity (SSI) model presents a new IdM concept,
which grants the owners of digital identities complete control over their data.
Looking at the evolution of identity models [32], SSI can be seen as the next
step after the user-centric model with the advantage of not having to trust a
central authority. SSIs ensure the security and privacy of users’ identity data, full
portability of the data, no central authorities, and data integrity. Consequently,
only the owners of the data can alter their identity data. SSI is a relatively
new concept which does not provide a strict architectural definition but rather
conceptional requirements. Mühle et al. [25] have presented the architecture of
such SSI system and identified identification, authentication, verifiable claims
and attribute storage as essential components of SSI.
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Fig. 1. High-level overview of an SSI system including main actors.

From a technical perspective and as depicted in Fig. 1, one of the core
building blocks of an SSI system is the DL which serves as decentralized pub-
lic key infrastructure (DPKI) and provides properties such as immutability and
transparency. An SSI system requires identifiers which do not depend on an issu-
ing party, such as a decentralized identifier (DID). Users create such identifiers
and register them at the DL. Then, trusted claim issuers attest attributes of
a user. As users in such a system should be in full control. The users’ identity
data, DIDs, and private key material are stored in the users’ domain, whereas
the public information of a user is stored on the ledger, including public keys
and revocation information. When performing authentication at a SP, this SP
can then verify the users’ claims ownership as well as attestations.

DIDs [29] are designed and used to enable SSIs because they don’t depend
on a central issuing party. They are URLs that provide a way for trustworthy
interactions with its subject. DIDs redirect to DID Documents stored on a DL.
These Documents contain three major sections: service endpoints, verification
methods, and proof purposes. Service endpoints are URIs pointing to a service
provided by a DID subject. Verification methods describe cryptographic methods
that can be used with proof purposes to prove, e.g., the integrity of the DID
Document or the relationship of an entity to the DID. DID Documents optionally
contain public key(s) of the DID subject.

Systems maintaining a (DL) rely on a consensus mechanism. Software
bugs, administrator mistakes or faulty hardware parts can introduce faults into
systems that require high availability. Such faults are called Byzantine faults,
which include service interruption and unexpected behavior among others. A
Byzantine fault tolerance protocol (BFT) [14] is a replication algorithm for build-
ing fault-tolerant systems. The Robust BFT (RBFT) protocol is an extension
that provides acceptable performance when faults occur [6]. This is achieved by
executing multiple instances of the BFT protocol simultaneously, and each of the
instances has a primary replica operating on different machines, all instances get
the same client requests.

3 Concept

This section presents our concept to derive qualified eIDs, issued by an existing
eID system, into an SSI system without relying on a central trusted party while
preserving the users’ privacy. This derivation process builds a chain of trust
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Fig. 2. Actors and main processes of our eID derivation process.

starting with the identity data issued by an existing traditional eID system via
an SSI system to the final receiver, which overall facilitates and simplifies the
adoption of SSI systems. Figure 2 depicts the architecture including all involved
actors as well as the steps of the eID derivation process.

3.1 Actors

Our architecture consists of the following actors, depicted in Fig. 2: (1) The
users aim to import their existing eID into an SSI system to use these eID data
for authentication towards service providers. (2) The existing eID system
holds qualified identity data about the user. Examples include governmental IdM
systems that were rolled out to enable digital administration processes. (3) Users
install a wallet software in their domain, which maintains private key material
as well as the users’ identity data. These identity data are cryptographically
linked to the key-pair by utilizing DIDs. Therefore, the owner of the secret key
can prove the ownership of the identity data. (4) SSI systems utilize distributed
ledger technologies (DLT) to maintain their users’ identities without the need for
a central trusted authority. In SSI systems, nodes are holding a copy of the ledger
and perform a consensus protocol to agree on which data should be written to
the ledger. The ledger serves as a DPKI; it only stores public information, such
as public keys within DID documents, whereas sensitive identity data are stored
off-ledger. (5) Users eventually want to get access to a service provider (SP).
The SPs require users to authenticate themselves by presenting ownership of
identity attributes to grant access to the service.

3.2 eID Derivation Process

Our generic eID derivation process consists of four main processes: obtaining eID
data from an existing eID system, the transformation to a format supported by
the SSI system, attestation by the SSI system, and the showing of the attributes
to SPs. Below, we describe these processes and map them to Protocol 1.
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Throughout the protocol, we require digital signatures and NIZK proofs,
which we formally discuss in AppendixA. The signatures ensure the authenticity
of the identity data. For the NIZK proof system, we need to define the relations
that guarantee that the user is in possession of an identity assertion from an IdP
and knows that corresponding attributes. We will informally define the relations
here and present the precise relations in Sect. 4 since they inherently depend on
the choice of algorithms. In general, our goal is to show that – given a signature
on an encoding of the attributes – one knows the attributes without revealing
them. Put in the language of the NIZK proof systems, we design a relation
R expressing that fact. So, let σ be a signature on some encoding E2 of the
attributes A = {a1, . . . , an} valid for a public key pk. We say that (σ,A) ∈ R if
and only if Verify(σ, pk, E(A)) = 1.

During the showing of the attributes, some of the attributes are sent in plain
to the service, and the user proves knowledge of the remaining attributes. In this
case we have publicly known attributes Ap = {a1, . . . , am} and secret attributes
As = {am+1, . . . , an} with A = Ap ∪ As, and we define the relation Rp as
((σ,Ap), As) ∈ Rp if and only if Verify(σ, pk, E(Ap ∪ As)) = 1.

(I) Obtaining eID Data. Initially, the user operating her wallet imports her
eID data from an existing eID system. The wallet communicates with the eID
system through an identity protocol where the user performs identification and
authentication. With the user’s consent, the eID system issues an identity asser-
tion of the user’s data. This identity assertion includes the user’s DID, which
binds the identity data to the user. Additionally, the eID system adds a random
value (e.g., in our case 256-bit) to prevent guessing attacks when only showing
subsets of the assertion to SPs (c.f. Sect. 4). Finally, the assertion is issued to
the user’s wallet.

(II) Transformation. The identity assertion not only needs to be transformed
into a data format supported by the SSI system, but also must remain trust-
worthy. As the attributes must not be exposed to the SSI system, we employ
NIZK proofs. The user’s wallet generates a proof that (a) the identity assertion
is valid, and (b) the user’s attributes are certified by this assertion.

(III) Attestation. With the proof, the user is able to convince the SSI system’s
nodes that the transformation has been performed correctly. The nodes record
on the ledger that they have checked the derivation’s correctness and that the
identity assertion’s data were qualified.

To ensure that rogue nodes cannot write a corrupted record to the ledger, the
SSI system performs a consensus protocol between the nodes. Convinced nodes
generate a signature, and hand the result to the other participating nodes. After
the nodes received and checked a sufficient number of signatures, they aggregate
the single signatures into a multi-signature. This multi-signature serves as a
means of attestation and therefore assures SPs that the data correlates to the
sender and a qualified eID source issued the data. A transaction is written to the
ledger, which contains the signature of the identity assertion, the multi-signature
2 For example, E would encode the attributes as SAML v2 identity assertion [27].
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In the following, let ΠR and ΠRp be a NIZK proof systems for relations R and Rp with
previously set up common reference strings crsR and crsRp , respectively. Let Σ be a
signature scheme and ΣM be a multi signature scheme.

(I) Obtaining eID Data:
on user’s wallet
1. requests eID data from existing IdP (with authentication)

on IdP
2. issues/returns a signature on the identity assertion, i.e. σ ← Σ.Sign(skIdP, A)

for attributes A = {a1, . . . , an}
(II) Transformation:

on user’s wallet
1. create NIZK proof π ← ΠR.Proof(crsR, σ, A) and send proof π and σ

(III) Attestation:
on each node s (in set S selected by SSI system) in consensus protocol
1. verify proof ΠR.Verify(crsR, σ, π) and abort if verification fails
2. create signature as acceptance: σs ← ΣM .Sign(sks, σ)
3. send σs to all other participating nodes
4. verify signatures from other nodes s′, ΣM .Verify(pks′ , σ, σs′), and abort if ver-

ification fails
5. aggregate all multi-signature parts: σM ← ΣM .ASigs((pks′ , σs′)s′∈S , σ)
6. write transaction to ledger, T ← (σ, σM , S), and send transaction id to user

(IV) Showing:
on user’s wallet
1. create NIZK proof πS ← ΠRp .Proof(crsRp , (σ, Ap), As) for a set of private

attributes As = {ai} ⊂ A and public attributes Ap = A \ As

2. send verifiable claim cl ← (DID, Ap, σ, πS , c) and σ ← Σ.Sign(skU , cl) that
includes a challenge c of the SP

on SP
3. verify signature on claim: Σ.Verify(pk, cl, σ) with pk looked up from ledger
4. verify proof πS : ΠRp .Verify(crsRp , (σ, Ap), πS)
5. lookup from ledger: derivation transaction T ← (σ, σM , S)
6. verify multi-signature σM : ΣM .AVerify(ΣM .APKs((pks)s∈S), σ, σM )

Protocol 1: Derivation protocol.

as well as a list of participating nodes, to be later used to verify the attestation.
In Protocol 1, we assume that the used multi-signatures are unique, i.e. any two
aggregated signatures over the same signature parts result in the same value so
that all SSI nodes arrive at the same aggregated signature which they add to
their ledgers. Otherwise, the nodes need to agree on one multi-signature.

(IV) Showing. To get access to a service, the user needs to authenticate her-
self and provide a set of identity attributes. This process is split into three
parts: Firstly, we rely on SSI concepts to demonstrate ownership of a DID via
a challenge-response protocol. Secondly, we use a multi-signature as an attes-
tation that the derivation process has been performed correctly. Thirdly, we
achieve selective disclosure of identity attributes by employing additional NIZK
proofs.
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The user selects which attributes should be disclosed to the SP. Next, the
wallet generates a NIZK proof that these attributes are contained in the original
identity assertion. This proof, the selected subset of attributes, and a SP-defined
challenge are placed into a verifiable credential including a signature of the user
over the verifiable credential. The signed credential is sent to the SP.

The SP initially verifies the ownership of the transmitted data by obtaining
the user’s public key registered at the SSI system and verifying whether the
user was able to generate a verifiable claim that contains a previously chosen
challenge. Then, the SP verifies the attestation that the derivation has been
performed correctly by verifying the nodes’ multi-signature which is recorded on
the ledger. In the final verification step, the SP verifies the proof stating that
the disclosed attributes are contained in the original identity assertion.

Revocation. Despite the great benefits of privacy-preserving technologies for
the user, such technologies also create challenges when it comes to revocation:
Only the user and the existing eID system can access the data in plain and are
therefore able to detect changes. This section describes two possible approaches
to implement the revocation process by relying either on the user or the existing
eID system.

One approach is to make users responsible to manually re-import changed
identity data and revoke obsolete attributes. To reduce the burden on the user,
we propose that the user’s wallet periodically checks whether the user’s data
are still up to date by requesting the data from the existing eID system. For
example, OpenID Connect allows the relying party (i.e., wallet) to access the
user information over a long period of time by repeatedly refreshing the access
token.

Alternatively, the existing eID system can be made responsible to report
when changes in its users’ data require revocation of issued identity assertions.
While this approach might require changes at the eID system, the users are taken
out of the loop, which reduces the risk of (intentionally) forgotten updates, which
overall increases the reliability of data.

The SSI system holds the revocation list. The user’s wallet or existing eID
system instructs the SSI system to record information about revoked identity
assertions on the ledger. During authentication, the SPs verify the revocation
status of an identity assertion against the distributed revocation list.

Our revocation approach (1) eliminates the central point of failure of the
revocation list holder since the DL is utilized, and (2) improves privacy since the
revocation process is designed so that intermediaries (e.g., SSI network or the
origin identity system) cannot learn from the metadata.

4 Concrete Instantiation

As discussed in Sect. 3, we prove knowledge of a message signed by the IdP
and that the signature verifies for this message. Therefore, we require that the
signature schemes allow us to prove knowledge of a signed message or parts
thereof efficiently. However, in almost any practically used signature scheme
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messages are hashed using SHA2 or SHA3. The problem is that proving pre-
images of those hashes is relatively expensive in runtime and proof size. Until
proof systems for typical hash functions get more efficient without designing low
complexity versions,3 we focus on signature schemes with hash functions where
knowledge of pre-images is efficiently provable. Changing the signature scheme
on existing IdMs is trivial from a technical perspective since they support more
than one signature scheme by default and allow the addition of new schemes.

As shown by Fuchsbauer and Pointcheval [18] as well as Chase et al. [16],
Waters’ signatures [31] work particularly well in conjunction with non-interactive
zero-knowledge proofs. More specifically, the NIZK proof system ΠcF [18] enables
us to show knowledge of the hash pre-image for Waters’ signature. So, we instan-
tiate our architecture using Waters’ signatures and ΠcF as well as BLS signa-
tures [11] on the validator side.4

Before we go into details, we want to note that the verification algorithm of
Waters’ signature scheme is in particular well suited (cf. AppendixA). Indeed,
if we rewrite the hash function H(m) = u0 · ∏n

i=1 umi
i as used in the signa-

ture scheme to F = F(m) = u−1
0 · H(m) and given a signature σ on m,

the verification equation has no other dependency on the message other than
F . As a consequence of [18], we know that F does not leak any informa-
tion on the message m. Therefore, we can reformulate the relations as fol-
lows: if the signature σ is valid w.r.t. F , i.e. for σ = (α, β) the equation
e(α, g) · e(u0 ·F, β) = e(g2, pk) holds true, then we can simply define the relation
such that (F,A) ∈ R′ if and only if F = F(E(A)). Thus, we obtain an equiv-
alent relation that is easier to prove. Note though that when using ΠcF , the
relation is implicitly extended with bit commitments to each bit of the message.
If m = E(A) = m1‖ . . . ‖mn, then ((F, c1, . . . , cn), (m, r1, . . . , rn)) ∈ R′ if and
only if F = F(m) ∧ ∧n

i=1 ci = Com(mi; ri). Therefore, we will use this relation
and the corresponding variant for partially public attributes.

The hash function H has another useful property: Given a message m =
m1‖m2, we can decompose H(m) into parts that only depend on m1 and m2,
respectively, i.e. H(m) = u0·F1(m1)·F2(m2). This fact is useful when we consider
the attributes encoded in an identity assertion. In particular, this observation
helps if the encoding E introduces publicly known data, e.g. XML formatting in
SAML [27], that is completely independent of the attributes. There is no need
to prove those bits.

(I) Obtaining eID data. The user authenticates herself towards the IdP.
After successfully authentication, the IdP creates an identity assertion σ for
attributes A = {a1, . . . , an} by signing an encoded version of the attributes,5

σ ← Waters.Sign(sk, A), which is forwarded to the user.

(II) Transformation. The user receives the signature σ and verifies it using
the IdP’s public key pk, that is Waters.Verify(pk, A, σ) = 1. Now, to produce
3 For example, see [3,15,21] for recent progress in both areas.
4 With the choice of BLS as multi-signature scheme, we follow Abraham et al. [2].

Thus, the validator nodes do not need a secure random number generator for signing.
5 We slightly abuse notion and use A instead of always specifying the encoding E .
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the proof, the user computes F = F(A) = u−1
0 · H(A) and commitments ci to

each bit of the encoding of A. Then, it produces a proof π w.r.t. relation R:
π ← ΠR.Proof(crsR, (F, c1, . . . , cn), (A, r1, . . . , rn)). It sends (σ, F, c1, . . . , cn, π)
to the nodes for attestation.

(III) Attestation. Each node s ∈ S receives the identity assertion σ = (α, β),
F , the commitments c1, . . . , cn and the corresponding proof π. First, they verify
that signature w.r.t. u0 · F by checking e(α, g) · e(u0 · F, β) = e(g2, pk) for the
IdP’s public key pk. Secondly, they verify the proof, i.e. ΠR.Verify(crsR, σ, π) = 1.
If the proof is valid, they produce BLS signatures σs ← BLS.Sign(sks, F ). The
signatures are then exchanged between the nodes, and if they all verify, the
signatures are aggregated to σM ← BLS.ASigs((pks, σs)s∈S , F ) and (F, σM , S) is
written to the ledger.

(IV) Showing. To show some attributes Ap ⊂ A to a service, the user
computes a proof as in the transformation step, however now only As =
A \ Ap are kept secret and proofs are relative to relation Rp, i.e. πs ←
ΠRp

.Proof(crsRp
, (F ′, c′

1, . . . , c
′
n′), (As, r

′
1, . . . , r

′
n′)) where F ′ = F · Fp(Ap)−1 =

Fs(As) and the commitments c′
i are picked based on the choice of attributes.

The user then sends (Ap, F, c′
1, . . . , c

′
n′ , πs) to the service, which checks

whether BLS.AVerify(BLS.APKs((pks)s∈S), F, σM ) = 1 and ΠRp
.Verify(crsRp

, (F ·
Fp(Ap)−1, c′

1, . . . , c
′
n′), πs) = 1 hold. We note that it suffices to write F to the

ledger, since the validator nodes already verified the signature. Similarly, it suf-
fices to store F in the revocation list. This makes it also easier for IdPs to revoke
identity assertions. Otherwise, they would have to store the randomness used in
the Sign algorithm of the Waters signature scheme to recreate σ or store σ itself.

Furthermore, recall that one of the attributes is selected uniformly at random
and never shown to the validator nodes or the services. Hence, we can interpret
H(m) and F(m), respectively, as unconditionally hiding commitment to m which
already contains the randomness. The proofs can then be seen as a proof of
knowledge of the opening to that commitment.

Security Analysis. We also give an informal security analysis and present
the intuition for the security of our system. We consider the two main security
properties of the system: First of all, users must not be able to present an
assertion to the validator nodes that was not signed by the IdP or where they do
not have knowledge of the attributes contained in the assertion. Assuming that
an adversary would be able to convince the validator nodes otherwise – provided
that there are enough honest nodes available to ensure the correct functioning
of the RBFT protocol – the adversary is either able to produce a forgery of the
Waters’ signature scheme or produce a proof without knowing any witness. The
former would break unforgeability of the Water’s signature scheme and the latter
would break soundness of ΠcF . Similarly, when users authenticate to an SP, a
user must not be able to authenticate itself if the attributes are not known or the
assertion was not checked by the validator network. Again, an adversary being
able to do so would break soundness of the proof system or the unforgeability of
BLS signatures.
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Table 1. Average and standard deviation of benchmark results (in ms) to generate
and verify signatures, proofs and showings, and to aggregate BLS signatures.

Benchmark Generation Verification

BLS signature 1.36 ± 0.49 1.35 ± 0.50

BLS aggregation 1.19 ± 0.63 (as above)

Waters signature 3.98 ± 4.85 1.44 ± 0.52

Proof 2507.20 ± 74.10 25.10 ± 3.06

Showing of family name 2324.86 ± 97.76 24.36 ± 4.60

. . . full name 2136.48 ± 108.50 22.68 ± 3.75

. . . full name & birth date 1851.39 ± 100.32 20.14 ± 3.03

Second, neither SPs nor the validator nodes should be able to learn any of
the hidden attributes. Assume that an adversary would be able to reveal one of
the attributes that were not revealed by the users itself. Given that an adversary
only gets to see the unconditionally-hiding commitment F and the corresponding
proof, presenting the hidden attributes would mean that the adversary broke the
zero-knowledge property of the proof system.

5 Benchmarks and Evaluation

To show the feasibility of our proposed architecture, we implemented a PoC
based on the Java Pairing-Based Cryptography library (JPBC) [13]. Parameters
were chosen according to recent estimations for 100-bit security [24]. We focus on
the implementation and evaluation of the schemes discussed in Sect. 4, as these
have to be employed in addition to the SSI system and its consensus protocol.

We measured different stages of our derivation process when transforming a
SAML identity assertions of roughly 6 KB in size. The assertions we used for
testing include the full name and date of birth among others as attributes. The
benchmarks were executed on a year 2014 laptop using an Intel i5-4300U CPU
at 1.90 GHz with 8 GB RAM running under Ubuntu 18.10. The results shown in
Table 1 represent the average run times and standard deviation over 1000 runs.
We measured (1) signing and verification of Waters and BLS signatures, (2)
aggregation of 100 BLS signatures and the corresponding public keys without
additional signature verification, (3) time needed to generate and verify NIZK
proofs of knowledge of the attributes, and (4) generation and verification of
proofs to selectively disclose different subset of attributes.

The results show that it is feasible to apply our concept to real-world sce-
narios. Both BLS and Waters signature generation, as well as verification, are
very fast on our benchmark laptop. Aggregation of BLS signatures is also very
fast. The generation of proofs is the most expensive task performed by the user’s
device. Nevertheless, a proof only has to be generated infrequently: once when
deriving (or re-importing) the eID data and once when showing the data to a
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SP. Note that the showing proofs can be reused for various SPs thereby amor-
tizing the proof calculation time. Of course, we expect these times to improve
further when deployed on more powerful hardware or implemented with highly
optimized bilinear pairing libraries such as RELIC [5].

6 Discussion

Benefits. Our concept enables to import qualified eID data into an SSI sys-
tem. The imported data are still trustworthy even though the data format has
changed. This is ensured by (1) the proof which is calculated to prove the own-
ership of an identity assertion. (2) The validator network attests the correctness
of the proof as well as the ownership of the related identity assertion by apply-
ing multi-signature of all verifying nodes. (3) The user selects the attributes she
wants to disclose and generates a proof that ensures that these attributes are
part of the original assertion.

Our concept further increases the applicability of the SSI system: Since it
supports qualified eID data, the SSI system can be applied to use cases where
the SP has high trust requirements on the derived eID data.

Our work also improves privacy for eID derivation as follows: (1) Intermedi-
ate parties cannot access the identity data in plain. (2) The user can perform
selective attribute disclosure when authenticating towards an SP. (3) The revo-
cation process is performed by storing the commitment to the identity assertion
on the ledger. Thus, the validator network does not learn anything about the
user.

This concept further enables the decoupling of trust relationships. The SPs
do not have to directly trust the originator. Instead, we can build up a chain-
of-trust connecting various eID systems via the SSI system indirectly with the
SPs. The main benefit is that the SSI system can derive eID data from various
eID systems, while the SPs do not have to establish explicit trust relationships
with these eID systems.

Contrast to Centralized eID Derivation. eID attribute derivation is con-
sidered in projects such as ARIES, where eIDs data is derived using the user’s
passport. After a registration officer verifies the user’s identity with her passport,
the credentials are issued onto the mobile phone application. LIGHTest has its
main focus on a cross-domain trust infrastructure that combines different trust
domains and provides verification of electronic transactions across national bor-
ders. The National Institute of Standards and Technology (NIST) specified a
guideline [26] for deriving eID credential from a smart card, the personal iden-
tity verification (PIV) card, to a mobile device. All these projects rely on a
trusted central party that is responsible for the derivation. Also, this trusted
central party gets access to the user’s identity data in plain.

Our work tackles these issues by providing an eID derivation approach that is
based on decentralized trust – without a trusted central party – and additionally
in a fully privacy-preserving manner. No intermediary can access the plain user’s
identity data.
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Contrast to Decentralized eID Derivation. The eID derivation concept
proposed by Abraham et al. [2] shifts trust from a central authority by dis-
tributing the trust to the validator network. This validator network performs
the actual transformation and attests the transformation’s correctness by creat-
ing a multi-signature. While their work successfully enables to import qualified
eID data, a number of privacy issues remain: In the transformation process, the
identity assertion’s signature is verified, which requires to access the data in
plain and. Also, the importer agent, an intermediate party responsible for the
communication between existing IdM and SSI system, performs the revocation
process, which requires to stores the user’ identity data. Besides the privacy
issues, having to trust an intermediate party raises concerns.

Our work tackles the issues mentioned above. In the extended RBFT proto-
col, the nodes verify the proof and attests its correctness. During the derivation
process, no intermediates have access to plain identity data. The revocation
process utilizes the DL as the storage location for the revocation information
which solves trust issues and responsibilities w.r.t. the importer agent as well as
increasing data privacy.

Contrast to Anonymous Credential Systems. Attribute-based anonymous
credentials systems describe a class of cryptographic schemes enabling anony-
mous authentication. Such a system consists of a user, an organization, and a
verifier. The user obtains a credential on potentially multiple attributes from an
organization and later presents this credential to a verifier. The user may select
a subset of attributes to be revealed, while the verifier does not learn any infor-
mation about the other attributes. Yet, the verifier can still be sure the shown
attributes are authentic. In a multi-show credential system, a user can addition-
ally perform an arbitrary number of unlinkable showings. Credential systems
have been deployed in U-Prove [28] and idemix [12].

We note that ideas from credential systems transfer to our setting. Indeed,
our construction borrows some ideas that are used in constructions of credentials,
e.g. from [7]. Credential systems, however, do not handle the transformation of
the attributes, which is the main goal and benefit of our system. Also, our design
only has minimal impact on the IdPs.

7 Conclusion

In this work, we have proposed a concept for privacy-preserving eID attribute
derivation into an SSI system without depending on a central trusted party while
still maintaining trust in the derived data. In comparison to related work, our
decentralized concept not only eliminates the single point of failure of centralized
systems but also improves upon privacy concerns by ensuring that no interme-
diate components (i.e. SSI nodes) outside the users’ domain get access to plain
identity data. Within our concept, a network of SSI nodes attests the ownership
and validity of derived eID data. Multiple nodes verify NIZK proofs generated
by the users, and after reaching consensus, generate multi-signatures as attesta-
tion. The resulting attestation, as well as additional NIZK proofs, enable users to
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selectively disclose attribute of issued identity data towards a SP. Our revocation
process utilizes the DLT as the storage location for the revocation information
without leaking the users’ attributes.

We also presented a concrete instantiation of our concept with suitable
technologies and benchmarked the resulting system. Our PoC implementation
demonstrates the feasibility and efficiency of the concept. Even though the cal-
culation of NIZK proof is relatively expensive, it only has to be performed once
when importing (or re-importing) the eID data.

In summary, our concept can be used to enrich SSI systems with eID data,
which makes it possible to integrate with SPs that have high requirements
towards the user’s data, without sacrificing privacy or relying on a single point
of failure.

A Cryptographic Assumptions and Primitives

We recall the standard notion of digital signature schemes.

Definition 1 (Signature Scheme). A signature scheme Σ is a triple
(KeyGen,Sign,Verify) of PPT algorithms, which are defined as follows:

KeyGen(1κ): This algorithm takes a security parameter κ as input and outputs a
secret (signing) key sk and a public (verification) key pk.

Sign(sk,m): This algorithm takes a secret key sk and a message m as input and
outputs a signature σ.

Verify(pk,m, σ): This algorithm takes a public key pk, a message m and a signa-
ture σ as input and outputs a bit b ∈ {0, 1}.

We require a signature scheme to be correct and to provide existential unforge-
ability under adaptively chosen message attacks (EUF-CMA).

For the concrete instantiations we need bilinear groups, which are generated
by BGGen taking a security parameter 1κ as input and returning bilinear group
description including groups G and GT of prime order q, a Type-16 pairing
e : G × G → GT and a generator g of G. The Waters’ signature scheme [31] is
depicted in Scheme 1, which is secure under the computational Diffie-Hellman
assumption (CDH).

Setup(1κ) : Run BG ← BGGen(1κ), choose basis elements (g2, u0, . . . , un) ←R G
n+2, and

define H : {0, 1}∗ → G as H(M) = u0 · ∏n
i=1 umi

i . Return pp ← (BG, H).

KeyGen(pp) : Choose x ←R Zq, set pk ← gx, sk ← gx
2 , and return (sk, pk).

Sign(sk, m) : Choose r ←R Z
×
q , set α ← sk · H(m)r, β ← g−r, and return σ ← (α, β).

Verify(pk, m, σ) : Parse σ as (α, β), and verify whether e(α, g) ·e(H(m), β) = e(g2, pk).

Scheme 1: Waters’ signature scheme.

6 Any design for Type-1 can be transformed into a Type-3 one [1] for efficiency.
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Furthermore, we are interested in an extension of signature schemes to multi-
signature schemes. In this case, signatures on the same message w.r.t. some
public keys, can be aggregated into one compact signature which is valid w.r.t.
an aggregated public key. We define such signatures following the definition of
Drijvers et al. [17]:

Definition 2 (Multi-Signature Scheme). A multi-signature scheme ΣM

extends a signature scheme with PPT algorithms (APKs,ASigs,AVerify), which
are defined as follows:

APKs(pk1, . . . , pkn): This algorithm takes n public keys (pki)n
i=1 as input and

outputs an aggregated public key pkM .
ASigs((pk1, σ1), . . . , (pkn, σn),m): This algorithm takes signatures (σi)

n
i=1 on the

message m and the corresponding public keys (pki)
n
i=1, and outputs an aggre-

gated signature σM on the message m or ⊥ on error.
AVerify(pkM ,m, σM ): This algorithm takes an aggregated public key pkM , a mes-

sage m ∈ M and an aggregated signature σM as input and outputs a bit
b ∈ {0, 1}.

The BLS signature scheme [11] is a prominent example of a signature scheme
that can be extended to a multi-signature [10].

Finally, we recall a standard definition of non-interactive zero-knowledge
proof systems. Let L ⊆ X be an NP-language with associated witness relation
R so that L = {x | ∃w : R(x,w) = 1}.

Definition 3 (NIZK). A non-interactive proof system Π is a tuple of algo-
rithms (Setup,Proof,Verify), which are defined as follows:

Setup(1κ): This algorithm takes a security parameter κ as input, and outputs a
common reference string crs.

Proof(crs, x, w): This algorithm takes a common reference string crs, a statement
x, and a witness w as input, and outputs a proof π.

Verify(crs, x, π): This algorithm takes a common reference string crs, a statement
x, and a proof π as input, and outputs a bit b ∈ {0, 1}.

We require such proof system to be complete (all proofs for statements in the lan-
guage verify), sound (a proof for a statement outside the language verifies only
with negligible probability) and zero-knowledge (proof reveals no information
on the witness). We are especially interested in proof systems for statements of
the form F = F(m1‖ . . . ‖mn) ∧ ∧n

i=1 ci = Com(mi; ri) where F is derived from
the hash function H used in Waters’ signature scheme, i.e. H(m) = u0 · F(m).
Secondly, for commitments, i.e. Com,7 we use Groth-Ostrovsky-Sahai commit-
ments [19]. We can now define the relation RcF as

((F, c1, . . . , cn), (m1, . . . ,mn, r1, . . . , rn)) ∈ RcF ⇔

F = F(m1‖ . . . ‖mn) ∧
n∧

i=1

ci = Com(mi; ri)

and denote the corresponding proof system based on [18] as ΠcF , which is com-
plete, sound and zero-knowledge.
7 We slightly abuse notation and assume that Com only returns the commitment.
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model for this problem. Our model not only captures the basic require-
ment in group authentication that an adversary cannot pretend to be
a group member without being detected, but also considers some desir-
able features in real-world applications, such as re-use of the credentials
in multiple authentication sessions and allowance for users to exchange
messages through asynchronous networks. We then introduce an efficient
group authentication scheme where its security can be reduced to some
well-studied complexity theoretic assumptions.
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1 Introduction

Authentication is the process of confirming whether someone or something is
who or what it claims itself to be. It is a crucial security service in information
security. In traditional authentication methods, only two parties are involved.
One is the prover and the other is the verifier. The verifier will accept the prover’s
identity if the prover can prove that it has knowledge of the credential. However,
such a one-to-one authentication model will become inefficient in the group-
oriented environment. For example, suppose there are n users in the group and
each user wants to verify every other user’s identity. In this case, every user needs
to perform the one-to-one authentication n − 1 times, and the total number of
authentications required across the entire group is O(n2), which is quadratic to
the number of users.

Instead, when using group authentication [12], each user acts both roles of
the prover and the verifier, and all users in the group are authenticated at once.
The authentication is carried out in the many-to-many fashion and it outputs
one of the two possible outcomes: either all users belong to the same group or
there exists some non-members. Therefore, group authentication is sufficient if
all users are group members, and even if there exists some non-members, it still
can be used as a pre-processing step before applying traditional authentication
methods to identify those non-members. Considering that a lot of applications
nowadays are group-oriented, e.g. multicast/conference communications, group
authentication is a useful tool in modern cryptography.

In general, a group authentication scheme works as follows. The group man-
ager (GM) generates a number of credentials, and sends each of these credentials
to a user in the group. In the authentication stage, every participating user uses
her credential to compute a token and broadcasts it. Subsequently, every user can
use the revealed information to verify whether all users are belonging to the same
group. Apart from the basic requirement that an adversary should not be able to
pretend to be a group member without being detected, some additional features
are highly desirable in real-world applications: (1) re-use of the credentials in
multiple authentication sessions, and (2) allowance for users to broadcast their
tokens through asynchronous networks. Note that both these features help to
make the scheme more practical. For example, the multiple usage of credentials
avoids the cumbersome processes of distributing credentials before every authen-
tication session, and the asynchronous networks are much easier to be established
than the synchronous ones, especially in the distributed environment such as the
Internet of Things (IoT). However, these two features also make the design of
group authentication schemes more challenging. In one aspect, multiple usage of
credentials in different authentication sessions requires that the token leaks no
useful information of the corresponding credential. In another aspect, since the
adversary in the asynchronous communication model can always wait until all
other users having revealed their tokens and then fabricate her token using these
revealed ones, it is required that the revealed tokens should not enable anyone
to compute a new valid token without the corresponding credential.
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Over the past few years, a number of group authentication schemes have been
proposed in the literature [6,8,10,12,15–18]. However, the underlying formal
security treatment is still lagging. Most of the existing schemes only justify their
security by heuristic arguments, and some of these schemes have later been found
to be flawed [1]. In this paper, our purpose is to direct the research of group
authentication towards the paradigm of provable security. In this approach, one
first identifies the cryptographic problem to solve and defines a formal security
model for this problem. The model should be rich enough to capture both the
adversary’s and the players’ capabilities, but it should not be overly restrictive
to preclude efficient protocols from being constructed. Within this model, one
further defines the security goals to clarify precisely what it means for a scheme
to be secure. With these preliminaries at hand, one can strictly prove that a
proposed scheme has achieved the claimed security goals. Normally, this is done
via a security reduction, demonstrating that if any attack can successfully breach
the security goals in the proposed scheme, this attack can be employed as a sub-
routine to violate some well-believed complexity theoretic assumptions.

1.1 Related Works

Group authentication was first introduced by Harn [12], and this technique has
been demonstrated to enjoy computational advantages over traditional authen-
tication methods in the group environment [22]. However, Ahmadian et al. [1]
have shown recently that Harn’s scheme suffers a security flaw. Specifically, an
adversary in the asynchronous communication model can impersonate a group
member without being detected. The main reason for this attack is that the
security properties in Harn’s scheme are only justified by heuristic arguments
rather than formal security proofs. It was conjectured that the adversary needs
to recover all the polynomials in order to fabricate a valid token. However, she
can use a clever method, called the linear subspace attack, to construct a linear
subspace spanned by the already revealed tokens and then fabricate a new valid
token without reconstructing the polynomials. This flaw also demonstrates a
well-known basic principle in information security that formal security analysis
is crucial for the design of security protocols since intuitions might be faulty
sometimes.

Based on Harn’s work, several group authentication schemes have been pro-
posed over the last few years. Some of these schemes tried to achieve slightly
different features as in Harn’s scheme. For example, Chien [6] renovated Harn’s
idea using pairing. The benefit is that the credentials can be used in multiple tri-
als in case the authentication fails, but it can only work in the synchronous com-
munication model. Liu et al. [16] introduced a group authentication scheme for
the resource restrained environment. Different from Harn’s scheme, the authen-
tication is done by checking whether the interpolation of credentials returns a
polynomial with the expected degree rather than checking whether the inter-
polation returns the correct value. But Liu’s scheme has not considered asyn-
chronous networks neither. Mahalle et al. [17] introduced a group authentication
scheme for the Internet of Things, and they replace secret sharing schemes used
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in Harn’s scheme by threshold Paillier cipher [23]. Li et al. [15] extended Harn’s
group authentication scheme so that it could further establish pairwise secret
keys among the authenticated users. The key agreement function is achieved
using Diffie-Hellman key exchange [7] based on elliptic curve cryptography. Guo
et al. [10] and Elmouaatamid et al. [8] independently investigated how group
authentication schemes can be designed with cheater detection, so that the non-
members can be identified when the group authentication fails. Note that this is
a feature not enjoyed in Harn’s scheme, but neither of these two schemes han-
dles asynchronous networks. Miao et al. [18] introduced a group authentication
scheme that is suitable for the asynchronous communication model, but it has
not considered re-use of credentials in multiple authentication sessions.

In the literature, some other techniques may also seem to be closely related
to group authentication schemes. However, there exists some trivial differences
between them, making these techniques unsuitable to solve the group authentica-
tion problem. For example, Bellare et al. [2] introduced an authenticator that can
transform any message-driven protocol secure against a passive adversary into a
corresponding protocol secure against an active adversary. Later, Katz et al. [14]
extended it into the multi-user setting so that any group-oriented message-driven
protocol can be transformed into an authenticated one. However, this technique
mainly focuses on authenticating messages rather than authenticating entities.
Hence, it is inappropriate for group authentication. Group authenticated key
exchange schemes [3,4,13] have been designed to provide a group of users with
a shared secret key which can be later used to achieve multicast message con-
fidentiality or multicast data integrity. Moreover each user can be assured that
only the group member will obtain the shared key. However, the authentication
and the key exchange are intertwined with each other in this technique. Hence,
it will be inefficient if it is used to solve the group authentication problem.

1.2 Our Contributions

In this paper, we first present a formal security model for the group authen-
tication problem. Our model not only captures the basic requirement that an
adversary cannot pretend to be a group member without being detected, but
also considers some disirable features in real-world applications, such as re-use
of the credentials in multiple authentication sessions and allowance for users to
exchange messages through asynchronous networks. We then modify and extend
Harn’s scheme [12] using the anonymous veto networks [11], resulting an effi-
cient group authentication scheme where its security can be reduced to some
reasonable and well-defined complexity theoretic assumptions. Hence, the pro-
posed scheme is capable of immunising Ahmadian’s attack [1] as well as any
unforeseen threat that can be captured in our security model.

1.3 Organisation of the Paper

The rest of this paper is organised as follows. In Sect. 2, we outline some pre-
liminaries. The models and definitions for group authentication are described in
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Sect. 3. In Sect. 4, we present the proposed scheme and formally prove its secu-
rity using our security model. Finally, we discuss some possible extensions and
conclude in Sect. 5.

2 Preliminaries

2.1 Notations

In this paper, we assume that all participants are probabilistic polynomial time
(PPT) algorithms with respect to the security parameter λ. We use standard
notations for probabilistic algorithms and experiments. For example, if A is a
probabilistic algorithm, then A(x1, x2, . . .) is denoted as the result of running
A on inputs x1, x2, etc. We denote y ← A(x1, x2, . . .) as the experiment of
assigning y as A(x1, x2, . . .). If S is a finite set, then we denote x

R← S as the
operation of picking an element uniformly from S. Moreover, Pr[x ← S; y ←
T ; . . . : p(x, y, . . .)] is denoted as the probability that the predicate p(x, y, . . .)
will be true after the ordered execution of the algorithms x ← S, y ← T , etc. A
function ε(·) : N → R

+ is called negligible if for all c > 0, there exists a k0 such
that ε(k) < 1/kc for all k > k0.

2.2 Building Blocks

Here, we briefly describe some building blocks that are used to construct our
proposed group authentication scheme. Denote G as a finite cyclic group in
which the discrete logarithm assumption holds, and g as a generator of G. The
order of G is a large prime q, where |q| = poly(λ) for some polynomial poly(·).
In the rest of this paper, we assume that all operations are modulo q unless
otherwise stated.

Schnorr Identification Algorithm [19]. This technique serves as a zero-
knowledge proof that proves the knowledge of a random value x ∈ Zq within
gx, without revealing x. It works as follows:

– The prover selects a value r
R← Zq and sends the commitment w = gr to the

verifier.
– The verifier selects a challenge c

R← Zq and sends c back to the prover.
– The prover computes the response s = r + xc and sends s to the verifier.
– The verifier checks whether gs = wyc.

Obviously, the above protocol satisfies correctness. To see that it satisfies
robustness: in order to make the verification gs = wyc successful, the prover
needs to output a value s ∈ Zq such that the equation s = r + xc holds. If the
prover does not have the knowledge of x, the probability of outputting such a
value s is exactly 1/q, which is negligible with respect to the security parameter
λ. This is because x is assumed to be uniformly distributed in Zq. The above
protocol also satisfies honest verifier zero-knowledge, because the prover can
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“rewind” the honest verifier to simulate the proof by setting w = gsy−c. More-
over, using Fiat-Shamir heuristics [9], the above protocol can be transformed
into a non-interactive zero-knowledge proof.

Anonymous Veto Networks (AV-nets) [11]. This technique was introduced
by Hao and Zieliński in 2006, aiming to provide an efficient solution to the dining
cryptographers problem [5] (i.e. how to send a boolean-OR bit anonymously from
a group of users). It is a two-round protocol with very low computational load
and bandwidth usage per user. It assumes that there exists an authenticated
broadcast channel, and all the messages are exchanged through this channel.
Suppose n users are participating, the protocol works as follows:

– Round 1. Each user Ui selects a value xi
R← Zq and broadcasts gxi . Ui also

proves that she has the knowledge of xi without revealing it. Note that such a
proof can be generated using the Schnorr Identification Algorithm introduced
above. When this round finishes, every user computes:

gyi =
i−1∏

j=1

gxj /

n∏

j=i+1

gxj

– Round 2. Every user broadcasts a value gxiyi and proves the knowledge of
xi within gxiyi without revealing it. Now, we have the property that:

n∏

i=1

gxiyi = 1

To see that the above property always holds: by definition yi =
∑

j<i xj −∑
j>i xj , hence we have:

∑

i

xiyi =
∑

i

∑

j<i

xixj −
∑

i

∑

j>i

xixj

=
∑ ∑

j<i
xixj −

∑ ∑
i<j

xixj

=
∑ ∑

j<i
xixj −

∑ ∑
j<i

xjxi

= 0

Moreover, the broadcast value gxi does not reveal xi assuming that the dis-
crete logarithm assumption holds in G. And because xi is randomly selected in
Zq, the value gxiyi will be randomly distributed in G.

Shamir Secret Sharing [21]. This technique can be used to share the secret
value s ∈ Zq among a number of users, so that either to learn the secret or destroy
it, the adversary has to corrupt multiple of these users instead of a single one.
Therefore, it enhances both secrecy and availability of the sensitive information.
Shamir secret sharing works as follows. In the dealing phase, the dealer first
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selects a random polynomial f(x) = a0 + a1x + · · · + at−1x
t−1 over Zq with

degree t − 1, where a0 = s. Then the dealer sends the shares si = f(xi) to each
user through some secure channel. Here {x1, x2, . . . , xn} are public parameters
associate with the users that are pairwise different. In the reconstruction phase,
any subset Ω (|Ω| ≥ t) of these users can reconstruct the secret s by Lagrange
interpolation: s =

∑
i∈Ω siLi, where Li =

∏
j∈Ω,j �=i

xj

xj−xi
is called the Lagrange

coefficient.

3 Models and Definitions

3.1 The Participants

There are four types of participants in group authentication schemes:

– Group manager (GM). The GM initialises the protocol and generates creden-
tials for the users. In any authentication protocol, the user needs to possess
some secret that is unknown to the others. Hence, the GM is assumed to be
honest in the protocol.

– Users. Each of the n users will receive a credential from the GM, and they
will use their credentials to participate in the group authentication. Note that
the credentials can be used multiple times in different group authentication
sessions.

– Inside adversary. The inside adversary AI controls at most t−1 users, where t
is the threshold such that t > n/2. AI can obtain these users’ internal states.
AI ’s purpose is to learn some secret information (i.e. the secret of GM or
the credentials possessed by some uncorrupted users), or to pass the group
authentication by herself.

– Outside adversary. The outside adversary AO does not own any valid creden-
tial generated by the GM, but her purpose is to impersonate a group member
in the group authentication without being detected.

3.2 Communication Model

We assume that there exists a secure channel between the GM and every user, so
that the credentials can be distributed securely. Moreover, we assume that every
participant is connected to a broadcast channel, where any message sent through
this channel can be heard by the other participants within some specified time
bound. Note that the broadcast channel is only assumed to be asynchronous,
such that messages sent from the uncorrupted users to the corrupted ones can
be delivered relatively fast, in which case, the adversary can wait for the mes-
sages of the uncorrupted users to arrive, then decide on her computation and
communication, and still get her messages delivered to the honest users on time.
With these assumptions, we can focus our description without considering the
low level technical details. Note that both these channels can be implemented
using standard cryptographic techniques such as encryptions and digital signa-
tures.
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3.3 System Model

The group authentication scheme is specified by the following four randomised
algorithms: Init, Dist, Comp, Auth.

– The initialisation algorithm Init is run by the GM. Init takes as inputs the
security parameter λ; it outputs the system parameters params.

– The distribution algorithm Dist is run by the GM. Dist takes as inputs the
system parameters params and the number of users n; it outputs a set of
credentials {s1, s2, . . . , sn}. These credentials are sent to U through the secure
channel, where U denotes the set of all legitimate group members.

– The computation algorithm Comp is run by every user. Comp takes as inputs
the system parameters params, the session index σ, the set of participated
users Ω and a credential si; it outputs a token ci through the broadcast
channel.

– The group authentication algorithm Auth is run by the participated users.
Auth takes as inputs the system parameters params, the session index σ and
a set of tokens {ci}i∈Ω ; it outputs 1 if |Ω| ≥ t and Ω only contains legitimate
group members, and it outputs 0 otherwise.

3.4 Security Model

We first describe the security properties for group authentication schemes infor-
mally and justify why these properties are necessary.

– Correctness. If a subset Ω of users are participating in the group authenti-
cation, where |Ω| ≥ t and they are all legitimate group members, then the
group authentication will be successful.

– Secrecy. The inside adversary AI cannot learn any secret information in the
group authentication, including the secret of the GM and the credentials pos-
sessed by the uncorrupted users. Note that this is a necessary requirement for
the protocol to be used multiple times. This property is captured as follows:
we prove that there exists a PPT simulator S that can simulate AI ’s view
in the real run of the protocol just using the public information, and it is
infeasible to distinguish the simulated protocol from the real one. Because
the simulated protocol contains no secret information, this proves that no
secret has been leaked in the real run of the protocol. Otherwise, the leaked
secret can be used to distinguish the simulated transcripts from the ones in
the real run of the protocol.

– No forgery. The inside adversary AI cannot pass the group authentication
by herself. To capture that AI may have already learned some historic infor-
mation in the previous group authentication sessions, we provide AI with an
oracle O that can be used to query the group authentication service, and AI

can query O polynomial number of times. It is required that AI still cannot
pass the group authentication by herself in a new session.

– No impersonation. The outside adversary AO cannot impersonate a group
member without being detected, even if AO computes her token after seeing
all other users’ tokens in the asynchronous networks.
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The above security properties can be formalised as follows:

Definition 1 (Correctness). A group authentication scheme is said to have
the correctness property if we have:

Pr
[
params ← Init(λ); {si}i∈U ← Dist(params, n) ;

ci ← Comp(params, σ,Ω, si)|i∈Ω :

Auth(params, σ, {ci}i∈Ω) = 1
]

= 1

In the above expression, Ω ⊆ U and |Ω| ≥ t.

Definition 2 (Secrecy). A group authentication scheme is said to have the
secrecy property if we have:

ViewAI
(RealΠ(λ, params)) ∼=c ViewAI

(SIMS(λ, params))

In the above expression, ViewAI
(RealΠ(λ, params)) is denoted as AI ’s view in

the real run of the protocol Π, ∼=c means computationally indistinguishable, and
ViewAI

(SIMS(λ, params)) is denoted as AI ’s view of the transcripts simulated by
a PPT simulator S with only public information as inputs.

Definition 3 (No forgery). A group authentication scheme is said to have the
no forgery property if we have:

Pr
[
params ← Init(λ); {si}i∈U ← Dist(params, n) ;

T ← AI
O(params, σ, {si}i∈UA) :

σ �∈ Σ ∧ Auth(params, σ, T ) = 1
]

< ε(λ)

In the above expression, UA denotes the users that are controlled by AI , such
that UA ⊂ U and |UA| ≤ t − 1. O denotes an oracle that is used to query the
group authentication service, and Σ records all the session indexes which have
been queried.

Definition 4 (No impersonation). A group authentication scheme is said to
have the no impersonation property if we have:

Pr
[
params ← Init(λ); {si}i∈U ← Dist(params, n) ;

ci ← Comp(params, σ,Ω ∪ {μ}, si)|i∈Ω ;
cμ ← AO(params, σ,Ω ∪ {μ}, {ci}i∈Ω) :

Auth(params, σ, {ci}i∈Ω∪{μ}) = 1
]

< ε(λ)

In the above expression, AO is assumed to impersonate the user Uμ, where μ �∈ Ω.
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3.5 Computational Assumptions

We assume that the following assumptions hold. Note that they are well-believed
assumptions that are widely used in designing cryptographic protocols.

Definition 5 (Discrete logarithm (DL) assumption). Given the descrip-
tion of the finite cyclic group G, where |G| = q and g is a generator of G. The
discrete logarithm assumption implies that there exists a negligible function ε(·)
such that for all PPT adversaries ADL, we have:

Pr[x R← Zq;x∗ ← ADL(G, q, g, gx) : x∗ = x] < ε(λ)

Definition 6 (Decisional Diffie-Hellman (DDH) assumption). Given the
description of the finite cyclic group G, where |G| = q and g is a generator of
G. Select x

R← Zq, y
R← Zq, and z

R← Zq. The decisional Diffie-Hellman
assumption implies that there exists a negligible function ε(·) such that for all
PPT adversaries ADDH , we have:

|Pr[ADDH(G, q, g, gx, gy, gxy) = 1] − Pr[ADDH(G, q, g, gx, gy, gz) = 1]| < ε(λ)

Definition 7 (Preimage resistant hash function). Given the description
of a hash function H : D → R, where D and R denote H’s domain and range
respectively. The hash function H is said to be preimage resistant if there exists
a negligible function ε(·) such that for all PPT adversaries APR, we have:

Pr[x R← D, x∗ ← APR(H(x)) : H(x∗) = H(x)] < ε(λ)

Note that preimage resistant hash function can be constructed from any one-way
permutation or one-way function.

4 The Proposed Scheme

4.1 The Scheme

Our proposed group authentication scheme works as follows:

– Init : Denote H as a preimage resistant hash function. GM first selects a
cyclic group G with prime order q, and generates l independent generators
of the group gi

R← G for i ∈ Zl. It is required that the discrete logarithm
loggi

gj is unknown for any i, j ∈ Zl. GM then selects the secret s
R← Zq,

and computes H(gi
s) for i ∈ Zl. GM associates the pairwise different integers

{x1, x2, . . . , xn} with the group members. Finally, GM outputs the system
parameters params = (H, G, q, {gi}i∈Zl

, {H(gi
s)}i∈Zl

, {xi}i∈Zn
).

– Dist : GM selects a random polynomial f(x) = a0 +a1x+ . . .+at−1x
t−1 over

Zq with degree t − 1, such that a0 = s. GM then computes the credentials
si = f(xi), and sends them to the group members through the secure channel.
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– Comp : In the σ-th session, every participating user in Ω first selects ui
R← Zq

and broadcasts gσ
ui . Then, each user computes:

gσ
vi =

∏

j∈Ω,j<i

gσ
uj /

∏

j∈Ω,j>i

gσ
uj

As follows, every user computes and broadcasts her token as:

ci = gσ
siLi · gσ

uivi

where Li =
∏

j∈Ω,j �=i
xj

xj−xi
is the Lagrange coefficient.

– Auth : In the σ-th session, every user can verify whether all the users are
legitimate group members by checking:

H(
∏

i∈Ω

ci) = H(gσ
s)

4.2 Security Analysis

Theorem 1. The proposed group authentication scheme satisfies the correctness
property.

Proof. If Ω ⊆ U and |Ω| ≥ t, the Lagrange interpolation implies that s =∑
i∈Ω siLi where Li =

∏
j∈Ω,j �=i

xj

xj−xi
is the Lagrange coefficient. Moreover,

because the AV-nets enjoy the property
∏

i∈Ω gσ
uivi = 1, we have:

∏

i∈Ω

ci =
∏

i∈Ω

gσ
siLi ·

∏

i∈Ω

gσ
uivi = gσ

∑
i∈Ω siLi = gσ

s

Therefore, the equation H(
∏

i∈Ω ci) = H(gσ
s) will hold, and the authentication

will be successful.

Theorem 2. The proposed group authentication scheme satisfies the secrecy
property, assuming the DL assumption holds in G.

Proof. Denote RealΠ(λ, params) as the real run of the protocol Π and
SIMS(λ, params) as the protocol simulated by a PPT simulator S with only
public information as inputs.

RealΠ(λ, params):

– Init: GM generates and outputs the system parameters:

params = (H, G, q, {gi}i∈Zl
, {H(gi

s)}i∈Zl
, {xi}i∈Zn

)

– Dist: GM computes the credentials si = f(xi), and sends them to the group
members through the secure channel. Without loss of generality, we assume
that the credentials {s1, s2, . . . st−1} are learnt by the inside adversary AI .
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– Comp: In the σ-th session, every participating user in Ω selects ui
R← Zq and

broadcasts gσ
ui . Then, each user computes

gσ
vi =

∏

j∈Ω,j<i

gσ
uj /

∏

j∈Ω,j>i

gσ
uj

and broadcasts her token ci = gσ
siLi · gσ

uivi . In this algorithm, AI learns
{u1, u2, . . . , ut−1} that are selected by the corrupted users as well as all the
broadcast values.

– Auth: In the σ-th session, everyone verifies whether H(
∏

i∈Ω ci) = H(gσ
s).

SIMS(λ, params):

– Init: The simulator S outputs the system parameters:

params = (H, G, q, {gi}i∈Zl
, {H(gi

s)}i∈Zl
, {xi}i∈Zn

)

– Dist: S sends the credentials {s1, s2, . . . st−1} to the inside adversary AI .
– Comp: Denote k = |Ω|. In the σ-th session, S randomly selects k val-

ues {u′
1, u

′
2, . . . , u

′
k} from Zq and broadcasts gσ

u′
i for i ∈ {1, 2, . . . , k}.

S sends {u′
1, u

′
2, . . . , u

′
t−1} to AI . S then randomly selects k − 1 values

{c′
1, c

′
2, . . . , c

′
k−1} from G, and computes c′

k =
∏

i∈Ω ci/
∏k−1

i=1 c′
i. Then, S

broadcasts the tokens {c′
1, c

′
2, . . . , c

′
k}.

– Auth: In the σ-th session, everyone verifies whether H(
∏

i∈Ω c′
i) = H(gσ

s).

We now demonstrate that it is infeasible for the inside adversary AI to dis-
tinguish the transcripts in these two protocols. In the Init algorithm, the same
public parameters params are published in both protocols. In the Dist algorithm,
the same credentials {s1, s2, . . . , st−1} are learnt by AI in both protocols. In
the Comp algorithm, both sets {u1, u2, . . . , ut−1} and {u′

1, u
′
2, . . . , u

′
t−1} are ran-

domly distributed in Zq, and all the broadcast values are randomly distributed
in G. In Auth, the algorithm will be successful in both protocols. Therefore, AI

cannot distinguish between RealΠ(λ, params) and SIMS(λ, params), because all
these algorithms in AI ’s view are indistinguishable. In other words, we have:

ViewAI
(RealΠ(λ, params)) ∼=c ViewAI

(SIMS(λ, params))

Moreover, based on the DL assumption, AI cannot learn any secret infor-
mation of s from the public information

∏
i∈Ω ci = gσ

s. Hence, our modified
scheme satisfies the secrecy property.

Theorem 3. The proposed group authentication scheme satisfies the no forgery
property, assuming that H is a preimage resistant hash function and the DL
assumption holds in G.

Proof. Denote X as the event that AI can predict the value gσ
s from the public

parameters params, and Y as the event that AI has learnt some secret informa-
tion through querying the oracle O. Denote F as the event that AI outputs a
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successful forgery. Then we have:

Pr[F] = Pr[F|X ∨ Y] · Pr[X ∨ Y] + Pr[F|X ∧ Y] · Pr[X ∧ Y]
≤ Pr[X ∨ Y] + Pr[F|X ∧ Y]
≤ Pr[X] + Pr[Y] + Pr[F|X ∧ Y]

In the above expression, X and Y denote the complements of X and Y, respec-
tively. Because the hash function H is assumed to be preimage resistant, we have
Pr[X] < ε1(λ) for some negligible function ε1(·). Moreover, Theorem 2 implies
that the real run of the protocol Π does not leak any secret information to AI .
And the hybrid argument [20] further implies that AI does not learn any secret
information even if she has queried the oracle O polynomial number of times.
Hence, we have Pr[Y] < ε2(λ), for some negligible function ε2(·). Finally, we
analyse the probability Pr[F|X ∧ Y]. In this case, AI needs to guess the value
gσ

s. Because s is randomly distributed in Zq and AI only controls at most t − 1
group members, the probability of guessing gs

σ correct in each trial is exactly 1/q.
Recall that AI can try polynomial number of times, we have Pr[F|X∧Y] = Q/q,
where Q denotes the number of trials AI has made. Putting the above analyses
together, we have:

Pr[F] ≤ Pr[X] + Pr[Y] + Pr[F|X ∧ Y]
< ε1(λ) + ε2(λ) + Q/q

≤ ε(λ)

for some negligible function ε(·). Therefore, our modified scheme satisfies the no
forgery property.

Theorem 4. The proposed group authentication scheme satisfies the no imper-
sonation property, assuming that H is a preimage resistant hash function and
the DDH assumption holds in G.

Proof. Denote X as the event that AO can predict the value gσ
s from the public

parameters params or AO can find a targeted collision x∗ in G such that x∗ �= gσ
s

but H(x) = H(gσ
s), and F as the event that AO can impersonate a group member

without being detected. Then we have:

Pr[F] = Pr[F|X] · Pr[X] + Pr[F|X] · Pr[X]
≤ Pr[X] + Pr[F|X]

Firstly, based on the assumption that H is a preimage resistant hash function,
we have Pr[X] < ε1(λ) for some negligible function ε1(·).

Next, we analyse the probability Pr[F|X]. In this case, we define two games
which are played between the outside adversary AO and the challenger. These
games are denoted as Game j for j = 0, 1. Game 0 is with respect to our proposed
scheme where the event X does not happen. We then modify the challenger to
obtain Game 1. For j = 0, 1, we define Wj as the event that AO successfully
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impersonate a group member in Game j. We will show that |Pr[W0]−Pr[W1]| <
ε2(λ) for some negligible function ε2(·) and Pr[W1] = Q/q, where Q denotes the
polynomial number of trials AO has made. Therefore, it follows that Pr[F|X] is
negligible.
Game 0.

– Init: the challenger outputs the system parameters:

params = (H, G, q, {gi}i∈Zl
, {H(gi

s)}i∈Zl
, {xi}i∈Zn

)

– Dist: the challenger computes the credentials si = f(xi) for i ∈ Zn, and sends
them to the group members through the secure channel.

– Comp: in the σ-th session, every group member in Ω computes and broadcasts
the token ci = gσ

siLi · gσ
uivi , where |Ω| = t. Afterwards, AO computes and

broadcasts her token ct+1. Note that in this algorithm, since the specification
of H is publicly known, anyone can evaluate H by herself. For example, any
participating user, including the outside adversary AO, can keep querying H
by inputting xi, and H will output yi = H(xi) to this user. Moreover, because
it is already assumed that H is preimage resistant, none of the user will get
an output yi = H(gσ

s) such that the corresponding value xi can be used to
pass the authentication.

– Auth: it is verified whether H(
∏t+1

i ci) = H(gσ
s).

The game outputs 1 if the verification is successful and 0 otherwise.
Game 1.
In Game 1, the modification only comes in the Comp algorithm, while all the
other algorithms remain unchanged.

– Comp: in the σ-th session, every group member in Ω, except the i∗-th group
member i∗ ∈ Ω, computes and broadcasts the token ci = gσ

siLi ·gσ
uivi , where

|Ω| = t. The i∗-th group member selects ri∗
R← Zq and broadcasts the token

as ci∗ = gσ
siLi · gσ

ri∗ instead. Afterwards, AO computes and broadcasts her
token ct+1. In this step, the participating users can query the hash function
H exactly the same as in Game 0.

We then describe an efficient adversary ADDH that uses AO as a subroutine,
such that:

|Pr[W0] − Pr[W1]| = AdvDDH
ADDH

where AdvDDH
ADDH

denotes ADDH ’s advantages in solving the DDH problem. Given
the description of the group G with generator gσ as well as two random values
gσ

ui and gσ
vi , ADDH ’s purpose is to distinguish guivi

σ from gσ
ri∗ . We denote p0

and p1 as the probability that ADDH outputs 1 in these two cases, respectively.
ADDH runs our proposed scheme Π where the event X does not happen, and
outputs 1 if the corresponding game outputs 1. If ADDH receives guivi

σ , she is
running Game 0, hence p0 = Pr[W0]. If ADDH receives gσ

ri∗ , she is running
Game 1, hence p1 = Pr[W1]. Therefore, we have

|Pr[W0] − Pr[W1]| = |p0 − p1| = AdvDDH
ADDH
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Based on the DDH assumption, AdvDDH
ADDH

< ε2(λ) for some negligible function
ε2(·). Hence, we have |Pr[W0] − Pr[W1]| < ε2(λ) as required.

In Game 1, AO’s hope to impersonate a group member without being
detected is to output a token ct+1, such that the value

∏t+1
i=1 ci happens to equal

gσ
s. Because the token ci∗ is randomly distributed in G and it is independent of

gσ
s, the probability that the equation

∏t+1
i=1 ci = gσ

s holds in each trial is exactly
1/q. Recall that AO can try polynomial number of times, we have Pr[W1] = Q/q,
where Q denotes the number of trials AO has made.

Putting the above analyses together, we have Pr[F] < ε1(λ) + ε2(λ) + Q/q,
which is negligible. This finishes the proof that our proposed scheme satisfies the
no impersonation property.

4.3 Efficiency Analysis

The computational costs in our proposed scheme are very low. In the Init algo-
rithm, apart from selecting the group G and the required random values, GM
computes l modular exponentiations in G and evaluates the hash function l
times. In the Dist algorithm, GM selects a random polynomial f(x) over Zq with
degree t − 1, and evaluates f(x) at n different points. When using the Horner’s
rule, every evaluation of f(x) takes t − 1 multiplications and t additions in Zq,
and each credential is a value in Zq. In the Comp algorithm, each user broad-
casts 2 values in G in two separate rounds. This process requires at most n + 2
modular exponentiations and n modular multiplications in G. Note that the
Lagrange coefficients can be pre-computed beforehand. In the Auth algorithm,
each user performs at most n modular multiplications in G and evaluates the
hash function once.

5 Conclusion

In this paper, we revisited the research of group authentication schemes and we
have contributed in the following two aspects: (1) we have presented a formal
security model for the group authentication problem; and (2) we have introduced
an efficient and provably secure group authentication scheme in our security
model. However, there are also a number of areas that we have not covered, and
we would like to leave them as future works.

Proofs Based on Simulation. There are two distinct approaches to defining
security for cryptographic protocols: simulation proof and reduction proof. The
former is more intuitive because it models security of the targeted problem via
an ideally trusted third party. However, the definitions will become complicated
once all details are filled in. In contrast, the reduction proof yields definitions
that are simpler to describe and easier to work with. However, the adequacy
for modelling the problem is less clear. In this paper, we followed the latter
approach, and it is still open how to provide formal security treatment for group
authentication using the simulation proof.
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Dynamic Groups. Most of the existing group authentication schemes, includ-
ing the one presented in this paper, only consider a static group in which the
group members are fixed throughout the entire lifetime of the protocol. However,
in many real-world applications, the group members may change dynamically,
e.g. some users may join or leave the group. Defining the formal security model
and investigating efficient designs for group authentication schemes that support
the dynamic environment are also interesting research topics.
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Abstract. Detecting anomalies in login activities is a critical step in
response to credential-based lateral movement attacks. Although attack-
ers with compromised credentials can impersonate legal users and move
laterally between computers without triggering the alarm, his login activ-
ities would likely deviate from the users’ normal patterns. We pro-
pose AGE, an Authentication Graph Embedding based anomalous login
activities detection system. The goal of authentication graph embedding
is to capture comprehensive relationships that facilitate the construction
of user profiles. Specifically, the user profiles contain three types of fea-
tures: the familiarity-related features, the similarity-related features,
and the lateral movement walks-related features. To evaluate AGE thor-
oughly, we use our synthetic malicious lateral movement traces as well
as red team activities provided by CMU-CERT. Extensive experiments
show that AGE achieves good performance and outperforms the base-
line methods. Moreover, we also design experiments that will help us
understand the authentication graph embedding.

Keywords: Anomalous login activities detection · Authentication
graph embedding · Lateral movement · User profiling

1 Introduction

Lateral movement is the key stage of Advanced Persistent Threats (APTs).
After establishing a foothold, attackers move laterally in networks to collect
valuable information. Even though a number of advanced hacking techniques
(e.g., remote exploits) can be used in lateral movement, their effects are over-
rated [12]. Instead, attackers tend to use the compromised passwords or creden-
tials (obtained by social engineering, pass the hash, etc.) to impersonate legal
users and log on to computers. Doing this, attackers can avoid the detection
of the security system and make defense difficult. In recent years, this type of
attack (also known as the credential-based attack) has been widely adopted in
many instances of APTs, including the 2011 RSA data breach [20] and 2014
JPMorgan Chase data breach [18].
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User login activities are recorded in the form of authentication event logs.
Such log data can provide great insights into the user’s normal login behavior.
Given the authentication event logs, the goal is to identify the anomalous login
activities which are the signs of malicious lateral movement. Behavior-based
anomaly detection methods are very suitable for this task. Because behavior-
based methods can identify the deviation from the norm and detect the unseen
anomalies by modeling the user’s normal login activities. Traditional behavior-
based methods typically use statistical features to train a classifier as the normal
login behavior model. However, simple statistical features can hardly capture
complex relationships among entities in authentication event logs, such as com-
munity information and lateral movement path attributes. Researchers, there-
fore, try to mine the complex relationships by first transforming raw authentica-
tion event logs into the graph [10,13], since the graph is a data structure which
is good at capturing dependencies relationship among nodes.

Recently, many behavior-based anomaly detection methods have started to
model normal behavior patterns from the graph. For example, some efforts [2,7,
13] propose to apply graph theoretic approaches to discover suspicious activities.
In these works, researchers have exploited basic graph attributes to represent
users’ normal authentication patterns [13]. And they have tried to mine commu-
nities [2] or subgraphs [7] so that they can find the users who do not belong to any
community or the users who have changed their behavior patterns. Additionally,
to detect malicious lateral movement, the characteristics of paths on the graph
have been analyzed [3]. However, there exist two challenges in these existing
graph-based anomalous behavior detection approaches: (1) most of these meth-
ods focus on mining useful relationships depend on the particular task. So the
relationships in the graph may not be fully preserved. (2) The existing methods
are susceptible to the noise in the user behavior logs.

To overcome challenges mentioned above, we propose an Authentication
Graph Embedding (AGE for short) based anomalous login activities detection
system. We first construct a graph using raw authentication event logs, which is
the authentication graph, to represent login activities. Then, we make use of the
graph embedding technique to capture relationships in the authentication graph
as much as possible. Specifically, in our work, the relationships among source
computers, destination computers and user accounts (In the following of this
paper, user and user account can be used interchangeably), should be preserved
into the embedding vectors. Next, we extract various features, which are the user
profiles of normal login activities, using the embedding vector. At last, we train
a classifier using these features to detect anomalous login activities.

The novelty of our approach is that we take advantage of the outcome of the
popular graph embedding technique to extract features that represent the nor-
mal user profile in login activities. Based on the embedding vector, we construct
user profile through three types of features: the familiarity-related features, the
similarity-related features and the lateral movement walks-related features. The
familiarity-related featuresmeasure the relationship between user and computer;
the similarity-related features measure the relationship between computers.
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They are mainly used for finding community information in the authentication
graph; the lateral movement walks-related features are mainly used for repre-
senting path characteristics, which are important for detecting malicious lateral
movement.

We evaluate the effectiveness of our approach on the CMU-CERT dataset.
Note that red team activities provided by CERT only contain short term anoma-
lous login activities. We have to test whether our approach can detect the devi-
ation from the user’s normal profile in a long term perspective. Because the
malicious lateral movement can maintain persistence in network for a long time.
For this purpose, we design an algorithm to generate malicious lateral movement
traces. Experiments show that our approach can achieve satisfactory results and
outperform baseline methods. Additionally, for evaluating the effectiveness of
authentication graph embedding, we design two experiments that are related to
the final anomalous login activities detection goal. The results of the two experi-
ments can help us understand the output of the authentication graph embedding.

1.1 Contributions and Road Map

In summary, the contributions of this paper are as follows.

– We propose an authentication graph embedding based anomalous login activ-
ities detection system. We devise a user profile of login activities, taking
into account three types of features: the familiarity-related, the similarity-
related and the lateral movement walks-related.

– We evaluate our proposed approach on CERT-scenario3 and CERT-
LM dataset and demonstrate its capability of detecting anomalous login
activities.

– We design two experiments related to the final anomalous login activities
detection goal. And the results of the experiments can help us understand
and evaluate the authentication graph embedding.

The remaining sections of this paper are organized as follows. An overview of
our system framework is described in Sect. 2. Section 3 mainly details the user
profile constructing methods. Section 4 presents the overall experiment results,
and details the evaluation methods of authentication graph embedding at last.
Section 5 surveys previous related works. Section 6 concludes the paper.

2 Overview and Architecture

In this paper, we mainly focus on the credential-based malicious lateral move-
ment where attackers steal the credentials and impersonate legal users. The
assumption is that during lateral movement attackers’ login activities would be
likely inconsistent with normal user login patterns. The goal of our proposed
method is to detect login activities that deviate from the expected norm of user
profiles. In this section, we first introduce some necessary notations. Then we
present the system architecture.
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2.1 Definitions

Authentication Graph. Assuming a set of NU users {su1 , . . . , suNU
} and asso-

ciated NH computers {sh1 , . . . , shNN
} in authentication event logs. We denote

the authentication graph as G = {V,E}, where users and computers are two
types of vertices. The authentication graph is constructed by adding a set of E
edges {(i, j)} between user nodes and computer nodes over a time period [0, T ).
G = {V,E} is a bipartite graph. Additionally, we also denote the authentication
graph as G ∈ {wij}NU×NH , where wij is the number of authentication events
from user i to computer j within period of [0, T ).

PAS (Person’s Authentication Subgraph) [13]. A user u’s PAS represents
the user’s login activities over a time period [0, T ). The nodes of PAS are a set
of computers that the user u has logged on over a time period [0, T ). The edges
of PAS can be regarded as the user u’s lateral movement traces.

User Profile. We denote user u’s profile as pu = {x1, . . . , xi, . . . , xm}, where xi

is a feature extracted for representing one or more characteristics of u’s normal
login activities.

2.2 System Architecture

The framework of our AGE-based anomalous login activities detection system is
presented in Fig. 1. The key components of the system are authentication graph
embedding and user profile generating. Firstly, the raw authentication event logs
are transformed into the graph G ∈ {wij}NU×NH by authentication graph gen-
erator. Then the authentication graph embedding algorithm maps each node to
a vector v ∈ R

d, where d is the dimensionality of the v. Based on the embed-
ding vector, we construct user profiles by extracting three types of features:
familiarity-related, similarity-related and lateral movement-related. Finally, an
anomaly detection model is trained using the user profile.

Authentication Event 
Log

log entry1
log entry2
log entry3
log entry4

Authentication 
Graph Generator

Authentication Graph  
Embedding

Familiarity-related

User Profile

Anomaly Detection

Lateral Movement Walks-
related

Similarity-relatedFeature
Extractor

Fig. 1. The proposed framework for detecting anomalous user behavior within enter-
prise networks.
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3 Methodology

We propose the methodology for the task of detecting anomalous user login
activities. We first introduce the mechanism of authentication graph embedding,
which illustrates how the relationships are well preserved in vectors. Then we
present three types of extracted features in detail.

3.1 Authentication Graph Embedding

The goal of authentication graph embedding is to encode each node into a low-
dimension vector while preserving relationships among nodes in graph G. For
example, if the user u and the computer h co-occur many times in authentication
events, then the graph embedding algorithm will make the embedding vectors
vu and vh closer in the embedding space. The graph embedding algorithm is
detailed below.

The process of authentication graph embedding is divided into two stages:
(1) random walk to generate node sequences set X, where each sequence x =
(s1, . . . , sM ) ∈ X consists of user nodes and computer nodes; (2) learn a d-
dimensional representation vsi ∈ R

d for each unique user su and computer sh.
Specifically, the Skip-Gram model [14] is used to learn node embedding vector
by maximizing the objective function L over the sequence set X. L is defined as
follows:

L =
∑

s∈S

log P (N(s)|s), (1)

where S is the vocabulary consisting of unique nodes which represent users and
computers; N(s) is the set of neighborhoods of node s ∈ S; P (N(s)|s) is the
probability of observing nodes from the neighborhood of the given source node
s, which is defined using a softmax unit

P (ni|s) =
exp(v′T

ni
vs)

∑|S|
s′=1 exp(v′T

s′ vs)
, (2)

where ni ∈ N(s), v and v′ are two d-dimensional representation of the node s. v
is what we ultimately want, namely the embedding vector of node s. From the
definition of objective function L, we can see that after the convergence of the
Skip-Gram model, embedding vectors of nodes that often occur together in the
same context of X are closer than others.

3.2 Generating User Profile

Graph embedding vectors are very suitable for calculating similarities between
entities, whether these entities belong to the same type or not. We use the inner
product of two embedding vectors as the similarity measurement. The similarity
between entities i and j is defined as:

sim(i, j) = vi · vj . (3)
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We present the characteristics of a user u’s normal login activities from three
aspects: the familiarity between u and computers in u’s PAS, the similarity
between computers in the u’s PAS, and the characteristics of lateral movement
walks in PAS.

Familiarity Features. We define two features, fmin and fmean, which are used
to measure the familiarity of the user u to computers h in PAS. Specifically,
fmin and fmean can be calculated as follows:

fmin(u) = min
i

(sim(u, hi)), (4)

fmean(u) =
1

|Hu|
∑|Hu|

i=1
sim(u, hi), (5)

where Hu is the set of computers in user u’s PAS, hi is a computer in the Hu,
|Hu| is the number of computers in Hu.

Similarity Features. The next feature, fdispersion, measures the degree of dis-
persion of computers belong to user u’s PAS. We compute the value of this
feature as follows:

fdispersion(u) =

∑
hi,hj∈Hu,i �=j sim(hi, hj)

|Hu| × (|Hu| − 1)
. (6)

In addition, we further extract a feature, fscope, to quantify the scope of a
user’s login activities in networks. The value of fscope is defined as the maxi-
mum distance between the centroid of PAS embedding vho

and each computer
embedding vhi

, hi ∈ Hu. Note that the maximum distance is calculated using
the minimum inner product similarity.

fscope(u) = min
i

(sim(hi, ho)), (7)

The motivation of including these two features, fdispersion and fscope, is that
the dispersion and the scope of user’s login activities are likely influenced by the
attacker malicious authentication behavior.

Lateral Movement Walk Features [3]. We define the walk to be a path of
user’s lateral movement in PAS. The length of a walk in PAS is defined as the
sum of weights on the walk paths. Then the maximum and interquartile range
(IQR) of lengths of all walks are computed as the lateral movement walk fea-
tures, which is denoted as flm max and flm iqr. The IQR measures the dispersion
of the central 50% of all walks lengths. The motivation of including these two
features is that a user’s normal lateral movement behavior usually has invariant
walk attributes. We believe that the existence of attackers who pursue the max-
imum gains through the compromised user account is likely to cause deviations
from theses two walk attributes.

All of the features that are used for generating user profile are listed in
Table 1.
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3.3 Anomaly Detection

We train a classifier as the anomaly detector to identify anomalous login activ-
ities. Given a test sample, the anomaly detector can output an anomaly score.
The assumption is that all user profiles used for training do not include anoma-
lous login activities. Note that several classifiers like One-Class SVM (OCSVM),
local outlier factor [4], Principal component analysis (PCA) [27] can be used as
our anomaly detector. We have compared the performance of different classifiers
in Sect. 4.2.

Table 1. Summary of features.

Features name Description

Familiarity

Features

fmin Minimum familiarity between user and computers

fmean Mean familiarity between user and computers

Similarity

Features

fdispersion The dispersion degree of computer in a user’s PAS

fscope The scope of a user’s PAS

Lateral Movement

Walk Features

flm max The maximum length of lateral movement walks

flm iqr The IQR of lengths of lateral movement walks

4 Experiments

4.1 Dataset

In this section, we evaluate the proposed method using insider threat CERT
r4.2 dataset [8]. This dataset contains multisource activity logs (i.e., user login,
emails, files access, website visiting, and removable devices usage.) of 1000 users
and 1003 computers. In this work, we use only user login activities (in the
logon.csv), from which the authentication graph and PASs are generated. Addi-
tionally, users’ meta-data (e.g., the department, team, and role of the user)
provided in LDAP directory is also used to understand embedding. CERT is a
synthetic dataset and its red team contains five synthetic attack scenarios. Unfor-
tunately, only one scenario (scenario 3) contains the credential-based attacks.
Therefore, to properly evaluate the proposed approach, we synthesize malicious
lateral movement traces and inject them into the normal authentication event
logs.

Malicious Lateral Movement Trace Generation. Inspired by the lat-
eral movement chain generation algorithm proposed in [3], we adapt the SIS
model [23] to simulate malicious lateral movement traces. When an attacker has
compromised a computer in the network, the event that the attacker logged on
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the next computer is a Poisson process with a rate λ. λ controls the speed of lat-
eral movement in networks. The speed of attackers should not be too fast, or the
alarm will be triggered. We tune λ to ensure that the speed of attackers’ lateral
movement is slower than that of normal behavior, such as the administrator’s
regular maintenance.

The pseudo-code of generating malicious lateral movement traces is shown
in Algorithm 1.1 Given a user u’s PAS, the output of Algorithm 1 is a set of
simulated authentication events of malicious lateral movement. We then inject
these malicious events into u’s normal login activities. We set the explore rate to
balance the exploration and exploitation of attackers’ next movement. The
meaning of explore rate is explained as follows. When an attacker compromised
a user account u, he can exploit all computers in the PAS with fewer risks.
On the other hand, to obtain more valuable information, the attacker also tries
to explore other computers in networks that do not belong to PAS. We tune
explore rate to simulate different lateral movement behavior of attackers.

4.2 Experiment Results and Comparison Study

Experiment Setup. We train the authentication graph embedding model using
5 months of login data without any red team activities, from January to May
2010. The hyperparameters of authentication graph embedding are set as follows.
The dimensionality of the embedding vector is set to be d = 60. It is a good
trade-off between accuracy and efficiency, as a higher embedding dimensionality
does not improve too much accuracy, but it requires a longer time to train and
to compute inner product similarity. The context window size of the Skip-Gram
model is set to m = 1. Starting from each node in the graph, we iterate 10 walks,
each of which has a fixed length of l = 200. The p is set to 0.1, while the q is set
to 2.0.

We evaluate our approach in two aspects, which are the abilities to discovery
short term and long term anomalies. We believe that both types of anomalies
may be a sign of lateral movement attacks. For the task of detecting short
term anomalous login activities, we employ authentication events of 68 days.
We generate the profile for each user’s one-day login activities. In other words,
a user’s one day profile is a data sample to be fed into classifiers. In this way,
we have in total of 46629 samples. In this dataset (CERT-scenario3), there are
20 positive samples which are generated from 10 malicious users’ login activities
provided by the red team of CERT. We train a classifier (i.e., OCSVM with
Gaussian kernel) as the normal login activity model using 45609 benign samples
which are randomly selected. The remaining 1000 benign samples and all of the
20 positive samples are used for the test.

1 We implement Algorithm 1 at https://github.com/WeiieW-cas/Malicious-Lateral-
Movement-Traces-Generation.

https://github.com/WeiieW-cas/Malicious-Lateral-Movement-Traces-Generation
https://github.com/WeiieW-cas/Malicious-Lateral-Movement-Traces-Generation
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Algorithm 1. Malicious Lateral Movement Trace Generation
Input:

Authentication Graph G = {V, E}, User u’s PAS, λ, explore rate, start time,
end time

Output:
Event(t, u, c)

1: Vc := ∅
2: visited(v) := False, ∀v ∈ V
3: t := start time
4: vstart :=RandomSelectNode(PAS)
5: Event := (t, u, vstart)
6: visited(vstart) := True
7: while t ≤ end time do
8: Sleep for τ ∼ Exp(λ)
9: Let t = t + τ

10: Let rand = Random(0,1)
11: if rand ≤ explore rate then
12: Random compromise a computer v′ that is NOT in user u’s PAS (explore):

Select v′ from {v′|v′ = (¬visited(v′)) ∧ v′ /∈ PAS}
13: else
14: Random compromise a computer v′ in user u’s PAS to compromise (exploit):

Select v′ from {v′|(v, v′) ∈ ε, ∀v ∈ Vc}
15: end if
16: Event := Event ∪ (t, u, v′)
17: visited(v′) := True
18: ε := ε\{e ∈ E|e = (v, v′) ∈ E, ∀v ∈ Vc}
19: ε := ε ∪ {e ∈ E|e = (v′, i) ∈ E, ∀i ∈ V }
20: Vc := Vc ∪ {v′}
21: v = v′

22: end while

For evaluating the detection of long term anomalies, which are most likely
a sign of malicious lateral movement, we use login activities of 5 consecutive
months. The data of the first 4 months is used to train a classifier, and the
last month’s data is used for the test. And no red team activities provided by
CERT are in it. We inject into login activities of the last month the malicious
lateral movement traces which are generated using Algorithm 1. In Algorithm 1,
λ is set to 0.0003, explore rate is set to 0.1. We randomly select 20 users’ login
activities to be inserted the synthetic attack traces. A user’s one month profile
is a data sample. In this dataset (CERT-LM), there are in total 4952 samples
and 20 of them are malicious. Similar to the short term anomaly detection, we
train a model using 3972 benign samples. The remaining samples including 20
anomalous samples are used for the test. The details of these two datasets are
shown in Table 2.
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Table 2. Set up of login data sets.

Dataset Sample description Number of samples

Training data Test data

CERT-scenario3

(short term)

User’s one day data as a sample 45609 benign 1000 benign;

20 malicious

CERT-LM

(long term)

User’s one month data as a sample 3972 benign 980 benign;

20 malicious

Overall Experiment Results. We evaluate our approach using a number of
different metrics, including AUC (Area Under the ROC Curve), F1-score and
recall. Besides the AGE mentioned before, we have implemented a clustering-
based AGE method: AGE-Clustering. In AGE-Clustering, before training a clas-
sifier using all user profiles, we employ K-Means to partition the samples. For
each cluster, we then train a classifier as the anomaly detector. For compari-
son, we have implemented the approach proposed in [13], named Basic-AG in
Table 3. We also demonstrate whether simple baseline methods would be enough
for the task of detecting anomalous user login activities. Specifically, we have
implemented Oddball and PCA in Python 3.6 by using libraries like scikit-learn,
numpy, and so forth. Table 3 shows the results of our AGE based approaches
compared to other methods.

We can see from Table 3, our AGE based methods outperform other methods
in both CERT-scenario3 and CERT-LM. The performances of our AGE based
methods in CERT-LM are better than that in CERT-scenario3. This result shows
that our AGE based methods have a strength to detect long term anomalies,
which are an important sign of malicious lateral movement.

Table 3. Results comparison on two datasets.

Dataset Method AUC F1-score Recall

CERT-scenario3 Oddball 0.9502 0.8101 100%

PCA 0.9212 0.8738 95%

Basic-AG [13] 0.9755 0.9198 100%

AGE 0.9802 0.9384 100%

AGE-Clustering 0.9780 0.9387 100%

CERT-LM Oddball 0.8763 0.7807 90%

PCA 0.8198 0.7077 95%

Basic-AG [13] 0.8876 0.8970 95%

AGE 0.9998 0.9818 100%

AGE-Clustering 0.9897 0.9801 100%
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Next, we change λ and explore rate of Algorithm 1, and evaluate the per-
formance of AGE in the face of various types of malicious lateral movement.
We vary λ while keeping explore rate fixed. The result is shown in Fig. 2(a).
Similarly, we vary explore rate while keeping λ fixed and show the result in
Fig. 2(b). Results show that the performance of AGE gradually improves as the
attackers move faster or are more willing to explore. This result is consistent
with the intuition.

(a) Varying λ to simulate the speed
changing of attacker’s lateral move-
ment.

(b) Varying explore rate to simulate
the changing in risk taking of attack-
ers.

Fig. 2. Performances of AGE in the face of various types of malicious lateral movement.

We claim that the user profile constructed using authentication graph embed-
ding is good at representing normal user behavior. Traditional one-class classi-
fiers can directly be used to achieve satisfactory results. To verify this conclusion,
we compare several classifiers: OCSVM with Gaussian kernel and linear kernel,
PCA and local outlier factor. The result is shown in Fig. 3. All of these four clas-
sifiers achieve good performance using the profiles that are constructed based on
authentication graph embedding vectors.

At last, we design an experiment to compare the representation ability of
AGE based features and count-based features. It is obvious that many relation-
ships in authentication event logs can be captured by both these two types of
features. For example, the frequency (count-based feature) at which a user u
logs on to a computer h can reflect the familiarity relationship between u and h.
Unfortunately, not all relationships represented by AGE based features can be
directly substituted for the count-based features. Specifically, only the features
related to familiarity can be obtained by counting. For the sake of fairness,
we only compare the familiarity features, which is fmin and fmean, with the
corresponding count-based features. Given these two different types of features,
we chose PCA as the anomaly detector, and compare the performance on the
task of detecting anomalous login activities. The CERT-scenario3 dataset is used
for the comparison. Concretely, in the training feature matrix of PCA, each row
represents a user, while each column represents a computer. For AGE based
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training matrix, the value of each cell is the familiarity value computed using
Eqs. (3) and (4). For the count-based training matrix, the value of each cell is
the number of logins. The anomaly detection results are shown in Fig. 4. It can
be seen that the performance of using AGE based features outperforms that of
count-based features.

Fig. 3. Performances of four AGE
based classifiers on CERT-scenario3
dataset.

Fig. 4. The comparative results of
AGE based familiarity against count-
based one.

4.3 Understanding and Evaluating the Authentication Graph
Embedding

In this section, we understand and evaluate the effectiveness of authentication
graph embedding through two experiments. Specifically, these two intermediate
tasks are used to examine whether the relationships between computers and
between users are preserved or not.

Relationships Between Computers. The embedding vectors of computers
are expected to encode the relationship between computers, which is the com-
puter community information. Only when the computer community information
is well encoded in the vectors, can the features like scope and dispersion be mean-
ingful. We demonstrate this by computing the average inner product similarities
between computers from different communities. The result is reported in Table 4.
In Table 4, the community label of each computer is assigned as its functional
unit (The functional unit names have been abbreviated), which is inferred from
the CERT LDAP file. From Table 4, we can observe that average inner product
similarities between computers of the same community are much higher com-
pared to similarities between computers of different communities. This result
shows that the computer community information is well encoded in the learned
embedding vectors.

Relationships Between Users. Similar to the experiment above, to evaluate if
user community information is captured by embedding vectors, we also compute
average inner product similarities between users of different functional units.
The results are reported in Table 5. From Table 5, it can be observed that inner
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product similarities between users of the same functional unit are much higher
compared to similarities between users of different functional units. So, this result
shows that the user community information is also well encoded in the learned
embedding vectors.

Table 4. Inner product similarities between different hosts communities.

Community Admin Finance Manu P&C R&E S&M

Admin 4.8423 4.4069 4.3868 4.4602 4.4305 4.1011

Finance 6.1064 4.3360 4.5092 4.3811 4.3251

Manu 4.4152 4.3529 4.3421 4.1361

P&C 6.5514 4.3750 4.2563

R&E 4.4512 4.3510

S&M 4.3610

Table 5. Inner product similarities between different users communities.

Community Admin Finance Manu P&C R&E S&M

Admin 5.4521 5.0671 5.1254 4.5489 5.0410 5.0662

Finance 7.4847 5.1512 4.4386 5.0061 4.9951

Manu 5.4042 4.6789 5.1491 5.1411

P&C 5.4864 4.5170 4.5233

R&E 5.1542 5.0400

S&M 5.1810

5 Related Work

In this section, we review previous related works including malicious lateral
movement detection, credential-based attacks detection, masquerade detection,
and so forth. Methods commonly followed in the literature have two main steps:
feature extraction and modeling. In the first step, the distinctive features describ-
ing a user’s normal behavior are processed and extracted. In the second step,
these features are used to learn a classifier as the normal behavior model. Gen-
erally, the first step determines the final performance of the anomaly detec-
tion system and has become the focus of recent researches. Existing methods
extract features representing a user’s behavioral characteristics from different
perspectives.

Many works extract raw features from various types of logs related to login
activities. Goncalves et al. [9] selected count-based features describing the char-
acteristics of the user’s authentication activities, such as the number of authen-
tication tries. However, these features are not able to identify credential-based
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attacks because attackers with compromised credentials would not log in by
trial-and-error. Zhang et al. [28] inspected the authentication logs in university
settings. They extracted the geographic location features and timing features.
These features are specially designed for detecting university account abuse.

Recently, several graph-based methods [2,3,11,13,16] have been proposed to
mine various relationships among entities in behavior logs. To detect malicious
lateral movement, researchers focus on finding abnormal communities [16] or
common structures [17] in the behavior logs (i.e., authentication event logs, net-
work traffic logs, and audit logs.). A typical attack scenario of these works is
that attackers have taken control of a computer within a network using social
engineering such as phishing attack [1,6,26], they then attempt to lateral move-
ment [25] to obtain more valuable information. To detect this type of attack,
the monitor tools that can process large amounts of logs are needed. As a result,
these tools produce large and heterogeneous behavior data. And it makes the
task of detecting anomalous activities difficult. To deal with this type of data,
several neural network-based methods [5,21,22] are proposed. However, neural
network models are too “deep” to be trained and too “dark” to be interpretable.

There are two previous papers which are similar to our work. First, Kent
et al. [13] proposed to use the authentication graph to analyze user behav-
ior. They extracted features based on authentication graph attributes, including
graph density, vertex count and edge count, etc. However, the representation
ability of their statistical features is limited. To comprehensively represent the
more complicated relationships, our work extracts the embedding-based features
to generate user profiles. The embedding-based features not only can describe
the structural attributes of the authentication graph but also can measure var-
ious relationships between entities in authentication event logs. Second, Siadati
et al. [17] detected anomalous logins in enterprise networks. They have analyzed
the real authentication event log and claimed that there exist structural login
patterns in it. However, the pattern mining algorithm they proposed can not
discover other patterns besides the structural ones. The dataset used in [17] has
not been public, so we can not make a comparison.

We review the honeywords [24] methods which can directly detect malicious
login activities. In this paper, however, we focus on detecting the activities gen-
erated by the attacker who already owns the credentials. We also review the
continuous authentication methods. Most of these methods rely on the biometric
trait(s) [19], such as the face information [15]. However, collecting the biometric
information requires specified devices and these will increase the cost and bring
high overhead.

6 Conclusion

We proposed a novel approach for detecting anomalous user login activities based
on authentication graph embedding. We made use of the graph embedding algo-
rithm to learn the representation of the authentication events. We then con-
structed user profiles base on the embedding vector. We evaluated the proposed
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approach in the tasks of detecting both short and long term anomalous login
activities, which are the signs of malicious lateral movement.
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Abstract. Group signature allows group members to sign on behalf
of the group anonymously, and incorporate some tracing mechanism to
identify the actual signer. Multi-group signature (MGS), introduced by
Ateniese and Tsudik (FC’99), is a proper generalization of group signa-
ture. It allows signers to sign messages anonymously on behalf of multiple
groups and has extensive applications in electronic commerce. However,
all existing MGS schemes are from classical assumptions and will be inse-
cure once quantum computers come true.

In this paper, we propose the first MGS scheme in the lattice set-
ting which is also the first quantum-resistant proposal. The keystone of
our work is a zero-knowledge argument of knowledge (ZKAoK) system
of different syndromes of the same vector based on the work by Libert
et al. (Asiacrypt’16) and Ling et al. (PKC’18). With additional signing
and encryption layers, our ZKAoK allows the signer to prove member-
ships in multiple groups simultaneously, which is the key issue on the
MGS construction, and it can be of independent interest. For security
proofs, we formalize the MGS model in the framework of Bellare et al.
(CT-RSA’05).

Keywords: Public-key cryptography · Group signature · Multi-Group
Signature · Lattice-based cryptography · Zero-Knowledge Argument of
Knowledge

1 Introduction

Group signature is an important privacy-oriented primitive as proposed by
Chaum and van Heyst [9], and finds extensive applications in the real world,
such as e-commerce, TCG, anonymous online communications, etc. It allows
group members to sign on behalf of the group without leaking out their iden-
tities, except that some tracing authority can identify the actual signer of any
suspected signature.

Up to now, many generalized notions of group signatures were proposed,
such as group blind signatures [21], hierarchical group signatures [29], sub-group
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signatures [3] and multi-group signatures [3]. Multi-group signatures (MGS) was
first introduced by Ateniese and Tsudik in the multiple group setting. It allows
a signer simultaneously in multiple groups to sign messages on behalf of these
groups anonymously. This notion has important application in the field of e-
commerce, here is an example: In a bank, some loan contracts need to be signed
by an authorized loan officer who is also a notary public. If Alice is a member
of these independent groups (loan officers and notaries public), she can sign
the document representing these groups and convince verifiers that she is a
single entity in both groups. Ateniese and Tsudik also proposed the first MGS
construction from CS97 [8] based on number-theoretic assumptions, where an
additional proof is generated to claim that several group signatures are produced
by the same signer.

In the early years, many elegant group signature schemes based on clas-
sic assumptions flourished, e.g. [2,6,7]; however, with the rapid development of
quantum computing, researchers turn to seek proposals for post-quantum secu-
rity1. Lattice-based cryptography [1] thus becomes a hot topic, and it has other
advantages such as the worst-case to the average-case reduction and so on. Specif-
ically, Gordon et al. [12] proposed the first lattice-based group signature scheme;
Libert et al. [16] suggested the first scheme from lattice assumptions supporting
dynamic joining; del Pino et al. [27] gave the currently most practical scheme.
Besides, there are several other lattice-based schemes [15,17,19,25] featuring in
efficiency or functionality. However, to our knowledge, there is no multi-group
signature scheme from lattice assumptions.

Overall, it may seem simple to generalize regular group signatures into the
multi-group setting, in the meaning that it can be done by additionally proving
the signer belongs to different groups from the perspective of general construc-
tions. However, in concrete schemes, generating non-interactive zero-knowledge
(NIZK) for the membership of group is the most intricate part and proving extra
things would perplex this issue further. In MGS, the key issue for the signer
is proving memberships in multiple groups simultaneously. The idea in [3] is
that a signer claims the membership in two groups by proving the equality of
two double discrete logarithms. As we show here, there are some issues to be
addressed if one aims to use this idea in the lattice setting. In lattice-based
cryptography, one could prove in zero-knowledge (ZK) that different ciphertexts
are encryptions on the same message using Stern-like protocol [16,30]. Unfor-
tunately, in multi-group setting, identities of the signer are distinct in different
groups, which means the ciphertext part of her group signature are encryptions
on different plaintexts. This restriction prevents straightforward adaptation of
Stern’s protocol. Therefore, in order to construct a lattice-based multi-group sig-
nature scheme, we have to solve the problem that, given different ciphertexts on
different messages, how to prove the relationship among those messages without
exposing them.

1 In this work, the post-quantum security is only considered in the classical random
oracle model, rather than quantum random oracle model. This is in the same spirit
as in many other work, such as [16,17,27].
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Related Work. Traceable signature [14] is a variant notion of groups signature.
It allows the leakage of some trapdoor with respect to some member to link all
signatures produced by him. Benjumea et al. [5] extended this notion to the
multi-group setting, namely fair traceable multi-group signatures.

Libert et al. [16] abstracted Stern’s protocol [28] to cover many relations in
lattice-based cryptography and constructed a statistical ZKAoK for the abstract
relation. In particular, they proposed a signature scheme and a dynamic group
signature scheme from it. Recently, Ling et al. [20] proposed the first constant
size group signature scheme from Libert et al.’s abstract Stern-like protocol,
where the sizes of signature and public key are independent of the group size.
Following the sign-encrypt-proof paradigm, the group member encrypts her iden-
tity and proves in ZK her possession of a membership certificate which contains
her secret key with a valid signature from the issuer, and the well-formedness of
that ciphertext.

Our Contributions and Main Techniques. In this paper, we give the first
lattice-based multi-group signature scheme. The key observation is that different
syndromes are linkable if they are computed from the same short vector. How-
ever, when it comes to privacy applications such as group signatures, things turn
to complex, because in such case, not only that vector but also all syndromes
should be kept secret as user’s identities.

To this end, we construct a zero-knowledge argument of knowledge (ZKAoK)
of linkable syndromes. The main technique is reducing that relation to an
instance of the abstract Stern-like protocol [16]. With additional signing and
encryption layers, this ZKAoK allows the prover to convince the verifier that she
possesses valid signatures on corresponding linkable syndromes and the cipher-
texts of these syndromes are well-performed. Therefore, we prove in ZK the
relationship among different plaintexts only given their encryptions and obtain
the underlying zero-knowledge protocol for MGS.

Here we briefly describe our MGS scheme and the detailed construction is
shown in Sect. 5. Firstly the user chooses a short secret vector x and computes
two syndromes p1 = B1 · x and p2 = B2 · x. Then she sends p1 to the issuer of
group G1 and p2 to the issuer of group G2 respectively. These issuers return a sig-
nature on the syndrome independently and register her as a group member. The
user generates ciphertexts for her syndromes. Moreover, she utilizes the protocol
in Sect. 3.2 to prove in ZK that she owns a short secret vector, some different
syndromes calculated from it (thus are linkable), valid signatures on these syn-
dromes and the given ciphertexts are correct encryptions on her syndromes. The
protocol is repeated κ = ω(log λ) times to realize negligible soundness error and
made non-interactive by the Fiat-Shamir heuristic [11]. Given a valid multi-group
signature, any verifier is convinced that the signer belongs to several groups at
the same time. For security parameter λ and the number of groups t, our scheme
has public key size ˜O(t · λ), signing key size ˜O(t · λ) and signature size ˜O(t · λ).

At last but not least, in the framework of Bellare et al. [4], we formalize
a model for MGS under which the security of our scheme can be proved. It
allows users to join multiple groups independently and sign on behalf of those
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groups. Besides, its security naturally covers that of the regular case as well
as the most distinguishing feature of MGS, namely linkability across different
groups. This property implies that signers in multiple groups are able to claim
her memberships simultaneously with some proof, and it is infeasible for other
unqualified members to produce valid message MGS pairs.

Paper Organizations. In Sect. 2, we primarily fix notations and introduce some
difficult problems on lattices and some techniques. In Sect. 3, we introduce a
ZKAoK for proving multiple linkable syndromes. We turn to formalize the model
of MGS in Sect. 4 as well as its security requirements. In Sect. 5, we provide
concrete construction of MGS from lattice assumptions with security analysis.
Sect. 6 concludes this paper.

2 Preliminaries

Notations. Let x‖y denote the concatenation of two binary strings x and y, and
let ‖x‖ denote the Euclidean norm of a vector x. If S is a finite set, we denote
the cardinality (number of elements) of S by |S|, and denote uniformly choosing

a random element s from S by s
$←− S. If n ∈ N, then [n] = {1, 2, · · · , n}. If A is a

randomized algorithm then z ← A(x, y, · · · ) denotes the operation of running A
on inputs x, y, · · · and outputting z. For q ∈ N, Zq denotes the standard group
of integers modulo q. Let [a]3 denote a mod 3. Throughout this paper, we let λ
denote the security parameter.

2.1 Lattice

Definition 1 (Lattice). Let B = {b1, . . . , bn} be n (� m) linearly independent
vectors in R

m. The lattice generated by B, denoted by L(B), is the set of all the
integer linear combination of the vectors in B, and the set B ∈ R

m×n is called

the basis of L(B). Namely, L(B) = {
n
∑

i=1

xibi | xi ∈ Z} = {Bx | x ∈ Z
n}.

We consider lattice problems restricted to ideal lattices [24,26] and focus on
rings of the form R = Z[X]/(Φ2n(X)) and Rq = (R/qR), where n is a power of
2, q ≥ 3 is a positive integer, Φ2n(X) = Xn + 1 is the cyclotomic polynomial of
degree n, and let Zq = [− q−1

2 , q−1
2 ]. For a ring element v = v0 + v1 · X + · · · +

vn−1 ·Xn−1 ∈ Rq, let τ(v) = (v0, v1, · · · , vn−1)T ∈ Z
n
q denote its coefficient, and

for v = (v1, v2, · · · , vm)T ∈ Rm
q , let τ(v) = (τ(v1)‖τ(v2)‖ · · · ‖τ(vm)) ∈ Z

mn
q .

Define rot be a ring homomorphism that maps a ring element to a integer
matrix: for a ∈ Rq, rot(a) = [τ(a)|τ(a ·X)| · · · |τ(a ·Xn−1)] ∈ Z

n×n
q . For a vector

A = [a1|a2| · · · |am] ∈ R1×m
q , rot(A) = [rot(a1)|rot(a2)| · · · |rot(am)] ∈ Z

n×mn
q .

Moreover, for y = a ·v over Rq, we have τ(y) = rot(a) · τ(v) mod q. For y = A ·v
over Rq, τ(y) = rot(A) · τ(v) mod q.

For a = a0+a1 ·X+· · ·+an−1 ·XN−1 ∈ R, we define its infinity norm ‖a‖∞ =
maxi(|ai|) and for b = (b1, b2, · · · , bm)T ∈ Rm, define ‖b‖∞ = maxj(‖bj‖∞).
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Definition 2 (RSISn,m,q,β Problem [22,26]). Given a uniformly random
matrix A = [a1|a2| · · · |am] ∈ R1×m

q , find a non-zero vector x =
(x1, x2, · · · , xm)T ∈ Rm such that A · x = 0 and ‖x‖∞ ≤ β.

As shown in [22], for m > log q
log(2β) , γ = 16βmn log2 n, and q ≥ γ

√
n

4 log n , the
RSISn,m,q,β problem is at least as hard as SVP∞

γ in any ideal in the ring R.

Definition 3 (RLWEn,m,q,χ Problem [23]). Let n,m ≥ 1, q ≥ 2, and let χ be a
probability distribution on R. For s ∈ Rq,let As,χ be the distribution obtained by

sampling a
$←− Rq and e ← χ, and outputting (a, b = a · s + e) ∈ Rq × Rq. Given

m independent samples (ai, bi) ∈ Rq × Rq where every sample is chosen from
As,χ or the uniform distribution, distinguish which is the case with non-negligible
advantage.

Let q = poly(n) be a prime power, B = ˜O(n5/4) be an integer and χ be a
B-bounded distribution on R. Then, for γ = n2(q/B)(nm/ log(nm))1/4, the
RLWEn,m,q,χ problem is at least as hard as SVP∞

γ in any ideal in the ring R [23].

2.2 Some Techniques

Decompositions. [18] These techniques are used to decompose B-bounded ring
elements to ring vectors whose coefficients in {−1, 0, 1}.

For B ∈ N, define δB := �log2 B� + 1 and compute Bj = �B+2j−1

2j � for
j ∈ [δB ]. Decompose v ∈ [B] as the following procedure:

1. v′:=v;
2. For j = 1 to δB do: (a) If v′ ≥ Bj then v(j) := 1, else v(j) := 0; (b) v′ :=

v′ − Bj · v(j);
3. Output idecB(v) = (v(1), v(2), · · · , v(δB))T .

For B ∈ [1, q−1
2 ], define the ring decomposition function rdecB as follows that

maps a ring element a ∈ Rq where ‖a‖∞ ≤ B to a vector a ∈ RδB such that
‖a‖∞ ≤ 1:

1. For τ(a) = (a0, a1, · · · , an−1)T , compute wi = σ(ai) · idecB(|ai|) =
(wi,1, wi,2, · · · , wi,δB

)T ∈ {−1, 0, 1}δB where σ(ai) = −1 if ai < 0; σ(ai) = 0
if ai = 0; σ(ai) = 1 if ai > 0;

2. Let w = (w0‖w1‖ · · · ‖wn−1) ∈ {−1, 0, 1}nδB and compute a ∈ RδB s.t.
τ(a) = w;

3. Output rdecB(a) = a.

For v = (v1, v2, · · · , vm)T ∈ Rm, ‖v‖∞ ≤ B, let rdecB(v) = (rdecB(v1)
‖rdecB(v2)‖ · · · ‖rdecB(vm)).

Define matrices HB ∈ Z
n×nδB and Hm,B ∈ Z

nm×nmδB as

HB =

⎡

⎢

⎣

B1 B2 · · · BδB

. . .
B1 B2 · · · BδB

⎤

⎥

⎦
and Hm,B =

⎡

⎢

⎣

HB

. . .
HB

⎤

⎥

⎦
.
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Thus τ(a) = HB · τ(rdecB(a)) mod q and τ(v) = Hm,B · τ(rdecB(v)). For sim-
plicity, when B = q−1

2 , we abbreviate rdecB and HB to rdec and H.

Permutations. [20] Here are some permutation techniques applied for tuples,
and we would use them in Stern-like protocol.

For z ∈ {−1, 0, 1}, denote z by a tuple enc3(z) = ([z + 1]3, [z]3, [z − 1]3)T ∈
{−1, 0, 1}3, and any vector v = (v(−1), v(0), v(1))T ∈ Z

3 can be permuted
as πe(v) = (v([−e−1]3), v([−e]3), v([−e+1]3))T with e ∈ {1, 0, 1}. We have v =
enc3(z) ⇔ πe(v) = enc3([z + e]3).

Further, denote z = (z1, z2, · · · , zu)T as enc(z) = (enc3(z1)‖enc3(z2)‖ · · ·
‖enc3(zu)) ∈ {−1, 0, 1}3u, and permute v = (v1‖v2‖ · · · ‖vu) ∈ Z

3u into Πe(v) =
(πe1(v1)‖v2)‖ · · · ‖πeu

(vu)), with e = (e1, e2, · · · , eu)T ∈ {−1, 0, 1}u. We have
the following equation for z, e ∈ {−1, 0, 1}u:

v = enc(z) ⇔ Πe(v) = enc([z + e]3) (1)

For any (t, z) ∈ {0, 1} × {−1, 0, 1}, denote it as ext(t, z) = (t · [z +
1]3, t · [z + 1]3, t · [z]3, t · [z]3, t · [z − 1]3, t · [z − 1]3)T , and the vector v =
(v(0,−1), v(1,−1), v(0,0), v(1,0), v(0,1), v(1,1)) ∈ Z

6 can be permuted as follows with
b ∈ {0, 1}, e ∈ {−1, 0, 1}:

ψb,e(v) = (v(b,[−e−1]3), v(b,[−e−1]3), v(b,[−e]3), v(b,[−e]3), v(b,[−e+1]3), v(b,[−e+1]3))T .

v = ext(t, z) ⇔ ψb,e(v) = ext(t ⊕ b, [z + e]3) with t, b ∈ {0, 1}, z, e ∈ {−1, 0, 1}.
For (t, z) = (t0, t1, · · · , tcd−1, z1, z2, · · · , zu)T ∈ {0, 1}cd × {−1, 0, 1}u,

define mix(t, z) = (enc(z)‖ext(t0, z1)‖ · · · ‖ext(t0, zu)‖ · · · ‖ext(tcd−1, z1)‖ · · · ‖ext(tcd−1, zu)),

and the permutation for v = (v−1‖v0,1‖ · · · ‖v0,u‖ · · · ‖vcd−1,1‖ · · · ‖vcd−1,u) ∈
Z
3u+6ucd is Φb,e(v) = (Πe(v−1)‖ ψb0,e1 (v0,1)‖ · · · ‖ψb0,eu (v0,u)‖ · · · ‖ψbcd−1,e1 (vcd−1,1)‖

· · · ‖ψbcd−1,eu (vcd−1,u)) with b = (b0, b1, · · · , bcd−1)T ∈ {0, 1}cd , e = (e1, e2, · · · , eu) ∈
{−1, 0, 1}u. Then the following equivalence relation holds:

v = mix(t, z) ⇔ Φb,e(v) = mix(t ⊕ b, [z + e]3). (2)

2.3 An Abstraction of Stern’s Protocol [16]

Let K,L, q be positive integers, where L ≥ K and q ≥ 2. Let VALID be a subset
of {−1, 0, 1}L and suppose that S is a finite set such that one can associate every
φ ∈ S with a permutation Γφ of L elements, satisfying the following conditions:

{

w ∈ VALID ⇔ Γφ(w) ∈ VALID

If w ∈ VALID and φ is uniform in S, then Γφ(w) is uniform in VALID
(3)

Define the abstract relation as

Rabstract = {(M,u),w ∈ Z
K×L
q × Z

K
q × VALID : M · w = u mod q}.

Here is a Stern-like protocol 〈P,V〉 for the relation where the string commitment
scheme COM is statistically hiding and computationally binding:



A Multi-Group Signature Scheme from Lattices 365

1. Commitment: P samples a mask vector rw
$←− Z

L
q , a permutation φ

$←− S
and randomness ρ1, ρ2, ρ3 for COM. The she sends CMT = (C1, C2, C3) to
V where C1 = COM(φ,M · rw mod q; ρ1), C2 = COM(Γφ(rw); ρ2), C3 =
COM(Γφ(w + rw mod q); ρ3).

2. Challenge: V sends a challenge Ch ← {1, 2, 3} to P.
3. Response: Depending on Ch, P sends RSP computed as follows:

– Ch = 1: Let tw = Γφ(w), tr = Γφ(rw), and RSP = (tw, tr, ρ2, ρ3).
– Ch = 2: Let φ2 = φ,w2 = w + rw mod q and RSP = (φ2,w2, ρ1, ρ3).
– Ch = 3: Let φ3 = φ,w3 = rw and RSP = (φ3,w3, ρ1, ρ2).

and the Verification is proceeded by V as follows when she receives RSP:

- Ch = 1: Check tw ∈ VALID, C2 = COM(tr; ρ2), C3 = COM(tw +tr mod q; ρ3)
- Ch = 2: Check C1 = COM(φ2,M·w2−u mod q; ρ1), C3 = COM(Γφ2(w2); ρ3).
- Ch = 3: Check C1 = COM(φ3,M · w3; ρ1), C3 = COM(Γφ3(w3); ρ2).

Theorem 1 ([16]). Assume that COM is a statistically hiding and computation-
ally binding string commitment scheme. Then, the above protocol is a statistical
ZKAoK with perfect completeness, soundness error 2/3, and communication cost
O(L log q). In particular:

1. Input (M,u), ∃ a polynomial-time simulator who can output an accepted tran-
script that is statistically close to that produced by the real prover.

2. There exists a polynomial-time knowledge extractor that, on Input a commit-
ment CMT and 3 valid responses (RSP1,RSP2,RSP3) to all 3 possible values
of the challenge Ch, ∃ a polynomial-time knowledge extractor who can output
a w′ ∈ VALID such that M · w′ = u mod q.

2.4 Ducas-Micciancio Signature Scheme [10]

Setup(1λ): On the security parameter λ, the trusted party chooses the pub-
lic parameters {n, q, k,R, Rq, �,m,m, d, c0, c1, · · · , cd, B, β} and initialize the
state S ∈ Z to 0, where n = O(λ) being a power of 2, modulus q = ˜O(λ)
where q = 3k for some k ∈ Z

+. Let R = Z[X]/(Xn + 1), Rq = R/qR,
� = �log q−1

2 � + 1, m ≤ 2�log q� + 2 and m = m + k. Let real constant
c > 1 and α0 ≥ 1/(c − 1), integer d ≥ logc(ω(log(n))) and strictly increas-
ing integer sequence c0, c1, · · · , cd with c0 = 0, ci = �α0c

i� for i ∈ [d]. Set
integer bounds β = ˜O(n), B = ˜O(n5/4). The verification key pk consists
of

{

A,F0 ∈ R1×m
q , {A[j]}d

j=0 ∈ R1×k
q ,F,F1 ∈ R1×�

q , u ∈ Rq

}

. The signing key is
the trapdoor matrix R ∈ Rm×k

q .
Sign(pk,R, p): On the message p ∈ Rq, the signer with R proceeds as follows.

1. Set t = (t0, t1, · · · , tcd−1) ∈ {0, 1}cd , where S = Σcd−1
j=0 2j · tj . Update S to

S + 1.
2. Sample r ∈ Rm such that ‖r‖∞ ≤ β.
3. Use R, produce a ring vector v = (s‖z) ∈ Rm+k such that
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A·s+A[0]·z+Σd
i=1A[i]·t[i]·z = F·rdec(F0·r+F1·rdec(p))+u, where ‖v‖∞ ≤ β

(4)
4. Output (t, r,v) as the signature on p.

Verify(pk, p, (t, r,v)): On the message-signature pair (p, (t, r,v)), anyone with pk
can run this algorithm and output 1 if the Eq. (4) holds. Otherwise, output 0.

3 The ZKAoK Systems

In this section, we introduce our ZKAoK for linkable syndromes which would be
the keystone of our MGS scheme. Combining it with the zero-knowledge protocol
in [20], we obtain a ZKAoK with signing and encryption layers which serves as
underlying ZKAoK for multi-group signatures.

3.1 A ZKAoK System for Linkable Syndromes

In this section, we design a ZKAoK system which allows P to prove in ZK that
she owns multiple syndromes with respect to the same secret short value (see
Definition 4 for formal description). Our ZKAoK construction is embedded in the
proof of Theorem 2.

Definition 4. Rls = {(B1,B2 ∈ R1×m
q ),x ∈ Rm, p1, p2 ∈ Rq : Bk · x − pk =

0, ‖x‖∞ ≤ 1}
Theorem 2. If COM is a statistically hiding and computationally binding string
commitment scheme, there exists an interactive protocol which is a statistical
ZKAoK for the relation Rls with perfect completeness, soundness error 2/3, and
communication cost O(L0 log q).

Proof. Using Decomposition technique in Sect. 2.2, we rewrite conditions in
Rls as

[rot(Bk)] · τ(x) − [H] · τ(rdec(pk)) = 0n mod q (5)

where τ(x) ∈ {−1, 0, 1}nm, τ(rdec(pk)) ∈ {−1, 0, 1}n�, and they can be inte-
grated into one equation:

(

rot(B1) −H 0
rot(B2) 0 −H

)

·
⎛

⎝

τ(x)
τ(rdec(p1))
τ(rdec(p2))

⎞

⎠ =
(

0n

0n

)

mod q (6)

which satisfies the form M0 · w0 = u0 mod q, where M0 contents all
public matrices of (5) in square brackets [·], u0 = (0n‖0n) and w0 =
(τ(x)‖τ(rdec(p1))‖τ(rdec(p2))) ∈ {−1, 0, 1}nm+2n�.

Using Permutation technique in Sect. 2.2, we extend the vector w0 into w′
0 =

enc(w0) ∈ {−1, 0, 1}L0 where L0 = 3nm + 6n�, and add some zero-columns to
M0 in proper positions to get matrix M′

0 ∈ Z
2n×L0
q such that M′

0 ·w′
0 = M0 ·w0.
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Now we define a VALID set of all vectors v′
0 ∈ {−1, 0, 1}L0 where ∃ v0 ∈

{−1, 0, 1}(m+2�)n, s.t. v′
0 = enc(v0) and there exists an element f0 ∈ S0 =

{−1, 0, 1}(m+2�)n, such that for every v′
0 ∈ {−1, 0, 1}L0 , the permutation f0

transforms v′
0 into Πf0(v

′
0). Due to the Eq. (1), w′

0 belongs to the VALID set, and
it is clear that the VALID set and the permutation set S0 satisfy the conditions
(3). Therefore, we reduce the statement of linkable syndromes to an instance
of the abstract Stern’s protocol in Sect. 2.3.

Let COM be the KTX commitment scheme from [13], which is statistically
hiding and computationally binding if (R)SIS problem is hard. Then P and V
interact with each other following the protocol in Sect. 2.3 with public input
(M′

0,u
′
0) from (B1,B2) and P’s secret input w′

0 ∈ VALID from (x, p1, p2). From
Theorem 1, this protocol is a statistical ZKAoK for the relation Rls with perfect
completeness, soundness error 2/3, and communication cost O(L0 log q).

3.2 The Underlying ZKAoK System for MGS

In this section, we add signing and encryption layers. With authentication on
her linkable syndromes by respective group issuers, the user gains memberships
in these groups and becomes a certified group member. Those syndromes are
regarded as the user’s identities in corresponding groups. Specifically, the Ducas-
Micciancio signature scheme [10] and the extended LPR encryption scheme [23]
are considered, and accordingly, we define the following relation:

Definition 5. Rmgs =
{

(
{

Bk,Ak,Fk
0, {Ak

[j]}d
j=0,F

k,Fk
1, u

k,ak,bk
1,b

k
2, c

k
1,

ck2
}

k=1,2
),x, {pk, tk, rk,vk, {gki , e

k
i,1, e

k
i,2}i=1,2}k=1,2

}

where
⎧
⎪⎪⎨

⎪⎪⎩

Bk ∈ R1×m
q ,Ak,Fk

0 ∈ R1×m
q , {Ak

[j]}d
j=0 ∈ R1×k

q ,Fk,Fk
1 ∈ R1×�

q , uk ∈ Rq

ak,bk
1,bk

2 ∈ R�
q , ck1 = (ck1, ck1) ∈ R�

q × R�
q , ck2 = (ck2, ck2) ∈ R�

q × R�
q

x ∈ Rm, pk ∈ Rq , tk ∈ {0, 1}cd , rk ∈ Rm,vk ∈ Rm+k, gk1, gk2 ∈ R, ek1,1, ek1,2, ek2,1, ek2,2 ∈ R�

satisfy the following equations

Bk · x = pk and ‖x‖∞ ≤ 1 (7)

Ak
t · vk = Fk · rdec(Fk

0 · rk + Fk
1 · rdec(pk)) + uk, where‖rk‖∞ ≤ β, ‖vk‖∞ ≤ β

(8)

cki = (cki,1, c
k
i,2) = (ak · gki + eki,1,b

k
i · gki + eki,2 + �q/4� · rdec(pk)) (9)

Theorem 3. If COM is a statistically hiding and computationally binding string
commitment scheme, there exists an interactive protocol which is a statistical
ZKAoK for the relation Rmgs with perfect completeness, soundness error 2/3,
and communication cost O(L log q).

Proof. Using techniques in Sect. 2.2, Eqs. (8) and (9) can be rewritten as

[rot(Ak
[0]) · Hk,β ] · zk∗ +

∑d
i=1

∑ci−1
j=ci−1

[rot(Ak
[i] · Xj) · Hk,β ] · tkj · zk∗ + [rot(Ak) · Hm,β ] · sk∗ +

[rot(Fk
0) · Hm,β ] · rk∗ + [rot(Fk

1)] · τ(rdec(pk)) − [rot(Fk) + H] · τ(yk) = τ(uk) mod q (10)
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⎡

⎢

⎣

rot(ak
1) · HB

...
rot(ak

�) · HB

⎤

⎥

⎦
· τ(rdecB(gki )) + [H�,B ] · τ(rdecB(eki,1)) = τ(cki,1) mod q (11)

⎡

⎢
⎢
⎣

rot(bki,1) · HB

.

.

.
rot(bki,�) · HB

⎤

⎥
⎥
⎦ · τ(rdecB(gki )) + [H�,B ] · τ(rdecB(eki,2)) + �q/4� · τ(rdec(pk)) = τ(cki,2) mod q

(12)

where zk∗ = τ(rdecβ(zk)) ∈ {−1, 0, 1}nkδβ , sk∗ = τ(rdecβ(sk)) ∈ {−1, 0, 1}nmkδβ ,
rk∗ = τ(rdecβ(rk)) ∈ {−1, 0, 1}nmkδβ , τ(rdec(pk)) ∈ {−1, 0, 1}n�.

Then we integrate (5) and (10–12) into one equation of the form M · w =
u mod q, where M contents all public matrices in square brackets [·] of (5) (10–
12) and w = (w1‖w2‖w3)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

w1 =
(
z1∗‖t10 · z1∗‖ · · · ‖t1cd−1 · z1∗) ∈ {−1, 0, 1}(cd+1)nkδβ ;

w2 =
(
z2∗‖t20 · z2∗‖ · · · ‖t2cd−1 · z2∗) ∈ {−1, 0, 1}(cd+1)nkδβ ;

w3 =(τ(x)‖s1∗‖r1∗‖τ(y1)‖τ(rdec(p1))‖g1∗
1 ‖g1∗

2 ‖e1∗
1,1‖e1∗

1,2‖e1∗
2,1‖e1∗

2,2‖s2∗‖r2∗‖τ(y2)‖
τ(rdec(p2))‖g2∗

1 ‖g2∗
2 ‖e2∗

1,1‖e2∗
1,2‖e2∗

2,1‖e2∗
2,2) ∈ {−1, 0, 1}nm+(mkδβ+�+δB+2�δB)4n.

Next we extend the vector w into w′ = (w′
1‖w′

2‖w′
3) = (mix(t1, z1∗)

‖mix(t2, z2∗)‖enc(w3)) ∈ {−1, 0, 1}L, where L = L1 + L2 + L3, L1 = L2 =
(cd+1)3nkδβ , L3 = 3nm+(mkδβ+�+δB+2�δB)12n, and add some zero-columns
to M in proper positions to get matrix M′ ∈ Z

2n×L
q such that M′ · w′ = M · w.

Now we define a VALID set of all vectors v′ = (v′
1‖v′

2‖v′
3) ∈ {−1, 0, 1}L1+L2+L3

where

1. ∃ t1 ∈ {0, 1}cd , z1 ∈ {−1, 0, 1}nkδβ , s.t. v′
1 = mix(t1, z1);

2. ∃ t2 ∈ {0, 1}cd , z2 ∈ {−1, 0, 1}nkδβ , s.t. v′
2 = mix(t2, z2);

3. ∃ v3 ∈ {−1, 0, 1}nm+(mkδβ+�+δB+2�δB)4n, s.t. v′
3 = enc(v3)

and there exists an element φ = (b1, e1,b2, e2, f) ∈ S = {0, 1}cd ×
{−1, 0, 1}nkδβ ×{0, 1}cd ×{−1, 0, 1}nkδβ ×{−1, 0, 1}nm+(mkδβ+�+δB+2�δB)4n, such
that for every v′ = (v′

1‖v′
2‖v′

3) ∈ {−1, 0, 1}L1+L2+L3 , the permutation Γφ trans-
forms v′ into

Γφ(v′) = (Ψb1,e1(v
′
1)‖Ψb2,e2(v

′
2)‖Πf(v′

3)) (13)

Due to the Eqs. (1), (2), Γφ(v′) belongs to the VALID set, and it is clear that
the VALID set and the permutation set S0 satisfy the conditions in Sect. 2.3.
Therefore, we reduce the statement of multiple groups to an instance of the
abstract Stern’s protocol.

Based on the above preparation, we obtain the public input (M,u)
of the interactive protocol from (

{

Bk,Ak,Fk
0, {Ak

[j]}d
j=0,F

k,Fk
1, u

k,ak,bk
1,

bk
2, c

k
1, c

k
2

}

k=1,2
) and P’s secret input w ∈ VALID from (x,

{

pk, tk, rk,vk,
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{gki , e
k
i,1, e

k
i,2}i=1,2

}

k=1,2
). Let COM be the commitment scheme from [13], which

is statistically hiding and computationally binding if the RSIS problem is hard.
Then P and V interact with each other following the protocol in Sect. 2.3. From
Theorem 1, this protocol is a statistical ZKAoK for the relation Rmgs with perfect
completeness, soundness error 2/3, and communication cost O(L log q).

4 A Model for Multi-Group Signatures

In this section, we formalize the security model of multi-group signatures in the
framework of Bellare et al. [4]. Without loss of generality, in this paper, we only
deal with the double-group case, where there are two groups G1 and G2. Note
that the multi-group case can be extended from this case, as argued in [3]. For
T ⊆ {1, 2}, set GT := ∩k∈TG

k.
For an MGS model, it should cover the linkability across different groups,

which requires that signatures produced by the same signer of different groups
on the same message are linkable and any pair of signatures generated by dif-
ferent signers cannot be linked; moreover it should satisfy the requirements of
regular group signatures naturally when it degrades to the single group case. It
is shown in Sect. 4.2 that these requirements are captured by the correctness and
traceability.

4.1 Syntax

Formally, a multi-group signature scheme MGS is a tuple of seven algorithms
MGS = (MGKg, MUKg, 〈Join, Issue〉,MGSig, MGVf,Open, Judge):

• MGKg: On input the security parameter λ ∈ N, This algorithm generates two
triples (gpk1, ik1, ok1), (gpk2, ik2, ok2) independently, where gpkk, ikk, okk is
the group public key, the issuer’s secret key and the opener’s secret key in
group Gk respectively.

• MUKg: This algorithm takes as inputs the security parameter λ, as well as
an argument T ⊆ {1, 2}(T �= ∅) indicating which group(s) the user wants to
join. It outputs one single secret key usk[i] for user i, along with her public
key(s) upk[i] := {upkk[i]}k∈T.

• 〈Join, Issue〉: This protocol involves two interactive algorithms Join and Issue.
User i runs the Join algorithm with private input upkk[i], while the issuer in
group Gk runs the Issue algorithm with private input ikk, for k ∈ T. Once the
protocol is executed successfully, user i becomes a member in Gk, and the final
state of Join is the group signing key gskk[i] w.r.t. Gk; the final state of Issue
is recorded as an entry regk[i] in the registration table regk administrated by
the issuer in Gk.

• MGSig: After joining the group(s) Gk for k ∈ T, the member i runs the
signing algorithm with inputs the group public key(s) {gpkk}k∈T, her secret
signing key(s) {gskk[i]}k∈T, and a message M ∈ {0, 1}∗. In turn, this algorithm
outputs a signature Σ on message M and the tag T.
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• MGVf: On the message-signature pair (M,Σ) along with tag T ⊆ {1, 2}, any-
one has access to {gpkk}k∈T can run this deterministic verification algorithm,
and gets returned by one bit b. If b = 1, it indicates that Σ is a valid signature
on M for group(s) {Gk}k∈T; otherwise it outputs 0.

• Open: For any valid message-signature pair (M,Σ) w.r.t. the tag T, the opener
in group Gk for k ∈ T can run this deterministic algorithm with input the
group public key gpkk, her secret opening key okk, registration table regk,
and gets an identity i with proof τ k.

• Judge: After receiving a message-signature pair (M,Σ) along with T ⊆ {1, 2},
k ∈ T, an opening result (i, τ k), anyone has access to gpkk, upkk[i] and regk

can run this deterministic verification algorithm, and gets returned by one
bit b. If b = 1, it indicates that the opening result is correct; otherwise it
outputs 0.

4.2 Correctness and Security Definitions

Oracles. Following the approach in [4], we give several oracles which are suit-
able for the multiple group setting. Especially, the MSig can produce an MGS on
behalf of some group(s) and the Chb oracle can be used only if these two identi-
ties come from the same group(s). Besides, we recall a set MSet to record some
message-signature pairs, a set HU for honest users and a set CU for corrupted
users. For simplicity, we set AddU = {AddU1,AddU2}, CrptU = {CrptU1,CrptU2},
SndToI = {SndToI1,SndToI2}, SndToU = {SndToU1,SndToU2}.

AddUk(i): add honest user i into Gk and return upk.
CrptUk(i, upk): corrupt member i ∈ Gk and set upk as its public keys upkk[i].
SndToIk(i,Min): for corrupted member i ∈ Gk, the adversary utilizes SndToIk

oracle to engage in a group-joining protocol with the honest issuer providing
the oracle with i ∈ Gk and Min. If it completes successfully, the oracle returns
Mout to the adversary and stores regk[i] to regk as the final state of Issuek.
SndToUk(i,Min): assume that the adversary has corrupted the issuer in Gk

and uses SndToUk oracle to engage in a group-joining protocol with user i
providing the oracle with i and Min. If it completes successfully, i becomes
a member in HU ∩Gk and this oracle returns Mout to the adversary and sets
gskk[i] the final state of the Joink algorithm.
USK(i): obtain all secret keys of member i.
RReg(i): read the information of i in reg1 and reg2 via the RReg oracle.
WReg(i, ρ): write or modify the contents of i as ρ in reg1 and reg2.
MSig(i,M,T): obtain an MGS generated by the member i on a message M
corresponding to {Gk}k∈T.
Chb(i0, i1,M,T): it is specialized in the anonymity experiment where the
adversary chooses a non-empty set T ⊆ {1, 2}, a pair of identities i0, i1 ∈
HU ∩ GT with a message M . This oracle randomly chooses one bit b and
returns an MGS on M generated by ib and records message-signature pairs
in MSet.
Open(M,Σ): identify the signer of a message-signature pair (M,Σ) /∈ MSet.
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Correctness. We define the correctness of an MGS scheme that the signatures
generated by honest members satisfy the following conditions (Fig. 1):

1. the signatures are valid;
2. the signer would be traced correctly in every group;
3. all proofs generated by openers can be verified publicly.

Definition 6 (Correctness). A multi-group signature scheme MGS is correct
if for any adversary A, the following advantage function is negligible in λ

Advcorr
MGS,A(λ) = Pr[ExptcorrMGS,A(λ) = 1]

Fig. 1. Security experiments

Traceability. The traceability of MGS means that it should be infeasible for
the adversary to output a valid message MGS pair (M ,Σ) with tag T, which
satisfies at least one of the following conditions, unless some issuer or opener is
fully corrupted.
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1. Σ traces to a member i not in GT, which means there is no matching infor-
mation of i in regk for at least one k ∈ T;

2. Σ traces to an honest member i ∈ GT, whose regk[i] ∈ regk for all k ∈ T, but
at least one opener can not generate valid proof on the opening result.

Definition 7 (Traceability). A multi-group signature scheme MGS provides
traceability if for all PPT adversary A, the following advantage function is neg-
ligible in λ:

Advtrace
MGS,A(λ) = Pr[ExpttraceMGS,A(λ) = 1]

Non-frameability. This property requires that it is infeasible for the adver-
sary to generate a tuple of message M , signature Σ, tag T, an identity i with
proofs {τ k}k∈T, which satisfies the following conditions, even if all issuers and
openers are fully corrupted.

1. Σ is a valid MGS on M with T;
2. Σ traces to i which is an honest member in GT;
3. τ k is an acceptable proof on i by Judge algorithm for all k ∈ T;
4. The adversary has never obtained the valid MGS on (i,M,T) through signing

oracle.

Definition 8 (Non-frameability). A multi-group signature scheme MGS
provides Non-frameability if for all PPT adversary A, the following advantage
function is negligible in λ:

Advnf
MGS,A(λ) = Pr[ExptnfMGS,A(λ) = 1]

Anonymity. This property requires that given two members in the same group
(intersection) and a valid MGS generated by one of them, nobody can guess the
correct signer with probability even negligibly bigger than 1/2 except related
openers.

Definition 9 (Anonymity). A multi-group signature scheme MGS provides
anonymity if for all PPT adversary A, the following advantage function is neg-
ligible in λ:

Advanon
MGS,A(λ) =

∣

∣

∣Pr[Exptanon−0
MGS,A(λ) = 1] − Pr[Exptanon−1

MGS,A(λ) = 1]
∣

∣

∣

5 Lattice-Based Multi-Group Signature Scheme

In this section, we give the concrete multi-group signature scheme in the lattice
setting based on our underlying ZKAoK system in Sect. 3.2.

• MGKg(1λ): On the security parameter λ, the trusted party chooses the public
parameters pp = {n, q, k,R,Rq, �,m,m, χ, d, c0, c1, · · · , cd, B, β, κ,H,COM}
where n, q, k,R,Rq, �,m, m, χ, d, c0, c1, · · · , cd, B, β are parameters in Ducas-
Micciancio signature scheme as described in Sect. 2.4, and H : {0, 1}∗ →
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{1, 2, 3}κ is a collision-resistant hash function, κ = ω(log λ), COM is a statis-
tically hiding and computationally binding commitment scheme from [13]. It
produces following keys independently

gpkk = {pp,Bk,Ak, {Ak
[j]}d

j=0,F
k,Fk

0,F
k
1, u

k,ak,bk
1,b

k
2}, ikk = Rk, okk = (sk1, e

k
1),

where Bk ∈ R1×m
q is a uniformly random matrix. {Ak ∈ R1×m

q ,

{Ak
[j]}d

j=0 ∈ R1×k
q ,Fk

0 ∈ R1×m
q ,Fk,Fk

1 ∈ R1×�
q , uk ∈ Rq} is verification key

and Rk ∈ Rm×k
q is signing key of the Ducas-Micciancio signature scheme

[10]. (ak,bk
1,b

k
2) ∈ (R�

q)
3 is encryption key and (sk1, e

k
1) ∈ Rq × R�

q is decryp-
tion key of the extended LPR encryption scheme [23].
Let mgpk = {gpk1, gpk2} and makes it public, gives ik1, ik2 and ok1, ok2 to
issuers and openers in different groups respectively.

• MUKg(mgpk): For any potential user i who intends to join multiple groups,
firstly she generates her x ∈ Rm whose coefficients are uniformly random in
the set {−1, 0, 1} and computes syndromes p1 = B1 ·x, p2 = B2 ·x ∈ Rq. Let
usk[i] = x, upk1[i] = p1, upk2[i] = p2.

• 〈Join, Issue〉: This protocol contents 〈Join1, Issue1〉 and 〈Join2, Issue2〉 which
are independent of each other. For each k ∈ {1, 2}, the user i sends a joining
request with upkk[i] = pk to the issuer in group Gk. If that pk has been
used, the issuer aborts, otherwise, he generates a Ducas-Micciancio signature
(tk, rk,vk) on rdec(pk) and gives it to the user. The user sets her multi-group
signing key as mgsk[i] = (t1, r1,v1, t2, r2,v2,x). Accordingly, the issuer stores
regk[i] = pk and updates Sk to Sk + 1.

• MGSign(mgpk,mgsk[i],M): With the multi-group signing key mgsk[i], the
member generates an MGS Σ = (Πmgs, c11, c

1
2, c

2
1, c

2
2) on message M ∈ {0, 1}∗

where:
(a) c11, c

1
2 are ciphertexts of rdec(p1), c21, c

2
2 are ciphertexts of rdec(p2)

(b) Πmgs is a simulation-sound NIZKAoK proving the possession of a witness
(x, {pk, tk, rk,vk, {gki , e

k
i,1, e

k
i,2}i=1,2}k=1,2) satisfying Eqs. (7), (8), (9) for

k = 1, 2.
This is done by running the protocol in Sect. 3.2 with public input
ξ = ({Bk,Ak, {Ak

[j]}d
j=0, Fk,Fk

0,F
k
1, u

k,ak,bk
1,b

k
2, c

k
1, c

k
2}k=1,2) and secret

witness defined as above. The protocol is repeated κ = ω(log λ) times
to realize negligible soundness error and made non-interactive Πmgs =
({CMTi}κ

i=1,CH, {RSPi}κ
i=1) by the Fiat-Shamir heuristic [11] where CH =

(Ch1,Ch2, · · · , Chκ) = H(M, {CMTi}κ
i=1, ξ) ∈ {1, 2, 3}κ.

• MGVf(mgpk,M,Σ): On the message-signature pair (M,Σ), anybody has
access to mgpk can verify its validity as follows:
(a) Parse Σ as ({CMTi}κ

i=1, (Ch1,Ch2, · · · ,Chκ), {RSPi}κ
i=1, c

1
1, c

1
2, c

2
1, c

2
2).

Return 0 if (Ch1,Ch2, · · · , Chκ) �= H(M, {CMTi}κ
i=1, ξ)

(b) For each i ∈ [κ], run the verification phase of the protocol in Sect. 3.2.
Return 0 if any of them is invalid.

(c) Return 1.
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• Open(gpkk, okk,M,Σ, regk): On a valid (M,Σ = (Πmgs, c11, c
1
2, c

2
1, c

2
2)), this

algorithm proceeds as follows:
(a) Decrypt ck1 = (ck1,1, c

k
1,2) with okk = (sk1, e

k
1) as follows.

i. Compute pk′′
= (ck1,2 − ck1,1 · sk1)/�q/4�

ii. Round each efficient of pk′′
to its closest integer of {−1, 0, 1} and

obtain pk′ ∈ R�
q.

iii. Return pk
′ ∈ Rq such that τ(pk

′
) = H · τ(pk′

)
(b) Return (⊥,⊥) if pk

′
is not included in regk.

(c) Otherwise, generate a NIZKAoK Πk
open to demonstrate the correct-

ness of the decryption result. The associated relation is Ropen =
{(ck1,1, c

k
1,2,a

k,bk
1 ∈ R�

q, p
k′ ∈ Rq); sk1 ∈ Rq, ek1,y ∈ R�

q} satisfying the
following conditions:
i. ‖sk1‖∞ ≤ B; ‖ek1‖∞ ≤ B; ‖yk‖∞ ≤ �q/10�;
ii. ak · sk1 + ek1 = bk

1;
iii. ck1,2 − ck1,1 · sk1 = yk + rdec(pk

′
)

Follow the similar method in Sect. 3, a statistical ZKAoK can be obtained
and it is repeated κ = ω(log λ) times to achieve negligible soundness
error and made non-interactive Πk

open = ({CMTi}κ
i=1,CH, {RSPi}κ

i=1)
by the Fiat-Shamir heuristic [11] where CH = (Ch1,Ch2, · · · ,Chκ) =
H(M,Σ, {CMTi}κ

i=1, p
k′

,ak,bk
1) ∈ {1, 2, 3}κ.

(d) Return (pk
′
,Πk

open).
• Judge(gpkk,M,Σ, pk

′
,Πk

open): Based on the (pk
′
,Πk

open) produced by the
opener in Gk, anyone can judge it following the method in MGVf algorithm
with common input (M,Σ, pk

′
,ak, bk

1).

5.1 Analysis of the Scheme

Efficiency. On the security parameter λ and the number of groups t = |T| =
poly(λ). The public key mgpk has bit-size O(t · λ · log2 λ) = ˜O(λ). The signing
key mgsk[i] has bit-size O(t · λ · log2 λ) = ˜O(λ). The size of a signature Σ is
mainly determined by the NIZKAoK Πmgs with bit-size O(L · log q) · ω(log λ),
where O(L · log q) = O(t ·λ · log4 λ) is the communication cost of our underlying
ZKAoK system in Sect. 3.2. Thus, Σ has bit-size ˜O(λ). The Stern-like NIZKAoK

Πk
open has bit-size O(λ · log3 λ) · ω(log λ) = ˜O(λ).

Correctness. The correctness of algorithms MGVf and Judge follows directly
from the perfect completeness of the argument system, and the correctness of
Open depends on the correctness of the extended version of LPR encryption
scheme [23].

Security Analysis. In the following theorem, we prove that our scheme is
secure according to the requirements in Sect. 4.

Theorem 4. Suppose that the Stern-like argument system used in our scheme
are simulation-sound, then in the random oracle, the given MGS scheme pro-
vides traceability, non-frameability, and anonymity under the RSIS and RLWE
assumptions.
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We prove this theorem through the following Lemma 1–3. Due to the limita-
tion of pages, the complete proofs are given in the full version.

Lemma 1. Suppose that the RSIS∞
n,m,q,Õ(n2)

problem is hard. The given MGS
scheme provides traceability in the random oracle model.

Lemma 2. Suppose that the RSIS∞
n,m,q,1 problem is hard. The given MGS

scheme provides non-frameability in the random oracle model.

Lemma 3. Suppose that the RLWEn,�,q,χ problem is hard. The given MGS
scheme provides anonymity in the random oracle model.

6 Conclusions

This paper described the first lattice-based multi-group signature scheme, which
is also the first quantum-resistant construction for multi-group signature. In such
scheme, the user can join in various groups and generates multi-group signatures
on behalf of them, and the verifier is convinced that it was produced by the same
member in different groups. Moreover, we formalized the model for MGS under
which the security of our scheme was proved.

Acknowledgments. The authors would like to thank the anonymous reviewers of
ICICS 2019 for helpful comments. This work is supported by the National Natural
Science Foundation of China (Grant No. 61872359 and Grant No. 61936008).
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Abstract. Attribute-based encryption (ABE) is a standard method for
achieving access control using cryptography, and is related to many other
powerful primitives such as functional encryption. While classical pair-
ing based ABE schemes support only boolean formulas as access pol-
icy, the first ABE scheme for arbitrary polynomial size circuits is given
in [GVW13], and its security is based on LWE assumption. However,
the GVW13 scheme is a key policy ABE (KP-ABE), and whether their
method can be used to construct a ciphertext policy ABE (CP-ABE)
scheme is currently unknown.

In this paper, we present the first direct construction (not from uni-
versal circuits) of CP-ABE scheme for circuits. Similar to the two-to-one
recoding technique used in GVW13, we introduce three-to-one recoding,
and use it to construct our scheme, which can be proved for selective
security assuming that LWE problem is hard, for arbitrary polynomial
size circuits. Compared with universal circuit based constructions, our
scheme is simpler and has lesser decryption cost.

Keywords: Ciphertext policy attribute-based encryption · ABE for
circuits · LWE · Lattice-based cryptography

1 Introduction

Attribute-based Encryption (ABE for short), first brought by Sahai and Waters
[30], is a powerful cryptographic primitive in which decryption is correct only
if the provided attribute set satisfies a certain access policy. By using different
types of access policies, ABE can handle flexible access control matters, without
using complex key distribution techniques. Also, ABE is highly related to other
hot topics in cryptography, such as identity-based encryption (IBE), predicate
encryption (PE) and functional encryption (FE).
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There are mainly two types of ABE schemes, called key policy attribute-
based encryption (KP-ABE) [23] and ciphertext policy attribute-based encryp-
tion (CP-ABE) [7]. The former embeds the access policy in the decryption key,
while the ciphertext is related to a set of attributes; the latter does the opposite,
the access policy is embedded in the ciphertext, and attributes are related to the
decryption key, held by the users. In practical use, CP-ABE is considered more
flexible than KP-ABE for access control model such as role-based access control
(RBAC), since roles can be naturally assigned to users as attributes.

The early ABE schemes are mostly based on pairing in elliptic curves [7,
13,14,16,22–25,27,29,32], which are vulnerable to quantum attacks. As lattice-
based cryptography gains more and more interest in the post-quantum back-
ground, many ABE constructions occur based on lattice, such as [3,10,33,35].
These early schemes support various types of access policy, such as threshold
gates, non-monotonic AND gates, or LSSS matrices, but most of them can be
captured by boolean formulas, which represent the complexity class NC1, and
cannot support the access policy of polynomial size circuits. In 2013, Gorbunov
et al. [21] presented the first ABE scheme for arbitrary polynomial size cir-
cuits of every a-priori bounded depth, by constructing reusable garbled circuits.
Like other lattice-based schemes, their scheme is based on the hardness of LWE
assumption [28], which security can be reduced to worst-case lattice problems.

However, since their scheme is only a KP-ABE scheme, their is still an
open problem that whether similar methods can be used to construct CP-ABE
schemes. In this paper, we solve this problem by presenting the first direct con-
struction of CP-ABE scheme for arbitrary polynomial size circuits, not from
universal circuits (UC). Our scheme cannot be naturally extended from the KP-
ABE scheme in [21], though. Unlike in the case of KP-ABE, where each secret
key is only related to a certain access policy circuit, for CP-ABE, the master
public key and user secret keys must be able to handle any polynomial size cir-
cuits. So what we need is not only constructing a reusable garbled circuit, but a
programmable reusable garbled circuit.

To solve this problem, we extend the two-to-one recoding in [21] into a new
primitive we called three-to-one recoding. Each output for a “garbled” circuit
gate is the recoding of 3, not 2 encodings: two encodings for input values, and
one encoding for the description of the circuit gate itself. We also need to set
the maximal circuit size a-priori, and construct recoding keys for every possible
gate, each key labeled by the index and value of incoming/outgoing wires of the
gate. Although that makes the public key and secret keys in our scheme a bit
overloaded, we will show that the size of keys is still polynomial bounded. Also
by using random oracle, the public key size can be further reduced to linear in
the attribute size.

1.1 Related Works

Lattice-Based IBE/ABE/FE Schemes. It was first proven in [19] that
lattice-based IBE schemes can be generated through lattice trapdoors [5]. By
using trapdoor delegation, further constructions of IBE and hierarchical IBE
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[1,2,6,12] are presented. Similar techniques are then used to construct KP-
ABE/FE schemes based on LWE assumption with various access policies, such
as inner product in [4], threshold function in [3] (which was extended to the ring
settings in [35] for a better efficiency), and LSSS matrices in [10]. For CP-ABE
schemes, Zhang et al. [33] and Wang [31] presented CP-ABE schemes for multi-
valued functions, and the former was also extended to ring settings in [15]. These
schemes cannot handle arbitrary circuits.

ABE for Circuits. There are mainly two methods of constructing ABE for
arbitrary polynomial size circuits: from lattice assumption, or from multilinear
map. Since almost all multilinear map candidates have been attacked by now,
ABE constructed from multilinear maps [17,18] can not be considered as reliable
as lattice-based schemes. Boneh et al. [9] provided two ABE schemes, one based
on LWE assumption, another based on multilinear map, for arithmetic circuits
which can also be used to implement boolean circuits. Their schemes are built
upon a primitive called fully key-homomorphic encryption, which is an exten-
sion of the famous fully homomorphic encryption [20]. In [11], their LWE-based
scheme was extended to support unbounded attribute size and semi-adaptive
security.

All existing LWE-based ABE for circuits are KP-ABE schemes. However, the
authors claimed in [17] that by using universal circuits, one can construct a CP-
ABE scheme from a KP one. This can be applied to all existing KP-ABE schemes
for circuits. However, there are some drawbacks for UC-based constructions:

(1) UC for O(n) circuits has a larger size of O(n log n), which means that
decryption cost is O(n log n).

(2) UC needs circuits as input, which means that public key size is at least
linear in the circuit size.

(3) Construction of UC is difficult.

Compared with UC-based constructions, our scheme has a lower decryption
time of O(n), and our public key size is only linear to the attribute size if we
consider random oracle model. Our scheme is also simpler. However, our secret
key is much larger than UC-based constructions.

It was noticeable that a recent work in [34] has also discussed on direct
construction of CP-ABE for circuits. However, their scheme is under a very
weak security model, which cannot be considered secure in real applications.

1.2 Organization

This paper is organized as follows: in Sect. 2, we introduce some basic notions
which are useful in our discussion. In Sect. 3, we give the definition of three-
to-one recoding scheme, its correctness and security, also a construction from
LWE assumption. In Sect. 4, we construct our CP-ABE scheme for circuits from
three-to-one recoding, and prove its security. Finally in Sect. 5, we draw the
conclusion.
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2 Preliminary

Notations. Let PPT denote probabilistic polynomial-time. For any integer q ≥
2, we let Zq denote the ring of integers modulo q and we represent Zq as integers
in (−q/2, q/2]. We let Z

n×m
q denote the set of n × m matrices with entries

in Zq. We use bold capital letters (e.g. A) to denote matrices, bold lowercase
letters (e.g. x) to denote vectors. The notation AT denotes the transpose of the
matrix A.

If A1 is an n × m1 matrix and A2 is an n × m2 matrix, then [A1‖A2]
denotes the n × (m1 + m2) matrix formed by concatenating A1 and A2. A
similar notation applies to vectors. When doing matrix-vector multiplication we
always view vectors as column vectors. ‖.‖ denotes the Euclidean norm, and
‖.‖∞ denotes the infinity norm. When applied to matrix, it means the maximal
norm among all its column vectors.

We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use
negl(n) to denote a negligible function of n. We say f(n) is polynomial if it is
O(nc) for some c > 0, and we use poly(n) to denote a polynomial function of
n. We say an event occurs with overwhelming probability if its probability is
1 − negl(n). The function log x is the base 2 logarithm of x. The notation �x�
denotes the nearest integer to x, rounding towards 0 for half-integers. [j] denotes
the set {1, 2, ..., j} and [i, j] denotes the set {i, i + 1, ..., j}.

2.1 Ciphertext Policy Attribute-Based Encryption

We define ciphertext policy attribute-based encryption (CP-ABE), following [7].
A CP-ABE scheme for a class of predicate circuits C (namely, circuits with a
single bit output) consists of four algorithms (Setup,Enc,KeyGen,Dec):

– Setup(1λ, 1l) → (pp,mpk,msk): The setup algorithm gets as input the security
parameter λ, the length l of the index, and outputs the public parameter
(pp,mpk), and the master key msk. All the other algorithms get pp as part of
its input.

– Enc(mpk, C,m) → ctC : The encryption algorithm gets as input mpk, a predi-
cate specified by C ∈ C, and a message m ∈ M. It outputs a ciphertext ctC .
Note that C is known if we know ctC .

– KeyGen(msk, ind) → skind: The key generation algorithm gets as input msk
and an index ind ∈ {0, 1}l. It outputs a secret key skind.

– Dec(skind, ctC) → m: The decryption algorithm gets as input skind and ctC ,
and outputs either ⊥ or a message m ∈ M.

For correctness, we require that for all (ind, C) such that C(ind) = 1, all m ∈ M
and ctC ← Enc(mpk, C,m), Dec(skind, ctC) = m.

The selective security of a CP-ABE scheme is defined by the advantage of a
stateful adversary A in an interactive game as follows:

Init. The adversary chooses the challenge circuit C∗ and gives it to the
challenger.
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Setup. The challenger runs the Setup algorithm and gives the adversary
pp,mpk.

Phase 1. The adversary submits an index ind for a KeyGen query. If
C∗(ind) = 0, the challenger answers with a secret key skind for ind. These queries
can be repeated adaptively.

Challenge. The adversary submits two messages m0 and m1 of equal length.
The challenger chooses a random bit b ∈ {0, 1}, and encrypts mb under C∗. The
encrypted ciphertext ctC∗ is returned to the adversary.

Phase 2. The adversary repeats Phase 1 to get more secret keys.
Guess. The adversary outputs a guess b′ for b.
The advantage of an adversary A in the CPA-CP-ABE game is defined by

AdvPE
A (λ) = |Pr[b′ = b]−1/2|. If we omit the Init phase, and let the adversary A

to choose the challenge circuit C∗ at the Challenge phase, we get the definition
for adaptive security (or called full security).

2.2 Learning with Errors (LWE) Assumption

The LWE problem was introduced by Regev [28], who showed that solving it on
the average is as hard as (quantumly) solving the GapSVP and SIVP problems in
the worst case. There are search version and decision version of LWE problem.
In this paper, we use the decision version of LWE problem (or called dLWE).

Definition 1 (dLWE problem ). For an integer q = q(n) ≥ 2 and an error
distribution χ = χ(n) over Zq, the learning with errors problem dLWEn,m,q,χ is
to distinguish between the following pairs of distributions:

{A,As + x} and {A,u}

where A $←− Z
n×m
q , s $←− Z

n
q , x $←− χm, u $←− Z

m
q .

Parameter Selection. We say that the distribution χ is B-bounded, if Pr(|χ| ≤
B) = 1. In this paper, we require that χ is B-bounded for some integer B. For
the hardness of LWE problem, χ is usually chosen to be B-bounded discrete
Gaussian, which definition can be found in the next section.

For parameter selection, we let χ be poly(n)-bounded, m = poly(n) and
q = 2nε

for 0 < ε < 1. We have strong evidence that the problem dLWEn,m,q,χ is
hard. Often, we omit m, and write the problem as dLWEn,q,χ.

2.3 Lattice Trapdoors

Lattice trapdoors [5,19,26] are used to sample short vectors on any coset of
lattice, which its distribution is discrete Gaussian. In this paper, we require the
distribution of the sampled vector to be “truncated”, that is, the length of the
vector is bounded. Sampling truncated vectors is easy: what we need is only to
sample again if the sampled vector is out of bound.
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We give the formal definition of truncated (σ
√

m-bounded) discrete Gaussian
distribution for vector x ∈ Z

m with parameter σ. First, we define a Gaussian
function ρσ : Zm → R

+:

ρσ(x) := exp(−π‖x‖2/σ2).

Now, we define the distribution DZm,σ as:

DZm,σ(x) ∝
{

ρσ(x), if ‖x‖ ≤ σ
√

m;
0, otherwise.

Lemma 1 ([19,26]). There is an efficient randomized algorithm TrapSamp(1n,
1m, q) that, given any integers n ≥ 1, q ≥ 2, and sufficiently large m =
Ω(n log q), outputs a parity check matrix A ∈ Z

n×m
q and a “trapdoor” matrix

T ∈ Z
m×m such that the distribution of A is negl(n)-close to uniform.

Moreover, there is an efficient algorithm SampleD that with overwhelming
probability over all random choices, does the following: For any u ∈ Z

n
q , and

large enough σ = Ω(
√

n log q), the randomized algorithm SampleD(A,T,u, σ)
outputs a vector r ∈ Z

m with norm ‖r‖∞ ≤ ‖r‖ ≤ σ
√

n (with probability 1). Fur-
thermore, the following distributions of the tuple (A,T,U,R) are within negl(n)
statistical distance of each other for any polynomial k ∈ N:

– (A,T) ← TrapSamp(1n, 1m, q); U $←− Z
n×k
q , R ← SampleD(A,T,U, σ).

– (A,T) ← TrapSamp(1n, 1m, q); R $←− Dk
Zm,s, U := AR mod q.

3 Three-to-One Recoding

3.1 Definition

Similar to [21], our three-to-one recoding scheme consists of six polynomial-time
algorithms (Params,Keygen,Encode,ReKeyGen3,SimReKeyGen3,Recode3) and a
symmetric-key encryption scheme (E,D).

The first three algorithms are the same as two-to-one recoding in [21]:

– Params(1λ, dmax) is a probabilistic algorithm that takes as input the security
parameter λ and an upper bound dmax on the number of nested recoding
operations (written in binary), outputs “global” public parameters pp.

– Keygen(pp) is a probabilistic algorithm that outputs a public/secret key pair
(pk, sk).

– Encode(pk, s) is a probabilistic algorithm that takes pk and an input s ∈ S,
and outputs an encoding φ ∈ K.

The following three algorithms are for three-to-one recoding, and can be
viewed as a recoding mechanism together with two ways to generate recoding
keys: given one of the three secret keys, or by programming the output public
key.
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– ReKeyGen3(pk0, pk1, pk2, ski, pktgt), i ∈ {0, 1, 2} is a probabilistic algorithm
that takes a public keys pair (pki, ski) and two other public keys, a “target”
public key pktgt, and outputs a recoding key rktgt0,1,2.

– SimReKeyGen3(pk0, pk1, pk2) is a probabilistic algorithm that takes three pub-
lic keys pk0, pk1, pk2 and outputs a recoding key rktgt0,1,2 together with a “tar-
get” public key pktgt.

– Recode3(rktgt0,1,2, φ0, φ1, φ2) is a deterministic algorithm that takes the recoding
key rktgt0,1,2, three encodings φ0, φ1, φ2, and outputs an encoding φtgt.

Correctness. Correctness of a TOR scheme requires two things. First, for every
pk and s ∈ S, there exists a family of sets Φpk,s,j , j = 0, 1, ...dmax such that:

– Pr[Encode(pk, s) ∈ Φpk,s,0] = 1, where the probability is taken over the coin
tosses of Encode;

– Φpk,s,0 ⊆ Φpk,s,1 ⊆ ... ⊆ Φpk,s,dmax ;
– For all φ, φ′ ∈ Φpk,s,dmax and all m ∈ M, D(φ′,E(φ,m)) = m.

To understand this definition, consider φ ∈ Φpk,s,j to be an LWE sample with
noise level j. As in other LWE-based cryptosystems, the decryption is correct as
long as the noise is bounded by q/4 at the maximal noise level dmax.

Secondly, the correctness of recoding requires that for any quadruple of
key pairs (pk0, sk0), (pk1, sk1), (pk2, sk2), (pktgt, sktgt), and any encodings φ0 ∈
Φpk0,s,j0 , φ1 ∈ Φpk1,s,j1 and φ2 ∈ Φpk2,s,j2 , there is:

Recode3(rktgt0,1,2, φ0, φ1, φ2) ∈ Φpktgt,s,max(j0,j1,j2)+1.

for rktgt0,1,2 ← ReKeyGen3(pk0, pk1, pk2, sk0, pktgt).

Security Properties

Key Indistinguishability: Let (pki, ski) ← Keygen(pp) for i = 0, 1, 2 and
(pktgt, sktgt) ← Keygen(pp). Then, for i ∈ {0, 1, 2}, the statistical distance
between ReKeyGen3(pk0, pk1, pk2, ski, pktgt) must be negligible in λ.

Recoding Simulation. Let (pki, ski) ← Keygen(pp) for i = 0, 1, 2. Then, the
statistical distance between the following two distributions is negligible in λ:

– pktgt, rk : (pktgt, sktgt) ← Keygen(pp); rk ← ReKeyGen(pk0, pk1, pk2,
sk0, pktgt);

– pktgt, rk : (pktgt, rk) ← SimReKeyGen(pk0, pk1, pk2).

The properties above show that all four methods for generating the recoding
key: using ReKeyGen with sk0, sk1, sk2 and using SimReKeyGen are statistically
indistinguishable.

One-time Semantic Security. For all m0,m1 ∈ M, the statistical distance
between E(φ,m0) : φ

$←− K and E(φ,m1) : φ
$←− K must be negligible.

Correlated Pseudorandomness. The pseudorandomness of three-to-one
recoding scheme is defined by the advantage of an adversary A as follows:
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(1) The challenger runs Params(1λ, dmax) and returns pp to the adversary.
(2) The challenger runs Keygen(pp) for l + 1 times, and gets (pki, ski), i =

1, ..., l, l + 1. pki, i = 1, ..., l + 1 are returned to the adversary.
(3) The challenger chooses s

$←− S, calculates φi = Encode(pki, s) for i = 1, ..., l.

Let φ′
0 = Encode(pkl+1, s) and φ′

1
$←− K. The challenger chooses a random

bit b ∈ {0, 1}, and returns (φ1, ..., φl, φ
′
b) to the adversary.

(4) The adversary outputs a guess b′ for b.

The advantage for A is defined by: AdvCP
A (λ) := |Pr(b = b′) − 1/2|. We require

that for all PPT A, the advantage AdvCP
A (λ) is negligible in λ.

Note that if the recoding simulation property holds, all recoding keys have
essentially no information about the secret keys. So recoding keys need not to
be included in the security game.

3.2 Construction of Three-to-One Recoding from LWE

We construct a three-to-one recoding scheme from LWE assumption:

– Params(1λ, dmax): First choose the LWE dimension n = n(λ). Let the error
distribution χ = χ(n) = DZ,

√
n, the error bound B = B(n) = O(n), the

modulus q = q(n) = Õ(n2dmax)dmaxn, the number of samples m = m(n) =
O(n log q) and the Gaussian parameter σ = σ(n) = O(

√
n log q). Output the

global public parameters pp = (n, χ,B, q,m, σ). Define the domain S of the
encoding scheme to be Z

n
q .

– Keygen(pp): Run the trapdoor generation algorithm TrapGen(1n, 1m, q) to
obtain a matrix A ∈ Z

n×m
q together with the trapdoor matrix T ∈ Z

m×m.
Output pk := A and sk := T.

– Encode(pk, s): Sample an error vector e $←− χm and output the encoding φ :=
AT s + e ∈ Z

m
q .

The recoding algorithms work as follows:

– ReKeyGen3(pk0, pk1, pk2, ski; pktgt): Let pk0 = A0, pk1 = A1, pk2 = A2,
ski = Ti, i ∈ {0, 1, 2} and pktgt = Atgt. Compute the matrix R ∈ Z

3m×m in
the following way:

• For each j ∈ {0, 1, 2}, j = i, choose a (truncated) discrete Gaussian matrix
Rj ∈ (DZ,σ)m×m. Namely, each entry of the matrix is an independent
sample from the discrete Gaussian distribution DZ,σ.

• Compute U := Atgt − ∑j �=i
j∈{0,1,2} AjRj ∈ Z

n×m
q .

• Compute the matrix Ri by running the algorithm SampleD to compute
a matrix Ri ∈ Z

m×m as follows:

Ri ← SampleD(Ai,Ti;U, σ).

Output

rktgt0,1,2 :=

⎡
⎣R0

R1

R2

⎤
⎦ ∈ Z

3m×m.
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Note that AiRi = U = Atgt − ∑j �=i
j∈{0,1,2} AjRj , so

∑
j∈{0,1,2} AjRj = Atgt.

– SimReKeyGen3(pk0, pk1, pk2): Let pk0 = A0, pk1 = A1, and pk2 = A2.
• Sample matrices R0,R1,R2 ∈ (DZ,σ)m×m by sampling each entry from

the discrete Gaussian distribution DZ,σ, and let R = [RT
0 ‖RT

1 ‖RT
2 ]T .

• Define:
Atgt = [A0‖A1‖A2]R ∈ Zn×m

q .

Output the pair (pktgt := Atgt, rk
tgt
0,1,2 := R).

– Recode(rktgt0,1,2, φ0, φ1, φ2): Let rktgt0,1,2 = R. Compute the recoded ciphertext

φtgt = [φT
0 ‖φT

1 ‖φT
2 ]R.

The one-time symmetric encryption scheme (E,D) used in the three-to-one
recoding scheme is similar to other LWE-based cryptosystems, and can be viewed
as an error-tolerant version of the one-time pad. We set K = Z

m
q and M =

{0, 1}m. The formal definition is as follows:

– E(φ,m) takes as input a vector φ ∈ K and a bit string m ∈ M and outputs
the encryption:

τ := φ + �q/2�m (mod q).

– D(φ′, τ): First we define the rounding function Round(x), x ∈ Zq = [−(q −
1)/2, (q − 1)/2] as follows:

Round(x) =
{

0, if |x| ≤ q/4;
1, otherwise.

Let the input of D be written as φ′ = (φ′
1, ..., φ

′
m) ∈ Z

m
q and τ = (τ1, ..., τm) ∈

Z
m
q . Then, D outputs:

m = (Round(τ1 − φ′
1), ...,Round(τm − φ′

m)).

The security of (E,D) directly follows from that of one-time pad.
We give the correctness and security properties of three-to-one recoding from

LWE in AppendixA.

4 CP-ABE for Circuits

Description on Circuits. We suppose that the maximal depth of all possible
access policy circuits is dmax, and the maximal number of gates is cmax = poly(λ).
Each gate is binary gate which has two incoming wires and one outgoing wire.
There are l input wires indexed from 1 to l, the i-th input is the i-th attribute in
the attribute set, and exactly one output wire. We fix the output wire index to
cmax. (Note that the size of a certain circuit C may be less than cmax, so some
indexes may have no corresponding wires in C.) Each gate with input wires
indexed u, v and output wire indexed w must satisfy u < v < w.
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4.1 CP-ABE Construction

Setup(1λ, 1l, dmax, cmax): For each input wire i ∈ [l], generate 2 different pub-
lic/secret key pairs, (pki

b, sk
i
b) ← Keygen(pp), for b ∈ {0, 1}. For each u < v <

w ≤ cmax, generate 8 different public/secret key pairs, (pku,v,w
bu,bv,bw

, sku,v,w
bu,bv,bw

) ←
Keygen(pp), for bu, bv, bw ∈ {0, 1}. Finally, generate an additional public/secret
key pair (pkout, skout) ← Keygen(pp).

Output mpk := ({pki
b : i ∈ [l], b ∈ {0, 1}}, {pku,v,w

bu,bv,bw
: u < v < w ≤

cmax, bu, bv, bw ∈ {0, 1}}, pkout); msk := ({ski
b : i ∈ [l], b ∈ {0, 1}}, {sku,v,w

bu,bv,bw
:

u < v < w ≤ cmax, bu, bv, bw ∈ {0, 1}}).
Enc(mpk, C,m): The restriction on C is mentioned above. First, choose a uni-

formly random s
$←− S. For each input wire i ∈ [l], calculate φi

b = Encode(pki
b, s)

for b ∈ {0, 1}. For each gate gw ∈ C with incoming wires u, v and outgoing wire
w, calculate φw

bu,bv
= Encode(pku,v,w

bu,bv,gw(bu,bv)
) for bu, bv ∈ {0, 1}. Finally, encrypt

the message m as τ ← E(Encode(pkout, s),m).
Output the ciphertext ctC = (C, {φi

b : i ∈ [l], b ∈ {0, 1}}, {φw
bu,bv

: gw ∈
C, bu, bv ∈ {0, 1}}, τ).

KeyGen(msk, ind):

1. For each w such that w ∈ [l + 1, cmax] (w is the index of a non-input wire),
generate public/secret key pairs: (pkw

b , skw
b ) ← Keygen(pp) if w < cmax or

b = 0, and set pkcmax
1 := pkout.

2. Let ind ∈ {0, 1}l. For each u < v < w ≤ cmax, generate:

rku,v,w
bu,bv,bw

= ReKeyGen3(pku,v,w
bu,bv,bw

, pku
bu

, pkv
bv

, sku,v,w
bu,bv,bw

, pkw
bw

),

for

⎧⎨
⎩

bu = indu, if u ∈ [l]; bu ∈ {0, 1}, otherwise;
bv = indv, if v ∈ [l]; bv ∈ {0, 1}, otherwise;
bw ∈ {0, 1}.

Output all recoding keys as secret key:

skind := (rku,v,w
bu,bv,bw

: u < v < w ≤ cmax, bu, bv, bw ∈ {0, 1}).

Dec(skind, ctC): For each w = 1, ..., l, wire w carries the value indl. For
each w = l + 1, ..., cmax, if there is a gate gw indexed w in C, we let u, v
be the two incoming wires for gw, and bu, bv be the values carried by u, v.
Then the value carries by w should be bw = gw(bu, bv). Then, compute φw

bw
=

Recode3(rku,v,w
bu,bv,bw

, φu
bu

, φv
bv

, φw
bu,bv

).
If C(ind) = 1, we must have computed φcmax

1 . Then output the message
m ← D(φcmax

1 , τ).
If C(ind) = 0, output ⊥.

Discussion. Since we cannot predetermine the topology structure of the access
policy circuit, we must construct public keys and secret keys for any possible
wires, and that makes our secret key size (O(c3max)) quite overloaded. However,
each decryption procedure only use part of them, so the large secret key size
does not increase the decryption time cost.
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Correctness

Lemma 2. Let the CP-ABE scheme above be constructed from a correct three-
to-one recoding scheme for dmax levels. Then for ctC ← Enc(mpk, C,m) and
skind ← KeyGen(msk, ind), if C(ind) = 1, we have Dec(skind, ctC) = m.

Proof. For each wire indexed by w, we let bw be the value it carries. We only need
to show that for any gate gw indexed by w, if gw is depth i, then φw

bw
∈ Φpkw

bw
,s,i,

so that φcmax
1 ∈ Φpkout,s,dmax . We prove it by induction.

First, for each gate gw of depth 1, its incoming wires u, v are from input wires,
so that φu

bu
and φv

bv
are generated from Encode, and we have φu

bu
∈ Φpku

bu
,s,0

and φv
bv

∈ Φpkv
bv

,s,0. Also φu,v,w
bu,bv,bw

is generated from Encode, so φu,v,w
bu,bv,bw

∈
Φpku,v,w

bu,bv,bw
,s,0. Then from the correctness of Recode3, we have φw

bw
∈ Φpkw

bw
,s,1.

Suppose that the result holds for all gates of depth k ≤ i. For gate gw of
depth i+1 with incoming wires indexed u, v, we have that φu

bu
∈ Φpku

bu
,s,i, φv

bv
∈

Φpkv
bv

,s,i, and φu,v,w
bu,bv,bw

∈ Φpku,v,w
bu,bv,bw

,s,0. Then from the correctness of Recode3,
we have φw

bw
∈ Φpkw

bw
,s,i+1. Thus the result holds for any k ∈ [dmax] by induction.

So we have φcmax,1 ∈ Φpkout,s,dmax . By the correctness of encryption E,D,
Dec(skind, ctC) = D(φcmax

1 , τ) = m. ��

4.2 Security Proof

In this section, we consider selective security of our scheme above. As it was
mentioned in [21], using the technique from [8], it can be transformed into a
fully secure scheme based on the subexponential hardness of LWE. We shall not
discuss the details here.

Lemma 3. For any adversary A against selective security of the attribute-based
encryption scheme, there exists an adversary B against correlated pseudorandom-
ness of three-to-one recoding scheme whose running time is essentially the same
as that of A, such that:

AdvPE
A (λ) ≤ AdvCP

B + negl(λ)

where negl(λ) captures the statistical security terms in three-to-one recoding
scheme.

Alternative Algorithms. First, we shall describe alternative algorithms
Setup∗, Enc∗ and KeyGen∗, given the three-to-one recoding challenge:

pp, (pki, φi)i∈[4cmax−2l+1],

and use it to generate the challenge ciphertext ctC∗ = (C∗, {φi
b : i ∈ [l], b ∈

{0, 1}}, {φu,v,w
bu,bv,bw

: u < v < w ≤ cmax, bu, bv, bw ∈ {0, 1}}, τ). These algorithms
are simulations of real algorithms in the CP-ABE scheme. Note that we cannot
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deduce s from the challenge ciphertext, nor the secret keys below: ski
b : i ∈

[l], b ∈ {0, 1}; sku,v,w
bu,bv,gw(bu,bv)

for each gw ∈ C∗, and skout. Still, we can generate
all other sk in the master secret key.

Setup∗(C∗, 1λ, 1l, dmax, bmax): Let pki,0 := pk2i−1 and pki,1 := pk2i for i ∈ [l];
for each gw ∈ C∗, let u, v be its incoming wire indexes, let:

pku,v,w
0,0,gw(0,0) := pk4w−2l−3; pku,v,w

0,1,gw(0,1) := pk4w−2l−2;

pku,v,w
1,0,gw(1,0) := pk4w−2l−1; pku,v,w

1,1,gw(1,1) := pk4w−2l

and pkout := pk4cmax−2l+1.
All other keys are generated from Keygen algorithm. For each gw ∈ C∗, let

(pku,v,w
bu,bv,1−gw(bu,bv)

, pku,v,w
bu,bv,1−gw(bu,bv)

) ← Keygen(pp)

for all bu, bv ∈ {0, 1}, and for each u < v < w ≤ cmax such that either there is
no gate gw in C∗ or the incoming wires of gw are not u, v, let

(pku,v,w
bu,bv,bw

, sku,v,w
bu,bv,bw

) ← Keygen(pp)

for all bu, bv, bw ∈ {0, 1}.
Output mpk :=

({pkib : i ∈ [l], b ∈ {0, 1}}, {pku,v,wbu,bv,bw
: u < v < w ≤ cmax, bu, bv, bw ∈ {0, 1}}, pkout).

Enc∗(mpk, C∗,m): Set τ ← E(φ4cmax−2l+1,m), and return:

ctC∗ = (C∗, {φi : i ∈ [2l]}, {φi : i ∈ [2l + 1, 4cmax − 2l]}, τ).

KeyGen∗(msk, ind): If C∗(ind) = 1 returns ⊥. We first set bi = indi for i ∈ [l].
For each w ∈ [l + 1, cmax], if there is a gate gw in C∗, and its incoming wires are
u, v, we set bw = gw(bu, bv), and generate:

(rku,v,w
bu,bv,bw

, pkw
bw

) ← SimReKeyGen3(pku,v,w
bu,bv,bw

, pku
bu

, pkv
bv

).

It is easy to see that each bw is the value of wire w when running the circuit C∗

with input ind. Since C∗(ind) = 0, the procedure above finally generates pkcmax
0 ,

and does not contradict with existing keys.
Now that we have the value of pkw

bw
for all gw ∈ C∗. For each w ∈ [l+1, c−1], if

there is no gw in C∗, generate (pkw
b , skw

b ) ← Keygen(pp) for b ∈ {0, 1}. If gw ∈ C∗,
then the value of bw is set, we generate (pkw

1−bw
, skw

1−bw
) ← Keygen(pp).

For all other u < v < w ≤ cmax, if there is no gate gw in C∗ or the incoming
wires of gw are not u, v, then sku,v,w

b0,b1,b2
is generated in Setup∗, so for any b0, b1, b2 ∈

{0, 1}, we can set:

rku,v,w
b0,b1,b2

← ReKeyGen3(pku,v,w
b0,b1,b2

, pku
b0 , pk

v
b1 , sk

u,v,w
b0,b1,b2

, pkw
b2).

For gw ∈ C∗ with incoming wires u, v, sku,v,w
bu,bv,1−bw

is also generated in Setup∗,
so we can set

rku,v,w
bu,bv,1−bw

← ReKeyGen3(pku,v,w
bu,bv,1−bw

, pku
bu

, pkv
bv

, sku,v,w
bu,bv,1−bw

, pkw
1−bw

).
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Next, we set:

rku,v,w
1−bu,bv,b ← ReKeyGen3(pku,v,w

1−bu,bv,b, pk
u
1−bu

, pkv
bv

, sku
1−bu

, pkw
b ) if u > l;

rku,v,w
bu,1−bv,b ← ReKeyGen3(pku,v,w

bu,1−bv,b, pk
u
bu

, pkv
1−bv

, skv
1−bv

, pkw
b ) if v > l;

rku,v,w
1−bu,1−bv,b ← ReKeyGen3(pku,v,w

1−bu,1−bv,b, pk
u
1−bu

, pkv
1−bv

, sku
1−bu

, pkw
b ) if u, v > l

for b ∈ {0, 1}.
Finally, we gather all the required recoding keys, and return:

skind := (rku,v,w
b0,b1,b2

: u < v < w ≤ cmax, b0, b1, b2 ∈ {0, 1}).

Informally, all recoding keys generated from SimReKeyGen look the same as
in KeyGen because of the recoding simulation property, and all other recoding
keys look the same as in KeyGen because key indistinguishability.

Game Sequence. Next, consider the following sequence of games. We use Adv0,
Adv1,... to denote the advantage of the adversary A in Games 0, 1, etc. Game 0
is the real experiment.

Game i for i = 1, 2, ...Q, Q is the maximal number of KeyGen queries. As in
Game 0, except the challenger answers the first i − 1 key queries using KeyGen∗

and the remaining Q − i key queries using KeyGen. For the i-th key query indi,
we consider sub-Games i.w as follows:

Game i.w, for w = l + 1, ..., cmax. The challenger switches (rku,v,w
b0,b1,b2

: u <

v < w, b0, b1, b2 ∈ {0, 1}) from KeyGen to KeyGen∗. If there is no gate gw indexed
w in C∗, there is no difference between KeyGen and KeyGen∗. Otherwise, let the
incoming wires of gw be labeled u, v, and bu, bv, bw be the values of wire u, v, w
in C∗ with input indi. We do the following:

– First, we switch (pkw
bw

, rku,v,w
bu,bv,bw

) from KeyGen to KeyGen∗. This relies on
recoding simulation.

– Next, we switch rku,v,w
1−bu,bv,b, rk

u,v,w
bu,1−bv,b, rk

u,v,w
1−bu,1−bv,b for b ∈ {0, 1} from KeyGen

to KeyGen∗. This relies on key indistinguishability.
– All other recoding keys are generated the same way in both KeyGen and
KeyGen∗.

We have |Advi,w −Advi,w+1| ≤ negl(λ) by key indistinguishability and recod-
ing simulation for all i, w. Since cmax is polynomial in λ, we have |Advi −
Advi+1| ≤ negl(λ) for all i.

Note that in Game Q, the challenger runs Setup∗ and answers all key queries
using KeyGen∗ with the selective challenge C∗ and generates the challenge cipher-
text using Enc.

Game Q + 1. Same as Game Q, except the challenger generates the chal-
lenge ciphertext using Enc∗ with φ4cmax−2l+1 = Encode(pk4cmax−2l+1, s). Clearly,
AdvQ+1 = AdvQ.

Game Q + 2. Same as Game Q + 1, except φ4cmax−2l+1
$←− K. It is straight-

forward to construct an adversary B such that |AdvQ+1 −AdvQ+2| ≤ AdvCP
B (λ).

Finally, AdvQ+2 ≤ negl(λ) by the one-time semantic security of (E,D). The
lemma then follows readily.
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4.3 Reducing Public Key Size in Random Oracle Model

In this section, we give an additional construction which can be proven secure
in the random oracle model. Compared with our scheme above, this scheme has
a much smaller public key size of O(l), which has more advantages compared
with universal circuit based constructions (further analysis can be found in the
full paper).

Setup(1λ, 1l, dmax, cmax): For each input wire i ∈ [l], generate 2 different
public/secret key pairs, (pki

b, sk
i
b) ← Keygen(pp), for b ∈ {0, 1}, and an additional

public/secret key pair (pkout, skout) ← Keygen(pp). Moreover, output a hash

function H : {0, 1}3	log cmax
+3 → P modeled as a random oracle, where pk′ $←−
P and pk in (pk, sk) ← Keygen(pp) have negligible statistical distance. (For
example, P = Z

n×m
q for the LWE-based construction of three-to-one recoding

scheme).
Output mpk := ({pki

b : i ∈ [l], b ∈ {0, 1}}, pkout,H); msk := {ski
b : i ∈ [l], b ∈

{0, 1}}.
Enc(mpk, C,m): The restriction on C is mentioned above. First, choose a uni-

formly random s
$←− S. For each input wire i ∈ [l], calculate φi

b = Encode(pki
b, s)

for b ∈ {0, 1}. For each gate gw ∈ C with incoming wires u, v and outgoing wire
w, calculate φw

bu,bv
= Encode(H(u‖v‖w‖bu‖bv‖gw(bu, bv)), s) for bu, bv ∈ {0, 1}.

(Each u, v, w is considered as a �log cmax�-bit string.) Finally, encrypt the mes-
sage m as τ ← E(Encode(pkout, s),m).

Output the ciphertext ctC = (C, {φi
b : i ∈ [l], b ∈ {0, 1}}, {φw

bu,bv
: gw ∈

C, bu, bv ∈ {0, 1}}, τ).
KeyGen(msk, ind):

1. For each w such that w ∈ [l + 1, cmax] (w is the index of a non-input wire),
generate public/secret key pairs: (pkw

b , skw
b ) ← Keygen(pp) if w < cmax or

b = 0, and set pkcmax
1 := pkout.

2. Let ind ∈ {0, 1}l. For each u < v < w ≤ cmax, generate:

rku,v,w
bu,bv,bw

= ReKeyGen3(H(u‖v‖w‖bu‖bv‖bw), pku
bu

, pkv
bv

, sku
bu

, pkw
bw

),

for

⎧⎨
⎩

bu = indu, if u ∈ [l]; bu ∈ {0, 1}, otherwise;
bv = indv, if v ∈ [l]; bv ∈ {0, 1}, otherwise;
bw ∈ {0, 1}.

Dec remains the same.
The security proof is essentially the same as the scheme in standard

model. However, since the secret key corresponded with the random ora-
cle output H(u‖v‖w‖bu‖bv‖bw) must be given in the proof, we can pro-
gram the output of the oracle to set H(u‖v‖w‖bu‖bv‖bw) := pku,v,w

bu,bv,bw
where

(pku,v,w
bu,bv,bw

, sku,v,w
bu,bv,bw

) ← Keygen(pp). We omit the details here.
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5 Conclusion

In this paper, we present a CP-ABE scheme for arbitrary polynomial size circuits
based on LWE assumption. We note that there is currently no direct construc-
tion other than ours, and constructions from universal circuits are more complex
and have higher decryption cost. However, the performance of our scheme, espe-
cially the secret key size is still nonapplicable for practice, which need further
improvement. We shall consider it in our future work.

The duality between KP-ABE and CP-ABE has not been well studied in
lattice as in pairing based cryptography. Many believe that the method used to
construct KP-ABE in lattice cannot be used in CP-ABE construction as well.
However, in this paper, based on the KP-ABE scheme in [21], we give a similar
(although slightly different) construction for CP-ABE scheme. We hope that this
work can spread some light into the further study of lattice-based ABE and FE
schemes, and finally give birth to a universal framework for ABE/FE in lattice
like the dual system framework in pairing based cryptography.

A Correctness and Security of Three-to-One Recoding
from LWE

Correctness. We define the sets ΦA,s,j for pk := A ∈ Z
n×m
q , s ∈ Z

n
q and

j ∈ [0, dmax] as follows:

ΦA,s,j = AT s + e : ‖e‖∞ ≤ B · (3σm
√

m)j .

Given this definition:

– Observe that when e ∈ χm, ‖e‖∞ ≤ B by the definition of χ and B. So
Pr[Encode(A, s) ∈ ΦA,s,0] = 1.

– ΦA,s,0 ⊆ ΦA,s,1 ⊆ ... ⊆ ΦA,s,dmax , by definition of the sets above.
– For any two encodings φ = AT s + e, φ′ = AT s + e′ ∈ ΦA,s,dmax :

‖φ − φ′‖∞ = ‖e − e′‖∞ ≤ 3 · B · (3σm
√

m)dmax < q/4,

which holds as long as n · O(n2 log q)dmax < q/4. Thus, φ and φ′ are “close”,
and by the correctness property of the symmetric encryption scheme (E,D)
described above, D(φ′,E(φ, μ)) = μ for any μ ∈ {0, 1}m.

– Consider three encodings φ0 ∈ ΦA0,s,j0 , φ1 ∈ ΦA1,s,j1 and φ2 ∈ ΦA2,s,j2 , for
any j0, j1, j2 ∈ [0, dmax − 1], any A0,A1,A2 ∈ Z

n×m
q and s ∈ Z

n
q . Then, φ0 =

AT
0 s+e0, φ1 = AT

1 s+e1 and φ2 = AT
2 s+e2, where ‖e0‖∞ ≤ B(3σm

√
m)j0 ,

‖e1‖∞ ≤ B(3σm
√

m)j1 and ‖e2‖∞ ≤ B(3σm
√

m)j2 . Then, the recoding φtgt

is computed as follows:

φT
tgt := [φT

0 ‖φT
1 ‖φT

2 ]Rtgt
0,1,2

= [sTA0 + eT
0 ‖sTA1 + eT

1 ‖sTA2 + eT
2 ]Rtgt

0,1,2

= sT [A0‖A1‖A2]R
tgt
0,1,2 + [eT

0 ‖eT
1 ‖eT

2 ]Rtgt
0,1,2

= sTAtgt + eT
tgt
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where etgt := [eT
0 ‖eT

1 ‖eT
2 ]Rtgt

0,1,2. Thus, we have:

‖etgt‖∞ := m · ‖Rtgt
0,1,2‖∞ · (‖e0‖∞ + ‖e1‖∞ + ‖e0‖∞)

≤ m · σ
√

m · (B · (3σm
√

m)j0 + B · (3σm
√

m)j1 + B · (3σm
√

m)j2)
≤ B · (3σm

√
m)max(j0,j1,j2)+1

and we complete the proof.

Key Indistinguishability. Let (A1,T1), (A2,T2) ← TrapSamp(1n, 1m, q), and

R1,R2
$←− Dm

Zm,σ. By the property of lattice trapdoors, we can see that the
following two distribution (U,R0):

– (A0,T0) ← TrapSamp(1n, 1m, q); U $←− Z
n×m
q , R ← SampleD(A,T,U, σ);

– (A0,T0) ← TrapSamp(1n, 1m, q); R0
$←− Dm

Zm,σ, U := A0R0.

are statistically indistinguishable. Thus for the two distributions, (Atgt :=
U + A1R1 + A2R2 mod q,R = [RT

0 ‖RT
1 ‖RT

2 ]T ) are statistically indistinguish-

able. In the first distribution, we change the sampling of U into: Atgt
$←− Z

n×m
q ,

U := Atgt −A1R1 −A2R2 mod q, which does not change the distribution, and
R is generated from ReKeyGen3(A0,A1,A2,T0,Atgt) in the first distribution.
Also (Atgt,R) are generated from SimReKeyGen3(A0,A1,A2) in the second dis-
tribution. Thus we have the recoding simulation property.

Similarly, each recoding key generated from ReKeyGen3(A0,A1,A2,Ti,Atgt)
for i ∈ {0, 1, 2} is statistically indistinguishable from the recoding key generated
from SimReKeyGen3(A0,A1,A2). So the recoding keys generated from all four
methods are statistically indistinguishable.

Correlated Pseudorandomness
We construct the following interactive games. Let Game 0 be the original

game.
Game 1: Instead of letting (pki, ski) ← Keygen(pp), we let pki

$←− Z
n×m
q .

Game 1 is statistically indistinguishable from Game 0 because of the property
of lattice trapdoors.

Game 2: Instead of letting φi = Encode(pki, s) for i = 1, ..., l and φ′
0 =

Encode(pkl+1, s), we let φ1, ..., φl, φ
′
0

$←− Z
m
q . Game 2 is computationally indis-

tinguishable from Game 1 because of LWE assumption.
In Game 2, φ′

0 and φ′
1 are both uniformly distributed, so the adversary can-

not do better than random guess. Thus we prove the pseudorandomness of the
scheme.
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Abstract. The interval discrete logarithm problem (IDLP) is to find a
solution n such that gn = h in a finite cyclic group G = <g>, where
h ∈ G and n belongs to a given interval. In this paper, we assume that
computing the inverse of an element is easier than the multiplication
of two elements in a group, and define an equivalent class to be the
pair consisting of element and its inverse. So, a kangaroo jump can be
performed between equivalent classes through pre-computation on these
classes. To accelerate solving IDLP, we first introduce the concept of
jumping distance and expanding factor to decide whether to perform
the class operation or not. When the value of the expanding factor is
greater than a given value, the class operation will be performed, such
that each decision on jumps is locally optimal. The improved method
takes an average of (1 + o(1))

√
N times of class operation, where N is

the size of a given interval.

Keywords: Interval discrete logarithm algorithm · Pollard kangaroo
algorithm · Equivalent class

1 Introduction

The interval discrete logarithm problem (IDLP) is to find n such that gn = h,
for a given h and g in a finite cyclic group G, where g represents a generator of
G, n ∈ (0, N ], and G ⊆ Z

∗
p. As a special case of a discrete logarithm problem,

the IDLP is more proper to be used in the analysis and design of cryptosystem,
as presented in [3] and [1]. To find a faster algorithm for IDLP is significant and
useful in practice.
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To solve IDLP, new methods and techniques have been used continuously.
In [8], a classical collision-based algorithm, called Pollard’s kangaroo algorithm,
was proposed for solving the DLP with the complexity of O(

√
q), which requires

only O(1) of storage space. There are two approaches to improve the Pollard
kangaroo algorithm. One is to increase the number of kangaroos to improve
efficiency. As for the first approach, in [4], the kangaroo algorithm is optimized
by increasing the number of kangaroos, and the optimal state is that when four
kangaroos jumped at the same time, which reduced the average group operation
times to (1.714 + o(1))

√
N . The jumping of four kangaroos are z1 = hgy, z2 =

h−1gy, z3 = h2gy, z4 = h−2gy, respectively, and then combined with the Four-
set Gaudry-Schost method to reduce the complexity to (1.719 + o(1))

√
N . In

addition, in [5], the equivalence classes is used to solve the discrete logarithm
problem in a short interval under the assumption that computing the inverse of
a class element is faster than the general group operation. For convenience, the
method in [5] is called the GR algorithm.

The other approach to improve the kangaroo algorithm is to increase the
storage space. In [9], the authors improved the Pollard kangaroo algorithm by
increasing the storage space size to the polynomial size, and the average number
of group operations of the discrete logarithm problem was (2 + o(1))

√
N . In [2],

the precomputation and decomposition of large integer multiplications are used
to improve the computational efficiency in the iterative process. For convenience,
here we denote the algorithm presented in [2] as the CHK algorithm. The CHK
algorithm requires storing the value of the modular exponentiation in the form of
gy. Since the modular exponentiation requires at least one large integer multipli-
cation when y > 1, it can improve the algorithm efficiency and avoid additional
calculation by storing the value of gy. Thus, the CHK algorithm accelerates the
Pollard algorithm at least 10 times, but it also requires the preprocessing space
size of O((log p)r+1 · log log p). In [10], the method presented in [2] was used to
solve the interval discrete logarithm. In [7], the authors also used the periodicity
of trigonometric function to substitute the sum of small integers in [2].

Our Techniques. In this paper, we assume that computing the inverse of an
element is easier than the multiplication of two elements in a group. In order
to solve IDLP, over the interval [0, N ], we define the pairs consisting of an ele-
ment and its inverse to be an equivalent class as GR algorithm, so that kangaroo
jumps can be performed between the equivalent classes. We precompute a mul-
tiplication table of size O((log N)2η+1 · log log N) so that we can inquire it to
save the number of class operations, where η is small integer.

Then, we propose the concept of jumping distance and expanding factor
to determine whether to perform the class operation or not. Here, we set a
threshold of the expanding factor so that when the expanding factor is larger
than the threshold, a class operation is performed. The greater the expanding
factor is, the higher the probability of collision is. A class operation is done
if the value of the expanding factor is larger than a given threshold. In the
experiment, the average class operation times is (1 + o(1))

√
N , which is faster

than the (1.714 + o(1))
√

N class operation of the GR algorithm.
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Organization. The rest of the paper is organized as follows. In Sect. 2, we
introduce the methods proposed in [2,5,8]. In Sect. 3, we explain the expanding
factor and its construction. An improved algorithm based on expanding factor
is presented and evaluated experimentally. The heuristics complexity analysis of
the improved algorithm is given in Sect. 4. The conclusions are drawn in Sect. 5.

2 Preliminaries and Related Algorithms

In this section, we briefly present the Pollard’s kangaroo algorithm, the CHK
algorithm, and the GR algorithm. The list of the symbols is presented in Table 1.

Table 1. The list of symbols.

Symbols Meaning

N
∗ Positive integer set

η, ε Small integer

S {1, 2, · · · , η}
[q] {1, 2, · · · , q}
Γ Γ = {±u1, ±u2, · · · , ±uη}
M M = {gus : us ∈ Γ}
M l M l = {M

⋃{1}}l

jT
k kth jumping positon of kangaroo T

jW
k kth jumping positon of kangaroo W

JT JT = {jT
k : k = 1, 2, · · · }

JW JW = {jW
k : k = 1, 2, · · · }

d(k,s) Jumping distance

DT
k Jumping distance set of kangaroo T

DW
k Jumping distance set of kangaroo W

D D =
⋃

k

DT
k =

⋃

k

DW
k

ListD ListD =
k−1⋃

i=1

DT
i =

s−1⋃

i=1

DW
i

RT Expanding factor of kangaroo T

RW Expanding factor of kangaroo W

s
$←− ψ s is chosen from set ψ uniformly at random

b Boundary of expanding factor

2.1 Pollard’s Kangaroo Algorithm

The Pollard’s kangaroo algorithm [8] and its variants [2,4,5,7,10] generate
a sequence of elements from a group G with a random walk of kangaroos.
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A specific function F : G → G is defined, and a random walk is generated
by iteratively applying F starting from a random group element. The function
F is constructed in such a way that the solution is obtained when a random
walk revisits an element it has already passed over. Every time an element is
revisited, the collision happens.

More precisely, the Pollard’s kangaroo algorithm is to use g and h as the
starting elements to perform the iterated multiplications of elements of a group
G respectively, which are denoted as kangaroos T and W , respectively. Two kan-
garoos jump independently to traverse the cyclic group G. When both jumps
meet the same element of G, we can compute the solution of the discrete log-
arithm. The function F is gi = F (gi−1) = gi−1 · gf(gi−1), where f denotes a
random function.

For a kangaroo T having an initial value of g0 = gα ∈ G, we calculate f(g0)
based on the random functionf , and then we obtain the value g1 = g0 ·gf(g0) and
use the next jump value f(g1) to calculate g2 = g1 ·gf(g1). Finally, we obtain the
sequence {gi}i∈N∗ , where N

∗ is denoted as positive integer set. Correspondingly,
for kangaroo W having an initial value g′

0 = h, we first calculate g′
1 = g′

0 · gf(g′
0)

and then obtain the sequence {g′
i}i∈N∗ . Finally, it is checked whether the two

sequences share the same value and if there exists i, j such that gi = g′
j , then,

the correct solution is given by α +
i−1∑

s=1
f(gs) −

j−1∑

t=1
f(g′

t).

2.2 GR Algorithm

The GR algorithm [5] represents a variant of Pollard’s kangaroo algorithm,
but it makes kangaroos jump between equivalent classes {{ga, g−a} : a ∈
(−N/2, N/2] ∩ Z} instead of in a group G. Thus, every time a sequence of
elements from the group G is generated using the function F , the inverse of
the elements needs to be computed. The GR algorithm is constructed under
the assumption that computing the inverse of group elements is faster than the
general group operation. So, GR algorithm can be applied in groups with fast
inversion such as a group on the elliptic curve.

More precisely, in the GR algorithm, {hgα, h−1g−α} and {h2gβ , h−2g−β} are
used as the starting elements to traverse the equivalent class {{ga, g−a} : a ∈
(−N/2, N/2] ∩ Z}, respectively. When both jumps meet the same element, we
can compute the solution of the discrete logarithm.

The GR algorithm first calculates h · g−N/2, and translates the interval in
which the solution is located from (0, N ] ∩ Z to (−N/2, N/2] ∩ Z. The binary
tuple sequence {(gi, g

−1
i )}i∈N∗ can be obtained by inverting the value of gi after

each jump to get g−1
i . Similarly, we can get the binary sequence {(g′

i, g
′−1
i )}i∈N∗ .

After each sequence {(gi, g
−1
i )}i∈N∗ and {(g′

i, g
′−1
i )}i∈N∗ increases with new pairs

being added, we need to check whether the two sequences have the same value;
if they share the same value, the solution can be found.
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2.3 CHK Algorithm

In the CHK algorithm [2], precomputation is to avoid modular exponentia-
tion operations in the iteration. Since the modular exponentiation value can
be directly obtained by the table lookup operation, the CHK algorithm saves
the running time compared with Pollard’s kangaroo algorithm.

g and h are used as the starting elements to perform the iterated multipli-
cations of elements of a group G respectively. When both jumps meet the same
element of G, we can obtain the solution. The function F in CHK Algorithm
is computed as gi+j = F (gi) = gi · m, where m is the element that can be
read from the precomputed table M l. In the process of constructing the func-
tion F , to reduce the number of large integer multiplication, the index function
s̄(x, y) = s(xy) is used.

Function F in the CHK algorithm is implemented in the following way. First,
index set S = {0, 1, · · · , r − 1} and jump set S′ = {s0, s1, · · · , sr−1} are defined.
Then, let M = {gsi : si ∈ S′}, and M l = {M ∪ {1}}l, which denotes the
multiplications of no more than l elements in a set M ∪{1}. Both kangaroos are
required to jump and calculate two sequences, {gi}i∈N∗ and {g′

i}i∈N∗ . Once gi

is calculated, the function s : Z → S is used to calculate the next jump value
s(gi) ∈ S. Then, we can get gi+1 = gi ·Ms(gi), where Ms(gi) is the s(gi)th element
of M . Also, we can calculate gi+2 directly instead of calculating gi+1 first, that is:

gi+2 = gi+1 · Ms(gi+1) = gi · Ms(gi) · Ms(gi·Ms(gi))
= gi · Ms(gi) · Ms(gi,Ms(gi))

(1)

The value of Ms(gi) · Ms(gi,Ms(gi))
can be determined directly from M l; it only

needs to do a big integer multiplication with gi to get gi+2. Similarly, we can obtain
gi+3 directly instead of calculating gi+1 and gi+2, but we can skip (l−1) values at
most because M l is a multiplication of no more than l elements from a set M∪{1}.
Therefore, the random function s̄ can make the kangaroo realize a farther and
more flexible jump by using M l, giving the kangaroo more jumping options.

However, it should be noted that only the values that are actually calculated
can be stored in a sequence {gi}i∈N∗ . Namely, if values gi+1 and gi+2 are skipped,
it is impossible to compare them with {g′

i}i∈N∗ since they are not stored in
{gi}i∈N∗ . Similarly, we can compute a sequence {g′

i}i∈N∗ . In order to decide
whether to calculate certain values, the CHK algorithm constructs a function
τ to control evenly whether to skip the calculation or not. After each sequence
{gi}i∈N∗ and {g′

i}i∈N∗ increases with new pairs being added, we need to compare
whether the two sequences have the same value; if they share the same value in
common, the solution is obtained.

3 Improved Algorithm Based on Expanding Factor

The previously described algorithms set the distinguished points based on a uni-
form distribution, but that does not guarantee that kangaroos always collide with
a high probability. Furthermore, when the CHK algorithm and Pollard’s kanga-
roo algorithm are used to solve the interval discrete logarithm, it is very likely
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to make the jumping distance beyond the range of interval, which will decrease
efficiency. So, in this section, we propose the concepts of jumping distance and
expanding factor to improve the algorithm.

We first need to compute hg− N
2 and shift the interval of a solution to

(−N
2 , N

2 ] ∩ Z. Here, we assume that computing an inverse element is easier in a
group G, and the concept of equivalent class is introduced.

We define the interval equivalent relation {ga, g−a} = {g−a, ga}, where a ∈
(−N

2 , N
2 ] ∩ Z. This interval equivalent relation satisfies reflexivity, transitivity,

and symmetry. Then, the interval equivalent class of a kangaroo T is given as
GT = {{ga, g−a} : a ∈ (−N

2 , N
2 ] ∩ Z}.

Similarly, we define the interval equivalent relation {gn− N
2 +b, gn− N

2 −b} =
{gn− N

2 −b, gn− N
2 +b}, where b ∈ (−N

2 , N
2 ] ∩ Z. Then, the interval equivalent class

of a kangaroo W ’s is given as GW = {{gn− N
2 +b, gn− N

2 −b} : b ∈ (−N
2 , N

2 ] ∩ Z}.
With the definition of equivalent classes, we define the multiplication opera-

tions between the equivalent classes as follows: {gi, gi′}·{gj , gj′} = {gi+j , gi′+j′}.
Assume that the ith jumps of kangaroos T and W are {gi, ĝi} and {g′

i, ĝ
′
i},

respectively. After a given next jump distance ai and bi, the (i + 1)th jump
value of T and W can be calculated as {gi+1 = gi · gai , ĝi+1 = ĝi · g−ai} and
{g′

i+1 = g′
i · gbi , ĝ′

i+1 = ĝ′
i · g−bi}, respectively.

We obtain g±ai and g±bi from the precomputed set in each jump. Therefore,
the process of computing {gi+1, ĝi+1} and {g′

i+1, ĝ
′
i+1} requires only two large

integer multiplications. For convenience, the process of obtaining {gi+1, ĝi+1}
from {gi, ĝi} is called the class operation. In order to make T and W jump
between the equivalent classes, the concept of jumping distance is introduced in
the following.

3.1 Jumping Distance

The Pollard’s kangaroo algorithm is to find the collision between
{gαgα1gα2 · · · gαt1 }t1∈N∗ and {hgβ1gβ2 · · · gβt2 }t2∈N∗ by jumps α1, α2 · · · αt1 · · ·
and β1, β2 · · · βt2 · · · , which have to be calculated respectively. If for some k and

s, gαgα1gα2 · · · gαk = hgβ1gβ2 · · · gβs , then the solution is n = α+
k∑

i=1

αi −
s∑

i=1

βi;

that is, if a collision occurs, the solution is equal to the difference between the

jump value α +
k∑

i=1

αi of a kangaroo T and the jump value
s∑

i=1

βi of a kanga-

roo W . When the collision occurs, the solution to IDLP is n ∈ {α +
k∑

i=1

αi −
s∑

i=1

βi}k∈N∗,s∈N∗ . The more value the set {α +
k∑

i=1

αi −
s∑

i=1

βi}k∈N∗,s∈N∗ contains,

the more efficient the algorithm is. For convenience, the following definitions are
given.
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Definition 1. The 1th jumping positions of kangaroos T and W are {jT
1 =

α, ĵT
1 = −α} and {jW

1 = β, ĵW
1 = −β}, respectively. The kth jumping position

of a kangaroo T is {jT
k = α +

k−1∑

i=1

αi, ĵT
k = −α −

k−1∑

i=1

αi}, where k ≥ 2. The sth

jumping position of a kangaroo W is {jW
s = β+

s−1∑

i=1

βi, ĵW
s = −β−

s−1∑

i=1

βi}, where

s ≥ 2. We denote the jumping position sets of kangaroos T and W to be JT =
{{jT

k , ĵT
k } : k = 1, 2, · · · } and JW = {{jW

s , ĵW
s } : s = 1, 2, · · · } respectively, in

which the elements are arranged in the order in which they are added.

Definition 2. Let the kth jumping position of a kangaroo T be {jT
k , ĵT

k }, and
the sth jumping position of a kangaroo W be {jW

s , ĵW
s }; then, the corresponding

jumping distance is defined to be d(k,s) = {jT
k − jW

s , jT
k − ĵW

s , ĵT
k − jW

s , ĵT
k −

ĵW
s } ∩ (−N

2 , N
2 ]) = {jT

k − jW
s , jT

k + jW
s , jW

s − jT
k ,−jT

k − jW
s } ∩ (−N

2 , N
2 ]).

Definition 3. We define the kth jumping distance set to be a set of the jumping
distances between the kth jumping position of one kangaroo and all the jumping
positions of the other kangaroo. Specifically, for the kth jump of a kangaroo T ,

the jumping distance set is expressed as DT
k =

s⋃

i=1

d(k,i), where s is the current

number of jumps of W . And for the kth jump of a kangaroo W , the jumping

distance set is expressed as DW
k =

s⋃

i=1

d(i,k), where s is the current number of

jumps of a kangaroo T . Obviously, for ∀d(i,j) ∈ DT
i ⊂ ⋃

k

DT
k , there exist DW

j , s.t.

d(i,j) ∈ DW
j ⊂ ⋃

k

DW
k . So we have

⋃

k

DT
k =

⋃

k

DW
k . For convenience, we denote

D =
⋃

k

DT
k =

⋃

k

DW
k .

Example. In Table 2, the first three jumping positions of the kangaroo T are
{10,−10}, {12,−12}, and {x,−x} respectively, where x is unknown, and the first
three jumping positions of the kangaroo W are {1,1}, {6,−6}, and {13,−13}
respectively.

Table 2. Example.

jT
i jW

i

i = 1 {2,−2} {1,−1}
i = 2 {8,−8} {4,−4}
i = 3 {x,-x} {13,−13}

Table 3. Jumping distance set of the first
three jumps.

d(k,s) s = 1 s = 2 s = 3

k = 1 {±1,±3} {±2,±6} {±11,±15}
k = 2 {±7,±9} {±4,±12} {±5,±21}
k = 3 {±(x−1),

±(x+1)}
{±(x− 4),
±(x+ 4)}

{±(x− 13),
±(x+ 13)}
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We can calculate the jumping distance set as:

d(1,1) ={±1, ±3} d(1,2) ={±2, ±6} d(1,3) ={±11, ±15}
d(2,1) ={±7, ±9} d(2,2) ={±4, ±12} d(2,3) ={±5, ±21}
d(3,1) ={±(x − 1), ±(x + 1)} d(3,2) ={±(x − 4), ±(x + 4)} d(3,3) ={±(x − 13), ±(x + 13)}

Then, the jumping distance set is given as:

D ={d(1,1), d(1,2), d(1,3), d(2,1), d(2,2), d(2,3), d(3,1), d(3,2), d(3,3)}
={±1,±3,±2,±6,±11,±15,±7,±9,±4,±12,±5,±21,±(x − 1)

,±(x + 1),±(x − 4),±(x + 4),±(x − 13),±(x + 13)}

For the kangaroo T , we have the first three jumping distance set as follows.

D
T
1 ={d(1,1), d(1,2), d(1,3)} = {±1, ±3, ±2, ±6, ±11, ±15}

D
T
2 ={d(2,1), d(2,2), d(2,3)} = {±7, ±9, ±4, ±12, ±5, ±21}

D
T
3 ={d(3,1), d(3,2), d(3,3)} = {±(x − 1), ±(x + 1), ±(x − 4), ±(x + 4), ±(x − 13), ±(x + 13)}

Accordingly, for the kangaroo W , we have the first three jumping distance
set as follows.

DW
1 ={d(1,1), d(2,1), d(3,1)} = {±1,±3,±7,±9,±(x − 1),±(x + 1)}

DW
2 ={d(1,2), d(2,2), d(3,2)} = {±2,±6,±4,±12,±(x − 4),±(x + 4)}

DW
3 ={d(1,3), d(2,3), d(3,3)} = {±11,±15,±5,±21,±(x − 13),±(x + 13)}

It can be seen that DT
t is the set of numbers in the tth row in Table 3, and

DW
t is the set of numbers in the tth column in Table 3.

Assume the jumping distance set is D. When x = 16, then D = {±1,±3,±2,
±6,±11,±15,±7,±9,±4,±12,±5,±21,±17,±20,±29}, thus D has 30 elements;
and when x = 21, thenD = {±1,±3,±2,±6,±11,±15,±7,±9,±4,±12,±5,±21,
±20,±22,±17,±25,±8,±34}, thus D has 36 elements. In the third jump, if x=16,
then that jump is inefficient because the values ±15,±12,±3 of the jumping
distance d(3,1) = {±15,±17}, d(3,2) = {±12,±20}, d(3,3) = {±3,±29} have been
contained in D. And, the new distance actually is only the values ±17,±20,
±29. However, when x=21, there will be 12 new jump distances: DT

3 = {±20,±22,
±17,±25,±8,±34}, which will be added to D. If n ∈ D, we can find the solution.

If first two jumps do not collide with the solution, that is, the jumping differ-
ence between both kangaroos is not equal to n. Then, when x=21, the probability
of finding the solution is 12/N , but when x=16, the probability of finding the
solution becomes 6/N . So, by selecting the position of the next jump, we can
increase the probability of solution finding. Since the solution n is an unknown
element of a set (0, N ] ∩ Z, the more elements in the jumping distance set of a
jump are different from the previous ones, the more efficient the jump is, and
the solution can be obtained easier.�
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Assume that two kangaroos T and W jump at time s(≤ t + 1) and time t,
respectively. In order to give the improved algorithm, we present Algorithm1
to compute DT

t+1 or DW
t+1 first. In Algorithm 1, position denotes the (t + 1)th

position given in advance, and JT and JW denote the jumping position set of
kangaroos T and W , respectively.

Algorithm 1. Computing Jumping Distance Set
Input: JT , JW , position = {ps, ps′ = −ps},where position is given in advance

Output: DT
t+1, DW

t+1
1 for i = 1, · · · , t do

2 t1 = ps − jW
i , t2 = ps + jW

i , t3 = −ps − jW
i , t4 = jW

i − ps;

3 store t1, t2, t3, t4 in DT
t+1;

4 end
5 for i = 1, · · · , s do

6 t1 = ps − jT
i , t2 = ps + jT

i , t3 = −ps − jT
i , t4 = jT

i − ps;

7 store t1, t2, t3, t4 in DW
t+1;

8 end

9 return DT
t+1, DW

t+1;

In Algorithm 1, the jumping position sets JT and JW of kangaroos T and W
can be obtained by input JT , JW . We only need to use the (t + 1)th position of
the kangaroo to make a difference between all the positions of the other kangaroo
and store it in the DT

t+1 and DW
t+1. Finally, Algorithm 1 has the complexity of

O(t).

3.2 Expanding Factor

Assume a kangaroo T has jumped (k − 1) times, and kangaroo W has jumped
(s − 1) times; then, calculate the jump distance set DT

i (i = 1, 2, · · · , k − 1) or
DW

i (i = 1, 2, · · · , s − 1) after each jump, and store the elements in a ListD;

duplicate values should be saved only once in the ListD, i.e., ListD =
k−1⋃

i=1

DT
i =

s−1⋃

i=1

DW
i .

Definition 4. The expanding factor R is a ratio of the number of new jumps
produced at the new jumping position to the maximum number of jumping dif-
ferences, where these new jumping differences belong to the interval (−N/2, N/2]
and are not equal to any of the previous jumping difference. The expanding fac-
tors RT and RW of kangaroos T and W are respectively defined as:

RT = |(DT
k \ListD)∩(− N

2 , N
2 ]|

4s , where s(≤ k) is the number of current jump
times of the kangaroo W ;

RW = |(DW
s \ListD)∩(− N

2 , N
2 ]|

4k , where k(≤ s) is the number of current jump
times of the kangaroo T .
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Also, RT , RW ∈ [0, 1] because 0 ≤ |DT
k | ≤ 4s and 0 ≤ |DW

s | ≤ 4k. Since the
expanding factor denotes a ratio of the actual value to the theoretical maximum,
the larger the expanding factor is, the more new jumping differences can be
generated at a given jumping position.

If the expanding factor of a jumping position given in advance is smaller than
a given boundary, another jumping position will be chosen. Thus, kangaroos will
choose to jump such that the expanding factor is relatively large, so the class
operation will be performed. We use Algorithm 2 to calculate RT (or RW ), where
DT

k (or DW
s ) is calculated by Algorithm1.

Algorithm 2. Computing Expanding Factor
Input: ListD, DT

k (or DW
s )

Output: RT (or RW )
1 i1 = 0, i2 = 0;

2 Kangaroo T : For all d ∈ DT
k , if d /∈ ListD and d ∈ (− N

2 , N
2 ], then i1 = i1 + 1;

3 Kangaroo W : For all d ∈ DW
s , if d /∈ ListD and d ∈ (− N

2 , N
2 ], then i2 = i2 + 1;

4 RT =
i1
4s , RW =

i2
4k ;

5 return RT (or RW );

By step 2 in Algorithm 2, we can get the number of elements in the difference
sets which belong to the interval (−N/2, N/2] and differ from any of the previous
jumping differences. Then, we can calculate RT (or RW ). Since s (or k) is the cur-
rent number of jumps of the other kangaroo, we can get |DT

k | ≤ 4s and |DW
s | ≤ 4k

according toDefinition2.Finally,Algorithm 2has the complexity ofO(max{s, k}).

3.3 Improved Algorithm

Based on the concept of the expanding factor, an improved algorithm is pre-
sented. By storing an inverse element, the kangaroo can jump back and forth,
avoiding the kangaroo jumping all the way in one direction and needing to ini-
tialize the jumping position when expanding factor is particularly small.

Define the jump set Γ = {±u1,±u2, · · · ,±uη}, where η is an integer. For
convenience, denote Γt = ut,Γ−t = −ut, M = {gui : ui ∈ Γ}, Mt = gut ,M−t =
gu−t . Let M l = {M ∪ {1}}l, which denotes a multiplication of no more than l
elements from set M ∪ {1}. It should be noted that here, M l contains inverse
values and the original values of the jump process can be determined directly
from M l. Generally, the exponential parts of the elements in M l are indexed to
improve the algorithm efficiency.

We define the set ψ = {±1,±2, · · · ,±η}. Then s
$←− ψ denotes that an

element s is sampled uniformly according to the set ψ, namely, s is chosen from
{±1,±2, · · · ,±η} uniformly at random. In practical application, the method
called linear congruential generator (LCG) can be used to generate elements from
ψ. LCG is one of the oldest and best-known pseudorandom number generator
algorithms that yields a sequence of pseudorandomized numbers calculated with
a discontinuous piecewise linear equation [11–13].
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For the given initial jump values {g1 = gα, ĝ1 = g−α} and {g′
1 = hgβ , ĝ′

1 =
hg−β} of T and W , the corresponding initial jumping positions are jT

1 = {α,−α}
and jW

1 = {β,−β}, respectively.
We set the boundary of the expanding factor to be b ∈ (0, 1]. For the kangaroo

T , we generate the next jumping position jT
2 = {α + Γs1 ,−α − Γs1}, where

s1
$←− ψ. Thus, we can obtain the jumping distance DT

2 . Then, we can compute
the expanding factor RT , and check whether RT > b; if this is true, then, we
compute g2 = g1 · Ms1 , ĝ2 = ĝ1 · M−s1 , and store the jumping distances in the
ListD; else, we regenerate the value of s1 form ψ to obtain another jumping
position, and recalculate RT . If there are k(≤ η) times that RT < b, then use
ψ to regenerate two random values s1 and s2. Then, the next jumping position
given in advance is jT

2 = {α + Γs1 + Γs2 ,−α − Γs1 − Γs2}. Similarly, if RT > b,
then g2 = g1 · Ms1 · Ms2 and ĝ2 = ĝ1 · M−s1 · M−s2 . Correspondingly, if there
are k times that RT < b, then use ψ to generate 3 random values. Note that
Ms1 · Ms2 · · · Mst

(t ≤ η) can be determined directly from M l and we can only
read l consecutive products form M l at most. Therefore, if the condition RT > b
is not satisfied by continuously generating l random numbers from ψ, then the
jumping position with the largest RT is chosen as the next jumping position,
and the corresponding jumping distances is stored in the ListD. Continuously,
we get a series {(gi, ĝi)}i∈N∗ .

Similarly, we obtain a series {(g′
i, ĝ

′
i)}i∈N∗ of the kangaroo W . Then, we check

whether the same value exists in {(gi, ĝi)}i∈N∗ and {(gi, ĝi)}i∈N∗ . If there exists
gt = g′

s, where gt ∈ {gi}i∈N∗ and g′
s ∈ {g′

i}i∈N∗ , then, we have n = N/2+jT
t −jW

s .
If there exists gt = ĝ′

s, where gt ∈ {gi}i∈N∗ and ĝ′
s ∈ {ĝ′

i}i∈N∗ , then, we have
n = N/2+jT

t − ĵW
s = N/2+jT

t +jW
s . If there exists ĝt = g′

s, where ĝt ∈ {ĝi}i∈N∗

and g′
s ∈ {g′

i}i∈N∗ , then, we have n = N/2 + ĵT
t − jW

s = N/2 − jT
t − jW

s . Lastly,
if there exists ĝt = ĝ′

s, where ĝt ∈ {gi}i∈N∗ and ĝ′
s ∈ {g′

i}i∈N∗ , then, we have
n = N/2 + ĵT

t − ĵs = N/2 − jT
t + jW

s .
Based on the above discussion, the improved algorithm is given in Algo-

rithm3, where kangaroos jump synchronously. Since the definition of M l is sim-
ilar to [2], O((log N)2η+1 · log log N) of space is needed for M l; see, e.g., [2,10]
for the full details.

Correctness. In step 2 to 4, we first compute h′ = hg− N
2 and shift the interval

of the solution to (−N
2 , N

2 ] ∩ Z. Then we initialize the value of g1, ĝ1, g′
1, ĝ′

1, jT
1

and jW
1 . Since the first jump is initialized, the kangaroos will make a 2th jump.

Denote t as the tth jump that kangaroos are going to make, namely, t = 2 is
initialized. Then we compute DT

1 ,DW
1 and store them in ListD.

Kangaroo T makes a jump between steps 4 and 24, with a maximum of
kl cycles. When RT > b is not satisfied by continuously generating l random
numbers from ψ, PS and RS is used to select the position corresponding to the
maximum R, where PS and RS are vectors of length kl, denoted as PS1×kl and
RS1×kl. Note that PS and RS are indexed by the number of iterations of step
4 to 24, namely, position ps and its corresponding expanding factor RT have
the same index. Let the ith value of PS and RS be PSi and RSi, respectively.
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Algorithm 3. Solve IDLP with Equivalent Class
Input: g, h, N, p, α, β, l, S, k, b
Output: ans

1 precompute M l;

2 h′ = hg−N/2, g1 = gα, ĝ1 = g−α, g′
1 = h′gβ , ̂g′

1 = h′g−β , jT
1 = α, jW

1 = β, t = 2;

3 compute DT
1 , DW

1 and store them in ListD, add jT
1 in JT , add jW

1 in JW ;
4 for i = 1, · · · , l do
5 for j = 1, · · · , k do
6 if i = 1 and j = 1, then PS1×kl = 01×kl, RS1×kl = 01×kl;

7 ps = jT
t ;

8 for m = 1, · · · , i do

9 ps = ps + Γs, s
$←− ψ, position = {ps, −ps};

10 end

11 DT
t+1 = Algorithm1(JT , JW , position); RT = Algorithm2(ListD, DT

t+1);

12 PS(i−1)l+j = ps, RS(i−1)l+j = RT ;

13 if RT > b then

14 jT
t+1 = ps, add jT

t+1 in JT ;

15 store DT
t+1 in ListD, read g

±(jT
t+1−jT

t )
from M l;

16 gt+1 = gt · g
jT
t+1−jT

t , ĝt+1 = ĝt · g
jT
t −jT

t+1 , store {gt+1, ĝt+1} in G, goto 25;

17 end
18 if i = l and j = k then

19 jT
t+1 = PSarg max{RS}, add jT

t+1 in JT ;

20 store DT
t+1 in ListD, read g

±(jT
t+1−jT

t )
from M l;

21 gt+1 = gt · g
jT
t+1−jT

t , ĝt+1 = ĝt · g
jT
t −jT

t+1 , store {gt+1, ĝt+1} in G, goto 25;

22 end

23 end

24 end
25 for i = 1, · · · , l do
26 for j = 1, · · · , k do
27 if i = 1 and j = 1, then PS1×kl = 01×kl, RS1×kl = 01×kl;

28 ps = jW
t ;

29 for m = 1, · · · , i do

30 ps = ps + Γs, s
$←− ψ, position = {ps, −ps};

31 end

32 DW
t+1=Algorithm1(JT , JW , position), RW =Algorithm2(ListD, DW

t+1);

33 PS(i−1)l+j = ps, RS(i−1)l+j = RW ;

34 if RW > b then

35 jW
t+1 = ps;

36 store DW
t+1 in ListD, read g

±(jW
t+1−jW

t )
from M l;

37 g′
t+1 = g′

t · g
jW
t+1−jW

t , ̂g′
t+1 = ̂g′

t · g
jW
t −jW

t+1 , store {g′
t+1, ̂g′

t+1} in G′, goto 46;

38 end
39 if i = l and j = k then

40 jW
t+1 = PSarg max{RS}, add jW

t+1 in JW ;

41 store DW
t+1 in ListD, read g

±(jW
t+1−jW

t )
from M l;

42 g′
t+1 = g′

t · g
jW
t+1−jW

t , ̂g′
t+1 = ̂g′

t · g
jW
t −jW

t+1 , store {g′
t+1, ̂g′

t+1} in G′, goto 46;

43 end

44 end

45 end

46 if G ∩ G′ �= ∅ then
47 goto 51;
48 else
49 t=t+1, goto 4;
50 end

51 if there exist gx = g′
s, return ans = N/2 + jT

x − jW
s ;

52 if there exist gx = ̂g′
s, return ans = N/2 + jT

x + jW
s ;

53 if there exist ĝx = g′
s, return ans = N/2 − jT

x − jW
s ;

54 if there exist ĝx = ̂g′
s, return ans = N/2 − jT

x + jW
s ;
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We first initialize PS and RS as zero vectors. Then in step 12, we add the position
ps and its corresponding expanding factor RT to PS and RS, respectively. If
RT > b is not satisfied kl times, we select the positon corresponding to the
maximum RT by PSarg max{RS} in step 19, where arg max{RS} is the index
corresponding to the maximum value in RS. Besides, position ps is generated in
advance in step 7 to 10. If the expanding factor RT corresponding to ps grate
than the given boundary b, then let jumping position jT

t+1 = ps and compute
the (t + 1)th jump value as described in step 15 to 16. Or else, another position
will be given again. Note that at most kl positions can be given. If RT > b is not
satisfied kl times, we let the jumping position jT

t+1 be the ps corresponding to the
largest RT in RS as described above. Every time the jump value is computed,
we store the jump value in G and end the loop in step 4–24 by the command of
goto 25.

Similarly, kangaroo W makes a jump at step 25 to 45. Every time the jump
value is computed, we store the jump value in G′ and end the loop in step 25–45
by the command of goto 46. If the kangaroos jump t times, it needs at most kl
cycles in (t+1)th jumps. Also, it takes at most 2(2t−1) subtractions to calculate
the jumping distances for each jump, and it is judged whether these values
existed in ListD. Therefore, the time required for each iteration is polynomial
with complexity of O(t). Finally, we check whether G and G′ share the same
value in step 46. If it is true, we have the answer by step 51–54. Or else, let
t = t + 1 and make kangaroos jump again.

If G ∩ G′ = ∅, then one of the following equations is true.

gjT
x = hg−N/2gjW

s = gng−N/2gjW
s

g−jT
x = hg−N/2gjW

s = gng−N/2gjW
s

gjT
x = hg−N/2g−jW

s = gng−N/2g−jW
s

g−jT
x = hg−N/2g−jW

s = gng−N/2g−jW
s

(2)

So we have n − N/2 ∈ {±jT
x ,±jW

s } ⊂ ListD. On the contrary, if n − N ∈
ListD, there exist jT

x and jW
s such that one of the following equations is true.

jT
x = n − N/2 + jW

s

−jT
x = n − N/2 + jW

s

jT
x = n − N/2 − jW

s

−jT
x = n − N/2 − jW

s

(3)

Then we have G ∩ G′ = ∅. So G ∩ G′ = ∅ if and only if n − N/2 ∈ ListD,
namely, Pr[G ∩ G′ = ∅] = Pr[n − N/2 ∈ ListD] = |ListD|

N . Note that |ListD|
can reach N eventually, since |ListD| increases with the number of iterations.
Consequently when |ListD| = N , we have Pr[G ∩ G′ = ∅] = Pr[n − N/2 ∈
ListD] = |ListD|

N = 1, namely, the solution can be found finally, i.e. Algorithm3
will end in a finite time.
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3.4 Experimental Evaluation of Improved Algorithm

We selected large prime numbers of 521 bits in the DSS [6], where the prime
number was p = 6864797660130609714981900799081393217269435300143305409
394463459185543183397655394245057746333217197532963996371363321113864
768612440380340372808892707005449.

Also, g = 19 was a generator of Z∗
P . Then, the order of g was p−1. The param-

eters were set as α = 100, β = 5, l = 15, and k = 8. Let jump set Γ = {±2,±3,
±5,±6,±8,±9,±11,±12,±14,±15,±17,±18,±20,±21,±23,±25,±26,±28,±29,
±31,±32,±34,±35,±37,±38,±40,±41,±43,±44,±46,±47,±49,±50,±53,±55,
±56,±58}, l = 15, k = 8, and b = 0.8. Also, N = 2000, 5000, 8000, and h was gen-
erated randomly. The average number of class operations is given in Table 4.

Table 4. Experiment results

N Number of experiments The average number of class operations

2000 1000 0.9838
√

N

5000 2000 1.0182
√

N

8000 3000 1.0062
√

N

From the results presented in Table 4, it can be concluded that the improved
algorithm achieved a significant improvement in the number of class operations
compared to the GR algorithm and other Pollard-kangaroo-like algorithms.

4 Heuristics and Analysis of Efficiency

Applying the process of the Algorithm3, the average number of class operations
of the improved algorithm is obtained, and it is shown in Table 5.

Table 5. The number of jumping distances.

Jump times {jT
i , j−T

i } {jW
i , j−W

i } Number of increased
elements in D

Number of
elements in D

1th {jT
1 , j−T

1 } {jW
1 , j−W

1 } 4 4

2th {jT
2 , j−T

2 } {jW
2 , j−W

2 } 12 16

· · · · · · · · · · · · · · ·
kth {jT

k , j−T
k } {jW

k , j−W
k } 4(2k − 1) 4k2

Since the value of jumping distances can easily repeat in practical applica-
tions, we provide the definition of expanding factor as follows:
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Definition 5. The total expanding factor of a jumping distance r is a ratio
of the real number of elements in D to the theoretical maximum number of
elements in D.

Then, we estimate the expected times of large integer multiplication, esti-
mating it in the worst case. According to the total expanding factor, we assume
the number of values of a new jumping distance of the kth jump is 4r(2k − 1)
in average. So, the total number of jumping distances of the kth jump is 4rk2.
In the extreme situation, two kangaroo cannot collide every time, and jump-
ing up to

√
N/(4r) times can cover the entire range of required solutions set

(−N/2, N/2] ∩ Z (i.e., by solving rk2 > N , we get k >
√

N/(4r)). Since it is
needed to calculate two class operation for each jump, in the worst case, the
cumulative total jump will be (1/

√
r + o(1))

√
N .

Also, since the jumping distance increases during the kth jump for 4r(2k −
1) on average, the probability of getting a solution is 4r(2k−1)

N . Besides, it is
needed to compute the class operation for each jump, and the expected value

of the number of class operations is E = 2 ·
√

N/r∑

s=1

2kr(2k−1)
N = 2/3

√
N/r +

1 − 2/3
√

r/N . Therefore, the numbers of class operations are approximately
(2/(3

√
r) + o(1))

√
N . In particular, (2/3 + o(1))

√
N is the optimal complexity

of the algorithm when r = 1.
In the 6000 experiments of Sect. 3.4, the average value of r is 0.44. So,

the improved algorithm with time complexity of (2/(3
√

0.44) + o(1))
√

N =
(1.005 + o(1))

√
N is more efficient than the algorithms in [2–5,7] described in

introduction.

5 Conclusions

In this paper, we present a new algorithm for computing the discrete logarithm
using class operations. The improved algorithm uses the expanding factor to
determine the next jump of a kangaroo and selects a local optimal position with
the highest expanding factor in each jump so that the kangaroo can collide with
higher efficiency.

In addition, the concept of expanding factor and jumping difference provides
another perspective for understanding the kangaroo algorithm. As a heuristic,
it would lead to some method by improving the expanding factor which can be
used as an indicator to evaluate the superiority of the kangaroo algorithm and
its improved algorithm.
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Abstract. Boolean functions and their generalization Vectorial Boolean
functions or Substitution Boxes (S-Boxes) have attracted much attention
in the domain of modern block ciphers that use only these elements to
provide the necessary confusion against the cryptanalysis attacks. Thus,
a significant number of research has been done to construct cryptograph-
ically strong Boolean functions and S-Boxes. Among these researches,
several heuristics were applied and therefore the hill climbing heuristic
was largely investigated. In this paper, we propose a new variant of Hill
Climbing heuristic called Parallel Steepest Ascent Hill Climbing to con-
struct Boolean functions and n × m S-Boxes through the progressive
construction and incorporation of their m coordinate Boolean functions.
The obtained results demonstrate that this new variant provides solu-
tions with high cryptographic properties.

Keywords: Boolean functions · S-Boxes · Hill Climbing · Cost
function

1 Introduction

Cryptographic design of Boolean functions and S-Boxes is guided by three main
directions: pseudo-random or exhaustive search, algebraic constructions and
heuristic techniques.

Random search was the first technique explored for the Boolean functions.
However, it is well known that the number of Boolean functions achieving opti-
mal cryptographic properties is very small compared to the extremely large set
of Boolean functions. Thus, it is difficult to find cryptographically good Boolean
functions, only from random search, especially for functions with a large number
n of inputs. Exhaustive search over a particular subset of the Boolean function
space provides an alternative to the full search and is therefore possible for func-
tions of higher n, depending on the range of functions to be examined. This
modified exhaustive search has been relatively successful [1].
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The algebraic techniques have been used to develop the methodologies for
the construction of cryptographically strong Boolean functions. There are several
basic approaches to the algebraic design of Boolean function, the most common
of which is a recursive construction, as well as numerous variants and more
recently a linear transformation method. Many specific algorithms exist for the
construction of Boolean functions that possess particular levels of cryptograph-
ically important properties including nonlinearity, algebraic order, autocorre-
lation and resilience, or specific combinations of these. Algebraic construction
techniques are usually designed to achieve a specific property.

The major alternative to algebraic construction techniques are heuristic tech-
niques. Heuristic techniques involve a process of iteratively improving a given
function with respect to more than one property. They provide the ability to
find Boolean functions that are superior to those generated using algebraic tech-
niques. Specific heuristic techniques include the genetic algorithm, hill climbing,
simulated annealing or their combinations.

Hill climbing [2] technique involves repeated application of small modifica-
tions to, for example, the truth table with the view to improve one or more
properties. Genetic algorithms [3] work with a population of candidate func-
tions. They involve the application of three fundamental operations that are
inspired by natural evolution (selection, crossover and mutation), with the aim
of producing future populations containing functions with the desired proper-
ties. Simulated Annealing [4,5] provides an extension to hill climbing techniques
in which the search process is able to move out of local maximum in order to
continue.

Similarly to the Boolean functions construction, S-Box construction is also
guided by the three aforementioned directions. The first direction is based on the
random or pseudo-random search. Good cryptographic properties can hardly be
found following the random generation for a large size S-Boxes [6,7]. The second
direction is based on the construction of S-Box guided by mathematical models.
The AES S-Box design, based on the inverse mapping and the affine transfor-
mation in the finite field, is the best example of such methods [8]. This S-Box
has the best practical cryptographic properties known. However, it was reported
by Fuller et al. in [9,10], that the component Boolean functions forming the
S-Boxes constructed with this kind of method are completely linearly depen-
dent. The third direction based on the evolutionary or heuristic model, is known
to be efficient in both software and hardware implementations. However, previ-
ous research has proven the limit of their direct modelling to find competitive
S-Boxes (104 as maximum nonlinearity) [11].

Several Heuristics have been used for the S-Box generation task, such as
Hill Climbing [12], Genetic Algorithm [13], Simulated Annealing [14], practical
Swarm Optimisation [15], Ant Colony Optimisation [16] and Bee Waggle Dance
algorithm [17]. However, As it was stated by Picek in [18], it is not entirely fair to
compare between methods that start from random population or individual and
those that start from a cryptographically good S-Box (reverse based construc-
tion). In addition to these three main directions, other construction methods can
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be followed such as, chaotic maps [19] or combination between Chaos solutions
and heuristics [20–22].

In this paper, we introduce a new variant of the Hill Climbing heuristic
called Parallel Steepest Ascent Hill Climbing and summarises its application
to the Boolean functions and S-Boxes construction. Thus, the 2-bits tweaking
process, previously introduced in [23] for the reverse construction of S-Box is
applied to the Boolean functions, as well as the S-Boxes construction through the
progressive construction and incorporation of its coordinate Boolean functions,
contrarily to the conventional methods that handle the lookup table of the S-Box
instead of its coordinate Boolean functions.

The remainder of the paper is organised as follows. Section 2 provides the
preliminary knowledge around Boolean functions and S-Boxes. The proposed
method is introduced in Sect. 3. Section 4 describes some experimental results
on the cryptographic properties of the Boolean functions and S-Boxes obtained
by this method. Finally, a brief conclusion is given in Sect. 5.

2 Preliminaries

2.1 Boolean Function

Let a Boolean function (BF ) f , explicitly noted f(x1, · · · , xn), an n-variable
Boolean function, f : F2n → F2 is a mapping from n-dimensional vector space to
F2, in the finite field. (Only 8-variables Boolean functions (n = 8) are considered,
here and everywhere below).

Several forms are available to represent a Boolean function. Each form is
more suitable than the others to express or compute a given Boolean function
property. In this paper only the used ones will be defined. Algebraic Normal
Form (ANF) is the XOR sum of ANDed input variables representation for a
given Boolean function represented by: f(x1, · · · , xn) = ⊕I⊆SaI

∏
i∈I xi, where

S = {x1, x2, · · · , xn} is the set of all possible terms of n variable and I the set
of terms composing f . Truth table (TT) is the simplest representation of an
n-variable Boolean function, where each element of a binary vector of length
2n reflects the image corresponding to a unique element in F2n of the function
inputs (x1, · · · , xn). The Walsh Hadamard Transform (WHT) denoted by F̂f (w),
is the most important representation in this document. It reflects the correlation
between the function f and all the linear functions lw(x) = <w, x>. It is defined
by:

F̂f (w) =
∑

x∈Bn f̂(w) · (−1)<w,x> =
∑

x∈Bn(−1)f(x)⊕<w,x>

F̂f (w) =
∑

x∈Bn

f̂(x) · l̂w(x) (1)

The maximum absolute value of the WHT is denoted by:

WHDmax(f) = maxw∈Bn |F̂f (w)| (2)
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Boolean function is defined by several properties that can be summarized on the
following ones. The Hamming weight denoted by wt(f), represents the number
of ones in the truth table representation of f. The Hamming Distance d is the
measure that gives the distance between two Boolean functions f(x) and g(x),
which means the number of times that the two Boolean functions differ in their
truth table representation, such as: d(f(x), g(x)) = #{x : f(x) �= g(x)}, where
#{} indicates the number of occurrences of the set.

An n-variable Boolean function f is said to be balanced if it’s Hamming weight
wt(f) is equal to 2n−1. The algebraic degree or order, denoted by deg(f) is the
term(s) degree of the ANF with the largest product term which refers to the
number of variables it includes, knowing that the functions with an algebraic
degree inferior or equal to 1 are called affine functions. In the case of Vectorial
Boolean function, the Algebraic degree is the minimum AD of all component
functions.

The Nonlinearity Nlf of a Boolean function f defined by the maximum abso-
lute value of the WHT such as:

NLf = (2n − WHTmax(f))/2 (3)

The Autocorrelation function (AC), denoted by r̂f (α), provides an indication
of the imbalance of all first order derivatives Dαf̂(x) = f̂(x) ⊕ f̂(x ⊕ α) of a
polarity form f̂ of a Boolean function f , with respect to a vector α ∈ B

n. It is
defined as: r̂f (α) =

∑
x∈Bn f(x)⊕f(x⊕α). The maximum AC value or absolute

indicator of the polarity form f̂ of f , denoted by ACmax(f) is given by:

ACmax(f) = max(α∈Bn\{0})|r̂f (α)| (4)

2.2 Vectorial Boolean Function (S-Box)

The cryptographic properties of the n × m S-Box are not only reflected by the
properties of its m coordinate Boolean functions, but by all its 2m − 1 non-
zero component Boolean functions [24]. In this subsection, we define only the
properties considered in this paper.

An n × m S-Box with n ≥ m, is said regular if and only if all its m-bits
output vectors occur with an equal number of times, namely 2n−m. An S-Box
with this property is known to satisfy the balance criterion for the m component
and all their nonzero linear combinations.

The nonlinearity of an S-Box S ∈ Fn
m, is extended from the Boolean function

case to the 2m − 1 component Boolean functions as:

Nl(S) = minα∈Fm
2 ,α�=0)Nl(α · f) (5)

The Differential Uniformity examines for a given S, the number of solutions of
the equation: S(x ⊕ a) ⊕ S(x) = b, for every pair of input a and output b. S is
said differentially δ − unifom if:

δ = maxa∈Bn\{0}maxb∈Bn |{x ∈ B
n|S(x) ⊕ S(x ⊕ a) = b}| (6)
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The algebraic degree, denoted by AD(S), called also minimum degree, is the
minimum algebraic degree of all the component Boolean function.

AD(S) = minα∈F2n ,α�=0AD(α · f) (7)

Where (α·f) is a non-zero linear combination of the coordinate Boolean function
f1, f2, · · · , fn of S.

Autocorrelation (AC)max is determined by the maximum absolute indicator
among the absolute indicators of all non-trivial component Boolean functions of
S. That is:

AC(S)max = maxc=(c1,c2,··· ,cm)∈Bm\{0}|r̂c1f1⊕c2f2⊕···⊕cmfm
(α)| (8)

An S-Box S represented by the component Boolean functions B0, B1, · · · , B2n−2.
Bi and Bj , i �= j ∧ i, j ∈ [0, 1, · · · , 2n − 2] are said to be linearly redundant or
(affine equivalent), if it exists an affine transformation that maps between them
such as:

Bi(x) = Bj(DxT ⊕ aT ) ⊕ b · xT ⊕ c (9)

Where D: non-singular binary matrix, a and b: two n-element binary vectors,
c: a binary constant and b · xT denotes a linear function of x selected by b [9].
Furthermore, An S-Box S is said to be R-Linearly Redundant, if R of its 2m − 1
component Boolean functions belong to m distinct extended affine equivalence
classes. Thus, if R = 1, then S is completely linearly redundant, else if R =
2m − 1, then S is non-linearly redundant S-Box.

3 Proposed Method

The Parallel Steepest Ascent Hill Climbing (PSAHC) Algorithm consists on
the parallel version of the Steepest Ascent Hill Climbing. In this section we
investigate the construction of Boolean function and S-Box using this enhanced
version of the Hill Climbing heuristic.

Similarly to the Steepest Ascent Hill climbing variant, the proposed method
takes into account all possible neighbours from each solution of the N elements
composing the current population, then the N best elements are picked no mat-
ters their predecessor. In other words, the N best elements can come from the
same or different predecessors. However, Similarly to Tabu Search (TS), PSAHC
uses a list of previously visited neighbours. This list avoids the algorithm to
explore or to select again during the search neighbours already explored.

The main idea behind the use of the parallel hill climbing is to deal with
the treated problem as climbing an unknown hill by a group of climbers who
challenge them-selves to reach the top of the hill as quickly as possible. Thus,
instead of taking only one path to reach the top of the hill, the climbers borrow
from the beginning different paths from different positions of the foothill simul-
taneously, in order to cover as much as possible and proportionally the foothill.
In this case, the chances of taking the best path and consequently of reaching
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the top are improved. However, the main challenge of this technique is to find
the proper way to define these paths in such a way that the foothill is as much
as possible and proportionally covered. Algorithm 1 shows the different steps of
the PSAHC method.

Algorithm 1. PSAHC algorithm for Boolean functions construction
Data: Void
Result: highly nonlinear Boolean function
begin

Max Eval ← 1000;
P ← Generate N initial solutions;
Counter ← 0;
Already Explored Neighbours ← P ;
while Counter < Max Eval do

for solutionx in P do
Neighbourhood ← Explore Two Local Neighbourhood(x);
for Neighbour in Neighbourhood do

if Neighbour not in Already Explored Neighbours then
Global Neighbourhood ← Neighbour

for Neighbour in Global Neighbourhood do
Compute Cost function(Neighbour);
if Neighbour = Targeted Solution then

return Neighbour

Sort by Cost function(Global Neighbourhood);
P ← Global Neighbourhood[0 · ·N ];
Counter ← Counter + 1;

return Global Neighbourhood[0]

3.1 PSAHC for Boolean Function Construction

In this subsection we use the PSAHC algorithm to construct High nonlin-
ear Boolean functions. Thus, we start from a random population of Balanced
Boolean functions having nonlinearity 108 ≤ NL ≤ 110 and respecting a min-
imum Hamming Distance between them, then we apply SAHC algorithm for
each Boolean function of the population, which means the exploration of all
neighbourhood through the 2-bits tweaking process, where the neighbourhood
is defined by all Boolean function equal to: 2n−1 × 2n−1 = 22n−2 obtained by all
possible tweaks between the 2n−1 zeros and 2n−1 ones. Once the entire popula-
tion is treated, we sort the Boolean functions of the Neighbourhoods resulting
from all the population according to their Cost function score. Such as, the used
cost function represents the simplified version of the one proposed in [18], which
is based on the reduction of the number of maximum absolute value coefficients
of the Walsh Hadamard Distribution.
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CF (f) =
N−1∑

i=0

WHDcoef [l − i]
2i

(10)

With WHDcoef is the absolute Walsh Hadamard Distribution coefficient and l
the last considered coefficient (if l > 10 then N = 10 else N = l).

The proposed method allows increasing the nonlinearity of an initial set of
Balanced Boolean functions, randomly generated until obtaining nonlinearity
equal to 116. Concretely, PSAHC method is somehow a hybrid method which
mixes between the two heuristics: Steepest Ascent hill climbing and genetic algo-
rithm, such as it takes the concept of breeding from the genetic algorithm by
using a population instead of an individual. The new generation is obtained by
choosing the best Boolean functions forming the 2-Local Specific Neighbourhood
(2 − LSN) of each Boolean functions of the current population, while accepting
the non-improving solutions, so that the new population is formed by the best
new functions obtained from the 2−LSN that were not previously chosen, even
if contrarily to the genetic algorithm that uses the conventional breading oper-
ation such as selection, mutation and crossover. It is important to note that the
PSAHC method accepts no improving solutions when the best solutions obtained
of the current set have worst score for the used cost function comparing to the
previous set.

The advantage of this method is that ensures obtaining a nonlinearity equal
to 116, which represents the maximum nonlinearity that can be obtained for an
8-variables balanced Boolean functions [25]. Moreover, comparing to the existing
methods, this one gives the best absolute Walsh Hadamard distribution. This
results is an improvement to the simple Hill Climbnig heuristic proposed in [2],
that gives a nonlinearity equal to 114. However, there are some other methods
based on a modified Hill Climbing that gives the same nonlinearity and better
results for other cryptographic properties. Such as, in the modified Hill Climb-
ing, but their construction starts from initial bent function instead of random
Balanced Boolean function, where the nonlinearity is decreased until obtaining
a balanced Boolean function [26,27].

3.2 PSAHC for S-Box Construction

In this subsection, the main idea is the exploration of the PSAHC algorithm
through the 2-bits tweaking method for the progressive construction of the m
(n-variables) coordinate Boolean functions composing the n × m S-Box.

The numerous researches on the Boolean functions and in particular those
based on the application of the different heuristics have achieved remarkable
results concerning the nonlinearity, with a nonlinearity equal to 114 for the
hill climbing heuristic and 116 for Genetic algorithms and its combination with
hill climbing. In this research these results will represent an interesting start-
ing point or base for a progressive construction of Vectorial Boolean functions
(S-Boxes). Thus, the S-Box construction is investigated, through the construc-
tion based on the progressive incorporation of the coordinate Boolean functions.
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The construction will be confined to s-boxes with n ≥ m that satisfy the bal-
ance property which is reflected by balancing the number of occurrences of all
possible m-bit output vectors to be equal to 2n−m. Such as, an S-box with this
property is called regular. In this paper only n × m regular S-Boxes with input
n = 8 and output m ∈ {2, · · · , 8} are considered.

In this work the truth table representation is used contrarily to the majority
of existing methods that use the look up table representation of the S-Box. To
do so, a progressive construction is needed which allows to add progressively a
new Boolean function to an initial n × (m − 1) regular S-Box, in order to obtain
n × m regular S-Box. However, to maintain a good quality of the cryptographic
properties, it’s important that the new Boolean function possesses good crypto-
graphic properties and also all its nonzero combinations with the m−1 coordinate
Boolean functions forming the initial n × (m − 1) S-Box. This progressive con-
struction is initiated by the construction of a single Boolean function. For that,
any existing technique for the construction of cryptographically strong Boolean
function can be used. However, the new technique called Parallel Hill Climbing
is adopted during our experiment. Once the first Boolean function obtained,
the remaining Boolean functions are progressively constructed using the same
technique, but the search space will be restricted to the Boolean functions that
satisfy the regular property of the resulting S-Box.

Solution Representation. The first step in implementing any Heuristic model
is to choose the appropriate solution representation. The one used in this method
is the truth table of the output Boolean function where 2n represents the length
of a single Boolean function.

Search Space. The search space is defined by the balanced Boolean functions
that satisfy the regular property of n×m S-Box resulting from the incorporation
of the Balanced Boolean function called “candidate Boolean function” to an
initial regular n × (m − 1) S-Box. As for each Local Search Algorithm heuristic,
rules that define the neighbourhood of a candidate Boolean function are required.
In this work this neighbourhood is defined by all solutions that are obtained
by swapping two dissimilar bits (2-bits tweaking) according to the generation
process defined below.

Generation Process. Before defining the generation process, we need first to
define the move function between the individuals within this search space. The
move function is the function that transforms an element from the search space
to another. The move function here consists to swap two dissimilar bits that
maintain the regular property. In the proposed method, the generation process
is based on the moves that define the whole neighbourhood of a given Boolean
function containing the Boolean function resulting from applying the move func-
tion called two-bits tweaking which consists to tweak two complementary bits
(one and zero) of the truth table representation, in such a way that only Neigh-
bours that maintain the regular property of the resulting S-Box are retained.
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2-Bit Tweaking. The 2-bits tweaking technique is the swapping operation
between two bits of the treated Boolean function fi for i = {1,m}/m ≤ n
that maintains the regular property of the resulting n × m S-Box S. to do so,
these two bits to tweak must be carefully selected. For a given Vectorial Boolean
Function S:

S : S2n → S2m/S(f1, · · · , fm) (11)

The Boolean Function to tweak, fi for i ∈ {1,m} is defined as:fi : F2n → F2

and G the remainder Boolean function (for i = 2) or Vectorial Boolean function
(2 < i ≤ m), formed without the function to tweak fi such as:

G = S − fi = G(f1, · · · , fi−1) : G2n → G2m−1 (12)

The concept of Local Neighbourhood is adopted. Such as, the neighbour Nfi of
the 2-Local Neighbourhood (2 − LN) of the balanced function fi is obtained by
swapping any two dissimilar bits x, y ∈ Z

n
2 such as:

⎧
⎪⎪⎨

⎪⎪⎩

fi(x) = fi(y)
Nfi(x) = fi(y)
Nfi(y) = fi(x)
Nfi(z) = fi(z),∀z ∈ Z

n
2/{x, y}

(13)

The above conditions maintain the balance property of the coordinate Boolean
functions fi of the treated S-Box S during the tweak process. However, in the
Vectorial Boolean case, these conditions are not sufficient to ensure that the 2-
Local Neighbours obtained by 13 maintain the regular property of the Vectorial
Boolean function S. For that, additional conditions are required. To maintain the
regular property of the S-Box S, the set of 2 − LN is restricted to the elements
resulting from the tweak operation between the two positions i, j satisfying the
regular property defined by the following conditions: Let take f the coordinate
Boolean function of S to tweak, then:

⎧
⎨

⎩

xi, xj ∈ {0, 2n − 1} and xi �= xj

G(xi) = G(xj)
f(xi) �= f(xj)

(14)

These constraints are applied for each coordinate Boolean function fi of S. Thus,
the 2−LN set is reduced to the 2-Local Specific Neighbourhood (2−LSN). Con-
cretely, the 2-bits to tweak should be carefully selected to maintain the balance
and regular properties of the S-Box, which means the identification of the set of
2n−m tweakable 2-bits-pairs forming the 2 − LSN , for the n-variable coordinate
Boolean function to tweak, in relation to the m − 1 already accepted coordinate
Boolean functions. For that, the first step consists to extract the positions of
zeros (i) and ones (j) of the identical combinations formed by the 2n

2n−(m−1) com-
binations of the (m − 1) remaining coordinate functions, for I, j ∈ [0, 2n − 1].
Then, construct a set that regroups these n−(m−1) bits combinations with their
positions. Thus, As shown in Fig. 1, if the current Coordinate Boolean function
to climb is b7(m = 7) then for each combination of the 2n

2n−(m−1) combinations,
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(in this case 28

28−(7−1) = 64 different combinations of 2n−(m−1) = 28−(7−1) = 4
occurrences for each combination, such as, half of these occurrences match with
zeros and half of them match with ones of bm, which means that set of same
combination is matching with 2 zeros and two ones of b7). Then if the combi-
nation [b1, b2, b3, b4, b5, b6] = [1, 1, 0, 0, 0, 1] is taken as example, then four 2-bits
tweak are possible ([b70 , b771 ], [b70 , b7101 ], [b771 , b7234 ], [b7101 , b7234 ]), since each one
has two zeros as possible moves. Furthermore, the same operation is repeated for
each combination. So, the number of 2-bits tweaks possible for b7 is: (number of
ones corresponding to a given combination × the number of zeros corresponding
to the same combination) × number of combinations = (2×2)×64 combinations
= 256 solutions. With: Possible moves of a combination = number of ones ×
number of zeros.
2 − LSN(BFi) = Possible moves combination × number combinations
2 − LSN(BFi) = (2i−1 × 2i−1) × 2n−i = 22i−2+n−i

2 − LSN(BFi) = 2i+n−2, i ∈ {1, · · · , 8} (15)

Fig. 1. Two-bits-tweaking method

Initial Population. The generation of an initial population requires a method
to generate uniformly at random Balanced Boolean functions which maintain
the regular property when added to an initial regular s-box. In this method, the
generation of an initial population consists to generate randomly N Balanced
Boolean functions with a nonlinearity NL defined to be 108 ≤ NL ≤ 110. These
Boolean functions which are added to an n × m − 1 initial S-Box, must satisfy
the regular property of the resulting n × m S-Box.

Cost Function. Cost function plays an important role in the selection of the
best individuals during the generation process of any Heuristic model. Thus,
the more computation accuracy can give the used cost function on the targeted
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property, the more this property can be improved and with a higher speed. Sev-
eral Cost functions were proposed to improve the search accuracy of different
heuristics applied on Boolean functions and S-Box construction. Among these
cost functions the one proposed by Clark in [14] is the most famous. However,
Picek in [18] proposed an interesting cost function that gives better results what-
ever the heuristic applied. Thus, to select the best neighbour according to its
WHT or NL, a good cost function is required. In this paper the cost function
used is the one proposed in [18].

CF (S) =
N−1∑

i=0

H(S)l−i

2i
(16)

With H(S) is the histogram of absolute values of the Walsh-Hadamard Coeffi-
cients for an S-box S (if l > 10 then N = 10 else N = l).

4 Experimental Results

4.1 Boolean Function Construction

The experiment done for Boolean functions was the construction of Boolean
functions using PSAHC algorithm, with as a stop condition not only reaching
a nonlinearity NL = 116, but reaching the minimum value that the cost func-
tion can obtains before a certain number of evaluations. The Boolean function
proposed below under the hexadecimal format, represents one of thousands sim-
ilar results that reach the maximum optimisation following this method, for a
Nonlinearity, an Autocorrelation and an algebraic degree that respectively cor-
respond to NL = 116, AC = 24, AD = 7. The proposed Boolean function is:

66B482572291238CEE681DA0E075F63C3CDA4B9F315FA560313FBAAE6016E3ED

Table 1. Cryptographic properties comparison

Methods Properties

NL AD AC AWHD

0 4 8 12 16 20 24

PSAHC 116 7 24 16 0 16 64 80 64 16

In [27] 116 7 24 4 8 38 60 60 60 26

In [26] 116 7 16 4 16 28 48 76 64 20

Table 1 shows that the PSAHC method gives good results for the cryptographic
properties even if it starts from a random balanced Boolean function. Moreover,
PSAHC reaches the lowest Absolute Walsh Hadamard Distribution (AWHD),
meaning that the distance from a nonlinearity equal to 118 is the lowest [16,24].
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4.2 S-Box Construction

S-Box Nonlinearity with Coordinate Boolean Functions. In this exper-
iment, the PSAHC is used to construct progressively 8 × 8 S-Boxes by consider-
ing only the nonlinearity of the Boolean functions climbed (coordinate Boolean
functions). We call this version PSAHC1. The sample size is conducted by 150
S-Boxes.

Table 2. Absolute Walsh Hadamard Transform Distribution Comparison

No BF 2-LSN Avg. iterations Avg. number evaluations

BF1 16384 12.1466 3 932 160

BF2 8192 6.96 1 146 880

BF3 4096 7.9333 655 360

BF4 2048 9.1333 368 640

BF5 1024 10.9 225 280

BF6 512 14.1933 143 360

BF7 256 21.6733 112 640

BF8 128 75.5266 194 560

Table 2 aims to enumerate the average number of evaluations AvgNum Eval

needed for the PSAHC1 version to obtain an S-Box with a Nonlinearity of its
coordinate Boolean functions equal to 116, starting from a random BF with a
108 ≤ NL ≤ 110. To do so, this average number of evaluations is computed for
each Coordinate Boolean Function, according to its 2−LSN obtained by Eq. 15,
with the following formula:

AvgNum Eval(BFi)
= 2 − LSN(BFi) × P × Avg Iter(BFi), i ∈ {1, · · · , 8} (17)

From Table 2, it is concluded that the average number of evaluation needed to
construct 8 × 8 S-Box by PSAHC1 is 6778880 evaluations.

Table 3 represents the proposed S-Box obtained by the PSAHC1 version. The
proposed S-Box has a NL = 96, AC = 88, δ = 10, AD = 6 and LR = 255. For
its coordinate Boolean functions, the minimum, the maximum and the Average
nonlinearity are all equal to 116.

S-Box Nonlinearity with Component Boolean Functions. In this exper-
iment, the PSAHC is used to construct progressively 8 × 8 S-Boxes by consid-
ering the nonlinearity of all component Boolean functions. We call this version
PSAHC2. Table 4 represents the proposed S-Box obtained by the PSAHC2
version. The proposed S-Box has a NL = 102, AC = 96, δ = 10, AD = 6 and
LR = 255.

The Absolute Walsh Hadamard Distribution in Table 5 regroups the WHD of
the BFi and all the component Boolean functions involving BFi. The PSAHC2
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Table 3. Proposed S-Box using PSAHC1

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 05 9E CB 51 15 F9 85 21 BD 74 F5 9D 0C 8A 5C 67

1 C1 6A 63 75 28 06 5A 3B 3C E5 22 9C 64 93 92 F4

2 50 54 B5 71 4E 4A 8B 02 1D 1F 0D F0 72 1E 1A CF

3 33 49 A7 07 3E 25 A1 D6 C0 6C 73 7C 90 DA 60 68

4 FF A0 F6 20 F3 F7 91 36 27 BC BE 6B C7 52 29 56

5 2F 12 7E A8 E6 B8 2D D3 CC 62 E9 5D 30 57 69 5B

6 DD DB F2 04 66 58 61 4C 5F DE 94 FE 26 9A BA F1

7 95 AD B9 E1 48 CD E8 44 65 1C A3 B6 E7 E0 34 6E

8 19 7B FB AB DC BF 24 43 88 BB 18 EC D9 4B FD 4F

9 37 CA 6D C8 97 11 E4 FC 8D 2E 77 89 D2 9F C3 EF

A 3D 55 AE 8F 10 13 4D B3 47 A6 2B AF C5 6F A2 D8

B 96 17 A4 16 39 AC 76 C2 32 DF 81 53 14 3F 1B 3A

C 31 38 99 D5 35 41 0F D4 7D 0A A5 C4 9B FA ED 84

D 87 59 B2 98 EE B0 AA 01 8E 23 B1 70 D1 B4 CE 42

E 79 A9 D0 2A 2C 03 00 0E 08 0B 7F B7 5E 82 D7 40

F 80 83 C6 46 78 09 86 C9 F8 8C EA 7A E3 E2 45 EB

Table 4. Proposed S-Box using PSAHC2

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 72 83 C2 C4 C8 C1 DD 1B C6 25 80 9C 26 F0 18 6F

1 2C FB FC A6 28 4A 29 F5 DE 24 0E 9E A8 44 95 8E

2 47 85 32 3E A5 E3 02 A3 A2 75 B0 53 37 E4 EF E9

3 0C BF 1C 58 42 01 CF 56 AF 67 90 43 93 6E 3F 0A

4 D0 6C 9D 6B C0 5E F3 9F ED BE DF 76 65 51 22 86

5 78 13 87 2A 0F C7 35 07 91 D2 73 5B 9A AA CD 59

6 79 63 66 FD A0 1E 4F 30 E7 C9 E1 C5 C3 19 F7 6D

7 62 34 11 97 2F AD F8 D5 84 D6 D4 EB D3 DA 21 B1

8 6A A7 D9 AB 82 81 96 10 0B B3 8B 70 8A 7D F6 EE

9 1D D1 E0 F4 4D 3B 39 CB 17 BB FE 5F E5 B9 1F 7C

A 03 D8 46 3D A1 B2 1A A4 50 FF 69 E8 88 3A 4C 5D

B F2 BD 7F 64 7E 71 B4 0D 36 8C 74 9B 52 E6 E2 B7

C 4B 2B BC 12 CC 5A 92 B6 77 7B F9 AE 8F D7 EC 08

D 16 05 8D 5C 09 FA 04 15 33 31 CA 94 14 2E 68 AC

E 41 38 45 99 B5 23 3C 49 20 61 48 7A 98 CE 55 A9

F DB 54 4E B8 06 89 BA DC 60 57 F1 40 27 2D EA 00
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Table 5. Absolute walsh hadamard distribution of component boolean functions for
progressive construction

BFi NL S-NL AWHD

0 2 4 6 8 10 12 14 16 18 20 22 24 26

BF1 116 116 16 0 16 64 80 64 16

BF2 114 114 40 60 53 82 96 98 67 16

BF3 112 112 74 143 144 151 170 153 120 65 4

BF4 112 110 222 291 343 260 286 230 233 113 68 2

BF5 110 108 361 698 672 621 550 441 326 228 137 60 2

BF6 112 106 799 1507 1383 1231 962 812 618 403 271 142 60 2

BF7 106 104 1616 3126 2706 2359 2107 1612 1127 760 500 276 135 59 1

BF8 108 102 3424 6147 5646 4775 4031 3058 2238 1489 926 526 316 132 59 1

results show that the for n × m S-Box (n = 8,m ∈ {1, · · · , 8}), the n × m S-
Boxes nonlinearity (S-NL) decreases progressively by one level for each value of
m, starting with NL = 116 and ending with NL = 102 when m = 8.

Table 6. Comparison on the coordinates boolean functions nonlinearity

S-Box 1 2 3 4 5 6 7 8 Avg.

PSAHC 1 116 116 116 116 116 116 116 116 116

AES-S-Box 112 112 112 112 112 112 112 112 112

PSAHC 2 116 114 112 112 110 112 106 108 111.25

In [22] 110 110 110 110 112 112 110 110 110.5

In [21] 108 108 108 110 110 110 110 108 109

In [20] 108 108 108 108 108 108 108 108 108

It is clear from the comparison of the proposed method with the existing ones
in Table 6, that the PSAHC1 version proposes the highest nonlinearity that can
be obtained for the coordinate Boolean functions of an S-Box and their average
nonlinearity.

5 Conclusion and Future Work

Through the preliminary tests, we conclude that the proposed method is very
efficient for the both Boolean functions and S-Boxes construction cases. Thus,
the PSAHC method ensures to get deterministically a nonlinearity equal to
116 for 8-variables Boolean functions and the lowest AWHD for the best results.
While for the S-Box case, the maximum nonlinearity obtained with the PSAHC1
version is 96. However, to the best of our knowledge, it is the first method
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that can propose an unlimited number of S-Boxes with a nonlinearity of their
coordinate Boolean functions equal to 116. Furthermore, the nonlinearity is not
more than 102 with the PSAHC2 version. In addition, this nonlinearity of 102 is
achieved deterministically for PSAHC2 with a best case, having a distance of only
one Affine Boolean function from a 104 nonlinearity (with only one component
BF with NL = 102, which has only one value in the highest coefficient of
AWHD [26, 1]), which is close to the maximum nonlinearity (104) that can be
obtained by the existing approaches based on heuristics over a random initial
start1 population or individual.

Moreover, S-Box construction technique proposed in this paper, which is
based on the progressive incorporation of coordinates Boolean functions high-
lights the previous research done around the construction of Boolean functions
with good cryptographic properties. Thus, existing methods can be used to con-
struct the first coordinate Boolean function of the S-Box.

As future work, this method can be examined with other cryptographic prop-
erties, like the autocorrelation.
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Abstract. The public key cryptographic algorithm SM2 is now widely
used in electronic authentication systems, key management systems,
and e-commercial applications systems. As an asymmetric cryptographic
algorithm is based on elliptic curves cryptographic (ECC), the SM2 algo-
rithm involves many complex calculations and is expected to be suffi-
ciently optimized. However, we found existing SM2 implementations are
less efficient due to the lack of proper optimization. In this paper, we
propose Yog-SM2, an optimized implementation of SM2 digital signa-
ture algorithm, that uses features of modern desktop processors such as
extended arithmetic instructions and the large cache. Yog-SM2 utilizes
new features provided by modern processors to re-implement functions
of big number arithmetic, prime field modular, elliptic curve point calcu-
lation, and random number generation. The use of these new hardware
features significantly improves the performance of both SM2 signing and
verifying. Our experiments demonstrated that the execution speed of
Yog-SM2 exceeds four mainstream SM2 implementations in state-of-the-
art cryptographic libraries such as OpenSSL and Intel ippcp. In addition,
Yog-SM2 also achieves a better performance (97,475 sign/s and 18,870
verify/s) against the OpenSSL’s optimized implementation of ECDSA-
256 (46,753 sign/s and 16,032 verify/s, OpenSSL-1.1.1b x64) on a main-
stream desktop processor (Intel i7 6700, 3.4 GHz). It indicates that SM2
digital signature is promising in a widespread application scenarios.

Keywords: SM2 Digital Signature Algorithm · Instruction set
extensions · Elliptic curve cryptography

This work was partially supported by the Key Program of National Natural Science
Foundation of China (Grant No. U1636217), the General Program of National Natural
Science Foundation of China (Grant No. 61872237), the National Key Research and
Development Program of China (Grant No. 2016QY071401), and the Major Project of
Ministry of Industry and Information Technology of China (Grant No. 2018-36). We
especially thank Ant Financial Services Group for the support of this research within
the SJTU-AntFinancial Security Research Centre.

c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ICICS 2019, LNCS 11999, pp. 430–446, 2020.
https://doi.org/10.1007/978-3-030-41579-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41579-2_25&domain=pdf
https://doi.org/10.1007/978-3-030-41579-2_25


Accelerating SM2 Digital Signature Algorithm 431

1 Introduction

Issued by the State Cryptography Administration of China on December 17th,
2010, SM2 public key cryptographic algorithm is an asymmetric cryptography
algorithm based on elliptic curves cryptography (ECC) and can be used to imple-
ment digital signature algorithm (DSA), key exchange protocol, and public key
encryption. Later, SM2 digital signature algorithm was officially defined as an
international standard in ISO/IEC14888-3/AMD1 on November 3rd, 2017. In
reality, SM2 has been widely adopted in various application scenarios especially
for financial industries (e.g., the bank transaction system [7]), industrial systems
(e.g., PetroChina [2]), blockchain [8], and data protection (e.g., video conference
program [13]).

Theoretically, elliptic curve based digital signature algorithms not only
achieve a better security but also requires a smaller storage compared to the
RSA digital signature algorithm. Thus, existing software products are recom-
mended to update their crypto components in using such digital signature algo-
rithms such as SM2DSA (SM2 Digital Signature Algorithm) and ECDSA (Ellip-
tic Curve Digital Signature Algorithm). However, this implementation scheme
significantly affects the actual execution speed of digital signature algorithms in
real-world crypto libraries. For SM2DSA, it is generally more complex than the
state-of-the-art ECDSA due to its structure and chosen parameters. In response,
a series of researches [30,36–38] focus on improving the performance of SM2DSA.
Previous researches [32,39] mainly study how to optimize SM2 at the hardware
level. From the perspective of software optimization, Gueron et al. [29] aimed
at optimizing two crucial operations–point-addition (PA for short) and point-
doubling (PD for short) by implementing them in different coordinates. A more
comprehensive work introduced by Brown et al. [28] is to optimize PD operation
in Jacobian coordinates, PA in mixed Affine-Jacobian coordinates, fixed-point
scalar multiplication by comb method with two tables, and free-point scalar mul-
tiplication by window NAF (non-adjacent form) method.

Unfortunately, we observed that seldom research considers how to exploit
features of modern processors (e.g., instruction set extensions of Intel core and
AMD Ryzen) to improve the execution speed of SM2DSA, although such features
have being utilized by many state-of-the-art cryptographic libraries to achieve
a highly-optimized version of ECDSA. For instance, in the latest OpenSSL (i.e.,
OpenSSL-1.1.1+), the optimized version of ECDSA executes three times faster
than the compatible version (i.e., the one without involving new features of pro-
cessors), and 23 times faster than its SM2DSA implementation (i.e., the one
without involving new features of processors). If similar features of modern pro-
cessors can be utilized by SM2DSA, the performance is expected to be improved
significantly.

In response, in this paper we propose Yog-SM2, an optimized SM2DSA imple-
mentation by utilizing various hardware features of modern desktop processors.
In detail, Yog-SM2 customizes functions of big number arithmetic, modular
operations, scalar multiplication, and random number generator using
extended arithmetic instructions provided by cutting-edge processors. Through
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applying such hardware based optimizations, Yog-SM2 achieves a considerable
execution speed (97,475 sign/s and 18,870 verify/s) against its counterpart
ECDSA of OpenSSL-1.1.1b x64 (46,753 sign/s and 16,032 verify/s) on an Intel
i7 6700 processor. Moreover, Yog-SM2 outperforms four mainstream implemen-
tations of SM2DSA in state-of-the-art open source cryptographic libraries. To
the best of our knowledge, Yog-SM2 is the most efficient SM2DSA implementa-
tion with nowadays desktop processors.

In summary, this paper achieves the following three contributions:

– We built Yog-SM2, a processor level optimized SM2DSA implementation. It
fully utilizes various features of modern processors and thus significantly
reduces the execution overhead of both signature and verification.

– Yog-SM2 re-implement many low-level functions such as a novel fixed-point
scalar multiplication scheme which only consumes 31 PA operations to imple-
ment a 256-bit scalar multiplication for a specify base point on target elliptic
curve, and a specific random number generator with only 82 instructions
executed. This guarantees that Yog-SM2 is highly compact and efficient.

– Yog-SM2 not only outperforms existing SM2DSA implementations but also
ECDSA implementations. The design and implementation of Yog-SM2 are
expected to help designers of cryptographic algorithms to optimize other
ciphers especially public key ciphers.

2 Background

2.1 SM2 Implementation

SM2 is an elliptic curve public key cryptographic algorithm issued by Chinese
State Cryptography Administration on December 17th, 2010 [12]. Later, it was
officially included in ISO/IEC14888-3/AMD1 on November 3rd, 2017. SM2 can
be used for key-exchanging, data encryption and decryption, digital signature
and verification [19–23]. In this paper, we only focus on digital signature.

To implement a SM2DSA algorithm, a series of complex calculations with
both big numbers and elliptic curves are required. In practice, a typical imple-
mentation of SM2 requires the following functions as illustrated in Fig. 1. In the
following, we introduce key functions in SM2 implementation:

– Big Number Arithmetic Functions: Big number arithmetic functions are
fundamental for SM2. Those functions perform the basic arithmetic calcula-
tion (e.g., add, mod) of big number (e.g., 256-bit). Cryptographic libraries
(e.g., OpenSSL [17] and Botan [5]) often implement their own big number arith-
metic functions, or refer to some big number library such as the GNU MP
(GMP) Bignum Library [9]. They usually support any length of big number
for compatibility.

– Prime Modular Functions: Prime modular functions implements the oper-
ations of modular multiplication, modular square, modular inversion, etc. In
addition, modular operations are usually used with arithmetic operations.
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Fig. 1. Overview of SM2DSA algorithm

For example, a modular multiplication contains two operations: a multiplica-
tion and a modular reduction. Another feature for prime modular functions is
that they will be involved when we convert a point from Jacobian coordinates
to Affine coordinates. Note that most modular functions are time-consuming
operations and thus directly influence the performance of both signature and
verification functions.

– Elliptic Curve Functions: As the basic calculation of Elliptic Curve points,
the PA and PD operations are basis of the elliptic curve point scalar mul-
tiplication. Scalar multiplication is classified to two types: fixed-point scalar
multiplication and free-point scalar multiplication. Fixed-point scalar multi-
plication is used in both signature function and verification function, while
free-point scalar multiplication is only used in verification function.

– Random Number Functions: The generation of an SM2 digital signa-
ture requires a random number to prove its security. To obtain a secure ran-
dom number, traditional implementations usually need to collect information
about the current environment to first generate a seed with high entropy, and
then use a pseudo random number generator (PRNG) to extend the seed to
a random number (e.g., 256-bit).

In addition to those functions, most SM2 implementations would provide
high-level sign and verify interfaces to help generate digital signatures as well
as verify them.
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2.2 Features of Modern Processors

Modern processors (e.g., Intel CPUs with Skylake or CoffeeLake micro-
architecture) introduces a plenty of new instruction set extensions and hard-
ware features to boost the executions of different programs. First, most mod-
ern processors obtain multiple 64/128/256-bit registers and large caches (e.g.,
8M L3 cache). These features allow software to load more data into cache
and registers to perform complex computation. Especially for vector compu-
tation (e.g., multimedia processing technology) and cryptographic algorithm,
and those new features can efficiently accelerate their processing procedure
and speed the performance of application. Second, each generation of main-
stream processors often introduce new instruction set extensions. Except the
basic x86/64 instruction set, the latest generation of Intel Core processor (i.e.,
codename Coffee Lake) contains 30 instruction extensions (MOVBE, MMX, SSE,
SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL,
FSGSBASE, RDRND, FMA3, F16C, BMI, BMI2, VT-x, VT-d, TXT, TSX,
RDSEED, ADX, PREFETCHW, CLFLUSHOPT, XSAVE, SGX, MPX ). The
instruction set extensions cover a diverse range of application domains and pro-
gramming usages.

3 Yog-SM2

In this section we present Yog-SM2, a highly-optimized implementation of the
SM2DSA algorithm. Yog-SM2 fully utilizes several features of modern proces-
sors such as Intel Core and AMD Ryzen, and achieves a considerable perfor-
mance increase in comparison with its counterpart (i.e., the optimized ECDSA
in OpenSSL). In detail, Yog-SM2 leverages both new instruction extensions of
modern processors and hardware characteristics (e.g., larger cache) to optimize
functions of big number arithmetic, modular operations, scalar multi-
plication, and random number generator. In addition, Yog-SM2 adopts a
redundant instruction removal policy to implement instruction-level effi-
cient operations. In the following, we elaborate how Yog-SM2 implements each
optimization.

3.1 Optimization Strategies

Extended Arithmetic Instructions. Since the calculations of elliptic curve
involves a large number of arithmetic operations, Yog-SM2 utilizes extended
arithmetic instructions to boost the execution (see Sects. 3.2 and 3.3). In detail,
Yog-SM2 utilizes three instructions including mulx, adcx and adox. Table 1 gives
a detailed descriptions about the mentioned instructions. These instructions are
alternative versions of existing x86 instruction (mul, and adc) and fulfil the oper-
ations of multiple and addition, respectively. However, these three instructions
are designed to support two separate carry chains and thus are used to speed up
large integer arithmetic [34]. For instance, the mulx instruction does not affect
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any flag when executing, and the operating results can be saved in any common
registers, which is more convenient than the original mul instruction. Moreover,
this instruction does not overwrite the source operands.

Large Capacity On-Chip Storage. Nowadays processors often carry larger
cache (e.g., 16 MB L3 cache) and registers with 64 to 512 bits. These features
are leveraged to optimize our Yog-SM2. First, Yog-SM2 adopt a large look-up
table (i.e., 512 KB) to accelerate the computation of fixed-point scalar multipli-
cation (see Sect. 3.4). The look-up table contains 8,192 elliptic curve points in
Affine coordinates. Traditionally, this occurs a frequent memory access and may
introduce performance penalty. However, on modern processors the use of this
table benefits from the large cache. Second, since most modern processors sup-
port 64-bit registers, the arithmetic operations in Yog-SM2 are fully optimized
using 64-bit instead of 32-bit registers. In this way, the calculation is sufficiently
boosted.

Table 1. Extended instructions used by Yog-SM2 to optimize arithmetic operations

Instruction Instruction set Description

mulx r64a, r64b, r/m64 BMI2 Unsigned multiply of r/m64 with
RDX without affecting arithmetic
flags

adcx r64, r/m64 ADX Unsigned addition of r64 with CF,
r/m64 to r64, writes CF

adox r64, r/m64 ADX Unsigned addition of r64 with OF,
r/m64 to r64, writes OF

3.2 Big Number Arithmetic Optimization

To optimize the big number arithmetic, we fully utilized 64-bit registers and the
extended arithmetic instructions in modern processors.

Big Number Multiplication. When preforming big number multiplication
c = a ∗ b (a, b and c are 256 bits number), Yog-SM2 separates the multiplication
procedure into several rounds with each round calculate a[i]∗b[j] (i and j between
0 and 3, and each a[i] or b[j] is 64 bits and store in a single 64-bit register). In each
round, Yog-SM2 first performs a multiplication operation with mulx instruction,
followed by a serial of addition operations with adcx or adox instruction. Those
serial addition operations are to add the product that the mulx instruction
produces to the final result c. By using new instructions, only the CF flag or
OF flag would be affected, and thus the overhead is much lower.
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Big Number Modular. When performing modular operation, Yog-SM2 does
not use the traditional “conditional subtraction” method (e.g, calculating c =
a mod b to judge the condition a > b, if satisfied, performs a subtraction).
Instead, it uses a non-branch and sequential execution method to execute the
modular subtraction. The idea for non-branch and sequential execution benefits
from two instructions: cmovz and cmovnz [6]. These two instructions are the
variants of mov instruction which performs different actions (e.g., move data or
not) according to the zero flag ZF of EFLAGS register. By utilizing these instruc-
tions, we avoid the penalty of execution prediction failure and thus make better
use of the CPU resources.

Another optimization for modular operation is to merge it with other oper-
ations. Aiming at higher performance, merging modular operation with other
operations could reduce unnecessary instructions as well as extra memory
accesses. For example, Yog-SM2 implements a big number modular addition oper-
ation modAdd instead of two separated functions (a modular operation and a
addition operation). When it is frequently invoked, the cost of function call and
return is reduced from twice to once.

3.3 Modular Operation Optimization

The implementation of Yog-SM2 adopts optimized modular multiplication and
modular inversion, which benefit from the extended arithmetic instructions.
Moreover, we improve the Montgomery modular multiplication by integrating
multiplication operation into modular operation to reduce memory access oper-
ations and increase the efficiency of register usage. At the same time, we inline
all sub functions of modular inversion to accelerate its procedure.

Modular Multiplication. We optimized the traditional Word-by-Word Mont-
gomery Friendly Multiplication (WW-MF ) algorithm used in modular multipli-
cation with the mulx, adcx, and adox instructions. For two 256-bit numbers a and
b (both can be saved by four 64-bit registers), the calculation of multiplication
can be divided into four rounds:

1. Calculate a ∗ b[0], (b[0] is the less signification 64 bits of b)
2. Calculate a ∗ b[1],
3. Calculate a ∗ b[2],
4. Calculate a ∗ b[3], (b[3] is the most signification 64 bits of b)

Here we utilize extended arithmetic instructions to fulfil the multiplication and
addition operations. Moreover, we notice that the original WW-MF algorithm is
first to calculate the multiplication of a and b, storing the result into a temporary
512-bit variable T (which costs eight registers to store it), and then to reduce T
from 512 bits to 256 bits by four rounds. In order to optimize the use of registers,
we customized this algorithm to integrate four rounds of multiplication operation
with four rounds of reduction operation. In other words, we perform one round
of reduction operation after one round of multiplication operation. By this way,
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only six instead of eight registers are needed to save the intermediate results.
Moreover, since the modular P used by SM2 is a Montgomery friendly modular
(satisfying −P−1mod 2s = 1, s is the word size of current machine, in our
environment, s = 64), the reduction steps can be further optimized from five
steps to four steps.

Modular Inversion. To optimize the modular inversion operation of SM2DSA,
we re-implement big number (256-bit) shift-left, shift-right, addition, and sub-
traction functions, which are used by the Almost Montgomery Inversion [35]
(AlmMonInv for short) algorithm, a core algorithm for modular inversion (Alm-
MonInv algorithm is used to support both modular N inversion operation and
modular P inversion operation, where N is the order of the base point G in ellip-
tic curve and P is the prime number). We re-implement those functions with
adcx and adox instructions, and inline all sub function in modular inversion to
avoid function call and unnecessary memory access operations. In this way, the
modular inversion operation is significantly optimized.

3.4 Scalar Multiplication Optimization

The optimization of scalar multiplication is divided into two steps: we first gen-
erate a look-up table for fixed-point scalar multiplication and reduce the com-
plexity to only 31 PA operations; then we use an adaptive window NAF method
to determine the best window for free-point scalar multiplication.

Fixed-Point Scalar Multiplication. We proposed a look-up table based
fixed-point scalar multiplication that reduces the complexity to exactly 31 PA
operations for a 256-bit scalar. The signing of SM2 requires a product of G (the
base point of the elliptic curve of SM2 algorithm) with a 256-bit random scalar
k. By splitting k into 32 bytes (k = (k31, ..., k0)) and pre-computing 256 possible
elliptic curve points Pi = ki ∗ 28i ∗ G, we generate 8,192 pre-computed points
as a look-up table. Note that it consumes less storage space to represent the
elliptic curve point in Affine coordinates than in Jacobian coordinates (i.e., 64
bytes for one point). Our table stores each elliptic curve point using the Affine
coordinates. In total, the size of the look-up table is 512 KB.

When the signing process needs to compute k * G for arbitrary k, it inquires
the look-up table according to certain value of ki and directly obtains the point
Pi. Then it only conducts 31 PA operations to add these pre-computed points to
get the result of k * G. As a result, we speed up the SM2 algorithm substantially.

Free-Point Scalar Multiplication. We found that traditional window method
wNAF to optimize the free-point scalar multiplication fails to set the most opti-
mized parameter (i.e., the window size w) for different processors. In Yog-SM2,
the best value of w is determined at runtime. Yog-SM2 will choose different value
of w used by wNAF and find the best one. In detail, Yog-SM2 evaluate the fol-
lowing runtime metrics–modular multiplication, modular square, and modular
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inversion. For instance, on a platform with Intel i7 6700 (3.4 GHz) processor, the
result shown in Table 2 demonstrates that Yog-SM2 should set w to 3 to obtain
the best performance. In comparison, GmSSL [10] and Intel-ippcp [11] both adopt
a wNAF with fixed w = 5, which are not adaptive to various processors.

Table 2. Performance of wNAF method for different window

Window w Complexity Running-time (us)

M S I

2 1,712 1,282 - 47.85

3 1,551 1,224 1 45.36

4 1,477 1,196 3 46.66

5 1,449 1,185 7 56.02

M : modular multiplication; S: modular square; I:
modular inversion.

3.5 Random Number Generator

Random number is crucial to SM2 algorithm. During an SM2 signing, it needs a
256-bit random k to help compute the signature. In addition, the random num-
ber generator is also used to generate the private key for the digital signature.
We observe that generating a random number is usually time-consuming. Tradi-
tionally, to generate a (pseudo) random number, a large number of information
about the current environment (e.g., memory usage statistics, current process
ID, system performance counter, etc.) is collected. Hence, a software pseudo
random number generator often executes tens of thousands of instructions to
generate a random number.

To optimize the generation of random number, Yog-SM2 utilizes the Intel
RDRAND hardware instruction [24] to generate random number for SM2 Sign-
ing. RDRAND is an instruction to obtain random numbers from an on-chip
hardware random number generator. It is part of the Intel 64 and IA-32 instruc-
tion set architectures and is available in Intel Ivy Bridge processors and the suc-
cessors. AMD also added support for the instruction in June 2015. By using this
feature, Yog-SM2 only needs to execute 82 instructions (including the RDRAND
instruction) to get a 256-bit random number securely.

3.6 Redundant Instruction Removal

We observe that the implementation of PD and PA functions contain many
redundant instructions. We can remove those unnecessary instructions and thus
significantly improve the performance. Figure 2 demonstrate a concrete exam-
ple of redundant instruction removal. In Fig. 2(a) the function foo follows the
convention of parameter passing follows the Windows x64 Application Binary
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Interface (Windows x64 ABI) standard [3]. However, its function prologue (top
box in dashed line) and function epilogue (bottom box in dashed line) are redun-
dant and can be removed. Usually, function prologue and epilogue are necessary
to save and restore the execution context of the caller at the invoking site. In our
case, however, if the caller and the callee function (i.e., (foo)) DO NOT share
registers and stacks. we can remove those unnecessary function prologue and
epilogue to reduce memory accesses and thus significantly improve the perfor-
mance.

1. foo PROC PUBLIC
2. push r12
3. push r13
4. sub rsp 8
5. mov r12, rcx
6. mov r13, rdx
7. add r12, r13
8. mov rax, r12
9. add rsp 8
10. pop r13
11. pop r12
12. ret
13. foo ENDP

1. foo PROC PUBLIC
2. mov r12, rcx
3. mov r13, rdx
4. add r12, r13
5. mov rdi, r12
6. ret
7. foo ENDP

(a) Original function (b) Optimized function

Fig. 2. Function prologue and epilogue comparison in assembly form

Figure 2(b) shows the optimized form of the original function. The memory
access operations (instructions in the box with dashed line) are removed in the
optimized version while the functionality is equivalent to the original version.
Note that this redundant instruction removal only works if certain requirements
are satisfied: (1) Except for RSP and RIP registers, all other registers are inher-
ently volatile in callee functions (e.g., function foo). The optimized convention
gives the callee functions the ability to use any common registers without stor-
ing them in function prologue and restoring them in function epilogue. (2) All
common registers (except RSP and RIP registers) should be saved in callers
(functions who call the foo). Only by this way can we use all registers in callee
functions freely. (3) The way to pass parameters is different from the original
convention. Fortunately, in our SM2 implementation the PD and PA functions
are suitable for applying such instruction removal. As a result, Yog-SM2 could
benefit from a more compact version of primitive functions.

4 Evaluation

To evaluate Yog-SM2, we first analyzed its computation complexity and then
tested its actual execution performance. For computation complexity, we
counted numbers of executed modular multiplication (M ), modular squaring
(S ), modular inversion (I ), and division (D). For execution performance, we
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counted instructions executed for signing and verifying, respectively. In addition,
we compared the performance of Yog-SM2 to that of other four libraries including
GmSSL, OpenSSL, Botan, and Intel-ippcp.

Our experiments were conducted on a workstation with an Intel core i7 6700
processor (3.4 GHz), 16 GB DDR4 memory, and 512 GB SSD. The operating
system is Windows 7 (x64) and the compiler to generate binary code is Visual
C++ 2015.

Table 3. Complexity analysis of popular SM2 implementations

Library Sign Verify

M S I D M S I

GmSSL-2.5.0 290 109 2 - 2,061 1,401 1

OpenSSL-1.1.1b 3,871 1,802 1 - 2,641 1,569 1

Botan-2.10.0 903 338 2 - 4,105 2,820 1

Intel-ippcp 2019u3 301 109 2 1 2,049 1,397 1

Yog-SM2 263 97 2 - 1,905 1,333 1

4.1 Complexity Analysis

We first analyzed the computation complexity of SM2 algorithm implemented
in Yog-SM2 and other four mainstream cryptographic libraries. The results are
shown in Table 3. Apparently, Yog-SM2 is the most efficient implementation for
both signature operations and verification operations. Because of the optimized
look-up table, fixed-point scalar multiplication reduces the needed calculations.
To sign a message, Yog-SM2 only required 263 modular multiplication, 97 modu-
lar squaring, and two modular inversion. While performing a signature verifica-
tion, Yog-SM2 proceeded 1,905 modular multiplication, 1,333 modular squaring,
and one modular inversion. We also observed that OpenSSL has the highest com-
plexity for the signature operation. Consider the verification operation, Botan

has the highest complexity. By manually inspected their code, we found the
root cause of such a high complexity: (1) OpenSSL adopts the Montgomery lad-
der algorithm [16], a constant time algorithm, to sign messages. This signifi-
cantly increases the complexity. (2) Botan uses the Binary algorithm for both
free-point scalar multiplication and fixed-point scalar multiplication in verifica-
tion. Although code reuse makes the SM2 implementation of Botan more concise,
it raises the computation complexity.

4.2 Execution Performance

We first used the number of executed instructions to evaluate the performance
of different SM2 implementations. Results are depicted in Fig. 3. Comparing
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Fig. 3. Performance comparison of SM2 algorithm for each library

Fig. 4. Instruction consumption of each module in Yog-SM2

with the other SM2 implementations, Yog-SM2 averagely executed only 95,189
instructions for each signature operation, and 623,989 instructions for a verifica-
tion operation. The other implementations operated more instructions. Specifi-
cally, the instructions executed by the SM2 implementation of OpenSSL is 63.9
times higher for signing and 7.9 times higher for verification. The low efficiency
might be caused by its applicable security and compatibility for most platforms.

We also noticed that OpenSSL provides a specialized version of ECDSA that
can be used on latest processors. To compare our optimization strategies and that
of OpenSSL-ECDSA, we tested Yog-SM2 against OpenSSL’s optimized imple-
mentation of ECDSA-256 on a mainstream desktop processor (Intel i7 6700,
3.4 GHz). Yog-SM2 achieves the speed of 97,475 sign/s and 18,870 verify/s against
a 46,753 sign/s and 16,032 verify/s speed of OpenSSL-1.1.1b x64. The result proves



442 L. Mai et al.

that Yog-SM2 is also scalable to be extended to a specific platform for perfor-
mance improvement.

In order to analyze the instruction composition of Yog-SM2 in detail, we
divided Yog-SM2 into different modules and separately analyzed instruction
consumption. Figure 4 describes results of instruction consumption, in which
Fig. 4(a) and (b) show the consumption of signature instruction component and
verification component, respectively. For each round of signature, the random
number generator of Yog-SM2 only consumes 82 instructions on average. The
fixed-point scalar multiplication operation contains consumption of PA opera-
tions, which consumes 66.22% of all instructions, The conversion from Jacobian
coordinates to Affine coordinates is also involved whose consumption is almost
the same as the modular inversion operation. To execute the modules in ver-
ification instruction component, on average, fixed-point scalar multiplication
and free-point scalar multiplication executes 10.10% and 86.61% of instructions,
respectively. It is worth pointing out that fixed-point scalar multiplication con-
sumes the same for both signature and verification because branches are not
created if there is no infinity-point (zero point) for fixed-point scalar multiplica-
tion operation.

Comparison of Hardware Improvement. To quantitatively measure the
effect of using new features in hardware (i.e., modern processors), we compared
the performance of Yog-SM2 with its compatible version–Yog-SM2/C. To make
Yog-SM2/C be suitable for all platforms without utilizing new features in mod-
ern processors, we replaced all hardware-dependant instructions with compatible
x86 instructions and removed all assembly code. The experiment showed that
Yog-SM2/C only signs 13,079 times and verifies 1,993 times per second, respec-
tively.

Table 4. Instruction consumption of each core module for Yog-SM2/C and Yog-SM2

Module name Yog-SM2/C Yog-SM2 Percentage of
instruction
reduction

Modp Sqr 610 185 69.7%

Modp Mult 694 223 67.9%

Modp Inv 107,170 14,391 86.6%

Random Gen 5,492 82 98.5%

Fixed-point Mult 365,068 62,475 82.9%

The comparison result of Yog-SM2/C and Yog-SM2 is shown in Table 4.
The instruction consumption of modular squaring and modular multiplica-
tion in Yog-SM2 reduce 69.7% and 67.9% of instructions while comparing with
Yog-SM2/C. Modular inversion in Yog-SM2 consumes 223 instructions, which
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achieves 86.6% reduction of instruction consumption. For the random number
generator, we used BCryptGenRandom provided by Microsoft in Yog-SM2/C and
implemented rdrand provided by Intel in Yog-SM2. As a result, generating a 256-
bit random number costs 5,492 instructions for Yog-SM/C, but only 82 instruc-
tions for Yog-SM2. In total, Yog-SM2 reduces 98.5% instructions.

We also tested the SM2 implementation of OpenSSL-1.1.1b and found the
similar result. The SM2 implementation of OpenSSL-1.1.1b can only sign 1,988
times and verify 2,326 times per second, respectively. In comparison, the ECDSA-
256 (46,753 sign/s and 16,032 verify/s, OpenSSL-1.1.1b x64) achieves a much
better speed. Without the accelerating of hardware features, SM2DSA can hardly
replace ECDSA in high-performance computation scenarios.

5 Discussion

Since the core operations in Yog-SM2, including PA operation, PD operation and
all the called sub functions (e.g., modular multiplication, modular square etc.),
were implemented in assembly form, the following optimizations are brought:

– Since the assembly code is not generated relying on source code compilation,
a number of unnecessary instructions are eliminated.

– Redundant instructions such as unnecessary push and pop are removed by
the method redundant instruction removal.

– As the core operations can fully utilize the extensive register resources by
calling new instructions in modern processors in Windows x64 platform, data
transfers are mainly carried in registers to speed up the calculation.

Nonetheless, this implementation also causes a scalability limitation. Because the
assembly code may vary in different platforms, Yog-SM2 is hard to be directly
applied to another platform. For example, the assembly code for Windows cannot
run on Linux directly.

Note that cryptographic libraries (e.g., OpenSSL, Libreswan [14]), that rely
on certain hardware features for cryptographic algorithms acceleration [4,15,
18], can only be applied to block ciphers and hash function. For instance, in
OpenSSL, Intel Advanced Encryption Standard Instructions [1] have been used
to accelerate the AES algorithm, and Intel SHA Extensions [25] are used for
SHA1 and SHA-256 algorithms. However, these cryptographic instructions can
only be applied to block ciphers and hash functions. Unlike those cryptographic
libraries, Yog-SM2 utilizes a general-purpose hardware feature to optimize public
key ciphers.

6 Related Work

SM2 algorithm can be optimized through two aspects, hardware and software.
For SM2 hardware optimization, previous works focused on implementing SM2
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algorithm in FPGA and on ASIC chip respectively. Existing software implemen-
tation mainly concerned about PA and PD operations, modular inversion, and
modular multiplication operations are commonly used instead.

PA and PD Operations. Brown et al. analyzed the operations PA and PD
in different coordinates. Specifically, they assessed the complexity and running-
time overhead of the fixed-point scalar multiplication with difference implemen-
tations including binary methods, binary NAF methods, window NAF methods,
fixed-based windows methods, and fixed-based comb methods. Nonetheless, new
features in modern processors (e.g., large caches) are not utilized. To speed up
the operations of PA and PD, Gueron et al. converted the point representation
from Affine coordinates to Jacobian coordinates. The operations PA and PD
are carried to Jacobian coordinates, in which the calculations of PA and PD is
faster than those in Affine coordinates.

Modular Inversion Optimization. Kaliski et al. [31] proposed a method for
modular inversion in Montgomery domain, which helps modular inversion oper-
ation avoid trial of division operation. To improve the efficiency of the above
mentioned Montgomery modular inversion algorithm, both Savas et al. [35] and
Xu et al. [36] proposed optimized algorithms. Savas et al. boosted the second
phase of the algorithm. Comparing with the original algorithm, the second phase
achieves 6.69 times of increase while giving 160 bits of data and the whole algo-
rithm improves 1.36 times of increase. Besides, Sen Xu et al. proposed an efficient
constant-time implementation of modular inversion, which relies on the prime
field base on the Fermat’s little theorem. Their implementation improved 89%
of the modular inversion operation for 256 bits prime number.

Modular Multiplication Operations. Montgomery [33] proposed an algo-
rithm to calculate modular multiplication without trial division. However, the
implementation is not fully optimized. Barrett [27] proposed Barrett reduction
algorithm to reduce a number. The above works are further improved by Brown
et al. They proposed an algorithm that is suitable for any modular without con-
sidering whether a number is a prime. However, this algorithm requires that a
product of two numbers are calculated first. The algorithm is then applied to
reduce the product, which is not efficient in our case. Adalier et al. [26] com-
pared the above mentioned algorithms and concluded that Montgomery modular
multiplication algorithm performs the best for 256 bits prime number. Unfor-
tunately, those algorithms do not fully consider characteristics of each modular
and new features of modern processors.

7 Conclusion

We present Yog-SM2, an optimized implementation of SM2DSA algorithm.
Yog-SM2 utilizes features of modern processors such as extended arithmetic
instructions and large cache to fulfil efficient signing and verifying. The eval-
uation of Yog-SM2 demonstrated that the performance of SM2 signing and



Accelerating SM2 Digital Signature Algorithm 445

verifying boosts significantly in modern desktop processors such as Intel core
i7 processor. Compared with state-of-the-art cryptographic libraries, Yog-SM2
also achieves better performance with less instructions executed.
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Abstract. GIFT is a new lightweight PRESENT-like block cipher, pro-
posed by Banik et al. at CHES 2017. There are two versions, i.e., GIFT-
64 and GIFT-128, with block size 64 and 128 respectively. Both ver-
sions have a 128-bit key. The Sbox and the linear layer of GIFT are
chosen carefully to avoid single difference bit or linear mask bit path
in 2 consecutive rounds. This improves the security of GIFT against
differential, linear and linear hull attacks. In this paper, we imple-
ment a new automatic search algorithm of differential characteristics on
GIFT-64. Considering the situations that some characteristics have the
same input and output difference, we find a few of improved differen-
tials with longer rounds or higher probabilities. Among them, the best
probability for 12-round differential is 2−56.5737, while that for 13-round
differential is 2−61.3135. In addition, we find 52 13-round differentials
with the same output differences. Based on them, we mount a multi-
ple differential attack on 20-round GIFT-64 with 262 chosen plaintexts,
which attacks one more round than the best previous result. Also, we can
attack 21-round GIFT-64 with the full codebook, using one differential
with probability 2−62.0634. This is the longest attack as far as we know.

Keywords: Differential · Multiple differential · GIFT-64 ·
Key-recovery · Single-key

1 Introduction

GIFT lightweight block cipher is designed by Banik et al. [BPP+17], which
includes two versions: GIFT-64 and GIFT-128. Both of them have a 128-bit key
size and inherit the design framework from PRESENT [BKL+07], but correcting
the well-known weakness of PRESENT about linear attacks.

PRESENT [BKL+07] is among the most important lightweight block ciphers,
which has been standardized by ISO/IEC [Int11]. PRESENT adopts the well-
known SPN structure. The design strategy of round function is very simple, the
substitute layer is composed of 16 4-bit Sboxes in parallel and the linear layer is
a bit-wise permuation. After years of cryptanalysis on PRESENT by researchers,
it remains secure. However, the security margin becomes small. One of the most
effective attacks is the linear hull attack [BN14,Cho10].
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GIFT not only maintains all the design advances of PRESENT, but also gains
more efficiency in various domains, i.e., much smaller hardware implementation,
faster encryptions and more secure against the known attacks. Specially, by a
dedicated selection of Sbox and bit permutation, it avoids the single active bit
transitions for two consecutive rounds in both differential and linear character-
istics, which stops the very effective linear hull attacks. Moreover, the hardware
cost of the GIFT Sbox is smaller than that of PRESENT Sbox and its key sched-
ule is much simpler than PRESENT, which makes GIFT more lightweight. In
addition, in the round based hardware implementation, the area of GIFT is even
smaller the recently proposed lightweight block ciphers SKINNY [BJK+16] and
SIMON [BSS+15].

GIFT has received much attention from cryptography communities. At CT-
RSA 2019, Zhu et al. [ZDY19] gave the first third-party cryptanalysis on GIFT,
including a 19-round and a 22-round key-recovery attack on GIFT-64 and GIFT-
128, respectively. Sasaki et al. [Sas18] improved the meet-in-the-middle (MitM)
attack on 15-round GIFT-64. Zhou et al. [ZZDX19] listed some best differen-
tial characteristics for GIFT-64. Li et al. [LWZZ19] extend the key-recovery
attack on GIFT-128 to 26 rounds. All the above are about attacks in single-
key setting. Liu et al. [LLL+19] found a 21-round differential characteristic on
GIFT-128. In related-key setting, Liu and Sasaki [LS19] gave a 23-round and a
21-round boomerang attack on GIFT-64 and GIFT-128, respectively. Chen et al.
[CWZ] gave a 23-round related-key rectangle attack on GIFT-64, and Zhao et al.
[ZDM+19] improved it to a 24-round attack.

Due to the nice performance and high security level, many lightweight
designs choose GIFT as their basic primitives, such as SUNDAE-GIFT [BBP+],
TGIF [IKM+], GIFT-COFB [BCI+] Elastic-Tweak [CDJ+19]. Notably,
SUNDAE-GIFT [BBP+], GIFT-COFB [BCI+] have been recently selected as
the second round candidates of the ongoing NIST Lightweight Cryptography
(LWC) standardization project [NIS]. Hence, it is quit important to understand
the security level of GIFT block cipher.

In this paper, we focus on the security of GIFT-64 against differential attack
[BS91]. All the previous differential attacks on GIFT are based on automatic
tools, such as MILP [ZDY19,ZZDX19,LWZZ19], SAT [Sas18] or STP [LLL+19].
In this paper, following Matsui’s branch and bound [Mat94] method, we design
a new automatic program to find the differentials of GIFT-64. Based on our
new tool, we can find a cluster of 12-round or 13-round characteristics with
the same input and output difference, hence the probabilities of the differentials
are improved. Concretely, we find the best probability for 12-round differential
is 2−56.5737, while the best previous one is 2−58, and the best probability of
13-round differential is 2−61.3135, while the best previous one is 2−62. In addition,
we find 52 13-round differentials with the same output differences. Based on
them, we mount a multiple differential attack on 20-round GIFT-64 with 262

chosen plaintexts, which attacks one more round than the best previous result.
Also, we can attack 21-round GIFT-64 with the full codebook, using a 13-round
differential with probability 2−62.0634.
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At ToSC 2019, Zhao et al. [ZDJ19] fully considered the impact of the input
and output differences of a distinguisher on the differential attack and took this
condition into account when programming the the differential search algorithm.
They showed that a differential distinguisher with smaller probability may derive
better key-recovery attack than that with larger probability, if the distinguisher
causes fewer active bytes when extending several rounds in both sides. Inspired
by Zhao et al. [ZDJ19], we do not use the 13-round differential with the largest
probability, but as shown in Table 4 of Sect. 3.3, we use the differential whose
hamming weight of the input difference is only 2 to launch our key-recovery
attacks. Hence, when adding several rounds at the beginning, the difference will
propagate to fewer bits. We summarize the related results and our attacks in
Table 1.

Table 1. Cryptanalysis results of GIFT-64

Single-key setting

Rounds Approach Setting Time Data Memory Ref.

14 IC SK 297 263 – [BPP+17]

15 MITM SK 2120 264 – [BPP+17]

15 MITM SK 2112 – – [Sas18]

19 Differential SK 2112 263 – [ZDY19]

20 Multiple differential SK 2112.68 262 2112 Sect. 4

20 Differential SK 2101.68 264 296 Sect. 5

21 Differential SK 2107.61 264 296 Sect. 5

Related-key setting†

Rounds Approach Setting Time Data Memory Ref.

23 Boomerang RK 2126.6 263.3 – [LS19]

23 Rectangle RK 2107 260 260 [CWZ]

24 Rectangle RK 291.58 260 260.32 [ZDM+19]
†: Note that there is no security claim of GIFT under the related-key setting.

Outlines of the Paper
This paper is organised as follows. Section 2 gives the definition of symbols
used in this paper and describes the lightweight block cipher GIFT-64. Section 3
illustrates the search algorithm and gives some new differential distinguishers.
Then we make the multiple differential and differential attacks in Sects. 4 and 5.
Finally, we conclude this paper in Sect. 6.
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2 Preliminaries

2.1 Notations and Definitions of GIFT

In this section, the notations are defined as follows:

ΔP : the difference in plaintext,
Δi

S : the difference after SubCells operation in Round i, 0 ≤ i ≤ r − 1,
Δi

P : the difference after PermBits operation in Round i, 0 ≤ i ≤ r − 1,
Δi

K : the difference after AddRoundKey operation in Round i, 0 ≤ i ≤ r − 1,

X[j · · · k] : jth bit, · · · , kth bit of state X, note that X[0] is the LSB of X.
≫ i : an i-bit right rotation within a 16-bit word.
RK′

i : equal to PermBits−1(RKi).

2.2 GIFT Block Cipher

GIFT [BPP+17] lightweight block cipher is proposed by Banik et al. at CHES
2017. The framework of GIFT is based on the design of PRESENT [BKL+07],
but more secure and lightweight due to dedicated design of the Sboxes, bit
permutation and the key schedule. GIFT has an SPN structure. There are two
versions for GIFT according to the block size i.e., GIFT-64 and GIFT-128. Both
two versions adopt a 128-bit key. The numbers of rounds for GIFT-64 and GIFT-
128 are 28 and 40, respectively.

There are three operations in each round function, i.e., SubCells, PermBits
and AddRoundKey, whose details are defined as follows:

1. SubCells: Apply 16 (or 32) 4-bit Sboxes in parallel to every nibble of the
internal state of GIFT-64 (or GIFT-128). Both the two versions adopt the
same Sbox shown in Table 2.

Table 2. The Sbox of GIFT

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

GS(x) 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e

2. PermBits: Linear bit permutations bP (i) ← bi, ∀i ∈ {0, 1, ...n− 1}, where the
P (i)s are

P64(i) =4� i

16
� + 16

(
3� i mod 16

4
� + (i mod 4)mod 4

)
+ (i mod 4),

P128(i) =4� i

16
� + 32

(
3� i mod 16

4
� + (i mod 4)mod 4

)
+ (i mod 4),

for GIFT-64 and GIFT-128 respectively.
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3. AddRoundKey: The round keys RK is n/2-bit, which is extracted from the key
state (note that n is the state size and n = 64 or 128). Let RK = U ||V =
us−1...u0||vs−1v0, where s = n/4.
For GIFT-64, the round key is XORed to the state as

b4i+1 ← b4i+1 ⊕ ui, b4i ← b4i ⊕ vi, ∀i ∈ {0, ..., 15}.

For GIFT-128, the round key is XORed to the state as

b4i+2 ← b4i+2 ⊕ ui, b4i+1 ← b4i+1 ⊕ vi, ∀i ∈ {0, ..., 31}.

For both versions, a single bit “1” and a 6-bit constant C are XORed into
the internal state at positions n − 1, 23, 19, 15, 11, 7 and 3 respectively.

The 128-bit master key is initialized as K = k7||k6||...||k0, where |ki| = 16.
For GIFT-64, the round key RK = U ||V = k1||k0. For GIFT-128, the round
key RK is RK = U ||V = k5||k4||k1||k0. And for both versions, the key state is
updated as follows,

k7||k6||...||k0 ← (k1 ≫ 2)||(k0 ≫ 12)||...||k3||k2.
For more details of GIFT, we refer to [BPP+17].

3 Search for Differential Trails of GIFT-64

3.1 Our Search Algorithm

Our search algorithm is inspired by Matsui’s work on DES in 1994 [Mat95]. It’s
a recursive algorithm that can search for the best differential characteristic and
the best linear expression of S-box based ciphers. Specifically, it derives the best
n-round characteristic with probability Bn from knowledge of the best i-round
characteristic with probability Bi (1 ≤ i ≤ n − 1).

GIFT-64 is also a S-box based block cipher, Matsui’s algorithm can be well
applied to search for the best differential characteristic of it. Meanwhile, we
add some dedicated constraints. For GIFT-64, every round function has 16 S-
boxes, the searching process will be very slow when no constraints about the
number of active S-boxes are set, as the algorithm needs to traverse all possible
differentials. And also, the probability of a n-round differential is very related
with the number of active S-boxes. In our search algorithm, we set up a upper
bound of active S-boxes in each round function to be 3, i.e., t = 3 in Procedure
2. For the initial state, the upper bound is set to be 2. In this process, the search
algorithm traverse all possible difference values. Our algorithm also adopts the
depth-first strategy and when the searching process covers enough rounds, it
outputs the qualified results.

– Procedure 1: Determine the initial state
1. Let Sin = {Δ ∈ (F4

2)
16|Δ 	= 0, wt(Δ) ≤ 2}.

2. We choose the input difference ΔX0 ∈ Sin and set the initial probability
as p0 = 1.
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3. Initialize t as the upper bound of the number of active sboxes in each
round and r as the number of searched rounds.

– Procedure 2: Recursive Search (search(i))
1. For each (i − 1)-round differential characteristic, we get the difference

ΔXi−1 and corresponding probability pi−1.
2. Set ΔXi−1 as the input difference and get each possible output difference

Δi (suppose all Δis make up the set Si(ΔXi−1)) and extra probability
pe 	= 0 after one GIFT-64 round.

3. Choose ΔXi ∈ Si(ΔXi−1), wt(ΔXi) ≤ t, we can get several (suppose m)
i-round differential characteristics with probability pi = pi−1 ∗ pe.

4. If i < r, call search(i + 1).
5. If i = r, we output all these m differential characteristics represented as

(ΔX0, p0), (ΔX1, p1), . . . , (ΔXr, pr).
6. We also store a list of probabilities, with (ΔX0,ΔXr) for indexing, to

search the differentials with best probabilities.

3.2 The 12-Round Differentials of GIFT-64

Using the search strategy in Sect. 3.1, we get the best differential trail which
covers 12 rounds with the probability of 2−58. It’s the longest differential trail
that we found with probability larger than 2−64. This is consistent with the
probability of the best 12-round differential in [LWZZ19]. In total, we find 864
12-round differential characteristics with the best probability 2−58.

Table 3. 12-round differential characteristic of GIFT-64

Round State difference Probability(log2) Round State difference Probability(log2)

0 0000000600000006 0 0 0000000600000006 0

1 0000000002020000 −4 1 0000000002020000 −4

2 0000005000000050 −8 2 0000005000000050 −8

3 0000000000000202 −14 3 0000000000000202 −14

4 0000000500000005 −18 4 0000000500000005 −18

5 0000000002020000 −24 5 0000000002020000 −24

6 0000005000000050 −28 6 00a0000000a00000 −30

7 0000000000000202 −34 7 1010000000000000 −34

8 0000000500000005 −38 8 0000a0000000a000 −40

9 0000000002020000 −44 9 0000000001010000 −44

10 0000005000000050 −48 10 0000005000000050 −50

11 0000000000000202 −54 11 0000000000000202 −56

12 0000000500000005 −58 12 0000000500000005 −60

We find 10 12-round differential characteristics with the input difference
0000000600000006 and the output difference 0000000500000005. One character-
istic is with probability 2−58, six characteristics with probability 2−60, and the
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others are with probability 2−62. Thus, the total probability of this differential
is 2−56.5737. Two of them are shown in Table 3.

3.3 The 13-Round Differentials of GIFT-64

Following the search strategy in Sect. 3.1, the best 13-round differential char-
acteristics we found are with probability 2−64. Thus, it is impossible to mount
an attack using one single characteristic. In [LWZZ19], a 13-round differential
characteristic with probability 2−62 is given. We point out that this is because
there are 4 active nibbles in the last round of this characteristic. Recall our con-
straints of the search procedure in Sect. 3.1, the upper bound of the number of
active S-boxes in each round is set to 3, this can explain the probability of that
characteristic is larger than ours. As the nonzero difference bits in the output
difference will diffuse very fast, the characteristic in [LWZZ19] is weaker when
used to attack more rounds.

As a result, we consider about the cluster of trails with same input and
output differences and search out some qualified 13-round differentials that can
be used to mount key recovery attacks. Some of them are shown in Table 4.

Table 4. 13-round differentials of GIFT-64

Index Input difference Output difference Probability(log2)

1 000000c000000060 0000004000000011 −61.3135

2 000000e0000000e0 0000000000001010 −61.7857

3 00c0000000c00000 0000000000001010 −61.8102

4 0000000000000202 0000000500000005 −62.0634

As shown in Table 4, Differential 1 has the greatest probability. However, its
output difference has three active nibbles. This will include too many key bits
when it is used to mount attacks. All the other three differentials have two active
S-boxes in the output difference. And for Differential 4, there are also only two
active S-boxes when reverse the input difference one more round, this feature
can be utilized to attack more rounds of GIFT-64.

What’s more, we found a few of differentials that have same input difference
patterns and same output difference with Differential 2 or Differential 3, which
are listed in Tables 10 and 11. The sum of the probabilities of the 16 differentials
in Table 10 is 2−58.0099, while that of the 36 differentials in Table 11 is 2−57.8102.
These 52 differentials has a total probability 2−56.9066, leading to a significant
13-round multiple differential distinguisher of GIFT-64.

4 Multiple Differential Attack on GIFT-64

In this section, we use 52 13-round differentials to mount the multiple differential
cryptanalysis on GIFT-64. When expanded backward several rounds, these dif-
ferentials have common active sboxes. So we just guess the keys in the backward
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rounds and sieve the wrong states at the same time for all differentials which
help improving the time complexity. See Tables 5 and 6 for the details of the
expansion.

By adding three rounds before and four rounds after the distinguisher, we can
attack 20-round GIFT-64. Table 5 illustrates the state and subkey details. The
first column gives the symbols of state difference and subkeys. The second column
gives the difference pattern and the involved subkeys. For the difference pattern,
the ‘0’, ‘1’ and ‘2’ denotes one bit 0 difference, 1 difference and undetermined
difference respectively. We should point out that there are two ‘2’s in Δ2

P . In fact,
according to the propagation rules of difference patterns, these two bits should
have undetermined differences. However, for the target of controlling the data
complexity, we forced them to be 0 (represented as 2 in Δ2

P and then represented
as 0 in Δ2

S after the inverse of bit permutation). For involved subkey bits, ‘1’
means that we must guess the corresponding key bits and ‘0’ means we can omit
them.

Table 5. Multiple differential cryptanalysis of GIFT-64

ΔP 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222

Δ1
S 0220 0022 2002 2200 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222

Δ1
P 2222 2222 2222 2222 2222 2222 2222 2222 0000 2222 2222 2222 0000 2222 2222 2222

RK1 11 11 11 11 11 11 11 11 00 11 11 11 00 11 11 11

Δ2
S 0002 2000 0200 0020 0002 2000 0200 0020 0000 2000 0200 0020 0000 2000 0200 0020

Δ2
P 0000 0000 0000 0000 0000 0000 0000 0000 2222 2222 2222 2222 0000 0000 0000 0000

RK2 00 00 00 00 00 00 00 00 00 11 11 11 00 00 00 00

Δ3
S 0000 0000 0000 0000 0000 0000 0000 0000 2020 0202 2020 0202 0000 0000 0000 0000

Δ3
P 0000 0000 0000 0000 0000 0000 2222 0000 0000 0000 0000 0000 0000 0000 2222 0000

RK3 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Δ3
K 0000 0000 0000 0000 0000 0000 2222 0000 0000 0000 0000 0000 0000 0000 2222 0000

· · · ∑
pi ≈ 2−56.9066

Δ16
P 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0000 0001 0000

Δ17
S 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 2222 0000 2222 0000

RK′
17 00 00 00 00 00 00 00 00 00 00 00 00 11 00 11 00

Δ17
P 0000 0000 0000 0202 0000 0000 0000 2020 0000 0000 0000 0202 0000 0000 0000 2020

Δ18
S 0000 0000 0000 2222 0000 0000 0000 2222 0000 0000 0000 2222 0000 0000 0000 2222

RK′
18 00 00 00 11 00 00 00 11 00 00 00 11 00 00 00 11

Δ18
P 2000 2000 2000 2000 0200 0200 0200 0200 0020 0020 0020 0020 0002 0002 0002 0002

Δ19
S 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222

RK′
19 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

Δ19
P 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222

Δ20
S 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222

RK′
20 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

Δ20
P 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222

The attack procedure and time complexity estimation are as follows.

1. Data Collection:
(a) Structure Construction. Since there is no whitening key at the top of

GIFT, we can construct structures at X1
P , just before the first subkey
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Table 6. Expand the input differences in Table 11 backward by one round

Δ2
P 0000 0000 0000 0000 0000 0000 0000 0000 2222 2222 2222 2222 0000 0000 0000 0000

RK2 00 00 00 00 00 00 00 00 00 11 11 11 00 00 00 00

Δ3
S 0000 0000 0000 0000 0000 0000 0000 0000 0202 2020 0202 2020 0000 0000 0000 0000

Δ3
P 0000 0000 2222 0000 0000 0000 0000 0000 0000 0000 2222 0000 0000 0000 0000 0000

RK3 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Δ3
K 0000 0000 2222 0000 0000 0000 0000 0000 0000 0000 2222 0000 0000 0000 0000 0000

involved. By setting X1
P [12 − 15, 28 − 31] as const and iterating all the

other bits, we get one structure with 256 elements, in which about 2111

pairs with difference pattern Δ1
P could be obtained.

(b) Choose 2t structures and we can get N1 = 2111+t data pairs.
(c) Choose the plaintext-ciphertexts (P, P ∗) and (C,C∗). For each state pair

(X1
P ,X1∗

P ) constructed, we can get the plaintexts (P, P ∗) by applying the
PermBits−1 and SubCells−1 operations. Then we obtain the correspond-
ing ciphertext pairs (C,C∗).

2. Key Recovery:
In the procedure of subkey recovery, early distillation skill can be used to
optimize the time complexity. The subkeys that need to be guessed are shown
in Table 5. Considering one specific differential with probability pi, one of the
multiple differentials constituting the distinguisher, the detailed procedure of
counting the right data pairs is as follows.
(a) Guess RK1[0, 1] and make the first Sbox substitution (the Sbox at X1

P [0−
3]). Select the pairs with difference Δ2

S [0] = Δ2
S [2] = Δ2

S [3] = 0 and
about N1 ∗ 2−3 candidates remain. Similarly, guess another 2 subkey bits
and select the right candidate pairs until all RK1[0 − 5, 8 − 13, 16 − 31]
are guessed. So, in this step, a similar procedure is processed 14 times
and each distillation has a probability 2−3. After this step, about N2 =
N1 ∗ 2−3∗14 pairs remain.

(b) Guess RK2[8, 9] and make the fifth Sbox substitution (the Sbox at
X2

P [16 − 19]). Select the pairs with difference Δ3
S [17] = Δ3

S [19] = 0 and
about N2 ∗ 2−2 candidates remain. There are 4 active sboxes in this step
and a similar procedure is processed 4 times with distillation probability
2−2. After this step, about N3 = N2 ∗ 2−2∗4 pairs remain.

(c) Select the pairs that are consistent with the input difference of the specific
differential and about N4 = N3 ∗ 2−8 pairs remain.

(d) Guess RK ′
20[0, 1, 8, 9, 16, 17, 24, 25] and make the corresponding inverse

Sbox operations. We can get the output difference of the 1-th, 2-th, 3-th
and 4-th Sbox at Δ19

S . Since the corresponding input differences for these
four Sboxes should be ‘0002’, we select the possible pairs according to the
difference distribution table. For each Sbox, half pairs would remain on
average. So the probability of this 8-bits guess and distillation is expected
to be 2−4. Another three sub-procedures with distillation probability 2−4

similar to that can be done. After this step, about N5 = N4 ∗ 2−16 pairs
remain.
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(e) Guess RK ′
19[0, 1] and make the first inverse Sbox operation at X19

S . Select
the pairs with difference Δ18

P [1] = Δ18
P [2] = Δ18

S [3] = 0. The distillation
probability should be 2−3/2−1 = 2−2, since the probability 2−1 has been
considered in the above step. A similar guess and distillation procedure
is processed 16 times in this step and about N6 = N5 ∗ 2−2∗16 right pairs
remain.

(f) Guess RK ′
18[0, 1] and make the first inverse Sbox operation at X18

S . Select
the pairs with difference Δ17

P [0] = Δ17
P [2] = 0. The distillation probability

is 2−2. A similar procedure is processed 4 times in this step and after that
about N7 = N6 ∗ 2−2∗4 pairs remain.

(g) Guess RK ′
17[2, 3] and make the second inverse Sbox operation at X17

S .
Select the pairs with difference ′0001′ and the distillation probability is
2−4. Similarly, guess RK ′

17[6, 7] and make the distillation. At last about
N8 = N7 ∗ 2−8 pairs remain for the wrong key guesses while about N∗

8 =
N4 ∗ pi pairs remain for the right key guess.

3. Complexity Estimation:
We list the details of time complexity estimation in Table 7. For the right key
guess, the final counter of the right pairs for the differential with probability
pi is expected to be 2t+53 ∗ pi, while that for the wrong key guesses would
be 2t−11. In our multiple differential procedure, we set t = 6 and use 64
structures to distinguish the right key and wrong keys, which leads to that
about 259 ∗ ∑

pi ≈ 4.29 pairs remain in total for the right key and about
2−5 ∗ 52 ≈ 1.63 pairs remain for the wrong keys on average. So the data
complexity is 256+6 = 262 chosen plaintexts.

Table 7. Time complexity in each step

Step #Remained #Keys Time( 1
16

− R) Pr

a N1 = 2t+111 22×14 2t+1 × (2113 + 2112 + . . . + 2100) 2−3×14

b N2 = 2t+69 22×4 2t+1 × (299 × 4) 2−2×4−8

c N3 = 2t+61 – – 2−8

d N4 = 2t+53 28×4 2t+1 × (297 + 2101 + 2105 + 2109) 2−4×4

e N5 = 2t+37 22×16 2t+1 × (2107 × 16) 2−2×16

f N6 = 2t+5 22×4 2t+1 × (2107 × 4) 2−2×4

g N7 = 2t−3 22×2 2t+1 × (2107 + 2105) 2−4×2

Finished N8 = 2t−11

Step (a) and (b) can be done only one time for all the 52 differentials while step
(c) to step (g) would be processed independently. Since Step (a) dominates
the time, the total time complexity is about 2121 × 1

16 × 1
20 = 2112.68 times 20-

round GIFT-64 encryptions. The memory complexity for storing the guessed
key bits is 2112.
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5 Differential Cryptanalysis on GIFT-64

In this section, we use a 13-round differential

0000000000000202 → 0000000500000005

with probability 2−62.0634. When expanded backward or forward by one round,
there are only 2 active sboxes in both sides, which helps decreasing the number
of guessed key bits.

5.1 20-Round Differential Attack on GIFT-64

By adding three rounds before and four rounds after the 13-round distinguisher,
we can attack 20-round GIFT-64. Table 8 illustrates the state and subkey details
of the attack.

Table 8. 20-round differential cryptanalysis of GIFT-64

ΔP 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222

Δ1
S 0002 2000 0200 0020 0002 2000 0200 0020 0002 2000 0200 0020 0002 2000 0200 0020

Δ1
P 0000 0000 0000 0000 0000 0000 0000 0000 2222 2222 2222 2222 0000 0000 0000 0000

RK1 00 00 00 00 00 00 00 00 11 11 11 11 00 00 00 00

Δ2
S 0000 0000 0000 0000 0000 0000 0000 0000 2020 0202 2020 0202 0000 0000 0000 0000

Δ2
P 0000 0000 0000 0000 0000 0000 2222 0000 0000 0000 0000 0000 0000 0000 2222 0000

RK2 00 00 00 00 00 00 11 00 00 00 00 00 00 00 11 00

Δ3
S 0000 0000 0000 0000 0000 0000 0010 0000 0000 0000 0000 0000 0000 0000 0010 0000

Δ3
P 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 0000 0010

RK3 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Δ3
P 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 0000 0010

· · · p ≈ 2−62.0634

Δ16
P 0000 0000 0000 0000 0000 0000 0000 0101 0000 0000 0000 0000 0000 0000 0000 0101

Δ17
S 0000 0000 0000 0000 0000 0000 0000 2222 0000 0000 0000 0000 0000 0000 0000 2222

RK′
17 00 00 00 00 00 00 00 11 00 00 00 00 00 00 00 11

Δ17
P 0000 2000 0000 2000 0000 0200 0000 0200 0000 0020 0000 0020 0000 0002 0000 0002

Δ18
S 0000 2222 0000 2222 0000 2222 0000 2222 0000 2222 0000 2222 0000 2222 0000 2222

RK′
18 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11

Δ18
P 2020 2020 2020 2020 0202 0202 0202 0202 2020 2020 2020 2020 0202 0202 0202 0202

Δ19
S 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222

RK′
19 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

Δ19
P 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222

Δ20
S 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222

RK′
20 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

Δ20
P 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222

The 20-round attack procedure and complexity estimation are as follows.

1. Data Collection:
(a) Structure Construction. Like the above attack, we also construct struc-

tures at X1
P . By setting X1

P [0 − 15, 32 − 63] as const and iterating all the
other bits, we get one structure with 216 elements, in which about 231

pairs with difference pattern Δ1
P could be obtained.
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(b) Choose 2t structures and we can get N1 = 231+t data pairs.
(c) Choose the plaintext-ciphertexts (P, P ∗) and (C,C∗).

2. Key Recovery:
The details of the key guess and data distillation are similar to the above
multiple differential attack. So here we simplify the description of the attack
and just give the basic steps.
(a) Guess RK1 and about N2 = N1 ∗ 2−8 pairs remain.
(b) Guess RK2 and about N3 = N2 ∗ 2−8 pairs remain.
(c) Guess RK20 and decrypt the pairs by one round.
(d) Guess RK19 and about N4 = N3 ∗ 2−32 pairs remain.
(e) Guess RK18 and about N5 = N4 ∗ 2−24 pairs remain.
(f) Guess RK17 and about N6 = N5 ∗ 2−8 pairs remain.

3. Complexity Estimation:
We list the details of time complexity estimation in Table 9. In our differential
procedure, we set t = 48 and use 248 structures to distinguish the right key
and wrong keys, which leads to that about 2 pairs remain for the right key
and about 2−1 pairs remain for the wrong keys. So the data complexity is 264

chosen plaintexts. According to Table 9, Step (d) dominates the time and the
attack needs about 2110 × 1

16 × 1
20 = 2101.68 20-round GIFT-64 encryptions.

The memory complexity for storing the guessed key bits is 296.

Table 9. Time complexity in each step

Step #Remained #Keys Time( 1
16

−R) Pr

a 2t+31 22×4 2t+1 × (233 × 8) 2−2×4

b 2t+23 22×2 2t+1 × (229 + 227) 2−4×2

c 2t+15 232 2t+1 × 255 1

d 2t+15 22×16 2t+1 × (257 × 16) 2−2×16

e 2t−17 22×8 2t+1 × (257 + 256 + 255 + . . . + 250) 2−3×8

f 2t−41 22×2 2t+1 × (247 + 245) 2−4×2

Finished 2t−49

5.2 21-Round Differential Attack on GIFT-64

Using the same 13-round differential distinguisher and with the help of key
schedule, we can add one more round before the 20-round attack to make the
21-round attack possible. In the 21-round attack, the subkeys involved in the first
and last rounds are linear dependent, which means when we guess one subkey,
the another one is also determined.

Using the structure constructed above and for each difference pair, we guess
the first subkey and decrypt the pairs by one round to obtain the corresponding
plaintext-ciphertext pairs. The other attack details are same with the 20-round
attack and we omit them here. This attack takes about 248+1+31×232 = 2112 one
round encryptions more than the above attack, leading to that the total time
complexity is smaller than 2112× 1

21 +2101.68× 20
21 ≈ 2107.61 21-round encryptions.
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6 Conclusion

In this paper, we give a recursive search algorithm of the differential trails for
GIFT-64 and several improved differential attack results. With the multiple dif-
ferential cryptanalysis model, we can attack 20-round GIFT-64, using 262 chosen
plaintexts and about 2112.68 encryptions. Also, using the differential cryptanal-
ysis model, we analyse the 20-round and 21-round GIFT-64. Both attacks need
264 plaintext-ciphertext pairs and the time complexities are 2101.68 and 2107.61

respectively. All these attacks cover 1 or 2 more rounds compared with the exist-
ing results.
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A Multiple Differentials of GIFT-64

Table 10. 13-round multiple differentials of GIFT-64 (1)

Index Input difference Output difference Probability(log2)

1 000000e0000000e0 0000000000001010 −61.7857

2 000000f0000000e0 0000000000001010 −61.9312

3 000000e0000000f0 0000000000001010 −61.9312

4 000000e0000000d0 0000000000001010 −61.9312

5 000000d0000000e0 0000000000001010 −61.9312

6 000000f0000000f0 0000000000001010 −62.0099

7 000000f0000000d0 0000000000001010 −62.0099

8 000000d0000000f0 0000000000001010 −62.0099

9 000000d0000000d0 0000000000001010 −62.0099

10 000000f0000000c0 0000000000001010 −62.0931

11 000000e0000000c0 0000000000001010 −62.0931

12 000000d0000000c0 0000000000001010 −62.0931

13 000000c0000000f0 0000000000001010 −62.0931

14 000000c0000000e0 0000000000001010 −62.0931

15 000000c0000000d0 0000000000001010 −62.0931

16 000000c0000000c0 0000000000001010 −62.0931
∑

= −58.0099
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Table 11. 13-round multiple differentials of GIFT-64 (2)

Index Input difference Output difference Probability(log2)

1 0060000000600000 0000000000001010 −61.8102

2 0060000000c00000 0000000000001010 −61.8102

3 00c0000000c00000 0000000000001010 −61.8102

4 00c0000000600000 0000000000001010 −61.8102

5 0070000000600000 0000000000001010 −62.8102

6 0060000000700000 0000000000001010 −62.8102

7 0060000000500000 0000000000001010 −62.8102

8 0050000000600000 0000000000001010 −62.8102

9 0070000000c00000 0000000000001010 −62.8102

10 0060000000f00000 0000000000001010 −62.8102

11 0060000000d00000 0000000000001010 −62.8102

12 0050000000c00000 0000000000001010 −62.8102

13 00f0000000c00000 0000000000001010 −62.8102

14 00f0000000600000 0000000000001010 −62.8102

15 00d0000000c00000 0000000000001010 −62.8102

16 00d0000000600000 0000000000001010 −62.8102

17 00c0000000f00000 0000000000001010 −62.8102

18 00c0000000d00000 0000000000001010 −62.8102

19 00c0000000700000 0000000000001010 −62.8102

20 00c0000000500000 0000000000001010 −62.8102

21 0070000000700000 0000000000001010 −63.8102

22 0070000000500000 0000000000001010 −63.8102

23 0050000000700000 0000000000001010 −63.8102

24 0050000000500000 0000000000001010 −63.8102

25 0070000000f00000 0000000000001010 −63.8102

26 0070000000d00000 0000000000001010 −63.8102

27 0050000000f00000 0000000000001010 −63.8102

28 0050000000d00000 0000000000001010 −63.8102

29 00f0000000f00000 0000000000001010 −63.8102

30 00f0000000d00000 0000000000001010 −63.8102

31 00f0000000700000 0000000000001010 −63.8102

32 00f0000000500000 0000000000001010 −63.8102

33 00d0000000f00000 0000000000001010 −63.8102

34 00d0000000d00000 0000000000001010 −63.8102

35 00d0000000700000 0000000000001010 −63.8102

36 00d0000000500000 0000000000001010 −63.8102
∑

= −57.8102
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Abstract. In this paper, we are interested in constructing Puncturable
Pseudorandom Functions (PPRFs), a special class of constrained PRFs.
While selectively secure PPRFs can be constructed from GGM tree-
based PRFs, the adaptive counterpart is tricky to deal with. Inspired
by previous works, we investigate on the possibility of directly obtaining
adaptively-secure PPRF from Puncturable Identity-based Key Encap-
sulation Mechanism (PIB-KEM). Our contributions can be summarized
as follows: (i) we show that one could derive adaptively-secure PPRFs
very naturally originating from PIB-KEM satisfying two necessary con-
ditions. (ii) we define t-puncturable IB-KEM (t-PIBKEM) and show its
existence by an efficient conversion basing on Hierarchical IB-KEM (HIB-
KEM). Furthermore, we demonstrate its application to constructing t-
puncturable PRFs, a generalized notion of PPRFs.

Keywords: Puncturable PRF · Identity-based KEM · HIB-KEM

1 Introduction

Pseudorandom functions (PRFs) are fundamental in contemporary cryptography
both from a theoretical and a practical point of view. Briefly, PRFs are a family
of key-induced functions F associated with a key space K, demanding that for a
randomly sampled k ∈ K, the function value F (k, x) should be computationally
indistinguishable from truly random values in the range of the function. A newly
emerged notion of constrained pseudorandom functions was proposed by Boneh
and Waters [4], concurrently defined by Kiayias et al. [9] and by Boyle et al. [6].
The novel aspect of a constrained PRF is that apart from a master key capable
of evaluating the function at any points within the input space X , it additionally
allows for generating constrained keys from the master key. A constrained key is
indexed by a set S ⊆ X (or a predicate f), and can be used to evaluate the func-
tion F (k, ·) at any point x ∈ S (or any point satisfying f(x) = 1). The security of
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constrained PRF, usually called pseudorandomness, is defined by a game played
between a challenger and a distinguisher. We first give a brief overview of the selec-
tive pseudorandomness game. Ahead of time, the distinguisher should commit to
a point x∗ it wishes to be challenged. It then could issue two kinds of queries:
evaluation query or key query. The evaluation query allows it to acquire function
value at any points different from x∗. The key query permits it to hold polynomial
many constrained keys, but under the restriction that they should be unable to
evaluate at x∗. After these queries, the challenger sends a function value of x∗ or
a value picked uniformly at random from the range of the PRF and the goal of the
distinguisher is to tell which is the case. An adaptive pseudorandomness game is
defined analogously except the committing point could be decided by the distin-
guisher after all the queries have been issued. Constrained PRFs are very powerful
and once their inception have been found applicable for building broadcast encryp-
tion [4], multiparty key exchange [5] and so forth. It is deserved to be mentioned
that Sahai and Waters [10] developed “punctured programming” technique using
constrained PRFs as a core ingredient together with indistinguishability obfusca-
tion which leads to many appealing results.

Adaptively-Secure Puncturable PRF. Previous works are dedicated to giv-
ing concrete constructions of constrained PRFs for different function families,
as initiated by Boneh and Waters [4]. Among these, puncturable PRFs (PPRFs)
[10], a special class of constrained PRFs have aroused wide concern. A system of
PPRF associates a constrained key with an element x in the input space. This
key allows evaluation at all points x′ �= x, thus often named as punctured key
since its functionality is removed at a single point. Currently, many relatively
efficient constructions of PPRF can only achieve selective security. One can argue
adaptive security for these constructions using complexity leveraging, but this
causes exponential security loss. Technically, adaptively-secure constrained PRFs
turned out tougher to construct than their selective counterpart. The work of
Hohenberger, Koppula, and Waters [8] can offer adaptive security, but heav-
ily depends on somewhat hard-to-implement indistinguishability obfuscation. In
this work we are interested in constructing adaptively secure puncturable PRFs
through other lightweight primitives. We provide a generic approach to neatly
transform puncturable identity-based key encapsulation mechanism (PIB-KEM)
scheme into adaptively-secure PPRFs.

Our Contributions. In this work, we focus on constructing adaptively secure
PPRF from identity-based key encapsulation mechanism (IB-KEM). Our idea
is inspired by the creative work of Abdalla et al. [1], which first investigated
the relationship between verifiable random functions (VRF) and IB-KEM. We
follow their work and aim to find other potential usages of an IB-KEM to build
other cryptographic primitives (e.g. PPRFs) which seems hard to construct in
their own sight.

Our constructions are centered around a primitive named puncturable IB-
KEM (PIB-KEM). We note that it was previously defined as puncturable
identity-based encryption which is utilized to give counterexample for n-circular
security [7]. In a nutshell, a PIB-KEM scheme is a special IB-KEM scheme whose



Adaptively Secure Puncturable Pseudorandom Functions 465

master secret key allows for efficient puncturing. Given a master secret key msk,
one could derive a punctured key msk({id′}) that is capable of producing any
secret key skid associated with an identity id except the key skid′ corresponding
to the punctured identity id′.

As our main contribution, we establish the connection between PIB-KEM and
PPRFs. Our basic result shows that one could derive a system of adaptively-
secure PPRF very naturally originating from PIB-KEM satisfying two necessary
conditions.

As another contribution, we show the possibility to extend the aforemen-
tioned connection. We consider a more general case of PIB-KEM that the mas-
ter secret key holder can derive a t-punctured key which allows for puncturing
a set S containing polynomially many points and the size of S is at most t.
Note that PIB-KEM is a special case that t = 1. We formalize the general
case as t-puncturable IB-KEM (t-PIBKEM) and show a very efficient conver-
sion from any �-depth HIB-KEM scheme to a t-PIBKEM scheme with identity
space {0, 1}�. Previously a transformation from HIB-KEM to PIB-KEM was pro-
posed in [7], but no explicit construction was given to indicate the existence of
t-PIBKEM. Furthermore, we demonstrate the application of t-PIBKEM to con-
struct t-puncturable PRFs (t-PPRFs), defined as a generalized notion of PPRFs
[8], as an extension to our basic result.

Our Techniques. We give a description of our construction here which shows
how to construct PPRFs from PIB-KEM. The case for transforming t-PIB-
KEM into t-PPRFs is almost the same. The PPRF is setup by first running
(mpk,msk) ← PIBKEM.Setup(1λ). Then it picks an arbitrary identity id0 in ID
space and generate an encapsulated ciphertext C0 = PIBKEM.Encap(mpk, id0).
The master key k is composed of (msk, C0). The evaluation on input x is defined
by F (k, x) = PIBKEM.Decap(C0, skx) where skx ← PIBKEM.KeyDer(msk, x).
We assume the input space X of the PRF is equal to the ID space, so that the
evaluation is meaningful with respect to any point. To derive a punctured key
for a single point x∗, simply invoke msk({x∗}) ← PIBKEM.Puncture(msk, x∗)
and assign it as kx∗ . With this key in hand, one can generate skx ←
PIBKEM.Derive(msk({x∗}), x) and use this to decapsulate C0. Note that eval-
uation can be done using kx∗ on input x as long as x �= x∗ as required. For now
the construction is not adequate to be a PPRF, as there is no pseudorandomness
promise of the underlying PIB-KEM. To make a PIB-KEM scheme be qualified
for building PPRFs, we need the following interesting property: if a ciphertext
encapsulated under an identity id0 is decapsulated by an unrelated secret key
skid, i.e. id �= id0, the result (if meaningful) should look like a random value in
the range of the session key space to a poly-time adversary even given out a
punctured master key msk({id}).

We notice that in [1] this property was defined as pseudorandom decapsulation
in terms of an IB-KEM scheme and examples were given to prove that some
existing IB-KEMs have already achieved this property. But unfortunately, there
are no handy IB-KEMs can both achieve this property and have punctured keys
as well. A very natural question is whether this property could also be adapted to
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hierarchical IB-KEM (HIB-KEM) and how to make use of it to build PIB-KEM
satisfying pseudorandom decapsulation. In this paper, we put forth the notion of
pseudorandom decapsulation in the HIB-KEM setting and formally prove that
a PIB-KEM scheme can inherit this property from a HIB-KEM scheme. We
also give an example to show that a well-known HIB-KEM scheme proposed by
Boneh et al. [3] already achieves this property. Therefore, the existence of PIB-
KEM with pseudorandom decapsulation is ensured. Thereby, our transformation
from PIB-KEM to adaptively secure PPRFs naturally holds.

2 Preliminaries

We will denote with λ a security parameter. We say a function negl : N → R is neg-
ligible if |negl(λ)| < 1/poly(λ) holds for any polynomial poly(λ) and sufficiently
large λ. We write x ← X for sampling x from the set X uniformly at random and
x � X for sampling x according to arbitrary distribution on X. We denote by
x ← A if x is the output of an algorithm A. We use [n] for an integer n to denote
the set {1, . . . , n}. Let b denote the inversion of a single bit b.

2.1 Puncturable Pseudorandom Functions

In this section, we recall the syntax and security properties of a puncturable pseu-
dorandom function family [10]. Puncturable pseudorandom functions (PPRFs)
are a special class of constrained pseudorandom functions. A PRF F : K×X → Y
is a puncturable pseudorandom function if there exists an additional key space
Kp and three PPT algorithms F.Setup, F.Puncture, F.Eval as follows:

– F.Setup(1λ) is a randomized algorithm that takes the security parameter λ as
input and outputs a description of the key space K, the punctured key space
Kp and the PRF F .

– F.Puncture(k, x) is a randomized algorithm that takes as input a PRF key
k ∈ K and x ∈ X , and outputs a key kx ∈ Kp.

– F.Eval(kx, x′) is a deterministic algorithm that takes as input a punctured
key kx ∈ Kp and x′ ∈ X . Let k ∈ K, x ∈ X and kx ← F.Puncture(k, x). For
correctness, we need the following property:

F.Eval(kx, x′) =

{
F (k, x′) if x′ �= x

⊥ otherwise

Adaptive Pseudorandomness of PPRFs: The security game between the
challenger and the adversary A consists of the following phases:

– Setup Phase The challenger chooses uniformly at random a PRF key k ← K
and a bit b ← {0, 1}.
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– Evaluation Query Phase A queries for polynomially many evaluations.
For each evaluation query x, the challenger sends F (k, x) to A.

– Challenge Phase A chooses a challenge x∗ ∈ X . The challenger computes
kx∗ ← F.Puncture(k, x∗). If b = 0, the challenger outputs kx∗ and F (k, x∗).
Else, it outputs kx∗ and y ← Y.

– Guess A outputs a guess b′ of b.

Let E ⊂ X be the set of evaluation queries. A wins if b′ = b and x∗ /∈ E.
The advantage of A is defined to be AdvF

A(λ) = |Pr[A wins] − 1
2 |.

Definition 1. The PRF F is an adaptively secure PPRF if for all PPT adver-
saries A, AdvF

A(λ) is negligible in λ.

2.2 t-Puncturable Pseudorandom Functions

Let t(·) be a polynomial. A PRF Ft : K × X → Y is a t-puncturable pseu-
dorandom function (t-PPRF) if there is an additional key space Kp and three
polynomial time algorithms Ft.Setup, Ft.Eval, Ft.Puncture defined as follows.

– Ft.Setup(1λ) is a randomized algorithm that takes the security parameter λ
as input and outputs a description of the key space K, the punctured key
space Kp and the PRF Ft.

– Ft.Puncture(k, S) is a randomized algorithm that takes as input a PRF key
k ∈ K and S ⊂ X where |S| ≤ t(λ), and outputs a t-punctured key kS ∈ Kp.

– Ft.Eval(kS , x′) is a deterministic algorithm that takes as input a t-punctured
key kS ∈ Kp and x′ ∈ X . Let k ∈ K, S ⊂ X , and kS ← Ft.Puncture(k, S). For
correctness, we need the following property:

Ft.Eval(kS , x′) =

{
Ft(k, x′) if x′ /∈ S

⊥ otherwise

The security of t-PPRFs is defined analogously to the adaptive pseudoran-
domness game for PPRFs.

Adaptive Pseudorandomness of t-PPRFs: The security game is as follows:

– Setup Phase The challenger chooses uniformly at random a PRF key k ← K
and a bit b ← {0, 1}.

– Evaluation Query Phase A queries for polynomially many evaluations.
For each evaluation query x, the challenger sends Ft(k, x) to A.

– Key Query Phase A queries for polynomially many keys. For each query,
it sends a set S ⊂ X , and receives Ft.Puncture(k, S).

– Challenge Phase A chooses a challenge x∗ ∈ X . If b = 0, the challenger
outputs Ft(k, x∗). Else, it outputs y ← Y.

– Guess A outputs a guess b′ of b.
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Let E ⊂ X be the set of evaluation queries and S1, . . . , Sq ⊂ X be the t-
punctured key queries. A wins if b′ = b, x∗ /∈ E and x∗ ∈ ⋂q

i=1 Si. The advantage
of A is defined to be AdvFt

A (λ) = |Pr[A wins] − 1
2 |.

Definition 2. The PRF Ft is an adaptively secure t-PPRF if for all PPT adver-
saries A, AdvFt

A (λ) is negligible in λ.

2.3 (Hierarchical) Identity-Based Key Encapsulation

An identity-based encapsulation mechanism (IB-KEM) allows a sender and a
receiver to agree on a random session key K in such a way that the sender can
create K from public parameters and the receiver’s identity and the receiver
can recover K using his secret key. This notion was first formalized by Bentahar
et al. [2].

Definition 3 (Identity-based Key Encapsulation Scheme). An IB-KEM
scheme IBKEM is defined by four algorithms (Setup,KeyDer,Encap,Decap) with
following specifications:

– Setup(1λ) is a randomized algorithm that takes as input a security parameter
λ and outputs a master public key mpk and a master secret key msk. We
assume mpk defines the identity space ID, the key space K and the ciphertext
space C.

– KeyDer(msk, id) computes a secret key skid for identity id.
– Encap(mpk, id) returns a random session key K ∈ K and a corresponding

ciphertext C ∈ C encapsulating K under the identity id.
– Decap(C, skid) decapsulates C to get back a session key K ∈ K or a symbol ⊥.

The correctness of the scheme requires that for all λ ∈ N, all (mpk,msk) pro-
duced by Setup(1λ), all identities id ∈ ID, and (K,C) ← Encap(mpk, id),
skid ← KeyDer(msk, id), Pr[Decap(C, skid) = K] = 1.

Next, we recall the concept of Hierarchical IB-KEM (HIB-KEM). Every user
in an HIB-KEM system has an id consisting of a vector such as id = (I1, . . . , Ik)
where k means user’s position in the hierarchy. We use id|t to denote the t-prefix
of id = (I1, . . . , It, . . . , Ik), i.e. id|t = (I1, . . . , It) where t ≤ k. The root node of
hierarchy is Private Key Generator (PKG), denoted by id|0.
Definition 4 (Hierarchical identity-based key encapsulation mecha-
nism). A hierarchical identity-based key encapsulation mechanism (HIB-KEM)
consists of five algorithms: (Setup,KeyGen,Derive,Encap,Decap). For a HIB-
KEM of depth �, any identity is represented by a vector id = (I1, . . . , Ij) where
1 ≤ j ≤ �.

– Setup(1λ, �) takes as input a security parameter λ and outputs a master public
key mpk and a master secret key msk = skid|0 . We assume mpk defines a
hierarchical identity space ID, a key space K and ciphertext space C.
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– KeyGen(msk, id) takes as input msk and id, and returns user secret key skid
for identity id.

– Derive(id, skid|k−1) takes as input a k-level identity id = (I1, . . . , Ik) and the
private key skid|k−1 of its (k − 1)-level prefix, outputs a private key skid for
identity id.

– Encap(mpk, id) takes as input mpk and id, returns (C,K), where ciphertext C
is an encapsulation of K under the identity id.

– Decap(C, skid) decapsulates C to get back a session key K ∈ K.

The correctness of the scheme requires that for all λ ∈ N, all (mpk,msk) pro-
duced by Setup(1λ), all identities id = (I1, . . . , Ik) for k ∈ [�], and (K,C) ←
Encap(mpk, id), skid ← KeyGen(msk, id), Pr[Decap(C, skid) = K] = 1. Moreover,
it is required that the distribution of skid ← Derive(id, skid|k−1) is identical to the
distribution of KeyGen(msk, id).

3 (t-) Puncturable Identity-Based Key Encapsulation

Chen et al. [7] first defined the notion of puncturable IBE, which is a special IBE
where the master secret key could be “punctured” with respect to a singleton
{id}. With this key, one could generate a secret key skid′ corresponding to any
identity id′ ∈ ID except the punctured one id. We adapt their definition to the
setting of KEM as follows:

3.1 Puncturable IB-KEM

Definition 5 (Puncturable IB-KEM). A puncturable IB-KEM (PIB-KEM)
scheme is an IB-KEM scheme whose master secret key allows for efficient punc-
turing at a single identity. The syntax of PIB-KEM is similar to standard IB-
KEM except it equips two additional algorithms as follows:

– Puncture(msk, id): on input msk and an identity id ∈ ID, output a punctured
master secret key msk({id}).

– Derive(msk({id}), id′): on input msk({id}) and an identity id′ ∈ ID, output
a secret key skid′ for id′ if id′ �= id and ⊥ otherwise. The correctness of the
algorithm demand that for all id′ �= id, the outputs of KeyDer(msk, id′) and
Derive(msk({id}), id′) have the same distribution.

Puncturable IB-KEM from HIB-KEM. As noted in [7], a PIB-KEM
scheme with certain length identity can be transformed from a HIB-KEM scheme
with depth �. Suppose we have an �-level HIB-KEM scheme HIBKEM with iden-
tity space ({0, 1}∗)�, then a PIB-KEM scheme PIBKEM with identity space
{0, 1}� could be obtained as:

– Setup(λ): (mpk,msk) ← HIBKEM.Setup(λ, �).
– KeyDer(msk, id): On input msk and an identity id ∈ {0, 1}�, parse id as a

vector v = (id[1], . . . , id[�]) where id[i] denotes the i-th bit of id, then compute
skv ← HIBKEM.KeyGen(msk, v), output skid := skv.
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– Puncture(msk, id∗): On input msk and id∗ ∈ {0, 1}�: for 1 ≤ i ≤ �, set vi =
(id∗[1], . . . , id∗[i − 1], id∗[i]), then compute skvi

← HIBKEM.KeyGen(msk, vi),
output msk({id∗}) = (skv1 , . . . , skv�

).
– Derive(msk({id∗}), id): on input msk({id∗}) = (skv1 , . . . , skv�

) and an identity
id ∈ {0, 1}�, if id �= id∗, find vj that is a prefix of id and output skid ←
HIBKEM.Derive(skvj

, id); otherwise, output ⊥.
– Encap(mpk, id): On input mpk and an identity id, parse id as a vector v =

(id[1], . . . , id[�]), output C ← HIBKEM.Encap(mpk, v).
– Decap(C, skid): On input ciphertext C and skid, output K ← HIBKEM.

Decap(C, skid).

3.2 t-Puncturable IB-KEM

In this subsection, we generalize the notion of PIB-KEM to obtain t-puncturable
IB-KEM, where t is an arbitrary polynomial, and show its existence by carefully
deriving from HIB-KEM. It is easy to see that PIB-KEM is a special case when
t = 1.

Definition 6 (t-Puncturable IB-KEM). Let t(·) be a polynomial. An IB-
KEM scheme is a t-puncturable IB-KEM (t-PIBKEM) scheme whose master
secret key allows for efficient puncturing at any set S of size at most t. The
additional syntax of t-PIBKEM is as follows:

– Puncture(msk, S): on input msk and an identity set S ⊂ ID, |S| ≤ t(λ) output
a t-punctured master secret key msk(S).

– Derive(msk(S), id): on input a t-punctured master secret key msk(S) and an
identity id ∈ ID, output a secret key skid for id if id /∈ S and ⊥ otherwise.
The correctness of the algorithm demand that for all id /∈ S, the outputs of
KeyDer(msk, id) and Derive(msk(S), id) have the same distribution.

t-PIBKEM from HIB-KEM. Suppose we have an �-level HIB-KEM scheme
HIBKEM with identity space ({0, 1}∗)�, then a t-PIBKEM scheme t-PIBKEM
with identity space {0, 1}� could be obtained as follows. Suppose S is a set of
identities to be punctured, namely S = {id1, . . . , idt}.

– Setup(λ): (mpk,msk) ← HIBKEM.Setup(λ, �).
– KeyDer(msk, id): On input msk and an identity id ∈ {0, 1}�, parse id as a

vector v = (id[1], . . . , id[�]) where id[i] denotes the i-th bit of id, then compute
skv ← HIBKEM.KeyGen(msk, v), output skid := skv.

– Puncture(msk, S): On input msk and a set S = {id1, . . . , idt}, follow the four
steps below.

• Run algorithm getList (see Table 1) and obtain t lists Lid1 , . . . , Lidt
.

• Compute the complement of each list, namely Lidj := [�]\Lidj , j ∈ [t].
• Run algorithm getKeyString (see Table 1) taking each Lidj

, j ∈ [t] as input
and get t sets Kid1 , . . . ,Kidt

. The union of these sets is denoted by K =⋃t
i=1 Kidi

.
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• Suppose that K = {v1, . . . , vn}. For each i ∈ [n], compute skvi
←

HIBKEM.KeyGen(msk, vi), output msk(S) = (skv1 , . . . , skvn
).

– Derive(msk(S), id): On input msk(S) = (skv1 , . . . , skvn
) and an identity

id ∈ {0, 1}�, if id /∈ S, find vj that is a prefix of id and output skid ←
HIBKEM.Derive(skvj

, id); otherwise, output ⊥.
– Encap(mpk, id): On input mpk and an identity id, parse id as a vector v =

(id[1], . . . , id[�]), output C ← HIBKEM.Encap(mpk, v).
– Decap(C, skid): On input ciphertext C and skid, output K ← HIBKEM.

Decap(C, skid).

id id1 id2 id3 id4 id5
S = { 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0}
List {2, 3, 4, 1} {2, 1} {3, 1, 2} {4, 2, 3, 1} {1}
4 0, 0, 0, 1 0, 1, 0, 1 0, 0, 1, 1 0, 0, 0, 0 1, 0, 0, 1
3 0, 0, 1, · 0, 1, 1, · 0, 0, 0, · 0, 0, 1, · 1, 0, 1, ·
2 0, 1, ·, · 0, 0, ·, · 0, 1, ·, · 0, 1, ·, · 1, 1, ·, ·
1 1, ·, ·, · 1, ·, ·, · 1, ·, ·, · 1, ·, ·, · 0, ·, ·, ·

Fig. 1. An example illustrating the process of Puncture algorithm. Actually, the algo-
rithm does not list all the items below the third line of the table. We do so since it
would be helpful to understand the principle of the algorithm.

To make it clear how the Puncture algorithm works, we show a toy example
(Fig. 1) when the identity space of a PIB-KEM scheme consists of 4-bit strings,
namely ID = {0, 1}4. Ahead of time, we have a HIB-KEM scheme with identity
space ({0, 1}∗)4. Suppose that we wish to puncture a set of 5 identities: S =
{0000, 0100, 0010, 0001, 1000}. Our goal is to create a punctured key msk(S)
with which we could generate secret key of any identity (there are 11 altogether
in this example) not in S.

Table 1. Algorithms used in Puncture.

Algorithm getList

Input: A puncturing set S = {id1, . . . , idt}
Output: t lists Lid1 , . . . , Lidt

c ← 1.
while c �= t

for all c + 1 ≤ j ≤ t do
1: Find an index i s.t. idj [i] �= idc[i]
2: If i /∈ Lidc , add i to Lidc
3: If i /∈ Lidj , add i to Lidj

end for
c ← c + 1

end while

Algorithm getKeyString

Input: A set Indidi = {i1, i2, . . . , in} recording
idi’s indices

Output: A set Kidi of ID-vectors vi1 , . . . , vin

Kidi ← ∅, c ← 1.
while c ≤ n

for all 1 ≤ j ≤ n do
1: vij = (idi[1], . . . , idi[ij − 1], idi[ij ])
2: Add vij to Kidi

end for
c ← c + 1

end while
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4 Main Constructions

In this section, we give two main constructions. The basic construction shows
that one could derive adaptively-secure PPRFs from PIB-KEM satisfying two
conditions. And the extended construction demonstrates the way of constructing
t-PPRFs from a t-PIBKEM. To make use of PIB-KEM to construct PPRF, we
need the underlying PIB-KEM scheme to be PPRF-compatible.

4.1 PPRF-Compatible (t-)PIB-KEM

A PIB-KEM scheme is said to be PPRF-compatible if satisfying:

1. Unique and perfect derivation
– Unique derivation. The output of Derive algorithm taking as input a punc-

tured master key msk{id} and an identity id′ �= id is unique. There is only
one secret key skid′ matched with id′. Note that this implicitly requires
that the KeyDer algorithm is deterministic.

– Perfect derivation. The output of Derive algorithm taking as input a punc-
tured master key msk{id} and an identity id′ �= id is equal to the output
of KeyDer algorithm taking as input the master secret key and id′. That
is, Derive(msk{id}, id′) = KeyDer(msk, id′) for all id′ �= id.

2. Pseudorandom decapsulation. Let C be an encapsulation under identity
id, it is required that if C is decapsulated by a secret key corresponding to
any other identity id, the result should be computationally indistinguishable
from a uniformly random value. Formally, we define a game (Fig. 2) played
between a challenger and a PPT adversary A = (A1,A2):

Similarly, we can define these properties in terms of a t-PIBKEM. The property
of unique and perfect derivation is essentially the same. We additionally define

GAME PIB-KEM-RDECAPA
PIBKEM(λ):

(mpk,msk) ← Setup(1λ)

id∗ � ID
C∗ ← Encap(mpk, id∗)

(id, st) ← AKeyDer(msk,·)
1 (mpk, C∗, id∗)

skid ← KeyDer(msk, id); msk({id}) ← Puncture(msk, id)

b ← {0, 1}; K0 ← Decap(C∗, skid); K1 ← K
b′ ← A2(st,msk({id}), Kb)

If b′ = b, return 1, else return 0

Fig. 2. The pseudorandom decapsulation property of a PIB-KEM scheme. The ora-
cle KeyDer(msk, id) returns skid with the restriction that A is not allowed to query
KeyDer(msk, ·) for identity id.
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a pseudorandom decapsulation game for a t-PIBKEM scheme as in Fig. 4 in the
appendix.

Having all these properties, we are ready to give our main constructions of
transforming (t-)PIB-KEM into (t-)PPRFs. The methods to provide a PIB-KEM
scheme with these two properties are argued later in Sect. 5.

4.2 From PIB-KEM to Puncturable PRFs

In this section, we show our construction of PPRF F : K × X → Y and
corresponding algorithms F.Setup, F.Puncture, F.Eval from a PIB-KEM scheme
PIBKEM = (Setup,KeyDer,Encap,Decap,Puncture,Derive). Let ID be the iden-
tity space, K the session key space, defined by PIBKEM. F maps from input
space X = ID to output space Y = K.

– F.Setup(1λ): Run (mpk,msk) ← PIBKEM.Setup(1λ). Choose a random id0 ←
ID and compute C0 ← Encap(mpk, id0). Set k = (msk, C0). The function is
described as:

F (k, x) = PIBKEM.Decap(C0, skid),

where id := x and skid = PIBKEM.KeyDer(msk, id).
– F.Puncture(k, x): Let id := x. First run msk({id}) ← PIBKEM.Puncture(msk,

id) using msk within k. Then set kx = (msk({id}), C0).
– F.Eval(kx, x′): Let id := x and id′ := x′. The function value y is acquired by

first computing:

skid′ =

{
PIBKEM.Derive(msk({id}), id′) if id′ �= id

⊥ otherwise

and then computing y := PIBKEM.Decap(C0, skid′).

Correctness: It is required F.Eval(kx, x′) = F (k, x′) when x′ �= x. This is
promised by perfect derivation of Derive algorithm: Derive(msk({id}), id′) =
KeyDer(msk, id′) = skid′ as long as id′ �= id. Thus, F.Eval(kx, x′) = PIBKEM.
Decap(C0, skid′) = F (k, x′).

Adaptive Pseudorandomness: We next focus on the security of constructed
PPRFs.

Theorem 1. Assume PIBKEM is PPRF-compatible, then the construction above
is an adaptively secure puncturable pseudorandom function.

Proof. First it is promised to be PRF by unique derivation as multiple executions
of F.Eval(kx, ·) on the same input x′ will give the same function value y. Suppose
there exists an adversary A that breaks the adaptive pseudorandomness of PPRF
with probability 1

2 + ε(λ), where ε(λ) is non-negligible, we build an algorithm B
which has advantage ε(λ) in the PIB-KEM-RDECAP game.

B gets as input (mpk, C∗, id∗) and simulates the adaptive pseudorandom-
ness game with A. When receiving an evaluation query x ∈ ID from A, B
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queries its own KeyDer(·) oracle and obtains skx. Then it uses skx to com-
pute Decap(C∗, skx). That is, F (k, x) = Decap(C∗,KeyDer(msk, x)). When A
sends the challenge point x∗ ∈ ID, B sends the same point to the challenger
and gets back Kb together with msk({x∗}) ← Puncture(msk, x∗) and returns
(Kb, kx∗ := msk({x∗})) to A. Eventually, B outputs whatever A outputs to its
own challenger as b′.

Since B simulates perfectly the adaptive pseudorandomness game to A, the
advantage of B is the same as A, namely ε(λ). 
�

4.3 Extension: From t-PIBKEM to t-Puncturable PRFs

From a t-PIBKEM scheme t-PIBKEM = (Setup,KeyDer,Encap,Decap,Puncture,
Derive), we could derive a t-PPRF Ft with associated algorithms
(Setup,Puncture,Eval). Let ID be the identity space, and K the session key
space, defined by t-PIBKEM scheme. Ft maps from input space X = ID to
output space Y = K.

– Ft.Setup(1λ) first runs (mpk,msk) ← t-PIBKEM.Setup(1λ), then chooses a
random id0 ← ID and computes C0 ← Encap(mpk, id0). It sets k = (msk, C0).
The function value is:

Ft(k, x) = t-PIBKEM.Decap(C0, skid),

where id := x and skid = t-PIBKEM.KeyDer(msk, id).
– Ft.Puncture(k, S) runs msk(S) ← t-PIBKEM.Puncture(msk, S) using msk

within k, then sets kS = (msk(S), C0).
– Ft.Eval(kS , x′) first computes

skx′ =

{
t-PIBKEM.Derive(msk(S), x′) if x′ /∈ S

⊥ otherwise

and then computes y = t-PIBKEM.Decap(C0, skx′).

Correctness: It is required that Ft.Eval(kS , x′) = Ft(k, x′) when x′ /∈ S. This
is promised by perfect derivation of t-PIBKEM.Derive algorithm, which tells
that t-PIBKEM.Derive(msk(S), id′) = t-PIBKEM.KeyDer(msk, id′) = skid′ as long
as id′ /∈ S. Thus by definition, Ft.Eval(kS , x′) = t-PIBKEM.Decap(C0, skid′) =
Ft(k, x′).

Adaptive Pseudorandomness: The adaptive pseudorandomness is promised
by:

Theorem 2. Assume t-PIBKEM is PPRF-compatible, then the construction
above is an adaptively secure t-puncturable pseudorandom function.

The proof process is similar with Theorem 1. We give the full proof in the
appendix.
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5 Discussion of PPRF-Compatible PIB-KEM

In this section, we discuss the existence of PPRF-compatible PIB-KEM. We
first show that the transformation from HIB-KEM to PIB-KEM can be modi-
fied to have unique and perfect derivation property using some derandomization
techniques. Then we define the notion of pseudorandom decapsulation in the
HIB-KEM setting, and give formal proofs to show that some existing HIB-KEM
schemes already satisfy this property. Finally, we demonstrate that a PIB-KEM
scheme deriving from a HIB-KEM scheme could inherit pseudorandom decap-
sulation.

5.1 PIB-KEM with Unique and Perfect Derivation

Suppose we have an �-level HIB-KEM scheme HIBKEM with identity space
({0, 1}∗)� and the randomness space of its Derive algorithm is R, then a punc-
turable IB-KEM scheme PIBKEM with identity space {0, 1}� with unique and
perfect derivation could be obtained as follows.

– Setup(λ): (mpk1,msk1) ← HIBKEM.Setup(λ, �). Also generate a random key
τ for a pseudorandom function Fτ : {0, 1}� × [�] → R. Then output mpk :=
mpk1 and msk = (msk1, τ).

– KeyDer(msk, id): On input msk and an identity id ∈ {0, 1}�, parse id as a
vector v = (id[1], . . . , id[�]) where id[i] denotes the i-th bit of id (conforming
to Definition 4), then compute skv as follows: for 1 ≤ i ≤ �, compute skv|i =
HIBKEM.Derive(skv|i−1 , v|i;Fτ (id, i)), where skv|0 = msk1 and skv = skv|� ,
output skid := skv.

– Puncture(msk, id∗): On input msk and id∗ ∈ {0, 1}�: for 1 ≤ i ≤
�, set v∗|i = (id∗[1], . . . , id∗[i − 1], id∗[i]), v∗|i = (id∗[1], . . . , id∗[i −
1], id∗[i]), and compute skv∗|i = HIBKEM.Derive(skv∗|i−1 , v

∗|i;Fτ (id∗, i)),
skv∗|i = HIBKEM.Derive(skv∗|i−1 , v

∗|i;Fτ (id∗, i)), output msk({id∗}) =
({skv∗|1 , . . . , skv∗|�}, τ).

– Derive(msk({id∗}), id): On input msk({id∗}) = {sk1, . . . , sk�} and an identity
id ∈ {0, 1}�, if id �= id∗, parse id as a vector v = (id[1], . . . , id[�]) and id∗ as
v∗ = (id∗[1], . . . , id∗[�]), find the longest common prefix of v and v∗, denote
its length as j (0 ≤ j < �). Let skv|j+1 := skj+1, for j + 1 < i < �, compute
skv|i = HIBKEM.Derive(skv|i−1 , v|i;Fτ (id, i)), output skid := skv|� ; otherwise,
output ⊥.

– Encap(mpk, id): On input mpk and an identity id, parse id as a vector v =
(id[1], . . . , id[�]), output C ← HIBKEM.Encap(mpk, v).

– Decap(C, skid): On input ciphertext C and skid, output K ← HIBKEM.
Decap(C, skid).

One can verify that for any id ∈ {0, 1}�, KeyDer(msk, id) = Derive(msk{id∗}, id)
for a punctured key msk({id∗}) generated by Puncture(msk, id∗).

Remark 1. The construction binds the three algorithms KeyDer,Puncture,Derive
by consistently using HIBKEM.Derive algorithm and then derandomizes it
through a unified way of letting the randomness be the output of a “global”
PRF.
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5.2 Pseudorandom Decapsulation of HIB-KEM

Abdalla et al. [1] have discussed the exact meaning of pseudorandom decapsu-
lation in the setting of an IB-KEM. It is quite natural to consider whether this
notion is also suitable for its hierarchical counterpart. We thus put forth the
notion of pseudorandom decapsulation in the HIB-KEM setting.

Definition. Let C∗ be an encapsulation under id∗ = (I1, . . . , I�), it is required
that if C∗ is decapsulated by a secret key corresponding to any identity id =
(I ′

1, . . . , I
′
k) that is not a prefix of id∗ for k ≤ �, the result should look like a

random bitstring. Formally, we define a game played between a challenger and
a PPT adversary A = (A1,A2):

GAME HIB-KEM-RDECAPA
HIBKEM(λ):

(mpk,msk) ← Setup(1λ)

id∗ � ID
C∗ ← Encap(mpk, id∗)

(id, st) ← AKeyGen(msk,·)
1 (mpk, C∗, id∗)

skid ← KeyGen(msk, id)

b ← {0, 1}; K0 ← Decap(C∗, skid); K1 ← K
b′ ← AKeyGen(msk,·)

2 (st, Kb)

If b′ = b, return 1, else return 0

Fig. 3. The pseudorandom decapsulation property of a HIB-KEM scheme. The ora-
cle KeyGen(msk, id) returns skid with the restriction that A is not allowed to query
KeyGen(msk, ·) for identity id∗, id or an identity that is a prefix of either of them.

Existence of HIB-KEMs that satisfy pseudorandom decapsulation
In the following part, we give formal proofs to show that some existing HIB-KEM
schemes already have the property of pseudorandom decapsulation.

BBG HIB-KEM achieves Pseudorandom Decapsulation. We prove that the HIB-
KEM scheme proposed by Boneh, Boyen and Goh [3] satisfies the property of
pseudorandom decapsulation. The KEM version of the scheme (BBG-KEM) is as
follows:

Let G be a bilinear group of prime order p and let e : G × G → G1 be a
bilinear map.

Setup(1�): Select a generator g ∈ G, a random α ∈ Zp, set g1 = gα. Pick
g2, g3, h1, . . . , h� ∈ G. Output mpk = (g, g1, g2, g3, h1, . . . , h�), msk = gα

2 .
KeyGen(msk, id): Suppose that id = (I1, . . . , Ik) ∈ (Z∗

p)
k, output a private key

skid as skid =
(
gα
2 · (hI1

1 · · · hIk

k · g3)r, gr, hr
k+1, . . . , h

r
�

)
.
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Derive(skid|k−1, id): Suppose that id = (I1, . . . , Ik) ∈ (Z∗
p)

k, and let

skid|k−1 =
(
gα
2 · (hI1

1 · · · hIk−1
k−1 · g3)r′

, gr′
, hr′

k , . . . , hr′
�

)
= (a0, a1, bk, . . . , b�).

To generate skid, first pick a random r′′ ∈ Zp and then output private key
skid as:

skid =
(
a0 · bIk

k · (hI1
1 · · · hIk

k · g3)r′′
, a1 · gr′′

, bk+1 · hr′′
k+1, . . . , b� · hr′′

�

)
.

Encap(mpk, id): On input an identity id = (I1, . . . , Ik) ∈ (Z∗
p)

k, pick a random

s ∈ Zp, and output (C,K) as C =
(
gs, (hI1

1 · · · hIk

k · g3)s
)

,K = e(g1, g2)s.
Decap(C, skid): Parse C = (A,B). Using skid = (a0, a1, . . . ), compute K =

e(A,a0)
e(a1,B) .

Boneh et al. put forth the following assumption which is helpful for our proof:

Decisional Weak BDHI Assumption. Let g and h be two generators of G.
Let α be a random number in Z

∗
p. Let yg,α,� = (y1, . . . , y�) where yi = g(α

i).
An algorithm B that outputs b ∈ {0, 1} has advantage ε in solving Decision
�-wBDHI* if∣∣∣Pr[B(g, h,yg,α,�, e(g, h)(α

�+1)) = 0] − Pr[B(g, h,yg,α,�, T ) = 0]
∣∣∣ ≥ ε,

where the probability is taken over the random choices of generators g, h, α, T
and random bits consumed by B. The decisional �-wBDHI* assumption posits
that any PPT algorithm has only negligible advantage.

Theorem 3. Assuming that the Decision �-wBDHI* assumption holds in a
bilinear group G, then the BBG-KEM satisfies pesudorandom decapsulation.

Proof. Suppose that A = (A1,A2) is a PPT adversary attacking the pseudo-
random decapsulation of BBG-KEM and it has advantage ε. We construct a
simulator B who has advantage ε to break the �-wBDHI* assumption.

B takes as input a random tuple (g, h, y1, . . . , y�, T ) from its challenger where
T = e(g, h)(α

�+1) or T ← G1. B interacts with A as follows:
First B simply chooses id∗ = (1, 1, . . . , 1) ∈ (Z∗

p)
� and we denote by id the

identity outputs by A. Then B samples a random w ∈ Zp and sets g1 = y1 =
gα and g2 = y� · gw = gw+α�

. Then B takes w1, w2, . . . , w� ← Zp and sets
hi = gwi/y�−i+1 for i = 1, . . . , �. Next B picks random u ← Zp and sets g3 =
gu · ∏�

i=1 y�−i+1. The public key is mpk = (g, g1, g2, g3, h1, . . . , h�). The master
secret key is msk = gα

2 = gα(w+α�) = y�+1 · yw
1 , which is hidden from B since it

does not know the value of y�+1. Meanwhile, B produces the ciphertext C∗ =
(A,B) = (h, h

∑�
i=1 wi+u). It is a properly generated ciphertext for identity id∗

with randomness s if h = gs since that

(h1 · · · h� · g3)s =

( ∏�
i=1 gwi∏�

i=1 y�−i+1

· gu
�∏

i=1

y�−i+1

)s

= h
∑�

i=1 wi+u
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B runs A1 on input (mpk, C∗, id∗). When A queries for the private key of an
identity id = (I1, . . . , In) ∈ (Z∗

p)
n where n ≤ �, It must be the case that id is

not id∗ or a prefix of id∗. This ensures that there must exist a k ∈ [n] such
that Ik �= 1. To answer the query, B first derives a private key for identity
(I1, . . . , Ik) and then construct a key for id = (I1, . . . , Ik, . . . , In) using the Derive
algorithm. To generate a key for (I1, . . . , Ik), B first picks a random r̃ ∈ Zp. Let
r = αk

Ik−1 + r̃ ∈ Zp. Then B hopes to generated the well-distributed key as
(gα

2 · (hI1
1 · · · hIk

k g3)r, gr, hr
k+1, . . . , h

r
�), the only difficult is to compute the first

term in outer brackets. Note that y
(αj)
i = yi+j and then:

gα
2 · (hI1

1 · · · hIk

k g3)r = gα
2 ·

(
k−1∏
i=1

y1−Ii

�−i+1 · y1−Ik

�−k+1 ·
�∏

i=k+1

y1−Ii

�−i+1 · gu+
∑k

i=1 Iiwi

)r

.

We assume that k is the smallest number which meets the condition Ik �= 1.
So the first term in brackets

∏k−1
i=1 y1−Ii

�−i+1 equals 1. The third and fourth terms
could be computed by B. Next we concentrate on the second term (y1−Ik

�−k+1)
r:

(y1−Ik

�−k+1)
r = (y1−Ik

�−k+1)
r̃ · y

(1−Ik)
αk

Ik−1

�−k+1 = (y1−Ik

�−k+1)
r̃/y�+1,

so gα
2 · (y1−Ik

�−k+1)
r = y�+1 · yw

1 · (y1−Ik

�−k+1)
r̃/y�+1 = yw

1 (y1−Ik

�−k+1)
r̃, which can be

computed by B through its knowledge of w, r̃ and values of y1, y�−k+1 for k ≥ 1.
Let id = (I1, . . . , It) where t ≤ � and suppose the private key for id

is skid = (a0, a1, . . . ). Concretely, suppose that a0 = gα
2 (hI1

1 · · · hIt
t g3)v and

a1 = gv. If B chooses a random value v ∈ Zp, this key is correctly dis-
tributed even though B cannot derive a0. B computes the session key K as
T · e(h, yw

1 ) · e
(
h, (hI1

1 · · · hIt
t g3)v

)
/e(gv, h

∑�
i=1 wi+u) and finally gives it to A2.

Upon receiving K, A2 will output a guess bit b′ of b. B returns whatever A out-
puts to its challenger. Notice that if T = e(g, h)(α

�+1), K is perfectly distributed
because: K = e(h, gα

2 )e
(
h, (hI1

1 · · · hIt
t g3)v

)
/e(a1, B) = e(A,a0)

e(a1,B) . Otherwise if
T ← G1, then K is uniformly distributed in G1. This concludes the theorem
that BBG-KEM achieves pseudorandom decapsulation. 
�
Remark 2. The above proof is reminiscent of the process to prove selective secu-
rity of BBG HIB-KEM scheme. We believe that other examples could be given
similarly as long as the underlying HIB-KEM scheme is provably secure in the
selective-ID model.



Adaptively Secure Puncturable Pseudorandom Functions 479

5.3 Inheriting Pseudorandom Decapsulation from HIB-KEM

The following theorem tells that a PIB-KEM scheme deriving from a HIB-KEM
scheme could inherit pseudorandom decapsulation.

Theorem 4. If an �-level HIB-KEM scheme HIBKEM with identity space
({0, 1}∗)� satisfies the property of pseudorandom decapsulation, then so does a
PIB-KEM scheme PIBKEM with identity space {0, 1}� constructed in Sect. 3.1.

Proof. Suppose there exists an adversary A = (A1,A2) attacking the decapsu-
lation pseudorandomness of PIBKEM with identity space ID = {0, 1}�, we use
it as a subroutine to construct an algorithm B to break the decapsulation pseu-
dorandomness of the underlying HIBKEM with identity space ID = ({0, 1}1)�.
Initially, B takes as input (mpk, C∗, id∗) and forwards this to A1. Upon receiving
a KeyDer(msk, ·) query on identity id ∈ {0, 1}�, B first parses this id as a vector
v = (id[1], . . . , id[�]) where id[i] denotes i-th bit of id and then answers by query-
ing its own oracle KeyGen(msk, v). When A1 outputs an identity id ∈ {0, 1}�, B
considers it as an �-length vector v and outputs this vector. Later on it gets
back a Kb from its challenger. Remember the task of B is to tell b = 0 if
Kb = Decap(C∗, skv) or b = 1 if Kb ← K. Then it does the following: for
1 ≤ i ≤ �, set vi = (id[1], . . . , id[i − 1], id[i]), then query its KeyGen(msk, ·) oracle
for each vi. Note that these queries are valid since none of vi is a prefix of v. B
constructs msk({id}) := (skv1 , . . . , skv�

) and gives it to A2. It also gives Kb to
A2. When A2 outputs a bit b′, B outputs the same b′. By observation, B sim-
ulates perfectly the view of A in game PIB-KEM-RDECAP. So the probability
of B guessing correctly is equal to the probability of A’s output b′ satisfying
b′ = b. 
�

The following theorem indicates that same result is applicable for a t-PIB-
KEM scheme. The proof proceeds analogously, we omit it here.

Theorem 5. If an �-level HIB-KEM scheme HIBKEM with identity space
({0, 1}∗)� satisfies the property of pseudorandom decapsulation, then so does a t-
PIB-KEM scheme t-PIBKEM with identity space {0, 1}� constructed in Sect. 3.2.
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A Pseudorandom decapsulation of t-PIB-KEM (Fig. 4)

GAME t-PIB-KEM-RDECAPA
t-PIBKEM(λ):

(mpk,msk) ← Setup(1λ)

id∗ � ID
C∗ ← Encap(mpk, id∗)

(id, st) ← AKeyDer(msk,·),Puncture(msk,·)
1 (mpk, C∗, id∗)

skid ← KeyDer(msk, id)

b ← {0, 1}; K0 ← Decap(C∗, skid); K1 ← K
b′ ← AKeyDer(msk,·),Puncture(msk,·)

2 (st, Kb)

If b′ = b, return 1, else return 0

Fig. 4. The pseudorandom decapsulation property of a t-PIB-KEM scheme. The ora-
cle KeyDer(msk, id) returns skid with the restriction that A is not allowed to query
KeyDer(msk, ·) for identity id. Meanwhile, the oracle Puncture(msk, S) returns a punc-
tured key msk(S) where S is a set with size at most t and A is only allowed to query
Puncture(msk, ·) for any set that contains the target identity id.

B Proof of Theorem2

Proof. The property of unique derivation obviously ensures it to be PRF.
Suppose there exists an adversary A that breaks the adaptive pseudorandom-

ness of t-puncturable PRF with probability 1
2 +ε(λ), where ε(λ) is non-negligible,

we build an algorithm B which has advantage ε(λ) in the t-PIB-KEM-RDECAP
game.

B gets as input (mpk, C∗, id∗) and simulates the adaptive pseudorandom-
ness game with A. On receiving an evaluation query x ∈ ID from A, B
queries its own KeyDer(·) oracle and obtains skx. Then it uses skx to compute
Decap(C∗, skx). That is, F (k, x) = Decap(C∗,KeyDer(msk, x)). When A issues
a key query of a set S, B submits this set to oracle Puncture(msk, ·) and gets
back Puncture(msk, S). Then it returns kS := (msk(S), C∗) to A. When A sends
the challenge point x∗ ∈ ⋂q

i=1 Si, B sends the same point to its challenger and
gets back Kb where Kb = Decap(C∗, skx∗) or Kb ← K. It returns this Kb to A.
Eventually, B outputs whatever A outputs to its challenger as b′.

Since B simulates perfectly the adaptive pseudorandomness game to A, the
advantage of B is the same as A, namely ε(λ). 
�
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Abstract. Distributed Leger Technologies (DLTs), most notably
Blockchain technologies, bring decentralised platforms which eliminate a
single trusted third party and avoid the notorious single point of failure
vulnerability. Since Nakamoto’s Bitcoin cryptocurrency system, an enor-
mous number of decentralised applications have been proposed on top
of these technologies, aiming at more transparency and trustworthiness
than their traditional counterparts. Unfortunately, Blockchain introduces
very subtle implications for other desirable properties such as privacy.
In this work, we demonstrate these subtle implications for Blockchain-
based searchable encryption solutions, which are one specific use case of
cloud computing services. These solutions build on top of Blockchain and
attempt to achieve both the standard privacy property and the new fair-
ness property, which requires that search operations are carried out faith-
fully and are rewarded accordingly. We show that directly replacing the
server in an existing searchable encryption solution with a Blockchain will
cause undesirable operational cost, privacy loss, and security vulnerabil-
ities. The analysis results indicate that a dedicated server is still needed
to achieve the desired privacy guarantee. To this end, we propose two
frameworks which can be instantiated based on most existing searchable
encryption schemes. Through analysing these two frameworks, we affir-
matively show that a carefully engineered Blockchain-enabled solution
can achieve the desired fairness property while preserving the privacy
guarantee of the original searchable encryption scheme simultaneously.

1 Introduction

With the prevalence of cloud computing, many organizations are outsourcing
their data and services to the cloud. By doing so, an organization or individual
can enjoy a wide spectrum of benefits such as agileness and cost-saving. More-
over, the cloud service provider can deploy sophisticated cybersecurity solutions
to meet the requirements from the relevant security regulations. It is widely
perceived that the big cloud service providers, such as Amazon and Microsoft,
provide better protection in practice than most organizations if they do it by
themselves. However, there are indeed drawbacks for the outsourced data and
corresponding operations, among which loss of privacy is the most significant
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one. As the cloud service provider can observe the data usage patterns and poten-
tially have access to the plain data, it becomes a concern when the data contains
sensitive information. The issue becomes more complex when the services are
cross-border and need to comply with privacy regulations from different regimes.
Besides privacy, the verifiability of outsourced computing tasks might also be a
serious concern. In order to save cost, the cloud service provider might not carry
out the promised tasks faithfully. At the end, the incomplete or even flawed
computing results might damage the client’s business severely. Therefore, how
to guarantee privacy and verifiability in outsourcing has been an active research
area for many years.

Regarding the potential computing tasks on outsourced data, search is the
most fundamental one. To cater to the privacy needs, searchable encryption is
a category of cryptographic primitives that allows data to be outsourced in an
encrypted form while still being able to be searched over. Searchable encryption
typically assumes a standard client-server setting, where a client outsources its
encrypted data to a cloud server, which can then search on the client’s behalf
without decrypting the data. Existing searchable encryption schemes can be
broadly classified into two settings. In the asymmetric setting [2], the client can
publish a public key, by which anybody can generate searchable encrypted data
and store it on the server. Later, the client, who has access to the private key,
can let the server search on its behalf by issuing a trapdoor. In the symmetric
setting [16], a client uses symmetric keys to encrypt its own data and stores the
ciphertexts on the server. Later on, as in the asymmetric setting, the client can let
the server search on its behalf by issuing a trapdoor. Compared to the symmetric
setting, the asymmetric setting poses higher challenges to data privacy, as shown
in [1]. This implies that asymmetric searchable encryption schemes leak much
more information in reality, and potentially make such schemes very undesirable
facing strong attackers.

In this paper, we focus on symmetric searchable encryption schemes and show
how to properly leverage Blockchain to achieve verifiability and more properties
without sacrificing privacy.

1.1 Preliminary on Symmetric Searchable Encryption

We assume the client has a database DB, which contains the files which will be
searched based on an inverted index. We assume a basic version of symmetric
searchable encryption scheme which only consists of two stages Setup and Search,
with an example shown in Sect. 3.1. In the Setup stage, the client extracts a
keyword set W from the files in the DB and builds an encrypted inverted index,
which is then stored on the server. In the Search stage, the client interacts with
the server to search for the files which contain any keyword w ∈ W.

To facilitate our discussions, we provide a high-level workflow of both stages.
Existing schemes might optimize their performances or security with very specific
tricks, e.g. index data structure. Nevertheless, most of them follow the workflow.
In the Setup stage, the following operations will occur.
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1. Run by the client, it first generates the key materials, namely private key(s).
2. Given the database DB, a keyword set W is extracted and a plaintext

inverted index is built. The index is informally a table [18], where each row
contains the file identifiers associated with a specific keyword. Note that the
client might choose to pad the rows so that they contain certain number of
file identifiers, e.g. all rows can be padded to contain the same number of
file identifiers.

3. Using the private key(s), the client encrypts the inverted index and obtains
an encrypted form of it. Note that the encryption here means not only the
hiding of keyword and identifier information but also can be the hiding of
other pattern information such as the ordering of the encrypted keywords
and identifiers. Finally, the encrypted index is stored on the server.

In the Search stage, if the client wants to find all the file identifiers associated
with a keyword w, the following operations will occur.

1. Using the private key(s), the client generates a trapdoor Tw based on its
private keys(s) and w, and sends it to the server.

2. With the trapdoor Tw, the server can go through the encrypted index and
match those elements which contain the same keyword (i.e. w) as that embed-
ded in the trapdoor.

3. For the matched elements, the server recovers the associated file identifiers,
denoted as a set IDw and return them to the client.

1.2 Privacy and Fairness Challenges

Searchable encryption can be seen as a derivative of standard encryption prim-
itives, but it is more complex due to the fact that, concerning privacy, we need
to consider not only the encrypted index but also the trapdoors. If there is a
secure channel between the client and the server, then the server is the main
privacy attacker. Intuitively, we will expect at least the encrypted index or trap-
doors alone do not leak any information about the embedded keywords. This can
be formulated in a similar way to the semantic security property of encryption
schemes [9], and easy to achieve. However, the situation is more complex for
searchable encryption, due to the fact that search operations link the encrypted
index and trapdoors so that more information will be leaked. In more detail,
there are concerns of access pattern leakage and search pattern leakage. Infor-
mally, access pattern is the file identifier information resulted from the client’s
search queries. While, search pattern is about whether two trapdoors contain the
same keywords or not. These two types of leakages are clearly closely related.
After receiving several trapdoors, even if the server might not learn the key-
words, it can derive statistical information about the keywords based on access
pattern. In practice, the statistical information can disclose the search pattern
and even lead to full recovery of the keywords. Besides privacy, the other practi-
cal concern related to searchable encryption is the verifiability of search results.
As we have mentioned before, it is desirable for the server to assure the client
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that the search results have come from a faithful execution of the protocol. On
the other side, it is also desirable that the server is rewarded properly for the
faithful execution of the search protocol. Follow the literature work, if a search-
able encryption solution satisfies both requirements simultaneously, we say it is
fair.

So far, very little has been done to design privacy-preserving and fair search-
able encryption solutions, except for some recent solutions that leverage on
Blockchain to achieve fairness [4,10]. We note that there are verifiable schemes,
e.g. [3], which however only guarantee that a semi-honest server will follow the
protocol. Being a technology that brings trust as many believe, Blockchain causes
very subtle tradeoffs among the desirable properties, e.g. privacy and verifiabil-
ity. It is not clear how well these recent searchable encryption solutions have
addressed the privacy and fairness requirements.

1.3 Contribution and Organisation

Our contribution in this paper is two-fold. We start by examining some recent
Blockchain-based searchable encryption solutions, i.e. [4,10]. We show that
directly replacing the server of a searchable encryption scheme with a Blockchain
is a very undesirable solution. First of all, it introduces considerable cost with
respect to storing the encrypted index and executing the smart contract which
implements the search operation. Secondly, these solutions suffer from the inher-
ent issues of Blockchain, e.g. the forking problem. This might cause serious
usability issues for these solutions. Thirdly, the privacy concerns of the under-
lying scheme are amplified by the Blockchain platform. The access pattern and
search pattern leakages are exposed to all entities who can access the Blockchain.
To mitigate the identified issues in our analysis, we then propose two frameworks
that can be instantiated based on most existing searchable encryption schemes.
In both frameworks, search operations are carried out by the server(s) as in
the traditional schemes, while Blockchain is leveraged to achieve the fairness
property only.

The rest of this paper is organised as follows. In Sect. 2, we present a brief
summary of Blockchain technologies. In Sect. 3, we present and analyse the exist-
ing Blockchain-based solutions. In Sect. 4, we present our new frameworks and
provide corresponding analysis. In Sect. 5, we conclude the paper.

2 Blockchain in a Nutshell

Since the seminal report from Nakamoto [11], the concept of Blockchain has
become very popular not only in the research community but also in the society
at large. Its popularity largely comes from the fact that it is the key enabling
technology for the variety of cryptocurrency systems, including Bitcoin [11] and
the altcoins, even though the history of both the idea of cryptocurrency and
the techniques in Blockchain can be traced back to much earlier era [13]. As a
matter of fact, today there are over 1600 such systems according to Wikipedia.
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2.1 Blockchain Overview

Informally, the data on a Blockchain is organized in the form shown in Fig. 1.
Depending on who maintains the chain (i.e. generate and approve new blocks),
Blockchain systems can be roughly divided into two categories. If anyone can
publish and approve a new block, it is permissionless. Otherwise, if only par-
ticular nodes are allowed to do it, it is permissioned. More details about the
categorisation can be found in the NIST report [19]. From now on, we refer to
these particular privileged nodes as miners in the paper.

Fig. 1. Blockchain structure

As the core characteristic of Blockchain, repeatedly, a certain number of new
data entries (e.g. transactions) will be packed into a new block and appended
to the existing (longest) chain. In the case of Bitcoin Blockchain, a new block
also includes the hash value of the last block of the current chain. The block
is formed with some specific features, e.g. a proof of work (PoW) needs to be
carried out so that the hash value of the new block contains some number of
consecutive zeros. The new block will be broadcast to the whole network, and it
will be accepted in the network after everything being validated. Depending on
the variants and implementations, there are many subtle details on how a block
is formed and accepted to the chain, we refer the readers to the corresponding
technical specifications for the precise information.

Besides cryptocurrencies, Blockchain systems act as the key foundation plat-
form for smart contracts, which facilitate automated execution of software pro-
grams in a verifiable manner. One of the notable examples is Ethereum, which is
the second largest cryptocurrency system after Bitcoin and gains the popularity
because of its powerful smart contracts functionality. In practice, smart contracts
can enable a variety of trustworthy distributed applications, e.g. building digital
Decentralized Autonomous Organizations (DAOs).

It is worth noting that Blockchain represents one special case of the broader
distributed ledger technologies (DLTs), which are decentralised databases that
rely on independent computers to record, share and synchronize digital trans-
actions. Despite the different forms, a DLT can possess similar properties to
those from a Blockchain. For a more comprehensive review of cryptocurrencies,
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Blockchain and DLT technologies, we refer the readers to the comprehensive
books such as [8,12,17].

2.2 Properties of Blockchain

Regardless of the forms of a Blockchain or DLT in general, the following useful
properties can be expected.

– Democracy and Decentralised Control. Everyone can potentially act as a
miner and has the same privilege to generate blocks and approve blocks to
the Blockchain. This is generally true for systems employing the PoW as the
consensus mechanism in the permissionless scenario, while it can be different
in other cases. Regardless, Blockchain eliminates a single fully trusted party
and avoids the single point of failure vulnerability.

– Integrity and Immutability. If an attacker or a group of colluded attack-
ers does not dominate the consensus process, e.g. in the case of Bitcoin
Blockchain more than 51% of the computing power is at the hands of semi-
honest miners (see the explanation below for the semi-honest assumption),
then it will not be able to modify the existing blocks that have been agreed
on by the consensus.

– Consistency. There is a single consistent view of the chain even facing strong
attackers, based on assumptions mentioned above. However, note that when
nodes deviate from the predefined rules, forks could be generated and there
will be different views from different players.

These properties further provide certain levels of auditability and trans-
parency, and generally increase the trustworthiness of the system. These afore-
mentioned properties or even a subset of them can be very desirable for many
applications from different sectors. Some people have considered Blockchain as
a trust machine for the society. The trust that users have towards Blockchain
systems is mainly from the fact that the majority of miners will be semi-honest
from the cryptographic perspective. The semi-honest assumption basically says
that these miners will follow the predefined protocols to perform what has
been specified and programmed in the Blockchain software, and particularly
this excludes the possibility that they will collude to interfere with the normal
Blockchain operations. For PoW-based Blockchain, the trust depends on the
common assumption that 51% of the computing power lies at the hands of semi-
honest miners. While for other types of Blockchain, corresponding assumptions
need to be made. For example, for Proof of Stake (PoS)-based DLTs, we need to
assume that the parties that possess the majority of stakes will behave honestly.

Besides cryptocurrencies, Blockchain has been widely promoted in design-
ing decentralised protocols, e.g. fair secure multiparty computation protocols
[6], confidentiality-preserving smart contracts [5], double auction [20], and the
Blockchain-based searchable encryption schemes [4,10]. In most of these works,
Blockchain is treated as a trusted platform that achieves some of the aforemen-
tioned properties persistently. However, we observe a dilemma with this trust
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assumption and raise concerns about the feasibility of (some) existing solutions.
Let’s suppose a client originally deploys a service at a dedicated cloud server,
and now it wants to leverage Blockchain to improve the security.

– On one hand, all the promises of a Blockchain come from the holy assumption
that no single entity can significantly influence the operations of the system
and everything should be based on a consensus. In reality, it is more complex
when it comes to questions such as how the evolution of a Blockchain plat-
form should proceed, see the case of Bitcoin Blockchain. This means that a
normal user like the client, will not play any significant role, particularly the
client may not be able to determine the miners or even know them.

– On the other hand, from the perspective of the client, it may desire absolute
certainty regarding the status of the Blockchain, the promised properties,
and other aspects such as efficiency and cost. Unfortunately, the satisfaction
of these requirements will depend on the consensus of some entities, which
are not supposed to be influenced by the client.

Clearly, there is a governance dilemma facing the client when it wants to
deploy its service on Blockchain. More consequences of this dilemma can be
found in Sects. 3.2 and 3.3. Nowadays, this dilemma is hindering the deployment
of Blockchain-based services.

3 Blockchain-Enabled Searchable Encryption

In this section, we first briefly recap the Blockchain-based searchable solutions
from [4,10], and then present our analysis results from the economical, security
and privacy aspects.

3.1 Description of the Existing Solutions

The central idea of solutions from [4,10] is to treat Blockchain (that supports
smart contracts) as a transparent and neutral platform. Intuitively, these solu-
tions just replace the server in traditional scenarios with a Blockchain, which
interacts with the client via a smart contract. All search and fairness-related
logics are programmed into the smart contract. Based on the transparency and
neutrality assumptions, the following notion of “fairness” can be achieved: (1)
search operations will be performed in the pre-defined manner if we assume that
a majority of the miners will not collude with each other; (2) the miner(s) will
be rewarded for their search operations due to the fact that deposits are required
before any search operation is carried out.

Let the client’s database be denoted as DB. Next we review the solution from
[10]. For simplicity, we only review the Setup and Search stages, while skipping
the add and delete stages as they do not affect our analysis.

– Setup(DB, λ): run by the client, the following operations are performed.
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1. Initialize an empty list L, an empty dictionary σ, a counter c, and a block
size p.

2. Extract a keyword set W from DB.
3. Select two pseudorandom functions F and G; Generate a secret key K

$←
{0, 1}λ.

4. For every keyword w ∈ W, do the following
(a) Compute K1 = F(K, 1||w) and K2 = F(K, 2||w), where || is a con-

catenation operator.
(b) Set α = � |DB(w)|

p � and c = 0, where DB(w) is the file identifier set
associated with w and |DB(w)| indicates the number of identifiers in
the set.

(c) Divide DB(w) into α + 1 blocks, and pad the last block into p entries
if necessary.

(d) For each block in DB(w), do the following
i. Set ĩd = id1|| · · · ||idp, r

$← {0, 1}λ, d = ĩd ⊕ G(K2, r), l =
F(K1, c).

ii. Add (l, d, r) to the list L in lex order.
iii. Set c = c + 1.

5. Set EDB = L, partition EDB into n blocks EDBi (1 ≤ i ≤ n) and send
them to the smart contract.

6. For each received EDBi, the smart contract parses each entry in EDBi

into (l, d, r) and add it to the Blockchain.
– Search(K,w; ∗): run between the client and the Blockchain (via the smart

contract), the following steps are followed.
1. The client computes K1 = F(K, 1||w), K2 = F(K, 2||w).
2. The client sets c = 0, and sets an iteration number R and step size step.
3. For 0 ≤ i ≤ R, do the following

(a) The client sets STi = (K1,K2, c) and sends it to the smart contract.
(b) The smart contract asserts the gas cost is lower than the balance, and

then performs the following steps for i = 0 until i ≥ step. Note that
the solution assumes an Ethereum platform.
i. Set � = F(K1, c).
ii. If Get(�) =⊥ stop; otherwise, set the result to be (d, r). The Get

function simply retrieves the tuple with the same �.
iii. Compute ĩd = d ⊕ G(K2, r);
iv. Parse and save ĩd.
v. Set c = c + 1.
vi. Set i = i + 1.

The solution from [4] is pretty the same as the above solution. The main
difference is that it assumes a specific electronic health record (EHR) application
scenario and the keyword is in the form of an expression like “(disease = ‘disease
name’) AND (num1 ≤ age ≤ num2)”.
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3.2 General Analysis w.r.t. Blockchain Usage

From an economical perspective, in comparison to a dedicated server based solu-
tion, it is clear that a Blockchain-based solution will incur more costs regard-
ing storage and computations, because several miners will need to perform the
same tasks in parallel. The computational cost might become a more significant
concern if a PoW-based consensus is employed by the underlying Blockchain
platform. In connection to fairness, one hidden concern is about the cost model
for the miners of the Blockchain. By default, it is common to estimate the cost
of operations based on the computations incurred by the smart contract execu-
tions. However, the real cost for the miners goes beyond that. For example, there
is also cost for the communication and storage. In addition, the miners need to
guarantee their availability for the searchable encryption services, which means
investment in security and disaster recovery countermeasures. In the proposed
solutions [4,10], it is not clear how the client should estimate these costs and
include them in the offer.

Contrary to the common belief that Blockchain could act as a “trust”
machine to build secure applications, it actually brings its inherent security
risks that can be fatal to the applications on top. One prominent security issue
is around smart contracts, where one well-known example is the decentralized
autonomous organization (DAO) attack in 2016, which has exploited some soft-
ware bugs in the underlying Ethereum smart contracts, that leads to the trans-
fer of 3.6 million Ether to the attacker’s account. As a result of the attack, the
Ethereum Blockchain had to make a hard fork due to the lack of a unanimous
consensus on the solution. Besides smart contracts, Blockchain systems in gen-
eral are also subject to other attacks, e.g. those against consensus mechanisms
and distributed denial-of-service (DDoS) attacks [15]. In the traditional setting,
these issues might be easier to avoid or solve, or at least they can be solved much
more quickly.

3.3 Specific Analysis w.r.t. Privacy Guarantee

As noted in Sect. 1.2, almost all searchable encryption schemes leak certain infor-
mation to the server. Although a symmetric searchable encryption scheme leaks
less than its asymmetric counterpart, the leakage might still be considered to be
non-negligible. Take the scheme from Sect. 3.1 as an example, there are (at least)
two kinds of leakages, which are commonly shared by other similar schemes.

– search pattern leakage. The Search algorithm is a deterministic function. This
means that if the client searches the same keyword more than once, then the
Blockchain miners will notice it. Based on such information, statistics such
as frequency of searched keywords can be established. In turn, such statistics
may allow the miners to recover the underlying keywords.

– access pattern leakage. In the Setup(DB) algorithm, DB(w) will be padded to
guarantee that every block has exactly p entries. However, this padding oper-
ation does not anonymize the index length very well. Let’s assume DB(w1)
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has p + 1 entries and DB(w2) has 2p + 1 entries. In this case, even after
the padding, the keyword w2 will result in p more entries on the Blockchain
than the keyword w1. As a result, the Search operation may reveal the size
relationship of the file identifier sets associated with the searched keywords.

Specific to this scheme, it is undesirable to reveal ĩd to the smart contract.
Nevertheless, this can be easily resolved by not sending K2 to the smart contract
and instead the client decrypts d by itself to recover ĩd at the end of the search
operation.

In comparison to the traditional scenario without using a Blockchain, where
the privacy information leakage is only limited to a single server, the leakage is
amplified in Blockchain-based solutions. For searchable encryption applications,
the immutability property of Blockchain might not be really necessary. In the
contrary, this property might be undesirable concerning privacy protection. If
the encrypted index and search histories live forever on a Blockchain, then it
will stay as a persistent attack surface for any (emerging) attackers.

3.4 Summary and Roadmap

So far, we have analysed the advantages as well as disadvantages of Blockchain-
based solutions. Our analysis indicates that a solution built directly based on
a Blockchain, either permissioned or permissionless, causes issues from differ-
ent aspects, including cost, security and privacy. For the studied solutions, it
seems that the disadvantages will outweigh the advantages in practice. Never-
theless, this does not imply that Blockchain is useless for these applications,
rather we believe that Blockchain will be a very useful tool to guarantee the
fairness property. Without it, it will be a very sophisticated task to design fair
and privacy-preserving searchable encryption solutions, and it may need to make
significant changes to existing privacy-preserving searchable encryption schemes.

Based on our analysis, towards designing privacy-preserving and fair search-
able encryption solutions, a modular approach seems more appropriate: exploit-
ing Blockchain for the fairness guarantee and relying on dedicated server(s) for
the actual search operations on the basis of an existing searchable encryption
scheme. The key challenge is to guarantee that the involvement of Blockchain
does not affect the privacy guarantees of the underlying searchable encryption
scheme. This leads to two new frameworks in the next section.

4 New Generic Blockchain-Based Frameworks

In this section, we propose two generic Blockchain-based frameworks, that can
be instantiated based on most symmetric searchable encryption schemes. In both
frameworks, there are three types of entities involved.

– Client: The client is the party that wants to outsource its encrypted index.
– Server(s): As in the traditional setting, the server(s) store the encrypted

index and carry out the search operations.
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– Blockchain: The Blockchain acts as a semi-trusted platform to ensure fair-
ness.

We assume there is a secure communication channel (for confidentiality and
integrity) between the client and all server(s), while there is no such a link
between any entity and the Blockchain but we do assume that only the legitimate
entity can communicate with the smart contract (which means a channel with
integrity protection only).

4.1 Initial Framework Design

In this design, the client needs to choose multiple servers for the sake of facil-
itating fairness while limiting information leakage to the Blockchain. Suppose
there is a symmetric searchable encryption scheme (Setup,Search), which can be
abstracted in the manner of Sect. 1.1. Shown in Fig. 2, leveraging on a Blockchain,
the new construction consists of two stages (Setup†,Search†).

Fig. 2. Initial design

– Setup† Stage: The client chooses n servers which will not collude all together
by assumption. The client then runs Setup n times to generate n independent
encrypted indexes for its database. Finally, the client stores the indexes on
the servers, where every server receives a unique index.

– Search† Stage: Given any keyword w, the search operation goes with the
following phases.
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1. Request phase: The client deposits a certain amount of money on the
Blockchain. The money should cover the cost of search operations of the
servers and the operational cost of Blockchain for the whole workflow
(i.e. this and next phases). Simultaneously, the client chooses a random
number r and sends it to all the servers to initiate a search operation.

2. Search phase: Every server verifies that sufficient money has been
deposited on the Blockchain. If the verification passes, it runs the Search
protocol with the client. Regarding the abstraction of Search in Sect. 1.1,
the server skips Step 3, and, instead, it does the following.
(a) Compute a hash value of the form: H(IDw||r), where IDw contains

the matched file identifiers and H is a cryptographic hash function.
(b) Run a commitment scheme (e.g. that from [14]) to generate a com-

mitment commit for H(IDw||r).
(c) Store commit on the Blockchain.

3. Validation phase: Every server checks that all other servers have sent their
commitments to the Blockchain. If so, it sends its key, which is related
to the commitment scheme, to the Blockchain. The smart contract opens
all the commitments with the corresponding keys and stores H(IDw||r)
on the Blockchain. If all the opened results are the same, then the smart
contract makes a payment using the deposited money to every server.
Otherwise, the smart contract stops and leaves the client and servers to
solve the dispute offline.

4. Retrieval phase: If payments have been made, the client requests all the
servers to send back the file identifiers IDw. It can validate the received
IDw based on the hash value H(IDw||r) and the random number r.

It is easy to check that if the client and servers are semi-honest, then the
searchable encryption solution will work properly. Comparing with the solution
from Sect. 3.1, it is clear that the Blockchain has very light involvement here:
mainly storing deposit and validating the hashed search results, i.e. the hash val-
ues H(IDw||r). Next, we evaluate the overall security of this design by answering
the following questions.

How has the privacy guarantee of the original searchable encryption scheme
been affected? From the perspective of an individual server, it is easy to see that
adapting a searchable encryption scheme to the new framework does not affect
the privacy properties of the original scheme. In another word, the information
leakage to an individual server remains the same. When several servers collude, it
becomes quite tricky, at least for those schemes which can only be proven secure
in the indistinguishability-based security models. Nevertheless, if the underlying
searchable encryption scheme adopts a simulation-based security definition, e.g.
[7], we conjecture that the collusion of all servers leaks the same amount of
information as in the case of a single server.

How does the Blockchain affect the privacy and other security properties?
As to data storage related to the index and search results, the Blockchain only
stores H(ID||r) which is a random value if H is modelled as a random oracle.
Therefore, the Blockchain does not affect the privacy guarantee regarding all
potential attackers: one server, multiple servers, and even all servers.
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How has the fairness property been achieved? We analyse the fairness prop-
erty from perspectives of the client and servers, respectively.

– It is easy to check that if at least one server is semi-honest then any mis-
behaved server will be detected and no payment will be made. Here, the
misbehaviour mainly means that a server does not commit to the right IDw.
It is left as an offline task to figure out who are the cheated servers and how
to compensate for the semi-honest ones.

– Let’s assume the indexes have been generated faithfully by the client in the
Setup† Stage and the random number r and trapdoors issued to the servers are
properly generated in the Search† Stage. If all servers carry out the search
honestly then they will be paid by the smart contract in the Validation
Phase, regardless of the client’s decision at that point. However, if the client
is malicious and deviates from the protocol specification, e.g. issuing a wrong
trapdoor to a specific server, then even if a server is honest it might not be
paid.

In summary, the above design does not provide a full-fledged solution for
fairness because offline operations need to be carried out to solve the dispute
and compensate for all honest behaviours. It tells us that employing multiple
servers does not necessarily lead to a straightforward achievement of fairness.
This is due to the fact that we do not want the client and servers to make their
operations transparent and publicly verifiable for the sake of privacy protection,
in contrast to the analysed Blockchain-based solutions.

4.2 Improved Framework Design

In the initial design, it is easy to check that if all the servers collude then they
can fake the IDw together so that the validation by the Blockchain will not
detect the cheating. In practice, it might be difficult to decide how many servers
should be chosen to fulfill the assumption, i.e. setting the n parameter. If we
simply assume all the servers are semi-honest, a common assumption in many
papers, then both caveats will not be an issue. However, it is desirable to get rid
of them technically. In addition, the client might misbehave in the protocol, e.g.
sends a wrong index or trapdoor to a specific server, so that fairness will not
be achieved even if all servers are semi-honest. Although this is very unlikely to
occur for a rational client in practice, but it remains as a potential concern.

To eliminate these caveats with technical countermeasures, we propose an
improved design, shown in Fig. 3. Since we do not intend to improve or affect the
security guarantee of the original searchable encryption scheme, this improved
design aims at achieving the fairness property while avoiding the caveats in the
initial design. To this end, we let the client sign the encrypted index and the
trapdoors so that no entity can misbehave and deny its misbehaviour. Public-
key encryption and zero-knowledge proofs are employed to preserve the privacy
guarantee of the original scheme. We require also the server to deposit money
on the Blockchain to deter its cheating incentives.
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Fig. 3. Improved design

Suppose there is a symmetric searchable encryption scheme (Setup,Search),
which can be abstracted in the manner of Sect. 1.1. The improved construction
has two new stages (Setup†,Search†).

1. Setup† Stage: The client runs Setup to generate a searchable index for its
database DB, with the following deviations.
– For each keyword w ∈ W, besides the associated file identifier set IDw,

the client generates a private key Kw and adds an additional virtual
identifier id∗

w = H(Kw||IDw) where H is a cryptographic hash function
and IDw denotes the concatenation of file identifiers in lex order. We
further assume that id∗

w can be easily distinguished from those identifiers
in IDw.

– The client chooses an EU-CMA (Existential Unforgeability under a
Chosen Message Attack) secure signature scheme (KeyGens,Sign,Verify)
and runs KeyGens to generate a sign/verification key pair (sks, vks). It
also chooses an IND-CPA (Indistinguishability under chosen-plaintext
attack) secure public key encryption scheme (KeyGene,Enc,Dec) and runs
KeyGene to generate an encryption/decryption key pair (pke, ske).

Besides the required activities in the original Setup procedure, the client
stores Kw (w ∈ W), sks, and ske locally, and stores the public keys on
the Blockchain. The client also generates a signature sigI for the encrypted
index and stores it on the Blockchain.
We assume the smart contract on the Blockchain platform has been deployed
with the following functions.
– Deposit: the client or the server can call this function to deposit money

which can be used to make payments.
– Dispute: the client can call this function to resolve cheating activities.
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– SearchOK: the client explicitly validates the search result and makes a
payment.

2. Search† Stage: Given any keyword w, the search operation goes with the
following phases.

(a) Request phase: Both the client and the server deposit a certain amount of
money on the Blockchain, by invoking the Deposit function of the smart
contract. The client’s money should cover the cost of search operation of
the server, the operational cost of Blockchain for the whole workflow (i.e.
this and next steps excluding dispute resolution), and the cost of dispute
resolution function Dispute. While the server’s money should cover the
operational cost of Blockchain for the whole workflow, the cost of dispute
resolution function Dispute, plus a pre-agreed amount for punishing its
potential cheating behaviour.
At the end of this phase, the smart contract verifies the deposits and
indicates the client and the server to proceed or not.

(b) Search Phase: The server runs the Search protocol with the client. Refer-
ring to the abstraction of Search in Sect. 1.1, we add the following extra
operations.

– At the end of Step 1, the client chooses a random number r and
generates a signature sigw = Sign(H(r||Tw), sks). It stores sigw on
the Blockchain and shares r with the server.

– At the beginning of Step 2, the server retrieves the sigw from the
Blockchain and verifies it according to the received trapdoor and ran-
dom number r by the Verify algorithm. It also verifies the signature
sigI for the encrypted index. If the verifications pass, it continues the
operations; otherwise it aborts.

– In Step 3, after recovering the file identifiers id∗
w, IDw, the server

encrypts them with pke and stores the ciphertext Cw on the
Blockchain.

(c) Retrieval & Validation Phase: Before going to the details, we define two
actions first.

– Action type-1: the smart contract (1) makes a payment to the
server; (2) return the server’s deposit back.

– Action type-2: the smart contract (1) pays the server’s deposit to
the client by deducing the amount for smart contract execution and
the server’s deposit for dispute resolution function Dispute.

In this phase, the client retrieves the ciphertext Cw and obtains the plain-
text: id∗

w, IDw. Then the client verifies the search results by checking
id∗

w = H(Kw||IDw).
– If the verification passes, the client invokes the SearchOK function

which will carry out Action type-1 and return the client’s deposit
for dispute resolution function Dispute.
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– If the verification fails, the client invokes the Dispute function, by
providing id∗

w, IDw and a zero-knowledge proof P1 showing that
id∗

w, IDw are the plaintext of the ciphertext Cw; the server is required
to provide r, Tw. The Dispute function does the following.
i. Verify the signature sigw based on the received r and Tw. If the

verification passes, it continues; otherwise it carries out Action
type-2 in favor of the client.

ii. Request the server to upload a copy of encrypted index, denoted
as I, and verify its signature sigI which has been stored on the
Blockchain. If the verification passes, it continues; otherwise it
carries out Action type-2 in favor of the client.

iii. Verify the proof P1. If the verification passes, it continues; other-
wise it carries out Action type-1 in favor of the server.

iv. Execute the Search procedure with Tw to obtain id∗
w

′, ID′
w. If

these values are different from id∗
w, IDw, it carries out Action

type-2 in favor of the client. Otherwise, it carries out Action
type-1 in favor of the server.

If the Dispute function is not invoked, the smart contract carries out
Action type-1 and returns the client’s deposit for dispute resolution
function Dispute.

It is easy to check that if the client and the server are semi-honest, then the
searchable encryption solution will work properly. Unless there is a dispute to be
resolved, the Blockchain has very light involvement in the new solution: mainly
storing deposits, public keys, the signatures, encrypted search results, and so on.
As to setting up of the client’s signature scheme and encryption scheme in the
Setup† Stage, EU-CMA security is necessary to prevent other entities (e.g. the
server) from forging the client’s signature, while IND-CPA is adequate to protect
the confidentiality of the encrypted data due to the fact that no outsider attacker
is allowed to commit ciphertext to the Blockchain and get access to decryption
oracle (see our unilateral integrity assumption made in the beginning of this
section).

Next, we evaluate the overall security of this design by answering the same
questions as those for the initial design.

How has the privacy guarantee of the original searchable encryption scheme
been affected? The main change to the original searchable encryption scheme
is adding the virtual identifier id∗

w for every keyword, and this clearly does
not change any privacy guarantee of the scheme. From the view of the server,
the Blockchain does not provide any new information about the trapdoor and
encrypted index. Therefore, the new design leaks exactly the same amount of
information to the server as in the original scheme.

How does the Blockchain affect the privacy and other security properties?
Due to the fact that the Blockchain only stores the signatures, encrypted search
results and other public information, therefore it does not affect security guar-
antee of the original searchable encryption scheme, regardless of the category
of the underlying Blockchain. When a dispute occurs, it will expose more infor-
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mation such as encrypted index and trapdoor. However, this will not cause any
privacy problem, because it does not amplify the privacy concerns as in the case
of solutions analysed in Sect. 3, due to the fact that only the encrypted index
and one trapdoor is made public on the Blockchain.

How has the fairness property been achieved? Compared with the initial
design, fairness is guaranteed without relying on any assumption on the client.

– We first analyse the fairness property for the client. Note that the added
virtual identifiers id∗

w in the Setup† Stage is a HMAC (hash-based message
authentication code) for the file identifiers associated with the keyword w.
Therefore, after recovering id∗

w, IDw in the Retrieval & Validation Phase,
the client can determine whether the result is correct or not by verifying
this value. If it is not correct, then the server must have misbehaved because
applying legitimate Tw to legitimate I will result in the correct id∗

w, IDw.
With respect to the dispute resolution procedure in the Retrieval & Valida-
tion Phase, the server will be punished in either step i, ii, or iv.

– We then analyse the fairness property for the server. For any search query,
if the server honestly carries out the operation, then the following will hold:
(i) a random number r, a trapdoor Tw, and a valid signature sigw stored on
the Blockchain; (ii) the searchable index I is the original one with a valid
signature sigI stored on the Blockchain; (iii) a ciphertext Cw stored on the
Blockchain where the plaintext id∗

w, IDw are the results of applying Tw to
I. With respect to the definition of the Retrieval & Validation Phase, it is
straightforward to verify that the server will receive a payment for its work.

As a quick remark, this improved solution incurs less cost than the initial
solution, which multiple servers need to perform search operations in parallel.

5 Conclusion

In this paper, we analysed two Blockchain-based searchable encryption solutions
and identified a number of issues with respect to economical, security and pri-
vacy issues. We demonstrated that Blockchain is not a silver bullet that can be
used straightforwardly to solve fairness issues in reality. Based on the analysis,
we presented two Blockchain-enabled frameworks which can be applied to most
existing symmetric searchable encryption schemes to achieve fairness while pre-
serving the original privacy guarantees. We provided corresponding analysis to
the new designs, and showed that the improved construction achieves the same
level of fairness as the existing Blockchain-based solutions without suffering their
privacy problems. It was also shown that, as long as there is no dispute, the over-
head of involving the Blockchain is very low. As an immediate next step, we plan
to implement the improved framework and demonstrate its performances with
respect to concrete searchable encryption schemes and Blockchain platforms.
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Abstract. The decoupling of the control plane and the data plane in
Software-Defined Networking (SDN) enables the flexible and centralized
control of networks. The two planes communicate via the southbound
interface. However, the limited communication bandwidth on the south-
bound interface is exposed to potential denial of services (DoS) threats
that may compromise the functions of southbound interface and even
affect the whole SDN network. Some research has already focused on
DoS attacks on the southbound interface and explored some counter-
measures. Most of them are primarily concerned with the risk of mali-
cious uplink traffic from the data plane to the control plane while few
work expresses concern about downlink traffic from the control plane to
the data plane. However, the threat of downlink traffic is also severe.
In this paper, we reveal a DoS threat of amplified downlink traffic and
implement a novel DoS attack, called control-to-data plane saturation
attack, to demonstrate the threat. To mitigate such threats, we pro-
pose a lightweight defence mechanism called DTGuard that can moni-
tor and identify abnormal ports based on a random forest classifier and
migrate abnormal traffic along with a low-load link timely. The design of
DTGuard conforms to the OpenFlow protocol without introducing addi-
tional modifications on the devices. The experimental results show that
DTGuard can effectively mitigate the control-to-data plane saturation
attack with a minor overhead on the controller.

Keywords: SDN · Network security · DoS attack · Mitigation

1 Introduction

Software-Defined Networking (SDN) is a networking architecture that decouples
the control logic from the forwarding logic in a network providing high flexibility
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and programmability. A typical SDN architecture consists of a logically central-
ized controller in the control plane, a set of network devices (such as switches) in
the data plane and various applications in the application plane [7]. The control
plane dictates the whole network behavior. It issues control messages to switches
to specify their actions via the southbound interface.

The limited bandwidth of the southbound interface could be a bottleneck
of an SDN network, which opens a new venue for attackers [11]. Attackers can
launch a Denial of Service (DoS) attack against SDN by overloading the south-
bound interface. Since the core control information of an SDN network is deliv-
ered via the southbound interface, such as device management, link discovery
and topology management, the dysfunction of the southbound interface may
significantly downgrade the performance of the whole SDN network.

Previous work on DoS threats to the southbound interface focused on uplink
traffic from the data to control planes [6,10,12,14,15,17,18]. The successful
attacks can fingerprint match fields of the flow rules [19], thus to craft mas-
sive table-miss packets that may trigger massive Packet-In messages from the
switch to the controller, exhausting computing or networking resources. How-
ever, to our knowledge, few work is concerned with the threat of downlink traffic
from the control to data planes, which also needs to be taken seriously.

In the paper, we focus on the DoS threat of amplified downlink traffic that
may overload the southbound interface and even eventually lead to the whole
SDN network dysfunction. To demonstrate that the threat does exist in SDN,
we propose and implement a new SDN-aimed DoS attack, called control-to-data
plane saturation attack. The attack can leverage a handful of crafted packets that
can trigger the Flood operation of the controller to generate amplified downlink
traffic, which will increase the load on the southbound interface and may finally
compromise the whole network performance. This raises a serious alarm because
it is an effective attack that can leverage a small amount of traffic to incur
significant performance degradation on an SDN network.

To mitigate the DoS threat of downlink traffic to SDN networks, we present
an efficient and lightweight defence mechanism, called DTGuard, to provide
automatic and real-time detection of control-to-data plane saturation attack.
Utilizing a pre-trained random forest classifier, DTGuard can classify normal
and abnormal ports of the switch based on traffic-based features. It can detect
the attack timely under the low attack rate and migrate the abnormal traffic on
the southbound interface to the data plane to effectively mitigate the attack.

The main contributions of this work can be summarized as follows:

– We reveal the risk of denial of services introduced by amplified downlink
traffic that it can overload the southbound interface and even paralyze the
whole network.

– We present a novel DoS attack, control-to-data plane saturation attack, to
demonstrate the threat we have revealed. The attack can leverage a few
crafted packets to generate amplified traffic, overloading the southbound
interface and exhausting the bandwidth in the data plane. We implemented
the attack on an SDN simulation environment under different SDN con-
trollers to demonstrate the feasibility and generality of it.
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– We propose a lightweight defence system against the downlink DoS attack
based on a random forest model, called DTGuard. DTGuard is protocol-
independent without additional modifications on switches. Experimental
results show that DTGuard can efficiently identify the abnormal port of the
switch and migrate malicious traffic with a negligible performance overhead.

The rest of the paper is organized as follows. We discuss the related work in
Sect. 2. In Sect. 3, we illustrate the design and implementation of the control-to-
data plane saturation attack to demonstrate the threat exists indeed. To mitigate
the DoS threat of downlink traffic, we propose a defence system, called DTGuard.
The detailed design of DTGuard is presented in Sect. 4. The implementation and
evaluation of DTGuard are illustrated in Sect. 5. Finally, the paper is concluded
in Sect. 6.

2 Related Work

The southbound interface that supports the interaction between the control and
data planes may pose a potential new attack surface, leading to severe threats
to SDN security [16]. Attackers can launch DoS attacks to exhaust the limited
bandwidth on the southbound interface. There is already much research on the
DoS threat of uplink traffic to explore mitigation methods. The mitigation meth-
ods mainly fall into three groups: (i) those based on traffic caching/migration
(ii) those based on traffic feature extraction (iii) those based on traffic filtering.

The core idea of the mitigation methods based on traffic migration is to
migrate malicious traffic to non-critical links or caches to reduce the load on
the southbound interface. AVANT-GUARD [17] introduced a proxy to sift failed
TCP sessions in the data plane prior to being sent to the control plane, which can
reduce interaction times between the data and control planes. AVANT-GUARD
is a protocol-dependent defence system against SYN flood attacks. FloodGuard
[18] prevented the controller from overload by installing proactive flow rules
and temporarily caching table-miss packets in a data-plane cache. Table-miss
packets in the cache would be sent as Packet-In messages to the controller later
at a low rate. FloodGuard breaks the protocol-dependent limitation in AVANT-
GUARD but may lead to long delay and high packet loss rate for some flows.
FloodDefender [6] proposed to offload malicious traffic to neighbor switches to
migrate the load of the compromised link, and employed an Support Vector
Machine (SVM) model to identify the attack traffic.

Some mitigation mechanisms of DoS attacks try to distinguish malicious
traffic from normal traffic based on traffic-based features. Hu et al. [14] proposed
an entropy-based detection scheme to identify whether a DDoS attack occurs by
calculating the entropy of the IP address for each new stream. Mousavi et al.
[10] also proposed an entropy-based method to measure the change of network
features (include source and destination IP addresses, source and destination IP
ports) and used an SVM classifier to classify the network traffic. Peng et al. [15]
utilized DPTCM-KNN algorithm to measure the difference between abnormal
traffic and normal traffic to identify the anomalies.
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There are also some research efforts on defending SDN-aimed DoS attacks
by filtering abnormal traffic. Kotani and Okabe [12] proposed a defence mecha-
nism that it could filter out less important Packet-In messages without dropping
important ones to keep a low level of load on switches. The switches record the
values of the header fields before sending the packets to the controller. When
the following packets with the same header fields arrive, the switch would tem-
porarily cache the packets before the corresponding flow rule of these packets
was installed on the flow table, which can prevent a large number of Packet-In
messages from being sent to the controller in a short time.

All of the above work focused on the mitigation strategies to SDN-aimed
DoS attacks of uplink traffic. However, the severe DoS threat of downlink traffic
to the southbound interface also needs much attention. We implement a novel
attack to reveal this threat and explore countermeasures to mitigate the threat.

3 Control-to-Data Plane Saturation Attack

In this section, to illustrate the DoS risk introduced by downlink traffic on the
southbound interface, we present a new DoS attack on SDN networks, called
control-to-data plane saturation attack. We first introduce the basic knowledge
on “OpenFlow” [13], which is the most widely accepted southbound protocol. In
this paper, we focus on the SDN networks that use OpenFlow protocol. Then we
present the adversary model and details of the attack. We implement and eval-
uate the feasibility and effects of the attack in an SDN simulation environment
under different SDN controllers.

3.1 Packet Processing in SDN

SDN separates the control and data planes by defining an open and standardized
southbound interface and a protocol (e.g., the OpenFlow protocol) to access such
interface. All traffic between the two planes passes through this interface.

Each OpenFlow-enabled switch maintains one or more flow tables and han-
dles flows depending on the flow rules in the flow table. When a packet arrives,
if there is a matched rule, the switch will directly deal with the packet according
to the rule. If there is no matched rule, the packet will be sent to the con-
troller in the form of a Packet-In message. The controller parses the Packet-In
packet to make appropriate decisions and installs a corresponding flow rule on
the switch. Controllers usually deliver the following three types of decisions via
the southbound interface:

– Forward: forwarding the packet along a path to the specified port. The con-
troller calculates the forwarding path based on the information of source and
destination hosts, and then sends Flow-Mod messages to all the switches on
the path to establish a connection between the source and destination hosts.

– Flood: flooding the packets in the data plane. The controller will send Packet-
Out messages to all switches.
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– Drop: dropping the packet. The controller sends a Flow-Mod message to the
switch that reports this packet and installs a drop rule for packets of this
flow on the switch.

3.2 Adversary Model

We assume that an adversary can control one or more hosts or virtual machines
to craft packets and generate attack traffic. However, we do not assume the
adversary can compromise the controller, applications or switches.

Based on the analysis presented in Sect. 3.1, there remains a possibility for
adversaries to craft a few packets that can trigger amplified traffic from the
control to the data plane. We analyze the number of triggered packets downward
via the southbound interface according to the three decisions of the controller:

– Case-1: when a packet triggers a Drop decision, there are 2 packets generated
on the southbound interface, that is, 1 Packet-In packet and 1 Flow-Mod
packet.

– Case-2: when a packet triggers a Forward decision, there are 1 + P packets
generated on the southbound interface, that is, 1 Packet-In packet and P
Flow-Mod packets (P is the number of switches on the forwarding path).

– Case-3: when a packet triggers a Flood decision, there will be N + N or
N + 1 (based on control logic of different controllers) packets generated on
the southbound interface. For some controllers (such as RYU, Floodlight),
all switches will send Packet-In messages to the controller and the controller
will issue Packet-Out messages to all switches to flood the packets to all
the hosts in the network. That is, N Packet-In packets and N Packet-Out
packets (N is the number of all switches in the network). For some other
controllers (such as OpenDayLight), only one switch will send a Packet-In
message to the controller and the controller will send Packet-Out messages
to all the switches. That is, 1 Packet-In packet and N Packet-Out packets.

In general, Case-1 and Case-2 generate little traffic, having little impact on
the network. However, when a Flood decision is triggered, the controller needs to
communicate with all switches in the network, which opens a door for attackers
to generate overwhelming downlink traffic by crafting a few crafted packets.

3.3 Attack Method

When an adversary is going to launch an attack with overwhelming downlink
traffic, the key issue that he/she concerns most is how to craft a packet that
can trigger the Flood decision of the controller.

On one hand, based on TCP/IP protocol, the controller will send broadcast
packets (e.g., ARP request packets, DHCP request) to all hosts in the network
by default, which triggers the Flood decision.

On the other hand, the controller maintains a list of known hosts in the
SDN network. When a Packet-In message arrives, the controller will extract the
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source address and the location of the host (i.e., the ID and port of the switch
connected with the host) from the message and add this information into the
host list. Therefore, when receiving a packet whose destination address is not
included in the host list, the controller need to send packets to all hosts in the
network, which also triggers the Flood decision. After the destination host replies
to this packet, the controller can learn its location and add the destination host
to its host list.

We implemented experiments on three popular SDN controllers (i.e., Flood-
light, RYU, and OpenDaylight) to verify whether the controller will make the
Flood decision on these two kinds of packets. The results show that all the three
controllers make Flood decision on the two kinds of packets and send packets to
all hosts in the network.

Based on the analysis above, we design a new SDN-based DoS attack, called
control-to-data plane saturation attack. The attack crafts the packets that can
trigger the Flood decision of a controller to generates amplified downlink traffic,
overloading the southbound interface. Compared with existing SDN-based DoS
attack on the southbound interface, this attack has two characteristics. One is
that adversaries only need to send a handful of packets at a low rate, so it is
difficult to detect the active malicious host. The other characteristic of the attack
is good concealment because the amplified traffic is generated by the controller
which is highly trusted by the devices in the data plane.

3.4 Attack Evaluation

To demonstrate the DoS threat of downlink traffic exists indeed, we implement
the control-to-data plane saturation attack on a simulation testbed using Mininet
[1]. We adopt the Fat-tree topology, a common topology for data center networks
[3], with pod = 4 and host density = 2 (that is, each edge switch connects with 2
terminal hosts). The experimental topology is shown in Fig. 2.

We select a host in the data plane to craft the UDP packets whose destination
addresses are not in the host list of the controller by randomizing destination
IP addresses of the packets. These packets can trigger the Flood decision of the
controller, generating the amplified traffic.

The amplification factors of the attack traffic under the three controllers are
shown in Table 1. When there is no attack traffic, the load of the southbound
interface keeps a lower state. There is communication between switches and the
controller for some normal tasks, such as transferring heartbeat packets and
sending LLDP packets for link discovery. When the attack occurs, based on the
analysis in Sect. 3.2, the amplification factors of RYU and Floodlight should be
two times of the number of switches in theory, that is 40 in our testbed. As
shown in Table 1, the practical amplification factors reach about 25, which are
lower than the theoretical value, restricted by network environment and network
resources. And in the testbed under OpenDaylight controller, because only one
switch will send Packet-In message to the controller and all switch will receive
Packet-Out message for Flood, the theoretical value of the amplification factor
is N + 1 (that is 21 in our testbed) while the experimental value is about 13.
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Fig. 1. Effects of different attack rates on SDN under Floodlight controller

Table 1. Summary of amplification factors in the networks under three controllers

Controller Attack rate
(PPS)

The load of southbound
interface (PPS)

Amplification
factor

RYU 0 56 25.56

50 1334

Floodlight 0 68 24.94

50 1315

OpendayLight 0 112 13.32

50 778

We use TCPDUMP to evaluate the relationship between the attack rate and
the load of the southbound interface while using iperf to measure the network
bandwidth of host communication in the data plane under different attack rate.
The test results are shown in Fig. 1 (Floodlight as an example).

As shown in Fig. 1(a), the crafted packets have amplification effects on the
traffic of the southbound interface. The load of southbound interface multiplies
with the increase of attack rate and tends to saturate when the attack rate
reaches around 150 pps. It can be seen from Fig. 1(b) that the network bandwidth
between hosts decreases from 20 Gbps with the increase of the attack rate. The
attack rate at around 50 pps can lead to network fluctuation, and the network
bandwidth tends to 0 when the attack rate reaches around 350 pps.

Therefore, we can draw a conclusion that the control-to-data plane saturation
attack can overload the southbound interface and also lead to network collapse
in the data plane, affecting the normal communication between hosts.

4 Proposed Countermeasure

The control-to-data plane saturation attack is an SDN-aimed DoS attack rooted
in the SDN architecture because of the decoupling of the control and data
planes. To detect and mitigate this attack, we introduce DTGuard, an effi-
cient, lightweight, and protocol-independent defence mechanism. We present the
detailed design of DTGuard in this section.
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4.1 System Architecture

The basic idea of DTGuard is to distinguish the abnormal port from the normal
by a machine learning method to detect the attack. The switch’s port that
connected with the attack host is an abnormal port. And DTGuard migrates the
overwhelming traffic concentrated on the southbound interface to the data plane
when the attack occurs. DTGuard mainly consists of four modules including an
attack detection module, a traffic statistics module, a path calculation module,
and a flow rule generation module, as shown in Fig. 3.

The attack detection module keeps active after the controller starts up to
detect whether there is an abnormal port. When an abnormal port is detected,
DTGuard activates the other three modules to handle the attack.

Pod 0 Pod 1 Pod 2 Pod 3

Fig. 2. Experimental topology
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Fig. 3. The architecture of DTGuard

4.2 Attack Detection Module

The attack detection module executes regularly at a period of time T to monitor
the traffic on each port of the switch connected with hosts and extract traffic
features of the port. It leverages a pre-trained classifier based on a random forest
model [9] to classify the traffic on the port either as normal or abnormal based
on six traffic-based features. The six features of the traffic on a port will be
discussed in more detail below.

Success Rate of Flow Rule Matching (SRf): To generate control-to-data
plane traffic, attackers need to craft the packets with no matched flow rules in
the switches’ flow tables. Therefore, when the attack occurs, the success rate of
flow rule matching may decrease. We use Eq. (1) to compute SRf .

SRf =
Nummatched

Numreceived
(1)

Numreceived represents the total number of packets received by a port of the
switch in the period T while Nummatched represents the number of packets that
match the flow rule successfully.
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Rate of Bidirectional Flows (RBf): Normally, the dataflow between hosts
in the network is bidirectional. That is, one host sends packets to other hosts,
and other hosts respond after receiving the packets. When an attack occurs, the
number of unidirectional dataflows may increase because attackers send packets
with fake destination IP addresses. Therefore, the rate of bidirectional flows may
decrease [8]. We use Eq. (2) to compute RBf .

RBf =
Numpair

FlowNum
(2)

Numpair is the number of bidirectional flows passing through a port in the
period T , and FlowNum is the number of all flows passing through the port.

Trigger Rate of Flood Action (TRf): In a normal network environment,
most traffic will be forwarded directly according to the flow rules on switches.
Only a small amount of traffic is reported to the controller and triggers the Flood
action. However, when the attack occurs, the number of packets triggering the
Flood decision increases, resulting in a significant increase in trigger rate of Flood
action. We use Eq. (3) to calculated the trigger rate.

TRf =
NumFlood

PacketInNum
(3)

PacketInNum is the number of all Packet-In messages received by the con-
troller from a port during the period T , and NumFlood is the number of Packet-In
messages that trigger the Flood decision.

The Entropy of Destination IP Address: Usually, the destination address
for host communication keeps stable. But when an attack occurs, a large number
of packets with random destination IP addresses are generated, which increases
the uncertainty of the corresponding destination IP address of a certain source
IP address [10]. The entropy is a measure of the uncertainty of random variables
in information theory. Therefore, we use the entropy of destination IP address
to measure the changes of destination IP addresses that correspond to a source
IP address. The calculation method is as follows:

We define the Map L between the destination IP address dstIPi and the
occurrences ci of this IP on a port in T period as Eq. (4):

L = {(dstIP1, c1), (dstIP2,c2)...(dstIPn, cn)} (4)

The dstIP is the hash value of the destination IP address, and the ci is the
number of occurrences of the destination IP address. The appearing probability
of each destination IP address is as Eq. (5):

pi =
ci∑n
i=1 ci

(5)

According to the definition of entropy, the entropy of each destination IP
address can be calculated as Eq. (6):

H = −
n∑

i=1

pi log pi (6)
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Trigger Rate of Flow-Mod (TRfd): When an attack occurs, a large number
of packets with random destination IP addresses are generated. There may be
a decrease in the number of Flow-Mod messages sent to the switch because the
controller does not know the location of the destination host. We use Eq. (7) to
calculate TRfd.

TRfd =
NumFlowMod

PacketInNum
(7)

PacketInNum is the number of all Packet-In messages received by the con-
troller from a port during the period T , and NumFlowMod is the number of
Packet-In messages that trigger Flow-Mod messages.

Average of Packets per Flow (APf): We define the data flow that can
trigger the rule installation as a valid data flow. When an attack occurs, the
attack packets are directly flooded to the data plane by the controller without
installing new rules on the switches, so that no valid flow is formed. As a result,
during an attack, the number of packets PacketNumber may increases while
the number of valid flows FlowCount may remain unchanged, which eventually
leads to an increase in the average number of packet per flow. The average of
packets per flow is calculated as Eq. (8).

APf =
PacketNumber

F lowCount
(8)

These six traffic-based features constitute a 6-tuple to be the input of the clas-
sifier to classify network traffic either as normal or abnormal. We use the random
forest model to train the classifier. The random forest is an easy-implemented
classification method with low computational overhead and strong generalization
ability. The implementation of the classifier is described in Sect. 5.1.

4.3 Traffic Statistics Module

The traffic statistics module obtains the traffic information of each port of all
switches from the detection module. Leveraging this information, it maps the
traffic information of the port to the corresponding link based on the network
topology and constructs a weighted graph of the network traffic.

The traffic of each link changes rapidly in a network. To reduce the impact
of network fluctuations on the sampling results, we divide the link load into
multiple levels. The granularity of the level can be adjusted according to the
actual network environment. For example, if the granularity is set as 100, the
level of the load ranged from 0–100 can be labeled as level 1, the level of the
load ranged from 101–200 can be labeled as level 2, and so on. An example of a
weighted graph of the network traffic is shown in Fig. 4(a).
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Fig. 4. A weighted graph of network traffic and the corresponding forwarding path

4.4 Path Calculation Module

Path calculation module aims to select an optimistic forwarding path to migrate
abnormal traffic. The path selection follows the principles of low load and no
repetition. The forwarding path can be obtained by calculating a Minimum
spanning tree (MST) of the weighted graph of the network traffic. When an
attack is detected, the controller sends one Packet-Out message to the root node
of the MST. The switch at the root node forwards the packet step by step along
each edge of the MST to achieve flood function. An example of the forwarding
path is shown in Fig. 4(b).

We use Prim algorithm to calculate the MST of the network, and the time
complexity of the first calculation is O (n log n). When the load of some links in
the network changes, it would not always bring changes to the MST. In this case,
to reduce computational overhead, it is usually not necessary to recalculate the
entire MST. Only when the link topology changes or when the change of link
load have an impact on the MST, the MST will dynamically update according
to the result generated by the previous calculation. Based on four cases of the
load update, we detailedly discuss the update process of MST.

Given the weighted graph G, the vertex set V , and the set of edges E, calcu-
late the current MST T . When the weight of an edge e changes, wold represents
the weight before the update, and w represents the updated weight.

– Case-1: wold < w and e /∈ T , the weight of e increases. Since e does not
belong to T , the increase of its weight does not affect the current MST, T
remains unchanged;

– Case-2: wold > w and e ∈ T , the weight of e decreases. Since e is a part of
T, the decrease of its weight does not change the current MST, T remains
unchanged;

– Case-3: wold > w and e /∈ T , the weight of e decreases. A new tree may be
constructed with a smaller weight because of the decrease of e. First, edge
e can be added to the current MST T to get T

′
. Therefore, there is a loop

C in T
′
, as shown in Fig. 5(a). The red edge in the figure is e. According to

the loop theorem of the minimum spanning tree, the edge with the largest
weight in loop C should be removed from T

′
to get the new MST. The time

complexity of the algorithm for this case is O (n).
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– Case-4: wold < w and e ∈ T , the weight of e increases. There may be
another edge with a lower weight than e to construct a new MST because
of the increase of e. First, the edge e can be deleted from the current MST
T to obtain T

′
. Therefore, there are two independent subtrees in T

′
. a and

b are vertexes of e(a, b). A is the set of vertexes that can be reached from
vertex a in T

′
and B is the set of vertexes that can be reached from vertex

b in T
′
, A ∩ B = ∅ and A ∪ B = V . C is a cut-set of edges in graph G. As

shown in Fig. 5(b), e is the blue edge, C = {s1, s2, s3, e} is the set of edges
connecting the two subtrees. When the weight of e increases, according to
the cut property of the minimum spanning tree, the edge with the smallest
weight in C should be added to T

′
to get the new MST. The time complexity

of the algorithm for this case is O (n).

Therefore, the change of load on the link may not always lead to the change
of MST. When the load update changes the MST, the new MST is recalculate
based on the previous calculation without introducing too much overhead.

e

(a) wold > w and e /∈ T

A

B

e

a

b
s1

s2

s3

(b) wold < w and e ∈ T

Fig. 5. Dynamic updating of minimum spanning tree (Color figure online)

4.5 Flow Rule Generation Module

Flow rule generation module generates and installs the corresponding flow rules
on the switches in the MST based on the forwarding path obtained from the
path calculation module. When the controller makes a Flood decision, there are
two ways to execute the Flood action for two cases.

– Case-1: if the source port of the packet that triggers the Flood is an abnormal
port, the controller will send a Packet-OUT message only to the switch at
the root of the MST. The root node forwards the packet along the MST
until the packet is delivered to all ports of all switches in the network.

– Case-2: if the source port of the packet that triggers the Flood is a normal
port, the controller will flood the packets to all switches directly.

We use a reserved field of the IP header field, ToS, to enable the switch to
distinguish whether a packet is from a normal host or an abnormal host. For
Case-1, the match field IP TOS keeps as defaults, IP TOS = 0b00000000. For
Case-2, the controller sets the match field IP TOS = 0b00000011 before sending
out the Packet-Out message to the root switch of the MST.
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5 Implementation and Evaluation

In this section, we implement the prototype of DTGuard on Floodlight in a
simulated SDN environment to evaluate its performance and overhead.

5.1 Implementation

TestBed. Using Mininet-2.3.0 and Open vSwitch-2.0.2 to simulate the under-
lying network, we deploy the controller and the underlying network on a single
physical machine with 7.7 GB memory, 4 cores at 2.13 GHz. The controller com-
municates with switches via OpenFlow 1.3 protocol. The experimental topology
is a fat tree topology with pod = 4 and host density = 2, as shown in Fig. 2.

We implement the prototype of DTGuard on an open source SDN controller
Floodlight without additional modifications on the data plane. The four modules
of DTGuard are implemented in Java language. The Attack Detection module
is mounted on the Packet-In processing chain of Floodlight and starts up at the
same time as the controller startup. The other three modules are activated when
an abnormal port is detected by the Attack Detection module.

Traffic Generation. To generate the traffic similar to the real traffic in the real
network environment, we have extended the Mininet so that hosts can commu-
nicate with each other to simulate normal traffic. The simulated normal traffic
falls into two parts, one is the random traffic between hosts, and the other is the
traffic of common services.

– Traffic between hosts: The No.m host in the network sends packets to the
No.(m+ i) host, the No.(m+j) host, the No.(m+k) host with probabilities
of Pt, Pa, and Pc, respectively. The legitimate traffic generated during tests is
a composition of several different protocols (TCP (85%), UDP (10%), ICMP
(5%)) based on the statistics of network traffic in the real world [4,5].

– Traffic of common services: to simulate the network traffic based on the C/S
model, we have selected some hosts as servers that are deployed with some
common services(e.g., FTP, HTTP) while other hosts as clients request these
services at a random probability.

Training Classifier Model. To generate training samples, we set a time win-
dow of the controller to 10 s and calculate traffic-based 6-tuple of the 10 s for each
port. To generate abnormal traffic, we use Scapy [2] to craft the UDP packets
with random destination IP addresses which can trigger the Flood decision of
the controller. The attack rate increases at a step of 25 pps, starting from 0 pps
to 350 pps. We have collected 1,000 samples at each attack rate from abnormal
ports and normal ports, respectively. We totally collected 30,000 samples to train
the classifier, 70% of the sample as the training set and 30% as the test set.
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5.2 Results and Evaluation

Attack Detection Effects. The effectiveness of our detection mechanism is
evaluated through Detection Rate (DR) and False Alarm rate (FA) measure-
ment. DR and FA are defined as Eq. (9):

DR =
TP

TP + FN
FA =

FP

TN + FP
(9)

TP (True Positives) represents the number of abnormal ports that are classi-
fied as abnormal, and FN (False Negatives) represents the number of abnormal
ports that are classified as normal. TN (True Negatives) represents the number
of normal ports that are classified as normal and FP (False Positives) represents
the number of normal ports that are classified as abnormal.

The attack detection effect of the classifier is depicted in Fig. 6. As the attack
rate increases, the difference between the features of normal and abnormal traffic
becomes more and more obvious, so that the DR increases. When the attack rate
reaches 25 pps, the DR keeps stable at 98% or more. The FA is stable below
1%, as shown in Fig. 7. The results demonstrate the classifier can distinguish the
abnormal traffic at both high attack rate and low attack rate with high accuracy.
Therefore, DTGuard can detect the DoS attack at an early stage under a low
attack rate, preventing the network from significant performance degradation.
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Defence Effects. To demonstrate the defence effect of DTGuard, we have
launched control-to-data plane saturation attacks in two environments with: (i)
an original Floodlight controller, or (ii) a Floodlight controller with DTGuard.

We use TCPDUMP to measure the load of southbound interface in both two
environments. As shown in Fig. 8, in (i) environment, as the attack rate increases,
the load of the southbound interface multiplies, which tends to saturate at about
150 pps attack rate. In (ii) environment, because the malicious traffic is migrated
to the data plane, eliminating the amplification effect of traffic, the load of the
southbound interface is significantly reduced. The statistics results of the test in
Fig. 8 show that DTGuard reduces the southbound interface load by an average
of 74.2%, which demonstrates the effectiveness of DTGuard.
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We use iperf to measure the network bandwidth of host communication in
both two environments, as shown in Fig. 9. The normal network bandwidth is
about 20 Gbps when there is no attack. As the attack rate increases, the mali-
cious traffic gradually overwhelms the southbound interface in (i) environment,
so that the network bandwidth is significantly reduced. In (ii) environment,
although the network bandwidth also decreases with the increase of the attack
rate, the declining trend of network bandwidth slows down. The statistics results
of the test in Fig. 9 show that DTGuard prevents network bandwidth against
the decline by about 41.7% on average at the same attack rate.

Overhead Analysis. Each module of Floodlight chains together to deal with
the received packets. When a Packet-In message arrives, it will be processed
along the chain of modules. To evaluate the extra processing time brought by
DTGuard, we use Floodlight’s PacketIn Processing Time Service to measure the
running time of each module.

Table 2. PacketIn processing time of each module

Module Normal network Network under attack

init-stage following-stage

DTGuard 4.90% 15.62% 9.71%

Forwarding 80.85% 72.19% 76.25%

DeviceManagerImpl 8.93% 7.92% 9.63%

LinkDiscoveryManager 3.94% 2.71% 2.87%

Others 1.37% 1.56% 1.54%

When there is no abnormal port detected, DTGuard only activates the Attack
Detection module. As shown in Table 2, in this situation, DTGuard takes only
4.9% of the time of the processing chain. When an abnormal port is detected,
the other three modules are also activated. It takes 15.62% of the time of the
processing chain at the initial execution after the attack because DTGuard needs
to construct the entire MST. The following cost of DTGuard accounts for 9.71%
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of the time of the processing chain to update the MST. Compared with the
Forwarding module, DTGuard takes little processing time, which may not bring
much delay to the controller.
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Fig. 10. CPU load of original controller and DTGuard

We used JProfiler to measure the CPU utilization of the controllers in envi-
ronments (i), (ii) before and after the attack, as shown in Fig. 10. Figure 10(a)
shows the CPU utilization of the controllers when there is no attack. In this situa-
tion, the CPU utilization curve of the controller with DTGuard almost coincides
with that of the original controller. Note that there is only the attack detection
module of the DTGuard starting up at this point. Figure 10(b) shows the CPU
utilization of controllers when an attack occurs. Note that all four modules of
the DTGuard start up at this point. The CPU utilization increases by about
1.3% in this situation. Overall, the overhead of DTGuard on the controller is
very little.

6 Conclusion

The southbound interface that provides communication between the control and
data planes in an SDN faces potential DoS threats. In this paper, we have
revealed a severe DoS threat of amplified downlink traffic to SDN security. To
demonstrate the threat indeed exists in general SDN networks, we implement a
new SDN-aimed DoS attack called control-to-data plane saturation attack on the
testbed under three different SDN controllers. The experimental results demon-
strate that the attack can leverage a handful of crafted packets to generate more
than the 13 times amplification effect of the attack traffic, exhausting the costly
network bandwidth and downgrading the network performance.

To mitigate the control-to-data plane saturation threat in SDN, we propose
a lightweight mitigation mechanism, called DTGuard. DTGuard can efficiently
detect and identify the abnormal ports by a random forest classifier without
modifications in the data plane. Once an attack is detected, it can migrate
the attack traffic timely to the data plane along a path with a low load. The
experimental results show that DTGuard can precisely detect the control-to-
data plane saturation attack and effectively mitigate the abnormal traffic with
minimal overheads.
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Abstract. Tor Hidden Service is a widely used tool designed to protect
the anonymity of both client and server. In order to prevent the pre-
decessor attacks, Tor introduces the guard selection algorithms. While
the long-term binding relation between hidden service and guard relay
increases the cost of existing predecessor attacks, it also gives us a new
perspective to analyze the security of hidden services.

We utilize a novel method which can reveal guard relays for multiple
hidden services. The method helps us to reveal guard relays for 13604
hidden services, and observe their binding relations for 7 months. Based
on the binding relations, we conduct the first protocol-level measurement
and family analysis of hidden services, and discover two types of families
about hidden services, named onion family and onion-node family.

Our measurement reveals 263 onion families in Tor network, and the
analysis shows that onion addresses in these families tend to use com-
mon prefixes or meaningful prefixes. By analyzing the webpage of these
hidden services, we surprisingly find a super onion family that contains
121 hidden services, most of which runs a fraudulent website of bitcoin.
Additionally, we also discover 49 onion-node families which have abnor-
mal binding relations between hidden services and their guard relays,
including expire bindings, bridge bindings and middle node bindings.

1 Introduction

Tor makes it possible for users to hide their locations while offering various kinds
of services, such as web publishing or an instant messaging server. Using Tor
hidden services, users can connect to these onion services each without knowing
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the other’s network identity. However, the anonymity of Tor network has been
threatened by various attacks.

To improve anonymity and reduce the risk of traffic correlation attacks, Tor
never delivers users’ traffic through more than two nodes from the same node
family. Generally, a node family is a set of Tor nodes that are under the adminis-
trative control of the same person or organization. Besides the traffic correlation
attacks, node families can also conduct multiple attacks on Tor, including exit
traffic tampering [13,14], bridge address collecting [15], onion address harvesting
[7]. In order to identify the node family, Tor project provide the explicit decla-
ration when the Tor relay runs at the beginning. Additionally, Tor project also
developed several methods [10,23] to detect the implicit node family, which is
never declared in the consensus file.

The conventional researches about family phenomenon focus mostly on relay
nodes. However, the family phenomenon about hidden services are existing the-
oretically and never be studied before. This is the consequence of the strong
anonymity of hidden services, leading to the hidden services unlinkable by the
third-party researchers. Assume that the family phenomenon of hidden services
(e.g. onion family) can be discovered, then the hidden services will be clustered
according to the same owner. Or if the family phenomenon between hidden ser-
vices and relay nodes (e.g. onion-node family) can be discovered, then the owner
of hidden service can be tracked alongside the relay nodes. Once one hidden
service in the cluster being de-anonymized, all of the other hidden services are
de-anonymized. Additionally, applications through hidden services such as Bit-
coin or TorChat are also affected by this, the wallet addresses or user account
may be clustered when the user use multiple identities.

According to the protocol, multiple hidden services deployed on the same
Tor process use same guard relays, and guard relays are selected as Tor relays
randomly according to their bandwidth and flags. Therefore, hidden services
binding with same group of guard relays can be regarded as onion families, which
means that they are deployed by the same person. Additionally, the onion-node
family also can be observed when a hidden service binds with its guard relay
without following the protocol (e.g. abnormal binding relations).

Note that we should monitor guard relays of hidden services for a long time
if we want to reveal families in Tor network. Although existing guard discovery
attacks [7,12,18] can be used to help us achieve the goal by taking our controlled
relays become the second hop of HS-RP circuits (referred to as middle relay).
They are not suitable for the scenario with multiple targets. Existing attacks can
only embed HS-irrelevant traffic signals into HS-RP circuits for every hidden
service, as the Rend-Points (Rendezvous Point) cannot identify which hidden
service creates the HS-RP circuit. As a result, in the case of multiple targets,
the controlled relays cannot identify which hidden service creates HS-RP circuit
through them by detecting the traffic signals. So we utilize a novel method to
address the problem. Different from existing methods, we further embed the
hidden service’s identifier into the Rendezvous Cookie (Rend-Cookie) and the
circuit watermark, thus our controlled middle relays can identify which hidden
service creates HS-RP circuit through them by detecting the circuit watermark.
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We use the method to reveal guard relays for 13604 hidden services and observe
their binding relations for 7 months.

Based on the obtained binding relations, we conduct the first protocol-level
measurement and family analysis of hidden services. 263 onion families are
revealed in Tor by correlating the binding guard relays of each hidden services.
And we also discover a super onion family, which contains 121 hidden services.

Second, we discover 49 onion-node families in Tor network, which have abnor-
mal binding relations between hidden service and guard relay. It can be divided
into three types: namely expire binding (a guard relay is used more than 120
days), bridge binding and middle binding. All of these three types of onion-node
families are not configured by default, and can only be achieved by modifying
the configuration or even source code. Thus, that is a very definite possibility
that these hidden services may have the same owner of their guard relays, whose
IP addresses are already revealed. The contributions of this paper are listed as
follows:

– We are the first to observe the onion family phenomenon, and find 263 onion
families that cannot be obtained by simply measuring the content and page
structure similarity. Additionally, we also find a super onion family that con-
trols 121 hidden services. The owner of the family utilizes 6 Tor processes to
run his hidden services, which are related to bicoin fraudulent, hacker hiring
and live streaming services.

– Apart from the onion family, we also find three types of onion-node fami-
lies in the Tor network, with different abnormal binding relations. There are
34 hidden services of expire binding, 14 hidden services of bridge bindings
and 1 hidden service of middle binding in Tor network. We argue that these
abnormal binding relations increase the risk of leaking the privacy of hidden
services.

Organization. The rest of the paper is organized as follows. In Sect. 2, we illus-
trate the background and motivation. Section 3 details our measurement method
to reveal guard relays of hidden services. We also have some interesting findings
which are described in Sect. 4. Section 5 discusses the privacy implications of our
previous findings and gives our suggestion for improvement. We introduce the
related work in Sect. 6 and the conclusion in Sect. 7.

2 Background

2.1 Guard Selection Algorithm

In order to prevent the predecessor attack, Tor project designed and updated
the guard selection algorithm. According to the guard selection algorithm, each
client randomly selects a small set of relays as their guard set, and chooses guard
relay only from this set whenever creating circuits, which tremendously mitigates
the impact of predecessor attack.

The current guard selection algorithm can be described as follow:
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(i) At the first bootstrap stage, the client randomly selects 20–60 relays with
the Guard flag in its Sampled Guard Set weighted by bandwidth.

(ii) The client selects relays which appear in current consensus and are not
disabled by path bias issue from Sampled Guard Set, and adds these relays
into Filtered Guard Set.

(iii) For the reachable relays in Filtered Guard Set, the client adds them into
Usable Filtered Guard Set. If the size of Usable Filtered Guard Set is less
than 20, the client must add new relays into Sampled Guard Set.

(iv) Once the client creates circuits successfully through the guard relay, the
client adds it into Confirmed Guard Set and orders the guard relays accord-
ing to their added time.

(v) At last, the client calculates the ordered intersection of Confirmed Guard
Set and Filtered Guard Set, regarding the first 3 elements as Primary Guard
Set.

Every time the client creates a common circuit, it firstly chooses the first
reachable guard relay from Primary Guard Set. If the Primary Guard Set is
empty, then it selects guard relays from the ordered intersection set of Confirmed
Guard Set and Filtered Guard Set. If the size of Primary Guard Set is less than
3, then the client chooses nodes randomly from Filtered Guard Set - Confirmed
Guard Set, and adds the nodes into Primary Guard Set. Otherwise, it randomly
selects a relay from Usable Filtered Guard Set.

Guard relays are fast and stable compared to other relays in the Tor network.
Consequently, the binding relations between hidden services and their guard
relays are relatively stable. Moreover, all the hidden services deployed on one
client have the same guard sequence. Thus, we argue the hidden services with
the same guard sequence in a long time may be deployed on the same client.

2.2 Components in Hidden Service

Hidden service was introduced in 2004 as a feature of Tor, enabling the
anonymity of responders. As shown in Fig. 1, the hidden service architecture
consists of the following five components:

Hidden Server (Hidden Service): Hidden Server is the information publisher
which can hosts various services, such as SSH, WEB, IRC. Apart from providing
the stable service, the hidden server can also hide its location.

Client-OP: Tor client is run by users who want to connect into the Tor network.
Generally it is run as an Onion Proxy (OP), so we will mark it as Client-OP in
the following.

Rendezvous Point (Rend-Point): Rendezvous Point is the Tor relay which
is chosen by the Client-OP randomly, for the purpose to conceal the location of
client-OP.

Introduction Point (Intro-Point): Introduction Point is the Tor relay which
is chosen by the hidden service. It maintains a long-term circuit with the hidden
service and forwards the requests from clients to the hidden service.
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Hidden Service Directories (HSDir): Hidden Service Directory is a Tor
relay which has the flag HsDir. The Hidden Service publishes its descriptor
which contains the information of Intro-Point on corresponding HSDir using
DHT addressing technique. The Client-OP fetches the descriptor from HsDir
before it accesses the Hidden Service.
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Fig. 1. Hidden service architecture

It should be noted that users can run multiple hidden services on a single
Tor process.For these hidden services, they use the same guard relays of the Tor
process in each circuit. And this may be a design flaw of Tor which can make
these hidden services linkable by the attacker.

3 Measurement Methodology

In this section, we describe in detail the methodology which is utilized to obtain
the binding relations. The method is proposed to reveal guard relays of multiple
hidden service in parallel, in order to probe the global guard binding relations
in Tor network.

3.1 Revealing Guard Relays of Hidden Services

The mechanism of the hidden service is described by the previous work exten-
sively [3]. It should be noticed that the Rendezvous Cookie (Rend-Cookie) is
an arbitrary 20-byte value, generated randomly by Client-OP. First, it is sent
to the Rend-Point by Client-OP and the Rend-Point record the circuit which
delivers the Rend-Cookie. Then, the Rend-Cookie is delivered to the hidden ser-
vice through introduce1 and introduce2 cell. When the hidden service receives
the designed Rend-Cookie, it will create a HS-RP circuit to the Rend-Point,
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and send the Rend-Point a rendezvous1 cell with the Rend-Cookie. Afterwards,
the Rend-Point binds up two circuits with the same Rend-Cookie, and delivers
messages for these two circuits. At last, the Rend-Point sends the Client-OP a
rendezvous2 cell to start the communication.

In this attack, we assume that the attacker controls a Client-OP, a Rend-
Point as well as some Tor relays. Our attack utilizes a design flaw of the hidden
service’s protocol, that the Client-OP can send messages to the collusion Rend-
Point through the Rend-Cookie, because the Rend-Cookie is randomly generated
by Client-OP and delivered to the Rend-Point through HS-RP circuit. Our attack
embeds the hidden services’ identifiers into the Rend-Cookies and delivers them
to our Rend-Points. Then our Rend-Points embed the identifiers into the HS-
RP circuits as circuit watermarks, so that the controlled relays can identify
which hidden service creates HS-RP circuit through them, and achieve to attack
multiple hidden services in parallel.

The attacker should conduct the attack round by round, until one of its
controlled relays is selected as the second hop of the HS-RP circuit. Figure 2
depicts the three phases of each round of SignalCookie attack.

Hidden ServiceIntro-Point

Client-OP HSDir

Rend-Point

Phase 1

Phase 3Ph
as

e 
1 HS IDentifier

Guard

Fig. 2. Details of our guard discovery methods

Phase 1: Rend-Cookie Delivery. Before sending requests to the hidden ser-
vice, the Client-OP will first generate a designed Rend-Cookie. The designed
Rend-Cookie consists of three parts: Cookie Header, HS Identifier and Random
Content. Cookie Header is a fixed content designed to distinguish the malicious
cookies from other common cookies; HS Identifier is random value that indicates
the identity of target hidden service, which can let the Rend-Point associate the
HS-RP circuits with hidden services after receiving Rend-Cookies; And Ran-
dom Content is designed to distinguish the Rend-Cookies with the same target.
After generating the Rend-Cookie, each Client-OP picks a controlled relay as
the Rend-Point. Then the Client-OP generates a introduce1 cell including the
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designed Rend-Cookie and the fingerprint of the selected malicious Rend-Point,
and sends the cell to a Intro-Point. The Rend-Cookie will be sent to the selected
malicious Rend-Point through Intro-Point and hidden service. When the Rend-
Points receive designed Rend-Cookies, they will verify the Cookie Header and
extract HS Identifiers. As a result, they can identify which hidden service creates
the HS-RP circuits to them.

Phase 2: Hidden Service Identifier Modulation. After recognizing the
hidden service which created the HS-RP circuit, Rend-Points will send circuit
watermarks containing the received HS Identifiers along with the HS-RP cir-
cuits. Each HS Identifier is modulated to the number of drop cells1 in each time
window (2 s). In each window, three drop cells represent signal 1, and one drop
cell is signal 0. For instance, the message 5 ([101]2) can be delivered in 6 s as [3
cells, 1 cell, 3 cells].

Phase 3: Circuit Watermark Detection. When the controlled relays are
selected on the HS-RP circuits, they can recognize the circuit watermarks
embedded by Rend-Points. Each controlled relay records the number of received
inbound cells in every time window, and generates the cell sequence ordering by
time. Next, controlled relays restore the HS Identifiers from the cell sequence
according to the modulating schema and recognize the hidden services which
create the HS-RP circuits through them. Additionally, the number of relay cells
before the start of the watermark can be used to figure out their position on
HS-RP circuits. The second hop of a HS-RP circuit would receive two outbound
relay cells (extend cell and rendezvous1 cell) before the signal starts. Conse-
quently, if a controlled relay is selected on the second hop of the HS-RP circuit,
the previous hop will be the guard relay of the target hidden service.

Compared with the previous work, our method has an extra phase (phase 1),
which makes the Rend-Points can identify the hidden services which create HS-
RP circuits to them. Hence Rend-Points can embed unique circuit watermarks
relevant to hidden services. When one of our controlled relays detects the circuit
watermark, it can identify the target hidden service which creates the HS-RP
circuit according to the HS Identifier in the watermark. Therefore, controlled
relays will not be interfered when discovering guard relays of multiple hidden
services and the attack can be conducted in parallel. And the evaluation about
the accuracy and efficiency of this method is shown by the previous work [8].

3.2 Data Collection

In order to collect data more efficiently, we first utilize 7 Virtual Machines (VMs)
on cloud environment provided by Vultr [1]. Each VM is configured with 2 CPUs
and 4 GB of RAM, and 15 malicious Client-OPs which is designed to generate
requests of hidden services are deployed on every VM. Additionally, we also
operate 10 Tor relays on 10 VMs with 1 CPU and 2 GB of RAM. These VMs are

1 drop cells are long-range paddings, the OR or OP must drop it when receiving such
a cell.
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located in different countries, including Japan, Singapore, Australia, Germany,
France, the Netherlands and the United States. The running Tor relays are based
on a modified Tor version 0.3.1.7, which can act as the malicious Rend-Point and
the malicious middle relay at the same time. It should be noted that our Tor
relays have no Guard and Exit flags, On the one hand, this type of relays has
a larger catch probability to be chosen as the middle relays than relays with
Guard or Exit flags. On the other hand, in order to comply the ethical measure-
ments, our relays will not be selected as guard relays, which prevents the real IP
addresses of hidden services from being de-anonymized. During the experiment-
ing, we discover 13604 onion addresses through aggregating the result in multiple
directory websites (e.g., hidden wiki, TorLinks). Taking the discovered hidden
services as targets, we monitored the guard relays of these hidden services from
2017-11-21 to 2018-06-21.

However, in our seven consecutive attacking attempts, we discovered that only
3756 hidden services were active in all seven months. This is a consequence of the
short lifespan of onion websites and of the fact that the majority of onion domains
collected from public sources often become unreachable after a short amount of
time. Therefore, public directories contain a very large amount of outdated mate-
rial, which wrongly contributes to the image of Tor hidden services.

4 Structure Analysis

In this section, we analyze the two types of family phenomenon, which are named
onion family and onion node family.

4.1 Onion Family

Fig. 3. Onion Families in Tor6 (We also give a more clear picture in Appendix A)
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In this part, we focused on the onion family phenomenon in the Tor network. Onion
family is a group of hidden services run by the same person. These hidden services
may seem unrelated. However, after a long time observation, we can cluster these
hidden services through their guard sequence. This is the result of that hidden ser-
vices on a same Tor process use the same guard relay.

After monitoring the guard relays of these hidden services in 7 months, we clus-
ter hidden services which are on same Tor processes. First we list guard relays for
every hidden service in each months separately, i.e. Ghs,m represents the guard
relays used by the hidden service hs in the whole month m. For each pair of hidden
services, we intersect their guard lists (Ghs1,m, Ghs2,m) in each month, and get the
list of common guard relays (ComGm = Ghs1,m

⋂
Ghs2,m) in the month. Then we

can model the probability of this situation as the following question.

Question:Twohidden services separately choose their guard nodes inTor network.
How canwe distinguishwhether they are in the same process or just happen to choose
the same node?

Suppose the choose probability of each relay i can be expressed as θi, which is
the fraction of the weighed bandwidth to the whole network. The probability in
each month can be largely calculated as P (hs1, hs2,m) =

∏
i∈ComGm

θi, and we
then use the average probability of each month as the final probability. We argue to
set the threshold as 0.3, which means that we regard two hidden services running
on the same Tor process when their probability is lower than 0.3.

Family Analysis: To better show the relation of onion family, we map the rela-
tions of hidden services into a graph. We denote each hidden service as node, and
the edge between two nodes means that the probability of two hidden services
is less than the threshold. We visualize the relations into a graph through Gephi
(0.9.2), and show the structure in Fig. 3. By checking the connected components
in the graph through NetworkX (2.3), 263 onion families can be discovered in Tor
network.

Fig. 4. Family size distribution



530 M. Chen et al.

As shown in Fig. 4, the size of each family is quite small. 51.71% of families only
have 2 hidden services, 80.22% of families have less than 10 hidden services. Each
family has 7.52 hidden services in average, and has 47 hidden services at most.

By analyzing the onion address of these families, we discover two kinds of fam-
ilies, which have common prefix or meaningful prefixes. Additionally, combining
with the content of hidden services, we also discover a super onion family, which
have both meaningful prefix addresses and common prefix addresses.

Table 1. Meaningful prefix family

The largest meaningful prefix family (46 hidden services)

amazingv7h* amazonfkuu* armoryohaj* bitphar76n* blenderri3* btcwash7jm*

carddumpa3*cardsm4fgc* cardsunwqr* ccpalym5nu*cfactoryxe* chbetterat*

cmarketsiu* counterfxh* djn4mhmbbq*drugszun7t* eucannapgg*ezuwnhj5j6*

fakebillke* fakeids5bp* fakeidskhf* fogwalletg* footballth* grhacheapd*

gunsdtk47t* gunsganjki* hackrentew* hosting6ia* kplatypxb2* limaconzru*

loundryslz* maghrebwzb*market77w4* marketdfts* mghreb4l5h*mollyworup*

moneyplheq* mystorea4m* passporxak* payshielgj* plasticmav* plasticmrj*

replicasuw* russianyhl* storess4s5* vendorcugc*

Meaningful Prefix Family: Our artificial analysis discovers 6 families whose onion
addresses start with a meaningful prefix. Generally, the meaningful prefixes are
‘card’, ‘bitcoin’, ‘drugs’ and so on. And each hidden service is a specific type of
commodity trading platform. Table 1 shows the onion address of the largest onion
families, which contains 46 hidden services. Considering about the privacy, each
hidden services just shows the first 10 characters.

CommonPrefix Family: We also discovered 86 families whose onion addresses with
a common prefix. The size of families ranges 2 to 44. These families have onion
addresses start with the same prefix. 70 families have the common prefix with a
single character, e.g. ‘b’, ‘6’, ‘e’. And other 16 families have the common prefix
with meaningful string, such as ‘222222’, ‘bitcoi’, ‘hydra’.

Case Study - Super Onion Family : It should be noticed that, ‘bitcoi’ is
a popular prefix in Tor network. Most of these hidden services are run-
ning a fraudulent website of bitcoin, whose title is ‘100x Your Coins in
24 H’. We find that the deposit wallet address of most of these website are
‘1Q4w6StJWn8mwtSbb4UiBtDkGtcDpvogvd’, which means that these websites
are all belong to the same owner. Surprisingly, these websites, which have the same
deposit wallet address, appear in 6 onion families. This result implies that the
owner of the website runs 6 Tor processes, and controls 121 hidden services in total.
Three of the processes deploy more than 30 onion addresses, and the other three
deploy less than 10 onion address. All of these hidden services can be considered
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as a super onion family. Apart from these fraudulent websites, the owner also runs
other two types of websites, one is the website about hiring hackers, and the other
is called redroom, which is a famous live-streaming service.

4.2 Onion-Node Family

Onion-node Family contains a hidden service and its guard node which have an
abnormal binding relation. In living Tor network, Tor relays run by volunteers,
which means that every Tor relay can be evil. Consequently, in order to prevent
being compromised by a evil node for a long time, hidden services choose stable
nodes as their guard nodes, and change their guard nodes periodically. In another
word, a hidden service cannot have more trust in any relays, unless the owner of
hidden service is familiar to the relay. In our opinion, this trust relation may imply
the hidden service and its guard relay belong to the same owner.Based our analysis,
there are three types of onion-node families, which named expire bindings, bridge
bindings and middle node bindings.

Expire Binding: We analyzed the onion-node family phenomenon with expire
bindings. Tor protocol [2] shows that guard nodes of hidden services are rotated as
the duration of 120 days, which means that the binding duration is no longer than
120 days by default. According to our measurement (Fig. 5), the average binding
duration is 37.45 days, and 99.68% of the hidden services have the binding duration
which is less than 120 days. It should be noticed that 34 (0.29%) individual hidden
services have the expire binding relations with their guard relays (Table 2). Addi-
tionally, the last two hidden services is also an onion family that pin their guard
relay for a long time. Apparently, both of their addresses have a meaningful prefix,
and their content is entirely same after our artificial analysis.

Fig. 5. Distribution of binding duration

We argue that owners of these hidden services (both of individual hidden
services and onion family hidden services) deploy guard relays in advance and
config their hidden services connecting into Tor network through the deployed
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guard relays, and thus, form groups of onion-node family. Considering about their
anonymity, we recommend that these hidden services bind their own guard relays
with a duration between 40 to 80 days to improve their anonymity.Our result shows
that 37.17% of the hidden service have the binding duration in this interval, which
is much more than the interval larger than 120 days.

Bridge Binding: Our analysis shows 14 hidden services binding with their guard
relays which never appears in the consensus in these 7 months (Table 3). We guess
that these hidden services connect into the Tor network through a bridge relay,
including the common bridge, obfs3, obfs4. In order to verify our conjecture, we
analyze the bridge information in this 7 months, with the help of current bridge dis-
covery techniques [16,17]. According to the bridge information, we find that there
are 2 hidden services connecting into the Tor network through private bridges, and
we regard these hidden services and their guard relays as bridge binding onion-
node families. Another 12 hidden services connecting into the Tor network through
public bridges. We do not recommend the first way to use hidden services (private
bridge). Because no other people can use the private bridge except the owner of the
bridge. The attacker can immediately find the owner of hidden service through the
private bridge.

Table 2. Expire binding individual hidden services

Onion Guard Onion Guard Onion Guard

swnwd** 85.230.184.93 anthi** 79.172.193.32 jabbe** 185.34.33.2

7ep7a** 217.182.198.95 g3plb** 213.32.119.219 zazoi** 23.252.105.31

j7zby** 213.239.217.18 3topn** 23.81.66.90 megam** 198.98.62.56

vini4** 195.154.164.243 2lebt** 54.201.127.175 ih4xe** 163.172.94.119

recip** 208.80.154.39 zdla6** 178.132.0.6 bznjt** 212.47.234.192

evz2f** 79.137.112.4 iamje** 172.241.140.26 egy2b** 130.225.254.103

unshe** 38.229.33.141 sq4le** 178.254.19.101 dox6b** 37.187.30.78

goaw7** 163.172.149.155 hackc** 198.50.191.95 gv4ax** 93.104.209.61

zngbg** 94.23.29.204 iqij3** 89.163.225.115 ecleg** 134.19.177.109

lcvks** 204.11.50.131 xfmro** 51.254.101.242 cwu7e** 37.59.118.7

hss33** 80.158.19.228 cpsto** 213.152.168.27 zg7i2** 91.233.116.119

pkmld** 37.187.103.15

Middle Node Binding: We discover 1 hidden service binds with a relay which
is never assigned the guard flag, named middle node binding family. This is also a
deprecated configuration of the hidden service, because bindingwith amiddle node
needs to modify the source code of Tor, which means the owner of hidden service
gives much more trust to this middle nodes.



Towards Comprehensive Security Analysis of Hidden Services 533

Table 3. Abnormal guard relays

Type Onion address Guard Onion address Guard

Private bridge anone** 198.204.*.* agart** 178.17.*.*

Public bridge syuoa** 138.68.*.* 2dhgq** 109.105.*.*

unshe** 38.229.*.* baker** 185.47.*.*

5z6gi** 193.205.*.* zazoi** 23.252.*.*

2lebt** 54.218.*.* t25zy** 51.254.*.*

s4p52** 62.141.*.* 22222** 151.80.*.*

sfiop** 24.106.*.* offic** 192.36.*.*

ts4w7** 188.40.*.*

Middle node (no guard flag) kmh7s** 195.201.*.*

5 Discussion

5.1 Anonymity Analysis of Onion Family

According to the content and the number of Tor processes, there should be four
ways of users to deploy hidden services:

– Same content deploys on single Tor process.
– Same content deploys on multiple Tor processes.
– Different content deploys on single Tor process.
– Different content deploys on multiple Tor processes.

However, considering about their anonymity, we strongly recommend that
users should neither deploy hidden services with the same content on multiple Tor
processes nor different content on single Tor process. The risk analysis of these
two manners is listed in the following: Denote that the owner has n hidden services
with the same content, and thewebpage has the vulnerabilitieswith pv probability.
She deploys them on m Tor processes. In the meantime, suppose that an attacker
deploys malicious guard relays into the Tor network with pc catch probability.

Risks on Same Content with Multiple Tor Processes: Denote that the safe
probability of the owner to prevent from de-anonymizing by the webpage vulner-
ability and predecessor attack can be expressed as Sv and Sc separately.

Sv = 1 − pv, Sc = (1 − pc)m (1)

So the safe probability of the owner is S.

S = Sv ∗ Sc = (1 − pv)(1 − pc)m (2)

Formula 2 shows that the safe probabilityS of the owner decreaseswith the increas-
ing of m, which means that, the owner of hidden service faces more anonymity risks
when she uses more Tor processes.
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Risks on Different Content with Single Tor Processes: As same as the pre-
vious analysis, the safe probability of the owner from preventing de-anonymize
from the webpage vulnerability or from predecessor attacks can be expressed as Sv

and Sc.

Sv = (1 − pv)n, Sc = 1 − pc (3)

So the safe probability of the owner can be expressed as S.

S = Sv ∗ Sc = (1 − pv)n(1 − pc) (4)

From the formula 4, we can see that the safe probability S of the owner decreases
with the increasing of n, which means that, the owner of hidden service faces more
anonymity risks when she has more hidden services with different content on a sin-
gle Tor process.

As a result, we recommend that the owner of hidden services should deploy
hidden services with the same content on the same Tor process, and deploy hidden
services with different content on multiple Tor processes.

5.2 Ethical Discussion

In order to evaluate the family phenomenon in Tor network, we conducted our
experiment in living Tor network. However, conducting researches on the living
anonymity networks must be performed in a responsible manner. One could be
considered as a potential violation of user privacy is the collection of guard relays
of hidden services. However, for an attacker without AS-level capability, she can-
not track any hidden service’s location only through its guard relay. Therefore
de-anonymizing hidden services cannot be covered in our study. Additionally, we
securely delete all collected data after statistically analyzing them, only publish
aggregated statistics about the collected data.

Another factormay also be considered as a potential violation is that, we deploy
10 relays which can record the meta-data for each cell in the living Tor network.
However, this is a standard approach in the context of Tor’s researches, as it is
adopted by the previous work frequently [6,7,22]. Additionally, our relays have no
Guard or Exit flags, and the meta-data of this kind of relays do not support any of
the existing attacks against the anonymity. At last, our experiments are conducted
over a period of seven months, and each relays under our control is configured to
contribute at least a shared bandwidth of 2 Mb/s, which means that we also con-
tribute additional routing capacity to the Tor network.

6 RelatedWork

Predecessor Attack: The first published predecessor attack against Tor hidden
services were presented by Overlier [18]. The attacker repeatedly connects to the
hidden service and verifies whether controlled relays on the HS-RP circuit with the
support of traffic correlation. However, it suffers from the low speed and accuracy
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because it is based on the traffic analysis. To solve this problem, Biryukov [7] and
Ling [12] separately proposed a new method through generating a signature (50
Paddings and circuit destroy) to de-anonymize the hidden service. The attacker’s
controlled relays can recognize the signature when the relays are on the HS-RP cir-
cuit. So that the attacker can reveal the guard relays of the target hidden service.
However, controlled relays cannot recognize the hidden service through the signa-
ture, because the signature is too simple to carry the identifiers of hidden services.

Hidden Service Measurement: Content analysis of Tor hidden services had
been extensively analyzed for a long time. One of the very first works that stud-
ied the nature of the hidden service was presented by Bergman [5]. In his work, the
author introduced and analyzed for the first time different characteristics of the
Tor hidden services. Afterwards, plenty of work [6,7,19] measures the various prop-
erties of Tor hidden services, including size, content, popularity or their ability to
remain anonymous. Furthermore, there is also some work that focuses on the crim-
inals in Tor hidden services. Soska [21] presented a long-term analysis of 16 anony-
mous marketplaces, providing a comprehensive understanding of their nature and
their evolution over time. Analysis of the marketplace entities such as customers
and vendors in Tor hidden services is also a prevalent point [4,9,11]. Closest among
these papers to our work, Iskander [20] measures the link relation between hidden
services in the Tor network, and performed a link structure and presents a privacy
analysis of the Tor hidden services.

In this paper, we utilize a novel method which can reveal the guard relays for
multiple hidden services at the same time. By means of our method, we are the first
to give a comprehensive analysis of the binding relation between hidden service
and their guard relays. At last, we also put forward two suggestions to improve the
security of hidden services.

7 Conclusion

In this paper, we focus on the security of the binding relations between hidden
services and their guard relays. We utilize a novel method to reveal the guard relays
of hidden services, and monitor guard relays of 13604 hidden services for 7 months.
By analyzing the binding relations, we discover 2 kinds of families in Tor network,
which are named onion family and onion-node family.

We first discover 263 onion families through correlating the guard sequence of
each hidden service in the Tor network and dozens of families deploy hidden ser-
vices with common prefix or meaningful prefix. Additionally, by analyzing con-
tents of these onion families, we also discover a super onion family which con-
trols 121 hidden services. The super onion family is deployed on 6 Tor processes,
and the theme of its hidden services are related to bicoin fraudulent, hacker hir-
ing and live streaming services. Additionally, we also discover 49 onion-node fami-
lies which have abnormal binding relations. The abnormal binding relation can be
divided into three groups, which are long-term binding duration, binding with pri-
vate bridges and binding with relays without Guard flag. We consider that these
abnormal binding relations leak the privacy of hidden services because the hidden
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services have too much trusts on its guard relays. At last, we give a risk analysis of
onion families in detail and put forward suggestions on the current Tor protocol in
order to improve the security.

Acknowledgments. This work was supported by the National Key Research and
Development Program of China (Grant No. 2017YFC0820700) and National Defense Sci-
ence and Technology Innovation Special Zone Project.

Appendix A. Onion Families in a Vector Graph

The structure of onion families in Tor is shown in the following figure. For some
reason, the previous figure (Fig. 3) is not a vector graph. So we put a vector graph
here (Fig. 6). The graph do not have any annotations, but it could see the address
of hidden services clearly. We can find onion families with common prefixes and
meaningful prefixes through enlarging the graph.
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hoppcnv3c6*
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hyf55el62j*

redroo4tg5*

Fig. 6. Onion families in Tor
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Abstract. Different web browsers have developed approaches to better
isolate the activities of users on different websites. However, those only
work on the application-level and using the user’s IP address, all actions
of the users can be linked. We present a context-aware IP address alter-
ation scheme that utilizes the large IPv6 address space to protect against
IP-address-based tracking.

We propose a scheme where a distinct outbound IPv6 address is used
for each visited website and its dependencies. A prototype has been
implemented and support for several web protocols and applications has
been ensured. We evaluated the impact of the prototype on browsing per-
formance. The results indicate that the impact is negligible. In combina-
tion with existing application-level measures, effective protection against
tracking can be achieved.

Keywords: Browser · Privacy · Tracking · IPv6 · Address hopping

1 Introduction

The spread of IPv6 has continued to increase in recent years. Today, more than
26% of all autonomous systems announce IPv6 prefixes [32]. The most upheld
feature of IPv6 is the huge 128 bit address space. With IPv6, each device could
be assigned a lifelong unique IP address and by that IP-address-based track-
ing opportunities arise. We present a context-aware address alteration scheme
that utilizes the large IPv6 address space to protect against IP-address-based
tracking.

The IPv6 Privacy Extension recommends lifetimes for IP addresses and
encourages changing the source IP address regularly. However, IP addresses are
usually used for one day for new connections [25]. 24 h is too long for effective
protection of the users’ privacy [4]. We will use many IP addresses at the same
time and on a per-destination basis.

RFC 6177 (IPv6 Address Assignment to End Sites) recommends Internet Ser-
vice Providers (ISPs) to pass subnets with at most 64 bit long prefixes, to home
users [24]. Any customer, from large businesses to small households, receives
more IPv6 addresses than the whole IPv4 address space. However, only a frac-
tion of these addresses is used. We show how to use a new IP address for each
c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ICICS 2019, LNCS 11999, pp. 539–554, 2020.
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website visited and take the context in which a request is made into account to
maintain compatibility.

A prototype is designed and developed to show the feasibility of our app-
roach1. We compare our concept to the Tor Browser [28]. Considering a clearly
weaker adversary model, we can achieve much better performance. This makes
our approach interesting for common users who need protection against ad net-
works but not against global observers and who do not want to sacrifice browsing
performance or invest more time in preserve their privacy.

The remainder of this paper is organized as follows. In Sect. 2, we survey
related works. In Sect. 3, we detail the design and implementation of context-
aware IPv6 address hopping. In Sect. 4, we evaluate privacy enhancement and
performance of our implementation. We discuss the results in Sect. 5 and, finally,
conclude in Sect. 6.

2 Preliminaries and Related Work

In this section, preliminaries of context-aware IPv6 address hopping and related
work are discussed. First, we introduce IPv6 and the Tor Browser in Sect. 2.1
because our prototype takes advantage of it. Then, we present related work
that utilizes IPv6 addresses to enhance privacy or security in Sects. 2.2 and 2.3.
Approaches to isolate contexts in web browsers are presented in Sect. 2.4.

2.1 Preliminaries

IPv6. Internet Protocol version 6 (IPv6) is the successor to IPv4. With IPv6
there are a lot more IP addresses, since addresses now have 128 bit instead of
32 bit as with IPv4. IPv6 addresses have usually two parts of 64 bit each: a
subnet prefix and an interface identifier. The adresses are written as eight groups
of hexadecimal digits, leading zeros can be omitted and consecutive groups of
zeros can be replaced with a double colon. Figure 1 shows two representations of
the same address. The subnet prefix is used for routing, the interface identifier
specifies an interface in a given subnet [6,14].

2001:0db8:85a3:0000

subnet prefix

:0000:8a2e:0370:7334

interface identifier

2001:db8:85a3

subnet prefix

::8a2e:370:7334

interface identifier

Fig. 1. Two representations of the same IPv6 address.

1 The source code can be found at [39].
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ISPs should assign at least one 64 bit prefix to home users and will assign
in most cases significantly more addresses [24]. An IPv6 prefix is represented
by the notation ipv6-address/prefix-length, where prefix-length specifies
how many of the leftmost contiguous bits of the address comprise the prefix [14].
A subnet defined by a n bit prefix has 2128−n addresses. This means that a typical
home user’s IPv6 subnet has at least 232 times more addresses than the entire
IPv4 address space.

Tor Browser. The Tor Browser is a browser that takes various measures to pro-
tect the privacy of its users. All user traffic is routed through the Tor anonymiza-
tion network. This hides users’ IP addresses and allows bypassing censorship.
Browser fingerprinting is made more difficult and all visited websites are iso-
lated from each other. This prevents third-party trackers from creating user
profiles [28].

Different websites are isolated from each other by their URL bar origin. URL
bar origin means at least the second-level DNS name. For example, the origin
of mail.google.com would be google.com [28]. In practice, different origins
are differentiated by means of the Public Suffix List [23]. This list contains all
effective top level domains under which Internet users can or could directly
register names. For example, it lists dyndns.org. This means that the domains
alice.dyndns.org and bob.dyndns.org could belong to different entities and
should be isolated from each other.

The Tor Browser also takes various measures to further isolate different URL
bar origins, for example in relation to HTTP Keep-Alive connections or Cook-
ies [28].

Our implementation is based on the Tor Browser, however, we make use of
browser’s website isolation features only and do not route traffic through the
Tor network.

2.2 Address Hopping for Enhanced Privacy

IPv6 Stateless Address Autoconfiguration introduced a static interface identifier
that enabled device tracking across networks. RFC 4941 [25] (Privacy Extensions
for Stateless Address Autoconfiguration in IPv6) deals with this problem and
proposed that a device should use temporary, random addresses for outbound
connections. However, the randomly generated IP addresses are usually used for
one day for new connections. It has been shown that sessions of 24 h length can
be linked to the same user [4]. Therefore, Privacy Extensions are not a sufficient
protection against tracking.

Lindqvist and Tapio proposed to alter identifiers on all layers of the protocol
stack [18]. Instead of using a single system-wide protocol stack, each process
would access the network through a virtual protocol stack. Besides IP addresses,
the virtual protocol stack would also alter MAC addresses. The authors noted
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that IPv6 is more suitable than IPv4 for address changing schemes and suggested
that each connection could use its own IP address. However, this would mean
that a very large number of IP addresses are used which could lead to unexpected
side effects. Lindqvist and Tapi focus on mobile computers and local adversaries,
we also consider privacy issues with global IPv6 addresses. We extend their
approach and consider the context of each request. For requests that can be easily
linked at the application-level, we use the same address. Requests triggered by
different contexts use different addresses.

Raghavan et al. describe a scenario where an ISP mixes the IP addresses of
packets that are sent by their customers [29]. The IP address of each outgoing
packet would be changed, similar to network address translation (NAT). The
goal of the proposed technology is to enhance privacy of all customers of an ISP
by default. In this paper, the approach of Raghavan et al. to form an anonymity
set with all customers of an ISP is further discussed to prevent an adversary
from linking several addresses to a single user.

Herrmann et al. [13] discuss the privacy issues of long-lived IPv6 prefixes and
propose several prefix changing schemes: prefix hopping, prefix bouquets and
prefix sharing. Prefix hopping is similar to IPv6 privacy extensions but instead
of changing the IP address every day, it changes the prefix more frequently, e. g.,
every few seconds. Prefix bouquets suggests the ISP to delegate a number of
prefixes to each customer instead of a single one. The customer’s device would
then choose a prefix either per destination or for each connection. However,
one prefix per IP destination does not provide unlinkability against ad networks
and address hopping over connections could impede compatibility and there-
fore usability. With prefix sharing, an ISP would assign one prefix to several
customers. This scheme is similar to Raghavan et al.’s approach.

Unlike Herrmann et al. we do not change the IP addresses per destination
or connection, but make the IP address dependent on the application context.
Context-specific assignment is an improvement over prior work that assigned
IP addresses per connection or per destination IP. In contrast to preceding
approaches, context-aware address hopping only requires modifications to one
communication partner.

2.3 Address Hopping for Enhanced Security

IPv6 address hopping schemes have also been discussed in other contexts than
user privacy. Sifalakis et al. presented an approach to obscure the data exchange
between two peers by spreading a data stream across multiple end-to-end con-
nections [34]. Dunlop et al. suggested to repeatedly rotate the addresses of both,
sender and receiver, to maintain user privacy and protect against targeted net-
work attacks [8]. Judmayer et al. presented an address hopping scheme that
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defends IoT devices against reconnaissance and denial-of-service attacks as well
as address-based correlation [15].

2.4 Context Isolation in Web Browsers

All major web browsers implement isolation mechanisms. These aim not only
at security [7], but also at privacy [26], robustness and performance [30]. The
mechanisms include memory isolation, separate processes and separate storages
for cookies or HTML5 web storage data [22].

Pan et al. [26] suggested to partition client-side state into multiple isolation
units (contexts) so that identifiers that could be used for tracking are not unique
anymore. Protection against browser fingerprinting or IP-address-based tracking
was not subject of their paper, as this has already been covered by the Tor
Browser [28]. However, using Tor has disadvantages for browsing performance.
Our approach makes use of the Tor browser’s isolation features only and does
not route traffic through the Tor network.

3 Context-Aware Address Hopping

Mozilla describes in its anti tracking policy web tracking practices that should
be blocked by default by web browsers. These tracking techniques include
third-party cookie-based and URL parameter-based cross-site tracking, browser
fingerprinting and supercookies [21]. The mentioned techniques work on the
application-level and can be prevented by application-level measures. However,
even if we defeat all possible application-level tracking techniques, users’ actions
can still be linked at the network-level. For effective tracking protection, network-
level and application-level defenses should be combined.

In Sect. 3.1, we describe our design goals and adversary model. Then, we
explain various address generation options in Sect. 3.2. After that, we describe
details of our implementation in Sect. 3.3.

3.1 Design Goals and Adversary Model

There are tools like Tor that provide network-level unlinkability with respect
to strong adversaries. However, when using Tor, the browsing performance
decreases. VPNs have a performance and cost overhead as well [27,31]. We will
utilize the huge IPv6 address space to protect against network-level tracking
with respect to relatively weak adversaries. Our concept should protect against
website operators and ad networks. A third party included in two or more web-
sites must not be able to link visitors on different websites to the same user.
We consider the users’ ISP as trusted. Our concept should have no perceptible
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Website A Website BTracker Website C

Context-aware Proxy

2001:db8:1 ::c34:e5d7 2001:db8:2 ::871a:d2c 2001:db8:1 ::f01:ab5c

(a) With context-aware IPv6 address hopping, each request is send to the proxy and
assigned an outbound IP address based on the tab it originates from.

Website A Website BTracker Website C

2001:db8:1 ::f01:ab5c 2001:db8:1 ::f01:ab5c 2001:db8:1 ::f01:ab5c

(b) Without context-aware IPv6 address hopping, all requests are send with the same
outbound IP address.

Fig. 2. Three tabs are opened in a browser and sending requests to websites A, B and
C. Websites A and B include the same third-party tracker. Prefixes are in italics.

influence on the browsing performance. Furthermore, it should be transparent
to the user, and backwards compatible to existing web applications and Internet
infrastructure.

To achieve our goals, an HTTP request must not use the same outbound
IP address as another request belonging to another URL bar origin. Also, all
requests within one URL bar origin should use the same outbound IP address
to reduce possible compatibility issues. The desired behavior is illustrated in
Fig. 2a. Each request passes the context-aware proxy and uses an outbound IP
address that depends on the URL bar origin of the corresponding tab. Note
that different IP addresses are used to contact the tracker. In contrast, Fig. 2b
illustrates the current state. The adversary can link the requests to a single user,
based on the IP address.
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3.2 Address Generation

A requirement for protecting users’ privacy is that an adversary can not easily
link multiple IPv6 addresses to a single user. Without changing the current
Internet infrastructure, users can use any addresses in the subnet assigned to
them by their ISP. Thus, interface identifiers can be varied easily. However, the
prefix can not be varied easily without changing the infrastructure. This is shown
in Fig. 2a, the prefixes are in italics. If the prefix is not varied and not shared
with other users, address- or rather prefix-based tracking remains possible. In
the following section, three prefix changing variants are described.

Prefixes of Variable Length. When ISPs delegate prefixes of fixed length
to their users as suggested by RFC 6177 [24], adversaries could easily link all
IP addresses that belong to a single user if the size of the subnets is known.
To prevent this simple mapping, ISPs could delegate prefixes of variable length.
Still, adversaries might be able to detect the length of those prefixes by cluster
analysis.

The similarity between two IPv6 addresses can be seen as the difference
from 128 to the number of matching sequential bits starting with the most
significant bit. The longer a shared prefix is, the shorter is the distance between
two addresses [17]. The IP addresses “2a08::13ff” and “2a08::1300” have a
distance of 32 bit while the IP addresses “2f08::1337” and “2018::1337” have a
distance of 112 bit. IP addresses from smaller subnets will form tighter clusters
than those from larger subnets.

Prefix Bouquets. Following Herrmann et al. [13], an ISP could provide prefix
bouquets. However, many prefixes would be required if each prefix is to be used
only once. If prefixes were used multiple times, an attacker could possibly link
some activities.

ISPs could then tend to build prefix bouquets out of smaller prefixes or even
specific IP addresses. This would break the current IPv6 auto-configuration as
it relies on 64 bit interface identifiers [35].

Prefix Sharing. Alternatively, prefixes could be shared over larger groups of
users. As with NAT, prefix sharing could conceal the individual user’s behav-
ior [9]. Though, NAT users can be fingerprinted [37]. Two approaches for prefix
sharing are discussed below.

Unique IP Addresses. When sharing a prefix among several home networks,
packets might be routed to a wrong host if uniqueness of IP addresses is not
guaranteed. Herrmann et al. [13] suggest three variants for prefix sharing that
guarantee uniqueness. First, the ISP could deploy central DHCP servers which
receive requests from user devices. The ISP would learn which websites are
accessed by which device. However, even without address hopping, the ISP learns
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which websites are visited, e. g., if the ISP’s DNS servers are used, if the traf-
fic is unencrypted, if server name indication is used or if only one web page
is using a destination’s IP address. Second, the customer’s router could receive
a pre-allocated set of IP addresses by the ISP. The IP addresses are then dis-
tributed by the router without the ISP learning which device allocated a specific
IP address. This would require changes to software on both ISP and consumer
end. The third option suggests the ISP to apply NAT to all consumer traffic.

Probabilistic IP Address Generation. Alternatively to ensuring IP address
uniqueness, one could gamble that a randomly generated IP address is not used
by another host on the network. This could lead to collisions. In the following,
we examine how likely collisions would be.

Based on the birthday problem, Eq. (1) approximates the probability p of at
least one collision for n generated and d possible IP addresses:

p(n, d) ≈ 1 − e
−(n2−n)

2d (1)

Table 1. Number of addresses that can be generated before causing a collision at a
probability of 10−6 in subnets of differenz sizes.

Prefix length Generated addresses

/48 1,554,944,645

/56 97,184,040

/64 6,074,003

/72 379,625

/80 23,727

For example, a collision occurs with a probability of 50% when generating
about 5.05 · 109 IP addresses within a /64 prefix. Probabilities for /64 and other
prefix lengths are shown in Fig. 3. Table 1 shows the number of IP addresses that
can be generated with a collision probability of 10−6 for different subnet sizes.

Assuming that one hundred users visit one hundred websites each, results in
ten thousand generated IP addresses. Using Eq. (1), the probability of a collision
of two of these IP addresses in a /64 is only about 2.71 · 10−12. Even with one
million generated addresses, the probability is only about 2.71 · 10−8.

For the unlikely case that two hosts generate the same IP address, a router
would need to decide to which of the two hosts it sends a packet. The hosts
would have to detect when responses are not received and then generate a new
IP address.
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Fig. 3. Each graph shows the collision probability when generating a number of
addresses for a prefix length. The x-axis describes the number of addresses and the
y-axis the collision probability.

3.3 Implementation

We implement our prototype in the Go programming language as an alternative
proxy for the Tor Browser and do not route traffic through the Tor network. We
make use of the browser’s website isolation feature only.

By default, Tor isolates streams for which different SOCKS usernames and
passwords were provided. Thus, the Tor Browser uses a set of SOCKS credentials
per URL bar origin to isolate different origins. We replace Tor’s SOCKS proxy
with our prototype which uses different outbound IPv6 addresses for different
sets of SOCKS credentials. Thus, for connections to different URL bar origins
different IPv6 addresses will be used.

When receiving previously unknown credentials, the proxy generates, based
on the procedures defined in RFC 4941 [25], a new outbound IPv6 address
and saves the mapping. Then, the proxy establishes a TCP connection to the
destination. If the connection is established, the client may start sending data
as it would without a proxy.

The working principle of the prototype is illustrated in Fig. 4. The browser
requests the HTML content of mozilla.org and draw.io. Both websites include a
common third-party resource. Different outbound IP addresses are used for the
different contexts.

4 Evaluation

We evaluate our approach from three different perspectives. In Sect. 4.1, we
study the privacy improvement for users. In Sect. 4.2, we investigate the com-
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mozilla.org draw.ioThird-party Resources

Context-aware Proxy

SOCKS Credentials

Outbound IP Addresses

mozilla.org draw.io

2001:470:1f0b:1354::f20a:23 2001:470:1f0b:1354::a4b:1c27

Browser

Fig. 4. Two websites include common third-party resources. With context-aware
address hopping, different outbound IP addresses are used in different contexts.

patibility with today’s web protocols. In Sect. 4.3, we measure the performance
overhead.

4.1 Privacy

With the help of the URL bar origins and the Public Suffix List [23], we achieve
that different outbound IP addresses are used for different (effective) top-level
domains. As a result, a third party can not link visitors on different websites
based on their IP adresses to the same user.

In addition to the IP address, cookies, various cache-based, fingerprinting-
based and other mechanisms can be used to track users [5]. That means that
context-aware IP address hopping alone does not protect against tracking. Our
concept can be effective only in combination with tools like ad blockers that
prevent application-level tracking or like Multi-Account Containers for the Fire-
fox browser that allow users to separate different contexts [22]. However, if we
assume that actions against those other tracking mechanisms have been taken,
then context-aware IP address hopping will be an effective complement.

4.2 Compatibility

Our prototype is able to forward outbound TCP connections opened by the
browser. The prototype’s behavior is not dependent on the payload of the pack-
ets as the proxy only forwards binary data from either side. Therefore, it can be
assumed that any TCP-based protocol is supported. Modern web browsers sup-
port a variety of protocols in addition to and on top of HTTP and JavaScript.
In the following, we will take a closer look at two widely used protocols.

The WebSocket Protocol [11] provides a two-way communication instead of
the strict client-server architecture of HTTP. It uses the HTTP Upgrade header
to upgrade a HTTP connection to a WebSocket connection. The procedure is
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designed to be interoperable with the existing HTTP infrastructure such as prox-
ies. It is also intended to be used with a single TCP connection. Following this,
the prototype can be expected to be compatible with WebSockets. A WebSocket
Echo Test [16] was used to successfully test this compatibility.

WebRTC [2] allows real-time communication like video conferences. It defines
a framework for peer-to-peer applications in the browser. It is already supported
by various browsers including Firefox [19]. It allows to add additional protocols to
the mandatory set of the standard. These protocols may use both TCP and UDP
as transport protocols [3]. However, the Tor Browser disables WebRTC at com-
pile time [28]. Therefore, it is not easily testable whether WebRTC would work
with the prototype. Still, the ability of WebRTC to open connections through
NAT might also work with the prototype. Yet, WebRTC might leak the client’s
IP addresses to other peers [36]. In the future, our prototype could be extended to
support incoming connections and bidirectional UDP relaying since the SOCKS
protocol supports both.

In order to test more sophisticated web services, we manually tested the third-
party authentication services of Google [12] and Facebook [10]. No restrictions
were noted. Also the Shibboleth service of the Hamburg University of Technology
could be used with our prototype.

Some web applications force a logout on IP address change. Thus, choosing
the client’s IP address based on the destination’s IP address may lead to a
compatibility issue. Since we are choosing the client’s IP address based on the
URL bar origin, we expect that no sessions will be terminated by our address
hopping scheme.

4.3 Performance

Privacy enhancing techniques that require an overlay network, such as Tor,
have significant impact on browsing performance [27,31]. Context-aware IPv6
address hopping does not require an overlay network. To evaluate the perfor-
mance impact caused by our prototype, we compare it against two different
browsers: the original Firefox web browser and the Tor Browser. For a variety
of reasons, we compare our prototype to the Tor Browser, although Tor has a
much stronger adversary model. First, our prototype builds on top of the Tor
Browser. As a consequence, overhead induced by the Tor Browser (not Tor) evens
out when comparing our solution with the performance of the Tor Browser. Sec-
ond, the Tor Browser is the only widespread tool that achieves unlinkability on
the network layer. We show that much better performance can be achieved by
weakening the adversary model. This might lead to higher acceptance among
users. We argue that there must also be lightweight techniques that are easy
to use and protect against relatively weak adversaries. These techniques might
reach those users who otherwise would not be protected at all. Thus, we have
the following three configurations:

1. Firefox: A default installation of Firefox (version 65.0.1), which acts as a
baseline for browsing without additional privacy protection.
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2. Tor Browser: A default installation of Tor Browser (version 8.0.6), which
offers additional privacy protection by reducing browser fingerprintability and
onion routing.

3. Prototype: Our prototype, which consists of an unmodified Tor Browser
(version 8.0.6) connecting through our prototype SOCKS proxy.

For obvious reasons, we expect our solution to perform faster than the Tor
Browser. When IPv6 is available on the local network, address hopping can use
the native, direct connection to the destination. In particular, packets can be
routed on the same path as without address hopping, resulting in similar laten-
cies. Thus, we expect that our protoype achieves about the same performance
as Firefox and users would notice no difference.

We measure the performance of the Alexa Top 100 global sites [1]. The list
was retrieved on February 26, 2019, and is reduced to websites that are reachable
by IPv6 so that address hopping can be employed. The data set was divided in
two parts:

1. Top 10: Out of the top 10 domains, five had IPv6 support. For these domains,
50 measurements were taken for each configuration.

2. Top 100: Out of the top 100 domains, 27 domains had IPv6 support. For
these domains, 10 measurements were taken for each configuration.

We use Selenium [33] to start the three configurations independently and
retrieve each web page several times. The browser caches have been disabled.
We utilize the Performance API [38] to measure the timings of the different stages
while retrieving and displaying a web page2. For each measurement we took the
time it required for the HTML document and all its dependent resources to be
retrieved over the network, i.e., the loadEventStart key of the Performance
API [20]. The Performance API returns timestamps with millisecond precision.
The measurements has been taken sequentially on the same computer using a
DSL connection with 100 Mibit/s download and 20 Mibit/s upload.

The mean and standard deviation of the time needed to retrieve and render
an HTML document and its dependent resources is displayed in Table 2. Details
for the five websites remaining of the top 10 Alexa global sites for all three con-
figurations are further highlighted in Fig. 5. The mean values give an impression
of the speed of the client and the standard deviation can be interpreted as a
measure of steadiness. The results indicate that the prototype performs nearly
identical to the unmodified Firefox browser, while having a similar standard
deviation. Using the prototype is significantly faster than using Tor, whose val-
ues also show a high standard deviation. This order is not only represented by
the overall values but also by the website specific mean and standard deviation
values. The native uplink is on average slightly faster than the prototype which

2 The browser profiles of the The Browser and our protoype had to be configured
to allow accessing Firefox’s Performance API: privacy.resistFingerprinting =

false.
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in turn is on average faster than Tor. Some values of prototype and native uplink
are very close, especially when taking the standard deviation into consideration.

The results indicate that our technique can be used without a significant
impact on browsing performance.

Table 2. Mean and standard deviation of the time in seconds needed to retrieve and
render an HTML document and its dependent resources as well as the number of
third-party resources.

Firefox Prototype Tor browser 3rd-party

Website Mean SD Mean SD Mean SD Resources

google.com 0.43 0.11 0.42 0.06 7.96 4.09 3

youtube.com 1.78 0.68 1.91 0.49 8.79 2.16 10

facebook.com 1.07 0.16 1.23 0.20 9.55 2.27 1

wikipedia.org 0.19 0.10 0.22 0.05 1.76 0.50 0

yahoo.com 0.51 0.25 0.48 0.13 3.88 1.49 1

Alexa Top 10 0.27 0.49 0.28 0.51 2.13 3.32 3

Alexa Top 100 0.30 0.72 0.64 0.39 2.28 4.74 12.26
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Fig. 5. Mean and standard deviation of the time in seconds needed to retrieve and
render an HTML document and its dependent resources. The five domains are the
subset of the Alexa Top 10 domains with IPv6 support. 50 measurements were taken
for each configuration.

5 Discussion

By using URL bar origins, we achieve that a third party included in two or more
websites is not be able to link visitors on different websites to the same user.
Moreover, by involving the ISP, we achieve that our concept is transparent to
the user and has no perceptible influence on browsing performance. That we
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consider the ISP as trustworthy is not a disadvantage. After all, the ISP does
not learn more about users’ browsing behavior than it does today. The concept
is backwards compatible to existing web applications, but can be integrated into
today’s infrastructure to a limited extent only. Regarding the prefix changes,
ISPs will have to deviate from today’s standards.

Context-aware IPv6 Address Hopping is a good complement to existing
application-level protection. Our concept has a clearly weaker attacker model
compared to Tor, but there are no perceptible performance penalties. Hence, on
the network level, we could protect the privacy of people who today do not use
Tor.

6 Conclusion

This paper introduced context-aware IPv6 address hopping to prevent IP
address-based linking of users’ activities. The proposed address hopping scheme
uses a distinct outbound IPv6 address for each visited website and its dependen-
cies. In combination with application-level measures, effective protection against
tracking can be achieved.

A prototype of context-aware IPv6 address hopping has been implemented.
For this the Tor Browser was used, whereby Tor’s SOCKS proxy was exchanged
for our implementation. Support for several web protocols and applications has
been ensured. We evaluated the impact of the prototype on browsing perfor-
mance. The results indicate that the impact is negligible.

Future work is needed to examine how ISPs can provide users with multiple
and frequently changing IPv6 prefixes. Also, the context-aware approach could
be extended to other applications and the operating system. Furthermore, it
could be examined how existing anonymous communication networks such as
Tor can be made more context-aware and what advantages and disadvantages
that would have.
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Abstract. Homograph attack is a common way of phishing attacks, which aims
to generate visual spoofing domain names by replacing a single character or com-
binations of characters. To analyze and detect homograph domain names, former
works mainly consider about distance based methods, analyzing edit distance or
Euclidean distance between two domain names, or utilize OCR (Optical Charac-
ter Recognition) technique. However, these methods may not only have a large
number of false positive cases, but they also increase processing overhead. In
this paper, we proposed a dual-channel CNN classifier with retrieving algorithm
of minimum hash (MinHash) and locality sensitive hash (LSH) to detect homo-
graph domain names. The dual-channel CNN classifier was trained to analyze
dual-channel domain images. The MinHash and LSH were designed to search
domain name with similar characters, which can reduce the large data efficiently.
By comparing with other detection methods, our method can distinguish homo-
graph domain names from normal ones effectively, which can achieve 98.5%
detection rates. Experiments on DNS real log datasets indicate that MinHash and
LSH scheme can perform well in reducing the large data.

Keywords: Domain name · Homograph · CNN · MinHash · LSH

1 Introduction

Phishing attack is one of the greatest and most serious threats against the Internet cur-
rently. Phishing refers to the network criminal act that steals users’ personal information
including username and password. Generally, to achieve this criminal purpose, attacker
first registers fake domain names by imitating well-known websites, and then delivers
them to victims to lure users into clicking these elaborate fraud websites, resorting to
every possible method of attack.

In phishing, attacker can structure and generate fake domain names in various ways,
such as homograph attack [1], typosquatting [2], soundsquatting [3], combosquatting [4],
etc. Homograph attack is a commonway, which aims to generate visual spoofing domain
names by replacing some of the characters with other visually similar ones. For example,
the character ‘l’ is similar to the figure ‘1’, and the combination ‘rn’ (i.e., r and n) is similar
to ‘m’. In addition, because IDNs (International Domain Names) have been widely
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used, attackers can also impersonate domain names of trusted entities via homograph
techniques in Unicode character set, which greatly expands the homographic area and
increases the difficulty of detection. Typosquatting is an another way to generate fake
domain names using character-replacement, character-omission, character-permutation,
character-insertion and missing-dot [2]. However, compared with homograph domain
names, typosquatting domain names are commonly used by online advertisement and
domain parking [2]. Due to the similarity between these phishing domain names and
well-known domain names, prior researches proposed many detection methods to detect
phishing domain names based on similarity analysis of domain names.

In detail, for homograph domain name analysis, former researches mainly consider
about edit distance (i.e., Levenshtein distance) between two domain names, and regard
the pair of domain nameswith small distance as homograph domains. However, methods
only based on edit distance will have a large number of false positive cases, especially
for domain names with few characters. For example, (bbc.com, msn.com) and (blood-
horse.com, bl00dh0rse.com) have the same edit distance, however, domain names in
former pair are normal ones. In addition to edit distance, some detection methods such
as OCR (Optical Character Recognition) [5, 6] are proposed to detect the similarities
of domain names and web contents. Obviously, these methods will increase processing
overheads when grabbing and analyzing a large number domain names or web pages,
which makes it hard to meet the demand of fast detection. Deep learning based detection
method has also been proposed, such as siamese CNN (Convolutional Neural Network)
[7]. It may take much more time for training and also has a relatively low detection rate
by using Euclidean distance.

In this paper, we propose a dual-channel CNN based detection method to analyze
and detect homograph domain name. Firstly, we convert a pair of domain names into
dual-channel domain images. In detail, each channel corresponds to a domain name.
Secondly, we design and train a CNN based classifier to analyze these dual-channel
domain images. Thirdly, considering the large number of domain name in real network,
we utilize minimum hash (MinHash) and locality sensitive hashing (LSH) to search
domain name with similar characters, which can reduce the large data efficiently. Our
experiment results show that the proposed method can detect homograph domain name
effectively. In detail, the dual-channel CNN based classifier could achieve a high detec-
tion rate of 98.5%; by analyzing detection results, the retrieving algorithm of MinHash
and LSH could narrow detection scope and reduce the large data efficiently. Compared
with other methods, our method can achieve a higher detection rate and consume less
time for training.

The remainder of this paper is organized as follows. The related work in relevant
field is reviewed briefly in Sect. 2. Section 3 provides an overview of the proposed
detection method. Section 4 introduces the detailed CNN classifier. Section 5 introduces
the MinHash and LSH algorithm. Section 6 introduces the datasets and discusses the
performance results using real-world DNS log data. Finally, Sect. 7 presents some brief
concluding remarks.
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2 Related Works

Holgers et al. [1] studied homograph domain names and homograph attack in an early
time, their measurement results suggest that homograph attacks seem like an attractive
futuremethod for attackers to lure users to spoofed sites. Particularly, homograph attacks
do have the potential to become more common and malicious with the use of IDNs.
Besides, in an extensivemeasurement study, Quinkert et al. [8] found thatmore andmore
technology companies and financial institutions are targeted by homograph attacks.

To effectively distinguish homograph domain names from normal ones, researchers
have proposed many approaches, which can be classified into two categories: distance
based analysis and character or visual similarity analysis.

For distance analysis, researchers mainly regard a pair of domain names with small
edit distance as homograph domain names. However, methods only based on edit dis-
tance will have a large number of false positive cases, especially for domain names with
few characters.Meanwhile, conventional methods based on edit distance do not take into
account visual confusion on characters. Therefore, for quantifying visual similarity of
domain names, Liu et al. [9] proposed a novel quantitative method to measure the visual
similarity of two given domains. Based on generalized edit distance that takes insights
of novel visual characteristics, this method can search the maximum visual similarity of
a domain over a given popular website set. Similarly, Black [10] also proposed a method
of visual similarity. However, visual distance is still edit distance with a weight of char-
acter and operation. Nowadays, in addition to the conventional methods, deep learning
algorithms, such as CNN, LSTM, have also been used to detect homograph domain
names. Woodbridge et al. [7] presented a solution to analyze homographic problem
using a siamese CNN. The siamese CNN first extracts feature vectors of domain name
images, and then distinguishes similar strings or dissimilar strings by using Euclidean
distance. Similarly, Ya et al. [11] proposed an LSTM based siamese network to analyze
sequences of characters of squatting domain names, and calculate the distance between
vectors in Euclidean space as well.

For similarity analysis, it was theorized that OCR technique could be used to detect
homograph domain names. Sawabe et al. [5] leveragedOCR technique to recognize sim-
ilarities between IDNs and legitimate domain names automatically. This OCR method
can generate corresponding mappings with ASCII characters, which are on the basis of
the input IDNs containing non-ASCII characters. Then if there are legitimate domains
in these candidate mappings, the corresponding input IDN is detected as being a homo-
graph domain name. In addition, Tian et al. [6] built a novel machine learning classifier
that takes advantage of image analysis and OCR technique to detect squatting phishing
pages and domain names. However, when generating domain images, the OCR method
must perform a series of preliminary image processing. Meanwhile, this method also
has a relatively lower detection rate. For another strategy, Roshanbin et al. [12] explored
a mathematical approach to define the visual similarity between Unicode glyphs, which
utilizes Normalized Information Distance and Kolmogorov Complexity theory.

Additionally, to detect homograph attack, some researches [13, 14] also generate
candidate homograph domain names from popular ones, and then analyze behaviors
of these domain names based on WHOIS records, DNS records and web pages, etc.
Although these proposed solutions can analyze the behaviors of homograph domain
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names well, they cannot meet the demand of homograph detection in real network
traffic.

3 Detection System Overview

In order to detect homograph domain names, we utilize a CNN based classifier as a key
component, which can analyze visual similarities between a query domain name and a
domain name in whitelist. The domain whitelist is obtained from Alexa domain list1. In
this section, we make an overview of our detection method, which is shown in Fig. 1.

MinHashLSH
Retrieval

Detection 
Result

Domain 
Log

Domain
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CNN 
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Detecting

Domain 
Images 

Fig. 1. Overview of detection system

In training stage, we first select homograph domain names and non-homograph
domain names to create a truth marked training dataset. Then we convert pairs of domain
names into domain images, and train aCNNclassifier to distinguish these domain images.

In detecting stage, we first combine a real domain name queried by network user
with a target domain name, then we use the well-trained classifier to analyze the pair
of domain names. Due to the large number domain names in DNS real logs, we use the
pre-retrieval process with MinHash and LSH algorithm to narrow the target image list,
which can also decrease time of processing and increase detection rate.

4 CNN Classifier Model

In this section, we introduce the main parts of CNN classification model, including
training dataset, CNN classification model and performance of classification.

4.1 Training Dataset

Asmentioned before, in this paper, the training dataset consists of benign domain names
and homograph domain names. For benign domain names, they were all selected from
Alexa 1M domain list and regarded as negative samples. We first randomly matched any
two domain names, and then selected 500K pairs of domain names whose edit distance
are less than or equal to 6. For positive samples, we constructed pairs of homograph
domain names based onAlexa top 10K domain names using the typofinder2 tool. Finally,

1 https://www.alexa.com/topsites.
2 https://github.com/nccgroup/typofinder.

https://www.alexa.com/topsites
https://github.com/nccgroup/typofinder
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we also randomly selected 500K cases. Specially, because edit distance based methods
are completely dependent on the distance between every two domain strings, we attempt
to make positive samples have the same distribution as negative samples, which aims
to prove the validity of the proposed CNN method. Meanwhile, considering the real
distribution of data in DNS logs, we set our training dataset as shown in Fig. 2.
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Fig. 2. Edit distance distribution of positive and negative samples in training dataset

In this paper, a CNN classifier is intended to produce a binary value from an input
image transformed from an input text. In our model, we constructed images of size
16 × 120 × 2 with white text on black background using CODE2000 font. In our
experiments, we set the image size according to the length of domain names. Images
could accommodate horizontal space for 25 Unicode characters with image size 16 ×
120, which could cover almost all domain names in training dataset. The figure ‘2’
refers to two channels, and each channel consists of a domain name in detail. Finally,
we classified our training set with percentage split, where 70% of the dataset was used
for training, and the rest was used to check the correctness.

Note that we only analyze domain names with second level domain (SLD), because
a large number of homograph domain names are registered under SLD [15], and in this
paper we use domain names in Alexa list as target domain names, which only contain
SLDs. Besides, we omit the part of top level domains (TLDs), because homograph
TLDs cannot be used arbitrarily. Although a homograph TLD can achieve an effective
deception, it may not be resolved by authoritative servers.

4.2 Classification Model

In this subsection, we build a dual-channel CNN based classification model, which
consists of two convolutional layers and two full-connected layers, as shown in Fig. 3.
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Fig. 3. Dual-channel CNN based classification model

Wefirst transform our dataset of domain names into dataset of images, and then select
important features from input data via convolutional and maxpooling layers followed a
full-connected layerwith 32 neural units, finallywe utilize a sigmoid layer to concatenate
them into a compact label value. In detail, we label the number of convolution kernel and
kernel size in the corresponding convolutional layer. Different from other methods, we
can avoid various calculations about edit distance or Euclidean distance. What’s more,
complicated pre-processing on images is unnecessary.

4.3 Performance and Comparison

Tomaximize the performance of classification, we trained the CNN classification model
using our training dataset with a batch size of 128. And we used Adam as optimizer
penalized via cross entropy loss. In detail, the training experiment was run using ten-
fold cross validation, on a physical server with 12 cores CPU and 128G RAM. Finally,
fewer than 30 epochs were required for convergence, and each training epoch took about
18 min. Evaluation is accomplished with a detailed F1 score, True Positive Rate (TRP),
False Positive Rate (FPR) and False Negative Rate (FNR), which is shown in Table 1.

Table 1. Performance of CNN based classifier.

F1 TPR FPR FNR AUC

98.5% 98.3% 1.2% 1.5% 99%

To further analyze the effectiveness of our detection method, we made a comparison
with some other methods by using our training dataset. First, we analyzed methods of
edit distance and visual distance. Specially, we used public homograph character list3

to analyze visual distance. Then we performed OCR technique to recognize similarities
among domain names in training dataset automatically. Here, we utilized Tesseract-
OCR4 as a tool to perform OCR detection. Next we also analyzed the siamese CNN,

3 https://www.unicode.org/Public/security/8.0.0/confusables.txt.
4 https://github.com/tesseract-ocr/.

https://www.unicode.org/Public/security/8.0.0/confusables.txt
https://github.com/tesseract-ocr/
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which is a pair of identical convolutional neural networks [7]. At its core, each branch
represents a domain image separately, and outputs of these two branches are merged
by a similarity function. The differences between our model and siamese model are
depicted in Fig. 4. In the comparative experiment, we used Adam as optimizer penalized
via contrastive loss, and trained siamese CNN with a batch size of 128. Finally we show
the ROC of different methods in Fig. 5.
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Fig. 4. Dual-channel model and siamese network model

Compared with dual-channel CNN, method based on edit distance can hardly detect
homograph domain names in our dataset. This result indicates that the method with
conventional edit distance does not have ability to distinguish homograph domains from
normal ones when they have a similar edit distance distribution, even though there exists
a great difference in characters. Method based on visual distance performs much better
than that based on conventional edit distance. However, to achieve the desired result, this
detection method has to depend on a manually maintained mapping list of homograph
characters.

OCR technique only performs a little better than edit distance method. Note that we
just use OCR to detect homograph domain names directly. Although it may perform
well when analyzing Unicode characters in domain strings one by one, here we do not
make a series of preliminary image processing, which is also not the focus in this paper.

Compared with dual-channel CNN, siamese CNN can also achieve high perfor-
mance. However, siamese CNN still depends on distance analysis which is Euclidean
distance. And it also takes longer to train a detection model. For example, in our experi-
ment, each training epoch of dual-channel CNN took about 18 min, each training epoch
of siamese CNN took about 1 h under the same training setting. What’s more, dual-
channel CNN could make full use of hidden features of domain images by coupling two
image channels after the first convolutional layer, which could further improve detection
rate.
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From above results and analysis, we can conclude that the proposed dual-channel
based CNN method is an effective solution to detect homograph domain names.

5 MinHash and LSH Algorithm

To reduce the amount of data efficiently, we utilize an algorithm of MinHash and LSH
to search domain names with similar characters. In this section, we first introduce some
definition of MinHash and LSH, and then we describe the detailed algorithm proposed
in our detection method.

5.1 MinHash and LSH

MinHash. MinHash is widely used to analyze the similarity of text based on Jaccard
similarity function [16]. In detail, Jaccard function represents the probability of two sets
having the same value (i.e., the ratio of the cardinalities of the intersection and union of
the two sets). To simplify the notation and terminology, let A and B be sets of domain
names, Jaccard similarity is defined as:

Jaccard(A,B) = |A ∩ B|
|A ∪ B|

Next, in order to simplify the calculation process and improve the computation
efficiency, let H(A) and H(B) represent hash values of A and B separately, which
are calculated by hash function H. And let Hmin(A) and Hmin(B) represent MinHash
signature of these two sets. Then to estimate the similarity of two sets, we can use
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MinHash based Jaccard function. This function has the same expected value as original
Jaccard function, which is defined as [16]:

E

(
Hmin(A) ∩ Hmin(B)

Hmin(A) ∪ Hmin(B)

)
= E(Jaccard(A,B))

It has been shown that MinHash function can present the highly efficient method
for computation. To generate MinHash signature, multiple ways can be used. First, by
using only one hash function we can generate and select first K hash values as MinHash
signature. Or second, we can also use K hash functions and select the minimum hash
value of each function to generate a MinHash signature. In detail, we choose the later
way in this paper.

Locality Sensitive Hashing. The basic idea behind MinHash is to project the data into
a low-dimensional space. If this projection is performed appropriately, we can compare
every two domain sets easily. However, when comparing and analyzing large amount of
data, MinHash has also a disadvantage of high complexity. To overcome this shortcom-
ing, LSH provides an idea to find approximate nearest neighbors in time sub-linear in
n.

Assume that our database is a set of vectors X = {x1, x2, . . . , xn}. Given a query
vector q, we are interested in finding the most similar items in the database to the query.
To achieve this goal, LSH projects each vector in database into a corresponding hash
vector, which satisfies the locality sensitive hashing property [17]:

Pr
(
h(xi ) = h

(
x j

)) = sim
(
xi , x j

)
.

Where, sim
(
xi , x j

)
is the similarity function of interest. Finally, by searching highly

similar cases colliding together in the hash table, we can find the nearest neighbors
quickly.

5.2 Algorithm

Based on the algorithm of MinHash and LSH, we give our retrieval algorithm, as shown
in Algorithm 1.
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Algorithm 1:  MinHashLSH

Input: detect_domain: Domain names in DNS log
object_domain: Domain names in object dataset
jaccard_threshold 

Output: homograph_pairs 

1.     for each domain in object_domain do
2.         bigram = Bigram(domain)
3.         obj_minhash = MinHash(bigram)
4.         obj_lsh = LSHInsert(obj_minhash)
5.     end
6.     for each domain in detect_domain do
7.         bigram = Bigram(domain)
8.         dec_minhash = MinHash(bigram)
9.         homograph_pairs = LSHQuery(obj_lsh, dec_minhash, jaccard_threshold)
10. end
11. return homograph_pairs 

First, we set up a hash table, which consists of hash vectors about Alexa top domain
names projected by LSH function. In practice, there are a lot of domain names with
similar hash vectors, because they are generated byMinHash function, which only relies
on several key hash values. Therefore, we separate each domain into several bigram units
to decrease the number of false positive cases. Second, after constructing hash table, we
retrieve objected domain names in this table, and get their similar domain names finally.

6 Evaluation

6.1 Dataset Collection

DNS Log. We measure homograph domain names by analyzing DNS real logs, which
are generated by local DNS servers operated by a large ISP in China. These logs record
the interactive information between local DNS servers and client hosts. As shown in
Fig. 6, each record in the logs consists of five fields. For the log data size, take a middle
level province as an example, it is over 1.9 TB per day. In this paper, we collected DNS
logs on April 1, 2018. Note that we only considered the queries with SLDs. Finally, we
obtained about 7.2M distinct domain names with different SLD zones. Therefore, it will
bring a great pressure to the classifier, if we do not consider reducing the total number
of domain names by using hash method.

Note that almost all domain names in DNS logs are composed of alphanumeric
characters. And almost all IDNs are related to Chinese domain name, which have already
been converted into Punycode in our DNS logs. So, in practice, we might fail to find
homograph domain names. Next, we mainly make a further analysis about the efficiency
of performance of MinHash and LSH algorithm.
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6.2 MinHash and LSH Performance

To analyze performance of MinHash and LSH algorithm, we first set a series of exper-
iments with gradually scaled datasets, and then recorded data retrieving time of these
experiments based on Algorithm 1. The results are shown in Fig. 7.

In detail, the legend numbers in Fig. 7, i.e., 10K, 100K, 1M, correspond to the
number of Alexa domain names in retrieving database constructed by LSH. The X-axis
is gradually scaled domain names in DNS logs. In experiment, we separately selected
four control groups with 100, 1K, 10K, 100K domain names collected from DNS logs.
The results show that the time consuming grows linearly along with the increase of
number of domain names. From the results, we may take about the same length of time
when retrieving the same group of domain names in retrieving database with different
sizes. For example, it took about 202.91 s when we retrieved 100K domain names in the
hash database with 10K hash vectors; similarly, it took about 210.62 s when we retrieved
100K domain names in database with 1M vectors. The average length of retrieving time
is 0.2 ms per domain name.
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Fig. 7. Retrieving performance of MinHash and LSH

After retrieving all domain names in DNS logs using the 100K hash database, we
could obtain 19,440 domain names with Jaccard similarity 0.6, which account for about
0.27% of the total domain names. And we also obtained about 45K pairs of domain
names needed to be further confirmed. According to this result, we can conclude that
the algorithm of MinHash and LSH can heavily reduce the number of domain names
and remarkably reduce the computational tasks.
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To analyze effectiveness of MinHash and LSH, we display the distribution of edit
distance after using hash algorithm in Fig. 8. From this figure, we can see that domain
names with edit distance less than 10 accounts for about 80% after using the algorithm of
MinHash and LSH.However, edit distance of domain names obtained by directmatching
is scattered. Therefore, by using MinHash and LSH, we can narrow the retrieval scope
and improve processing efficiency.

6.3 Detection Performance

In experiment, we finally found about 2K homograph domain names after using dual-
channel CNN classifier. As shown in Table 2, most of detected domain names are com-
posed of alphanumeric characters, left part of Table 2 represents homograph domain
names, and right part represents original domain names. What’s more, these homo-
graph domain names are more likely to be constructed by replacing one or more visual
spoofing characters. As mentioned before, almost all IDNs have already been converted
into Punycode in our DNS logs, so we do not consider homograph domains of IDNs
especially.

Table 2. Cases of homograph domain pairs

tsinfhua.edu.cn
kin8tenqoku.com
fujifllm-dsc.com
flyflv.com

tsinghua.edu.cn
kin8tengoku.com
fujifilm-dsc.com
flyfly.cc

To determine whether the detected domain names are phishing domains or not, we
attempt to crawl their web content. First, we randomly selected about 200 domain names,
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accounting for about 10% of all domain names. Then we requested and recorded their
corresponding response one by one. Finally, we find that 58.5% detected domain names
cannot be requested, but the impersonated domain names can be accessed normally.
Therefore, these detected domain names may belong to misspelled domains or belong
to abandoned phishing domains. Besides, we also find that about 15% domain names
were related to pornographic content. And their domain names are generated using some
similar words or characters.

7 Conclusion

In this paper, we proposed a deep learning based homograph domain names detection
method, which is based on a dual-channel CNN classifier with retrieving algorithm of
minimum hash and locality sensitive hash. The dual-channel CNN classifier was trained
to detect dual-channel domain images. MinHash and LSH were designed to reduce the
large data of DNS logs. Compared with existing approaches and systems, experiment
results show that the proposed method can effectively detect homograph domain names,
which could achieve high detection rate of 98.5%. Additionally, the MinHash and LSH
search could also efficiently narrow detection scope and reduce the large data. Future
workwill continually analyze the detection resultswith several datasets andmore entries.

Acknowledgments. The work was supported in part by Innovative Project of Cutting-edge
Science and Technology (Grant No. Y750171201).
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Abstract. Automated fraud detection on electronic payment platforms
is a tough problem. Fraud users often exploit the vulnerability of payment
platforms and the carelessness of users to defraud money, steal passwords,
do money laundering, etc., which causes enormous losses to digital pay-
ment platforms and users. There are many challenges for fraud detection
in practice. Traditional fraud detection methods require a large-scale
manually labeled dataset, which is hard to obtain in reality. Manually
labeled data cost tremendous human efforts. In our work, we propose a
semi-supervised learning detection model, FraudJudger, to analyze user
behaviors on digital payment platforms and detect fraud users with fewer
labeled data in training. FraudJudger can learn the latent representations
of users from raw data with the help of Adversarial Autoencoder (AAE).
Compared with other state-of-the-art fraud detection methods, Fraud-
Judger can achieve better detection performance with only 10% labeled
data. Besides, we deploy FraudJudger on a real-world financial platform,
and the experiment results show that our model can well generalize to
other fraud detection contexts.

Keywords: Fraud detection · Adversarial autoencoder ·
Semi-supervised learning

1 Introduction

Digital payment refers to transactions that consumers pay for products or ser-
vices on the Internet. With the explosive growth of electronic commerce, more
and more people choose to purchase on the Internet. Different from traditional
face-to-face payments, digital transactions are ensured by a third-party digital
payment platform. The security of the third-party platform is the primary con-
cern. Digital payment platforms bring huge convenience to people’s daily life,
but it is vulnerable to cybercrime attacks [22,24]. Attackers have many kinds
of fraud behaviors to attack digital payment platforms. For example, fraudsters
may pretend to be a staff in a digital payment platform and communicate with
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normal users to steal valuable information. Some fraudsters will use fake identi-
ties to transact in these platforms. An estimated 73% of enterprises report some
form of suspicious activity that puts around $7.6 of every $100 transacted at
risk [1]. Those frauds cause tremendous damage to companies and consumers.

Automatic detection for fraud payments is a hot topic in companies and
researchers. Many researchers focus on understanding fraud users’ behavior pat-
terns. It is believed that fraud users have different habits compared with benign
users. The first challenge is how to find useful features to distinguish fraud users
with benign users. Sun et al. [17] use the clickstream to understand user’s behav-
ior and intentions. Some other features like transaction records [28], time pat-
terns [8], geolocation information [6] and illicit address information [11], etc., are
also proved useful in fraud detection. Fraud users have inner social connections.
They always conduct fraud actions together and have relations with each other.
Some researchers focus on analyzing user’s social networks to find suspicious
behaviors [4,19] by graph models. They believe fraud users have some common
group behaviors. The limitation of the above methods is that it is hard to find
appropriate features to detect frauds manually. In traditional fraud detection
methods, researchers should try many features until the powerful features are
found, and these features may be partial in practice. Some information may be
omitted in chosen features, and new features should be found when fraud con-
texts change. A proper method to learn useful features automatically is needed.

Another challenge is lacking sufficient and convincing manually labeled data
in the real world. Manually labeled data are always hard to obtain in reality. It
costs a vast human resource to identify fraud users manually [21]. Lacking enough
labeled data to train models is a common phenomenon for many platforms.
Some researchers use unsupervised learning or semi-supervised learning models
to detect frauds [16]. However, for unsupervised learning, it is hard to set targets
and evaluate the performance in training models. Some researchers focus on
one-class detection methods which only require benign users in training [9,27].
However, it omits information of fraud users. These works always comprise on
detection performance.

In our work, we aim at overcoming these real-world challenges in fraud detec-
tion. We tackle the problem in fraud detection when insufficient labeled data are
provided.

For the first challenge, we can automatically learn the best “feature” to
distinguish fraud users and benign users with the help of Autoencoder [15].
Autoencoder is an unsupervised model to learn efficient data codings. It can
get rid of “noise” features and only leave essential features. Origin features are
encoded to latent representations by autoencoder. Makhzani et al. [14] combine
autoencoder and generative adversarial network (GAN) [7], and propose a novel
model called “adversarial autoencoder (AAE)”. AAE can generate data’s latent
representations matching the aggregated posterior in an adversarial way from
unlabeled data.

We propose a novel fraud detection model named FraudJudger to detect
digital payment frauds automatically. FraudJudger can learn efficient features
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from users’ operations and transaction records on digital payment platforms. In
this process, FraudJudger makes full use of information in the unlabeled data.
With the help of some labeled data, FraudJudger can learn how to classify users
based on their latent features.

In summary, our work makes the following main contributions:

1. We propose a digital payment fraud detection model FraudJudger to overcome
the shortcomings of real-world data. Our model requires fewer labeled data
and can learn efficient latent features of users.

2. Our experiment is based on a real-world payment platform. The experiment
result shows that our detection model achieves better detection performance
with only 10% labeled data compared with other well-known supervised meth-
ods.

3. Our detection model shows strong adaptability in different contexts.

The remainder of the paper is organized as follows. In Sect. 2, we present
related work. Our detection paradigm is provided in Sect. 3. Section 4 presents
the details of FraudJudger. We deploy our model on a real-world payment plat-
form, and the evaluation is in Sect. 5. Finally, we conclude our research in Sect. 6.

2 Related Work

Recently, fraud detection on digital payment platforms becomes a hot issue in
the finance industry, government, and researchers. There is currently no sophisti-
cated monitoring system to solve such problems since the digital payment plat-
forms have suddenly emerged in recent years. Researchers often use financial
fraud detection methods to deal with this problem. The types of financial fraud
including credit card fraud, telecommunications fraud, insurance fraud. Many
researchers regard these detection problems as a binary classification problem.
Traditional detection methods use rule-based systems [3] to detect abnormal
behavior, which is eliminated by the industry environment where financial fraud
is becoming more diverse and updated quickly. With the gradual maturity of
machine learning and data mining technologies, some artificial intelligence mod-
els have gradually been applied to the field of fraud detection. The models most
favored by researchers are Naive Bayes (NB), Support Vector Machines (SVM),
Decision Tree, etc. However, these models have a common disadvantage that it
is easy to overfit the training data for them. In order to overcome this problem,
some models based on bagging ensemble classifier [25] and anomaly detection [2]
are used in fraud detection. Besides, some researchers use an entity relationship
network [18] to infer possible fraudulent activity. In recent years, more and more
deep learning models are proposed. Generative adversarial network (GAN) [7] is
proposed to generate adversarial samples and simulate the data distribution to
improve the classification accuracy, and new deep learning methods are applied
in this field. Zheng et al. [28] use a GAN based on a deep denoising autoencoder
architecture to detect telecom fraud.
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Many researchers focus on the imbalanced data problem. In the real world,
fraud users account for only a small portion, which will lower the model’s per-
formance. Traditional solutions are oversampling minority class [5]. It does not
fundamentally solve this problem. Zhang et al. [26] construct a clustering tree to
consider imbalanced data distribution. Li et al. [12] propose a Positive Unlabeled
Learning (PU-Learning) model that can improve the performance by utilizing
positive labeled data and unlabeled data in detecting deceptive opinions.

Some researchers choose unsupervised learning and semi-supervised learn-
ing [23] due to the lack of enough labeled data in the real-world application.
Unsupervised learning methods require no prior knowledge of users’ labels. It
can learn data distributions and have the potential to find new fraud users. Roux
et al. [20] proposed a cluster detection based method to detect tax fraud without
requiring historic labeled data.

In our work, we use semi-supervised learning to detect fraud users, and an
unsupervised method is applied in analyzing fraud user patterns and finding
potential fraud users.

3 Fraud Detection Paradigm

Our fraud detection paradigm is designed based on existing payment platforms’
fraud detection workflows.

Many digital payment platforms have been devoted to fraud detection for
many years. These platforms have their own fraud users blacklists, and they
track and analyze fraud users on the blacklists continuously. Payment platforms
have concluded many rules based on years of experience. As shown in Fig. 1,
platforms can use these detection rules to manually detect new fraud users and
build fraud users blacklists and benign users lists. However, these labeled users
only make up a small portion of all users. Most users on the platforms are
unlabeled. FraudJudger is trained based on these labeled users and unlabeled
users, which can make full use of every user’s information. Once the detection
model is trained, it can be used to classify new unknown users.

Fig. 1. Fraud detection paradigms of FraudJudger
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4 FraudJudger: Fraud Detection Model

4.1 Model Overview

FraudJudger can learn the latent representations of input features and classify
users. Figure 2 shows the architecture of our detection model. Each blue square
box in Fig. 2 corresponds to a neural network. There are four networks in Fraud-
Judger: encoder E, decoder E′ and two discriminators D1 and D2. The inputs of
the model are user features x, and the outputs are predicted labels y and users’
latent features z.

4.2 The Structure of FraudJudger

In this section, we will explain each part of FraudJudger in detail.

Encoder: First, FraudJudger learns the latent representations of origin user
features x by the encoder. The dimension of origin user features x is too high to
analyze directly for the following reasons:

Fig. 2. The architecture of FraudJudger

1. Raw data contain irrelevant information, which is noise from our perspec-
tive. These irrelevant features will waste computation resources and affect
the model’s performance.

2. High dimension features will weaken the model’s generalization ability. Detec-
tion model will be easily overfitted.

The encoder part reduces the dimension of features and only leave essential
features. For an input merged feature x, encoder E will learn the latent represen-
tation z of x. The dimension of the latent variables z is less than the dimension
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of the input x, and it is determined by the output layer of the encoder’s network.
The encoding procedure can be regarded as dimensionality reduction. Besides,
it will output an extra one-hot variable y to indicate the class of input value,
which is a benign user or fraud user in our model. Our model uses y to classify an
unknown user. 0 means fraud user and 1 is the benign user. The inner structure
of the encoder is a multi-layer network.

E(x) = (y, z) (1)

Decoder: The purpose of the decoder is learning how to reconstruct the input
of the encoder from encoder’s outputs. The decoder’s procedure is the inverse of
the encoder. Inputs of the decoder E′ are outputs of the encoder E. The decoder
will learn how to reconstruct inputs x from y and z. The output of the decoder
is x′. The inner structure of the decoder is also the inverse of the inner structure
of the encoder.

E′(y, z) = x′ (2)

Discriminator: Like the discriminator of GAN, we use discriminators in our
model to judge whether a variable is real or not. Since the encoder has two
outputs, y and z, we need two discriminators D1 and D2 to discriminate them,
respectively. The discriminators will judge whether a variable is in the real dis-
tribution.

4.3 Loss Function

Loss functions are used to measure the inconsistency between the model’s out-
puts and expected outputs. There are four loss functions to be optimized in
FraudJudger.

Encoder-Decoder Loss: The loss of the encoder and the decoder Le−d is
defined by mean-square loss between the input x of the encoder and output x′

of the decoder. It measures the similarity between x and x′.

Le−d = E((x − x′)2) (3)

Generator Loss: Encoding the class y and latent vectors z from x can be
regarded as the generator in GAN. Let p(y) be the prior distributions of y,
which are the distributions of fraud users and benign users in the real world.
And p(z) is the prior distribution of z, which is assumed as Gaussian distribution:
z ∼ N (μ, σ2). The generator tries to generate y and z in their prior distributions
to fool the discriminators. The loss function of the generator LG is:

LG = −E(log(1 − D1(z)) + log(1 − D2(y))) (4)

Discriminator Loss: The loss of two discriminators are defined to measure the
ability in discriminating fake values.

LD1 = −E(azlog(D1(z)) + (1 − az)log(1 − D1(z)))
LD2 = −E(aylog(D2(y)) + (1 − ay)log(1 − D2(y)))
LD = LD1 + LD2

(5)
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where az, ay are the true labels (fake samples or real) of inputs z and y. The
total loss of the discriminator part is the sum of each discriminator.

Classifier Loss: We can teach the encoder to output the right label y with the
help of a few samples with labels. And the loss function LC is:

LC = −E(a′
ylog(y) + (1 − a′

y)log(1 − y)) (6)

where a′
y means the right label (fraud or benign) for a sample, and y is the

output label from the encoder. When the encoder outputs a wrong label, the
classifier will back-propagate the classification loss and teach the encoder how
to predict labels correctly.

4.4 Training Procedure

The model learns how to optimize loss functions in the training procedure. In
the training phase, the generator generates like the real label information y
and latent representations z by the encoder network. Two discriminators try to
judge whether the inputs are fake or real. It is a two-player min-max game. The
generator tries to generate true values to fool discriminators, and discriminators
are improving discrimination accuracy. Both of the generator and discriminators
will improve their abilities simultaneously by optimizing loss functions Le−d, LG

and LD. Samples with labels can help to increase the classification ability of
our model by optimizing the classifier loss LC . The algorithm for training the
FraudJudger model is shown in Algorithm1.

Algorithm 1. Training FraudJudger
Input: Set of labeled users Ul = {ul1, ul2, ..., uln} ;
Set of labels of labeld users ayl = {ay1, ay2, ..., ayn};
Set of unlabeled users Un = {un1, un2, ..., unm} ;
Number of epochs ep;
Output: Well-trained FraudJudger model;

1 Initialize parameters in FraudJudger;
2 for i = 1, ..., ep do
3 foreach user in Ul do
4 Compute latent representations y,z of the user;
5 Optimize Le−d,LG,LD and LC ;

6 end
7 foreach user in Un do
8 Compute latent representations y,z of the user;
9 Optimize Le−d,LG and LD;

10 end

11 end
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Algorithm 2. Classify unknown users by FraudJudger
Input: Set of unknown users U = {u1, u2, ..., un} ;
Well-trained FraudJudger model;
Output: The classes of users Y = {y1, y2, ..., yn} ;

1 foreach user in U do
2 compute latent representations y,z of the user by FraudJudger;
3 Y += y;

4 end
5 return Labels of users Y ;

Once the training of our model finishes, we can use it to classify unknown
users. The algorithm for classifying unknown users is shown in Algorithm2.

5 Experiment

5.1 Platform Description

We deploy FraudJudger on a real-world payment platform. The payment plat-
form we choose is Bestpay1, which operates the payment and finance businesses.
Bestpay is the third-largest payment platform in China, and there are more
than 200 million users in Bestpay. Bestpay stores user’s operation records and
transaction records, and these records can be regarded as the raw features of
users. These data in the platform have been anonymized before we use in case of
privacy leakage. The data contains more than 29,000 user’s operation behaviors
and transaction behaviors in 30 days. All users in the data are manually labeled
as benign or fraud. The fraud behavior in this dataset is illegal bonus-getting.
We regard labels of these users as ground truth. In this data, the amount of
fraud users is 4,046, which accounts for 13.78% of total users. Each user con-
tains two kinds of data, one is operation data, and the other one is transaction
data. There are 20 features in operation data and 27 features in transaction
data. Some important operation features and transaction features are listed in
Table 1.

As shown in Table 1, there are some common features in both operation
data and transaction data. We first merge operation features and transaction
features by the key feature, which is “user id”. It means that features belong to
the same user will be merged. Each pair of features in operation features set and
transaction features set will produce new features which contain their statistic
properties. After merging features, and filtering out features with a high missing
rate, we get 940-dimensional merged features for each user. FraudJudger will
analyze the 940-dimensional merged features to detect frauds.

1 https://www.bestpay.com.cn/.

https://www.bestpay.com.cn/
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Table 1. Part features in operation data and transaction data

Operation feature Explanation Transaction feature Explanation

mode User’s operation type time Transaction time

time Operation time device Transaction device

device Operation device tran amt Transaction amount

version Operation version channel Platform type

IP Device’s IP address IP Device’s IP address

MAC Device’s MAC address acc id Account id

os Device’s operation system balance Balance after transaction

geo code Location information trains type Type of transaction

5.2 Hyperparameters

The structure of the encoder, decoder, and discriminator in FraudJudger is a
five-layer network, which contains three hidden layers. The number of neurons
in each hidden layer is 1024, 512, 512, respectively. The dimension of the latent
representation z is 128, and the training epoch is 500. Fraudjudger takes the 940
dimensions of user’s features as input, and learn latent representations whose
dimensions are 128. We randomly choose 20,000 users in training and another
6,000 users for evaluation.

5.3 Compared with Supervised Models

Many traditional semi-supervised algorithms sacrifice on model’s performance
comparing with supervised models. We compare our model’s classification per-
formance with other supervised classification models to evaluate the detection
performance of FraudJudger. Three different excellent supervised machine learn-
ing models are chosen: Linear Discriminant Analysis (LDA), Random Forest,
and Adaptive Boosting model (AdaBoost). All of these models’ inputs are users
with labels. Besides, we set three groups of FraudJudger models with 5% labels,
10% labels, and 20% labels, respectively, to evaluate FraudJudger’s performance
with different requirements of labeled data. The inputs to each model are the
940-dimensional merged features.

We use accuracy, precision, recall, and F1 score to measure the detecting
performance of models. Precision is the fraction of true detected fraud users
among all users classified as fraud users. Accuracy is the proportion of users
who are correctly classified. Recall is intuitively the ability of the model to

Table 2. AUC of FraudJudger and supervised models

Models FraudJudger
-5%labels

FraudJudger
-10%labels

FraudJudger
-20%labels

LDA Random
Forest

AdaBoost

AUC 0.944 0.983 0.985 0.946 0.930 0.975
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find all the fraud samples. F1 score is a weighted harmonic mean of precision
and recall. We also use the ROC (Receiver Operating Characteristic) curve and
AUC (Area Under Curve) to evaluate the result. ROC and AUC are another
two measurements of the detection ability.

(a) Accuracy, Precision, Recall and F1
Score of models

(b) ROC of FraudJudger and other models

Fig. 3. Comparing FraudJudger with supervised detection models (Color figure online)

Figure 3(a) shows the accuracy, precision, recall, and F1 score of each model.
FraudJudger outperforms other supervised models in recall and F1 score even
with only 5% labeled data in training. It demonstrates that FraudJudger is good
at detecting fraud users. And Fig. 3(b) and Table 2 show the ROC and AUC
results. As we can see from the results, the model’s detection accuracy increases
with more labeled training data. When the proportion of labeled data is larger
than 10%, FraudJudger outperforms all other supervised classification models
in AUC. It is reasonable because FraudJudger can automatically learn essential
features and omit noisy features from raw inputs rather than using features from
raw data directly like other supervised detection models. If we use fewer labels,
FraudJudger still has a satisfying performance. Compared with other supervised
algorithms, FraudJudger saves more than 90% work on manually labeling data
and achieves better performance.

In conclusion, FraudJudger has an excellent performance on fraud users
detection even with a small ratio of labeled data. Comparing with other super-
vised fraud detection methods, FraudJudger has a low requirement for the
amount of labeled data and can learn effective features. Our model can be applied
in realistic situations.

5.4 Visualization of Latent Representation

FraudJudger uses learned latent representations to detect fraud users. In order
to have an intuitively understanding of the latent representations, we use t-SNE
[13] to visualize the latent representations learned from FraudJudger. T-SNE is
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a practical method to visualize high-dimensional data by giving each data point
a location in a two-dimensional map. We visualize the latent features of users
learned from FraudJudger when the ratio of labeled data is 10% in training. The
dimension of learned latent representations is 100.

(a) Visualization of latent representations
by t-SNE

(b) Visualization of cluster result of latent
representations

Fig. 4. Visualization of latent representation

Figure 4(a) is the visualization of latent representations by t-SNE. The red
points represent fraud users, and blue points represent benign users. Fraud users
and benign users are well separated by latent representations in the t-SNE map.
Benign users gather together, and fraud users are isolated to benign users. It
means that the latent representations learned from FraudJudger can well sepa-
rate benign users and fraud users.

Furthermore, we cluster users’ latent representations into five groups by
K-means, and plot each group with different colors in Fig. 4(b). Figure 4(b) con-
tains five different colors, and each color represents each group of users after clus-
tering. It is hoped that benign users and fraud users will form different groups after
clustering, and the clustering result verifies it. The dividing lines between different
groups are quite apparent.

Comparing Fig. 4(b) with Fig. 4(a), most fraud users are clustered into the
same group in Fig. 4(b). The fraud users in Fig. 4(a) are corresponding to the
purple group in Fig. 4(b). Benign users with different behavior patterns are clus-
tered into four different groups. Fraud users and benign users are well separated
by cluster analysis. Since no label information is used in clustering, it verifies
that the fraud users and benign users have distinct latent features learned from
FraudJudger.



580 R. Deng et al.

5.5 Evaluation on Other Contexts

In order to evaluate FraudJudger’s generalization ability in other contexts, we
test FraudJudger on vandals detection. Vandals are widespread on many social
networks, especially on Wikipedia.

Dataset Description. This evaluation is based on the UMDWikipedia
dataset [10]. It contains about 33,000 Wikipedia users and 770,000 edits from Jan
2013 to July 2014. Users in the dataset are listed in the white lists or blacklists.
Each user has a sequence of edit records on Wikipedia pages. The dimension of
each user’s feature is 200. Zheng et al. [27] choose users with the lengths of the
edit sequence range from 4 to 50. After the preprocessing, the dataset contains
10528 benign users and 11495 vandals, and the dataset is available at https://
github.com/PanpanZheng/OCAN/.

Comparison. We compare FraudJudger with following state-of-art fraud detec-
tion methods:

(a) One-class Gaussian process (OCGP) [9] is a one-class classification model
derived from the Gaussian process framework.

(b) One-class adversarial nets (OCAN) [27] builds LSTM-Autoencoder to learn
the latent representation of users and uses a complementary GAN model to
detect fraud users.

(c) Label Propagation (LP) [23] is a semi-supervised learning model which uses
an iterative algorithm to propagate labels through the dataset along with
high-density areas defined by unlabeled data.

Both of the first two methods, OVGP and OCAN, are one-class classification
models, which only use positive labeled data while training. In our evaluation,
we randomly choose 7,000 benign users as the training dataset to train the two
models.

For group (c), we randomly choose 7,000 users, and 2.5% of them are labeled
to train the LP model.

We set three other groups of experiments with different proportions of labeled
samples for training FraudJudger:

(d) 2.5% labeled data. 175 labeled and 6,825 unlabeled users for training.
(e) 5.0% labeled data. 350 labeled and 6,650 unlabeled users for training.
(f) 10.0% labeled data. 700 labeled and 6,300 unlabeled users for training.

The total number of users used for training FraudJudger is also 7,000. It
should be noted that in our concern, it is harder to get 7,000 reliable benign
users than get 175 labeled users, which means the requirements for training
data of group (c)(d)(e)(f) are more strict than group (a)(b). We randomly choose
another 3,000 benign users and 3,000 vandals as the testing dataset. The mea-
surements are precision, accuracy, recall, and F-1 score. Each model is evaluated

https://github.com/PanpanZheng/OCAN/
https://github.com/PanpanZheng/OCAN/
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on 10 different runs to avoid randomness. The result of each measurement is pre-
sented by the mean value and standard deviation of the 10 runs. The dimension
of latent representations is 8 in FraudJudger.

Table 3. Vandal detection results (mean± std.) of models

Algorithm Precision Recall F1 score Accuracy

OCGP 0.838± 0.023 0.829± 0.037 0.833± 0.016 0.834± 0.014

OCAN 0.907± 0.062 0.922± 0.035 0.901± 0.023 0.897± 0.024

LP-2.5% 0.878± 0.030 0.860± 0.046 0.861± 0.046 0.864± 0.044

FraudJudger-2.5% 0.975± 0.011 0.865± 0.023 0.917± 0.015 0.917± 0.015

FraudJudger-5.0% 0.947± 0.015 0.908± 0.016 0.927± 0.009 0.925± 0.009

FraudJudger-10.0% 0.950± 0.016 0.926± 0.023 0.938± 0.011 0.935± 0.012

The result is in Table 3. Fraudjudger achieves better performance than the
other three state-of-the-art detection algorithms. Fraudjudger has higher values
in the four measurements and fewer standard deviation. It means that Fraud-
Judger can be used in fraud detection and can have excellent performance even
with a small ratio of labeled data. The model’s detection accuracy and F1 score
increase with more labeled training data. We find that when training with 2.5%
labeled data, the precision is the highest. We argue that this is because if a
model is not sensitive in classifying a user as a vandal, the model will have
higher precision, but the recall will be lower. A better-trained model will have
good performance both on precision and recall.

In conclusion, FraudJudger can save more work on manually labeling data
and achieve better performance in vandal detection with a lower requirement for
training data. It is demonstrated that FraudJudger has excellent performance in
different scenarios.

6 Conclusion

In this paper, we proposed a novel fraud users detection model FraudJudger,
which requires fewer labeled data in training. FraudJudger can learn latent fea-
tures of users from raw data and classify users based on the learned latent
features. We overcome restrictions of real-world data that it is hard to obtain
enough labeled data. Our experiment is based on two different real-world con-
texts, and the result demonstrates that FraudJudger has a good performance
in fraud detection. Compared with other well-known methods, FraudJudger has
advantages in learning latent representations of fraud users and saves more than
90% manually labeling work. Our model achieves high performance on different
platforms. We have seen broad prospects of deep learning in fraud detection.
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Abstract. The security of cloud infrastructure is an important issue.
Many solutions have been proposed to protect the integrity of cloud
infrastructure through integrating Trusted Computing hardware. How-
ever, these existing solutions suffer from high complexity, repetition and
latency. In this paper, we propose a blockchain based cloud service depen-
dency attestation framework–CloudCoT (Cloud Chain-of-Trust). With
CloudCoT which combines trusted computing and blockchain technol-
ogy, cloud users are able to automatically extract the valid dependency
of their applications deployed on cloud. And they can attest the valid
dependency with low latency through its measurement mechanism and
verification mechanism. In addition to the decentralized features, we can
see that CloudCoT has higher efficiency while maintaining strong safety
in experimental evaluation.

Keywords: Trusted computing · Cloud computing · Blockchain ·
Decentralized

1 Introduction

With cloud computing infiltrating our daily life, its security [16] has become
an issue for academics and industry. Cloud Infrastructure is a “black box” for
users, which means they have no control over their own data and resources but
to believe that the cloud service provider is credible. However, this assumption
can easily fail because of single-node failure, administrators misuse, internal
attack [12] and vulnerabilities of security mechanism. Therefore, it’s vital to
build trust for cloud infrastructure. Many attempts have been made to build
trusted cloud based on Trusted Computing. Trusted Computing is a hardware-
based integrity protection scheme. A Root-of-Trust (RoT) is implemented by a
hardware device embedded in the platform, i.e. the Trusted Platform Module
(TPM) [6]. It builds a chain-of-trust (CoT) from hardware to operating system,
to application layers (after IMA proposed [20]), and protects the chain through
hardware-protected registers (platform configuration registers, PCR). Its remote
c© Springer Nature Switzerland AG 2020
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attestation (RA) technology [21] allows remote users to verify the integrity of
platforms. Specifically, the validity of the TPM is determined by the certificate
written by the TPM manufacturer. The validity of the PCRs is determined by
the signature of the TPM and the validity of the trust chain is determined by
PCRs. Users can determine the integrity of the verified platform by comparing
the result with expected values.

When attesting to cloud services for a cloud application (app), traditional
central attestation (CA) approaches [10,13,14,23] require users to verify all the
nodes in cloud, which is a waste of time and resources. Decentralized Attestation
(DA) approaches [18,19] were brought up to establish the cloud Trusted Com-
puting Base (cTCB) and the cloud Root-of-Trust (cRoT). These methods define
the dependencies of cloud services and propose the corresponding attestation
schemes. Even so, some challenges remain:

(1) Invalid Dependency: CA approaches attest all nodes of the entire cloud.
DA approaches narrow the verification range to the nodes that interact
with the cloud application. However, it still contains invalid dependencies.
For example, if a node interacts with a cloud app only at time t, then the
measurement information of this node after t is this cloud app’s invalid
dependency.

(2) Repetition: nodes in the cloud are actually homogeneous to some extent [7,
17]. These nodes have the same operating system and run same services, so
the measurement logs (MLs) of them will be similar to a large extent. So it’s
redundant to directly combine all the integrity evidence of all dependencies
like what the scheme before did.

(3) Verification Latency: A big problem in RA is the time delay. The huge delay
prevents the verifier from responding in time. There is a lot of work focused
on reducing the latency of RA such as [11,25]. With so many cloud nodes,
the delay caused by the attestation of cloud application could be very huge.

In this paper, a CloudCoT solution was proposed to solve the challenges
mentioned above. (1) We define the valid dependency of cloud app, and design a
strategy to exclude the useless dependency. (2) We design a deduplication mech-
anism to remove the repeated ML when measuring the nodes. (3) To reduce the
verification latency, an obvious way is to complete all or partial verification in
advance. Since the WhiteList (WL) of target nodes should be decided by the
user himself, it’s necessary to complete the measurement and partial verification
(before matching WL) in advance. Thus, we need to save the intermediate verifi-
cation results safely and efficiently. For traditional databases such as mySQL, the
single-node failure and internal attack are unsolvable so that users cannot trust
the verification results. Because of blockchain’s tamper-proof and distributed
characteristics [15], it’s reasonable to integrate blockchain to save the interme-
diate results. However, the storage capability of blockchain is limited, so the
InterPlanetary File System (IPFS) [4] is introduced. IPFS is aprotocol designed
to create acontent-addressable,peer-to-peermethod of storing and sharinghyper-
mediain adistributed file system. Therefore, this paper designs a measurement
mechanism and a verification mechanism to save the integrity evidence measured
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by TPM on the IPFS, and save the hash value of integrity evidence on blockchain
via smart contract. This method solves the above three challenges and ensures
high security. In summary, the contributions of this paper are:

– We propose the CloudCoT, a blockchain based cloud service dependency
attestation framework combining trusted computing and blockchain to attest
cloud service valid dependency with no-repetition and low verification latency.

– We design a measurement mechanism which stores the TPM measurement
results in the blockchain to reduce redundant measurement. We design a
verification mechanism which separates traditional verification process to pre-
attestation and last challenge. It reduces verification latency significantly.

– We implement CloudCoT in experimental environment and the experiments
show that besides achieving fine-grained cloud service dependency attestation,
CloudCoT improves user attestation efficiency significantly with very low
overhead incurred.

In the following text: Sect. 2 introduces the related work. Sect. 3 introduces moti-
vation and architecture of CloudCoT. Sect. 4 presents the valid dependency def-
initions. In Sect. 5, we introduce the design of CloudCoT framework including
measurement mechanism and verification mechanism. Our implementation and
experiments are presented in Sect. 6. Finally, we conclude our paper and discuss
the future work in Sect. 7.

2 Related Work

Trusted Computing. Trusted Computing contributes to verifying the trust-
worthiness of prover. Verifier can determine the current integrity state of prover
due to remote attestation. Considering the large cost of transmitting and cal-
culating ML, Jaeger et al. [11] present Policy-Reduced Integrity Measurement
Architecture (PRIMA) which leverages the information flow and SELinux to
measure the code and data related to the target application. This limits the
scope of the attestation target applications, and hence reduces the size of ML.
Some other work such as [25] also achieves ML reduction.

Blockchain and Cloud Security. Alansari et al. [8,9] propose a novel identity
and access management system for cloud federations. They use blockchain tech-
nology and Intel SGX trusted hardware to guarantee the integrity of the policy
evaluation process. ProvChain [15] collects and verifies cloud data provenance
by embedding the provenance data into blockchain transactions. Comparing to
above work which uses blockchain to enhance cloud privacy and assure cloud data
source trustworthy, this paper uses blockchain to verify cloud nodes’ integrity
state.

Cloud Trustworthiness. Santos [22] and Schiffman [24] attempted to apply
trusted computing technology to cloud systems. Cloud nodes (i.e. physical
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servers) are equipped with built-in TPMs. A central attestation delegate uses
the confirmed evidence generated by the TPM to verify other nodes. This mech-
anism assumes that cloud nodes are basically isomorphic. At the same time,
users can only rely on this central delegate to verify the whole cloud. A critical
step to prove the trustworthiness is to verify the central delegate. However, the
complexity, heterogeneity, and dynamism of the cloud will affect the function of
these mechanisms. Repcloud [19] considers the cloud as a P2P network, uses the
remote attestation of trusted computing to establish a reputation mechanism
similar to the P2P network for the cloud, and constructs a global reputation
based on the local reputation maintained by the cloud node, thereby establishes
a trusted cloud. This scheme uses each cloud node as a provider and a verifier
of an adjacent node. However, it only uses PCR as evidence for each verifica-
tion, but not a WL to verify the trust of the node (in fact, how to store WL
is also a problem to be solved in the establishment of trusted cloud). But giv-
ing consideration that PCR only records the ML summary (20 bytes), different
loading sequences of ML will produce different PCRs. Maintaining a large and
good PCR list itself is a very difficult problem. In addition, directly regarding
cloud as a P2P network also has certain drawbacks, since the cloud is generally
a centralized structure.

3 Motivation and Architecture Overview

3.1 Scenario

There are many management nodes in the actual cloud environment scenario
that carry the basic services of the cloud infrastructure, such as the schedule
service, the storage service and the network service. Infrastructure as a Service
(IaaS) cloud provide services in form of virtual machine (VM) hosted by the
compute node in the cloud. The compute service runs on the compute node
to manage the VM. When attesting to cloud application APP1 deployed by
company A, A needs to attest the trust of all the VMs contained in APP1, the
hosts hosting the VMs, services running on these compute nodes and the services
on which these compute nodes depend [19].

3.2 Security Model

Here we provide a brief overview of our security model for CloudCoT. More
details are given in later sections. We assume the following:

– All nodes in the cloud platform are equipped with TPM and each VM has
vTPM. TPM is safe, has not been tampered with and behaves honestly.

– Attackers may have control of one or several cloud nodes’ kernels. However,
a certain proportion of nodes (depending on the consensus algorithm used
by the blockchain, such as proof-of-work algorithm [2] requiring at least 51%
of the nodes are trusted to resist collusion attacks) in the cloud environment
remain trustworthy.
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More security mechanism details about how to defend malicious attack such as
replay attack and impersonation attack will be introduced in Sect. 5.

3.3 Motivation

As shown in Fig. 1, we use an example to show what’s the valid dependency of a
node. Based on the services included in Openstack’s official website [5], it includes
basic components such as Nova, Swift, Cinder, Neutron, Glance, Keystone, etc.,
providing services such as computing, network and storage, etc. In Fig. 1, node1
to 4 represent Nova, Glance, Neutron, Cinder nodes respectively.

Fig. 1. Cloud Chain-of-Trust

1. node1 interacts with node2 node at time T1, requesting to obtain the image
required to create the virtual machine V M1, and node2 sends the image
Image1 to node1;

2. node1 interacts with node3 at time T2, requesting to acquire the network
information required to create the virtual machine, and node3 sends the vir-
tual machine network information to node1;

3. node1 needs to establish another virtual machine V M2 at time T3, so it starts
another thread and interacts with node2 to request the image needed for the
new virtual machine. node2 sends the new image Image2 to node1;

4. In the previous process of creating the virtual machine V M1, node1 requests
node4 to obtain the persistent storage information required to create the
virtual machine V M1;

Obviously, the valid dependency of one node is dynamic with constantly com-
munication, not to mention an APP. For the valid dependency of every moment
in this case, we will explain in detail in Sect. 4 after the definition.

Under the security model and challenges in Sect. 1, what we need to consider
is how to enable users to verify the trust of the cloud nodes’ valid dependency.
So the goals of our framework are as follows: (1) Identify the valid dependency
of a cloud APP during each communication; (2) Design a measurement mecha-
nism to measure the valid dependency and save the measurement results without
repetition for verification; (3) Design a verification mechanism to verify the mea-
surement results with low latency.
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3.4 Architecture Overview

Our architecture is based on trusted computing and blockchain. It requires that
every node is in a blockchain network including management nodes and compute
nodes. As Fig. 2 shows, compared to the native IaaS cloud, we add three func-
tional modules to cloud nodes: (1) The Network Monitor module on cloud node
to confirm the valid dependency itself. (2) The Pre-attestation module extracts
integrity information protected by the TPM, makes a preliminary attestation
and sends results to Blockchain Service. (3) The Blockchain Service module fur-
ther verifys the integrity information and stores them on the chain. Besides, we
designed a challenge module for cloud users to complete the final verification by
matching integrity information with WL.

Our architecture contains two parts: measurement mechanism and verifi-
cation mechanism (Sect. 5). The measurement mechanism is implemented by
Pre-attestation module and Blockchain module. Pre-attestation module extracts
integrity information protected by the TPM and completes the first half part
of attestation. Blockchain Service module saves the integrity evidence to IPFS
and blockchain. To assure the trustworthiness of integrity evidence, we design
generating transaction and vote transaction protocol. By designing the transac-
tion content and voting mechanism, blockchain can protect the CoT after merge
(defined in Sect. 4). In the meantime, the measurement mechanism determines
the valid dependency of one node through the merge operation.

Fig. 2. Architecture of CloudCOT

The verification mechanism is implemented by combining Pre-attestation,
Blockchain Service and Challenge module. Verification includes the verification
of TPM signature, PCR value and ML essentially. In CloudCoT, the former two
are completed by generating transaction and vote transaction protocol through
Pre-attestation module and Blockchain Service module. The only remaining ver-
ification which needs to match ML with user’s WL is completed by Challenge
module.
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4 Definition of Valid Dependency

In this part, we introduce traditional CoT of single node and our CloudCoT
according to cloud nodes’ valid dependency.

Traditional CoT. In the field of trusted computing, it’s believed that trust
can be passed step-by-step without delivery loss. For example, the trust chain
of node A from the start time (time ⊥) to the current time (time t) is expressed
as:

CoTA
⊥→t ={RoTA, seq} = {ROTA, <xt0 , xt1 , ..., xt>

| RoTA is trusted ∧ t0 < t1 < ... < t } (1)

RoTA is the trusted root of a trusted node A. Seq represents a series of hard-
ware and software components loaded after node A starts. xt0 is the component
loaded at time t0.

The platform configuration registers (PCR) in the TPM is used to protect
the integrity of the CoT. The loading of any of the hardware and software com-
ponents will trigger the TPM Extend operation of the PCR, which concatenates
the current PCR value with the component’s measurement value (usually the
result of the hash) and hashes the concatenated result.

PCR = TPM Extend(PCR, newMeasurement) (2)

Through this iterative TPM Extend operation, the PCR records a summary
of the CoT. After obtaining the trusted PCR and the CoT to be verified, the
verifier can simulate the TPM Extend operation on the CoT, and compare the
result with the PCR to verify the trust of the CoT.

CloudCoT. For a cloud node in the cloud, due to network communication
between cloud nodes, the state of node A at a certain time may depend on the
data sent by node B. Therefore, we believe that the cloud CoT of A should
include two parts: the CoT of A itself and the CoT of the nodes on which A
depends when the dependency exists (that is what we call valid dependencies).
In order to handle this dependency automatically, we define that at time t, when
A generates a dependency on B, a merge operation occurs:

CoTA
⊥→t = merge(CoTA

⊥→t, CoTB
⊥→t)

=

{
CoTA

⊥→t ∪ {t, refer(CoTB
t′→t)}, if B has merged to A in t′

CoTA
⊥→t ∪ {t, refer(CoTB

⊥→t)}, otherwise

(3)

If a merge operation occurs between A and B at a previous time (such as t ’),
the component information from time t ’ to time t in B’s CoT will be merged
into A’s CoT, otherwise we merge the entire CoT of B into A. The time t will
be used as a metadata for the CoT to characterize the merge operation at time
t. In addition, due to the homogeneous characteristic of cloud nodes (such as
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the hardware and software components loaded between two computing nodes
are highly repetitive), we need to exclude the same part of A and B’s CoT to
reduce redundancy in the merge process. We call this operation as refer. We
define the VMs as all VMs hosting user’s APP, and the Host (VM) is the cloud
node hosting this VM. When the cloud APP is verified at time t, its CoT is:

CoTAPP
⊥→t = {CoT

Host(VMi)
⊥→t ∪ CoTVMi

⊥→t | V Mi ∈ V Ms} (4)

According to the definition of formula (3), in our hypothetical scenario in
motivation, if node1 is the master node, we can obtain cloud CoT of node1 at
different moment:

CoTN1
⊥→T1 = merge(CoTN1

⊥→T1, CoTN2
⊥→T1) (5)

where N1 and N2 stand for node1 and node2 respectively. That is, the CloudCoT
at T1 should be CoT of node1 and node2 before T1;

CoTN1
⊥→T2 = merge(CoTN1

⊥→T2, CoTN2
⊥→T1, CoTN3

⊥→T2) (6)

Because node1 and node2 didn’t communicate between T1 and T2, so this part
of node2′s CoT will not be the dependency of node1 at T2;

COTN1
⊥→T3 = merge(COTN1

⊥→T3, COTN2
⊥→T3, COTN3

⊥→T2) (7)

It’s worth pointing out that COTN2
⊥→T3 = merge(COTN2

⊥→T1, COTN2
T1→T3);

COTN1
⊥→T4 = merge(COTN1

⊥→T4, COTN2
⊥→T3, COTN3

⊥→T2,

COTN4
⊥→T4)

(8)

The CoT at T4 is the sum of the previous ones.

5 Design of CloudCoT

To verify CoTAPP
⊥→t , the direct way is to provide the verifier with the PCR value

corresponding to each sub-CoT, and then the verifier verifies all PCR signatures
and all PCR pairs of sub-CoTs. However, as we mentioned before, trusted com-
puting is an active defense mechanism, and the discovery of an attack depends on
the verifier’s match of the trusted CoT to the expected WL. For each TPM sig-
nature verification and CoT verification based on PCRs, it will inevitably cause
a large verification delay. Therefore, our architecture uses Blockchain technol-
ogy to translate the verifier’s validation to the time when the event occurs, thus
allowing user to liberate from the verification delay. The corresponding measure-
ment mechanism and verification mechanism are as follows.
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5.1 Measurement Mechanism

Generating Transactions. The blockchain stores data through data blocks
and chain structures. Each data block includes a block head and a block body,
with a unique hash value as a corresponding block address. The hash value
of the previous block is connected to the successive block, thus forming a chain
structure. Each completed transaction will be permanently recorded in the block
body for all users to query. At the same time, each block will be marked with
a time stamp when the it’s generated. As the time stamp increases, the block
will extend to form a chain with a timeline. Thus, data can be traced in time.
In our CloudCoT architecture, we pack each measurement information into a
single transaction and verify it by multiple nodes in the blockchain when it’s
uplinked. We use the smart contract [1] to write transaction content because
smart contract is executed by multiple nodes on the blockchain. We define the
node that sends data as Sender, such as the management node that sends the
image to the VM in the cloud. The node accepting the data is defined as Receiver.
The protocol of generating a transaction is listed in Fig. 3.

1. At the beginning of interaction, sender generates message (msg) and sends it
to receiver. Then, receiver determines if msg changes its ML. According to
IMA’s measurement strategy [21], only scripts, user-level executables, dynam-
ically loadable libraries and kernel modules are measured. So only they can
change ML, other files that do not affect Receiver’s security will be directly
released. If ML is changed by msg, receiver will verify sender with a random
number to prevent replay attacks. Here nonce = Hash<msg, ts>, ts is the
timestamp.

Fig. 3. Generating and vote transaction protocol
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2. Sender loads the AIK generated by its own TPM to sign its own PCR (here
we use PCR10) with nonce as sender’s signature. We call this operation quote.
If sender’s ML was updated, then sender would retrieve its own Δ(ML) (the
portion of the ML between ts and the time ML last submitted). Otherwise,
all MLs from the machine power-up to the current time will be submitted.

3. After receiving evidence from sender, receiver validates its signature and
nonce firstly. Secondly, receiver validates the PCR with Δ(ML). If all legal,
receiver will quote its own PCR and retrieve its Δ(ML).

4. Finally, receiver generates a six-tuple <s-name/d-name, s-pcr/d-pcr,
s-payload/d-payload>, and broadcasts it as a transaction (tx) to let other
nodes vote. Here, s-name/d-name is the node identifier of Sender and
Receiver; s-pcr/d-pcr is the signed PCR value of the Sender and Receiver.
s-payload includes the nonce of sender, ts and its Δ(ML) what we call
s − Δ(ML). d-payload includes Receiver’s nonce’, ts and its Δ(ML) what
we call d − Δ(ML).

Deduplication Mechanism. We designed a deduplication mechanism for two
situations: (1) Single Node Duplication: we record the number of ML rows per
measurement, so that each time the delta (ML) which needs to be measured
is the portion of the current ML row minus the number of ML rows from the
last measurement. (2) Multi-Nodes Duplication: Many cloud nodes are highly
homogenous with same ML and PCR. We record initial PCR values as standard
after actual measurement. Nodes whose PCR values equal to standard will be
considered safe. Assuming that the initial PCRcompute = α for all initialized
compute nodes then, in the measurement, all nodes with PCR equal to α can
be regarded as a secure computing node that just booted and has not been
tampered with.

Vote Transactions. Vote transaction protocol is depicted in Fig. 3. After a
transaction is generated, a vote will be initiated. Each node (including Sender
and Receiver) needs to maintain a history PCR table to record nodes’s PCRs
value at different time. After receiving the transaction to be attested, a vote
node validates the transaction format and signature firstly. Then it validates
the TPM signature and the correctness of s-pcr/d-pcr value with history PCR
table and s-payload/d-payload. If validation succeeds, it will vote in favour. If
other nodes also vote in favour then the consensus is reached according to the
consensus algorithm. The transaction will be written into blockchain, which can
be queried anytime. After that every node updates local historical PCR Table.

5.2 Verification Mechanism

Verification includes the verification of TPM signature, PCR value and ML essen-
tially. But in CloudCoT, the former two have been completed by Generate Trans-
action and Vote protocol, only remaining ML to be matched with user WL. The
measurement information including the label of source node, the target node,
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their communication time, and the state of the two nodes has uplinked when
nodes communicated. When users attest a cloud APP (or VM), they can directly
get the results from the blockchain and compare them with their expected WL.
We assume users have downloaded the latest blockchain information already.
Then they can use Algorithm 1 to finish the last step of verification.

When users use an IaaS service provided by mainstream suppliers such as
AWS, Azure and AliCloud, the hostnames and IPs of VMs which run their cloud
APPs can be easily gotten. Thus, according to the algorithm, users give a certain
period (t1∼t2 ) and one or more target nodes’ labels (consist of hostnames and
IPs) as input parameters. The challenge mechanism will search all the commu-
nication information of target nodes including nodes’ measurement information,
communication time and etc., meaning that Cloud Chain-of-Trust is generated.
Last, users match ML to WL if PCR value is the expected value.

Algorithm 1. Challenge Mechanism
Input: time range t1, t2, one target node Node1 of APP
Output: verification result
1: Search all the information of Node1 in range of t1 t2
2: Obtain the PCRs, MLs of all nodes communicated with Node1 including Node1’s
3: if MLs match UserWhiteList then
4: return true;
5: end if
6: return false;

6 Implementation and Evaluation

6.1 Implementation

To implement CloudCoT architecture, we assembled some open source projects
such as Ethereum and IPFS and wrote the rest of the code ourselves. Due to
resource constraints, we built five virtual machines on the server. All of them
were connected to a Blockchain (modified Ethereum) with a network monitoring
and attestation module. The model of the server CPU is Intel(R) Xeon(R) CPU
E3-1230 V5 @3.40 GHz with 4 cores. Each virtual machine has 2 cores with 4 GB
memory. The operating system version is Ubuntu 14.04 with kernel version 4.2.0.

We chose Ethereum (whose consensus mechanism is proof-of-work (PoW)
algorithm) due to its popularity, wide applicability and mature smart contract
technology. However, due to limited transaction size of Ethereum smart con-
tract [2] (A total of 8,000,029, about 8 million (from https://ethstats.net/) for
each transaction, and the size of one line of our ML is 152 bytes or so. After
calculation, we have to ensure that the log size can only be within 700 lines
each time data upload to blockchain), we chose IPFS to support our framework
whose storage cost is significantly lower than Ethereum. We hash the ML, then
store the hash of the ML on the blockchain, and store the corresponding real
ML on the IPFS. This can greatly reduce the overhead of the blockchain and
achieve decentralization at the same time. This treatment’s benefit can be seen
in evaluation.

https://ethstats.net/
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Table 1. ML of two schemes/lines

CCoTfirst FRAfirst CCoTavg FRAavg

Running 96526 96526 64 100374

Reboot 1631 1631 64 5811

6.2 Evaluation

Efficiency of Deduplication Mechanism (1) ML Size: In order to prove
the effectiveness of our deduplication mechanism, we used Full Remote Attes-
tation (FRA) scheme as a control group. For each attestation, the FRA scheme
attested integrity evidence of node from the boot process to application layers.
As Table 1 indicates, a huge reduction on ML needed to be transmitted and veri-
fied was recorded for CloudCoT. We chose two kinds of environment to evaluate
our framework efficiency objectively: the environment after a period of normal
operation and the environment after restart. Measurement was made every 5 min
and in total 120 measurements were performed.

FRAfirst represents the time of first attestation and FRAavg represents the
average time of attestation, CloudCoTfirst represents the time of first attesta-
tion while CloudCoTavg represents the average time of attestation. It can be
seen that CloudCoT performed far better than traditional integrity measure-
ment FRA except for the first measurement. This is because that we introduce
deduplication mechanism as mentioned in Sect. 5. In this way, the efficiency is
significantly improved when the correctness is guaranteed. It’s worth mentioning
that the reduction of ML means reducing overhead of verification, storage and
transmission.

(a) running environment (b) reboot environment

Fig. 4. Measurement overhead in verification
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(2) Time Usage of Attestation: We recorded the time usage of attestation of
FRA and CloudCoT respectively to show the reduction of attestation time usage.
In Fig. 4(a) and (b), FRA time and CloudCoT time represent the time usage
of the entire verification process of the two solutions. ML and CloudCoT ML
represent the time taken to process the ML respectively. In the reboot environ-
ment, FRA average time is 37.16 ms, CloudCoT average time is 1.31 ms; in the
running environment, FRA average time is 423.27 ms, and CloudCoT average
time is 0.53 ms. It can be seen that with the increase of ML, CloudCoT improve
the time efficiency than FRA by nearly a thousand times.

Efficiency of Measurement and Verification Mechanism. In the tradi-
tional verification scheme (including CA and DA), every node needs to be verified
separately. For example, 5 attestations need to be done to verify 5 different nodes
in total. In CloudCoT, the time cost was distributed to every communication.
The final time cost would be the sum of verification cost (5x), uplink cost and
challenge cost. The time cost of introducing CloudCoT including uplink time and
challenge time under different ML sizes is listed in Table 2. It can be seen Cloud-
CoT’s uplink time and challenge time is acceptable compared to the verification
time.

Table 2. Time cost of measurement mechanism

ML lines ML size/byte Verification/s Uplink/s Challenge time/s

Select IPFS read

10 1.14 K 1.28 0.783 0.006 0.261

100 11.59 K 1.38 0.983 0.007 0.328

1000 116.0 K 2.54 1.018 0.013 0.339

10000 1.13 M 3.19 1.048 0.015 0.349

100000 10.5 M 8.26 1.060 0.016 0.354
∗ The challenge time includes the time to filter the user’s specified
information, read the original content from the IPFS using hash value,
and the time to match WL (we didn’t measure this time because the
WL is provided by users themselves).

Efficiency of Storage (1) Time Efficiency: The time cost of storing MLs of
different sizes in the central server database (MySQL, Ver 14.14 Distrib 5.6.35),
blockchain (Ethereum 1.6.7) and IPFS (Ver 0.4.13) was measured separately. In
Table 3, central server, blockchain and IPFS refer to the time needed to write
information into corresponding position. There was no significant increase in
time cost between writing in IPFS and in the central server, even faster to write
in IPFS when the ML is large, because the relational database takes time to
establish relationships.
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(2) Space Efficiency: IPFS is a content-addressable storage protocol means
reducing the redundancy of resource storage (Same resource has the same hash
value). As a result, when nodes are enough, IPFS saves a lot of storage space com-
pared to central storage server. However, there are problems with storage incen-
tive mechanism, storage data security and privacy protection. Filecoin incentive
mechanism [3] has been proposed to encourage people to share the storage cost
with cloud servers.

Table 3. Time usage of storage

ML lines ML size/byte Central server/s Blockchain/s IPFS/s

10 1.14 K 0.054 12.64 1.347

100 11.59 K 0.063 14.62 1.425

1000 116.0 K 0.091 ∗ 1.442

10000 1.13 M 0.745 ∗ 1.507

100000 10.5 M 5.366 ∗ 1.619
∗ Blockchain cannot store ML of these sizes via smart contract.

Security Analysis. Under our security model in Sect. 3, CloudCoT can defend
most of attack scenarios.

(1) Single Malicious Node Attack: The first attack we need to consider
is that the attacker has the ability to directly attack the cloud service
provider’s virtual machines even infrastructure. But under the protect of
TPM, when an attacker can only attack the cloud service nodes or users’
application running on VMs, but does not have the privilege to tamper with
the underlying layer kernel and TPM, his behavior will be identified by the
remote attestation. So CloudCoT remains high security.

(2) Malicious Cooperative Attack: As a decentralized scheme, the sec-
ond attack way is malicious cooperative. The malicious cooperative attack
means that attackers have the control of several nodes and these tampered
nodes cooperate to achieve attack goals. For example, in blockchain, the
consensus mechanism requires nodes to vote. If a lot of tampered nodes
vote maliciously, they will change the consensus result and thus benefit the
attacker. CloudCoT’s defense capabilities in this area depend entirely on
the blockchain it used. For example, we are currently using Ethereum as
our blockchain, which supports PoW as its consensus mechanism. So if we
ensure that no more than 51% of the nodes have been tampered with, the
collusion attack can be defended.

(3) Other Attacks: For other attacks, CloudCoT also has corresponding
defense methods. For example, we use nonce in our protocol to avoid replay
attacks and use session keys to resist man-in-the-middle attack. On the
other hand, the runtime attacks to Trusted Computing mechanisms and
hardware-based attacks are not considered. However, it is worth pointing
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out that because we have adopted a consensus mechanism, the attack of a
single node or a small number of nodes cannot change the consensus result.
Therefore, even if some nodes are attacked by the method we cannot defend,
our mechanism can still run normally, and the user can still obtain the true
attestation result from CloudCoT.

7 Conclusion and Future Work

In this paper, we propose the CloudCoT framework to achieve cloud service
dependency identification and attestation. It can automatically identify the
cloud APP’s valid dependency and record dependent nodes’ integrity evidence
to blockchain after deduplication. Moreover, by our measurement mechanism
user can directly obtain tamper-proof CoT record of his APP (or VM). By the
challenge mechanism, he can finish the attestation. We implemented CloudCoT
in our simulated cloud environment. The evaluation showed that CloudCoT has
higher efficiency than the current fine-grained cloud service attestation schemes.

Even our framework is highly secured under most of the attack scenarios such
as single malicious node and malicious cooperative nodes attack, it’s vulnerable
under certain situations. For example, we didn’t take the network routing channel
attack and memory overflow attack into consideration. Furthermore, for highly
frequent malicious measurement request (Such as initiate 10 uplink requests per
second with one-line ML), we consider adopting a more detailed measurement
strategy. For example, after detecting high frequency communication, the time
interval between each measurement will be increased to balance the cost and
security. Privacy protection in CloudCoT is also a key point for our future work.
Moreover, CloudCoT should be evaluated in a production infrastructure, which
we could not currently achieve due to the lack of resource.
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Abstract. Various approaches have been proposed to exploit the vul-
nerability to challenge the robustness of victim models, in the black-box
scenario, it is difficult to generate barely noticeable adversarial exam-
ples while guaranteeing the attack success rate. Although some methods
could solve this problem to some extent, the imperceptibility of the gen-
erated perturbations is still far from that of the most advanced attack,
worse still, it is infeasible to attack the color image datasets due to its
inefficiency. In MOEA-APGA II, We propose the new objective function
and the novel population evolution strategies to reduce the average dis-
tortion without sacrificing the attack success rate, and compared to the
state-of-the-art black-box attack (ZOO), our method achieves a better
attack success rate under fewer queries on the benchmark datasets.

Keywords: Adversarial examples · Black-box attack · Multi-objective
optimization

1 Introduction

Even the state-of-the-art artificial neural network in deep learning was tended to
suffer from misclassification when the input samples have been tainted by small
perturbations [1]. Various approaches have been proposed to exploit this vul-
nerability to challenge the robustness of victim models [2], called as adversarial
attacks, and the perturbed samples called as adversarial examples. In the adver-
sarial attack, the attack capability and visual quality are two main evaluating
indicators, the former may refer to success rate, which indicates the percentage
of the label of the original images are successfully changed to hopeful labels by
overlying the perturbations [3], the latter is negatively related to the distortion
degree of the perturbation of adversarial examples.

Assuming the complete knowledge of the victim model [4], the white-box
attack can directly generate adversarial examples by using internal information.
However, in most actual attack scenes the black-box attack [5,6] is much more
c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ICICS 2019, LNCS 11999, pp. 603–612, 2020.
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realistic. Some methods take advantage of the transferability of the adversarial
example to attack models that have never been touched [5,7], but they have
the poor success rate. Some methods train the substitute model based on the
information in the process of attacking the victim model [8], which can greatly
improve the success rate, but it is necessary to fit a new approximation for
each victim model. Different from the above ideas, in some methods the victim
model merely provides a measurement of the quality of the perturbed samples,
so these methods is more general, such ZOO and one-pixel. ZOO attack [9] and
its variants can consider both the attack capability and visual quality using the
weighted sum method, which increase the success rate within a low average dis-
tortion, but how to select the weights become a challenge. Su et al. [10] optimized
the adversarial perturbations using the Differential Evolutionary algorithm [11],
but the number of pixels to be perturbed should be specified in advance. MOEA-
APGA [12] was based on the multi-objective evolutionary algorithm MOEA/D
[13] to simultaneously optimizes the prediction probability and the distortion of
perturbations, and generate representative perturbations set of Pareto optimal
solutions [14], and then a final perturbation is select to execute finally attack.
However, due to the diversity of the Pareto set, part of the evolutionary resources
could be occupied by individuals with low distortion but unsuccessful attacks.

In this paper, we proposed some strategies aim to improve the visual quality
of generated adversarial examples and the convergence speed of MOEA-APGA,
so could carry out an attack on the color image datasets.

2 Related Work

In this section, we first present problem formulations about adversarial attacks
and some existing algorithms and then offer some preliminaries about the basic
algorithm MOEA-APGA.

2.1 Problem Formulation

Let x ∈ X := [0, 1]n×d be an original sample of n pixels and d color channels with
the ground truth label l ∈ R

k. In order to craft adversarial example x̂ similar to
x, a minimizer (perturbation) r is overlayed on the original sample.

As a attacker, we intend to change the prediction result of Cθ(·) to achieve
the goal of fooling the networks. ŷ is the result of Cθ (·) based on the input x̂.
Attack methods are divided into two categories for different adversarial goals:
targeted attacks (targeted fooling) and non-target attacks (misclassification) 1.
The definition of ‘targeted attack to a target class t’ can be formulated as ŷ =
t, t ∈ R

k, and the problem of ‘non-target attack’, can be defined as ŷ �= l.
Most existing attacks are not optimal because they do not solve the problem

of succeeding under minimal distortion as a priori,

min
x̂∈X :f(x̂) �=l

‖x̂ − x‖ . (1)

1 In some works, ‘non-target attack’ is also called ‘misclassification’, but in this paper,
‘misclassification’ covers the ‘targeted attack’ and the ‘non-target attack’.
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Szegedy et al. [1] approximate this constrained minimization problem by a
Lagrangian formulation

min
x̂∈X

λ ‖x̂ − x‖2 + �(f(x̂), t). (2)

Parameter λ controls the balance between the distortion and the classification
loss. Szegedy et al. [1] carry out this optimization by box-constrained L-BFGS.

2.2 MOEA-APGA

MOEA-APGA owns two objectives: (i) the prediction probability (PP) is the
output of the Softmax layer σ(z) of the attacked classifier, which denotes the
classification probabilities of an adversarial example; (ii) the perturbation metric
(PM) measures the distortion of perturbation, the smaller it is, the better the
imperceptibility is.

PP (x̂) =
{

1 − σ[Cθ(x̂)]t, for targeted attack
σ[Cθ(x̂)]l, for non target attack

, (3)

PM (r) =
{‖r‖0 = 0

√∑mn
i=1 d0i , for pixel level

‖r‖2 =
√∑mn

i=1 d2i , for global level
. (4)

The non-targeted attack is realized by minimizing the prediction probability
of the original class, conversely, the targeted attack is realized by minimizing
that opposite number of the target class. It is shown that global-level has a
better imperceptibility, thus, only the global-level disturbances are compared in
the experimental.

Random perturbations r is set as the initial individuals in the population,
and new perturbations are generated by population evolution. The population
evolution module of MOEA-APGA decomposes a multi-objective optimization
problem into a number of different simple optimization subproblems by Tcheby-
cheff [14] and then bases on the evolutionary algorithm to optimize those sub-
problems simultaneously. The problem is converted to a minimum optimization
problem with two objectives. The Tchebycheff value is calculated by

min gte
(
r|−→λi

)
= max

{
λ1

i PP (x̂) , λ2
i PM (r)

}
. (5)

where
{−→

λ1, · · · ,
−→
λn

}
is a set of evenly spread weight vectors, the dimension is

the same as the population size n.

3 MOEA-APGA II

Algorithm 1 shows the pseudo-code of MOEA-APGA II.
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Algorithm 1. MOEA-APGA II
Input: The serialized image, img; Adversarial goals, goal; Ground truth label, y

or Target label, t; Maximum number of generations, maxgen; Population size, n;
Weight vector, {λ1, · · · , λn }; The size of neighbours, ns; Crossover probability, pc;

Output: Adversarial perturbation for crafting adversarial example, AP ;
Step1: Population initialization.

1: P ← Initial (n) // Randomly generate a batch of individuals as the initial popu-
lation;

2: for i = 1 to n do
3: Ni ← get the ns individuals from P with the nearest Euclidean distance between

any individual in P , and the weight vector λi ;
4: end for

Step2: Population evolution.
5: for gent = 1 to maxgen do
6: for i = 1 to n do
7: P

′
i ← Randomly select an parent individual from Ni or P ;

8: childcross ← Crossover
(
P

′
i , Pi, pc

)
;

9: Mutation Position (MP ) ← Select a series of positions for mutation based
on the mutation probability distribution function of each position, which is
calculated by the ‘Mutate the Key Positions First’ strategy;

10: Mutation Amplitudemax (MAmax) ←Determining the maximum amplitude
of mutation based on ‘Adaptive Adjustment Strategy of Disturbance Ampli-
tude’ strategy;

11: childnew ← Mutation (childcross, MP, MAmax);

12: min gte
(
childnew|−→λi

)
← Calculate an adaptive assessment for each new indi-

vidual by (8);
13: Update population;
14: end for
15: end for

Step3: Perturbation Filter.
16: AP ← SelectNonDominatedItemsets (P );//Select the non-dominated individuals

from the final population P by fast non-dominated sorting strategy. Then get the
final solution according to the needs of the problem;

3.1 Definition of the Objective Function

On the one hand, since the result of multi-objective optimization is a Pareto set,
and the samples in the set are diverse, there is no guarantee that the samples in
the result set will make the attack successful. MOEA-APGA proposed the filtering
strategy to solve the problem, however, those samples that could not be success-
fully attack still occupy a lot of computing resources. On the other hand, there is
a situation that some individuals with low absolute prediction probability are still
the largest among the Ci

θ and can successfully attack. In the previous work, such
individuals are punished, which is not reasonable. Therefore, we proposed the fol-
lowing improved strategy, replacing the objective function prediction probability
(PP) with the new optimized objective F: (1) targeted attack
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F(x, t) =

⎧⎪⎨
⎪⎩

α + (1 − σ [Ct
θ]) · αindext for (1 − σ [Ct

θ])>1− 1
k (a)

α + (1 − σ [Ct
θ]) · 10indext for indext > 0 (b)

(1 − σ [Ct
θ]) for others (c)

(6)

(2) non-target attack

F(x, l) =

{
α · σ

[
Cl

θ

]
for σ

[
Cl

θ

]
>0.5 or indexl =0 (a)

σ
[
Cl

θ

] · βk−indexl−1 for others (b)
(7)

σ [Ct
θ] represents the prediction probability of target label t ∈ R

k from
the Softmax layer of Cθ with the input sample x. We sort all the prediction
probabilities in descending order, and indext represents the sequence index of
target label t among the sorted prediction probabilities Ci

θ. When the Top-1
result is t, indext = 0, when the predicted result is the least likely to be t, then
indext = k − 1, k is the total number of labels. α represents a larger value,
usually be 1e10; β is a relatively smaller value, satisfied β ≥ 1 , set as 1.3 in
this paper. After replacing (5) with F(x, t) ,the adaptive evaluation function is
shown as:

min gte
(
r|−→λi

)
= max

{
λ1

i F (x̂) , λ2
i PM (r)

}
. (8)

3.2 Mutate the Key Positions First

In the process of generating adversarial example, we found that the positions
of some pixels would significantly affect the classification results, even slightly
disturbed. We defined these pixel positions as key positions, and the ‘Mutate
the key positions first’ strategy expects to have a higher mutation probability
for these key positions, while the mutation probability of the pixels with less
impact on classification is smaller. The specific formula is as follows:

P (xd = Indijd) = ∂ · (|G(i, j)| + Θ‖ Ind ‖∞)
d∑

i=1

P (xd) = 1 (9)

G(i, j) = (I ∗ K)ij =
k1−1∑
m=0

k2−1∑
n=0

I(i − m, j − n)K(m,n) (10)

K(m,n) = ∂ · 1
2πσ2

e− m2+n2

2σ2 (11)

Where d represents the d-th channel, G(i, j) means to perform the smoothing
operation on the two-dimensional image of the perturbation individual. Accord-
ing to three-sigma rule, we set σ = 1

6 ∗imagewidth. Θ‖Ind‖∞ is the base probabil-
ity, composed of the base probability coefficient Θ and the maximum amplitude
of current individual ‖Ind‖∞ = max (|Ind|). ∂ is the normalization coefficient,
guaranteeing that the sum of probability equals to 1.
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3.3 Adaptive Adjustment Strategy of Disturbance Amplitude

In the process of the iterations in MOEA-APGA, the range of mutation distur-
bance was decreasing to help the convergence of the evolutionary algorithm, but
it cannot adapt to the attack difficulty of each sample. In order to solve this
problem, we propose an adaptive adjustment strategy of disturbance amplitude.

pmnum =
{

C1 · Indlen Attack failure
C1 · Indlen · G (iter) + nummin other

(12)

pmamp =
{

C2Indmax + ampmin Attack failure
C3 · lndmax · G (iter) + ampmin other

(13)

pmnum and pmamp indicate the mutation disturbance number of perturbed
pixels of individual and the mutation disturbance range of the perturbation
respectively. Where G (iratio) is a monotonically decreasing function; Indlen,
Indmax are the dimension and maximum perturbation value of the current indi-
vidual; C1, C2, and C3 are the proportional constant coefficient; nummin, ampmin

are the minimum number of perturbed pixels and the minimum perturbation
amplitude.

4 Evaluation and Results

In this paper, the experiments are verified on MNIST (28× 28× 1) and Cifar-10
(32 × 32 × 3), each data set has 10 classes. We randomly select 200 samples
from the test set of each dataset as original samples for the attack. There are
200 attacks for the non-target attack, as for targeted attack, each class will be
attacked to another k-1 class, and thus there are 1800 attacks in total for each
of the data set. On the MNIST, the victim model is the same DNN model with
MOEA-APGA, while on Cifar-10, it is consistent with that of C&W attack [15]
and ZOO attack.

Targeted and non-target attacks follow the same environment settings during
the experiment. MOEA-APGA II perform 100 initial population and 20 neigh-
borhood, which is same as MOEA-APGA. Convenient for us to observe the
improvement of our algorithm, we adopt the best imperceptible perturbation
type, the global-level perturbation, denoted as MOEA-APGA (GP). For evalu-
ation function, we set α = 1e10, β = 1.3; For the strategy of ‘Mutate the Key
Positions First’, we set Θ = 10 at the beginning, k1 = k2 = 0.25 ∗ 28 for Mnist
and k1 = k2 = 0.25 ∗ 32 for Cifar; For the strategy of ‘Adaptive Adjustment
Strategy of Disturbance Amplitude’, we set C1 = 0.035, C2 = 0.5, and C3 = 0.2,
nummin = 1, ampmin = 0.01, G (iratio) = 1 − iratio.

C&W attack performs 20 iterations of binary search over λ. For each selected
value of λ, it runs 2,000 iterations of gradient descent with the Adam optimizer.
ZOO attack carry-over its original settings, it performs a binary search up to 9
times to find the best λ, For each selected value of λ, it runs 3,000 max iterations
(itermax) for MNIST and 1,000 max iterations for Cifar-10, and it terminates the
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(a) MOEA-APGA (GP)

(b) MOEA-APGA II

(c) C&W (white-box)

(d) ZOO (black-box)

Fig. 1. The result of non-target attack based on the MNIST. Each column represents
input classes 0 to 9, while each row represents the perturbation method. From top
to bottom are MOEA-APGA (GP), MOEA-APGA II, C&W (white-box) and ZOO
(black-box).

optimization process early if the loss does not decrease for 100 early stop itera-
tions (iteres). For each iteration updates 128 pixels (batch size) with the Adam
optimizer. In addition, we also perform 100 iterations and 50 iterations under 9
times binary search (timebs) separately to observe the influence of limiting the
number of queries of the victim model on the algorithm.

The successful adversarial samples over MNIST and Cifar-10 under the goal
of targeted attack and there are non-target attack shown in Figs. 1, 2, 3 and 4
separately. We use following three metrics to evaluate the performances of the
improved algorithm: Success Rate, Average Distortion, and Average Visiting
Time. The results are shown in Table 1.

Success Rate (SR). The success rate, referring to fooling rate [10,16], indicates
that the trained model changes the percentage of its predicted labels after the
image was tainted. In the case of misclassification fooling rate (MR) is defined
as the percentage of adversarial images that were successfully classified by the
target system as an arbitrary target class, and targeted fooling rate (TFR) is
defined as the probability of perturbing a natural image to a specific target class.
In order to ensure visual quality, we regard the case of L2 > 20 as an attack
failure.
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(a) MOEA-APGA II

(b) C&W (white-box)

(c) ZOO (black-box)

Fig. 2. The result of non-target attack based on the Cifar-10. Each column represents
ten input classes, while each row represents the perturbation method. From top to
bottom are MOEA-APGA II, C&W (white-box) and ZOO (black-box).

(a) MOEA-APGA (b) MOEA-APGA II(c) C&W (white-box) (d) ZOO (black-box)

Fig. 3. The result of targeted attack based on MNIST. Each row represents input
classes 0 to 9, while each column represents target classes 0 to 9, and the diagonal is
the original image.

Average Distortion (Avg.L2). The average L2 norm for all successful adver-
sarial examples is used to estimate the distortion between adversarial images
and the original ones. The smaller the value is, the harder it is to perceive the
difference between the rogue image and the original image.

Average Visiting Time (Avg.VT). It refers to the average times of queries
to the victim model required for generating each adversarial example [5]. The
access to the victim model is useful for our attack behavior, it helps to the fitting
of the internal information of the model.



An Adversarial Attack Based on Multi-objective Optimization 611

(a) MOEA-APGA II (b) C&W (white-box) (c) ZOO (black-box)

Fig. 4. The result of targeted attack based on Cifar-10. Each row represents ten input
classes, while each column represents ten target classes, and the diagonal is the original
image. Empty part indicates attack failure.

Table 1. Experimental results.

Method Dataset

Non-Target Attack Targeted Attack

SR Avg.L2 Avg.VT SR Avg.L2 Avg.VT

MNIST

MOEA-APGA(GP) 100% 1.8323 40,000 100% 3.1712 40,000

MOEA-APGAII 100% 1.4736 40,000 100% 2.5081 40,000

C&W (white-box) 100% 1.3751 40,000 100% 2.2614 40,000

ZOO (black-box) 23.5% 0.8344 57,600 4.83% 0.9379 57,600

87.5% 1.4472 115,200 45.27% 1.7931 115,200

100% 1.3778 >486,400 100% 2.2713 >486,400

Cifar-10

MOEA-APGAII 100% 0.3204 40,000 100% 0.6343 40,000

C& W (white-box) 100% 0.1424 40,000 100% 0.3492 40,000

ZOO (black-box) 99.5% 0.2721 57,600 77.44% 0.4674 57,600

100% 0.2555 115,200 95.38% 0.4836 115,200

100% 0.2026 >230,400 97.5% 0.4075 >230,400

5 Conclusion

In this paper, we proposed the objective function and several novel strategies to
improve the efficiency and performance of attacks. Experimental results on both
grayscale and color image data sets show that the success rate outperforms the
other methods, such as the C&W attack and the ZOO attack. When the number
of queries to the victim model is not a primary consideration, our attack attains
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comparable performance in terms of distortion to the state-of-the-art white-box
attack (C&W attack), and in the case of limited queries, we still maintain the
distortion within an acceptable range.
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Abstract. Recent studies have demonstrated that deep neural networks
are vulnerable to adversarial examples, i.e. inputs crafted by applying
small but intentionally perturbations to legitimate examples to mislead
the models. Adversarial examples pose a serious threat to the appli-
cation of deep neural networks in safety-critical scenarios. Inspired by
human visual system, we propose a novel method called Neuron-Selecting
to defend against adversarial examples. The main idea of the Neuron-
Selecting is to select the vital few neurons that contribute to the final
right predictions and filter out the trivial many neurons that are acti-
vated by perturbations. Experiments on MNIST and CIFAR-10 models
show that the Neuron-Selecting can effectively defend against the state-
of-the-art attacks, especially ones that have small perturbations but high
attack success rate. We believe our work provides a new perspective to
defend against adversarial examples.

Keywords: Neuron Selecting · Adversarial examples · Defense method

1 Introduction

Deep Neural Networks (DNNs) have recently led to dramatic performance
improvements in a wide range of applications, such as image classification [12]
and speech recognition [10]. While focusing on how to improve DNNs’ accu-
racy and efficiency, researchers have gradually paid great attention to the safety
of DNNs. In safety-critical scenarios, unsecure models may bring devastating
consequences. Specifically, the main threat for DNNs comes from adversarial
examples, i.e. inputs crafted by making slight perturbations to legitimate inputs
with the intent of misleading machine learning models [25].

Adversarial examples can be formally defined as follows: given the deep learn-
ing model f : RN → L1, L2, ..., Lm, there exists x such that f(x) = Li and x̂
such that ‖x̂ − x‖p < ε, where f(x̂) = Lj and i �= j. Then x̂ is an adversarial
example with perturbation constraint ε.

Plenty of researches show that only a small change to the original example
can successfully attack the target model [3,8,9,21,25]. Therefore, it is neces-
sary and urgent to study the defense techniques for machine learning models,
c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ICICS 2019, LNCS 11999, pp. 613–629, 2020.
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especially for DNNs which are vulnerable to tiny perturbations. This problem
has received considerable research attention in recent years, but there seems no
perfect solution so far and things appear to be worse than initially thought.
Adversarial examples have been shown to be robust to physical world trans-
formations to some extent, e.g. 3D objects will be misclassified under a wide
distribution of angles and viewpoints [2].

We think the reason an adversarial example is misclassified is that perturba-
tions activate some neurons that should not be activated. Taking digital recog-
nition as an example, humans can easily identify a digit as long as the digit
has its own specific shape. Digits should be recognized without being affected
by the background elements. “0” is “0” not because “0” is written in black on
white paper. It should be recognized as “0” even with a particularly complicated
background. The most probable cause for a perturbed “0” being misidentified
by DNNs is that the perturbations activate some irrelevant neurons. Thus, is it
possible to filter out those wrongly activated neurons by adversarial examples?
To answer this question, we propose a novel defense method, called the Neuron-
Selecting, to defend against adversarial examples in DNNs, which selects the
vital few neurons that contribute to the final right predictions and filters out
the trivial many neurons that are activated by perturbations. The main contri-
butions of the paper are as follows:

(1) We found that the activations of normal examples follow the law of “Vital
few and trivial many”, while adversarial examples change the distribution
of “vital few” and “trivial many”.

(2) We proposed the Neuron-Selecting method for defending against adversar-
ial examples in DNNs.

(3) We also empirically evaluated our defense method on MNIST and CIFAR-
10 models and verified that it can defend against the state-of-the-art
attacks. The rest of the paper is organized as follows: the related work
is discussed in Sect. 2. We analyze the neuron activations distribution and
describe the Neuron-Selecting defense method in Sect. 3. In Sect. 4, we eval-
uate the effectiveness of the proposed method against the state-of-the-art
attacks. Finally, the conclusion is presented in Sect. 5.

2 Related Work

The attack-and-defense game on DNNs has last for several years. There are many
methods on how to generate and defend against adversarial examples.

2.1 Attack Methods

The L-BFGS method introduced by Szegedy et al. [25] aims to crafting adver-
sarial examples by solve a box-constrained optimization problem, i.e. minimize
‖x̂ − x‖22, such that C(x̂) = l where x̂ ∈ [0, 1]m.

Goodfellow et al. [9] proposed Fast Gradient Sign Method (FGSM). The
adversarial example x̂ corresponding to the original input x is computed as
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x̂ ← ε · sign(∇xJ(θ,x, y)), with θ being the parameters of the model, x the
input to the model, y the target associated with x and J(θ,x, y) the cost used
to train the neural network.

The Carlini-Wagner (C&W) attack [5] also take generation of adversarial
example as an optimal problem. C&W aims to find small valid change δ that can
be made to an input x that will change its classification result. C&W instantiates
the distance metric with a Lp norm and defines an objective function f such that
f(x + δ) ≤ 0 if and only if the model misclassifies x̂ ← x + δ.

Inspired by C&W attack, Chen et al. [6] proposed the Elastic Net Method
(EAD). Compared with C&W which uses Lp norm, EAD performs elastic-net
regularization with β controlling the trade-off between L1 and L2. When β = 0,
EAD attack can be viewed as C&W L2 attack.

The Basic Iterative Method (BIM) introduced by Kurakin et al. [14] applies
FGSM multiple times with small step size and clips intermediate results after
each step to ensure that they are in an ε-neighborhood of the original input, i.e.
x̂0 = x, x̂t+1 = Clipx,ε{x̂t −α·sign(∇xJ(x̂t, yL))}, where yL is the target class.

Slightly different from BIM, Madry et al. [17] proposed to use Projected
Gradient Descent (PGD) on the negative loss function. PGD is also a multi-step
variant FGSM and can be written as xt+1 =

∏
x+S(xt +α · sign(∇xL(θ,x, y))),

where S ⊆ R
d is a set of allowed perturbations that formalize the manipulative

power of the adversary.
Based on BIM, Dong et al. [7] introduced the Momentum Iterative Method

(MIM). MIM accelerates gradient descent algorithms by accumulating a velocity
vector in the gradient direction of the loss function across iterations. It can be
simply written as g0 = 0, x̂0 = x, gt+1 = μ·gt + ∇xJ(x̂t, y)/‖∇xJ(x̂t, y)‖1,
x̂t+1 = x̂ + α·sign(gt+1), where gt gathers the gradients of the first t iterations
with a decay factor μ.

Aforementioned methods mainly rely on computing the gradient of each
example, but the Jacobian-based Saliency Map Approach (JSMA) introduced
by Papernot et al. [21] stems from another view, which iteratively perturbs fea-
tures of the input that have large adversarial saliency scores. The scores are
computed based on Jacobian of the model. For candidate adversarial example
x̂c, the derivative of class j with respect to input feature i is computed using
[∂fj(x̂c)/∂xi]i,j .

DeepFool introduced by Moosavi-Dezfooli et al. [20] can only ensure that the
model classifies the adversarial example to a class different from the original one.
Similar as other attacks, DeepFool also iteratively computes the perturbation. It
can be simply written as x̂0 = x, rt←−∇f(x̂t)·f(x̂t)/‖∇f(x̂t)‖22, x̂t+1←x̂t+r̂t,
where r is the perturbation added in each iteration and r̂ =

∑
t r̂t is the sum

perturbation added to the original example x.
There have been many other attack methods proposed in recent years [23,27].

For space limitations, we did not review them here and one can find details in
references.
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2.2 Defense Methods

Network distillation introduced by Papernot et al. [22] tries to defend DNNs
by making use of class probability knowledge outputted by initial network. The
knowledge is transferred to the distilled network, thus improving generalization
capabilities of DNNs and enhancing its resilience to perturbations.

Adversarial training [9,15,25,28] is another wildly used defense method which
injects adversarial examples during training to improve the generalization of the
model. The most important work in adversarial training is to generate enough
high-quality adversarial examples. Since the retraining is commonly accepted, it
is often used as a basic method to enhance DNNs.

Different from those defense methods which focus on designing a more robust
algorithm, adversarial detecting [11,16,19] aims to detect adversarial examples
before they are inputted to DNNs. Relevant work in this area either perform
density estimation in the subspace of deep features learned by the model, or use
statistical tests or Principal Components Analysis (PCA).

Input reconstruction is another kind of defense method focusing on the prop-
erty of adversarial example, and tries to pre-process the input data to improve
the robustness of DNNs. For example, MagNet [18] uses detector networks to
learn how to differentiate normal and adversarial examples by approximating
the manifold of normal examples, and reformer network to move adversarial
examples towards the manifold of normal examples. Similarly, PixelDefend [24]
purifies maliciously perturbed image based on statistical hypothesis testing.

Another kind of defense method can be summarized as classifier robustifying.
Ensemble Adversarial Training (EAT) [26] augments training data with pertur-
bations transferred from other models. Ensemble of Diverse Specialists (EDS) [1]
defines specialty using confusion matrix to identify and reject fooling instances.
However, those method were proved not strong enough later by He et al. [13].

The aforementioned defense methods can be selected to protect DNNs. How-
ever, as stated in [4], most of these methods can be easily bypassed by carefully
crafted adversarial examples. The current methods defend against adversarial
examples usually by using regularizations, data augmentation or input prepro-
cessing. However, in many cases the network cannot be retrained and the exam-
ples are difficult to be augmented or preprocessed. To tackle this situation, we
propose a novel defense method that is just carried out in the testing stage and
the neural network is trained as usual.

3 Neuron-Selecting Defense Method

3.1 Inspiration from Human Visual System

Humans can easily recognize a digit and are hardly interfered by other elements
as long as the digit has its own specific shape and outline, even if the surrounding
elements are particularly complicated. That is not because we have not seen the
surrounding elements but because we do not let them be involved in the decision-
making of recognizing digits. Figure 1 shows humans’ recognition results of a
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perturbed “0”. We can easily recognize the perturbed digit as “0”. We should
nevertheless acknowledge that we also see some noise while seeing a “0”. But
why do we recognize a “0 + noise” image as “0”? The reason is that we just
make use of the signals activated by pixels inside the red contour to make the
final decision. Contrarily, the signals activated by pixels outside the red contour
(noise) are ignored. After all, the noise is not a component of the “0”. We believe
that humans have the ability to select necessary neurons to make a certain
decision. The artificial neural networks do not seem to have such ability. The
DNNs rudely eat all the elements in the input space. We think one reason for the
DNNs being vulnerable to adversarial examples is that the perturbed elements
in adversarial examples activate some irrelevant neurons and what’s worse, these
irrelevant neurons are involved in the decision-making. There is a strong need
to make the DNNs have the ability of selecting specific neurons to perform the
specific task.

Digit 0

Noise

Fig. 1. Humans’ recognition results of a perturbed “0”. (Color figure online)

3.2 Preliminary Analysis of Neuron Activations

We trained a network called the MNIST-CNN model for preliminary analysis.
The MNIST-CNN is used to perform the MNIST1 classification task. The archi-
tecture of the model is shown in Fig. 2, which is identical to those presented
in [5] and [22]. The model has 4 convolutional layers, 2 max pooling layers
and 3 fully connected layers. For convenience, we sequentially call these lay-
ers CONV1, CONV2, POOL3, CONV4, CONV5, POOL6, FC7 and FC8. We
choose the layer FC7 to observe the activation changes by inputting the net-
work normal and adversarial examples. Firstly, we randomly select 200 normal
examples that are correctly classified as class 0 from the test set and obtain the
activations from layer FC7. The activations are stacked together to form a graph
as shown in Fig. 3(a). The x-axis is the neuron No. (Indices of 200 neurons) in
layer FC7 and the y-axis is the corresponding activations of normal examples.
The brighter the point is, the greater the activation’s value. The values in the
darkest area are all zero, which means that the neurons are not activated. It is
pretty obvious that the activations of normal examples present high regularity
and consistency. For normal examples, only some few neurons are significantly
1 http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/
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activated and the examples of the same class usually activate the same neurons.
We find that neurons activated by normal examples follow the rule of “Vital few
and trivial many”.

Fig. 2. Architecture of the MNIST-CNN model.

(a) Normal examples.                                                         (b) Adversarial examples.

Fig. 3. Activations of layer FC7.

On the contrary, the activations of adversarial examples exhibit different dis-
tributions. Similarly, we randomly select 200 adversarial examples generated by
the CWL2 [5] untargeted attack method, where CWL2 is a special case of C&W
attack with L2 as distance metric. These examples should be classified as class
0, but now all misclassified by MNIST-CNN. The results are shown in Fig. 3(b).
We can see that the activations of adversarial examples differ from that of nor-
mal examples. Compared with normal examples, the activations of adversarial
examples present less regularity and consistency. Adversarial examples activate
some neurons that have never been activated by normal examples. We find that
adversarial examples change the distribution of “vital few” and “trivial many”.

3.3 Neuron Selecting Method

Compared with human visual system, the DNNs lack the ability of selecting
specific neurons to perform the specific task. We find that for a specific model,



Defending Against Adversarial Examples Using Neuron Selecting 619

normal examples usually activate some specific neurons but adversarial exam-
ples activate some irrelevant ones. Accordingly, we design a Neuron-Selecting
method to help the DNNs select specific neurons to make right decisions and fil-
ter out irrelevant neurons activated by perturbations, thus can effectively defend-
ing against adversarial examples. The Neuron-Selecting is just carried out in the
testing stage and the neural network is trained as usual. The framework of the
Neuron-Selecting is illustrated in Fig. 4.

[ ]la

[ ]{ }l cs

argmax(sim)

[ ]la

[ ]{0}ls

[ ]{1}ls

Fig. 4. Neuron-Selecting framework for defending against adversarial examples.

In Fig. 4, a[l] represents the activations of layer l on which the Neuron-
Selecting will be implemented. s[l]{0}, s[l]{1},..., s[l]{c} are called neuron selectors.
ã[l] represents the activations of layer l after implementing the Neuron-Selecting.
In the training stage, the activations of layer l are used to construct neuron selec-
tors. In the testing stage, the neuron selectors are used to map a[l] to the selected
outputs ã[l]. The selected outputs are then input to the next layer.

We first describe how to construct neuron selectors. For layer l, we need
to construct a corresponding neuron selector for every class of examples. Here
we take how to construct s[l]{c} as an example, which represents the selector
on layer l for class c. Firstly, the neural network is trained until achieving a
testing accuracy comparable to the state-of-the-art, for instance 98% for the
MNIST-CNN model. Then we collect activations of n (n can be considered as
a hyper-parameter. In our experiments, n = 100.) examples that are correctly
classified as class c. Suppose a[l]{c}(j) is the activation from layer l of the j-th
example that is classified as class c. Then the average is calculated.

ā[l]{c} =
1
n

n−1∑

j=0

a[l]{c}(j) (1)

ā[l]{c} is a vector and it represents the average of activations in the layer l for
a given class c computed over the n examples. We denote the number of neurons
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in layer l as n[l]. Obviously, ā[l]{c} has n[l] elements, and the i-th element is
denoted as ā

[l]{c}
i . Based on the analysis in Subsect. 3.2, the activations of normal

examples follow the rule of “Vital few and trivial many”. Naturally, only vital
few elements of ā[l]{c} have significantly large values. We denote the approach
of finding the vital few elements of ā[l]{c} as V italFew( ). In experiment, we use
the Pareto chart2, which is widely used to highlight the most important among
a set of factors, to select the vital few neurons. The approach of using the Pareto
chart can be formalized as follows and the details are in Appendix A.

V Fā = V italFew(ā[l]{c}, p) (2)

Here, p is a hyper-parameter that defines the contribution rate of the vital
few elements, V Fā represents the vital few set.

Finally, the elements of the neuron selector s[l]{c} are defined as follows.

s
[l]{c}
i =

{
1, if ā

[l]{c}
i ∈ V Fā

0, otherwise
(3)

Similarly, we can construct neuron selectors for other classes and layers.
In the testing stage, suppose a[l]{unk} is the activation of an example whose

class is unknown. We have different neuron selectors for different classes. The
mapped activation is calculated as follows.

ã[l]{unk} = a[l]{unk} ∗ s[l]{t}; where t = arg max
c∈{0,1,...,n{c}−1}

{sim(a[l]{unk}, s[l]{c})}
(4)

Here ∗ denotes an element-wise product. n{c} represents the number of
classes. sim() is a similarity function. In the experiment, we use the cosine
similarity function. The formula implies that first calculate similarities between
a[l]{unk} and all the selectors s[l]{c}, c ∈ {0, 1, ..., n{c} − 1}, and then choose the
selector corresponding to the largest similarity as the targeted selector. Finally,
do the element-wise product between a[l]{unk} and the targeted selector s[l]{t}

to get the mapped activation ã[l]{unk}.
For a trained network, the vital few neurons in each layer are fixed. The

Neuron-Selecting is designed to be started from the last layer (the output layer
excluded) of the neural network. As for the neural network, the deeper the
layer is, the more abstract and more regular the features, i.e. the activations.
Thus, the difference between the “vital few” and the “trivial many” is more
significant. Accordingly the Neuron-Selecting is more operational and effective.
For the MNIST-CNN model, we recommend implementing the Neuron-Selecting
on layer FC8 first, and then going back to layers FC7, POOL6, and CONV5 etc.
as needed.

2 https://en.wikipedia.org/wiki/Pareto chart.

https://en.wikipedia.org/wiki/Pareto{_}chart
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4 Experiments

We empirically evaluated the Neuron-Selecting defense method on the MNIST-
CNN and CIFAR10-CNN models. CIFAR10-CNN has a similar architecture with
MNIST-CNN but is trained with CIFAR-103 dataset.

4.1 Experimental Setup

The model architectures of MNIST-CNN and CIFAR10-CNN are identical to
those presented in [5] and [22]. The models are implemented with Tensorflow
(v1.12.0). We achieve 98.65% testing accuracy on MNIST-CNN and 77.05% test-
ing accuracy on CIFAR10-CNN.

We use CleverHans (v2.1.0)4 to generate different kinds of adversarial exam-
ples. CleverHans provides lots of the state-of-the-art attack methods, of which
FGSM, BIM, JSMA, DeepFool, CWL2, PGD and MIM are chosen in our experi-
ments. These are typical attack methods on DNNs. For MNIST-CNN, the hyper-
parameters of attack methods except the CWL2 all take the default values in
CleverHans. As default values would results in low attack success rate for CWL2,
we use the values proposed in [4]. For CIFAR10-CNN, the default values cause
so large perturbations to adversarial examples that humans can hardly recog-
nize correctly. So the values of some hyper-parameters especially the “eps” are
decreased for CIFAR10-CNN.

4.2 Defending Against CWL2 Untargeted Adversarial Examples

We first evaluated the defense effect on the CWL2 untargeted attacks to MNIST-
CNN. CWL2 is considered one of the most efficient attacks with small pertur-
bations but high attack success rate.

The selecting operations are first implemented on layer FC8. After achieving
the best effect on layer FC8, we take the selecting operations backward to layer
FC7. The rest selecting operations can be done in the same manner until the
defense effect is no longer improved or up to the satisfactory level. We take
the accuracy and the confidence as evaluating criteria for defense effect. This
is principally because some attacks allege that they can not only make DNNs
misclassify adversarial examples, but also with high confidences. Naturally, we
hope our defense method can not only correctly classify adversarial examples,
but also with high confidences.

A key implementation for the Neuron-Selecting is to select the vital few
neurons that contribute to the final decision-making. The number of vital few
neurons is decided by the parameter p in formula (2). In experiments we find
that for MNIST-CNN, no matter which class the normal examples belong to,
only one vital neuron in layer FC8 is significantly activated. So for layer FC8,
we simply take the neuron with the maximum activation value as vital. Because

3 http://www.cs.toronto.edu/∼kriz/cifar.html.
4 https://github.com/tensorflow/cleverhans.

http://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/tensorflow/cleverhans
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the confidences of different classes are different, here we just present the confi-
dences of the class-0 examples. Moreover, we take the average confidence value
for evaluation. After implementing the Neuron-Selecting on FC8, the accuracy
is 63.57% and the confidence is 0.8160.

We apply the Neuron-Selecting backward to more layers. For further-back
layers, we use the approach in formula (2) to select the vital neurons. So accuracy
and confidence will vary with p. The results are shown in Fig. 5. We can see that
when the selected layers are “FC7&FC8”, which means the layer FC7 is selected
after the selecting on FC8 is finished, the defense effect is improved. When
p ≈ 0.95 for layer FC7, it can achieve the best result with accuracy 70.52% and
confidence 0.9405. Similarly, when the selected layers are “POOL6&FC7&FC8”,
the defense effect is further improved. When p ≈ 0.7 for layer POOL6, it achieves
the best result with accuracy 84.55% and confidence 0.9924. When the selected
layers are “CONV5&POOL6&FC7&FC8” and p ≈ 0.8 for layer CONV5, it
achieves the best result with accuracy 88.11% and confidence 0.9930. When the
selected layers are “CONV4&CONV5&POOL6&FC7&FC8” and p ≈ 0.9 for
layer CONV4, it achieves the best result with accuracy 91.98% and confidence
0.9966. It is obvious that as more layers join the team of the Neuron-Selecting,
both the accuracy and the confidence are greatly improved.

Fig. 5. Accuracy and confidence of CWL2 adversarial examples after the Neuron-
Selecting.

We do not implement the Neuron-Selecting backward to layers POOL3,
CONV2 or CONV1, as we find that the Neuron-Selecting on these layers
decreases the defense effect. It is because POOL3, CONV2 and CONV1 are
the beginning layers of MNIST-CNN that all the neurons in these layers are
activated and the activations show no regularity. There are no vital neurons,
thus the Neuron-Selecting does not work.

The Neuron-Selecting defense method should not sacrifice the accuracy of
normal examples largely while defending against adversarial examples. The
results on normal examples are shown in Fig. 6. We can see that after apply-
ing the Neuron-Selecting on layers “CONV4&CONV5&POOL6&FC7&FC8”,
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the accuracy of adversarial examples reaches the highest value 91.98% and the
accuracy of normal examples decreases from 98.65% to 94.84%. The confidence
of normal examples has few changes and is even slightly improved.

We believe that it inevitably influences the accuracy of normal examples
while defending against adversarial examples. There is usual tradeoff between
normal and adversarial examples.

Fig. 6. Accuracy and confidence of normal examples after the Neuron-Selecting.

4.3 Delicate Changes to Activations Brought by Neuron-Selecting

To explain why the Neuron-Selecting can defend against adversarial examples, we
illustrated the delicate changes to the activations of MNIST-CNN brought by the
Neuron-selecting. We randomly chose 200 normal class-0 examples and the corre-
sponding CWL2 untargeted adversarial examples and presented the activations
of the selected layers as Fig. 7 shows. For space limitations, we just presented the
first and the last 200 neurons in layers CONV4, CONV5 and POOL6. In Fig. 7,
the first and the second rows represent the activations of 200 normal examples
before and after the Neuron-Selecting. The third and the last rows represent the
activations of 200 adversarial examples before and after the Neuron-Selecting.
The x-axis is the neuron indices and the y-axis is the activations. The activation
values are scaled and presented as grey images. The darker the point is, the
larger the activation’s value. It can be seen that before the Neuron-Selecting the
activations of adversarial examples are different from that of normal ones. The
differences are increasing layer by layer. Finally the differences mislead the net-
work into wrong classifications of adversarial examples. However, after applying
the Neuron-Selecting, the differences between activations of adversarial and nor-
mal examples are decreasing. As the input propagates forward, the activations
of adversarial examples tend to consistent with that of normal ones. This is why
the network can correctly classify the adversarial examples again.

To present the differences more intuitively, we calculate the average L2 dis-
tances (Euclidean distances) of adversarial and normal examples on different
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200 normal imgs 
before NS

200 adv imgs
before NS

200 normal imgs 
after NS

200 adv imgs
after NS

CONV4                              CONV5           POOL6                         FC7                FC8

Fig. 7. Activations of normal and adversarial examples before and after the Neuron-
Selecting.

layers. As Fig. 8 shows, before the Neuron-Selecting, there is very large L2 dis-
tance between activations of adversarial and normal examples. But after the
Neuron-Selecting, the distance is reduced significantly.

Fig. 8. Distances of normal and adversarial examples before and after Neuron-
Selecting.

4.4 Defending Against Adversarial Examples on MNIST-CNN

We evaluated the defense effect of the Neuron-Selecting against other typical
attacks on the MNIST-CNN model. For simplicity, we use the same defense
strategies as on the CWL2 untargeted adversarial examples. In Table 1, “+FC7”
represents the selected layers are “FC7&FC8”, and “+POOL6” represents the
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selected layers are “POOL6&FC7&FC8”, and so on. We evaluated both the
untargeted and targeted adversarial examples if the attack supports. The tar-
geted attacks here refer to the targeted-next (Lt = (Li+1) mod n{c}). We use the
average L2 distance (Euclidean distance) between adversarial and normal exam-
ples to measure the degree of perturbations. It can be seen from Table 1 that
the Neuron-Selecting can effectively defend against various types of adversarial
examples. Overall, as more layers join the Neuron-Selecting team, the defense
effect is improved. The best case is defending against CWL2 targeted/untargeted
attacks, with accuracy 91.98% and 92.75%. The worst case is defending against
MIM untargeted attacks and JSMA targeted/untargeted attacks, with accu-
racy 73.78%, 76.81% and 76.94% respectively. Remarkably, among all these
attacks, CWL2 produces the smallest perturbations and MIM/JSMA does rela-
tively much more. We find that the Neuron-Selecting excels at defending against
attacks that have small perturbations but high attack success rate. Such attacks
are usually imperceptible for humans and are more likely to cause heavy damages
to the application of DNNs.

Table 1. Accuracy of adversarial examples on MNIST-CNN.

Normal/adversarial L2
distance

Accuracy
(before
NS)

Accuracy (after NS)

FC8
(max)

+FC7
(p=0.95)

+POOL6
(p=0.7)

+CONV5
(p=0.8)

+CONV4
(p=0.9)

Normal / 0.0000 0.9865 0.9861 0.9812 0.9542 0.9565 0.9485

FGSM Untargeted 4.0214 0.7367 0.7565 0.7334 0.7423 0.7939 0.8694

Targeted 4.0264 0.7458 0.7661 0.7399 0.7569 0.8121 0.8781

BIM Untargeted 2.6043 0.3430 0.3572 0.3828 0.6450 0.7206 0.8145

Targeted 2.5266 0.6853 0.7027 0.6761 0.8003 0.8439 0.8854

JSMA Untargeted 4.3213 0.6040 0.6227 0.6203 0.6371 0.6792 0.7681

Targeted 4.3211 0.6064 0.6247 0.6205 0.6407 0.6876 0.7694

DeepFool Untargeted 2.5677 0.3440 0.5812 0.6059 0.7464 0.8100 0.8705

CWL2 Untargeted 1.4666 0.0733 0.6357 0.7052 0.8455 0.8811 0.9198

Targeted 0.6395 0.5848 0.7598 0.7677 0.8817 0.9036 0.9275

PGD Untargeted 3.8463 0.2147 0.2261 0.2544 0.6129 0.7139 0.8359

Targeted 3.7971 0.6134 0.6537 0.6266 0.8006 0.8524 0.8991

MIM Untargeted 4.9036 0.2389 0.2441 0.2618 0.4634 0.5496 0.7378

Targeted 4.8994 0.5514 0.5689 0.5457 0.6787 0.7370 0.8398

4.5 Defending Against Adversarial Examples on CIFAR10-CNN

We also evaluated the Neuron-Selecting defense method on the CIFAR10-CNN
model. As well, we first conducted experiments on the CWL2 untargeted attacks
and found that it would be best to implement the Neuron-Selecting on layers
FC8, FC7, POOL6 and CONV5. The p values for these layers are 0.95, 0.7, 0.75
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and 0.75 respectively. Then we evaluated on other types of attacks and the results
are presented in Table 2. It can be seen that after applying the Neuron-Selecting,
the defense ability of the model against different types of attacks is greatly
improved. However, it is obvious that CIFAR10-CNN itself has not achieved a
high accuracy on the classification of CIFAR-10 dataset. When the model itself
has poor performance, the defense effect of the Neuron-Selecting will be compro-
mised. We think that if the network is deeper, more layers can be implemented
the Neuron-Selecting on and the defense effect will be better. The experimental
results on CIFAR10-CNN also demonstrate that the Neuron-Selecting excels at
defending against attacks like CWL2 that have small perturbations but high
attack success rate.

Table 2. Accuracy of adversarial examples on CIFAR10-CNN.

Normal/adversarial L2
distance

Accuracy
(before
NS)

Accuracy (after NS)

FC8
(p=0.95)

+FC7
(p=0.7)

+POOL6
(p=0.75)

+CONV5
(p=0.75)

Normal / 0.0000 0.7705 0.7710 0.7445 0.7052 0.7015

FGSM Untargeted 1.6470 0.5180 0.5191 0.5145 0.5293 0.5399

Targeted 1.6469 0.5131 0.5141 0.5181 0.5306 0.5405

BIM Untargeted 1.4992 0.3390 0.3454 0.3712 0.4508 0.4700

Targeted 1.4965 0.4590 0.4602 0.4653 0.5175 0.5263

JSMA Untargeted 3.4022 0.3461 0.4184 0.4666 0.5062 0.5184

Targeted 3.2663 0.3099 0.3866 0.4536 0.5044 0.5142

DeepFool Untargeted 0.9913 0.1346 0.3069 0.4041 0.4832 0.4998

CWL2 Untargeted 0.6707 0.1213 0.4973 0.5829 0.6304 0.6441

Targeted 1.1843 0.0013 0.3639 0.5223 0.6051 0.6234

PGD Untargeted 1.2856 0.2210 0.2405 0.3066 0.4599 0.4914

Targeted 1.2687 0.3321 0.3549 0.4317 0.5545 0.5730

MIM Untargeted 1.6480 0.2250 0.2343 0.2741 0.4061 0.4349

Targeted 1.6479 0.3255 0.3377 0.3852 0.4903 0.5050

5 Conclusion

We proposed a Neuron-Selecting method to defend against adversarial exam-
ples in DNNs. The Neuron-Selecting is designed to select the right decision-
making neurons and filter out the irrelevant neurons activated by perturba-
tions, thus adversarial examples can be correctly classified. We evaluated our
defense method both on MNIST and CIFAR-10 models. The results show that
the Neuron-Selecting can effectively defend against various types of adversarial
examples, especially ones that have small perturbations but high attack success
rate.
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We have not compared the Neuron-Selecting to other defense methods. The
reason is that current defense methods, e.g. adversarial training, usually employ
the network retraining, data augmentation or input preprocessing. Our Neuron-
Selecting defense method applies well to the situation that the network cannot
be retrained and the data is difficult to be augmented or preprocessed. So it is
very difficult to provide a fair comparison. We hope our work could provide a
new perspective to defend against adversarial examples, i.e. while concentrating
on eliminating the perturbations in adversarial examples, we might as well take
efforts to get rid of the “perturbations” of the model itself brought by adversarial
examples.

A Pareto Chart for Selecting the Vital Few Neurons

The Pareto chart, named after Vilfredo Pareto, is to highlight the most important
among a set of factors and is widely used in economics, engineering and sociology.
As shown in Fig. 9, in the Pareto chart for selecting the vital few neurons, the
activation values are represented in descending order by bars, and the cumulative
percentage of the activation values is represented by the line. The left vertical axis
is the activation values and the right vertical axis is the cumulative percentage.
The horizontal axis is the neuron No. that identifies the different neurons in
the layer. p is the value of the cumulative percentage. Then we can easily find
the vital few neurons based on the value of p. For example, when p = 0.8, the
neurons associated with the cumulative percentage 0.8 are the vital few neurons.

Fig. 9. Pareto chart for selecting the vital few neurons.
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Abstract. The security of the Deepfake video has become the focus of
social concern. This kind of fake video not only infringes copyright and
privacy but also poses potential risks to politics, journalism, social trust,
and other aspects. Unfortunately, fighting against Deepfake video is still
in its early stage and practical solutions are required. Currently, bio-
logical signal based and learning-based are two major ways in detecting
Deepfake video. We explore that facial expression between two adjacent
frames appears significant differences in generative adversarial network
(GAN)-synthesized fake video, while in a real video the facial expres-
sion looks naturally and transforms in a smooth way across frames. In
this paper, we employ optical flow to capture the obvious differences of
facial expressions between adjacent frames in a video and incorporate
the temporal characteristics of consecutive frames into a convolutional
neural network (CNN) model to distinguish the Deepfake video. In our
experiments, we evaluate the effectiveness of our approach on a publicly
fake video dataset, FaceForensics++. Experimental results show that our
proposed approach achieves an accuracy higher than 98.1% and the AUC
score reaches more than 0.9981.

Keywords: Deepfake Detection · Temporal features · Spatial
features · Optical flow

1 Introduction

With the remarkable progress of GANs in image synthesis, we cannot believe
our eyes in the AI era. Fake videos can be easily generated with tools such as
FaceSwap [2], Deepfacelab [1], FaceApp [5] by touching a few keys on devices.
These tools leverage the power of GANs in image synthesis and provide quite
interesting functionalities to users, for instance, users can swap one’s face to
others and create a nearly realistic fake video. As shown in Fig. 1, A physically
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discordant person can do a great dance by changing faces with someone from
dance video. However, this also brings some security concerns and privacy issues
to users when the image synthesis techniques are abused.

Everyone will be the victims including celebrities and politicians. A celebrity’s
face could be swapped to a naked body and an illusory official statement can
be announced by a politician in an AI-synthesized fake video. Thus, it is crucial
to call for effective ways for spotting these AI-synthesized fake videos which are
also known as Deepfake [3]. There are three common types of Deepfake, namely
face swapping, lip-sync, and puppet-master [11]. In our work, we mainly focus
on face swapping which is widely used in free tools (e.g. ZAO [9]) and could
easily incur misinformation dissemination in social networks.

Detecting manipulated media content is a longstanding research focus.
However, traditional techniques face many challenges for detecting the Deep-
fake video. These techniques extract pix-level or color-level statistical features
[15,18,19], which can be easily suffered by compression, resizing, etc. In gener-
ating videos, compression and resizing is common operations, thus traditional
image forensics techniques failed in fake video detection.

Fig. 1. Deepfake video

Existing work on detecting Deepfake videos can be summarized into two cat-
egories, biological signal based and learning-based. Agarwal et al. [11] observed
that individual exhibits distinct patterns of facial and head movement when
speaking, while Deepfake video tends to disrupt these particular patterns. Yang
et al. [24] investigated that current neural network synthesized faces appear mis-
matched facial landmarks. Li et al. [16] distinguished fake videos by capturing
the frequency of eye blinking. Some researchers [17] noticed that the synthe-
sized faces in Deepfake video always in a fixed size. Afshar et al. [10] proposed
detecting Deepfake video with the basic insight that some frames in Deepfake
video exhibit large blurred areas or a double facial contour. These work pay
attention to extract obvious biological signal features that are unrealistic in real
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videos. Some work leverage the power of neural networks in feature representa-
tion. The basic insight of these work is that the inconsistencies are introduced
across frames in synthesizing fake videos, particularly temporal discrepancies
across frames [14,21].

In our work, we explore another biological signal features which can be
applied in distinguishing Deepfake videos. Facial expression in adjacent frames
should be transformed naturally and has strong correlations, while it is hard to
be overcome in synthesizing fake videos as facial expression patterns are always
inadequate for individuals. In the meantime, we find optical flow can capture
the subtle facial expression variations in consecutive frames effectively.

In this work, we employ optical flow to characterize the temporal changes of
facial expressions, that is, the temporal features proposed in this paper. Then
we use the convolutional neural network to extract the spatial features of the
original images. According to the Spatial-temporal characteristics consistency
of subtle expressions, we use the convolutional neural network to extract the
features at a deep level to detect the Deepfake video. Our contributions are:

1. In this paper, we observed that facial expression between two adjacent frames
in the Deepfake videos appears significant differences, which can be used to
better detect Deepfake videos.

2. We employ optical flow to capture the differences of facial expression between
two adjacent frames based on our observation. Then we use the optical flow
graphs to characterize the temporal features of the videos.

3. We evaluate the effectiveness of our approach on FaceForensics++, a publicly
fake video dataset. The experimental results show that our approach achieves
an accuracy higher than 98.1% and the AUC score reaches more than 0.9981.

The rest of this paper is organized as follows. Section 2 introduces the back-
ground. Section 3 describes our approach in detail. Section 4 presents the imple-
mentation and evaluation of our method, Sect. 5.

2 Background

In this section, we firstly introduce the generation of Deepfake videos. Then we
further analyze its vulnerabilities.

2.1 Deepfake Video Generation

One way to generate Deepfake videos is to use an encoder-decoder model based
on AI, which consists of two processes, the training process as well as the gen-
eration process. In the training process, two neural networks are trained, each
of which is composed of an encoder network and a decoder network. For input
pictures of two different faces A and B, the encoder network first compresses the
face data in each picture into a low-dimensional vector and then uses the decoder
network to decode the low-dimensional vector obtained in the previous step to
generate the decoded picture. Then the network is optimized by minimizing the
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difference between the decoded image and the input image. The encoder network
of the two images must remain consistent during the training phase, in order to
extract the consistency of the features in these two pictures. In the generation
process, we use the trained decoder B to decode the encoded low-dimensional
vector of A, so that we get the face-changing image of A.

In general, the overall process of the training process is to extract the features
of two different faces (original face and target face) with the encoder of the same
parameters and then recover the target face image with the decoder trained from
the target face. The encoder is a convolutional neural network that extracts
features such as facial features, expressions and so on from the image input.
The decoder recovers the original image from the extracted features according
to the parameters of the encoder [14]. The encoder contains a general method
for extracting the typical features of human faces, and different decoders can
recover different faces from the extracted features.

Another more common way to generate Deepfake videos is based on Gen-
erative Adversarial Network (GAN)[13]. As is shown in Fig. 2. A Generative
Adversarial Network consists of two parts: the generator and the discriminator.
The generator takes face samples that need to be swapped as input to gener-
ate false video. The discriminator is simply a classifier trained with supervised
learning techniques to check if the video is real or fake. The generator and the
discriminator are rivals of each other. All the parameters are trained until con-
vergence.

Fig. 2. The procedure of face swapping with GANs

2.2 Vulnerability of Deepfake Videos

Through the above analysis, we can see that when generating Deepfake videos,
the face is replaced frame by frame, and then the complete video is synthe-
sized. As is well known, video differs from images in that video is composed of
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many consecutive frames. For real video, successive frames represent continuous
changes in the target object over time, so they have strong consistency. In con-
trast, a Deepfake video will inevitably break the consistency between adjacent
frames by processing each frame and then combining them. In other words, the
facial expression of the target area in the Deepfake video will have a certain
degree of distortion and anomalies. Therefore, extracting the characteristics of
the variation between adjacent frames helps us to get a more comprehensive
Deepfake video feature.

3 Our Approach

In order to extract the characteristics of the variation between adjacent frames,
we need to get the change of pixels within the image sequence in the time domain
and the correlation between adjacent frames to find the correspondence between
the previous frame and the current frame. Calculating optical flow is such a
method. In this paper, we characterize the temporal features by calculating the
optical flow fields of the facial images in two consecutive frames.

However, we want to extract deeper features. We use a convolutional neural
network (CNN) to obtain the spatial features of the frame and combine them
with the temporal features. Based on the consistency of space-temporal charac-
teristics, our CNN-based deep learning model can acquire deeper features.

We build a model that consists of four parts: data preprocessing, spatial
feature extraction, temporal feature extraction, and deep learning model.

At first, we processed video data set into pictures frame by frame and inter-
cepted the faces in the pictures. Then, we use CNN to extract the spatial features
of human faces. At the same time, we calculate the optical flow between two con-
tinuous pictures of human faces to obtain the optical flow diagrams. After that,
the powerful self-extraction ability of CNN is used to extract the temporal fea-
tures of optical flow diagrams. According to the consistency of space-temporal
characteristics, we combine the temporal and spatial characteristics so that CNN
can acquire deeper features. Finally, we train the deep learning model to imple-
ment Deepfake video detection. The entire process is shown in Fig. 3.

3.1 Data Preprocessing

In general, data preprocessing is a common requirement for many learning algo-
rithms and models. Data preprocessing describes any type of processing per-
formed on raw data to prepare it for another processing procedure. In this
paper, the data preprocessing stage mainly consists of three steps: extracting
image frames from the video, extracting the face region from the image, and
sequentially storing the images.

First, we selected training data sets and verification data sets from real videos
and Deepfake videos. Then we separate frames from the original video data sets
frame by frame. We do video segmentation and then extract the face region of
every frame. At last, the processed face images are stored in the order of the
video frame sequence number.
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Fig. 3. Overall framework of the model

3.2 Temporal Feature Extraction Based on Optical Flow

We know that when generating Deepfake videos, the face is replaced frame by
frame, and then the complete video is synthesized. Such a process neglects the
consistency of slight changes in facial expressions between frames in the original
video, which is likely to bring about disharmonious cases. In most cases, the
emotions of people do not change suddenly, in other words, the expressions of
human beings change continuously in normal videos. That is to say, the emo-
tions reflected by their facial expressions between adjacent frames should be
consistent. However, since each frame is independent, videos generated by the
Deepfake technique do not always take into account this kind of situation, lead-
ing to inconsistent facial expressions between adjacent frames. It may be hard
to tell with the naked eye, but it is not difficult for the machine to recognize.

Therefore, we need to find the correspondence between the previous frame
and the current frame. Calculating optical flow is a method of calculating the
change of pixels within image sequence in the time domain and the correlation
between adjacent frames, thereby calculating the motion of the object between
adjacent frames. Optical flow is the instantaneous velocity of a moving pixel
within the image. If the time interval is small enough, the velocity can be
expressed by displacement. In simple terms, assuming that the angle of obser-
vation is constant, the optical flow represents the movement of a point from the
first frame to the second frame. For example, for two adjacent frames in a video,
or frames extracted from a video at a small-time interval, the instantaneous
velocity of pixel movement can be expressed by displacement. We usually regard
it as a two-dimensional vector u = (u,v) describing the instantaneous velocity of
the pixel, which is also called the optical flow vector.

Optical flow can be divided into two types, dense optical flow, and sparse
optical flow [22]. The dense optical flow performs point-by-point matching on
the image to calculate the offset of all points on the image, while the sparse
optical flow only needs to specify a set of points with obvious characteristics for
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tracking. In contrast, due to the denser optical flow vector, dense optical flow is
significantly better than the sparse optical flow at the registration effect, but at
the same time, the calculation amount is larger because the offset of each point
is calculated. In our work, we select dense optical flow because the amount of
image pixels that need to be calculated is limited and the demand for accuracy
is high.

OpenCV [22] provides an algorithm for calculating dense optical flows: the
Farneback dense optical flow algorithm. The principle is briefly described below
[16]. The working principle of the optical flow method is based on the following
assumptions [23]:

1. The brightness of the target pixel does not change between two consecutive
frames of images.

2. There is a similar motion between adjacent pixels.

We define X = [x, y] as one pixel position in the image and t as time. We note
the brightness of X = [x, y] at time t as I(x, y, t).

For two consecutive frames in the image, since the brightness of the target
pixel does not change, the brightness of the same pixel in these two frames does
not change, which is expressed as:

I(x, y, t) = I(x + Δx, y + Δy, t + Δt) (1)

We use the first order Taylor expansion at I(x, y, t) of formula (1), and get
formula (2):

I(x + Δx, y + Δy, t + Δt) = I(x, y, t) +
∂I

∂x
dx +

∂I

∂y
dy +

∂I

∂t
dt + ξ (2)

In formula (2), ξ is the second order infinitesimal in Taylor’s expansion, which
can be ignored. Substituting formula 2 into formula 1, and divide both sides by
dt,we get:

I(x, y, t)
dt

=
∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
+

∂I

∂t
= 0 (3)

It is obvious that dx
dt and dy

dt represent the motion vectors of the tracked pixel
points in the x-axis direction and the y-axis direction. Let u = dx

dt , v = dy
dt , then

(u, v) is the desired optical flow. This feature is very suitable for the temporal
feature extraction in this paper.

3.3 Spatial Feature Extraction Based on CNN

According to the consistency of space-temporal features, we want to extract the
spatial features of adjacent frames. Considering that the convolutional neural
network (CNN) has a strong self-learning ability, we hope to build our own net-
work to learn and capture the characteristics such as low-level features, contour,
grayscale, texture, and other features. These features can well reflect some subtle
abnormalities of the human face in Deepfake videos, such as edge stiffness, jitter,
distortion, color and so on.
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3.4 Deep Learning Model

We obtain the optical flow diagram by calculating the optical flow and extract
the spatial features between adjacent frames through the convolutional neural
network. We combine the two features and use the convolutional neural network
to further extract the deeper features. Considering the excellent performance of
CNN in image classification, we decided to use this type of network to implement
our detection. The general structure is shown in Fig. 4. Then we trained and
verified the model on the data set, adjusted and modified the network structure
with poor verification performance, and finally got the model that performed
well on both the training set and the verification set.

Fig. 4. The Structure of our deep learning model

The neural network has one input layer, four convolutional layers, four batch
normalization layers, four pooling layers, one flatten layer, two dropout layers,
and three dense layers. The specific information of each part is as follows:

1. Input layer: This layer accepts ten 256*256*3 original frames and two
256*256*8 optical flow diagrams as input at a time.

2. The parameters of convolutional layers and pooling layers, as well as the
processing results of each layer, are shown in Table 1.

3. Batch normalization layer: This layer normalizes the data of each batch to
ensure the rapid convergence of the model.

4. flatten layer: This layer is mainly used to ”flatten” the data input from
the convolutional layer, that is, to convert multidimensional data to one-
dimensional input.

5. Dropout layer 1: Whenever parameters are updated each the time during
training, the input neurons are randomly disconnected with a probability of
0.5.
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6. Dense layer 1: Fully connected layer with 16 units. It calculates the dot prod-
uct between the input vector and the weight vector to obtains 16 outputs,
and inputs the result to the Leaky ReLU activation function for nonlinear
processing.

7. Dropout layer 2: The input neurons are randomly disconnected with a prob-
ability of 0.5 each time the parameters are updated during the training.

8. Dense layer 2: Fully connected layer with 1 unit. It calculates the dot product
between the input vector and the weight vector to get 1 output.

9. Dense layer 3: Fully connected layer with 1 unit. This layer accepts the pro-
cessing result of 10 video frames and 2 optical flow pictures as input, and
then output the final classification result.

Table 1. Parameters and results of convolutional layers and pooling layers

Layers Filter size Step length Number of
convolutional kernels

Activation
function

Feature map

Convolutional
layer C1

3*3 1 8 Relu 256*256*8

Pooling layer M1 Pooling window size: 2*2 128*128*8

Convolutional
layer C2

5*5 1 8 Relu 128*128*8

Pooling layer M2 Pooling window size: 2*2 64*64*8

Convolutional
layer C3

5*5 1 16 Relu 64*64*16

Pooling layer M3 Pooling window size: 2*2 32*32*16

Convolutional
layer C4

5*5 1 16 Relu 32*32*16

Pooling layer M4 Pooling window size: 4*4 8*8*16

Each layer of CNN plays its role. The convolutional layer extracts the features of
the image, and its weight sharing and partial connection structure reduces the
number of parameters that need to be optimized. The batch normalization layer
speeds up the convergence of the model. The pooling layer compresses the data,
reducing memory consumption. The Dropout layer helps avoid over-fitting. After
the network completes the training, the obtained CNN model and its parameters
can be used for verification and testing. We modify and adjust the structure of
the model several times according to the verification performance. Finally, we
choose the neural network with the highest accuracy. Figure 5 show the feature
map of the input optical flow map after every convolutional layer.
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Fig. 5. The intermediate results

4 Implementation and Evaluation

In this section, we briefly introduce our dataset and experimental process.
Finally, we evaluate our model’s performance and analyze the experiment results.

4.1 Experimental Setup

To evaluate our method, we use the FaceForensics++ Datasets published on
github [1], which is an open dataset containing 1000 Deepfake standard-definition
videos and 1000 real standard-definition videos collected from several social
media platforms. Since the dataset is open source and diverse, evaluation based
on it ensures that our method is effective and robust.

The experiments in this paper were performed on a Windows 10 desktop com-
puter with an Intel(R) Core(TM) i7-8700CPU@3.20 GHz, a memory of 16 GB,
and a GPU for the Nvidia GTX1080ti. The deep learning model was built using
Keras 2.2.4 [7] and used Tensorflow 1.8.0 [8] as the backend engine.

4.2 Experiment Process

Our experiment contains several steps.
Firstly, we randomly select 850 videos from 1000 real videos and 850 from

1000 Deepfake videos as the training dataset. As for the testing dataset, we
randomly select 100 videos from each category respectively.

Secondly, we separate frames from the original video data set frame by frame.
In this paper, we use FFmpeg [6] to separate frames from the original video
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data set frame by frame. FFmpeg is the leading multimedia framework, able
to decode, encode, transcode, mux, demux, stream, filter and play pretty much
anything that humans and machines have created. We use the Python language
to call the FFmpeg program for video framing.

Thirdly, we do video segmentation and then extract the face region of every
frame. We use Dlib [4], which is a modern C++ toolkit containing machine learn-
ing algorithms and tools, including the HOG-SVM algorithm for face detection
and multiple detection algorithms based on CNN. Through experiments, we
found that the CNN-based detection algorithms are better, so we choose the
latter to get face position information. Then we use OpenCV [22] to crop the
obtained face position information and save it as a 256*256 3-channel .png for-
mat image. The number of images in the dataset is shown in Table 2.

Table 2. Experimental data

Class Training Verification

Deepfake frames 17116 1924

Real frames 17191 1962

Total frames 34307 3886

Then, we calculate the optical flow fields of the facial images in two consecu-
tive frames. We use OpenCV, which provides a function called calcOpticalFlow-
Farneback to implement the Farneback dense optical flow algorithm. The image
of the human facial area extracted from the video is an RGB image, but the
Farneback dense optical flow algorithm can only calculate a grayscale image. So
it is necessary to first convert the RGB image into a grayscale image. Besides,
we need to take care that the input of this function is an 8-bit single-channel pic-
ture of 256*256 pixels of two consecutive frames, while the output is a CV 32FC2
format optical flow image of the same size as the input picture which is a two-
channel image. We calculate 4 optical flow maps between 5 frames, and we define
the combination of the above-mentioned pictures as a group. We use two contin-
uous groups as an input as is shown in Fig. 6, and then mark it with 1 for fake
video or 0 for real video.

At last, we incorporate the temporal features with spatial features of con-
secutive frames into a convolutional neural network (CNN) model to distinguish
the Deepfake video.

4.3 Experimental Result

In the experiment, we set the iteration of the model to 80 times, and the loss
function of the deep learning model to MSE (mean square error). The calculation
method is as follows:

Loss =
1

2m

m∑

i=1

(ŷi − yi)2 (4)
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Fig. 6. The generation of input sequence

ŷi is the predicted value of the model, and yi is the label of the sample. Loss
function can well represent the fitting degree between the predicted results of
the model and the real label, and the smaller the value, the better. As shown in
Fig. 7, With the increase of training times, the loss function value of the model
gradually decreases.

Fig. 7. The changing curve of loss

Accuracy is an important evaluation index for the classification model. The accu-
racy is defined in a standard way as formula 5. TP stands for True Positive, the
number of Deepfake images correctly classified. TN is True Negative, referring
to the number of True images correctly classified. FP is False Positive and refers
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to the number of Deepfake images misclassified. FN is False Negative and is the
number of true images wrongly classified. The higher the accuracy, the better
the accuracy of the model.

accuracy =
TP + TN

TP + FP + TN + FN
(5)

Besides, the ROC curve is also selected as the evaluation standard, which can well
describe the generalization performance of the model. The ROC curve plots the
TPR (True Positive Rate) against the FPR (False Positive Rate) for every test
case. We then calculate the AUC (Area Under the ROC curve) to characterize
how well the model performs. The closer is AUC to 1, the better the model
performance. The formula of TPR, FPR, and AUC is as follows:

TPR =
TP

TP + FN
(6)

FPR =
FP

FP + TN
(7)

AUC =
1
2

m−1∑

i=1

(FPRi+1 − FPRi)(TPRi + TPRi+1) (8)

Figure 8 shows the system accuracy on both training sets and test set as the
epoch number grows. It indicates that our method could achieve accuracy greater
than 98% on the training set and 96% on the testing set after 40 iterations.
Figure 9 shows the ROC curve. In paper [20], the author compares many models
using the FaceForensics++ data set. We chose the two models MesoNet [10]
and XceptionNet [12] to compare with our model, because only MesoNet and
XceptionNet are the detection models for Deepfake. Then we reproduce these
two models and experiment with our models on the same training and validation
sets. Since some parameters in the experiment are different from those in Paper
[20], such as data set division and CPU parameters. In order to compare the
effects of models in various aspects, AUC is also selected as the comparison
standard. our experimental results are shown in the Table 3. It is obvious that
our method achieves far higher accuracy on the standard definition dataset than
other deep learning models.
In contrast, our model has achieved ideal results in all indicators while main-
taining a simple model structure. Since fake videos detecting applications always
require detecting algorithm to be low time and computation consumed, our sys-
tem meets the demand with high practicality and accuracy.
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Fig. 8. ROC curve

Fig. 9. The changing curve of model accuracy

Table 3. Comparison of accuracy results

Deep learning model Accuracy (%) AUC results

MesoNet [10] 92.00% 0.9859

XceptionNet [12] 95.73% 0.6653

Our model 98.10% 0.9981

5 Conclusion

Nowadays, fighting against Deepfake videos has become more and more impor-
tant. In this paper, by analyzing the generation process of video, we find that
facial expressions between adjacent frames are inevitably abnormal. In response
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to this phenomenon, we propose a Deepfake video detection method base on
subtle facial expressions. We employ optical flow to capture the obvious differ-
ences of facial expressions between adjacent frames in a video and incorporate
the temporal characteristics of consecutive frames into a convolutional neural
network (CNN) model to distinguish the Deepfake video.

According to experiment results, our model achieves great performance, with
an accuracy much higher than most of the existing models, and at the same time,
the complexity of the model can be greatly reduced.

In conclusion, our method can ensure both effectiveness and practicability.
Our future work includes doing further research on deep fake videos with different
quality levels, and realize automatic adjustment of parameters.
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Abstract. Differential privacy has recently been applied to frequent
itemset mining (FIM). Most existing works focus on promoting result
utility while satisfying differential privacy. However, they all focus on
“one-shot” release of a static dataset, which do not adequately address
the increasing need for up-to-date sensitive information. In this paper, we
address the problem of differentially private FIM for dynamic datasets,
and propose a scheme against infinite incremental updates which satis-
fies ε-differential privacy in any sliding window. To reduce the increasing
perturbation error against incremental updates, we design an adaptive
budget allocation scheme combining with transactional dataset change.
To reduce the high sensitivity of one-shot release, we split long transac-
tions and analyze its information loss. Then we privately compute the
approximate number of frequent itemsets. Based on the above results, we
design a threshold exponential mechanism to privately release frequent
itemsets. Through formal privacy analysis, we show that our scheme sat-
isfies ε-differential privacy in any sliding window. Extensive experiment
results on real-world datasets illustrate that our scheme achieves high
utility and efficiency.

Keywords: FIM · Incremental updates · w-event privacy · Differential
privacy

1 Introduction

Frequent itemset mining is a fundamental component in many important data
mining applications, such as web log mining, trend analysis and fraud detection
etc. Since transactions in the database are changing, it is necessary to update
frequent itemsets as time goes on. Directly releasing frequent itemsets and their
support may breach the privacy of individuals. In particular, continually updat-
ing statistics over time leaks more and more information to the attackers. If a
subset of history transactions for some user is available to the attacker, with the
updated frequent itemsets in the outputs, an inference attack is successful [1,2],
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which can be seen in Fig. 1. So how to protect the privacy of individuals while
getting a continuously updated statistics is important. Differential privacy [3] is
a strong and rigorous standard privacy guarantee against adversaries with any
background knowledge. In this paper, we focus on differentially private frequent
itemset mining against infinite incremental updates.

Fig. 1. An attack scenario

By adding a carefully chosen amount of noise, differential privacy assures
that the output of a computation is insensitive to any individual tuple in the
input, and thus privacy is protected. The magnitude of added noise is determined
by the privacy budget ε and the sensitivity of the computation. The greater the
privacy budget, the less the added noise, vice versa. For the same privacy budget
ε, the greater the sensitivity, the more the added noise.

To the best of our knowledge, there is no literature on differentially private
FIM on dynamic scenario. Due to the inherent dynamics and high-dimensionality
of transactional dataset, there are two challenges to apply differential privacy
to our problem: First, with the number (N) of updates increasing, noise increases
due to the composition theorem [3] of differential privacy. The perturbation error
achieves to O(N). To reduce this error, some works [19,23] propose sampling
representative points to privately release or only consider the privacy of recent
release. These methods are proposed to protect the continual release of simple
statistics, and can not directly be used in our problem. To solve this challenge,
we design an adaptive privacy budget allocation scheme for FIM on a dynamic
scenario. We consider how to protect the privacy in every sliding window (w
snapshots) of continually updated transactional datasets. Our scheme can reduce
the perturbation error against incremental updates to O(w).

Second, since long transactions cause the space of candidate frequent itemsets
very large, the sensitivity of “one-shot” release is very high. For example, suppose
the maximal length of transaction is l and the total size of items is |I|, it is not
hard to show that the sensitivity is O(

∑l
i=1

(|I|
l

)
). The magnitude of noise added

is too large, which reduces the utility of the release results. To solve this problem,
existing works [5–8,10] of differentially private FIM on a static dataset present
some schemes. For example, TT [8] first proposes truncating long transactions,
and then it designs a private release scheme based on Apriori algorithm. PFP [5]
first proposes splitting long transactions based on the relation of all items found
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in advance, and then it designs a private release scheme based on FP-growth
algorithm. The preprocessing processes of the above schemes consume too much
time, and their private release schemes are designed for the static scenario, which
can not be used for the continual release. For the above reasons, we make the
following contributions:

– For the first time we put forward a scheme for differentially private FIM
against infinite incremental updates, which satisfies ε-differentially privacy
in any sliding window. To reduce the increasing perturbation error against
incremental updates and maximize the utility of privacy budget in the sliding
window, we design an adaptive budget allocation scheme in the sliding window
combining with transactional dataset change.

– To reduce the high sensitivity of one-shot release, we split long transactions
based on random sampling and analyze its information loss. Then we pri-
vately calculate the approximate number of frequent itemsets. Based on the
split dataset and the approximate number, we design a threshold exponential
mechanism to privately release frequent itemsets at ti. In the release process,
we promote the result utility by offsetting the information loss and using the
support threshold to further reduce the space of candidate frequent itemsets.

– Formal privacy analysis proves that our scheme satisfies ε-differential pri-
vacy in any sliding window. Extensive experiments on real datasets show our
scheme achieves high data utility and efficiency.

The rest of the paper is organized as follows. Section 2 presents necessary
background on differential privacy and problem statement. Section 3 proposes
a private release scheme and gives a detailed privacy analysis. Comprehensive
experimental results are reported in Sect. 4. Section 5 discusses the related works,
and Sect. 6 concludes our work.

2 Preliminaries

2.1 Differential Privacy

In the definition of differential privacy [3], a randomized mechanism is differen-
tially private if its outcome on any neighboring datasets (D,D′) is almost the
same. D can be attained from D′ by adding(removing) one individual’s record.
In our problem, an adversary should learn approximately the same information
about any individual user from two w-neighboring datasets Dw, D′

w. D′
w can be

obtained from Dw by adding or removing one individual’s transactions in any
window of w snapshots.

Definition 1 (w-event ε-differential privacy) [3,22]. A randomized mecha-
nism M provides w-event ε-differential privacy, iff for any output O of M and
for any two w-neighboring series of dynamic datasets Dw, D′

w, we have:

Pr[M(Dw) ∈ O] ≤ Pr[M(D′
w) ∈ O] × eε (1)

ε is the privacy budget which reflects the level of the privacy.
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Definition 2 (LM) [3]. Given a query function f = <f1, ..., fd>, a mech-
anism M that adds i.i.d. Laplace noise to query result f(D) can achieve ε-
differential privacy, which is referred to as Laplace mechanism (LM).

M(D) = f(D)+ < Δ1, ...,Δd > (2)

where Δi ∼ Lap(GS(f)
ε ) (1 ≤ i ≤ d), GS(f) = max(‖f(D) − f(D′)‖1), which is

the sensitivity and reflects greatest impact on the result while adding or deleting
one record in D.

Definition 3 (EM) [4]. Given the output domain R, the exponential mecha-
nism (EM) requires a user-specified quality function u : (D ×O) → R, u outputs
a real-valued score that measures how desirable r is to the user (larger scores are
preferred). To ensure ε−differential privacy, EM samples r from R with proba-
bility:

Pr[r ∈ R] ∝ exp(
εu(D, r)

2Δu
) (3)

Where Δu denotes the sensitivity of the quality function u.

Theorem 1 (Sequential Composition) [3]. Let M1, · · · ,Mm be m random-
ized algorithms, where Mi provides εi−differential privacy (1 ≤ i ≤ m). A
sequence of Mi(D) over database D provides (

∑
εi)-differential privacy.

2.2 Problem Formulation

Let N (N is an infinite number) denote the total number of incremental updates.
Let D = {D1, · · · ,DN} denote a series of dynamic transactional datasets, Di is
a snapshot at ti, D1 is the initial database. Let {ΔD1, · · · ,ΔDN−1} denote the
incremental datasets from t2. For each ti (2 ≤ i ≤ N), Di = D1 +

∑i−1
j=1 ΔDj ,

and we aim to release a private frequent itemsets F̂ Ii, which is a set of patterns
whose support is greater than λ (support threshold). Over N time points, the
series of noisy frequent itemsets F̂ I = {F̂ I1, · · · , F̂ IN} should guarantee w-event
ε-differential privacy in any sliding window of w snapshots.

3 Core Strategies

Our publishing mechanism M is composed of N sub mechanisms M1, · · · ,MN

(N is an infinite integer). Each Mi(1 ≤ i ≤ N) is a random mechanism that
operates on Di and outputs a private frequent itemsets F̂ Ii at timestamps ti.
It contains the following two processes: the first one is privately computing the
dissimilarity of the transactional datasets at adjacent timestamps. The second
one is one-shot private release based on threshold exponential mechanism at ti.
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3.1 Adaptive Budget Allocation in a Sliding Window

To achieve ε-differential privacy in the sliding window, we can uniformly dis-
tribute ε to each release within any window of w consecutive timestamps. How-
ever, it results in a low utility. This motivates us to design an adaptive budget
allocation scheme: Only when the change of transactional datasets between two
consecutive timestamps is large enough will a private release be made. Otherwise
the budget is saved to promote the subsequent release. We distribute the release
budget in an exponentially decreasing fashion, and recycle the release budget
spent in the time points falling outside the active window. In the above way,
the sum of budgets of each release in any sliding window is at most ε and the
overall utility can be improved. Detailed scheme is as follows: for each ti, we
use εi,1 = αε/w (0 ≤ α ≤ 1) to make a private dissimilarity computation (lines
2–4). If the dissimilarity is less than θ (dissimilarity threshold), we set εi,2 = 0,
and make a passive release (lines 5–7), which means release F̂ Ii−1 instead of
F̂ Ii. Otherwise, we compute the remaining budget εrm for the active window
[i − w + 1, i], εrm = (1 − α)ε − ∑i−1

k=i−w+1 εi,2, which means ε minus the dis-
similarity budget spent in window [i − w + 1, i] and the release budget spent in
window [i − w + 1, i − 1], and allocate εrm to εi,2 in an exponentially decreasing
fashion, εi,2 is set to be εrm/2. We use εi,2 to make a private one-shot release at
ti (lines 9–11). Detailed privacy analysis can be seen in Sect. 3.3.

To capture the change of transactional datasets, a direct solution is comput-
ing the difference between F̂ Ii of the current time unit and F̂ Ii−1 of the pre-
vious time unit. However, it is inefficient and the budget cannot be saved. We
propose the following solution: we capture the change of transactional datasets
by computing the dissimilarity of noisy frequent 1-items F̂i instead of noisy
frequent itemsets F̂ Ii, since according to Downward Closure Property, the
change of F̂i can reflect the change of F̂ Ii. To evaluate the difference of fre-
quent 1-items, we modify the metric F-score [8]: precision = |F̂i ∩ F̂i−1|/|F̂i|,
recall = |F̂i ∩ F̂i−1|/|F̂i−1|, F̂i is the frequent 1-items at ti, F̂i−1 is the frequent
1-items at ti−1. To achieve differential privacy, before computing the dissimi-
larity, we add Lap( lopt

εi,1
) to Fi, since the budget allocated here is εi,1 and the

sensitivity is lopt (See the definition in Sect. 3.2). Detailed process can be seen
in Algorithm 1.

3.2 Release Based on Threshold Exponential Mechanism

To reduce the sensitivity of one-shot release, we design a threshold exponential
mechanism to privately release F̂ Ii. According to exponential mechanism [4],
the curial factors affecting utility are the privacy budget and the sensitivity of
the release task. In our one-shot release, the budget allocated here is εi,2, and the
sensitivity is the number of all possible candidate frequent itemsets generated
in the release process. If we design the private release scheme based on the
original high sensitivity, it will result in a low utility. To improve the utility,
we need to reduce the space of candidate frequent patterns set. The strategies
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Algorithm 1. Adaptive Budget Allocation in Sliding Window

Input: Di, ̂Fi−1, ̂FIi−1, (εi−w+1,2, ..., εi−1,2), ε, w, lopt, λ, θ;

Output: ̂FIi

1: Find the true frequent 1-items Fi based on Di and λ.
2: Distribute the dissimilarity budget at ti: εi,1 = αε/w(0 ≤ α ≤ 1).

3: Compute noisy frequent 1-items: ̂Fi = Add Lap(
lopt

εi,1
) to Fi.

4: Compute the similarity between ti−1 and ti:F-score=2 × precision×recall
precision+recall

,

where precision =
| ̂Fi∩ ̂Fi−1|

| ̂Fi| ;recall =
| ̂Fi∩ ̂Fi−1|

| ̂Fi−1| .

5: Compute the dissimilarity between ti−1 and ti:disi = 1-F-score.
6: if disi < θ then
7: εi,2 = 0; Return ̂FIi−1.
8: else

9: Distribute the release budget at ti: εi,2 =
(1−α)ε−∑i−1

k=i−w+1 εi,2

2
.

10: ̂FIi=Release based on Threshold Exponential Mechanism(Di,εi,2,λ,lopt).

11: Return ̂FIi.
12: end if

are designed as follows: first we split long transactions to reduce the number of
candidate patterns. Then based on the split transactions, we design a threshold
exponential mechanism to further reduce the sensitivity.
(1) Split long transactions. From work [8], we know that given the maximal
length l, where l = O(1), the geometric noise algorithm is ε-differentially private
provided ε ≥ log(|I|), |I| is the number of distinct Items of a dataset. This means
that the constraint on the maximal length of transactions has a significant impact
on the utility of the private release result. If most transactions in a dataset are
short and a few are long, then these few long transactions have a large effect
on the sensitivity, while having little impact on frequent itemsets. Therefore,
the utility can be improved by limiting the maximal length of transactions.
Existing related work [5] has proposed a private splitting method to reduce the
sensitivity of frequent itemset mining. However, their splitting method requires
several times of dataset scanning. It is designed for the static dataset release and
cannot be applied to continual release because of inefficiency. In our continual
release process, we will use random sampling to split long transactions efficiently,
which is more suitable for the dynamic release. Since random splitting may cause
information loss, we analyzed it and make an offset in the subsequent release.

Let lopt denote the optimal splitting length, how to set lopt is important for
the utility of our scheme. Our method is as follows: first, let Z = <z1, , zn>
where zi denotes the percentage of transactions with length i in the dataset.
To achieve differential privacy, εi,2,1 = βεi,2/2 is allocated to this process and
Lap( 1

nεi,2,1
) is added to zi. lopt is set to the smallest integer such that

∑lopt

i=1 zi ≥ η

(0 < η < 1), which means the percentage of the transactions with length no
greater than lopt is at least η percentage.
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Splitting may cause information loss, because the support of some itemsets
decreases after splitting. We approximate information loss by analyzing random
splitting. Suppose the length of a long transaction T is l(l > lopt) and t contains
an itemset X. The length constraint on transactions is lopt. From work [8] we
know the probability of X remaining in the truncation transaction is:

Prtruncate(|X|,l)(X) =

(
l−|X|

lopt−|X|
)

(
l

lopt

)

Based on the above equation, we analyze the probability that X remains in

l/lopt� short transactions after splitting. After splitting T , there are �l/lopt
short transactions whose length is lopt and one short transaction whose length
may be smaller than lopt. Let a = l−�l/lopt be the number of items in the short
transaction with length smaller than lopt.

If a < |X|, the probability of an itemset X remaining in one of �l/lopt short
transactions is

Prsplit(|X|,l,a<|X|)(X) =
(�l/lopt

1

)(
l−|X|

lopt−|X|
)

(
l

lopt

) =
�l/lopt

(
l−|X|

lopt−|X|
)

(
l

lopt

)

If a ≥ |X|, the probability that X remains in the last short transaction whose

length is smaller than lopt is
( l−|X|

a−|X|)
( l

a)
, so the total probability that X remains in

all short transactions of t is

Prsplit(|X|,l,a≥|X|)(X) =
�l/lopt

(
l−|X|

lopt−|X|
)

(
l

lopt

) +

(
l−|X|
a−|X|

)

(
l
a

)

We assume a uniform distribution among transactions with different cardi-
nality containing the itemset X. Suppose the total number of transactions in
database is n. Let gk be the number of transactions of length k containing item-
set X. The remaining information rate (the probability retained in the split
dataset after splitting) of X after splitting is

Rm(X) =
lopt∑

k=|X|

gk∑n
j=1 gj

+
n∑

k=lopt+1

gk∑n
j=1 gj

· Prsplit(|X|,l)(X)) (4)

(2) Release based on Threshold Exponential Mechanism. After splitting
long transactions, we will design a private release scheme to select frequent
itemsets from Cantree based on exponential mechanism. CanTree (canonical-
order tree) [9] is designed for incremental mining of frequent patterns. To achieve
differential privacy, when mining of Cantree, we need to add random noises to
this process. The amount of added noise is proportionate to the size of candidate
set. Although splitting long transactions has reduced the size of candidate set, it
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is still large and will affect the efficiency and utility of the release. To this end,
we propose a threshold exponential mechanism to further improve the utility.
The main idea is before sampling frequent itemsets we compare the support
threshold and the noisy support of candidate frequent itemsets, and prune those
obviously infrequent candidate itemsets. Then according to the true support of
each candidate frequent, we use exponential mechanism to sampling frequent
itemsets. Since the space of candidate set is further reduced, the amount of
added noise is also reduced and the utility of the sampling result is improved.

Fig. 2. Sketch matrix example

The key to design the threshold exponential mechanism is privately calculate
the number of frequent itemsets n̂i. This is because n̂i is the sensitivity of one-
shot private release based on threshold exponential mechanism, it determines
the magnitude of added noise. To get this number, we transform an existing
no-private calculation method [11] to a private one. The principle of the trans-
formation is designing a sketch matrix to estimate the approximate number of
frequent itemsets, in the calculation process, Laplace noise is added to guaran-
tee differential privacy. Detailed process is given as follows: Based on Di, we
can get a binary matrix BM representing Di, each row of BM corresponds to a
transaction and each column corresponds to an item. So BM has |Di| × |I| ele-
ments bp,q, bp,q is one if the p-th transaction contains item q. Randomly partition
the transactions into r groups, and randomly partition the items into s groups.
Based on the partition results, we can generate a sketch matrix SK based on
BM . SK has r rows and s columns. We can see an example of SK in Fig. 2. Let
Ap(1 ≤ p ≤ r) be the set of transactions being represented by the p-th row of
SK, and Bq(1 ≤ q ≤ s) denotes the set of items represented by the q-th column.
So

∑r
p=1 |Ap| = |Di|, and

∑s
q=1 |Bq| = |I|. Each cell Xp,q of the sketch matrix

SK is derived from the submatrix of the binary matrix BM , it is a binary block
with |Ap| rows and |Bq| columns. Each column of Xp,q can be regard as a ran-
dom variable Yp,q with a binomial distribution Bin(|Ap|, dpq), where |Ap| is the
number of cells in a column of the block and dpq is the probability that the cell
is 1. Since any subset of frequent columns is also frequent, the estimated number
of frequent itemsets which are subsets of Bq(1 ≤ q ≤ s) is as follows:

|Bq|∑

m=1

Cm
|Bq|Pr(

r∑

p=1

Y [m]pq) ≥ λ|Di|) (5)
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where Y [m]pq(1 ≤ p ≤ r) is a random variable with binomial distribution Bin
(|Ap|, dm

pq). Based on Eq. (5), the expected number of all frequent itemsets of Di

is

ni =
|B1|∑

m1=1

· · ·
|Bs|∑

ms=1

Cm1
|B1| × · · · × Cms

|Bs|Pr(
r∑

p=1

(Y [m1, · · · ,ms]p[q1,··· ,qs]) ≥ λ|Di|)

(6)
where Y [m1, · · · ,ms]p[q1,··· ,qs] is a random variable with binomial distribution
Bin (|Ap|, dm1

p1 × · · · × dms
ps ). To achieve differential privacy, we allocate this pro-

cess the privacy budget εi,2,2 = βεi,2/2 (0 ≤ β ≤ 1). The sensitivity of this
process is min(r × lopt, r × s), since adding (or deleting) one transaction in the
split database Di may affect the calculation of min(r×lopt, r×s) blocks. Accord-
ing to the budget allocated here and the sensitivity of this calculation, we add
Lap(min(r×lopt,r×s)

εi,2,2
) noise to ni, which is

n̂i = ni + Lap(
min(r × lopt, r × s)

εi,2,2
) (7)

Therefore, the estimated number of frequent itemsets depends on two parts:
one is the probability that the sum of random variables, each one with binomial
distribution and no less than λ|Di|, the other is Laplace noise.

Based on the private number calculated in the previous step, the detailed
release scheme is given in Algorithm 2. First we divide the privacy budget εi,2

into three parts: εi,2,1 = εi,2,2 = βεi,2/2 and εi,2,3 = (1 − β)εi,2 (line 1); εi,2,1 is
used to splitting long transactions, εi,2,2 is used to privately estimate the num-
ber of frequent itemsets described in previous step (lines 4–7); εi,2,3 is used to
privately select frequent itemsets using threshold exponential mechanism (lines
8–19). We first split long transactions of Di based on εi,2,1 and lopt (line 2); Based
on the split database we generate or update Cantree at ti (line 3); The threshold
exponential mechanism contains the following steps: Given the updated Cantree,
we first add Laplace noise to the true support of each candidate itemset, and
offset the information loss of each candidate frequent itemset based on Eq. (4)
(lines 10–11), then we prune candidate frequent itemsets whose updated noisy
supports smaller than the threshold (lines 12–14); Next for each candidate fre-
quent itemsets in CSet, we sampling a frequent itemset according to its utility
function: Pr[e|Di] ∝ exp( εi,2,3C(e,Di)

4n̂i
) (lines 16–18). Repeating the above steps

until we choose n̂i itemsets from CSet. Using our threshold exponential Mech-
anism, the amount of noise added to the support of each candidate itemset is
proportionate to n̂i, the utility is improved.

Theorem 2. Algorithm 2 satisfies εi,2 differential privacy.

Proof. First, we analyze the privacy of lines 1–7 in Algorithm 2 . It consists of
two processes: random splitting of long transactions and privately calculate the
approximate number of frequent itemsets. The splitting process satisfies εi,2,1-
differential privacy. The calculation process satisfies εi,2,2-differential privacy.
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Let C(e,Di) denote the true support of the pattern e, Ĉ(e,Di) denote the
noise support, Ĉ(e,Di) = C(e,Di) + Lap(4n̂i/εi,2,3). The utility score we set to
each candidate pattern e is as follows: if Ĉ(e,Di) < λ, the utility score of e is
f1(e,Di) = 0, Otherwise, the utility score of e is f2(e,Di) = exp( εi,2,3C(e,Di)

4n̂i
).

Pr[e|Di] = f1(e,Di)×Pr[Ĉ(e,Di)<λ]+f2(e,Di)×Pr[Ĉ(e,Di)≥λ]
∑

e∈CandidateSet f1(e,Di)×Pr[Ĉ(e,Di)<λ]+f2(e,Di)×Pr[Ĉ(e,Di)≥λ]

= f2(e,Di)×Pr[(C(e,Di)+Lapnoise)≥λRm(e)]
∑

e∈CSet f2(e,Di)×Pr[(C(e,Di)+Lapnoise)≥λRm(e)]

= f2(e,Di)×Pr[Lapnoise≥(λRm(e)−(C(e,Di))]
∑

e∈CSet f2(e,Di)×Pr[Lapnoise≥(λRm(e)−(C(e,Di))]

=
f2(e,Di)×

∫ ∞
λRm(e)−C(e,Di)

Pr[Lapnoise=x]dx
∑

e∈CSet f2(e,Di)×
∫ ∞

λRm(e)−C(e,Di)
Pr[Lapnoise=x]dx

≤ f2(e,Di)×
∫ ∞

λRm(e)−C(e,D′
i
)−1 Pr[Lapnoise=x]dx

∑

e∈CSet f2(e,Di)×
∫ ∞

λRm(e)−C(e,D′
i
)−1 Pr[Lapnoise=x]dx

=
f2(e,Di)×

∫ ∞
λRm(e)−C(e,D′

i
) Pr[Lapnoise=x−1]dx

∑

e∈CSet f2(e,Di)×
∫ ∞

λRm(e)−C(e,D′
i
) Pr[Lapnoise=x−1]dx

(8)

Pr[Lapnoise=x−1]
Pr[Lapnoise=x] =

exp(− |x−1|εi,2,3
4n̂i

)

exp(− |x|εi,2,3
4n̂i

)
= exp(− (|x−1|−|x|)εi,2,3

4n̂i
) ≤ e

εi,2,3
4nn̂i

exp(− εi,2,3
4n̂i

) ≤ f2(e,Di)
f2(e,D′

i)
≤ exp( εi,2,3

4n̂i
)

(9)

Algorithm 2. Release based on Threshold Exponential Mechanism
Input: Di, εi,2, λ, lopt.

Output: Frequent itemsets ̂FIi

1: εi,2,1 = εi,2,2 = βεi,2/2; εi,2,3 = (1 − β)εi,2; (0 ≤ β ≤ 1).
2: Splitting long transactions in Di based on εi,2,1 and lopt.
3: Generate or update Cantree based on the split Di at ti.
4: Generate BM(Binary Matrix) of Di;
5: Derive SK(Sketch Matrix) from BM ;
6: Calculate ni based on SK according to equation(6);

7: n̂i = ni + Lap(
min(r×lopt,r×s)

εi,2,2
).

8: Set CSet = ∅.
9: for each pattern e in Cantree do

10: Calculate the information loss of Rm(e) according to equation(4).

11: Ĉ(e, Di) =
C(e,Di)+Lap(4n̂i/εi,2,3)

Rm(e)
.

12: if Ĉ(e, Di) ≥ λ then
13: Add e to CSet.
14: end if
15: end for
16: for j=1 to n̂i do

17: ̂FIi += Sampling e from CSet with Pr[e|Di] ∝ exp(
εi,2,3C(e,Di)

4n̂i
).

18: end for
19: Return ̂FIi.
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According to Eq. (9)

(8) ≤ e

εi,2,3
4n̂i ×f2(e,D′

i)×e

εi,2,3
4n̂i ×∫ ∞

λRm(e)−C(e,D′
i
) Pr[Lapnoise=x]dx

∑

e∈CSet e
− εi,2,3

4n̂i ×f2(e,D′
i)×e

− εi,2,3
4ni ×f2(e,D′

i)×
∫ ∞

λRm(e)−C(e,D′
i
) Pr[Lapnoise=x]dx

= e

εi,2,3
2n̂i ×f2(e,D′

i)×Pr[Ĉ(e,D′
i)≥λ]

∑

e∈CSet e
− εi,2,3

2n̂i ×f2(e,D′
i)×Pr[Ĉ(e,D′

i)≥λ]

= exp( εi,2,3
n̂i

)Pr[e|D′].

(10)

From Eq. (10), sampling n̂i frequent itemsets based on threshold exponen-
tial mechanism satisfies εi,2,3 differential privacy. According to Theorem 1,
Algorithm 2 satisfies εi,2 differential privacy.

3.3 Privacy Analysis

Theorem 3. The privacy budget spent in any sliding window(w) is less than ε.

Proof. We need to prove ∀i ∈ [w,N ],
∑i

k=i−w+1 εk ≤ ε, which means the privacy
budget spent in any window of w timestamps is less than ε. For each time
stamp i, we allocate εi,1 = αε/w(0 ≤ α ≤ 1) to dissimilarity computation.
The total privacy budget spent for dissimilarity computation in a sliding widow
is

∑i
k=i−w+1 εk,1 = αε. For each i, if the dissimilarity is greater than θ, we

distribute the privacy budget εi,2 = εrm/2 in an exponentially decreasing fashion
to this point, otherwise distribute εi,2 = 0 to this point. Suppose the release
budget spent on the first sampling point in a window is εrm/2, the release budget
spent on the second sampling point is εrm/22, and so on. So a series of the release
budget in a window is an approximate geometric sequence. Since the maximum
value of εrm is (1 − α)ε, the first item of the geometric sequence is less than
(1 − α)ε/2. Suppose the number of sampling points in a window is δ, the total

privacy budget in a window is
(1−α)ε

2 ·(1−(1/2)δ)

1/2 ≤ (1 − α)ε. That means the total
privacy budget spent for Mi,2 for any sliding window of length w is less than
(1 − α)ε. So, ∀i ∈ [w,N ],

∑i
k=i−w+1 εk =

∑i
k=i−w+1 εk,1 +

∑i
k=i−w+1 εk,2 ≤

αε + (1 − α)ε = ε.

Theorem 4. Let M be a mechanism that takes as dynamic database D =
{D1, · · · ,DN} over N time points, and outputs F̂ I = {F̂ Ii : 1 ≤ i ≤ N}. We
can decompose M into N mechanisms M1, · · · ,MN , such that Mi(Di) = F̂ Ii.
If ∀i ∈ [w,N ],

∑i
k=i−w+1 εk ≤ ε, then M satisfies ε-differential privacy in any

sliding window.

Proof. Let Dw, D′
w be two neighboring series of dynamic datasets in a silding

window. ∀i ∈ [w,N ], for any output F̂ I and any datasets Dw, D′
w, we need to

prove the probability ratio of an adversary learns the information from Dw and
D′

w is less than eε, which means ln Pr[M(Dw)=̂FI]

Pr[M(D′
w)=̂FI]

≤ ε.

Since ∀i ∈ [w,N ], ln Pr[M(Dw)=̂FI]

Pr[M(D′
w)=̂FI]

=
∑i

k=i−w+1 ln (Pr[Mk(Dk)=̂FIk]

Pr[Mk(D′
k)=

̂FIk]
).
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Let S denote the set of all sampling points, and SC denote the set of non-
sampling points in the active window [i − w + 1, i]. We have

i
∑

k=i−w+1

ln (
Pr[Mk(Dk) = ̂FIk]

Pr[Mk(D′
k) = ̂FIk]

) =
∑

k∈S

ln(
Pr[Mk(Dk) = ̂FIk]

Pr[Mk(D′
k) = ̂FIk]

) +
∑

k∈SC

ln(
Pr[Mk(Dk) = ̂FIk]

Pr[Mk(D′
k) = ̂FIk]

).

Since the budget spent at each time point in SC is εi,1, the total privacy budget

spent for SC is
∑

k∈SC ln(Pr[Mk(Dk)=̂FIk]

Pr[Mk(D′
k)=

̂FIk]
) = |SC | · εi,1.

The privacy budget spent at each time point in S is εi,1 + εi,2, the total

privacy budget spent for S is
∑

k∈S ln(Pr[Mk(Dk)=̂FIk]

Pr[Mk(D′
k)=

̂FIk]
) = |S| · εi,1 + |S| · εi,2.

The total privacy budget spent for the window [i − w + 1, i] is
∑i

k=i−w+1 ln (Pr[Mk(Dk)=̂FIk]

Pr[Mk(D′
k)=

̂FIk]
) = (|SC | + |S|) · εi,1 + |S| · εi,2.

According to Theorem 2, (|SC |+ |S|) ·εi,1+ |S| ·εi,2 ≤ w ·αε/w+(1−α)ε = ε.

So ∀i ∈ [w,N ], ln Pr[M(Dw)=̂FI]

Pr[M(D′
w)=̂FI]

≤ ε, we complete the proof.

4 Experiments

In this section, we evaluate the utility and efficiency of our scheme. We conduct
all experiments on a PC with Intel� CoreTM i7-3540M CPU(3.00 Ghz) and 8G
RAM. All algorithms are implemented with Java.

Comparison. Since in the absence of direct competitors in the literature, we
devise two comparison algorithms by adopting existing related methods. Let
DDFIM denote our scheme, Solution1 and Solution2 denote two comparison
algorithms. Solution1 comprises of BA (Budget Absorption) [22] and TT (Trans-
action Truncation) [8]. Solution2 comprises of DSAT (Distance-based Sampling
with Adaptive Threshold) [21] and PFP (Private release based on FPGrowth)
[5]. DSAT and BA are used as budget allocation methods against infinite updates
in our comparison algorithms; TT and PFP are used as one shot release methods
in our comparison algorithms.

Metrics. To compare the utility of our scheme, we employ the standard metrics
to measure the utility: F-score [8] and RE [10]. F-score is used to measure the
utility of generated frequent itemsets. RE is used to measure the error with
respect to the actual supports of itemsets. We use the running time to measure
the efficiency of algorithms.

Datasets. Real datasets we used in experiments are MSNBC [12], Kosaarak [13]
and BMS-POS (POS) [13], which record the URL categories visited by users
in time order, click stream data and commercial sale data used in KDDCUP
2000 respectively. Detailed information of datasets is shown in Table 1. |D| is
the number of records of a dataset, |I| is the number of distinct items, Max|t|
and Avg|t| denote the maximal and the average record length respectively. In
the following experiments, we randomly choose 10% × |D| records as the initial
dataset D1 from the selected dataset and choose another 5% × |D| records
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Table 1. Detailed information of datasets

Dataset |D| |I| Max|t| Avg|t|
MSNBC 989,818 17 14,975 1.72

Kosaarak 990,002 41270 699 8.1

POS 515597 1657 164 6.5

without replacement as each incremental update database ΔDi. The parameters
α, β are set to 0.2, since a small value results in a higher utility.

4.1 Effect of ε on Utility

In this set of experiments, we examine the utility by varying ε from 0.5 to 2.5
on three datasets.

Fig. 3. Effect of ε on utility

The threshold θ for dissimilarity computation is set to 0.6; η is 0.8; λ is
0.005 on kosaarak, 0.003 on MSNBC and 0.008 on POS, w is 5. From Fig. 3,
DDFIM always performs better than the other two comparison algorithms. After
employing the threshold exponential mechanism, the sensitivity of DDFIM has
been reduced greatly. Benefiting from the adaptive budget allocation, the budget
allocated to each sampling release has been enlarged. For the above two reasons,
the utility of DDFIM is highest. Solution2 always performs better than Solution1
in all cases. Because Solution2 samples the release points based on an adaptive
allocation scheme, which maximizes the budget utility; it splits long transactions
instead of truncation, which also promotes the utility. With the increase of ε, we
can see the values of F-score on three datasets are all increasing, and the values
of RE on three datasets are all decreasing; this is because the average budget
allocated for each release becomes larger, which results in less laplace noise.
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4.2 Effect of w on Utility

In this set of experiments, we examine F-score and RE of the three algorithms
on three datasets with the change of w from 3 to 11.

Fig. 4. Effect of w on utility

The threshold θ for dissimilarity computation is set to 0.6; η is 0.8; ε is 1; λ
is 0.005 on kosaarak, 0.003 on MSNBC and 0.008 on POS. From Fig. 4, DDFIM
always performs better than the other two comparison algorithms. Because ben-
efitting from the threshold exponential mechanism, the sensitivity of DDFIM
is lowest. Solution2 always performs better than Solution1 in all cases. Because
Solution2 samples the release points based on an adaptive allocation scheme,
which maximizes the budget utility; it splits long transactions instead of trun-
cation, which also promotes the utility. With the increase of w, we can see the
values of F-score on three datasets are all decreasing, and the values of RE on
three datasets are all increasing; this is because the average budget allocated for
each release becomes smaller, which results in more laplace noise. The average
utility on MSNBC is higher than the other two datasets, because fewer items
contained in MSNBC and more short transactions result in less information loss.

4.3 Effect of θ on Utility

In this set of experiments, we examine the F-score and relative error (RE) of
DDFIM and Solution1 on three datasets by varying the dissimilarity threshold
(θ) from 0.2 to 0.8. Since Solution2 sampled based on an adaptive threshold,
there is no need to observe the utility of Solution2 with the change of θ. The
parameters are set as: w is 5; η is 0.8; ε is 1; λ is 0.005 on Kosaarak, 0.003 on
MSNBC λ and 0.008 on POS.

Figure 5 shows the utility (F-score and RE) of two algorithms with respect
to different θ on three datasets. DDFIM always performs better than Solution1.
Since DDFIM employs the threshold exponential mechanism to make a one shot
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Fig. 5. Effect of θ on utility

release, which reduce the number of candidate frequent itemsets greatly and
the noise is also reduced. With the increase of θ, the F-scores of DDFIM and
Solution1 are increasing, and the values of RE are all decreasing. Because the
average number becomes smaller, the budget spent at each sampling point is
increased, which causes less noise to the results and the utility is improved.

4.4 Effect of λ on Utility

In this set of experiments, we examine the F-score and relative error (RE) of
three algorithms by varying the support threshold (λ) from 0.001 to 0.013 on
MSNBC, from 0.001 to 0.007 on Kosarak and from 0.004 to 0.016 on POS. The
parameters are set as: w is 5, η is 0.8, ε is 1, θ is 0.6.

Fig. 6. Effect of λ on utility

Figure 6 shows the utility with respect to different λ on three datasets. We
can see DDFIM performs best. By using threshold exponential mechanism, the
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sensitivity of DDFIM equals to the size of CSet. Since Solution1 performs the
mining based on Apriori, when mining l-frequent itemsets, its sensitivity is all
number of candidate l-frequent itemsets, which equals to possible combination
number of its (l − 1)-frequent itemsets. Since Solution2 performs the mining
based on FP-Growth; when mining l-frequent itemsets, its sensitivity equals to
the number of support computations of l-frequent itemsets; the sensitivity of
DDFIM is lower than that of the other two algorithms, it is closest to the true
number of frequent itemsets. With the increase of λ, the values of F-score of
all three algorithms are increasing and the values of RE of three algorithms are
decreasing. This is because the number of candidate frequent itemsets becomes
smaller, the sensitivity of each algorithm is reduced, which results in less noise.

4.5 Efficiency

In this set of experiments, we examine the efficiency of three algorithms. The
running time is used as our performance metric. We evaluate the efficiency of the
three algorithms by varying the dataset size from 500k to 900k. The parameters
we used here are set as: θ is set to 0.6, η is 0.8, ε = 1.0 and w = 5, λ is 0.005 on
Kosaarak, 0.003 on MSNBC and 0.008 on POS.

Fig. 7. Efficiency on datasets

Figure 7 shows the runtime of the three algorithms under three datasets. As
dataset size grows, the values of the runtime of three algorithms are all increas-
ing. Because the number of the transactions becomes larger, all algorithms con-
sume much more time. The runtime of Solution1 is higher than that of DDFIM.
Because in each release, Solution1 needs to truncate long transactions several
times, which consumes too much time; moreover, Solution1 performs mining
based on Apriori, which also consumes too much time. The runtime of Solution2
is always high on three datasets. Because Solution2 needs to find the correla-
tion of all items in advance and uses the result to guide the splitting, it is too
inefficient.

5 Related Works

Differentially Private FIM on a Static Dataset. Recently, several studies
[5–8,10] start to address the issue of performing FIM while satisfying differen-
tial privacy. Since the challenge of high dimensionality of long transactions, the
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sensitivity of the private release of frequent patterns is very high. To reduce the
sensitivity, several schemes are proposed to promote the result utility. Bhaskar
et al. [7] propose two kinds of schemes based on LM [3] and EM [4] by considering
candidate frequent patterns with length no greater than l. Zeng et al. [8] propose
a scheme based on Apriori, which contains a transaction truncation method to
reduce sensitivity. Li et al. [10] propose to find a basis set, and project long
transactions to the basis set to reduce sensitivity. The latest work PriSuper [6]
uses SEM mechanism to release top-k frequent patterns based on the maximum
frequent itemsets found in advance. Su et al. [5] propose transaction splitting
to reduce sensitivity, first they find the relationship of all items and then split
long transactions based on the above results. Based on the ideas of sampling
and transaction truncation, [27,28] propose two schemes for high-dimensional
databases and large-scale data. The above works suppose the sever is trusted.
Wang et al. [26] propose a method based on locally differential privacy, they
suppose the sever is untrusted. All methods are designed for static scenario.

Differentially Private Continual Release on Dynamic Scenario. These
works can be classified into two categories: (1) Partition or tree structure: Dwork
et al. [14,15] first propose how to employ differential privacy in a dynamic sce-
nario, and they employ a tree structure to reduce the perturbing error. The
subsequent works [16,17] employ partition or improved tree structure to pro-
mote the utility. Bolot et al. [23] propose releasing decayed sums based on a
binary tree. (2) Adaptive sampling: the following works design adaptive sam-
pling methods to maximize the utility of the privacy budget on time-series. Fan
et al. [20] propose a framework FAST to reduce the perturbed error against
updates, its core idea is adaptive sampling based on Kalman filtering. Li et al.
[21] design an adaptive sampling method with adaptive threshold (DSAT) to
release the statistics of dynamic datasets. Kellaris et al. [22] propose two budget
allocation methods on time-series based on sampling. Cao et al. [25] propose a
continually release scheme for trajectory data, to reduce the perturbed error,
they quantify the privacy leakage caused by temporal correlations. The above
methods cannot be directly used in our problem, since all of them are designed
for continual release of simple statistics.

6 Conclusions

In this paper, we have studied the problem of differentially private frequent item-
sets mining against infinite incremental updates. Firstly we promote an adaptive
budget allocation scheme combining with transactional dataset change. Then we
design a private release scheme based on threshold exponential mechanism. We
have proved our scheme satisfies ε-differential privacy in any sliding window.
Experiments on real datasets show that our scheme achieves high utility and
efficiency. As the future work, we will investigate how to preserve ε-differential
privacy against infinite updates for other application scenarios (e.g., releasing
sequential data).
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Abstract. With remarkable performance and extensive applications,
reinforcement learning is becoming one of the most popular learning tech-
niques. Often, the policy π∗ released by reinforcement learning model
may contain sensitive information, and an adversary can infer demo-
graphic information through observing the output of the environment.
In this paper, we formulate differential privacy in reinforcement learning
contexts, design mechanisms for ε-greedy and Softmax in the K-armed
bandit problem to achieve differentially private guarantees. Our imple-
mentation and experiments illustrate that the output policies are under
good privacy guarantees with a tolerable utility cost.

Keywords: Differential privacy · Reinforcement learning · Privacy
preserving

1 Introduction

Recent years have witnessed a boom in artificial intelligence, which contributes to
a wide range of applications, such as face recognition, self-driving, medical diag-
nosis, etc. [17,25]. Notably, the success of AlphaGo1 speeds up the development
of reinforcement learning. Nevertheless, the security and privacy issues combined
with artificial intelligence also draw full attention from researchers in the mean-
time. In real-world scenarios, trained reinforcement learning policies are released
to client-side and often contain sensitive information, from which adversaries may
infer demographic information. As AI models have millions of parameters, some
sensitive information are contained in the model parameters implicitly. Recently,
model inversion and membership inference attacks has shown it effectiveness on

1 https://deepmind.com/research/alphago/.
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some AI models [10,22,23,28]. Although there are not any well-known attacks
performs on the data privacy of reinforcement learning models (to the best of our
knowledge), we still think the environment should be protected since it contains
sensitive information.

As a promising privacy-preserving technique, differential privacy introduced
a strong privacy model which provides formal privacy guarantees that do not
depend on the background knowledge or computational power of an adversary
[11]. Apple Inc. integrated differential privacy for collecting sensitive data in its
operating systems, iOS and macOS, respectively. Google released a framework
for local differentially private data aggregation and deployed it in Chrome [9].
While differential privacy for reinforcement learning in specific cases has been
conveyed in some work [2,19,27], our definitions and methods are different from
theirs which adapt the features of generic reinforcement learning models.

Typically, the question of how to combine differential privacy with reinforce-
ment learning can be divided into two parts, (1) how to formulate the privacy
issues in reinforcement learning and (2) how to design mechanisms that achieve
differential privacy in reinforcement learning contexts.

Fig. 1. Structure of reinforcement learning.

In this paper, the first objective is to define the formal privacy model in
reinforcement learning contexts. However, differing from learning models with
initial datasets, as is shown in Fig. 1, reinforcement learning does not have the
notion of dataset or data tuples and only learns from the feedbacks of environ-
ments. Therefore, the traditional definition of differential privacy is not appli-
cable for reinforcement learning. Luckily, we notice that the functions of states,
actions and reward in reinforcement learning are similar to samples and labels
in supervised learning to some extent. We thereby define reinforcement learning
differential privacy based on this observation.

The second objective is to design a mechanism that achieves differential privacy
guarantees. However, today’s reinforcement learning models usually adopt deep
neural networks to approximate action values or policies, and it is a common belief
that these neural networks are hard to be analyzed theoretically. So in this paper,
we illustrate the ideas of the mechanism achieving differential privacy in a simpli-
fied setting, i.e., the K-armed bandit problem, which still preserves the important
features distinguishing reinforcement learning from other types of learning.
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Contribution. In summary, our main contributions are as follows:

– (ε, δ)-Differentially Private Reinforcement Learning. We extend the
definition of differential privacy in reinforcement learning contexts. To be
precise, our definition no longer adopts the notion of databases in traditional
differential privacy models and utilizes the environments instead.

– Exponential Mechanism for ε-greedy. We analyze the sensitivity of utility
function, adopt the exponential mechanism for achieving differentially private
ε-greedy algorithm in the K-armed bandit problem (it can be simply trans-
ferred to similar algorithms, such as Q-Learning, Sarsa.), and finally, prove
it.

– Laplace Mechanism for Softmax with Fine-grained Sensitivity. Dif-
ferent from ε-greedy, Softmax does not output an optimal policy, but a
p.d.f. denoting the probability of each action. Additionally, the high global
sensitivity of Softmax algorithm results in damage to data utility. We analyze
the smooth sensitivity of Softmax, utilize more fine-grained noise to perturb
output, and achieve (ε, δ)-differentially private reinforcement learning.

Future Direction. We present two prospective future directions.

– Differential Privacy for Multi-step Reinforcement Learning. We
address differential privacy in the K-armed bandit problem in this paper. It is
of great significance to study how to achieve differential privacy in multi-step
reinforcement learning models, which are much more popular in real-world
scenarios.

– Differential Privacy for Continuous Action Reinforcement Learn-
ing. While the problem of privacy-preserving discrete action model is solved
in this paper, how to perturb a continuous action in reinforcement learning
models is an important topic as well.

The next section reviews preliminaries on reinforcement learning and differen-
tial privacy, respectively. Section 3 demonstrates our formal definition. Section 4
presents the mechanism design for ε-greedy and Softmax, respectively. Section 5
describes our experimental results. Section 6 discusses related work, and Sect. 7
concludes.

2 Preliminaries

In this section, we briefly introduce notions of reinforcement learning and differ-
ential privacy.

2.1 Reinforcement Learning

Reinforcement learning is a set of machine learning methods concerned with
how agents take actions in an environment for maximising cumulative reward
[25]. Typically, the reinforcement learning problem can be cast as a Markov
Decision Process (MDP) [13]. For agents in the environment E, the state space
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X , where each x ∈ X denotes the stage of an agent in the environment E, when
an action a ∈ A is taken, reward will be given by the environment E based on
the reward function R. To summarise, a quaternion E = 〈X ,A, P,R〉 denote
the reinforcement learning model, where P : X × A × X → R denotes the state
transition probability, R : X × A × X → R denotes the reward function of the
environment E.

Unlike other supervised learning techniques, the output of reinforcement
learning can only be invested after multi-step. In this article, we utilize the
K-armed bandit problem with ε-greedy and Softmax algorithms to convey our
research [16].

K-armed Bandit. To be precise, the K-armed bandit is a problem where the
reward is allocated by choices for maximizing it when each choice’s properties are
only partially known at the time of allocation, and players may become better
understood as time passes [3,12]. Occasionally, the bandit algorithms tend to
be trapped into Exploration-Exploitation dilemma, where the agents strive to
balance sufficiently exploring the variant space and exploiting the optimal action.

ε-greedy. Intuitively, a common policy is to take the optimal action with the
probability of 1 − ε and randomly choose an action with the probability of ε.
After an initial period, the agents can solve the optimal action π∗ under which
most reward is given, but will still randomly try action with the probability of
ε.

Softmax (Boltzmann Exploration). Softmax is based on Luce’s choice axiom
and picks an arm with the probability given by Boltzmann distribution according
to its average reward [16]. Following is the p.d.f. of each action.

P (k) =
exp(Q(k)

τ )
∑K

i=0 exp(Q(i)
τ )

(1)

where τ is temperature parameter which controls the randomness. When τ = 0,
the algorithm is pure greedy. By the contrast, when τ → +∞, the algorithm
selects actions randomly.

2.2 Differential Privacy

With the growth of data aggregation and mining, the threats to data privacy
also increase. Roughly speaking, differential privacy is a mathematical model of
data privacy guarantees in a statistical dataset [4–7]. The objective of differen-
tial privacy is to perturb the output of queries to prevent adversaries infer the
demographic information. The noise is controlled by the privacy budget ε2.

We let a vector D = [D1,D2, · · · ,Dn] to denote a statistical database, where
Di for each i ∈ {1, 2, · · · , n} is a tuple. The notion of (ε, δ)-differential privacy
can be defined as:
2 To distinguish the ε in differential privacy and ε-greedy, the ε in ε-greedy will be

replaced by εrl in the remainder of the article, namely εrl-greedy.
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Definition 2.1 ((ε, δ)-differential privacy) [4]. A randomized function K gives
(ε, δ)-differential privacy if for all data sets D1 and D2 differing on at most one
element, and all S ⊆ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε) × Pr[K(D2) ∈ S] + δ (2)

where K(D1) (resp. K(D2)) is the output of randomized function K(·) on input
D1 (resp. D2) and ε is the privacy budget. Specially, ε-differential privacy is
achieved when δ = 0.

To achieve differential privacy, researchers have proposed many mechanisms.
Laplace Mechanism is proposed in [7] for numeric queries (e.g., How many stu-
dents got A in the last quiz?). The mechanism is to add noise from zero-mean
Laplace distribution to the query output. To reduce the noise in our case, we uti-
lize smooth sensitivity instead of ΔQ in traditional Laplace Mechanism, which
also achieves differential privacy. (See proof in [20]) Formally, we have the fol-
lowing definition and theorem.

Definition 2.2 (Local sensitivity) [20]. The local sensitivity of a query function
Q : Dn → R

d is

LSQ(D) = max
D′:‖D−D′‖0=1

‖Q(D) − Q(D′)‖1 (3)

Definition 2.3 (Smooth upper bound) [20]. S(·) is a β-smooth upper bound on
the local sensitivity if,

∀D,SQ(D) ≥ LSQ(D)

∀D,D′ : ‖D − D′‖0, SQ(D) ≤ e−βSQ(D′)
(4)

Definition 2.4 (β-smooth sensitivity) [20]. For β > 0, the β-smooth sensitivity
of a query function Q : Dn → R

d is

S∗
Q,β(D) = max

D′∈Dn
(LSQ(D′) · e−β‖D−D′‖0) (5)

Theorem 2.1. For ε, δ ∈ (0, 1), the d-dimensional Laplace distribution, h(z) =
1
2d · e−‖z‖1 , is (α, β)-admissible with α = ε

2 , and β = ε
4(d+ln(2/δ)) , where Z ∼

h(z). (See proof in [20]).

Theorem 2.2. Denote h be (α, β)-admissible noise p.d.f., and Z be sampled
from h. For a query function Q : Dn → R

d, let S∗
Q : Dn → R be a β-smooth

sensitivity on the local sensitivity of Q. The following mechanism achieves (ε, δ)-
differential privacy. (See proof in [20]).

M(D)n = Q(D)n + Z · S∗
Q(D)
α

(6)
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The goal of ε-greedy is to choose an optimal policy among a range of policies.
Hence, it seems impossible to directly add numeric noise to the arbitrary utilities.
To address the problem, researchers proposed the exponential mechanism, which
is regarded as the natural building block for answering queries with arbitrary
utilities [8]. To achieve the exponential mechanism, we need to have a utility
function u : N|X | × R → R and consider the sensitivity of u, where R is the
arbitrary range. We have the following definition.

Definition 2.5 (Sensitivity of utility function) [8].

Δu = max
r∈R

max
x,y:‖x−y‖1≤1

‖u(x, r) − u(y, r)‖ (7)

where x, y are neighbouring databases.

The exponential mechanism is to output r ∈ R with probability proportional
to exp(εu(x, r)/2Δu). Formally, we have the following theorem thereby.

Theorem 2.3 (Exponential Mechanism). ε-differential privacy can be achieved
by Exponential Mechanism M(x, u,R), that satisfies

Pr[M(x, u,R) = r] ∝ exp(
εu(x, r)

2Δu
) (8)

where Δu is the sensitivity utility function. (See proof in [8]).

3 (ε, δ)-Differentially Private Reinforcement Learning

The above definition of differential privacy is based on the assumption that each
tuple in the database is aggregated from individuals, aiming at protecting the
demographic information of each tuple. However, in the reinforcement model, it
seems hard to find an object relevant to the database.

The situation can change when we have an insight into the reinforcement
learning model. Enormous tuples are generated in the runtime of the model.
These tuples contain some information about the environment, and some of
the data may be inherently sensitive. What we want to protect in this article
is, therefore, the environments. Different environments result in the difference
between optimal policy. For the seek of preventing inference attacks, our goal is
to perturb the optimal policy.

In traditional differential privacy, we have the notion of neighboring
databases, which only differ in one tuple. We can use the quaternion 〈x0, a, x, r〉
to denote the tuple, where x0 refers to the original state, a refers to the action, x
refers to the transited state, and r refers to the reward given by the environment.
Similarly, we can define the neighboring environment.

Definition 3.1 (Neighbouring Environment). The neighbouring environments
E,E′ have exactly one case 〈x∗

0, a
∗, x∗〉 satisfy

E[RE0(x
∗
0, a

∗, x∗)] �= E[RE′
0
(x∗

0, a
∗, x∗)], (9)
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and for any 〈x0, a, x〉 �= 〈x∗
0, a

∗, x∗〉 satisfies

E[RE0(x0, a, x)] = E[RE′
0
(x0, a, x)], (10)

and for any 〈x0, a, x〉 satisfies

0 ≤ RE0(x0, a, x) ≤ Λ

0 ≤ RE′
0
(x0, a, x) ≤ Λ

(11)

where RE0 , RE′
0

are the reward function of E,E′ respectively, E[RE(x0, a, x)]
denotes the mean of reward function and Λ denotes the upper bound of
E[RE0(x0, a, x)].

In other words, an environment E denotes a set of tuples in traditional
differential privacy models. Hence, the definition of neighboring environments
is similar to neighboring databases. A notable point in the definition is that
E[RE(x0, a, x)] ≤ Λ. In non-numeric cases, the utility function u equals to
arg max〈x0,a,x〉 E[RE0(x0, a, x)]. Without any constraints on E, the maximal dif-
ference between uE0 , uE′

0
is going to be very high. In the same way, in numeric

cases, ‖Q(D) − Q(D′)‖ goes high as well. Hence, it is pointless to consider an
environment E has an infinite reward, which results in an uncontrolled sensitiv-
ity.

Since we have neighboring environments E,E′, we are now ready to define
the (ε, δ)-differentially private reinforcement learning, which will guarantee a
randomized reinforcement learning model output similarly in neighboring envi-
ronments. We formulate the (ε, δ)-differentially private reinforcement learning
thereby.

Definition 3.2 ((ε, δ)-differentially private reinforcement learning). A rein-
forcement learning model M achieves ε-differentially private reinforcement
learning, iff. for neighbouring environments E,E′ ∈ E and π ∈ Π

Pr[M(E) = π] ≤ exp(ε) × Pr[M(E′) = π] + δ (12)

where M(E) (resp. M(E′)) denotes the optimal policy of R under the environ-
ment E (resp. E′), and π denotes the optimal policy of the model. Specially,
ε-differentially private reinforcement learning is achieved when δ = 0.

4 Mechanism Design

4.1 Exponential Mechanism for εrl-greedy

In εrl-greedy, the optimal policy π∗ = arg maxa E[R(·)]. In other words, the best
policy is to take the action under which the agent can be rewarded most. It
is true that the reinforcement learning model does not choose the action with
the most reward in all cases. In εrl-greedy, the model will explore other actions
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with the probability of εrl. After vast turns, Q(a) equals to E[R(a)] at that time
under the strong law of large numbers.

Hence, the utility function u(E, r) = QE(a) = E[R(a)], when t → +∞, where
QE(a) refers to Q(a) under environment E. Since we have the utility function,
we can analyse the sensitivity of u. Similarly, the definition of Δu denotes the
maximal difference of u(E, r) due to one change in the environment. We have
the sensitivity of u(E, r).

Δu = max
a∈A

max
E,E′

‖u(E, a) − u(E′, a)‖
= max

a∈A
max
E,E′

‖E[RE(a)] − E[RE′(a)]‖
= max

a∈A
‖max(E[RE(a)],E[RE′(a)])‖

= Λ

(13)

where E,E′ are neighbouring environments, Λ denotes the upper bound of
reward for all actions.

Algorithm 1. Differentially private εrl-greedy for the K-armed bandit
Input: Reward Function R; Number of Arms K; Exploration Rate εrl; Privacy Budget

ε; Reward Upper Bound Λ.
1: r ← 0
2: for all i ∈ {1, 2, · · · , K} do
3: Q(i) ← 0
4: count(i) ← 0
5: end for
6: repeat
7: t ← t + 1k
8: if rand() < εrl then
9: a ← �K × rand()�

10: else
11: a ← arg maxi Q(i)
12: end if
13: v = R(a)

14: Q(a) ← Q(a)×count(a)+v
count(a)+1

15: count(a) ← count(a) + 1
16: π ← arg maxi Q(i) //update policy
17: until t → +∞
18: for all i ∈ {1, 2, · · · , K} do

19: P (i) ← exp( εQ(a)
2Λ

)
20: end for
21: Choose an action a based on probability distribution P
22: π∗ = arg maxi Q(i)
Output: Optimal Policy π∗

Algorithm 1 describes the differentially private εrl-greedy in the K-armed bandit
problem, where rand() returns the randomized real number in [0, 1], count(a)
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refers to the times of action a being taken, Q(a) refers to the mean reward of
an action a. We perturb the final output, which may not return the optimal
policy. But with high probability, the algorithm will output a relatively optimal
policy. The probability distribution can be managed by modifying the parameter
ε. Greater ε always combines with better privacy guarantees. In an extreme case,
if ε = 0, the algorithm will randomly choose a policy. And we also present the
proof for achieving differential privacy in AppendixA.

Selection of T . Theoretically, the loop will never break in the algorithm due to
the unfulfillable terminate condition. Instead, the terminate condition can be set
to a value, where each action can well test. For a K-armed bandit, if the reward of
each action obeys distribution D. The mean test time of each action E(ta) ≥ εrlT

K .
Since that all outputs in R(·) are i.i.d. and follows a certain distribution, we can
attain an approximate bound for estimating E(R(·)). To improve the readability,
the detailed analysis is presented in AppendixB. Nevertheless, to achieve the
estimation with high accuracy and confidence, the bound is still too high for
the algorithm, especially with a small εrl. In practice, T = γ × K

εrl
, where γ is a

constant. According to our experiments, in most cases, it suffices to take γ = 20
(γ will be discussed in the next section).

4.2 Laplace Mechanism for Softmax

Instead of outputting an optimal policy, Softmax outputs a p.d.f. denoting proba-
bility of each actions being taken. Basically, the allocation of probabilities follows
the Boltzmann distribution.

P (k) =
exp(Q(k)

τ )
∑K

i=0 exp(Q(i)
τ )

(14)

similarly, where Q(k) denotes the mean reward of k and τ is a parameter in Boltz-
mann distribution. For the reason that Softmax outputs the p.d.f. of actions, the
query f can be formulated as follows.

f(E) = P = [
exp(Q(1)

τ )
∑K

i=0 exp(Q(i)
τ )

, · · · ,
exp(Q(k)

τ )
∑K

i=0 exp(Q(i)
τ )

] (15)

The local sensitivity are attained thereby.

LSf = max
E′:‖E−E′‖0=1

‖QE(a) − QE′(a)‖1

= max
E′

K∑

i

hE(k)
∑K

i=0 hE(i)
− hE′(k)

∑K
i=0 hE′(i)

= max
E′

2(
∑

hE(i) − hE′(i∗))(hE(i∗) − hE′(i∗))
∑

hE(i)
∑

hE′(i)

=
2hE(i∗)
∑

hE(i)
when hE′(i∗) = 0

= max
a∈A

2hE(a)
∑

hE(i)

(16)
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where h(i) denotes exp(Q(i)
τ ), i∗ = arg max hE(i).

Assume for simplicity that 0 ≤ 2fE(1)∑
fE(i) ≤ · · · ≤ 2fE(|A|)∑

fE(i) ≤ Λ. Then we have
the β-smooth sensitivity.

S∗
f,β(E) = max

E′∈En
(LSf (E′) · e−β‖E−E′‖0)

= max
k=0,··· ,|A|

(max
a∈A

2hE(a)
∑

hE(i)
· e−βk)

(17)

Since we have the above S∗
Q,β(E), we can traverse all prospective k and find the

maximal sensitivity.

Algorithm 2. Differentially private Softmax for the K-armed bandit
Input: Reward Function R; Number of Arms K; Temperature τ ; Privacy Parameters

ε, δ; Reward Upper Bound Λ.
1: r ← 0
2: α ← ε/2, β ← ε

4(K+ln(2/δ))
Apply Theorem 2.1

3: for all i ∈ {1, 2, · · · , K} do
4: Q(i) ← 0
5: count(i) ← 0
6: end for
7: t ← 0
8: repeat
9: t ← t + 1

10: Choose an action a based on Eq. 14
11: v = R(a)

12: Q(a) ← Q(a)×count(a)+v
count(a)+1

13: count(a) ← count(a) + 1
14: until t → +∞
15: Traverse all k for S∗

f (E)

16: ˜P = P + ZK · S∗
f (E)

α
Apply Theorem 2.2

17: Normalise ˜P
Output: Optimal Policy Probability Density Function ˜P

Algorithm 2 describes the differentially private Softmax for the K-armed bandit,
where the output is p.d.f. With smooth sensitivity, a more fine-grained noise is
attained. To simplify, we present the traversing algorithm in AppendixC. The
detailed proof is too long to be conveyed in this paper, but a similar proof on
traditional differential privacy can be found in [20].

5 Experiments

To compare the privacy and utility in our method, we design a series of experi-
ments on synthetic data.
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Fig. 2. Comparison of (a) accuracy in different environments with different privacy
budget ε, (b) variance of accuracy under different γ in different environments in ε-
greedy algorithm, and accuracy in different privacy budget ε with different τ in Softmax
algorithm.

Synthetic Dataset. We design a set of synthetic tuples to simulate the situation
in real-world scenarios. As in illustrated in Eq. 18, we generate some datasets
which vary in scale and reward distribution which obeys the following equation.

E
K(REK

(a)) = [
1
2

1

,
1
2

2

, · · · ,
1
2

K−2

,
1
2

K−1

,
1
2

K−1

︸ ︷︷ ︸
K items

] (18)

where K denotes the arms of the bandit. The probability distribution of the
reward function for each input action obeys the following equation.

Pr(RE(a) = r) =
{

0.5 r = 2E[RE(a)]
0.5 r = 0 (19)

Configuration. Denoting π∗ and π̃∗ as the true optimal policy and the per-
turbed policy, we define the accuracy for publishing π̃∗ as

∑t R(π̃∗)
∑t R(π∗) in ε-greedy,

where t denotes the repeat time and equals to 50 in our experiments. For Soft-
max, δ = 0.01, T = 200K, K = 3. And the accuracy equals to ET P̃

ET P
, where P

denotes the p.d.f. of actions and E denotes the mean reward of actions.

Result. Given are Fig. 2(a), (b) and (c) that compares the accuracy in dif-
ferent environments with different privacy budget ε, γ and τ . From Fig. 2(a),
we observe that our mechanism has high performance on synthetic datasets. In
small privacy budget ε cases, the accuracy begins to fall as the number of arms
increases. And, for ε > 10, the proposed mechanism maintains a tolerable error
rate regardless of the scale of environments. Comparing lines in Fig. 2(b), it is
evident that for small γ, the accuracy holds a high variance. As γ grows, for
all environments in the experiments, the accuracy becomes steady. Figure 2(c)
illustrates the performance of the differentially private Softmax algorithm. The
accuracy is strong enough when ε > 1 for all values of τ in the experiments.
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Summary of the Experimental Analysis

– Our mechanisms provide sufficient privacy and utility in reinforcement learn-
ing contexts (both ε-greedy and Softmax). Appropriate privacy budget can
be selected to achieve privacy-utility trade-off based on the scale of environ-
ments.

– The growth on the scale of environments in ε-greedy may result in the sharp
reduction of accuracy (with more than 10x accurate with different privacy
budget in the same environment), but the exponential mechanism works well
on small scale environments even in small privacy budget.

– The accuracy is fluctuating in ε-greedy for a small γ and becomes steady
when the number increases. We select γ as 20 for utility-efficiency trade-off.

– The smooth sensitivity greatly improves the accuracy in Softmax. To be pre-
cise, smooth sensitivity saves about 15% of noise to achieve the same level of
privacy in this case when compared with global sensitivity.

6 Related Work

Machine learning/deep learning is one of the most popular queries in this era,
which enables people to discover the inherent property and connection among
tuples [24]. However, the models, as well as corresponding training data, are
under threats from various perspective [18].

Privacy-Preserving Machine Learning. [21] proposed privacy-preserving
distributed reinforcement learning. [15] then introduced the sample complex-
ity of differentially private learning. [14] carefully reviewed the state-of-the-art
methods of differentially private machine learning (supervised learning, unsuper-
vised learning, dimensionality reduction, statistical estimators, respectively). [1]
developed a differentially private deep learning model based on TensorFlow. [26]
proposed a privacy-preserving scheme for ML called Heda combined homomor-
phic cryptosystem with differential privacy and a set of methods for determining
appropriate privacy budget and reducing sensitivity.

Comparison to [2,19,27]. For differentially private reinforcement learning,
[2,19,27] did extensive work in this field. But their approaches still adopted tra-
ditional differential privacy, which is not applicable in the generic reinforcement
learning contexts. Their works perturbed the trajectory series which may result
in global reward degradation. We extend the notion in reinforcement learning
contexts that distinguish our work from theirs.

7 Conclusion

As ML/DL techniques are widely used, the security and privacy of these sys-
tems are of great significance. While enormous methods were proposed in recent
years, a formal model for privacy guarantees for reinforcement learning remains
to be studied. Though most reinforcement learning approaches do not require
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initial training data, the environments may contain sensitive information and be
attacked in some scenarios.

In this paper, we discuss the privacy models in both traditional queries and
reinforcement learning contexts, define the notion of neighboring environments,
propose (ε, δ)-differentially private reinforcement learning model and develop
mechanisms for privacy-preserving εrl-greedy and Softmax algorithms in the K-
armed bandit problem. Our implementation and experiments illustrate that the
policies given by our model are under good privacy guarantees with a tolerable
utility cost.
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Appendices

A. Proof of Algorithm 1

Pr[M(E) = π]
Pr[M(E′) = π]

=

exp( ε
2QE(π)/Λ)

∫
a∈A exp( ε

2QE(a)/Λ)da

exp( ε
2QE′ (π)/Λ)

∫
a∈A exp( ε

2QE′ (a)/Λ)da

=

exp( ε
2E[RE(π)]/Λ)

∫
a∈A exp( ε

2E[RE(a)]/Λ)da

exp( ε
2E[RE′ (π)]/Λ)

∫
a∈A exp( ε

2E[RE′ (a)]/Λ)da

For T → +∞

=
exp( ε

2 (E[RE(π)] − E[RE′(π)])/Λ)
∫

a∈A exp( ε
2 (E[RE(a)] − E[RE′(a)])/Λ)da

≤ exp( ε
2Δu/Λ)

exp(− ε
2Δu/Λ)

∫
a∈A da

Apply Eq. 8

≤ exp(ε) If
∫

a∈A
da ≥ 1

(20)

B. Analysis on Total Time Steps

We analyze the total time steps n needed to get a accurate approximation of
q∗(a) = Et[Rt | At = a] for every action a. The analysis is presented in two
aspects. The first aspect is to consider how many times m we need to select
action a to get an accurate approximation of q∗(a). The second aspect is to
analyze the value of n needed to guarantee m times sampling of a. We start
with the first aspect.
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Recall that w.l.o.g. Rt is assumed to be within [0, Λ]. Consider the Doob
martingale Bi = E[ 1

m (X1 + X2 + · · · + Xm) | X1,X2, . . . , Xi], where Xi is the
numerical reward received when we select action a. Note that Xi’s are i.i.d. The
stochastic process B0, B1, . . . is a martingale w.r.t. Xi as E(|Bj |) ≤ Λ < ∞ and

E[Bj+1 | X1, . . . , Xj ]

= E

[

E

(
1
m

(X1 + · · · + Xm) | X1, · · · ,Xj+1

)

| X1, · · · ,Xj

]

= E

[
1
m

(X1 + X2 + · · · + Xm) | X1, . . . , Xj

]

= Bj

(21)

holds. Note that B0 = E[ 1
m (X1+X2+· · ·+Xm)] = q∗(a) and Bm = 1

m (X1+X2+
· · · + Xm), which is just Q(a) in the algorithm. We also have |Bj+1 − Bj | ≤ Λ

m
as Xi’s are independent and

∣
∣
∣
∣
1
m

(x1 + · · · + xj + · · · + xm)

− 1
m

(x1 + · · · + x′
j + · · · + xm)

∣
∣
∣
∣ ≤ Λ

m

(22)

holds. According to the Azuma-Hoeffding inequality, we then have P (|Q(a) −
q∗(a)| ≥ λΛ) ≤ 2 exp (− (λΛ)2

2Λ2/m ) = 2 exp (−λ2m
2 ), where λ ∈ (0, 1).

Now we consider the second aspect. Instead of counting the number of times a
particular action a is selected, we consider the number of times selecting a when
rand() < εrl, which servers as a lower bound of the actual counting. Denote
the latter as Yi. So in every time step, action a is selected with probability εrl

K .
Applying Chernoff bound, if the total time steps n = 2mK

εrl
we have P (Yi <

m) ≤ exp (−m
4 ). Applying the union bound we have the probability that every

action is selected at least m times is at least 1 − K exp (−m
4 ). With conditional

probability the final probability that every estimate Q(a) is within λΛ of q∗(a)
is (

1 − K · 2e− λ2m
2

) (
1 − Ke− m

4
)

≥ 1 − K
(
2e− λ2m

2 + e− m
4

)

≥ 1 − 3
Kc′ ≥ 1 − 1

Kc

(23)

if we choose m = 2
λ2 (c′ + 1) ln K, where c′, c are constants. In a word if the

total time steps n ≥ 4K
εrlλ2 (c′ + 1) ln K then w.h.p. every action value estimate is

within a preferable range of the true action value.
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C. Traverse in Algorithm 2

Algorithm 3. Traverse for S∗
f

Input: Number of Arms K; Privacy Parameter β; Upper Bound Λ.
1: S∗

f (E) ← −∞
2: for all k ∈ {1, 2, · · · , K} do
3: Sf (E) ← Λ

∑K−k hE(i)+Λ
· e−βk

4: if S∗
f (E) < Sf (E) then

5: S∗
f (E) ← Sf (E)

6: end if
7: end for
Output: Smooth Sensitivity S∗

f (E)
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Abstract. Machine Learning has been widely applied in practice, such
as disease diagnosis, target detection. Commonly, a good model relies
on massive training data collected from different sources. However, the
collected data might expose sensitive information. To solve the problem,
researchers have proposed many excellent methods that combine machine
learning with privacy protection technologies, such as secure multiparty
computation (MPC), homomorphic encryption (HE), and differential
privacy. In the meanwhile, some other researchers proposed distributed
machine learning which allows the clients to store their data locally but
train a model collaboratively. The first kind of methods focuses on secu-
rity, but the performance and accuracy remain to be improved, while
the second provides higher accuracy and better performance but weaker
security, for instance, the adversary can launch membership attacks from
the gradients’ updates in plaintext.

In this paper, we join secret sharing to distributed machine learning
to achieve reliable performance, accuracy, and high-level security. Next,
we design, implement, and evaluate a practical system to jointly learn an
accurate model under semi-honest and servers-only malicious adversary
security, respectively. And the experiments show our protocols achieve
the best overall performance as well.

Keywords: Secret sharing · Distributed machine learning ·
Privacy-preserving

1 Introduction

Recent advances in machine learning have produced exciting achievements both
in academia and industry, the machine learning systems are approaching or even
surpassing human-level accuracy in speech, image and text recognition. That
thanks to algorithmic breakthroughs and hardware developments, which help
our systems process massive amounts of data.

However, massive data collection, which is a key step in learning an accu-
rate model, has caused public panic about privacy breaches. As a consequence,
the useful but sensitive data such as medical records, are forbidden to be shared
c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ICICS 2019, LNCS 11999, pp. 684–702, 2020.
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among different institutes due to proprietary reasons or compliance requirements
[20,32]. Privacy-preserving machine learning via MPC provides a promising solu-
tion by allowing different institutions to train various models based on their joint
data without revealing any sensitive information beyond the outcome.

The state-of-the-art solutions for privacy-preserving machine learning based
on MPC, i.e. [22,26,28], are many orders of magnitude slower than training on
plaintext. The main source of inefficiency is that the bulk of computation in
the training phase takes place within a secure manner such as garbled circuits
or HE. It is well-known that computing complex function, especially non-linear
function, in secure form is very expensive.

To improve the efficiency, we design our protocols based on distributed
machine learning and instead of joining the secure computation technologies
to these expensive computations in our protocols, we join secret sharing to the
gradients’ sharing phase which only consists of simple arithmetics, i.e. addi-
tion. In this way, we can improve efficiency greatly while still meet the security
requirements. Finally, each client can learn no information beyond the trained
model, and the parameter servers can learn no sensitive information.

1.1 Our Contribution

In this paper, We design two new and efficient protocols for privacy-preserving
linear regression, Multilayer perceptron (MLP), and Convolutional neural net-
work (CNN) in the distributed machine learning settings assuming the data are
distributed across the clients. Then we give the security analysis of our protocols.
And lastly, we implement, evaluate our protocols and compare them with other
latest results in a comparable environment.

Resistance to Semi-honest and Servers-Only Malicious Adversary. In
the semi-honest setting, we use Shamir’s Secret Sharing to design protocol Γsash.
As long as no more than t − 1 (t is the threshold) servers can collude and at
least two clients are honest, Γsash can against users-only, servers-only and users-
servers threat models.

In the malicious setting, to resist servers-only malicious modifications, we
design a verifiable protocol Γsam via a variant of Secret Sharing with information-
theoretic Message Authentication Code (MAC) [12]. In Γsam, besides sharing the
gradients g, each client computes g’s information-theoretic MAC and shares it
among parameter servers. In addition to protecting privacy like Γsash, Γsam can
prevent servers from malicious modifications as long as no more than t−1 servers
can collude and no client colludes with servers.

Performances. Our privacy-preserving machine learning protocols are more
efficient than state-of-the-art solutions. For example, for a dataset with 60,000
samples and 784 features, our protocol is 30× faster than the protocols imple-
mented in [27] for CNN in the semi-honest setting. And even our malicious
protocol can achieve 25× improvement.
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As discussed above, our protocols can be divided into two phases, offline and
online phase. In a comparable experimental environment, our protocols are at
the same efficiency level with [24] in the online phase, but we can achieve 5×–
10× improvement in the offline phase. Note that vectorization, i.e. operating
on matrices and vectors, is critical in the efficiency of training on plaintext, we
can benefit from this technique here. For instance, we find that the vectorized
protocols improve our efficiency around 7.5–10× in the online phases and 5–10×
in the offline phases.

As experiments show, our protocols are even more competitive with training
on plaintext. For instance, for the MNIST1, our protocols can achieve the same
level of accuracy at a total time of 40.2 s for linear regression, 205.2 s for MLP
and 723.6 s for CNN.

1.2 Related Work

In the earlier stage, the work on privacy-preserving machine learning mainly
focused on traditional machine learning models such as linear regression [3–
5], logistic regression [8], decision trees [2], k-means clustering [6,9] and SVM
[7,10]. These papers proposed solutions based on MPC but were limited to a
particular kind of model. For example, Nikolaenko et al. [13] and Gascon et
al. [19] presented secure computation protocols for linear regression on mega
datasets via leveled-HE (LHE) and garbled circuits. However, both papers are
limited to linear regression and the key problems are both reduced to solving a
linear system using Yao’s garbled circuits. And the efficiency overheads appear
to be very high.

For the logistic regression, Wu et al. [14] chose to approximate the sigmoid
function using polynomials and train the model using LHE, but the complexity
is too high and accuracy is poor. Mohassel et al. [22] presented a solution that
can be applied to linear regression, logistic regression and neural networks on
the two-server setting where data owners distribute their private data among
two non-collude servers and proposed a new method based on piecewise linear
function for the non-linear function to improve efficiency. However, there is still
a big gap compared to training on plaintext.

Meanwhile, Liu et al. [23] proposed a secure inference framework that can
protect the server’s model and client’s data at the same time. Privacy-preserving
predictions were also studied by Galad-Bachrach et al. [21,31]. But the models
in this setting need to be trained on plaintext ahead of time.

Shokri and Shmatikov [17] proposed a solution by sharing the model’s gradi-
ents among the clients during the training via a parameter server. They improve
the efficiency greatly, but the leaks of gradients could weaken the security [29].
Phon et al. [27] extended the result against semi-honest adversaries using LHE,
but the performance is too poor. Recently, Bonawitz et al. [24] proposed a pro-
tocol to secure aggregate gradients. But their offline phase is very complex, and
if some clients dropped out, the efficiency would be reduced.

1 MNIST database, http://yann.lecun.com/exdb/mnist/. Accessed: 2017-09-24.

http://yann.lecun.com/exdb/mnist/
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So it is urgent and challenging to propose a secure framework to train complex
and huge machine learning models efficiently.

An orthogonal and complementary work considers the differential privacy of
machine learning algorithms [15,18]. In this setting, the key point is to intro-
duce an additive noise to the data or the update function, so as to prevent the
adversary from inferring the data from the released model. Our system can be
combined with such technology to provide stronger security.

1.3 Roadmap

In Sect. 2, we introduce the preliminaries. In Sect. 3, we give our system archi-
tecture and the design of our protocols. We also analyze the correctness and
privacy of our protocols. In Sect. 4, we give the results of our experiments, and
in Sect. 5, we conclude our paper.

2 Preliminaries

In this paper, the notations we used are as below:
a denotes a scalar, g denotes a vector and gi denotes the i-th element of g.

X denotes a matrix and Xij denotes the element in row i and column j. 〈a〉i
denotes the i-th shares of a, and the same as to vector and matrix. And N
denotes the number of servers and M denotes the number of clients.

2.1 Machine Learning

In this section, we briefly review the distributed machine learning and some
machine learning algorithms: linear regression, MLP, CNN. All these algorithms
are classic and can be found in standard machine learning papers or textbooks.

Distributed Machine Learning is a new kind of settings of machine learning,
there exist many different settings [25,30] and we adopt the Parameter-Server
(PS) setting [16] in this paper. As shown in Fig. 1, in the P-S setting there are
many clients and one parameter server. Each client has a private dataset. Note
that the data between different clients are of the same type, i.e. medical records.
In general, there are five phases in the P-S setting, local training phase, upload
phase, aggregate phase, download phase, and update phase.

Before training, all the clients negotiate a unified model and everyone stores a
replica and initializes it. In the local training phase, each client trains the model
locally and computes the gradients g = (g0, g1, ..., gn−1), where gi is the gradient
for coefficient wi. Next, the clients will upload g to the parameter server. On the
other hand, the parameter server will wait a while to receive enough gradients
and then aggregate them as sum gs =

∑
g or average gavg = 1

M gs. Finally, the
clients will download the aggregated gradients and update the local model for
the next training epoch.
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Fig. 1. Distributed machine learning, parameter-server setting. 1© local training, 2©
upload gradients, 3© aggregate gradients, 4© download gradients, 5© update the local
model.

Distributed Selective SGD. Learning the parameters of a model is not easy,
especially for a complex model, i.e. neural networks. The methods that solve this
problem are typically variants of gradient descent algorithm (GD) [11]. Among
these algorithms, stochastic gradient descent (SGD) is a drastic simplification
that computes the gradients over a subset (mini-batch) of the whole dataset
while maintains high accuracy.

Let w be the vector of all parameters in a model, wi is the i-th element of
w. Let E be the error function which can be based on L2 norm or cross-entropy.
The update rule of SGD for a parameter wi is

wi = wi − α
∂Ei

∂wi
(1)

where α is the learning rate and Ei is the error computed over the mini-batch i.
Note that the update of each parameter is independent, so that the client

can send a portion of gradients which are important instead of all gradients to
reduce communication [17], which we use in this paper.

Linear Regression. Given n training data samples xi, each contains d features
and the corresponding labels yi, where yi = ±1. Training a linear regression
model is a process to learn a function f such that f(xi) = yi. Linear regression
has many applications in real life, i.e. detecting diseases in medical research.

In linear regression, the function f is a linear operation and can be repre-
sented as the inner product of xi and the coefficient vector w:

f(xi) =
d∑

j=1

xijwj = xi · w (2)

where · denote the inner product of two vectors.
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Multi-layer Perceptron. Deep Learning aims to extract more complex fea-
tures than traditional machine learning models. MLP is one basic form of deep
learning models.

Figure 2(a) shows a typical MLP with two hidden layers, each node represents
a neuron, it receives the output of the neurons of previous layers plus a bias from
a special neuron. Then it computes a weighted average of its inputs. Finally, the
neuron applies a non-linear function to the weighted average.

Fig. 2. Neural networks. (a) is for MLP, (b) is for CNN.

Convolutional Neural Networks. CNN has gained much more attention in
the past decades owing to its superb accuracy. While there are many different
CNNs, they all share a similar structure.

As shown in Fig. 2(b), the input to a CNN is represented as a matrix X where
each element corresponds to the value of a pixel. Pictures can have multiple color
channels, i.e. RGB, in which case the picture is represented as a multidimensional
matrix, i.e. tensor. Compared to MLP, CNN has additive layers: (i) Convolution
layer, (ii) (Mean or Max)-Pooling layer, both play important roles.

2.2 Secure Computation

Secret-Sharing. Shamir’s Secret Sharing [1] is a powerful cryptographic prim-
itive which allows a client to split a secret into n shares, so that any less than
t shares reveal no information about the original secret while any t shares can
recover the secret.

Definition 1. Shamir’s Secret Sharing scheme consists of a sharing algorithm
S and a reconstruct algorithm R.

S takes a secret s, a threshold t, and n as inputs, outputs n shares of s

S(s, t, n) → {〈s〉0, 〈s〉1, ..., 〈s〉n} (3)

with t ≤ n.
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R takes the threshold t, a subset of the shares with size m as inputs, and
recovers the secret s

R({〈s〉0, 〈s〉1, ..., 〈s〉m}, t) → s (4)

with m ≥ t.

Correctness requires that ∀s ∈ F, ∀t, n(t ≤ n), if {〈s〉0, 〈s〉1, ..., 〈s〉n} are
shares of s, then any subsets of size m(m ≥ t) could reconstruct the original
secret s.

Security requires that any subsets of shares of size m′(m′ ≤ t − 1) disclose
no information about s, which means that ∀s, s′ ∈ F and two subsets of shares
with size m′(m′ ≤ t − 1), no polynomial-time adversary A can distinguish the
distribution of the two subsets

|Pr[A({〈s〉0, ..., 〈s〉m′}) = 1] − Pr[A({〈s′〉0, ..., 〈s′〉m′}) = 1]| ≤ 1
p(x)

(5)

where p(·) is a positive polynomial and x is sufficiently large.

Secret Sharing with Information-Theoretic MAC. The Shamir’s Secret
Sharing scheme can only against semi-honest adversaries, but not resist mali-
cious modifications. So we import a variant of information-theoretic Message
Authentication Code (MAC) [12].

Definition 2. Secret Sharing scheme with information-theoretic MAC consists
of a sharing algorithm S, a reconstruct algorithm R, an authentication function
δ, a verification function υ, and a global key α.

S takes a secret s, the function δ, the threshold t, and n as inputs, and
outputs their shares

S(s, δ, t, n) → {(〈s〉0, ..., 〈s〉n), (〈δ(s)〉0, ..., 〈δ(s)〉n)} (6)

R takes the threshold t, the function υ and the subsets of shares as inputs,
and outputs s

R(({〈s〉0, ..., 〈s〉m}), ({〈δ(s)〉0, ..., 〈δ(s)〉m}),υ, t) → s (7)

if υ(s, δ(s), α) = 1, else R(·) returns ⊥.
Note δ(s) = α · s mod p and υ(·) = 1 if and only if the reconstructed s and

δ(s) satisfy δ(s) = α · s mod p.

Correctness and privacy against the semi-honest adversary are identical to
what we have mentioned in Shamir’s Secret Sharing scheme.

Since we require that the global key α is unknown to the adversary M. So
∀〈s〉i, even M modifies it with only one bit, the possibility that M can construct
a valid share of its MAC is negligible.
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3 System Architecture

Our scheme is based on distributed machine learning except that we introduce
two or more non-collude servers like [22,28], to protect the privacy. However,
the servers in our protocols are not responsible for storing data or training the
model but aggregating the gradients.

Instead of uploading the plain gradients to one parameter server in dis-
tributed machine learning, the clients share gradients after each training epoch
and upload these shares to corresponding servers in our protocols.

In this paper, we propose two protocols, Γsash and Γsam. In Γsash, we require
the servers are semi-honest or honest-but-curious and at most t − 1 servers
can collude. In Γsam, we enhance our security capabilities to against servers-only
malicious adversary via Secret Sharing with information-theoretic MAC (Fig. 3).

Fig. 3. Architecture for our protocols with two parameter servers. 1© local training,
2© share the gradients (and MACs), 3© upload gradients’ shares (and MACs’ shares),
4© aggregate gradients’ shares (and MACs’ shares), 5© download aggregated gradients’
shares (and MACs’ shares), 6© reconstruct aggregated gradients (MACs and verify), 7©
update the local model and train it again (or abort). Note that MACs are for malicious
security.

3.1 Γsash−Protocol for Semi-honest Security

In the offline phase, the clients communicate with each other to agree on a com-
mon secret sharing scheme, a machine learning model, i.e. a neural network,
through secure channels. Also, clients need to generate random numbers inde-
pendently. The parameter servers initialize the shares of ga as all zeros. Then
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each client establishes a TLS/SSL secure channel with each server to protect the
integrity of the shares.

Next, each client trains the model using private data locally and computes
the gradients g as Eq. 1.

The elements of g are all float-point decimal numbers, which are not suitable
for arithmetic operations in secure computations. So we have to encode all the
elements of g as integers in a large finite field.

For instance, we can multiply them by a large scaling factor and truncate the
results as integers modulo p, p is a big prime. When decode, we could determine
the sign of an encoded element and divide the scaling factor2. As shown in the
experiments, the errors introduced by truncation are so small that have little
impacts on the final model.

Note that the clients can only encode and share a portion of gradients which
are important, and we use s

(up)
i to indicate them.

Next, the client i shares gi as 〈gi〉0, 〈gi〉1, ..., 〈gi〉N−1, sends 〈gi〉j and s
(up)
i

to the j-th server. Note that both encoding and secret sharing can be accelerated
via vectorization.

On the other hand, the servers would wait a while to receive enough secret
shares, i.e. all the secret shares, and then compute the secret shares of the aggre-
gated gradients according to {s

(up)
i }
〈ga〉j =

∑

i

〈gi〉j (8)

After the aggregation, the servers will reply to clients’ requests s
(down)
i with

the aggregated shares, s
(down)
i indicates the elements to be downloaded. The

details are in Fig. 4. We will prove the correctness and security below.

Correctness. In Γsash, the parameter servers are responsible for aggregating
the gradients’ shares, which is in secret sharing form. To prove our protocol’s
correctness, we import Lemma 1, which we prove in AppendixA.1.

Lemma 1. The addition of secret shares is the secret shares of the sum. For
example, {〈x〉i} are the secret shares of x and {〈y〉i} are the secret shares of y,
then {〈z〉i = 〈x〉i + 〈y〉i} are the secret shares of z = x + y.

According to Lemma 1, we know that each server aggregates one of the secret
shares of ga rightly. So in the end, the clients will receive enough secret shares
and reconstruct the ga.

Security. In Γsash, we consider the security of the training protocol against
semi-honest adversaries with three different threat models, namely users-only
threat model where some users are corrupted, servers-only threat model where
some servers are corrupted, and users-servers threat model where some users
and servers are controlled by adversary.
2 https://mortendahl.github.io/2017/04/17/private-deep-learning-with-mpc/.

https://mortendahl.github.io/2017/04/17/private-deep-learning-with-mpc/
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Theorem 1 (Privacy in Semi-honest Adversary). The protocol Γsash is
secure in presence of semi-honest adversaries, meaning they leak no sensitive
information about the honest clients’ gradients, as long as the adversary can
only corrupt no more than t − 1 servers and M − 2 clients.

In the users-only threat model, what the adversary A can get about honest
clients is the sum of their gradients.

∑

j∈honest.

gj =
∑

i∈all

gi −
∑

k∈corrupted

gk (9)

Even the number of corrupted clients are M − 2, A get no information about
the gradients towards a particular client. So we can protect the honest clients’
privacy.

In the servers-only threat model, we require A can only corrupt up to t −
1 servers. So A can not distinguish the gradients’ shares from pseudorandom
numbers under Shamir’s Secret Sharing scheme, which means A can not violate
clients’ privacy.

From users-only threat model and servers-only threat model, we can know
that even A corrupt t − 1 servers and M − 2 clients, what A can get is as in the
users-only threat model since the corrupted servers leak no private information.

3.2 Γsam−Protocol for Servers-only Malicious Security

Protocol Γsash can against semi-honest adversary, but not ensure that servers
will sum up the gradients honestly, which means if a server is controlled by
a malicious adversary M, he can launch an attack,i.e. poisoning attack. For
instance, M can replace the gradients’ shares with random values to reduce the
performance of the final model.

In order to prevent this kind of attacks, we propose Γsam, a protocol based
on Secret Sharing with information-theoretic MAC, which can detect servers’
malicious behaviors. So in Γsam, in addition to sharing the gradients, the clients
have to compute and share the gradients’ MAC δ(g). And the servers have to
aggregate the shares of δ(g). The details are in Fig. 4.

Correctness. In protocol Γsash we have proved that the sum of secret shares
is the secret shares of the sum. Now we bring in Lemma 2, we give its proof in
AppendixA.2.

Lemma 2. The sum of homomorphic MACs is the MAC of the sum. For exam-
ple, δ(x) and δ(y) are homomorphic MACs of x and y, respectively, then
δ(x) + δ(y) is the homomorphic MAC of x + y.

As long as the clients compute homomorphic MACs of gradients, we have that
the sum of the MACs is the MAC of the sum of gradients on the basis of Lemma 2.
So combining with Lemma 1, we can prove the correctness of Γsam.
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Security. The privacy of Γsam is the same as Γsash, and we can prevent the
corrupted servers from malicious modification with a servers-only threat model.

Theorem 2 (Resistance to Malicious Adversary in servers-only threat
model). The protocol Γsam is secure against malicious adversaries in the
servers-only threat model, meaning the adversary can not launch active poison-
ing attacks without detection, as long as the adversary can only corrupt no more
than t − 1 servers.

As long as the global secret key α is only known to clients, the possibility that
M can construct a valid MAC for an arbitrary secret s is equal to the possibility
that M can get α. So we have

Pr(M(δ, s) = 1) =
1

2�log p� (10)

As long as the prime p is sufficient large, the possibility is negligible.
Assuming M modifies the 〈g〉u to launch a poisoning attack. So he would

add the modified shares to aggregated shares, which denoted as 〈ga〉′
u. If 〈ga〉′

u

Secure Training Protocol

Input: M local datasets and replicas of a model
Output: a trained model

if Server then
Initialize. Initializing 〈ga〉j and 〈δ(g)a〉j as all-zeros;
Update. After receiving gradients’ secret shares, MACs’ secret
shares and s

(up)
i from each client, each server will add these secret

shares to 〈ga〉j and 〈δ(g)a〉j according to s
(up)
i , usually s

(up)
i ⊂ g;

Response. For each downloading request, each server will reply
with the gradients’ shares and MACs’ shares according to s

(down)
i ;

if Client then
Initialize. Initializing models according to the same policy;
Local training. Each client gets a mini-batch from the local
dataset, trains the model and computes the gradients g;
Secret Sharing. The clients encode g and generate the secret
shares of g as {〈g〉j} , compute δ(g) and share it as {〈δ(g)〉j} (or
only processing the top k of g with the largest absolute value, where
we use s

(up)
i to indicate the corresponding elements);

Upload. Sending the gradients’ secret shares, MACs’ secret shares
and s

(up)
i to corresponding servers;

Download. Sending a downloading request along with s
(down)
i ,

which indicates the elements to be downloaded, to all servers;
Reconstruct. After sending the request, the client will wait until
receiving enough secret shares to reconstruct the aggregated
gradients, aggregated MACs and verify the validity, update the local
model and go to Local training or abort if the verification failed;

Fig. 4. Details for our protocol. Note that the red-and-underlined parts are only
required for malicious protocol Γsam (not necessary for semi-honest protocol Γsash).
(Color figure online)
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is downloaded and the client would try using it to reconstruct the ga

g′
a = R({〈ga〉i}i∈{t},i �=u ∪ {〈ga〉′

u}) (11)

Also, the client can reconstruct δ(ga) at the same time.
It is obvious that the possibility υ(α, g′

a, δ(ga)) = 1 is negligible as long as
α is unknown to the M and no more than t − 1 servers could collude.

So in Γsam, we can avoid disclosing any particular client’s gradients under
the assumption of Shamir’s Secret Sharing scheme. Moreover, we could detect
corrupted servers’ malicious behaviors via information-theoretic MAC.

4 Experiments

4.1 Environment

Our experiments are executed on three Intel(R) Xeon(R) CPU E5-2650 v3@
2.30 GHz servers with each has 64G RAM in the LAN setting.

We simulate 2 parameter servers and 32 clients. All protocols have been
implemented in Python3 language, and we use Tensorflow 1.13.13 library, this
popular machine-learning library has been used by major Internet companies
such as Google.

4.2 Experiments Setup

In our experiments, we use MNIST as our training set. And we compare all
results with two baseline scenarios. The first is the basic federate learning Γfl,
which consists of one parameter server and 32 clients with no secure tech-
niques. The other scenario is Google’s Secure Aggregation protocol Γsag [24],
which masks the gradients before uploading4. All the protocols are executed
synchronously.

For all the scenarios, we implement linear regression, MLP, and CNN. We
compare them in accuracy, convergence rate and performance in detail below.

4.3 Experiments Results

Accuracy. We compare the same model in different scenarios, we find that
our accuracies in the semi-honest and malicious setting are both nearly to the
accuracy of Γfl. The highest accuracy’s drop is within 0.01 for CNN and MLP,
and 0.02 for linear regression.

We plot the accuracy changes along with the training epochs. And we show
that with the increasing of the training epochs, the influence produced by encod-
ing a float-number as a big integer is being smaller and smaller. For instance,
Fig. 5(a) shows that in a CNN, the curve for Γsash almost coincides with the
curve for Γfl. And we get similar results for linear regression and MLP, we plot
them in AppendixB due to the space limit.

The best accuracies for each model in all protocols are shown in Table 1.
3 https://github.com/tensorflow/tensorflow/releases/tag/v1.13.1.
4 We only implement the basic secure aggregation with no dropouts.

https://github.com/tensorflow/tensorflow/releases/tag/v1.13.1
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Table 1. Accuracy for each model in all protocols.

Model Protocol

Γfl Γsag Γsash Γsam

Linear regression 0.929 0.924 0.918 0.913

MLP 0.979 0.977 0.978 0.974

CNN 0.997 0.994 0.995 0.991

Convergence Rate. Our experiments also illustrate that the convergence rates
in all protocols over training epochs are at the same level, the secure techniques
do not influence the results much.

For instance, the convergence rates of Γsash and Γsam are almost the same
as Γfl for CNN. From Fig. 5(a), it is obvious that the models all approach 0.95
at around 50 epochs and reach 0.99 at around 100 epochs in different protocols.
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Fig. 5. Experimental results of CNN. (a) is for accuracy, (b) is for performance.

Performance. Our protocols can be divided into offline phase and online phase
naturally. In the offline phase, the clients mainly generate random numbers inde-
pendently. We run the process 10 times for each model and take the average as
the result. The details are in Table 2. Note that protocol Γsag needs around
22.81 s in our setting to negotiate keys between clients, and we do not include it
in Table 2.

From Table 2 we can see that Γsash is around 10× faster than Γsag, and Γsam

is around 5× faster than Γsag.
As for the online phase, we plot the running time along with the epochs for

CNN in Fig. 5(b). It is illustrated that our semi-honest protocol Γsash is faster
than Γsag even Γsag is in the best situation. For example, the running time for
Γsash is 701.85 s, while Γsag needs 744.68 s, both run 100 epochs. As for our
malicious protocol Γsam, the running time is a little longer, which is around
819.99 s.
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Table 2. Offline performances (seconds, 100 epochs).

Model Protocol

Γfl Γsag Γsash Γsam

Linear regression 0 11.90 0.60 1.19

MLP 0 110.53 14.24 27.47

CNN 0 243.92 21.77 41.44

However, we know that Γsag needs extra time to deal with the masking
elements if some clients dropped out in the training process, this reduces their
efficiency greatly, while our protocols do not need this extra operation even if
the same misfortune happens. This is because the clients in our protocols are
independent of each other, which means the dropped clients do not impact other
online clients. Combining offline and online, we can see that our protocol’s whole
performance is better than Γsag, both semi-honest and malicious. And compared
to privacy-preserving deep learning methods based on HE [27], our improvements
are dramatically where they need 2.25 h for MLP and 7.3 h for CNN. Note that
we plot the figures for linear regression and MLP in AppendixB.

On the other hand, Γsag only needs one parameter server, but Γsash and Γsam

need two or more parameter servers, and we require that at most t − 1 servers
could collude. However, import two or more servers is a common method for
distributing machine learning, and it is easy to satisfy this security requirement
in practice. Meanwhile, in Γsag the parameter server would learn the aggregated
gradients and even the trained model, but in Γsash and Γsam the parameter
servers can learn nothing. What’s more, our protocols are more robust than
Γsag, since we allow n − t servers to halt at worst but Γsag must ensure the
parameter server runs normally.

5 Conclusion

We introduce a novel secure computation framework for distributed machine
learning that achieves high accuracy and performance by combining distributed
machine learning with secret sharing. In contrast to previous state-of-the-art
frameworks, we improve the efficiency of more than 10× and maintain the
required security in semi-honest. Besides, we propose a verifiable protocol against
servers-only malicious modifications based on information-theoretic MAC. We
evaluated our framework on linear regression, MLP, and CNN and achieve excel-
lent results both in accuracy and performance. What’s more, combining differ-
ential privacy with distributed machine learning is a promising solution against
inferring attacks, which can enhance our security as well. We leave it for future
work.
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A Proof of Correctness

A.1 Lemma 1

Proof. Suppose we have two secrets, s0 and s1, and we share both in Shamir’s
Secret Sharing scheme with two polynomial-functions

f(x) = a0 + a1 · x + ... + at−1 · xt−1 mod p

g(x) = b0 + b1 · x + ... + bt−1 · xt−1 mod p
(12)

where f(0) = a0 = s0, g(0) = b0 = s1 and p is a large prime.
In order to compute the shares, we can evaluate f(x) and g(x) at n different

points f(x0), f(x1), ..., f(xn−1) and g(x0), g(x1), ..., g(xn−1) respectively.
Then we will turn to getting the shares of s0+s1. We define a new polynomial-

function

h(x) = (a0 + b0) + (a1 + b1) · x + ... + (at−1 + bt−1) · xt−1 mod p (13)

Obviously, h(x) is a polynomial-function of degree t − 1 with t coefficients
and h(0) = s0 + s1. On the one hand, h(xi) is the shares for s0 + s1, and on the
other hand, we can confirm

h(xi) = (a0 + b0) + (a1 + b1) · xi + ... + (at−1 + bt−1) · xt−1
i

= (a0 + a1 · xi + ... + at−1 · xt−1
i ) + (b0 + b1 · xi + ... + bt−1 · xt−1

i )
= f(xi) + g(xi) mod p, 0 ≤ i ≤ n − 1

(14)
So that the shares of s0 + s1 can be computed by adding the corresponding

shares of s0 and s1.

A.2 Lemma2

Proof. Suppose we have x0, x1, ..., xn−1 and a secret key α. We could the compute
the MAC of xi

δ(xi) = α · xi mod p, 0 ≤ i ≤ n − 1 (15)

Then we can also compute the MAC of xi’s sum:

δ(
n−1∑

i=0

xi) = α · (
n−1∑

i=0

xi) mod p (16)
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Then it is easy to confirm

δ(
n−1∑

i=0

xi) = (α · x0) + (α · x1) + ... + (α · xn−1) mod p

= δ(x0) + δ(x1) + ... + δ(xn−1) mod p

=
n−1∑

i=0

δ(xi) mod p

(17)

For a more concrete proof, please refer to [12].

B Accuracy and Performance for Linear Regression
and MLP

B.1 Linear Regression

See Fig. 6.
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Fig. 6. Experimental results of linear regression. (a) is for accuracy, (b) is for perfor-
mance.
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B.2 MLP

See Fig. 7.
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Fig. 7. Experimental results of MLP. (a) is for accuracy, (b) is for performance.
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Abstract. With the proliferation of data and emerging data-driven
applications, how to perform data analytical operations while respect-
ing privacy concerns has become a very interesting research topic. With
the advancement of communication and computing technologies, e.g. the
FoG computing concept and its associated Edge computing technolo-
gies, it is now appealing to deploy decentralized data-driven applications.
Following this trend, in this paper, we investigate privacy-preserving sin-
gular value decomposition (SVD) solutions tailored for these new com-
puting environments. We first analyse a privacy-preserving SVD solution
by Chen et al., which is based on the Paillier encryption scheme and some
heuristic randomization method. We show that (1) their solution leaks
statistical information to an individual player in the system; (2) their
solution leaks much more information when more than one players col-
lude. Based on the analysis, we present a new solution, which distributes
the SVD results into two different players in a privacy-preserving man-
ner. In comparison, our solution minimizes the information leakage to
both individual player and colluded ones, via randomization and thresh-
old homomorphic encryption techniques.

1 Introduction

Internet of Things (IoT) is increasingly appearing in our lives, which promises
to connect everyone with everything from everywhere. In practice, IoT generates
a large amount of data that is closely related to the human users (or, owners)
of the devices. On the positive side, such data can be used for many useful
purposes such as building smart services. However, on the other side, it brings
huge privacy risks [15]. In most applications, the root of the privacy issue lies
in the fact that data needs to be aggregated to a must-to-be trusted service
provider before any service can be provided.

To mitigate the privacy concerns resulted from privacy-invasive data aggre-
gation in general, information security researchers and cryptographers have been
advocating privacy-preserving distributed protocols for decades. Unfortunately,
these protocols do not appeal to the real-world applications, which are often
designed for the cloud computing paradigm that essentially requires data aggre-
gation to a central third-party server. Recently, with the advancement of com-
munication infrastructure (e.g. 5G) and computing technologies such as the
c© Springer Nature Switzerland AG 2020
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FoG computing concept and its associated Edge computing technologies, it has
become a trend to design and deploy decentralised applications, which push
computations to the edge so that it avoids data aggregation to some extent.
Coined by Numhauser in 2011 [1], there are many (similar) definitions for FoG
computing. For example, Cisco [5] defines FoG computing as a paradigm that
extends cloud computing [9] and services to the edge of the network. In real-
ity, FoG computing can process its services at different nodes in the network as
opposed to a central server. It significantly decreases the data movement across
the network, so as to reduce the congestion, cost, and latency, and it also pro-
vides a decentralised infrastructure that naturally facilitates privacy protection.
While many FoG-based applications are emerging, it is becoming an interesting
research topic to design privacy-preserving solutions for the data exploitation
tasks in these applications.

1.1 Related Work and Problem Statement

In this paper, we are interested in how to perform Singular Value Decomposi-
tion (SVD) based on data from decentralized IoT devices. In machine learning
and data mining, SVD is a powerful and fundamental matrix factorization tech-
nique. It provides a means to decompose a matrix into a product of three simpler
matrices, so that one may discover useful and interesting properties of the orig-
inal matrix [7]. It finds many applications in reality. One prominent example is
recommender systems [10].

Chen et al. [3] proposed a privacy-preserving FoG computing framework for
SVD computation. In their solution, the result of SVD is separated into two
parts and stored at two different nodes. As a result, if an attacker compromises
only one node, then it does not learn everything. Unfortunately, there is no for-
mal analysis in [3]. Han et al. [7] provided a solution for performing SVD in
partitioned dataset, where two players collaborate with each other to perform
SVD based on their joint dataset. Their solution is based on a number of crypto-
graphic primitives, and the authors concluded that it is a challenge to reduce the
complexity when their solution is used for large dataset. For privacy-preserving
matrix factorization (MF) in general, Nikolaenko et al. [12] proposed a garbled
circuit-based protocol and Kim et al. [8] proposed a protocol based on homomor-
phic encryption. In both solutions, the factorization operation is decentralized
to two non-colluding servers, one of them controls key materials while the other
carries out the factorization operation. When the two servers are compromised
at the same time, then everything is leaked.

Despite the literature work, it remains an open problem to design an effi-
cient privacy-preserving SVD (or MF in general) protocol that provides rigorous
security even when several players are compromised simultaneously.

1.2 Contribution and Organization

In this paper, we aim at rigorous privacy-preserving SVD solutions in the
FoG computing paradigm. Firstly, we review the solution by [3] in Sect. 3 and
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demonstrate several privacy risks in Sect. 4. Our analysis covers a number of sce-
narios, including individual player/attacker and more colluded players/attackers.
Moreover, we also briefly analyse the recommender use case. Based on the anal-
ysis, we simplify the FoG architecture from [3] and present a stronger security
model, which captures scenarios where several players may collude. We then
propose a new solution based on threshold homomorphic encryption and push
some of the heavy computation workloads to the edge. We further analyse the
security properties and the asymptotic complexities, as well as benchmarking
results on a PC. These results appear in Sect. 5. In addition, we present some
preliminary in Sect. 2 and draw some conclusions in Sect. 6.

2 Preliminary on Singular Value Decomposition

Let M be a m×n matrix. As shown in Fig. 1, the SVD of M is a factorization of
the form UΣV

T , where U is an m × m left-singular matrix of M, Σ is an m × n
singular matrix of M, V is a n × n right-singular matrix of M, and T means
conjugate transpose. In addition, there are also two relations:

M ·MT = UΣV
T ·VΣT

U
T = UΣΣT

U
T ; M

T ·M = VΣT
U

T ·UΣV
T = VΣTΣV

T

The columns of U (left-singular vectors) and V (right-singular vectors) are,
respectively, eigenvectors of M · MT and M

T · M. The non-zero elements of Σ
are the square roots of the non-zero eigenvalues of M · MT and M

T · M.

m

n

M =

m

m

n

n

n

Singular Value

U
VT

Fig. 1. Singular value decomposition

A prominent application of SVD is recommender systems. Using the users’
rating data, a service provider can recommend other films that they might like.
As a toy example, suppose we have 3 users’ score records for 4 movies (0 for the
case of not being rated), see Table 1.

For this toy example, after applying SVD to the rating matrix, we can obtain
three singular matrices denoted as U, Σ and V

T .

U =

⎛
⎝

−0.784 0.243 0.571
−0.588 0.000 −0.809
−0.196 −0.970 0.143

⎞
⎠ Σ =

⎛
⎝

5.831 0.000 0.000 0.000
0.000 5.000 0.000 0.000
0.000 0.000 2.828 0.000

⎞
⎠ V

T =

⎛
⎜⎜⎝

−0.807 −0.135 −0.202 −0.538
0.146 −0.776 −0.582 0.194

−0.538 0.202 −0.135 0.807
0.000 0.137 −0.158 0.727

⎞
⎟⎟⎠
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Table 1. Rating matrix

Movie A Movie B Movie C Movie D

User 1 3 0 0 4

User 2 4 0 1 0

User 3 0 4 3 0

In practice, a dimensionality reduction procedure can be applied to generate
small-rank feature matrices. Note that the eigenvalue 2.828 is smaller than the
other two values, so that we can choose to suppress it and have a truncated
variant of Σ, namely

Σ∗ =
(

5.831 0.000
0.000 5.000

)

Accordingly, we generate a variant of U by removing its last column and a
variant of VT by removing its last two rows. Let the variants be denoted as U

∗

and V
∗T respectively. By computing U

∗Σ∗ 1
2 and Σ∗ 1

2V
∗T , we obtain the user

and item feature matrices shown in Tables 2 and 3.

Table 2. User feature matrix

User 1 −1.893 0.543

User 2 −1.420 0.000

User 3 −0.473 −2.169

Table 3. Movie/Item feature matrix

Movie A Movie B Movie C Movie D

−1.949 −0.326 −0.488 −1.299

0.326 −1.735 −1.301 0.434

Based on these feature matrices, a recommender service provider can serve
users with predictions on the movies they have not rated.

3 Overview of Chen et al.’s Solution

By assuming a FoG architecture, shown in Fig. 2, Chen et al. [3] designed a
privacy-preserving SVD solution based on some heuristic randomization tech-
niques and the Paillier scheme, described in our full paper [11]. This FoG com-
puting architecture consists of the following types of entities:

– Server : The initialization of the whole system is generated and operated by
the server, it is considered as fully trusted node in the FoG architecture.
Once, the initialisation is done, the server will not get involved anymore. So,
we omit it in Fig. 2.

– Edge Devices ED: Each edge device is the original collector of the data and
represents the human user behind it.

– First-layer FoG Device FD: The FoG device is responsible for collecting the
data from edge devices and coordinating the SVD operations.
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Second-Layer FoG Device (SDu)

(Decomposing ATA)

Second-Layer FoG Device (SDv)

(Decomposing AAT)

(3)   Sending Decrypted Result 

(3)   Sending Decrypted Result 

(2) Sending

Randomized Data

Randomizing
Collected Data

First-Layer
FoG Device (FD)

(1) Uploading

Encrypted Data

Edge Device
( ED1 )

( EDi )

( EDN )

...
...

Second-Layer 
FoG Device (SDd)

Fig. 2. Fog computing architecture

– Second-layer FoG Devices SDs: There are three different devices in this cat-
egory. SDd decrypts the received information and obtains the randomized
data matrix, and prepares data for SDu and SDv, who will perform the
decomposition.

3.1 Description of the Solution

Initialisation. The trusted server will setup the parameters for the system, shown
in Table 4. In terms of Paillier cryptosystem [13], the server generates the public
key (n = pq, g), and the private key (λ, μ). In the meanwhile, the server generates

Table 4. Initialization parameters

Parameter Propose

N Number of Edge Devices (ED)

l Dimension of data vector

x Range of value in data vector: [0, x]

k1 For generating t = 2k1

W Randomized W > max(N, l) · x2

S Randomized S > max(N, l) · (x2 + 2tWx + t2W 2)

k2 Bit length of W

k3 Bit length of S

�a For transforming vector into number

k Length of p, q in Paillier cryptosystem

(n, g) Public key of Paillier cryptosystem

(λ, μ) Private key of Paillier cryptosystem
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two random coprime numbers W and S respectively. Additionally, a super-
increasing vector �a = (a1 = 1, a2, ..., al)T is generated, and each value needs
to conform to the following conditions:

∑i−1
j=1 aj · (x + tW + tS) < ai, i ∈ [2, l]

and
∑l

j=1 aj · (x + tW + tS) < n. The Paillier private key (λ, μ) is assigned to
SDd, and the private randomization parameters W and S are assigned to FD,
SDu, SDv. All other parameters are public.

Privacy-Preserving Protocol. The privacy-preserving protocol runs in four steps.

1. EDi’s data is expressed in vector form �di = (d1i, d2i, ..., dli)T . Note that the
data from EDs forms a matrix A as follows.

A =

⎡
⎢⎢⎢⎣

d11 d12 . . . d1N
d21 d22 . . . d2N
...

...
. . .

...
dl1 dl2 . . . dlN

⎤
⎥⎥⎥⎦ (1)

By using the public vector �a, EDi first converts its vector into an integer.

mi = �di
T · �a = a1d1i + a2d2i + ... + aldli

It then encrypts this integer with Paillier public key to obtain ci. At the end
of this step, EDi, for every 1 ≤ i ≤ N , sends ci to FD.

2. After receiving every ci, FD chooses two vectors �zi = (z1i, z2i, ..., zli)T and
�ri = (r1i, r2i, ..., rli)T , where each element is randomly chosen from [1, t]. It
then computes the randomization parameter Ri =

∑l
k=1 ak ·(zki ·W +rki ·S),

and sets the randomized ciphertext c′
i as

c′
i = ci · gRi mod n2

= (gmi · rni ) · gRi mod n2

= (g
∑l

k=1 ak·dki · rni ) · g
∑l

k=1 ak·(zki·W+rki·S) mod n2

= g
∑l

k=1 ak·(dki+zki·W+rki·S) · rni mod n2

At the end of this step, FD sends c′
i (1 ≤ i ≤ N) to SDd.

3. After receiving every c′
i, SDd decrypts it to obtain

m′
i =

l∑
k=1

ak · (dki + zki · W + rki · S) mod n

Next, by applying Algorithm 1, the randomized non-encrypted data in vector
form can be computed.
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Algorithm 1. Recover Vector from Integer
Input: m′

i and �a = (a1, a2, ..., al)
T

Output: randomized non-encrypted data �d
′
i

1: let tmp = (ta1 , ta2 , ..., tal)
T within empty value inside

2: Xl ← m′
i =

∑l
j=1 ak · (dji + zji · W + rji · S) mod n

3: for k = l to 2 do
4: Xk−1 ← Xk mod ak

5: tak ← Xk−Xk−1
ak

= dki + zki · W + rki · S
6: end for
7: ta1 ← X1 = d1i + z1i · W + r1i · S

8: return �d
′
i = (ta1 , ta2 , ..., tal)

T

Now, SDd has the matrix A
′ made up by N different randomized non-

encrypted vectors �d′
i = (d′

1i, d
′
2i, ..., d

′
li)

T .

A
′ =

[
�d′
1

�d′
2 . . . �d′

N

]
=

⎡
⎢⎢⎢⎣

d′
11 d′

12 . . . d′
1N

d′
21 d′

22 . . . d′
2N

...
...

. . .
...

d′
l1 d′

l2 . . . d′
lN

⎤
⎥⎥⎥⎦ (2)

At last, SDd sends resu = A
′ · A′T and resv = A

′T · A′ to SDu and SDv

respectively.
4. With resu, SDu derandomizes every entry e′

ij as follows.

e′
ij mod S mod W

= (dij + zij · W + rij · S) mod S mod W

= (dij + zij · W ) mod W

= dij

The resulting matrix is A ·AT . Then, SDu performs eigenvalue decomposition
to obtain U and Σ of A · AT , referring to Sect. 2. Similarly, SDv can obtain
V and Σ of A

T · A. At the end, SDu and SDv will store UΣ
1
2 and VΣ

1
2

respectively. Note that they might apply the dimension reduction procedure,
as mentioned in Sect. 2, to store smaller feature matrices.

3.2 Recommender Use Case

Referring to the recommender use case described in Sect. 2, Chen et al. [3] pre-
sented a procedure to extend the privacy-preserving SVD protocol to compute
predictions of unrated items for the user of any edge device ED. Assuming this
use case, the information that SDu obtains at the end of privacy-preserving SVD
protocol, namely UΣ

1
2 , can be regarded as the user feature matrix, where the

i-th row is the feature vector of the user of EDi. Correspondingly, the informa-
tion that SDv obtains at the end of privacy-preserving SVD protocol, namely
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VΣ
1
2 , can be regarded as the item feature matrix, where the j-th row is the

feature vector of the j-th item.
If the user of EDi wants to retrieve the prediction on the j-th item, the

procedure is detailed below.

1. SDu and SDv randomize InfoUi and InfoIj with W and S, respectively,
and send the randomized data to SDd. Here, as described above, InfoUi
stands for the user feature vector of EDi, while InfoIj stands for the item
feature vector of item j. As an example, the randomization of InfoUi is
shown in Algorithm 2.

Algorithm 2. Randomize data with W and S

Input: InfoUi, W , S and range of random number [1, t]
Output: randomized vector InfoUi′

1: for every element hzi of InfoUi where 1 ≤ z ≤ l do
2: Generate random integer x, y from [1, t]
3: h′

z1 ←= hz1 + x · W + y · S
4: end for
5: return InfoUi′ = (h′

1i, h
′
2i, ..., h

′
li)

2. After receiving the randomized feature vectors InfoUi′ and InfoIj′, SDd

computes a randomized score Score′ = InfoUi′{InfoIj′}T , and sends it to
FD.

3. After receiving Score′, FD can derandomize it with W and S to obtain the
plaintext prediction for EDi:

Score = Score′ mod S mod W = InfoUi · InfoIjT

4 Analysis of Chen et al.’s Solution

In [3], Chen et al. analysed all devices of the system, and claimed that none of
them has the ability to learn private data under normal operations. However,
we show that their solution has a number of vulnerabilities, it leaks information
not only to an individual device but also colluded devices (more seriously).

4.1 Information Leakage to Individual Device

At the end of the privacy-preserving protocol, SDv obtains AT ·A with following
notation.

A
T · A =

⎡
⎢⎢⎢⎣

v11 v12 . . . v1N
v21 v22 . . . v2N
...

...
. . .

...
vN1 vN2 . . . vNN

⎤
⎥⎥⎥⎦ (3)
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Leakage 1. We note that the values vii, for i ∈ [1, N ], are in the following form.⎧⎪⎨
⎪⎩

v11 = d211 + d221 + ... + d2l1

· · ·
vNN = d21N + d22N + ... + d2lN

According to Cauchy-Schwarz inequality [14], based on vii, SDv can deduce
the upper bound about the average of the elements in �di for each device EDi,

namely
∑l

j=1 dji

l ≤ (vii

l )
1
2 .

Leakage 2. Taking the elements related to ED1 as an example, SDv possesses
the following values.⎧⎪⎨

⎪⎩
v11 = d211 + d221 + ... + d2l1

· · ·
vN1 = d1Nd11 + d2Nd21 + ... + dlNdl1

Adding all of them, SDv can obtain
∑N

j=1 vj1 =
∑N

j=1 d1j · d11 +
∑N

j=1 d2j ·
d21 + · · · +

∑N
j=1 dlj · dl1. Based on the fact that every dji ∈ [0, x], according to

the law of large numbers [2], the above equality can be approximately written as
∑N

j=1 vj1

N
=

1 + x

2
· d11 +

1 + x

2
· d21 + ... +

1 + x

2
· dl1

Based on this, SDv can obtain the approximate average of the elements in
�d1 for device ED1, namely

2
∑N

j=1 vj1

N ·(1+x)·l . Clearly, the same analysis applies to EDi

(2 ≤ i ≤ N).

4.2 When Two Devices Collude

If SDu and SDv collude, they possess U, Σ and V which are the singular matrices
of A. It means they can restore all private data as U · Σ · VT = A. If SDd and
FD collude, they will possess W , S, and the Paillier private key (μ, λ). With
this information, they can recover the private data of all EDs. Clearly, if SDu

or SDv colludes with SDd, they can also recover everything in the same way.
Next, we investigate the case that SDv and one ED collude. Generally, let’s

assume if SDv and EDi collude. They possess �di and A
T ·A as defined in Eq. (3).

The elements from the i-th column of AT · A are defined as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1i = d11d1i + d21d2i + ... + dl1dli

· · ·
v(i−1)i = d1(i−1)d1i + d2(i−1)d2i + ... + dl(i−1)dli

· · ·
v(i+1)i = d1(i+1)d1i + d2(i+1)d2i + ... + dl(i+1)dli

· · ·
vNi = d1Nd1i + d2Nd2i + ... + dlNdli
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Below, we describe two simple active attacks.

Attack 1. Being an active attacker, EDi can set its vector to be �di = (1, 1, ..., 1).
As a result, from the value vji where j ∈ [1, N ] and j �= i, SDv and EDi can
learn the average of the elements in the vector of EDj .

vji
l

=
d1j + d2j + ... + dlj

l

Attack 2. Similarly, EDi can set its vector to be �di = (0, ..., 1, ..., 0) where the
y-th element is 1 and all others are 0. In this case, from the value vji, SDv and
EDi can learn the the element dyj in the vector of EDj .

vji = d1jd1i + d2jd2i + ... + dyjdyi + ... + dljdli = dyj

4.3 When More Participants Collude

Attack 1. Suppose that SDv and l (or more) EDs collude. If this case, they will
possess A

T · A defined by Eq. (3) and for example the following l �ds.⎧⎪⎨
⎪⎩

�di = (d1i, d2i, ..., dli)T

· · ·
�d(i+l−1) = (d1(i+l−1), d2(i+l−1), ..., dl(i+l−1))T

With the information, SDv may recover the data of any EDj , for j /∈ [i, i +
l−1]. Note that the i-th to i+l−1-th elements from the j-th column of AT ·A are
defined as follows. The attack is simply to solve the system of l-variable linear
equations.⎧⎪⎨

⎪⎩
vij = d1id1j + d2id2j + ... + dlidlj

· · ·
vN(i+l−1) = d1(i+l−1)d1j + d2(i+l−1)d2j + ... + dl(i+l−1)dlj

By solving the system of equation, the attacker can obtain all the value of
daj where a ∈ [1, l].

Attack 2. Suppose SDd and h EDs collude, where h is an integer, they will
process A

′
as defined by Eq. (2). For example, consider the following h �ds.⎧⎪⎨

⎪⎩
�di = (d1i, d2i, ..., dli)T

· · ·
�d(i+h−1) = (d1(i+h−1), d2(i+h−1), ..., dl(i+h−1))T

For EDj , where j ∈ [i, i + h − 1], the relevant elements in A
′

lie in the j-th
column which can be expressed as:⎧⎪⎪⎨

⎪⎪⎩
d

′
1j = d1j + zj1 · W + rj1 · S

· · ·
d

′
lj = dlj + zjl · W + rjl · S
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These equations can be transformed into the following form shown in Eq. (4),
where zs, rs, and W , S are the unknowns.

⎧⎪⎪⎨
⎪⎪⎩

d
′
1j − d1j = zj1 · W + rj1 · S

· · ·
d

′
lj − dlj = zjl · W + rjl · S

(4)

Since rs and zs are random integers chosen from [1, t], according to the law
of large numbers [2], we can get an approximated form of the following equation.

1
l

·
l∑

i=1

(d
′
ij − dij) =

1 + t

2
· W +

1 + t

2
· S

Since the computation is based on data from EDj , we let Pj denote the
approximated estimation for W + S.

Pj = W + S =
2

(1 + t) · l
·

l∑
i=1

(d
′
ij − dij)

Based on Pj for all j ∈ [i, i + h − 1], SDd can try to recover W and S by a
brute-force attack, shown in Algorithm 3.

Algorithm 3. Brute-force the value of W and S

Input: P , Range of W
Output: Value of W and S
1: Let LC denote the set of all results of d

′
ij − dij where i ∈ [1, l] and j ∈ [1, N ]

(i.e. Equation (4) for EDj)
2: for each f in range of W do
3: SBF ← P − f
4: for each LCk in LC do
5: ModSk ← LCk mod SBF

6: end for
7: Let ModS denote the set of all ModSk

8: if GCD(ModS) > 1 and coprime(GCD(ModS), SBF ) then
9: return W = GCD(ModS), S = SBF

10: end if
11: end for

Once W and S are found, the whole matrix A can be recovered. We emphasize
that a brute-force attack has been analyzed in [3], where the attacker tries each
possible value of S. The complexity of their attack is O(2k3). In contrast, our
attack enumerates the parameter W which is much smaller than S (as shown
in Table 4, S > max(N, l) · (x2 + 2tWx + t2W 2)). The complexity of current
brute-force method is only O(2k2) + 2lh.
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4.4 Analysis of the Recommender Use Case

Regarding the recommender use case from Sect. 3.2, we observe that it has two
privacy vulnerabilities. One is that FD obtains the prediction score for the edge
devices. The score indicates the interest of the human user behind the device,
so that it may be considered as private information. Disclosing such information
may be considered undesirable by many. The other is that SDd obtains the
randomized feature vectors for all prediction queries. Considering the attack
from Sect. 4.3, SDd may recover W and S, and then recover the plaintext data
from all the devices.

5 New Privacy-Preserving SVD Solution

In this section, we first simplify the FoG architecture shown in Fig. 2 and propose
a stronger security model. Then, we present a new solution and provide detailed
security and performance analysis.

5.1 Security Model

Our new FoG architecture is shown in Fig. 3. In comparison to that in Fig. 2,
we get rid of the involvement of the second-layer SDd device. With this new
architecture, the second-layer devices SDu and SDv will store the decomposed
matrices, while the first-layer device FD is responsible for interacting with the
edge devices and coordinating the SVD operations.

Second-Layer FoG Device (SDu)

Second-Layer FoG Device (SDv)

(3.2) Decomposing

(2.b) Sending

(2.a) Randomly
Permuting Data

First-Layer
FoG Device (FD)

(1) Uploading

Encrypted Data 

Edge Device
( ED1 )

( EDi )

( EDN )

...
...

(2.b) Sending

(3.1)
Decrypting in
collaboration
with FD and SDv

(3.1)
Decrypting in
collaboration
with FD and SDu

(3.2) Decomposing

Fig. 3. Simplified FoG architecture

The purpose of our solution is to perform SVD based on the private data
from all edge devices EDi (1 ≤ i ≤ N), where EDi’s input is a data vector �di.
Note that we assume every data vector is in a column form and all these data
vectors form a data matrix A, as defined in Eq. (1). As the output, SDu and
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SDv should learn (U, Σ) and (V, Σ) respectively. Any other disclosure about the
private information, including EDi’s data, (U, Σ) and (V, Σ), will be considered
as an information leakage. Referring to the description of SVD in Sect. 2, the
legitimate information disclosure is equivalent to disclosing A ·AT and A

T ·A to
SDu and SDv respectively.

Comparing with [3] and other distributed machine learning solutions, we will
not make a general semi-honest assumption to ask all participants to follow the
protocol specification and not to collude with each other. As we have put in our
analysis, such an assumption is not realistic in practice, particularly some edge
devices can be compromised or forged easily. Instead, we assume some players
may collude and try to figure out information that they are not supposed to
learn. Next, we enumerate all the attack scenarios and our privacy expectations.

1. When a group of edge devices is regarded as the attacker, it should learn
nothing about the private data of other edge devices. This implies that the
attacker learns nothing about (U, Σ) and (V, Σ) more than what it can infer
from its own data.

2. When SDu is regarded as the attacker, it only learns (U, Σ). When SDv is
regarded as the attacker, it only learns (V, Σ). When FD is regarded as the
attacker, it learns nothing.

3. When SDu and FD are regarded as the attacker (i.e. they collude), it only
learns (U, Σ). When SDv and FD are regarded as the attacker (i.e. they
collude), it only learns (V, Σ). When SDu and SDv are regarded as the
attacker (i.e. they collude), it learns a randomly permuted data matrix A

†,
which is obtained by randomly permuting the rows and columns of A. This
means the attacker cannot trivially link a data vector to an edge device and
cannot trivially recover the order of the elements in a data vector.

4. When FD and a group of edge devices are regarded as the attacker, it should
learn nothing about the private data of other edge devices. This implies that
the attacker learns nothing about (U, Σ) and (V, Σ) more than that it can
infer from its own data.

5. When SDu and a group of edge devices are regarded as the attacker, it should
learn nothing more than what can be inferred from A

† · A†T and the data
vectors of these edge devices. When SDv and a group of edge devices are
regarded as the attacker, it should learn nothing more than what can be
inferred from A

†T ·A† and the data vectors of these edge devices. Recall that
A

† is defined in bullet 3.

Note that we do not consider the scenarios, where all edge devices collude or
all FoG devices (SDu, SDv and FD) collude, because in both cases the attacker
will know everything by default in our setting.

In our construction, we will use threshold homomorphic encryption as the
main building block, which guarantees that only the legitimate information will
be decrypted and delivered to the corresponding parties. As such, when we say
the solution does not leak any information about some private data α, it meant
that if another piece data β will generate the same output as α then the attacker
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cannot determine whether α or β has been used as the input. It has the same fla-
vor as the semantic security of the underlying homomorphic encryption scheme.

5.2 Description of the New Solution

Our main tool is a homomorphic encryption scheme, which supports partial
homomorphic multiplication (between plaintext and ciphertext) and a polyno-
mial number of homomorphic additions. In addition, we also require the scheme
to allow us to support threshold decryption. To this end, the threshold Paillier
scheme [6], described in Appendix B of our full paper [11], satisfies our needs.
This leads to the following initialisation for our new solution.

In the initialization stage, SDu, SDv and FD jointly set up the parameters
of the threshold homomorphic encryption scheme. We assume the public key is
pk, while the private key shares for the FoG devices are denoted as sku, skv
and skf respectively. We require a (3, 3) threshold decryption setting, namely
all three FoG devices need to collaborate in order to recover a plaintext message.

For the privacy-preserving SVD protocol, we will keep every data vector in
encrypted form after leaving the edge devices, and threshold decryption is only
carried out to recover the legitimate matrices for SDu and SDv respectively.
Depicted in Fig. 3, the protocol consists of four phases.

1. Edge Computing Phase: EDi (1 ≤ i ≤ N) uses the public key pk to encrypt
its vector �di = (d1i, d2i, ..., dli)T into a ciphertext vector �ci = (c1i, c2i, ..., cli)T

where c1i = Enc(d1i, pk) and so on. Then, EDi sends �ci, an encrypted inner

product Enc(�di
T · �di, pk), and l(l+1)

2 encrypted scalar values Enc(dxidyi, pk)
(1 ≤ x ≤ l, x ≤ y ≤ l) to FD. Note that these encryption operations can be
done offline.
After receiving �ci (1 ≤ i ≤ N), FD will possess a ciphertext matrix C, which
is an encrypted counterpart of A defined in Eq. (1).

C =

⎡
⎢⎢⎢⎣

c11 c12 . . . c1N
c21 c22 . . . c2N
...

...
. . .

...
cl1 cl2 . . . clN

⎤
⎥⎥⎥⎦

Next, FD computes the encrypted forms of AAT and A
T
A, generally denoted

as C⊗C
T and C

T ⊗C respectively. For the sake of notation simplicity, if two
ciphertexts encrypt the same plaintext, then we consider them the same.

– We note that, for 1 ≤ x, y ≤ l, the element on x-th row and y-th column
of C ⊗ C

T is in the form
∑N

i=1 cxi ⊗ cyi, which can be computed by FD
based on the encrypted scalar values from all edge devices. For each such
element, FD needs to perform N −1 homomorphic additions based on the
received encrypted scalar values, and it also needs to perform a ciphertext
rerandomization for security reasons.
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– FD obtains C
T ⊗ C by pushing the computing task back to the edge

devices as follows. For 1 ≤ x, y ≤ N , the element on x-th row and y-th
column of CT ⊗C is in the form of an encrypted inner products �cx

T ⊗ �cy.
Note that, if the edge device EDx is given �cy, then it can compute �cx

T ⊗ �cy

more efficiently by replacing �cx
T with the plaintext, namely �dx

T
, and the

complexity is l partial homomorphic multiplications, l − 1 homomorphic
additions and a ciphertext rerandomization (to prevent the leakage of
the plaintext data). As the values on the diagonal have been sent by the
edge devices, there are only (N−1)(N−2)

2 encrypted inner products to be
computed, every edge device needs to compute (N−1)(N−2)

2N on average.
2. Randomization Phase: FD chooses two random permutations. PU randomly

permutes the edge device indexes: for any 1 ≤ i ≤ N , PU(i) ∈ {1, 2, · · · , N}.
PI permutes the index of elements in data vectors: for any 1 ≤ i ≤ l, PU(i) ∈
{1, 2, · · · , l}. In this phase, based on C⊗C

T and C
T ⊗C, FD generates their

variants corresponding to the following permuted plaintext data matrix.

A
† =

⎡
⎢⎢⎢⎣

dPU(1)PI(1) dPU(1)PI(2) . . . dPU(1)PI(N)

dPU(2)PI(1) dPU(2)PI(2) . . . dPU(2)PI(N)

...
...

. . .
...

dPU(l)PI(1) dPU(l)PI(2) . . . dPU(l)PI(N)

⎤
⎥⎥⎥⎦

Let C
† denote a ciphertext of A

†. Then, FD can generate C
† ⊗ C

†T and
C

†T ⊗ C
† as follows.

(a) Clearly, PI does not affect C
† ⊗ C

†T , which can be generated based on
PU by rearranging the elements in C ⊗ C

T .
(b) Clearly, PU does not affect C

†T ⊗ C
†, which can be generated based on

PI by rearranging the elements in C
T ⊗ C.

At the end, FD sends C
† ⊗ C

†T to SDu, and sends C
†T ⊗ C

† to SDv.
3. Ephemeral SVD Phase: After receiving C

† ⊗ C
†T , SDu can request the help

from SDv and FD to decrypt all the elements to obtain A
†
A

†T . It can then
perform decomposition and obtain U

† and Σ†. Similarly, SDv can obtain V
†

and Σ†.
4. Secure Storage Phase (optional): Based on some predefined rule, SDu

and SDv can truncate Σ† in a certain way (see Sect. 2), and then
store an encrypted product instead of the plaintext matrices. For exam-
ple, if they do not truncate Σ† at all, they store Enc(U†(Σ†)

1
2 , pk) and

Enc((Σ†)
1
2 (V†)T , pk) respectively.

The permutations, namely PU and PI, only affects the location of device
indexes and data elements in the data matrix, so that they do not affect the
functionality of SVD in any manner. Referring to the recommender use case,
FD can easily determine the feature vectors for a specific user and item in
U

†(Σ†)
1
2 and (Σ†)

1
2 (V†)T . If the optional Secure Storage Phase is adopted, then

when an outsider attacker compromises any two of the FoG devices (i.e. SDu,
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SDv and FD) at the end of the solution, it learns nothing due to the threshold
decryption requirement.

5.3 Security and Performance Analysis

Security Analysis. We show that the solution satisfies our privacy expectations
defined in Sect. 5.1.

1. When a group of edge devices are regarded as the attacker, it does not learn
anything about the private data of other edge devices because it only receives
encrypted data and has no access to the decryption oracle.

2. When SDu (or SDv) is regarded as the attacker, it only learns (U†, Σ†) (or,
(V†, Σ†)) because that is the only information disclosed in the Ephemeral
SVD Phase. When FD is regarded as the attacker, it clearly learns nothing
because of the threshold decryption constraint.

3. When SDu and FD are regarded as the attacker, it possesses (U†, Σ†) and
the permutations. As a result, it only learns (U, Σ) because of the thresh-
old decryption constraint. Similarly, when SDv and FD are regarded as the
attacker, it only learns (V, Σ). When SDu and SDv are regarded as the
attacker, it learns a randomly permuted data matrix A

†, which is equivalent
to (U†, Σ†) and (V†, Σ†).

4. When FD and a group of edge devices are regarded as the attacker, it does
not learn anything about the private data of other edge devices because it
only receives encrypted data and does not receive any decryption output.

5. Due to the threshold decryption constraint, when SDu and a group of edge
devices are regarded as the attacker, it only learns A

† · A†T and the data
vectors of these edge devices. Similarly, when SDv and a group of edge devices
are regarded as the attacker, it only learns A

†T · A† and the data vectors of
these edge devices.

Asymptotic Performance Analysis. Regarding the complexity of the new solu-
tion, we summarize the number of main cryptographic operations in Table 5. It
excludes offline and optional operations. As to notation, Dec, ⊕, ⊗, rand denote
threshold decryption, homomorphic addition, homomorphic multiplication, and
ciphertext rerandomization respectively. Regarding the threshold Paillier scheme
described in Appendix B of our full paper [11], referring to the cryptographic
operations, we make the following note: a partial ⊗ is an exponentiation, a ⊕ is
a modulo multiplication, and a rand is a modulo multiplication.

Optimised Benchmarking. In order to learn the actual running time of different
parties, we implement our solution based on the threshold Paillier scheme. For
the benchmarking, we choose a 2048-bit n, set s = 2, and split the key into three
shares and require the decryption to involve all three key shares. We assume
there are 1000 devices and every data vector has 100 elements. In addition, as in
the recommender use case, every element of the data vector is a small number
from 0 to 5.
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Table 5. Asymptotic complexity

Player Complexity

EDi
l(N−1)(N−2)

2N
partial ⊗, (l−1)(N−1)(N−2)

2N
⊕, (N−1)(N−2)

2N
rand

FD l(l+1)(N−1)
2

⊕, l(l+1)+N(N+1)
2

Dec, l(l+1)
2

rand

SDu
l(l+1)+N(N+1)

2
Dec

SDv
l(l+1)+N(N+1)

2
Dec

To reduce the number of threshold decryption operations, we propose to pack
multiple ciphertexts into one and decrypt all of them at once.

– Every ciphertext in the matrix C
† ⊗ C

†T encrypts a number in the range
[0, 215). Since the message space for threshold Paillier is (0, n2), we can
pack around 270 ciphertexts Ci (1 ≤ i ≤ 270) into a single one as
C1 ·(C2)2

15 · · · (C270)2
15×269

. Note that operations are modulo n2+1. The pack-
ing incurs 269 + 15 + 30 + · · · + 15 × 269 = 544944 ciphertext multiplications.
Recovering individual plaintext is trivial based on modulo operations with
respect to 215×269, 215×268, · · · , 215 sequentially.

– Every ciphertext in the matrix C
†T ⊗ C

† encrypts a number in the range
[0, 212). Similar to the above case, we can pack around 340 ciphertexts Ci

(1 ≤ i ≤ 340) into one as C1 · (C2)2
12 · · · (C340)2

12×339
. The packing incurs

339 + 12 + 24 + · · · + 12 × 339 = 691899 ciphertext multiplications.

After the optimisation, based on Table 5, we derive the new asymptotic com-
plexity in Table 6. Note that mul is a modulo multiplication, Dec and Dec (comb)
refer to the Share decryption and Combination algorithms respectively described
in Appendix B of our full paper [11]. Based on our implementation on a PC with
3.40 GHz CPU and 16 GB memory, we obtain the actual running time in the
last column.

Table 6. Optimised complexity (N = 1000, l = 100)

Player Complexity Time

EDi 49850 partial ⊗, 49850 mul 3 s

FD 5050000 mul, 1491 Dec 189 s

SDu C
† ⊗ C

†T : 19 Dec (comb), 10353936 mul; C†T ⊗ C
†: 1472 Dec 267 s

SDv C
† ⊗ C

†T : 19 Dec; C†T ⊗ C
†: 1472 Dec (comb), 1018475328 mul 15061 s

In order to further reduce the running time for SDv, there are two more ways
to further optimise the computations. The first one is to check the density of the
dataset and pack more ciphertexts into one, and the other is to outsource the
computations to the edge devices.
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6 Conclusion

In this paper, we analysed the privacy-preserving SVD solution by Chen et al.
[3], and demonstrated several privacy vulnerabilities. Based on our analysis,
we presented an enhanced solution and provided analysis on both security and
efficiency. As an immediate future work, we would like to further optimize its
efficiency by exploiting fine-grained packing and computation outsourcing. It
is also an interesting work to study the performances with larger datasets and
improve the efficiency a step further (e.g. by pushing more computations back
to the edge devices [4]). In addition, it is an important work to compare the per-
formances of the (optimised) solutions to those in the literature. To this end, the
comparison should also take into account the potential application requirements.
One of them is that the SVD might be carried out frequently based on the new
data constantly generated by the edge devices. We conjecture that the garbled
circuit based solutions such as [12] will have a disadvantage in such situations.

References

1. Bar-Magen Numhauser, J.: Fog computing introduction to a new cloud evolution.
University of Alcalá (2012)
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Abstract. Web applications have become one of the most common targets for
attackers to exploit vulnerabilities in recent years. After successfully attacking the
webserver, hackers upload webshell to maintain long-term and secret access to the
server. Nowadays, webshell written by various script languages leads more and
more security researchers to focus on how to detect it efficiently and automatically.
Therefore,we classifymultiple classes ofwebshell based on the implementation of
webshell and then propose a heuristic detection method based on fuzzy matching
and recurrent neural network. We analyze the behavioral characteristics of suspi-
cious files by driving the known malicious samples, extract system call sequence,
and perform automatic detection based on the recurrent neural network. Through
feature learning andmodel training, the experimental results show that ourmethod
has high accuracy for webshell detection whether it written by various languages,
obfuscated or encrypted. The prototype system WSLD has been well designed
and implemented based on our method. With a total of 5541 samples trained and
2100 samples tested, the result shows that the webshell recognition rate of WSLD
can reach 98.86%, which proves it is an effective and feasible method.

Keywords: Fuzzy match ·Webshell · Recurrent neural network · Heuristic
detection

1 Introduction

With the rapid development of Internet technology, the network is increasingly connected
with people’s lives, and the security of Web applications has received more and more
attention. According to the 2018 website security situation analysis report released by
Qihoo 360 [1], therewere a total of 703,000websites that suffered fromattack throughout
the year, andmore than 8,040,000webshellwere uploadedduring thewhole year, ranking
second among the top tenwebsite security risks. Server-side security issues are becoming
more and more serious, and even seriously threaten the normal operation of network
services. Therefore, it is important to discover and detect server vulnerabilities and
backdoors in time to ensure server-side security.
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Webshell is often seen as a remote access Trojan on a compromised webserver
during a network attack. Because it is a command execution environment written in a
server-side dynamic scripting language, it is easier to bypass intrusive security products
from external and traffic perspectives. Therefore, how to go deep into the server and
analyze the malicious code in the website asynchronously with the most accurate and
timely methods to know the security status of the website server has become an urgent
problem.

Traditional webshell detectionmethods aremostly based on regular matching, which
analyzes and matches keywords such as dangerous functions and malicious signatures
of common webshell. Since stealth webshell usually has similar features to normal web
scripts, such detection methods cannot accurately detect stealth webshell. In addition,
this kind of method will also generate more false negatives for the unknown webshell.
The filtered webshell usually needs further technical verification by website maintainer,
which puts higher demands on the administrator. Detection methods based on log anal-
ysis, traffic analysis and behavior analysis have been proposed in order to detect highly
obfuscated and encrypted webshell timely. However, there are problems such as sin-
gle detection dimension, long detection time, and detection requiring intrusion in the
implementation process of these methods.

With the development of artificial intelligence, deep learning has been fully applied
in solving network security problems. As for webshell detection, when selecting a large
number of samples, suitable sample features and detection methods, machine learning
based methods can get better detection results than traditional detection methods. In this
paper, we present a method for detecting webshell based on fuzzy matching and deep
learning. The main contributions of this paper are as follows:

(1) We summarize the latest developments in the field of webshell detection in recent
years, and then we classify different variants of webshell into four categories based
on the analysis of the principle of webshell implementation.

(2) We propose a heuristic method to detect webshell based on fuzzy matching and
deep learning. Through the fuzzy matching, the normal and the high-risk webshell
are divided into two classes, then the systemwill detect the suspicious class through
the recurrent neural network (RNN) algorithm based on the system call sequence
driven by a large number of malicious samples, and finally the classified webshell
is merged and identified. Experiments show that this approach can be used to make
up for the shortcomings of traditional detection technology and existing machine
learning detection methods, which effectively detects webshell and provides good
experience for users.

(3) We design and implement a system named WSLD (Webshell Detector), which is
a prototype system for detecting webshell. WSLD can automate the analysis and
detection of uploaded samples, and it can not only achieve a cost-sensitive classi-
fication of webshell, but also can accurately predict unknown and specially con-
structed webshell.WSLD has a good ability to recognize malicious samples written
in different languages, encrypted or highly obfuscated. In terms of performance,
the system can detect webshell asynchronously till all files are detected.
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The rest of this paper is arranged as follows. The second section summarizes the
existing webshell detection methods and their existing problems. The third section ana-
lyzes the implementation of webshell, classifies different variants of webshell into four
categories and proposes a detection method based on fuzzy matching and deep learn-
ing. The fourth section presents the design of WSLD and elaborates the three modules
in the detection framework. The fifth section implements the prototype system WSLD
and explains the implementation details of each module. The sixth section lists the
experimental setup, conducts two experiments to test and compare WSLD with some
popular webshell detection tools, and finally explains the test results; the seventh section
summarizes the full paper.

2 Related Work

The detection of malicious code on web pages has always been a hotspot of security
research. Because webshell is seriously harmful, threatening and far-reaching in web
malicious code, security researchers have carried out extensive and in-depth research
on how to detect webshell-related malicious code more effectively. The summary of the
research work on webshell detection in all directions is shown in Table 1.

The static feature matching detection mainly focuses on the data execution to extract
features from high-risk functions and feature codes. The detection results are closely
related to the feature library. Piotr and Thornton [2] collected a large number of sam-
ples to form a rich feature library and develop a php-webshell-detector. Subsequently,
Truong et al. [3] proposed a static detection webshell method for real-time updating of
the feature library by scanning decoding, encryption function and statistical behavior
information. Hu [4] conducted feature extraction based on properties of webshell and
detected webshell using decision tree. Later, Meng et al. [5] extracted the attributes of
web pages as features and used the SVM method to detect the webshell. It’s easy to
find that the static feature detection is generated from the existing feature database of
webshell and can’t detect unknown webshell effectively. Because it is easy to bypass,
the encoded webshell causes more false positives and false negatives.

Subsequently, dynamic webshell detection based on abnormal traffic was succes-
sively proposed. Starov used dynamic analysis in the research of webshell [6] to quan-
tify common features ofwebshell, such as authenticationmechanisms, interface features,
and so on. From the perspective of usability, the dynamic method can realize real-time
detection from the implementation of webshell, but it is usually expensive to deploy
during the implementation and requires a list of routine maintenance rules.

As a method of threat identification and analysis, log analysis can provide complete
event tracking for webshell detection. Shi [7] analyzed the logs and performed text
feature matching to detect webshell. Deng et al. [8] realized the detection of webshell
by extracting log text features and establishing a request model. It can be found that
webshell detection based on logs is difficult to touch the nature of webshell, and the
detection efficiency is lower for a large number of access logs.

Detection of webshell behavior analysis is based on the parsing process of website
scripts in the system environment. Cui [9] extracted the opcode sequence of PHP and
used the random forest to identify webshell. Besides, some work [10] attempted to
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Table 1. Webshell detection related research work summary

Research interests Research advances Research team Remaining problems

Detection technology
based on static feature

Build a webshell
feature library to
detect webshell

ShellDetector Inc. Hard to identify
encrypted, obfuscated
shell;
Unable to detect
unknown webshell

Webshell detection by
updating the feature
library in real time

Southeast University

Detection by webshell
attributes

IIE, CAS

Detection based on
attributes and
operations

Peking University

Traffic-based analysis Analysis the features
of webshell by traffic

Stony Brook
University

High deployment
costs;
Hard to detect
encrypted traffic

Detection technology
based on log analysis

Log-based feature
matching detection

Sichuan University Hard to touch the
nature;
A large number of
useless logs

Detect webshell based
on logging and lexical
analysis techniques

St. John’s University

Detection technology
based on behavioral
analysis

Webshell detection
model with PHP
opcode sequence
features

Sichuan University Cannot detect stealth
or content
scenes-based
webshell

Random forest based
on dynamic feature
selection

Electronic
Engineering Institute

Detection technology
based on statistics

Statistical indicators
to compare webshell
with normal files

Cisco Distinguish
obfuscated from
normal files

Logistic regression
based on statistical
features to detect
webshell

Sichuan University

Detection technology
based on deep
learning

CNN model based on
HTTP requests to
detect webshell

Army Engineering
University

Single feature type;
Only one deep
learning algorithm

SVDD algorithm to
detect webshell

One scorpion
Technology

BP neural network to
detect webshell based
on semantic analysis

Peking University
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construct feature vectors for different webshell types and built a random forest model to
detect webshell.

Nowadays,webshell is often obfuscated to bypass the firewall.Meanwhile, the obfus-
cated webshell often presents specific statistical characteristics. NeoPI [11] mainly iden-
tified the obfuscated files. The main work of the detection was to calculate the statistical
range of normal files by statistical methods and compare the hidden malicious code
with the files to be detected. Ma [12] built a supervised classification model based on
logistic regression to detect webshell. However, this method relied on statistical features
in the process of identifying webshell and could not provide the basis for discriminating
whether the files were webshell. Therefore, the method leads some false positives which
have to be classified by manual analysis.

With the development of artificial intelligence, the neural network algorithms are
gradually applied to webshell detection. Tian [13] proposed a method to convert the
HTTP request into a fixed-size word vector matrix and built a CNN model to perform
feature learning on the webshell request to detect webshell. Wu [14] proposed using
the chi-squared test and deep learning algorithm to obtain the text features of webshell,
using the incremental learning SVDDmodel to build the classifier. Zhang [15] proposed
semantic analysis on the compiled files and built a BP neural network to detect unknown
samples.

From the above analysis, we can see that although many efforts are focused on
webshell detection, most of the existing methods have problems such as limited detec-
tion dimensions, single features, and detection methods that need to perform intrusion.
Compared with other algorithms, the detection method proposed in this paper has rich
detection dimensions, and all the test indicators performed well.

3 Proposed Methodology

With the development of webshell, more and more webshell is obfuscated to bypass
WAF filters and signatures. In this section, we analyze the nature of webshell based
on its implementation, classify webshell into four categories and propose a webshell
detection method based on fuzzy matching and deep learning.

3.1 Webshell Overview

Starov [6] proposed a comprehensive study of webshell by using different static and
dynamic analysis methods to analyze the function of webshell from the principle of
webshell and how the attacker use these functions to complete the attack. Inspired by
the analysis of webshell, in order to effectively detect webshell, we have effectively
analyzed the implementation process of webshell.

This section analyzes the principle and implementation of webshell. Table 2 lists
webshell written in different languages. By contrast, we can find that although webshell
can be written in different languages, it is essentially the same in its implementation,
which can be divided into two parts: data transmission and data execution.

Subsequently, we organized webshell to data transmission and data execution in
accordance with webshell implementation, as shown in Table 3. When the webshell
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Table 2. Webshell written by different script languages

Scripts Examples of Webshell

ASP <%eval request(“pass”)%>

ASPX <%@ Page Language=“Jscript”%><%eval(Request.Item[“cmd”],“unsafe”);%>

JSP <%Runtime.getRuntime().exec(request.getParameter(“i”));%>

PHP <?php assert($_REQUEST[“c”]);?>

is uploaded to the vulnerable website, the attacker connects to the webshell for data
transmission. After receiving the transmitted data part, the server interprets and executes
the transmission content, thereby completing the process of remotely controlling the
target server.

Table 3. Components of webshell

Scripts Data transmission (DT) Data execution (DE)

ASP request(“pass“) eval(DT)

ASPX Request.Item[“cmd”] eval(DT)

JSP request.getParameter(“i”) exec(DT)

PHP $_REQUEST[“c”] assert(DT)

3.2 Webshell Classification Based on Webshell Implementation

According to the analysis of webshell principle in Sect. 3.1, this section presents the
research on webshell variations, analyzes the nature of different variants of webshell,
and summarizes the classification of unknown webshell confrontation techniques.

From the attacker’s point of view, if you want to successfully upload and connect
to the webshell, you need to bypass all kinds of protection tools. Taking the detection-
bypass webshell leaked into the Internet as a starting point, we divide all webshell into
two parts: data transmission and data execution. And then we mainly classify it into four
categories.

(1) Modifications in commands and functions based on data execution and data trans-
mission. In the implementation of webshell, data connection and command execu-
tion are often involved. Some static detection methods [2, 3] build feature libraries
and match them around these unique high-risk functions. In order to effectively
avoid static feature killing, webshell uses function name split and reorganization,
dynamic execution technology to bypass the specific features of static protection
tools, and thus successfully executed.
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(2) Confusion variation based on data execution and data transmission. This type of
variation uploads webshell to the vulnerable website by encrypting webshell code,
obfuscating it into coded fragments without a fixed behavior pattern, bypassing
web detection limit. During the data transmission process, webshell can decode
the payload encoded in the transmission process to perform further penetration
behavior of attackers.

(3) A variation based onweb server data execution and data transmission configuration.
The variation requires the server to have some support in the configuration and thus
execute successfully. If you use the short format script to bypass detection, you
need to enable the short format support in advance. This type of detection-bypass
webshell uses a certain pre-condition, which is accidental.

(4) Data execution and data transmission deformationmethods based on language char-
acteristics. This variation uses the language features of various scripting languages
to hide the webshell. For example, webshell is directly inserted into the normal
script of the vulnerable website by using the callback feature of the php function.
Also, when variables are controllable, webshell can cause code execution by using
serialization and deserialization to bypass detection, et al.

According to the above four classifications, it can be found that the webshell varia-
tions are constantly changing and updating, and all are based on the webshell principle
for data execution and data transmission.

3.3 Webshell Detection Method

In the analysis of the second section, it can be found that the existing detection methods
mostly use webshell detection as the starting point, and webshell samples are used as the
carrier to obtain the instant and effective webshell detection model.We take the nature of
webshell as the starting point, analyze the variant behavior of the samples, and propose
a detection method based on fuzzy matching and deep learning.

(1) Webshell heuristic detectionmethodbasedon fuzzymatching. For code snippets
of data execution and data transmission in webshell, we build a multi-dimensional
detection model that heuristically detects and prevents webshell. The method con-
structs a three-dimensional stereo detection method, using webshell itself to build
a fuzzy hash sample library, webshell data execution and data transmission as the
main rules of the fine-grained regular feature library, and building the random forest
algorithm by statistical features of variant webshell.

(2) Webshell detectionmethod based on deep learning.We construct a deep learning
detection based on system call sequence. No matter how webshell is obfuscated,
the system call sequence can touch the nature of webshell according to data exe-
cution and data transmission. For the purpose of detecting unknown webshell, the
effective webshell system call sequence is used as a feature to drive a large number
of normal/webshell samples for effective parameter training and data tuning, and
finally to obtain the final model with the best detection effect.
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4 WSLD Design

Based on the above strategy, we design a framework for webshell detection based on
heuristic fuzzy matching and deep learning, as shown in Fig. 1. The framework mainly
includes three parts: heuristic fuzzymatchingmodule, recurrent neural network detection
module and cloud analysis module. The first two modules can be directly invoked by
the user; the cloud analysis module is deployed in the cloud server and communicates
with the webshell detection engine regularly and synchronizes the latest webshell feature
library.

Fig. 1. WSLD framework

The framework first recursively resolves the user-uploaded folder. The upload files
are first input into the heuristic fuzzy matching module which adopts a combination
of static detection, statistical detection and heuristic detection. Then, the resources are
initially identified and classified into high-risk samples and suspicious samples. When
all techniques in the module detect that a sample is webshell, the file is output directly
as high-risk sample. Otherwise, the file is considered as suspicious sample.

The suspicious sample is preprocessed by sandbox, and each system call function
is extracted based on the behavior of system to form a host system call sequence.
The sample sequence is eigen vectorized using the ADFA system call sequence
table [17, 18]. Subsequently, the suspicious samples of the feature engineering are
imported into a deep learning detection driven by a large number of normal/webshell
samples. Suspicious samples are further detected by a recurrent neural networkwith long
short-termmemory cells, and the input samples are finally identified. After the detection
is completed, heuristic fuzzy matching module and recurrent neural network detecting
module timely report the detected high-risk webshell to the user, and report to the cloud
analysis module for confirmation. Finally, the framework can detect and identifie mali-
cious samples through local passive and cloud-active dual-engine webshell detectors,
synchronize webshell signatures, and isolate webshell execution on key functions.

4.1 Heuristic Fuzzy Matching Module

After the analysis of webshell and existing detection technology, considering the vari-
ations of webshell and the disadvantages of various existing detection techniques
mentioned before, WSLD framework uses a three-dimensional stereo detection strategy
based on data transmission and data execution in the heuristic fuzzy matching module,
as shown in Fig. 2.
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Fig. 2. Heuristic fuzzy matching module

The system will traverse all the files to be detected according to the uploaded folder
path, collect related information of the included file, and extract attribute features such
as file name, file suffix, and file authority after the uploaded file is obtained, in order to
be used for policy detection for the part of the regular matching in this module.

After obtaining the standardized input, the module first calculates the fuzzy hashes
of all the files through the library of ssdeep and generates a fuzzy hash table. The series
of fuzzy hashes are then compared to the fuzzy hashes in the webshell feature library to
determine the similarity of the samples. A high-risk webshell is detected based on the
threshold range obtained by the training of known samples. The remaining samples are
entered into the feature regular matching section.

From the analysis of the webshell implementation process, the characteristics of
regular matching include the high-risk behavior function of fine-grained webshell, the
low-false positive webshell feature, the codec function call, the source code feature and
the webshell developer information, et al. By performing regular matching in the file to
be detected, the common high-risk webshell is efficiently detected, and the remaining
samples are then input to the statistical method detection part.

The statistical detection method is further tested for obfuscated and encrypted web-
shell. Entropy, compression, the longest word, index of coincidence and the specific
webshell feature are selected as conditional attributes. And then we use random forest
algorithm to build the statistical webshell detection based on the optimal parameters.

Finally, the thresholds of the heuristic detection module are defined based on the
results of the detection methods mentioned above. By analyzing the comprehensive
index of the uploaded file, the abnormal webshell can be detected through the threshold
comparison. The remaining Output1 to be further detected will be input into the deep
learning detection module.

4.2 Detection Engine Based on Multi-layer RNN

In order to detect unknown webshell more effectively, based on the webshell detection
method of data transmission and data execution, we built up a deep learning webshell
detection method based on system call sequence.
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Algorithm 1 Pseudocode of Multi-layer RNN

begin

file := loadFileSyscall(Output1)

testX := replace(file)

net := RNN.Webshell()

ws_model := DNN(net)

predictY := ws_model.predict(testX) 

if predictY = IsWebshell then

#move file to temp folder

#send file info to cloud

return file is webshell

end if

end

Namely, as the pseudocode inAlgorithm1 shows, the deep learningmodule ofWSLD
framework collects the system call sequence generated by the samples during the loading
process through auditd unix, and sequentially performs data cleansing and feature vector
generation. Subsequently, the module loads the multi-layer RNN algorithm based on the
system call sequence driven by a large number of normal/webshell samples for webshell
detection of the samples to be tested. After the samples pass the algorithm, the framework
will perform binary classification (normal/webshell) on all samples.

After the detection is completed, the system directly returns to users the result
combining heuristic fuzzy matching module and deep learning algorithm module.

4.3 Cloud Analysis Module

The cloud analysis module includes a webshell cloud feature library that is updated in
real time and process of uploading webshell by a client. The feature library is uploaded
to the cloud by the detection process which is updated in real time.

When the host completes the requested webshell detection process, the client asyn-
chronously reports the detected webshell to the cloud analysis module for confirma-
tion. The cloud analysis module performs feature processing on the uploaded samples,
compares and identifies with the existing cloud feature library.

The cloud adds the newly confirmed webshell static features to the feature library
and periodically updates to all users feature libraries by further comparing the webshell
in the cloud feature library (Fig. 3).

5 WSLD Implementation

In this section, we describe the implementation details of WSLD. We elaborate on how
we collect webshell and normal scripts for the detection, how WSLD is implemented,
and how WSLD automatically detect webshell in different modules.
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5.1 Webshell Feature Library

In the early stage of the experiment, we mainly collected the open source webshell
and the leaked webshell. After the process of deduplication, we covered 5541 samples
including 3496 webshell written by various scripting languages [19, 20] and 2045 open
source CMS samples for the training set. The detailed distribution is shown in Fig. 4.

2141

507 445
176 227

0

500

1000

1500

2000

2500

PHP ASP JSP ASPX OTHERS

# 
of

 W
eb

sh
el

l 

Script Languages

Fig. 4. Scripts distribution of webshell

In order to enhance the generalization of the deep learning training model, we use
the crawler to index webshell, run the webshell samples, record the system call sequence
and vectorize the samples in the webshell feature library according to the ADFA-LD
data set rules. The data in the sample set that conflicts with the dataset rules is directly
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discarded, and the same formatted data as the ADFA-LD dataset is finally obtained to
ensure the validity of the retained samples.

5.2 Fuzzy Hash Extraction

Fuzzy hash is based on hash algorithm, which is a context-triggered segmentation hash
that applies a rolling hash. The fuzzy hash algorithm first blocks the file, calculates the
hash value of each block, and then compares the obtained hash values with the others to
determine the similarity, which is different from the hash algorithm. Fuzzy hash ismainly
used to find homology files. Jesse Kornblum developed ssdeep [21, 22] to generate and
calculate the similarity of two files.

For the method proposed here, we construct a fuzzy hash webshell library. All the
files to be detected traversed by the directory are calculated by ssdeep to calculate the
fuzzy hash value, compare the similarity between the files and known webshell, and
detect the webshell effectively.

Since ssdeep can calculate the similarity between two files, the fuzzy hashes of the
files to be detected are compared with the webshell databases. The higher the calculated
percentage, the higher the similarity of the files. In the process of finding the best sim-
ilarity threshold for detecting webshell, we use 90% of webshell to construct feature
libraries, 10% webshell (350) and 350 normal CMS samples as test data to test specific
thresholds. With the ratio of webshell train data to test data is 9:1 in the experiment,
the threshold of webshell similarity is finally determined to be 90%. At this time, the
false positives and false negatives in the test data are the least, the normal sample false
positive is 0, and the webshell sample false negative rate is 1.43%.

5.3 Regex Match

We construct a fine-grained regular feature library with webshell data execution and data
transmission as themain rules by analyzing the implementation process of webshell. The
selected webshell features are mainly divided into high-risk behavior functions of fine-
grained webshell, low-false positive sentence trojan regular feature, codec function call,
source code feature and webshell developer information. Take the high-risk behavior
functions of fine-grained webshell as an example, the details of them are shown in
Table 4.

In addition, for the unique features, we also collected the following parts:

a. Webshell developer email, user’s email, such as xb5@hotmail.com and so on.
b. Developer’s personal website, organization website URL, such as Kockaf52.com,

www.hkmjj.com, etc.
c. Developer nickname, attacker nickname or webshell name, such as phpspy, c99, etc.
d. Webshell unique features, such as an intrinsic function name c99_buff_prepare, an

intrinsic variable name c99sh_surl, and so on.

Based on the main features and specific feature rules of webshell mentioned, we
have compiled 202 webshell rules that conform to Python regular expressions and form
webshell feature database. Some rules are shown in Fig. 5.

http://Kockaf52.com
http://www.hkmjj.com
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Table 4. Webshell features and function details

Features Function details

Data execution assert/eval/shell_exec/shell/exec/curl_exec/proc_open/system/python_eval

File operation file_get_contents/curl/posix_getpwuid/fileowner/filegroup/posix_getgrgid

Database
operation

Mssql_fetch_array/mysql_fetch_assoc/mysql_fetch_array/mysql_result

Codec function
call

str_rot13/base64_encode/base64_decode/gzencode/gzdeflat/gzcompress

lostDC.php=(shellexec\s*\(\$command\))

cmd1.php=((system|passthru|shell\_exec|exec|eval|proc\_open|popen|ass
ert|include|require|include\_once|require\_once|array\_map|array\_walk)\
s*\(\s*(str\_rot13|base64\_decode|gzinflate))

aspshell.asp=(eval\s*\(eval\s*\(|exs\(exs\(dec\(|Replace\(Replace\(StrRe
verse\(|6877656D2B736972786677752B237E232C2A)

Fig. 5. Regex for webshell features

We match the input files with the constructed regular feature library, efficiently filter
out common high-risk webshell and mark them. The rest of the samples are then input
into the statistical method detection part.

5.4 Statistical Indicators

According to the analysis in the third section, variant webshell is often obfuscated and
encrypted to show some special statistical features. Therefore, in order to detect unknown
webshell effectively, we construct a random forest algorithm based on the statistical
characteristics of webshell.

For the feature selection, entropy, the longest word, compression ratio, index of
coincidence and specific webshell feature are selected as condition attributes.

a. Entropy. Entropy measures the uncertainty of a file by using an ASCII code table.
Generally, the higher the entropy, themore disordered the information is. The formula
is as follows, N represents possible sources of information.

E(X) =
∑N

k=1
Pi logPi (1)

b. Index of coincidence. Index of coincidence can be used to assess the probability of
finding two same letters by randomly selecting two letters from a file. Usually, the
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low coincidence index indicates that the file code is potentially encrypted or hashed.
The formula is as follows: N is the length of a file; ni represents the frequency of
letter I and there are a total of m different letters.

IC(X) =
∑m

i=1 nini−1

N(N− 1)
(2)

c. Longest word. An encrypted webshell always have strings with extremely huge
length. Thus, we can conclude whether it is suspicious to be a webshell bymeasuring
the length of the longest word from a file.

d. Compression. The compression is the ratio of uncompressed size to compressed
size of a file. An encoded webshell usually has a higher data compression ratio.
Therefore, data compression can be treated as a feature to detect webshell.

e. Webshell feature. we choose two specific webshell features as the file feature. One
is shown as Fig. 6, and the other feature is the regex database of the previous section.

eval\(|file_put_contents|base64_decode|python_eval|exec\ 
(|passthru|popen|proc_open|pcntl|assert\(|system\(|shell

Fig. 6. One of the specific webshell features

Here, a total of 3496 webshell samples and 2045 normal samples are randomly
divided into two parts. The ratio of training data to test data is 1:1. The random forest
algorithm is used to train webshell to obtain the best training indicators for the decision
tree. The final indicator is that the number of weak learners (n_estimators) is 21, themin-
imum number of subtrees (min_samples_split) is 10, theminimum number of samples in
the leaf node (min_samples_leaf ) is 1, the maximum depth of decision tree (max_depth)
is 7, and the maximum number of features in random forest (max_features) is 40%.
While n_estimators is trained separately and the rest of the indicators are by default, the
accuracy rate is shown in Fig. 7. When n_estimators is 21, the accuracy is the highest.
The training process for the remaining indicators is consistent with n_estimators.

Finally, the best parameters of the random forest are combined to train and obtain a
statistical webshell detection model.

5.5 Feature Extraction

In the neural network detection module, the sample input is system call sequence. The
system calls include all behaviors from opening a web page to establishing a connection
which is generated by auditd Unix and filtered according to the size of the file.

By collecting and recording the system call sequence over a period of time, each
system call function is converted into a sequence vector according to the ADFA-LD data
set rules [17, 18], and finally a total of 1080 system call records are organized. Excluding
sample data that conflicts with the rules, the same formatted data as the ADFA-LD data
set is obtained to ensure the validity of retained samples.
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Fig. 7. N_estimators parameter selection

5.6 RNN Detection

RNN is a neural network that models sequence data. The actual performance of RNN is
that each neuron in the network memorizes the information output by the last timestamp
and applies it to the calculation of the current output. Compared to traditional methods,
RNN introduces directed loops with the ability to handle context-related problems well.

In this paper, the deep learning detection method based on the system call sequence
can detect unknown webshell more effectively than the method based on the heuris-
tic fuzzy matching module. To predict unknown webshell, the effective webshell call
sequence is used as a feature to drive a large number of normal/webshell samples for
effective parameter training and data tuning. The final model for obtaining the best
detection effect is shown in Fig. 8.

Fig. 8. Design of multi-layer RNN structure

The structure of multi-layer RNN designed by WSLD to detect unknown webshell
is shown as follows:
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a. Embed layer E1. The input is a sequence of 100 tensors, and after embedding, it
outputs to a 128-dimensional vector space.

b. LSTM layer L1. The vector is input to the 128-dimensional LSTM, and the hidden
layer is also processed in 128 layers.

c. Dropout layer D1. The randommechanism prevents over-fitting caused by too many
parameters and insufficient data, and it is retained with a probability of 0.5.

d. Fully connected layer FC1. The number of input nodes is 128, the number of hidden
nodes is 128, and the total number of output nodes is 2.

e. Softmax layer S1. The Softmax layer contains two neurons, which classify the fea-
tures of the full-connected layer output and classify them into two categories: normal
and webshell malicious code.

f. Classifier Selection. Defining the Adam optimizer, setting the learning rate to 0.1%,
and setting cross-entropy to assess the difference between the probability distribution
and the true distribution of the current model prediction.

6 Experiments and Evaluation

In order to verify the effects of the prototype system, we evaluated WSLD with two
experiments. The first experiment was a performance test to verify whether WSLD
can detect the webshell in the production environment. In the second experiment, we
conducted the test with a case study of TwoFace Family webshell to verify the detection
effect on unknown webshell.

6.1 Experimental Setup

The webserver environment in the experiment is Ubuntu16.04 with 8 GB of memory,
Intel GMAHD 4000 graphics; the cloud server is Ubuntu 16.04 with 16 GB of memory,
NVIDIA GeForce GTX 960 graphics. It deploys an automatically detection system and
updates the webshell feature database synchronously.

6.2 Performance Test

As for the test data set, we collected 2100 samples with no duplication to the training set,
including open source webshell samples [24] and CMS samples [25–28]. Webshell is a
random selection of 1050 malicious samples taken from a 638 stars project in GitHub.
Meanwhile, a total of 1050 normal samples were randomly selected from open source
CMS.

In the evaluation ofWSLD, we adopt the confusion matrix to evaluate the prediction
results. The evaluation results are shown in Table 5.

Based on the confusion matrix, we use accuracy, recall, precision and F1 to evaluate
WSLDeffectively. Thenwechoose somepopularwebshell detection tools to compare the
recognition effect of WSLD. Here we also input the test samples to BAIDUWEBDIR+
[29], Chaitin CloudWalker [30], Shell-Detector [31] and 360 TOTAL SECURITY [32].
The result is shown in Table 6 (unit: %).
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Table 5. Confusion matrix

Confusion
matrix

Predicted condition

True condition Webshell Normal

Webshell 1034 (True Positive) 16 (False Negative)

Normal 8 (False Positive) 1042 (True Negative)

Table 6. Recognition effect

Method Accuracy Precision Recall F1-Score

WSLD 98.86 99.23 98.48 98.85

BAIDU WEBDIR+ [29] 84.05 100 68.10 81.02

Chaitin CloudWalker [30] 81.52 100 63.05 77.34

Shell-detector [31] 75.14 80.70 66.10 72.67

360 TOTAL SECURITY [32] 61.00 100 22.00 36.07

It can be seen that the precision of BAIDUWEBDIR+, Chaitin CloudWalker and 360
TOTAL SECURITY has reached 100%, which indicates that there is no false positive
for the prediction of normal documents. However, recall of the three tools is not good,
that is, the detection is not enough to identify webshell. Shell-Detector is a good tool for
webshell detection, but it introduces more false positives from normal samples, resulting
in an overall accuracy that does not achieve the desired results.

As shown in Table 6, accuracy of WSLD is 98.86%, recall is 98.48%, and F1 is
98.85%. Among them, WSLD missed 16 webshell and misreported 8 normal files. It
can be seen that the webshell detection method we proposed can effectively classify the
normal/webshell samples. Also,WSLD has strong detection capabilities for the exposed
webshell in the production environment. At the same time, thismethod has false positives
for normal samples within an acceptable range.

In the performance test of the system, the same 2100 samples were used as test
samples. We tested the duration of WSLD, BAIDU WEBDIR+, Chaitin CloudWalker,
Shell-Detector and 360 TOTAL SECURITY to measure the detection efficiency and
user experience. The comparison of performance is shown in Table 7.

Table 7. Detection time comparison

Method BAIDU
WEBDIR+

Chaitin
CloudWalker

Shell-Detector 360 total security WSLD

Time (s) 580 181 513 59 123
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From the running time of this experiment, WSLD has a longer duration of detection
than 360 Total Security and it is more efficient than the other three tools. This also
shows that WSLD proposed in this paper sacrifices some performance, which improves
the detection efficiency of webshell. Overall, WSLD also provides a good experience.

6.3 Unknown Webshell Case Study: TwoFace Family Webshell

Themain purpose of the second experiment was to analyze and evaluate the performance
of WSLD in the detection of unknown webshell.

InApril 2019, a data [16] ofOilRig (also knownasAPT34byFireEye)was published
on Twitter by an unknown group. The leaked data contains hundreds of credentials of
the infected organization, webshell source code, et al.

The leaked data contains three webshell, HyperShell, HighShell andMinion. Hyper-
Shell and HighShell are variations of TwoFace. Minion is a variation of HighShell which
overlaps HighShell in code, file name and functions. The tags in HyperShell are shown
in the Fig. 9. The string in the pre tag is exactly what the webshell uses to encrypt the
embedded payload.

<pre><%= Server.HtmlEncode(“NxKK<TjWN^lv-$*UZ|Z-H;cG-
L(O>7a”) %></pre>

Fig. 9. Component of HyperShell

In this experiment, we found that the other four tools in the comparison can not detect
the unknown webshell based on TwoFace Family, but WSLD can effectively detect this
kind of variant webshell.

During the analysis of the samples, we found that the implementation of TwoFace
Family is to splice the generated password with a hard-coded salt string, calculate its
SHA-1, and then use Base64 to encode and form a password for authentication. After
authentication, TwoFace generates its SHA-256 using the initial password mentioned
above, and then uses Base64 to encode it to output a new string. The first 24 bits of the
string are used as the 3DES key, and the authenticated webshell is decrypted to remotely
control the infected host. The process is shown in Fig. 10.

The reason whyWSLD can effectively detect the TwoFace family is that the samples
use the encryption and encoding mentioned in the third section to generate a new variant
of webshell. When the sample files are input to the system, the fuzzy matching module
calculates the statistical features of the sample files such as entropy, the longest word,
index of coincidence, and compression ratio. Then the sample files are input into the ran-
dom forest algorithm for detection. The features selected in this module can effectively
distinguish between webshell and normal files that are obfuscated and encrypted on
file attributes. In addition, in the deep learning module, system calls that are repeatedly
encoded and encrypted can also be effectively detected by multi-layer RNN.
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Fig. 10. HyperShell connection

7 Conclusion

In this paper, we classify the variant webshell based on the implementation analysis of
webshell. We summarize the recent research progress on webshell detection. During the
analysis of webshell, we propose a heuristic webshell detection method based on fuzzy
matching and deep learning. Then we develop a webshell detection systemWSLD based
on the method. Among them, the accuracy of WSLD can reach 98.86%. In the case of
unknownwebshell detection,WSLDcan accurately detect the TwoFacewebshell family,
which also provides a better user experience in performance. In the future work, we will
conduct fine-grained sample analysis for false positives and perform more accurate
detection on webshell.

We believe that a better understanding of webshell will lead to better detection
techniques. Therefore, we hope that the webshell detection method proposed in this
paper can be used to promote the research of web application malware.
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Abstract. Online phishing usually tricks victims by showing fake infor-
mation which is similar to the legitimate one, so that the phishers could
elevate their privileges. In order to guard users from fraudulent informa-
tion and minimize the loss caused by visiting phishing websites, a vari-
ety of methods have been developed to filter out phishing websites. At
present, there are several phishing detection methods continually being
updated, but the experimental results of them are not enough satisfac-
tory. To fill these gaps, an improved model based on attention mechanism
bi-directional gated recurrent unit, named BiGRU-Attention model, will
be introduced. The basic mechanism of this model is that it obtains the
characters before and after a particular character through the BiGRU,
and then calculates score for that character by the Attention. Since the
final score depends on the composition of the input, the more similar
between phishing and legitimate websites, the more difficult it is to be
distinguished. By utilizing this model, most of the phishing URLs will
be tested out. Also, an explanation of why phishing and legal websites
can be distinguished will be given. Based on the experimental results,
the BiGRU-Attention model achieves an accuracy of 99.55%, and the
F1-score is 99.54%. Besides, the effectiveness of deep neural network in
anti-phishing application and cybersecurity will be demonstrated. Key-
words Phishing Detection, BiGRU-Attention Model, Important Charac-
ters, The Difference Between similar URLs.

Keywords: Phishing detection · BiGRU-Attention model · Important
characters · The difference between similar URLs

1 Introduction

Phishing is a form of cybercrime that uses “internet baits” such as emails, web-
site links to induce victims to do some dangerous operations. As long as the
victims click on those malicious website links, the phishers can easily conduct
c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ICICS 2019, LNCS 11999, pp. 746–762, 2020.
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further attacks, such as modifying passwords and defrauding [1]. According to
the APWG [2], there is a significant growth in phishing, which increased 50% in
the third quarter of 2018. More than that, the cumulative growth rate reached to
260% in the fourth quarter of 2018. In this period, the number of new phishing
websites increased by an average of 40,109 per month.

Since the number of phishing activities and the accrued loss have a rapid
rise, numerous methods have been developed to automatically detect phishing
websites [3]. There are mainly three types of technical methods including black-
list mechanisms, classification algorithms based on machine learning and based
on deep learning either. The earliest method of phishing detection is blacklist
mechanisms mainly rely on individual identification and report of phishing links
[4]. This kind of detection method can achieve high accuracy, but it requires a
large amount of manpower and time, still the websites must be in the black-
list. With the development of artificial intelligence, machine learning has been
widely applied in phishing detection. Traditional machine learning has made
great progress in phishing detection, however, they mainly rely on feature engi-
neering, which based on manual design and vast trials, which requires a large
amount of labor and domain expertise. Given the increasing complexity of the
problem, the existing methods may fail to detect new domains or patterns and
therefore limit the system performance. Deep learning, which is a subfield of
machine learning, can extract and learn features from the inputs. It highly elim-
inates the time spent on manual feature extraction and excavates some potential
features.

In machine learning, detection of phishing URLs is regarded as a classifica-
tion problem, because phishing websites aim to disguise themselves by designed
to be merely a few characters different from the legitimate ones. The small
difference makes it difficult to differentiate correctly. In this paper, the BiGRU-
Attention (Bi-directional Gated Recurrent Unit) model, which is to obtain the
key information from characters themselves, is an attention mechanism based on
Bi-directional Gated Neural Network. Traditionally, the whole URLs are used as
input of a model to detect phishing websites, however, when the URLs are very
long or the differences between fake and true websites are small, deep learning
models might forget important information. As a matter of fact, this shortcom-
ing can be surmounted by BiGRU-Attention, which accuracy achieves 99.55%,
the recall is 99.43%, and F1-score is 99.54%.

In this paper, the related work about phishing URL detection will be intro-
duced. Subsequently, the BiGRU-Attention neural networks classification model
will be demonstrated. After that, the dataset and experimental design will be
described. Followed by the introduction about how the BiGRU-Attention model
distinguish similar URLs, the experimental results of different models will be
discussed. In the last section, this paper will be concluded.
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2 Related Work

In this section, the research on phishing detection in caber security will be sum-
marized. We Blacklist-based phishing detection methods, traditional machine
learning and deep learning methods will be mainly described.

2.1 Blacklist Detection

The earliest method of phishing detection is blacklist search, which principle
is preventing victims from visiting phishing websites recorded in the blacklist.
Blacklists for different browsers are constructed by different technologies, includ-
ing manual reporting, ranking search and some other methods [5,6]. At present,
the two well-known phishing websites are Phish Tank and Open Phish, which
are Manual Reporting. This kind of detection based on the existing blacklist has
a higher accuracy, but its shortcoming is that the website URL must be within
the blacklist.

2.2 Traditional Machine Learning

Since blacklist updated by Manual Reporting is too slow to identify URLs that
are not belonging to the blacklist [7]. Methods of identifying phishing URLs
are usually classified as machine learning [8–13] and deep learning [14]. Zouina
and his partner [15] use the SVM algorithm to detect phishing websites and the
results show that the accuracy rate reaches to 95.80%. Chiew and Tan et al. [9]
propose a hybrid integrated development algorithm based on data perturbation
and function perturbation for feature screening. In this work, Random Forest,
SVM, C4.5 and other traditional machine learning methods are used to predict
these features. They conclude that random forest is producing the highest accu-
racy. Sahingoz et al. compare the results of Decision Tree, Adaboost, KNN and
Random Forest, SMO and Nave Bayes models, which they find Random Forest
has the highest accuracy which reaches 97.89% [16]. Although the traditional
machine learning methods have achieved excellent results in phishing detection,
it takes a lot of time to extract features manually and requires domain experts
knowledge. With the development of the Internet, the complexity and volumes
of URLs make it increasingly difficult to conduct feature engineering.

2.3 Deep Learning

Deep learning can automatically extract features, reduce the time for manual
feature extraction, and identify some potential features. Alejandro and his co-
workers compare the traditional machine learning method with LSTM (Long
short-term memory) method, and the result shows that the LSTM method is
superior to machine learning methods, with an accuracy rate of 98.7% [10]. Saxe
and Berlin propose a character-level CNN (convolutional neural network) deep
learning method for malicious URLs detection, which reduces the error rate by
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0.1% comparing to the basic features [17]. Le and Pham et al. use CNN to
classify and predict the word-level URLs, and achieve good results [18]; some
researchers [18,19] use CNN, CNN-LSTM, CNN-GRU and other methods to
study the classification of malicious websites. In terms of detection of phishing
attacks, a lot of researchers use the combination of URLs string information and
extract page content features as input, and then consider deep learning methods,
such as LTSM, CNN.

2.4 Summary of Related Work

For the existing phishing detection methods, the traditional machine learning
is based on manual features to improve the accuracy of the model. The deep
learning method can achieve to the automatic feature extraction to improve the
model recognition rate. However, few people have learned how to present them
by the perspective of the similarity between phishing websites and legitimate
websites. Then classification is performed by the differences they present. In this
paper, a method to learn how to present URL characters is proposed. The model
is able to improve the recognition rate comparing to the previous models.

3 The Proposed Model

In this paper, there is a comparison between legal and phishing websites that
is marked by 0 and 1 respectively. Therefore, we can regard the problem as
dichotomous classification problem. In terms of the BiGRU-Attention model
with the URLs’ characters as input, there is a better performance of extracting
URL information, which means that this model can detect phishing websites
better. In the next part, the design of this model will be described in detail.

3.1 Overview of the Proposed Model

To solve the problem of phishing classification, BiGRU-Attention model is intro-
duced in this section. First of all, characters pretreatment, which output acts as
the input, needs to be implemented. Secondly, word vector for each character
needs to be extracted. After that, BiGRU-Attention is used to capture the most
important character information in a URL sequence. Lastly, the classification
models will be trained to detect phishing. The process of phishing detection is
presented in Fig. 1.

(1) Input processing: According to the data we collected, there are only 0.6% of
the URL longer than 150 characters which are HTTP domains or HTTPs
domains. Therefore, we capture the first 150 characters of the URLs, so that
all the inputs of our model are fixed-length. The components of the URL
include protocol, domain name, port, virtual directly, file name, anchor and
parameter, among which the information of domain name and port is very
important. Therefore, the URL, which characters are more than 150, is
proceed to extract the first 150 characters as input information. Besides, we
are interpolated with zero in front of characters, if their length is less 150.
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(2) Feature extraction: Feature extraction embeds the input vector. Each char-
acter is presented by a vector associated with whole characters, which means
the corresponding vector of each character is associated with all characters.

(3) Information representation: Features are information representation that
determine the upper limit of this model. The results, which are from embed-
ding layer, obtain the forward and backward position information represen-
tation of each character by BiGRU. URL is a sign for a resource available
on the Internet which presented as a line of string. Therefore, the characters
in different positions of the URL represent different Internet resources. The
previous or next character position of a particular character can be figured
out by BiGRU. After obtaining the location information of the URL charac-
ters, the attention layer has a function that is giving different score for each
character according to the importance of the character. The mechanism is
that each character is assigned a specific weight, specially a larger weight
will be assigned to a more important character. Then, the similar legitimate
websites and phishing can be presented with different weights.

(4) Classification model: This model is for classifying the URLs. Firstly, The
cross-entropy function is considered as the loss function of model. Then,
The adaptive gradient descent method is utilized to update the parameters
and optimize the model. Lastly, Some indexes including accuracy, precision,
recall and F1-score are chosen to evaluate this model.

In BiGRU-Attention model, The representation information of URL charac-
ters is considered. Since the characters within a URL are in order, The forward
and backward information of the URL characters is taken into account in the
information representation of characters. Considering that most of the charac-
ter information is identical and visually similar between similar legal URL and
phishing URL, it is difficult to distinguish them correctly if we only consider the
location information of the characters and the sequence of those characters.

In other words, in terms of two URLs with same length and one different
character, it is difficult to get a clearly differential representation based on the
character sequence. Therefore, this model assigns different weights to different
characters to detect better phishing.

3.2 Attention Model Based on Bigru Unit

In this model, the original URL input length should be limited to 150. If it is
out of this situation, it needs to be truncated or complemented. The processed
URL sequence is labeled by [c1, c2, ..., ct] , while input the embedded layer and
map each character as a word vector, that is:

xt = [xt1, xt2, ..., xte], t ∈ [1, E] (1)

In this case, xt denotes the vector of the t character. e represents the dimen-
sions of the t character.

BIGRU is bi-directional GRU (Gated Recurrent unit) which is an improved
version of recurrent neural network. It is known that recurrent neural network
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Fig. 1. Process of phishing website detection.

is used to process time series data. In theory, RNN (Recurrent Neural Network)
can learn the unit information representation of the current time. As the back-
propagation process, gradient calculation may have the situation of gradient
explosion or disappearance, it reduces the effect of unit learning in the earlier
time. LSTM is designed to solve this problem. LSTM, which is controlling input,
forget and output units in RNN, is composed by input gate, forget gate and
output gate. The GRU (Gated Recurrent Unit) is proposed by Cho et al. [21] in
2014. It combines the forget gate and input gate as renewal gate, the calculation
of state unit is adjusted. The structure of GRU is simpler than LSTM. When
the data scale is small, the effect of GRU training is similar to LSTM, while in
some cases, it might be better.

The GRU model only calculates the correlation between t time and the pre-
vious time. However, the t character in URLs characters is not only related
to the previous character, but also affected by the latter character. Therefore,
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BiGRU (Bidirectional-GRU) is introduced to obtain the forward and backward
information of the t character. In this part, it obtains the location information
of the URL sequence. On this basis, Attention layer can get the information of
different character importance.

BiGRU is including forward and backward GRU sequences. Each state in
each GRU layer marked by ht, which is determined by both gate rt and update
gate zt:

⎧
⎪⎪⎨

⎪⎪⎩

ht = (1 − zt)eht + zteh̃t

zt = s(Whxt + Uzht−1 + bz)
h̃t = tanh(Whxt + rteUzht−1 + bh)
rt = s(Wrxt + Urht−1 + br)

(2)

The state unit is the output unit of GRU. The output at t time marked by ht

is directly related to the update gate zt and hidden state h̃t, which depends on the
forgetting gate rt and input unitxt. Tensor of BiGRU is labeled by ht = [

−→
ht ,

←−
ht ],

which
−→
ht and

←−
ht represent position and reverse GRU output tensor.

Attention to the development of the network layer in the field of natural
language has achieved remarkable results [22–26]. Attention network layer gives
higher weight to the words related to the target. In other words, this model pays
attention to important information. Our work introduces Attention Network
Layer into the research of phishing website detection, which means the special
characters in URLs strings gain more attention in order to express information
better.

Combining with BiGRU model, the time attributes of sequence data can be
figured out. Besides the weight of the information represented by the character t
in the whole sequence is calculated, and the representation information of char-
acter t is updated according to the weight. The vector representing the character
t not only contains the relevant information between the URL characters and
the location information, but also includes the information of the importance
of the characters fed back by different categories. In below, the Attention layer
design is shown in Fig. 2, which is calculated as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ut = tanh(Wwht + bw)

at = exp(uT
t uw)

∑
t exp(u

T
t uw)

st =
∑

t atht

(3)

In these expressions, uw is the vector of each character which is computed by
linear transformation and tanh function after the BiGRU layer, and at presents
the weight of each character. Besides, st is the calculation of ct after the attention
layer, and [s1, s2, ..., sn] shows the final information representation of the URL
sequence.
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Fig. 2. The structure of attention layer.

After the BiGRU layer, the location information of each character in the URL
sequence is obtained. The weight of the vector for each character is calculated
and the new vector representation of the character is obtained.

Finally, when data is processed at attention level, the score of each character
which is labeled as st is the output, the comprehensive representation of URL
string information by cumulative summation of fractions can be obtained as well:

y∗ =
∑

t

st (4)

The sigmoid function is used to classify the result, and it makes y∗ translate
into the range of [0,1]:

yprob = sigmoid(y∗) (5)

ylabel =

{
0, yprob < 0.5

1, yprob >= 0.5
(6)

where 0 and 1 represents Legal and phishing website respectively.

4 Experimental Analysis and Evaluation

In this section, the related events such as our data, experimental parameters and
model evaluation indicators will be described. Also, the results of our models and
other models on legitimate websites and similar phishing sites will be analyzed.
At the end of this section, there will be a comparison between the results of our
models and other models.
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4.1 Datasets and Description

Phish Tank is an open community where anyone can submit, verity and share
phishing websites. At the same time, a suspicious URL is audited by at least
two members [27]. When it is identified as a phishing site, it would be published
in time, and statistically, 759,361 phishing websites has been submitted between
December 2011 and January 2018. In addition, Common Crawl that stored a
great deal of websites is an open website for crawler learners. There are 800,000
websites provided as legitimate websites data.

The collected normal and phishing websites are merged into data called
dataset, which is written by Bahnsen [10]. The dataset is randomly divided
into train, validation and test category. The proportion of these three categories
is 8:1:1, in which 50% of each dataset is legal websites and the other 50% is
phishing websites. In Table 1, the domain name distribution of the dataset is
calculated.

In Table 1, the source of dataset and the time period of collection of websites
are presented, while the information of general domain name and independent
domain name are mainly counted. Domain names are composed of groups of
ASCII and national language characters. At the same time, group of characters

Table 1. The statistics of our dataset

Phish urls Legal urls

Data sources Phish Tank Common Crawl

Date 2011/12/22–2018/1/9 2017/12

Count Percent Count Percent

TLDs 576 100% 234 100%

gTLDs 429 74.48% 165 70.51%

ccTLDs 147 25.52% 69 29.49%

Unique Domains 237999 100% 5341 100%

.com 110885 46.59% 2984 55.87%

Other gTLDs 79346 33.33% 1832 34.30%

ccTLDs 38406 16.14% 525 9.83%

IP address 9347 3.93% 0 0%

Domains others 18 0.008% 0 0%

ULRs 759361 100% 800000 100%

.com 358891 47.26% 540375 67.55%

Other gTLDs 263579 34.71% 203290 25.41%

ccTLDs 113121 14.90% 56335 7.04%

IP address 23749 3.13% 0 0%

Domains others 22 0.003% 0 0%

https 19354 2.55% 294230 36.77%

http 74007 97.45% 505770 63.23%
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is separated by dots. From right to left, the character groups are respectively
called top-level domain name, second-level domain name, third-level domain
name, and so on. Top-level domains (TLDs) are divided into three categories:
country code top-level domains (ccTLDs), generic top-level domains (gTLDs),
and new top-level domains.

The top-level domain names within the datasets of websites, the number of
them and generic top-level domain names occupied by countries or regions are
counted. In this dataset, the registered areas of phishing websites are from 429
cities or regions, and legal websites are from 165 cities or regions. There are 147
registered phishing websites and 69 legal websites with top-level domain names.
In comparison, the dataset distribution of phishing websites is more extensive
than legal websites, which means, the data distribution of legal websites is more
centralized.

In addition, the domain names of all websites are counted. Among the
addresses from Phish Tank, the number of unique domain names is 237,999
in total, of which 46.59% are first-class domain names with “com”, while 33.33%
are some other general top-level domain names, about 16.14% are national or
regional top-level domain names, and 3.93% are IP addresses. The unique domain
name of legitimate website is 5,341. In percentage, 55.87% are “.com”, 34.30%
and 9.83% are other top-level domain names and national or regional top-level
domain names respectively. There is no IP addresses are as domain name in the
dataset. Compared with the two datasets, the number of unique domain names
and the composition of domain names of phishing websites are significantly larger
than those of legal websites, which may make it easier for the model to identify
legal websites.

The number of the websites with different domain names are calculated. From
the statistical results, the distribution is similar to the websites with a unique
domain name. Overall, the data distribution of legal websites is more centralized
than that of phishing websites.

4.2 Experiment Design and Evaluation

In the embedding layer, the URLs string information is regarded to be uni-
formly distributed. The dimension of embedding is set to be 128, which means
a character is represented by a vector of 128 dimensions. Features of URLs in
the bidirectional GRU layer can be extracted from the forward and backward
directions. The merging effect can be applied to make the URLs information
to be more completed, and the important characters are decided by attention
mechanism. Moreover, the BiGRU-Attention model is processed by a special
method, so the results are decided by the score of characters summation, rather
than adding a fully connected layer (Table 2).
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Table 2. The best performance of the model on the validation set

Parameter Settings

Word embedding dimension 128

GRU dimension 60

LSTM dimension 60

Attention size 80

Batch size 256

Epoch 20

Learning rate 0.001

Optimizer Adam

To evaluate this model, parameters such as Accuracy, Precision, Recall, F1
score, FP and FN are applied.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Accuracy = TP+TN
TP+TN+FP+FN

Recall = TP
TP+FN

Precision = TP
TP+FP

F1 − Score = 2 Precision∗Recall
Precision+Recall

(7)

In the evaluation process, TP, TN, FP and FN respectively represent the
number of positive classes being correctly predicted, the number of negative
classes being correctly predicted, the number of positive classes being correctly
predicted and the number of negative classes being incorrectly predicted.

4.3 BiGRU-Attention Model Experiment Result

After training the model, the best model parameters from the verification set
are applied. The accuracy rate is 99.55%, and the recall rate and F1 score are
also reaching higher. The number of misjudged phishing and legitimate websites
are also lower than 269 and 430 respectively. In Table 3, the misjudgment rate
is reduced by 0.34%, and the missing report rate is 0.57%. Although the dis-
tribution of domain names of phishing and normal website datasets are being
doubted, the distribution of normal website domain-name is more centralized,
which is more feasible to identify legitimate websites. This is also very consistent
with the results of the model.

Figure 3 shows the change in accuracy of the model during the 20 rounds
of training. The accuracy rate of the initial training verification set is 98.18%,
which is much higher than the training dataset. During the first three rounds,
the accuracy of the training set skyrocket to around 99% and be adjacent to the
validation set. After that, both of these two sets come to be smooth.
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Table 3. The best performance of the model on the validation set

Model Validation

Accuracy % Precision % Recall % F1-score % FP FN

BiGRU-Attention 99.55 99.64 99.43 99.54 269 430

Fig. 3. Accuracy curve of the BiGRUAttention model on the training set and validation
set.

Table 4. The similar URLs between Legal and Phish

Index Begin Phish Character minimum difference

1 https://www.taobao.com/ https://www.ta0ba0.com/ 2

2 https://www.apple.com/ https://www.apple.com/ 5

3 http://www.goog1e.com/ http://www.google.com/ 1

The difference between Taobao and the corresponding phishing is to replace “o” in “Taobao”
with “0”. The characters in the URL of the apple’s official website are all English characters,
but the phishing URL uses “apple”, which are Silvan characters. Similarly, the Google phishing
URL replaces character “l” to “1”.

4.4 Model Information Representation

There are similar pages or links between phishing and legitimate websites. These
websites disguise themselves through some small modifications, for instance, a
character is replaced by a similar one or simply add some characters to the legit-
imate domain name, so that victims may not notice the differences. Examples
are shown in Table 4.

A series of similar legal and phishing URLs are listed in Table 4. The phishing
websites are very similar to the legitimate websites. Since the small differences
among themselves, it increases the difficulty of how the deep learning model
learns the sequence of URL. The representation of this BiGRU-Attention model
is improved to be better by distinguishing the URL characters of legal websites

https://www.taobao.com/
https://www.ta0ba0.com/
https://www.apple.com/
https://www.apple.com/
http://www.goog1e.com/
http://www.google.com/
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and phishing ones. GRU and BiGRU get unidirectional and bidirectional infor-
mation for URL characters. They only get the order information in the URL
sequence, which can achieve limited effect. In addition to obtaining the order
information of the sequence, our model also obtained important character infor-
mation. GRU, BiGRU and our model can be used to represent URL characters
and then plot them into graphs to make it easier for observing differences Fig. 4.

Fig. 4. The output representation of URLs in different models: The vertical ordinate
shows models in the experiment, and the horizontal ordinate shows the characters in
URL. In the URLs, character “?” indicates that the replaced characters in legal URLs.
Gru legal, Bigru legal and Bigru att legal respectively represent the output of GRU,
BiGRU and BiGRU-Attention models.

Gru legal and Gru respectively represent URL character representations
of “Taobao” legitimate and phishing websites. Two URL characters are rep-
resented, starting with the first “?” and ending with the string. Comparing to
GRU, BiGRU has the characteristics of considering characters information in
two directions. The two URL characters are completely different. Comparing to
BiGRU, our model BiGRU-Attention captures important characters from legit-
imate websites and phishing, and learn to distinguish different URLs from the
domain name part. It indicates that URL sequence information can be better
represented by BiGRU-Attention model.

Aiming to other URLs, we can get similar information. The stronger the
model representation ability, the higher the accuracy of its prediction. Our
model’s ability to characterize is better than GRU and BiGRU, according to
more correctly predictions this model do for the “Taobao” phishing website and
the “Google” phishing website.

4.5 Result From Different Models

All models in Table 5 are trained to be using the same data set, and all of
them use the string of the URL as the input to get the classification results. In
the experiments, some models are used to compared with the BiGRU-Attention
model. For example, the model “LSTM” proposed in [10], which performs charac-
ter embedding on input data, uses Long Short-Term Memory neural networks for
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feature extraction in the time dimension, and uses the fully-connected layer for
classification. During all the experiments, the full connection layer is discarded
for the classification model, while a more concise way is selected to support the
classification. After the feature extraction is completed, the URL string sequence
is directly summed and classified.

Table 5. Performance of the different models on the test

Model Test

Accuracy% Precision% Recall% F1-score% FP FN

LSTM [10] 99.13 99.06 99.15 99.11 710 645

GRU 99.05 98.88 99.17 99.02 853 630

BiGRU 99.39 99.61 99.14 99.37 297 650

BiLSTM-Attention 99.54 99.63 99.42 99.53 288 439

BiGRU-Attention(our model) 99.55 99.64 99.43 99.54 269 430

BiGRU-Attention-fully 99.49 99.59 99.37 99.48 306 478

After the training, the results of all the models within the test sets are shown
in Table 5. The accuracy of GRU, BiGRU and BiGRU-Attention model keep
increasing. The accuracy of the BiGRU-Attention-fully model is 0.05% lower
than our model, and the number of misjudged samples is 66, which is more than
our model. This shows that our model is better than BiGRU-Attention-fully.
At the same time, it is not necessary for the last layer to use a fully connected
layer as a classification model. Comparing to the BiLSTM-Attention one, the
effect is almost the same with our model. Specially, the accuracy of it is only
0.01% lower, and the number of misjudged samples is only 20 samples more than
our model, which is a small number for the entire sample set. But the BiLSTM-
Attention model requires more parameters than our model which could be shown
in Table 6.

Table 6. The complexity description of model

Model parameter Count (only BiLSTM and BiGRU) Model storage space (MB)

BiLSTM-Attention 288000 1.29

BiGRU-Attention 162000 1.03

In terms of the number of parameters required and the storage space needed,
our model performs greater than BiLSTM-Attention. The BiLSTM-Attention
model has 288,000 parameters in BiLSTM portion, which requires 126,000 more
than the BiGRU portion of the BiGRU-Attention model. Besides, after the train-
ing of the parameter, storage accounts for 1.29 MB of memory, which is 0.26 MB
more than our model. Therefore, our model performs better as a whole.
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5 Conclusion

In this paper, the BiGRU-Attention model is used to detect phishing URL
in the field of cyber security. There is also a comparison among the BiGRU-
Attention and other models. The experimental results show that this model has
a higher accuracy rate, which indicates that it is more suitable for phishing URL
detection.

There are some design tips for this model. In the design part, bi-directional
GRU is used for feature extraction in the time dimension, on the other hand,
Attention layer is used to calculate URL characters sequence score. They sup-
ports this model to learn the differences between URLs from domain names. Fur-
thermore, comparing to traditional classification model, a fully connected layer
is set to classify the features. However, the fully connected layer is discarded and
the feature are directly summed in this model, which means its parameters are
reduced and the accuracy of it is improved.

By analyzing the experimental results, this model has been proved to have
a good performance in phishing detection. The reason is that BiGRU-Attention
improves the accuracy of the model to detect phishing websites by learning the
vector that is representing the domain name information better.

By analyzing the experimental results, this model has been proved to have
a good performance in phishing detection. The BiGRU-Attention mechanism
improves the accuracy of our model in detecting phishing websites by learning
the vector that has a good domain-name information representation. In this
paper, due to the limitation of the experiment, several problems in this paper
are listed as follows. There is no cross-validation in the experiment considering
the possibility of over-fitting. At the same time, there is no comparisons of the
experimental results between using a particular length of the URL and using
the domain part of the URL. According to these problems, improvements will
be done in further research. Besides, we will focus on improving the information
representation, and proving the importance of it for phishing detection by using
numerous different data sources.
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Abstract. Adversaries create phishing websites that spoof the visual
appearances of frequently used legitimate websites in order to trick vic-
tims into providing their private information, such as bank accounts and
login credentials. Phishing detection is an ongoing combat between the
defenders and the attackers, where various defense mechanisms have been
proposed, such as blacklists, heuristics, data mining, etc. In this paper, we
present a new perspective on the identification of phishing websites. The
proposed solution, namely PhishFencing, consists of three main steps: (1)
filtering: a list of trusted and non-hosting websites is used to eliminate
pages from legitimate hosts; (2) matching: a sub-graph matching mech-
anism is developed to determine if an unknown webpage contains logo
images of whitelisted legitimate websites–once a match is detected, the
unknown webpage is considered a suspicious page; (3) identification: host
features are utilized to identify whether a suspicious webpage is hosted
on the same cluster of servers as the corresponding legitimate pages–if
not, the suspicious page is tagged as phishing. Compared with existing
approaches in the literature, PhishFencing introduces an autonomous
mechanism to replace the manual process of collecting and refreshing
groundtruth data. As a in-network solution, PhishFencing could also par-
tially detect phishing pages hosted on HTTPS servers, without requiring
any support from clients. Through intensive experiments, we show that
PhishFencing is very effective in comparing with the literature.

Keywords: Phishing · Phishing identification · Website fingerprints

1 Introduction

Phishing websites forge frequently used, legitimate sites to lure users to submit
their sensitive personal data or account credentials. Statistics from the Anti-
Phishing Working Group [3] show that most of the phishing websites target
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at payment (33.0%) or financial (14.3%) sites. Meanwhile, with the increasing
popularity of online shopping and banking over the last two decades, their client
base has grown from technophiles to normal users, who are less capable of recog-
nizing well-designed phishing sites. Victims deceived by phishing websites often
suffer from serious consequences such as identity thefts and huge property losses.
Therefore, from both security research and practice perspectives, it is crucial to
efficiently and effectively identify and block phishing websites over the Internet.

Online phishing has been an active research area in the last 10 to 15 years
[16,17], during which both the attack and defense techniques evolve simulta-
neously. Existing phishing detection methods could be roughly classified into
three categories: (1) URL-based (e.g., identifying cloaked URLs), (2) network-
based (e.g., detecting DNS poisoning or abnormal DNS registrations), and (3)
content-based (e.g., identifying suspicious websites that are visually similar to
benign sites). In the battle of online phishing between attackers and defend-
ers, phishing identification methods proposed in the literature may soon become
ineffective, for instance, when adversaries purposefully modify page contents or
further tampering with phishing URL, such as using “squatting” domains [26].

In this paper, we present a phishing website detection mechanism, named
PhishFencing, which attempts to detect discrepancies among a set of relatively
robust network and content features. In particular, we identify the “visual iden-
tity” of the unknown page, which is often the forged identity, from visual features
such as the logos on the page screenshots. We also identify the “network identity”
of the unknown page based on its host features, such as IP, AS and geolocation.
When both identities are inconsistent, the unknown page is highly likely to be
a phishing webpage. The proposed mechanism does not require any support or
software installation on the client side. PhishFencing will be deployed at primary
exit routers of enterprise networks or at the ISPs, to monitor incoming traffic
and to block any phishing pages from flowing into the network.

The proposed approach consists of three main steps, namely filtering, match-
ing, and identification. We first collect the logos of the legitimate websites on the
whitelist and generate a fingerprint of visual features for each logo. When a user
inside the network visits a webpage, we first invoke the filters to identify if the
user is visiting a known trusted website (not necessarily the whitelisted sites). If
the visited page comes from a unknown site or web hosting site, we move to the
matching step to render the page from passively eavesdropping the data stream.
Sub-image matching is invoked to compute the visual similarities between the
unknown page and all logos in the local fingerprint database and then com-
pare with a threashold. In this step, the unknown page may trigger matches
with fingerprints of multiple legitimate pages, since some legitimate sites may
use slightly different logos across several (entry) pages, such as https://www.
amazon.com/ and https://www.amazon.co.jp/. In this situation, we pass all the
matched legitimate sites as the target websites to the next step. In the identifi-
cation step, we first extract the network attributes of the hosts of the unknown
website and the target websites. After clustering the hosts of the target sites,
we finally identify whether the unknown webpage comes from an outlier host,
compared to all the clusters of legitimate hosts.

https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.co.jp/
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In practice, it is difficult for visual-similarity-based detectors to maintain
a complete and up-to-date database/whitelist of all protected legitimate sites,
especially consider the fact that the visual layout of the legitimate websites may
change. It is tedious and labor-intensive to ask system administrators to manu-
ally monitor all the sites on the whitelist and keep an updated image database.
To tackle this challenge, we propose to utilize search engines to collect and
update the groundtruth data. With this method, we are able to collect a larger
groundtruth set with more comprehensive coverage of the visual appearances of
the whitelist sites.

The main contributions of this paper are three-fold: (1) we propose a novel
and highly practical approach to autonomously collect/refresh logo images and
visual features from the whitedlisted legitimate websites; (2) we propose the first
approach that is able to partially identify phishing websites hosted on HTTPS
servers without requiring any interaction with the client computer/browser; and
(3) we have developed a three-stage approach, namely PhishFencing, to identify
phishing webpages based on the visual and network features that show higher
reliability in practice. Through intensive experiments, we demonstrate the supe-
rior performance of PhishFencing.

The rest of this paper is organized as follows: we first define the problem and
discuss the design goals in Sect. 2. We introduce the core algorithms and the
implementation details of PhishFencing in Sects. 3 and 4. We then present the
experiment results and performance analysis in Sect. 5. Finally, we discuss the
related works in Sect. 7 and conclude the paper in Sect. 8.

2 Problem and Objectives

In this paper, we tackle the problem of discovering and identifying phishing web-
sites, given a whitelist of legitimate websites. Formally, we have a collection of
whiltlisted websites as T = {T1, T2, ..., Tn}, in which Ti denotes a known legiti-
mate website1. In the threat model, the adversaries would imitate the visual
appearances of a legitimate site Ti, and attempt to trick victims (users) to visit
the phishing page and provide their credentials. A user from within the enter-
prise network visits an external page Si (i.e., the unknown page), which could
be a phishing page that might bring potential damage to the enterprise net-
work. The objective of this project is to design a phishing detection mechanism
M(S, T ) that, giving a new website Sx, identifies whether it is a phishing website
imitating Tx: M(Sx, Tx) = {0, 1}.

In this project, we aim to tackle two practical challenges: (1) Groundtruth
data collection and refresh: the whitelist of legitimate websites usually contains a
list of site names (e.g., Bank of America) and/or their entry URLs (e.g., https://
www.bankofamerica.com/). Moreover, each legitimate website may have multi-
ple entry points besides the root page, e.g., BoA have pages like https://www.
bankofamerica.com/credit-cards/manage-your-credit-card-account/. It is prac-
tically impossible to manually visit all these sites to generate visual fingerprints,
1 In this paper, we use whitelisted sites and legitimate sites interchangeably.

https://www.bankofamerica.com/
https://www.bankofamerica.com/
https://www.bankofamerica.com/credit-cards/manage-your-credit-card-account/
https://www.bankofamerica.com/credit-cards/manage-your-credit-card-account/
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and to keep all the fingerprints up to date. In PhishFencing, we employ web
search engines to crawl a set of logos of legitimate pages for each whitelist entry,
with the hypothesis that the top results from the largest commercial search
engine are trustworthy. (2) Encrypted traffic: to the best of our knowledge, all
existing phishing detection mechanisms for HTTPS phishing sites require col-
laboration from the client side, such as installation of browser add-ons, or local
detection mechanisms. However, it is impractical to require and enforce that
all the devices connected to the network to have anti-phishing software/client
installed. Especially, with the growing popularity of BYOD (bring your own
device) programs in the industry, more personal devices are connected to cor-
porate networks. In PhishFencing, we present the first mechanism to (partially)
detect phishing pages hosted on HTTPS sites without requiring any assistance
from the client computer/browser.

3 Features and Algorithms

In this section, we first introduce features utilized in PhishFencing, and then
describe the core algorithms for image matching and phishing detection.

3.1 Features

We aim to extract features which are easily obtained and difficult to manipulate
by attackers. For example, URLs and content of webpages (HTML codes and
resources) are not stable enough and easy to be bypassed by attackers. For URLs,
adversaries may use squatting domain [26] to imitate target sites’ URLs, while
others construct normal but totally irrelevant URLs to overpass detection [2]. In
the case of content of webpages, some adversaries use exactly the same HTML
structures and resources as the target websites, while others carefully manipulate
those content to overpass detection. At the same time, most of legitimate web-
sites, such as Amazon, change texts and pictures on their webpages frequently,
which also makes content features less reliable. Features used in PhishFencing
are listed in Table 1. Next, we will describe each feature in detail.

Table 1. Features used for PhishFencing.

# Feature Step # Feature Step

1 Domain Filtering 5 IP prefix Identification

2 Form Filtering 6 AS number Identification

3 Logo Matching 7 Geolocation Identification

4 Webpage screenshot Matching

Domain Features. PhishFencing takes the host names of HTTP pages or
Server Name Indication extensions (SNI) of HTTPS sites as the domain feature.
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We assume that pages from Alexa top sites are benign. In practice, we crawl the
domain names of Alexa top 3000 sites, and denote them as the list of trusted
websites (not to be confused with the whitelist of legitimate websites). Note that
pages from web hosting service providers, such as https://sites.google.com, are
not all trustworthy, since they have been found to be utilized to host phishing
webpages in the literature [26]. Therefore, we exclude all web hosting services
from the trusted site list. Except for the web hosting services, we can safely
assume that adversaries are unable to allocate sub-domains of the highly popu-
lar, heavily monitored, and better managed sites to host phishing pages. Com-
promised domains, as exceptions to this assumption, are discussed in Sect. 6.

Form Features. Forms, including INPUT and FORM tags, are used to collect
information from the client side. When an HTML file does not contain any form
element, it cannot be used to harvest personal information [28].

Logo Features. Logos are used in phishing detection in the literature, such as
PhishZoo [4]. However, it is tedious and labor-intensive to manually discover and
refresh all logo images of whitelisted sites. To overcome this drawback, Phish-
Fencing automatically collects and updates logo images using search engines. In
practice, a query consists of the websites’ name plus the keyword “logo”, e.g.,
“paypal.com logo”, is sent to the search engine. The top n results from picture
search are crawled to enhance the diversity of the result set, since a site may
have multiple versions of logos and they may be presented differently in images.

Webpage Screenshot Features. Different from PhishZoo [4], PhishFenc-
ing uses the screenshot of an unkown webpage in matching with logos from
whitelisted sites, rather than exhaustively comparing with every image on the
webpage, for two reasons: (1) repetitively invoking the matching algorithm to
compare every image from the unknown page against the fingerprint of every
logo is computationally expensive; and more importantly (2) adversaries may
use tricks to avoid using full/original logo images to avoid detection, e.g., split-
ting the logo into small images, or overlay layers of images. However, they still
need to preserve the overall visual presentation of the spoofed page. Hence, we
render the full pages and utilize sub-image matching to compare them with logo
fingerprints. In practice, we use Selenium to capture a 1920×1080 screenshot for
each unknown page. Note that the identities (logos) of spoofed sites are always
presented at the top of the page, hence, it is not necessary to capture the entire
page.

Host Features. We treat all IP prefix features, Autonomous System number
(AS number) features, and geolocation features as host features. Host features
are also widely adopted in phishing webpage detection. Host features are consid-
ered as relatively reliable. It is difficult for attackers to compromise servers host-
ing legitimate websites, hence, the host distribution of phishing websites should
be different from that of legitimate websites. Note that PhishFencing passively
collects IP addresses of unknown and legitimate sites from the same channel,
i.e. an ISP or a gateway of enterprise network. This ensures the consistency of
observed IP distribution. For a given IP address, PhishFencing collects its AS

https://sites.google.com
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number and the server’s geographic location using the MAXMIND database [1].
The IP prefix is extracted to represent the class C network the IP belongs to,
for the reason that prefixes contain IP addresses association information [27].
For a whitelisted legitimate website, we collect IP address prefixes, AS num-
bers, latitudes and longitudes features, to be used to train a model for outlier
detection.

3.2 Algorithms

In this paper, we employ a graph matching algorithm to decide whether a logo
image is a sub-graph of a screenshot, as well as an classification algorithm to
identify phishing websites.

Graph Matching Algorithm. As the phishing webpage can be self-defined,
attackers can use different scales of logo images to deceive users and to evade
logo detection methods which are not robust enough on image scale variation.
So we applied Scale Invariant Feature Transform (SIFT) algorithm [19] which
can generate scale-invariant keypoint descriptors.

The major steps are briefly explained as follows. The first step is to detect
extrema in the scale-space. To achive this goal, SIFT generates smoothed images
in different scale, defined as L(x, y, σ). Given a 2D image I(x, y), L(x, y, σ)
is computed from the convolution of a variable-scale Gaussian G(x, y, σ) and
I(x, y):

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (1)

where ∗ refers to the convolution operation, x and y are the spatial coordinates
of a plane and:

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

. (2)

Then through difference-of-Gaussian function, scale-space extrema, which is
regarded as potential interest points, can be detected. The second step focus on
locating keypoints accurately. From potential interest points extracted in the first
step, SIFT rejects the points which have low contrast and are poorly localized
along an edge for stability. Next, based on local image gradient directions, SIFT
assigns one or more orientations to each keypoint location. In the last step, SIFT
set a region around each keypoint’s location where some points sampled and the
gradient magnitude and orientation of these points are computed to form a 4∗4∗8
vector as the keypoint descriptor.

In particular, when using different background colors, such as white or black,
attackers need to invert the color of logo images accordingly for users to rec-
ognize. When color inverted, the keypoints’ positions could still match but the
keypoints orientation and descriptor vector would change, which will reduce our
matching performance. So we use both original image and color inverted image
for matching. To be specific, we firstly convert a BGR image to a GRAY image,
then for all x and y in the image plane, we compute I ′(x, y) = 255 − I(x, y). So
for a logo image, we generate two sets of keypoint descriptors for matching. We
will compare the performance of using color inverted images or not in Sect. 5.
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After keypoint descriptors generated, we applied Fast Library for Approxi-
mate Nearest Neighbors (FLANN) algorithm [24] which will build up index trees
(multiple randomized kd-trees in practice) for screenshots’ keypoints to find the
nearest neighbor in a screenshot for each keypoint in logo image. The nearest
neighbor refers to the keypoint with minimum Euclidean distance from the key-
point descriptor vector. For each keypoint in logo image Plogo, the index tree
is used to locate it’s nearest keypoint in the screenshot Pscreenshot. In order to
evaluate the matchness between Plogo and the corresponding Pscreenshot, we uti-
lize the secondary neighbor keypoint P ′

screenshot, to calculate the ratio Rmatching

of distances:

Rmatching =
D(Plogo, Pscreenshot)
D(Plogo, P ′

screenshot)
(3)

where D refers to the Euclidean distance.
As the correct matches need to make the nearest neighbor significantly closer

than the secondary neighbor which refers to the closest incorrect match, we can
reject matches with low distance ratio R [19]. Then we calculate the percentage
of keypoints in logo images, which own correct matches Sim, to decide whether
the logo image is the sub-graph of the screenshot. Higher Sim means that more
keypoints are correctly matched and so logo images have higher possibility as
the sub-graph of the screenshot. So when the Sim is higher than a threshold,
we say the match between a logo image and a screenshot is achieved.

Phishing Website Identification Algorithm. To identify phishing websites,
we apply host features of both target websites and suspecious websites to One
Class Support Vector Machine (one-class SVM) [9] to detect outliers, which are
host features of phishing websites. One-class SVM uses only positive data, i.e.
host features from the target website, as input to estimate the support vector
of a high-dimensional distribution. Given a target website, our training vectors
can be constructed as hi = f1,i, . . . , f3,i where i = 1, . . . ,m, m is the number of
webpages, ft,i denotes the tth feature in host features and hi ∈ Rn presents the
host features extracted from the ith webpage. During the training process, we
need to find out ω and b satisfied:

min
ω,b

1
2
||ω||2 +

1
νm

m∑

i=1

εi

s.t. ωT hi + b ≥ 1 − εi

εi ≥ 0, i = 1, 2, . . . , m

(4)

where ω and b are used to construct the hyperplane which is the boundary
of positive data. Since our training data can not be linearly separated, kernel
function Radial Basis Function kernel (RBF kernel) is employed to map the data
to a higher dimension feature space, in which data can be linearly separated. For
two samples h,h′, the RBF kernel K(h,h′) can be defined as:

K(h,h′) = exp
( ||h − h′||22

−2σ2

)
(5)
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Once ω and b are optimized, given a new vector h = f1, . . . , f3, if h satisfied:

ωT h + b < 0 (6)

then we regard this new vector as an outlier, i.e. host features from a phishing
website.

4 Design of PhishFencing

4.1 Overview of PhishFencing

As shown in Fig. 1, PhishFencing consists of three steps: (1) in the filtering step,
we apply domain features (Alexa top 3000 domains) and form check to filter
out trusted and harmless websites. The remaining pages are called the unknown
webpages. (2) In the matching step, PhishFencing checks whether the whitelisted
legitimate websites’ logo images are sub-graphs of screenshots of unknown web-
pages. If a logo image is identified as a sub-graph of the screenshot of a webpage,
we regard the webpage as a suspicious webpage. (3) Finally, PhishFencing applies
outlier detection on host features of these suspicious webpages to identify phish-
ing webpages.

Fig. 1. Model of PhishFencing
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4.2 Filtering

In filtering step, PhishFencing attempts to employ simple heuristics to eliminate
websites that are definitely not phishing websites. First, PhishFencing collects
HTTP/HTTPS streams passively. From HTTP packets, host names, HTML
files and URLs can be extracted. Hence, domain features and form check can
be applied directly to filter out trusted websites in two heuristics: (1) Suffix
matching is applied on domain features to identify if the unknown page comes
from a trusted website, as introduced in Sect. 3.1. (2) The HTML page and all
sub-frames are scanned to identify forms. When a webpage does not contain any
form, it cannot be a phishing page. In practice, these two heuristics eliminate
majority of the unknown pages with very small computation cost. Note that this
step is only introduced to save computation. In an environment where computing
resource is not a concern, we can reduce size of the trusted sites list, just in case
an adversary compromises an Alexa top domain (or its sub-domain) to host
phishing pages. On the other hand, for HTTPS streams, we can neither access
the complete URLs nor the HTML source files since they are all encrypted.
Hence, PhishFencing only applies domain-based filtering on the SNI field, which
indicates the host name of a website, to eliminate trusted websites from going
into future steps.

4.3 Matching

In the matching step, PhishFencing identifies suspicious webpages based on the
similarities between the rendered unknown pages and logo images of whitelisted
websites. HTTP and HTTPS pages are handled differently in this step.

For HTTP pages, PhishFencing renders the unknown webpage fetched from
passive HTTP streams, and then captures a screenshot image of the fully ren-
dered page. Simultaneously, PhishFencing fetches logo images of whitelisted web-
sites as described in Sect. 3.1, and pass them to SIFT matching.

For HTTPS pages, PhishiFencing could only extract host names from the
packets, not the complete URL or any file name/content, hence, PhishFencing
cannot directly obtain the corresponding webpages. To (partially) solve this
problem, for each host name from the HTTPS streams, PhishFencing searches
it on search engines and crawls all the returned URLs within the domain. For
example, we search “https://bit.ly” which is extracted from the SNI field of
the HTTPS packet, and we can see URLs such as “https://bit.ly/2kIChZC”
shown up in results. All the returned URLs are actively crawled to obtain the
screenshots of the corresponding webpages2. At the same time, PhishFencing also
visits the host name directly to crawl the default (root) page of the domain, and
follows any link on the page to collect all accessible pages in the domain. All pages
are rendered and screenshots are captured. The rationale of these operations is
that the attackers often post phishing URLs on other websites (such as online

2 An upper limit of crawled URLs is set just in case the domain is huge, however, it
is rarely reached in our experiments.

https://bit.ly
https://bit.ly/2kIChZC
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forums) so that they can reach out to a larger audience of potential victims.
Such URLs are likely to be captured by web search engines. Meanwhile, we
also see that many (sub)domains are only created for phishing purposes–once a
confirmed phishing page is found from the domain, especially as the root page
of the domain or accessible from the root page, other pages in the same domain
become highly suspicious.

Next, the SIFT algorithm is invoked to generate keypoint descriptors of both
logo images and screenshots. The keypoint descriptors of each logo image and
screenshot pair are further sent to the FLANN algorithm to determine whether
the logo image matches a sub-graph of the screenshot image. When a screenshot
contains sub-graphs that are similar to a logo image in the whitelist, the corre-
sponding page is then marked as suspicious, which is sent to the next step for
further identification.

4.4 Identification

In the previous step, PhishFencing has discovered suspicious webpages, whose
visual identities carry significant similarity with whitelisted sites. In the identi-
fication step, PhishFencing attempts to finally determine whether a suspicious
page is a phishing page based on the host features, i.e., by comparing the host
distribution of the suspicious page and the whitelisted legitimate pages.

As described in Sect. 3.1, PhishFencing collects the IP addresses of the web-
sites which host suspicious webpages, and the IP addresses of the corresponding
legitimate websites. We then employ MAXMIND to obtain the AS numbers
and geolocation of these IP addresses. Finally, we utilize one-class SVM on the
host features of both the suspicious websites and their corresponding legitimate
websites to discover outliers. All outliers are then labeled as phishing webpages,
which should be blocked at the firewalls.

5 Experimental Evaluation

In this section, we empirically evaluate PhishFencing and demonstrate its per-
formance. We first describe our dataset. Then we define the evaluation metrics
and present the experiment results.

5.1 Dataset

Logo Fetching Mechanism. We chose domains of Alexa top 1600 sites to
evaluate the effectiveness of our logo fetching mechanism. We deployed Google
Images Download to obtain the first 10 images for each domain from Google.
At the same time we took screenshot of the root page (the landing page when
directly visit a domain) for each domain by Selenium. Since some websites apply
bot detection technologies such as reCaptcha to avoid crawlers, we verified the
correctness of logos manually.
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PhishFencing. We use PhishTank as the source of phishing pages. URLs from
PhishTank are manually verified to exclude links that land on irrelevant web-
pages or with 404 errors. To obtain the groundtruth dataset, we visited verified
PhishTank URLs from computers inside our institutional network. We captured
the traffic using tcpdump at the gateway, and used them as positive (phishing)
samples. Similarly, we visited the corresponding legitimate websites to generate
negative (non-phishing) samples. For each legitimate site, we intended to visit
multiple webpages in different content, HTML structures, languages, and back-
ground colors to increase the diversity of the negative samples, and to accumulate
IP address features of the legitimate sites.

The groundtruth dataset has been collected for 7 days continuously with
77,539 phishing URLs verified by PhishTank, among which 13,902 were labelled
with target brands. We followed SquatPhish [26] to select 8 most frequently tar-
geted brands, which cover 68.98% of the phishing webpages in our groundtruth
dataset. They are paypal, microsoft, facebook, google, amazon, apple, drop-
box, and yahoo. Since PhishFencing uses an autonomous mechanism to collect
groundtruth data, it could easily scale up to handle thousands of whitelisted
sites. After manually verified these phishing webpages based on the method
mentioned in [26], only 772 URLs remained as valid phishing URLs (majority
of the phishing websites went offline after a very short lifespan), in which 48.7%
are hosted on HTTP and 51.3% are hosted on HTTPS.

For each brand, we chose its primary website(s) from Alexa as our target
website(s). For brands like Amazon, multiple target site have been identified,
such as amazon.com, amazon.cn, amazon.jp, etc. Note that in our paper, if
two host names have the same second-level domain (SLD) and the same top-
level domain (TLD), they are considered to belong to the same site. For exam-
ple, “scholar.google.com” and “www.google.com” belong to the same website
“google.com” according to our definition. For each target website, PhishFencing
crawled the top 10 logo images using Selenium with chromedriver, and elimi-
nated duplicate logos (logos with similar SIFT features), to generate the set of
logo images. Meanwhile, for all the target websites, 461 different IP addresses
were extracted by PhishFencing to build host features.

5.2 Evaluation Metrics

The overall performance is measured in terms of precision (Poverall) and recall
(Roverall) where

Poverall =
|{phising webpages} ∩ {identified webpages}|

|{identified webpages}| , (7)

Roverall =
|{phising webpages} ∩ {identified webpages}|

|{phishing webpages}| . (8)

We also employed the F1-score to combine both precision and recall to evaluate
the overall effectiveness of different approaches. The F1-score is defined as:

F1 =
2 × Poverall × Roverall

Poverall + Roverall
(9)
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At the same time, since PhishFencing consists of three primary steps, we
also want to evaluate each steps separately to see their best performance. In
the filtering step, we can simply adjust the list of trusted websites to ensure all
potential phishing webpages are passed to the following steps. In the matching
step, we first evaluate the reliability of our automatic logo fetching mechanism,
we define the accurate rate (Alogo) on logo retrieving as:

Alogo =
|{websites with logo correctly fetched}|

|{websites}| . (10)

As for PhishFencing’s matching performance, we define matching precision
(Pmatching) and matching recall (Rmatching) to describe the performance of sub-
graph matching.

Pmatching =
|{webpages with certain logo} ∩ {matched webpages}|

|{matched webpages}| , (11)

Rmatching =
|{webpages with certain logo} ∩ {matched webpages}|

|{webpages with certain logo}| . (12)

Last, we evaluate the performance of the identification step with samples
that are correctly matched. We define identification precision as Pidentify and
identification recall as Ridentify in a very similar way as Eqs. 7 and 8.

5.3 Performance Evaluation

In this section, we first present the reliability of our logo fetching mechanism.
Then we evaluate PhishFencing’s performance on groundtruth dataset.

Effectiveness of Logo Retrieval. We evaluated the performance of our auto-
matic logo fetching mechanism through manual verification: (1) we utilized the
logo fetching mechanism to retrieve the logo images of Alexa’s top 1600 websites;
(2) we also downloaded the screenshots of each domain’s landing page; (3) for
each of the top 1600 sites, we manually verified if the fetched logo appears in
the landing page. For domains which we were unable to retrieve the right logo
images, we further examine the errors and categorized them, as shown in Fig. 2.

As shown in Fig. 2, for 4.43% of the websites, the fetched logos do not appear
on the domains’ landing pages, while the landing pages appear to be legitimate
(Error type #1). Meanwhile, we were unable to download legitimate landing
pages for some domains: (Error type #2) the landing pages are not reachable
due to DNS error, 404 page not found error, or connection time-out. (Error
type #3) Landing pages of some domains behave maliciously such as browser
hijacking. (Error type #4) Some domains instantly redirect the browser to other
domains, hence, the original domains do not host any service. (Error type #5)
Some domains were shut down while sale or notification pages were reached.
(Error type #6) There are also domains used for ad serving, which work as
connectors between website owners and advertisers. And (Error type #7) some
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# Error type Error rate
1 Logo mismatch 4.43%
2 Domain unreachable 3.56%
3 Browser hijacker 2.75%
4 Redirect 2.75%
5 Shut down 1.06%
6 Ad serving 0.44%
7 No logo 0.25%

Fig. 2. Causes and frequency of failed/wrong
logo image retrieval.
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Fig. 3. Accuracy of logo fetching on
Alexa’s top k websites.

websites do not have any logo. Domains that generate errors #2 to #6 do not
provide web services, hence, we eliminated them in our further evaluations.

After we eliminated the domains mentioned above (error types #2 to #6),
we calculated the accuracy of our logo fetching mechanism for Alexa’s top k
sites. As shown in Fig. 3, PhishFencing correctly fetched the logo images of at
least 95% of the top 1600 sites. PhishFencing performs better on websites that
rank higher, for example, logo fetching accuracy reaches 98% for top 650 sites.

PhishFencing Evaluation. To present the performance of PhishFencing in
matching step, we compared our mechanism with SIFT and SURF which were
employed in PhishZoo [4] as shown in Fig. 4(a). F1-scores with SIFT were much
higher than those with SURF. And with our improved algorithm, we can slightly
outperform the recall and precision of original SIFT. To be more specific, we
calculated both precision (Pmatching) and recall (Rmatching) rate of PhishFencing
as shown in Fig. 4(b). We can see that when Sim = 0.09, we can obtain 99.27%
precision and 97.90% recall in the matching step. Note that we used names of
websites to fetch logo images which is more reliable than using brand names.
For example, logo images of “amazon.cn” and “amazon.com” are different. If
we simply use “amazon logo” to fetch logo images, the logo of “amazon.cn”
would not shown up in the top results.

In the identification step, PhishFencing achieved 97.8% (Pidentify) precision
and 100% recall (Ridentify) on 8 target brands on average using host features
from webpages which had been successfully matched. Note that legitimate IP
addresses were collected in nearly 2–3 h for each target website. In Fig. 5, we list
the number of IP addresses collected on each of the 8 target brands. The number
of IP addresses are not necessarily massive which suggest that our mechanism
is not depending on large amount of prior data and can be used on client side
as well.

As for the overall performance, we compared PhishFencing with the Squat-
Phish approach [26], which is the state of art solution for identifying phish-
ing webpages with specific target brand. We applied SquatPhish which is open
sourced on github on our groundtruth dataset. As shown in Fig. 6, we first com-
pare the performance of both approaches installed on the gateway to capture
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Fig. 4. Matching performance: (a) F1 -score comparison of SIFT, SURF and the match-
ing mechanism in PhishFencing approach on groudtruth data. (b) Precision and Recall
rate with different similarity threshold selected using PhishFencing on groundtruth
data.

target website # of IP addresses
amazon.com 138
apple.com 98

microsoft.com 67
google.com 51
yahoo.com 50

dropbox.com 42
paypal.com 8
facebook.com 7

Fig. 5. Number of legitimate IP
addresses collected for each target
website in groundtruth data

Fig. 6. Overall performance comparison
of SquatPhish on HTTP, PhishFencing
on HTTP and PhishFencing on HTTPS
tested on groundtruth data.

HTTP streams. PhishFencing reaches 97.8% precision and 97.7% recall which
are both higher than SquatPhish. Then we evaluate the performance of Phish-
Fencing on HTTPS streams. Since SquatPhish utilizes webpage’s screenshot and
HTML source code which cannot be obtained from encrypted packets, Squat-
Phish cannot handle HTTPS streams when it is deployed at the gateway. The
results show that PhishFencing achieved 26.32% recall on HTTPS-hosted phish-
ing websites, when it is deployed at the gateway and only relies on two side
channels to infer if the host domain is suspicious. Although there is still room
to improve the recall, PhishFencing is the first solution of its kind to partially
detect HTTPS-hosted phishing at the gateway.

Last, we also like to note that PhishFencing performs well on small size of host
features. Therefore, it can be deployed on the client side, which only has limited
data for the host features of the legitimate sites. In the experiments, Phish-
Fencing’s performance on HTTP streams remains high when it is deployed at
the client side. Meanwhile, the recall rate on HTTPS-hosted phishing increased
dramatically since we are now able to obtain the full URLs from HTTPS packets.
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6 Discussions

PhishFencing is effective in phishing detection in the experiments, however, we
still recognize its limitations and opportunities for future improvements.

First, as we have explained in Sect. 4.3, PhishFencing could only obtain the
domain name, not the full URL, from HTTPS streams. Therefore, we rely on two
side channels to find (other) pages hosted in this domain. This method appears
to be effective on a portion of the HTTPS-hosted phishing websites. However,
when no phishing pages are detected through the two side channels, PhishFenc-
ing is unable to discover any “hidden” phishing page. While the problem of
detecting HTTPS-hosted phishing without the support from the client side is
very challenging, we believe there is still space to improve.

We have applied suffix matching on domains of websites to filter out trusted
websites, with the assumption that pages hosted on trusted sites (excluding any
web-hosting service providers) are trustworthy. However, this assumption may
be violated, especially when the adversary compromises a trusted site to host
phishing webpages. In response, PhishFencing could cache the visits to trusted
domains, and use the non-utilized server cycles to evaluate the (sampled) cached
pages. When phishing is identified, ex post facto repairing mechanism is invoked,
while the corresponding site would be removed from the trusted site list.

For HTTPS-hosted unknown pages, PhishFencing relies on correct host
names in SNI fields. However, domain fronting, a versatile censorship circum-
vention technique, can be employed to show one domain in SNI field while using
another domain in the HTTP host field [14]. In this way, attackers can replace the
host name in the SNI field with a legitimate host name to evade our detection.

Some logo images may be shown on irrelevant websites. For example, the Visa
logo may be shown on retailers’ homepages to show that visa cards are accepted,
or on a check-out/payment pages. In the first case, the pages are highly likely to
be eliminated from phish detection since they usually do not contain any form.
In the second case, a legitimate HTTPS-hosted payment page is unlikely to be
misclassified, since the page itself is not accessible to PhishFencing, while the
domain is likely to be benign. However, HTTP-hosted pages carrying Visa logos
and containing forms (e.g., a retailer’s homepage with a input box for search)
may be misclassified as phishing. Fortunately, such cases are very rare in our
experiments and they can be fixed by adding those sites to the trusted list.

Last, PhishFencing evaluates the visual identities of webpages by comparing
the logos of whitelisted sites and the phishing webpages. In the very rare case
where a whitelisted site do not have a logo or the logo image is not shown on the
phishing webpages, PhishFencing’s recall would be impacted. However, in our
groundtruth dataset, all the sites in the whitelist have logo images and there are
only 2.19% known phishing webpages that do not have any logo on them.

7 Related Works

Phishing website detection mechanisms can be roughly categorized into target-
independent and target-dependent approaches. Target-independent approaches
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extract common features from all the phishing websites to train a model for
phishing websites identification [21,23]. Target-dependent approaches, which
PhishFencing belongs to, identify phishing websites mainly through comparing
the similarity between target websites and on-identifying websites [28,31].

For target-independent approaches, the most commonly used features are
URL features (i.e. structures and lengths of an URL) [5,15,18], webpage fea-
tures (i.e. links, keywords, and HTML DOM extracted from a webpage) [20]
and host features (i.e. IP addresses, AS numbers and geolocation of a website’s
hosts). Mechanisms in [8,11,22,25,27,30] combine large amount of features men-
tioned above and employ different machine learning algorithms to detect phish-
ing websites. Apart from these machine learning methods, [10,13,29] make use
of websites’ identities as well as search engines. They try to figure out identi-
ties of a website at first. For example, [29] uses Term Frequency Inverse Docu-
ment Frequency (TF-IDF) to extract terms with highest weight as a website’s
identities. [13] applies Optical Character Recognition (OCR) on a webpage’s
screenshot and regards the text generated by OCR as the webpage’s identity.
[10] uploads segmented screenshot of a webpage to Google Image Search engine
and regards the keywords returned as the webpage’s identities. Then they query
the identities of a website through search engine. If the domain name of the
on-identifying website does not match any of N top search result, they would
classify the website as a phishing one. However, target-independent approaches
use generic characteristics which can be constructed by attackers to evade the
detection systems.

For target-dependent methods, visual features such as screenshot and logo
image are most commonly used. Meerkat [6] trains deep learning models to
detect phishing webpages hosted on compromised websites via visual elements
in webpages. Apart from visual elements on the webpages, [26] applies OCR on
URLs to detect squatting phishing domains. Besides visual features, [7] compares
the layout and HTML text between target webpage and on-identifying webpage.
[4,12] combines HTML features and visual features for identifying.

PhishFencing is different from existing approaches that: (1) PhishFencing
chooses visual and network features which are representative and difficult to
be manipulated compared to the target-independent methods. (2) PhishFencing
utilizes search engines to autonomously collect/refresh logo images and visual
features of HTTPS websites. Existing target-dependent approaches either iden-
tify logo manually or segmented the screenshot to locate logo which is less reliable
than the approach in our mechanism. (3) PhishFetching can deal with phishing
websites hosted on HTTPS which, to the best of our knowledge, has not been
mentioned by other works.

8 Conclusion

In this paper, we present a phishing website identification approach named
PhishFencing. The core idea is to detect if an unknown webpage carries the
visual identity (logo) of a whitelisted legitimate site, while its host features devi-
ate from the distribution of the known hosts of the legitimate site. PhishFencing



Tear Off Your Disguise: Phishing Website Detection 779

consists three major steps: filtering, matching, and identification. As a network-
based solution, PhishFencing will be deployed at the gateways of enterprise net-
works or at the ISPs’ network backbones, to block phishing pages from being
transmitted to end users. In the experiments, we demonstrate that PhishFencing
outperforms state-of-art phishing detection solutions in the literature.
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Abstract. With the volume of Voice over IP (VoIP) traffic ris-
ing shapely, more and more VoIP-based steganography methods have
emerged in recent years, which poses a great threat to the security of
cyberspace. Low bit-rate speech codecs are widely used in the VoIP
application due to its powerful compression capability. Previous ste-
ganalysis methods mostly focus on capturing the inter-frame correlation
or intra-frame correlation features in code-words ignoring the hierarchi-
cal structure which exists in speech frame. In this paper, motivated by
the complex multi-scale structure, we design a Hierarchical Represen-
tation Network (HRN) to tackle the steganalysis of Quantization Index
Modulation (QIM) steganography in low-bit-rate speech signal. In the
proposed model, Convolution Neural Network (CNN) is used to model
the hierarchical structure in the speech frame, and three levels of atten-
tion mechanisms are applied at different convolution blocks, enabling it
to attend differentially to more and less important contents in speech
frame. Experiments demonstrated that the steganalysis performance of
the proposed method outperform the state-of-the-art methods especially
in detecting both short and low embeded speech samples. Moreover, our
model needs less computation and has higher time efficiency to be applied
to real online services.

Keywords: Convolution Neural Network · Attention mechanisms ·
Voice over IP (VoIP) · Steganalysis

1 Introduction

Steganalysis and steganography are different sides of the same coin. Steganogra-
phy tries to hide messages in plain sight while steganalysis tries to detect their
existence or even more to retrieve the embedded data from suspicious carriers.
In recent years, the fast growth of Internet services has provided a multimedia
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transfer which can share enormous volumes of data over the Internet. Enormous
network traffic makes it suitable for steganography [3,24,25,29]. VoIP enables
the digitalisation, compression and transmission of analogue audio signals from a
sender to a receiver using IP packets in multimedia transfer. Due to its real-time
and large-scale characteristics, more and more VoIP-based covert communica-
tion systems have been brought up in recent years [8,17,33]. This type of covert
communication has become a major threat to security monitoring of network
communication. Thus, it is important to develop a powerful steganalysis tool to
analyze VoIP streams.

VoIP is a typical streaming media technology. In general, VoIP streams are
dynamic chunks of a series of packets that consist of IP headers, UDP headers,
RTP headers and numbers of carrier frames. All of these fields can be used
to embed secret information. However, information hiding based on network
protocols including IP, UDP and RTP fields can be easily detected since all of
the protocols are public and data in these fields are fixed mostly [21]. On the
contrary, embedding information into carrier data field or payload filed which
varies with time can achieve a relatively high level of concealment making them
hard to detect [24]. Low bit-rate speech coding algorithms which have powerful
compression capability such as G.729 and G.723.1 standard are specially defined
by the International Telecommunication Union (ITU) for VoIP and are widely
used to compress speech segment in VoIP streams. They try to minimize the
decoding error by Analysis-by-Synthesis (AbS) framework and can achieve high
compression ratio while preserving superb voice quality [5].

The QIM steganography [1] achieves information embedding by modifying
the Vector Quantization (VQ) codeword search in the process of the speech
encoder. The QIM method is a very common steganography scheme which can
offer higher concealment capability and better robustness. Previous research on
steganalysis of QIM-based steganography in low-bit-rate speech always focuses
on inter-frame correlation or intra-frame correlation features but neglects the
hierarchical structure which exists in speech frame. An interesting observation
is that many natural sequences such as language, handwriting and speech have
the capacity to recursively combine smaller units into hierarchically organized
larger ones which is a fundamental property [4]. For example, in speech sequence,
the phoneme, a basic phonology unit, can make up sub-words and words are
composed of sub-words. The information contained in each acoustic unit is
limited, but their combination leads to expressions that can flexibly convey
infinite nuances and meanings. Having noticed that all the previous methods
have neglected this property of speech, we try to construct a model to capture
these hierachical features for steganalysis of the QIM steganography because
QIM steganography can bring slight distortion to the hierarchical structure in
speech. In the proposed model, CNN, regarded as a proper architecture to model
hierachical structure, is stacked to capture different levels of features [35]. The
attention mechanism [26] is used after every convolution block to select impor-
tant components. All of the features selected from different levels of convolution
blocks are concatenated and fed into fully connected layers which will serve as a
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classifier to indicate whether the sample speech is ‘stego’ or ‘cover’. Experiments
show that our model can effectively achieve the state-of-art results in both low
and short samples which are the hardest parts in detecting QIM steganography
in VoIP streams. Moreover, our models need less computation and has higher
time efficiency to be applied to real online services.

We summarize our main contributions as follow:

(1) We first pointed out that speech steganalysis can make full use of the seman-
tic hierarchical structure of speech itself, and design a reasonable network
structure to model this hierarchical structure in speech carriers.

(2) The end-to-end model we proposed has two distinctive characteristics: (i)
it uses a convolution network to model the hierarchical structure in the
speech carrier, which mirrors the hierarchical structure of speech; (ii) it
has different levels of attention mechanisms applied at different levels of
features, enabling it to attend differentially to more and less steganalysis
contents when constructing the speech representation for classification.

(3) The experiment on public dataset shows the proposed method can outper-
form all the state-of-the-art methods especially in low embeded and short
samples. Meanwhile, time efficiency of the proposed model is also excellent
compared with other methods.

The rest of this paper is organized as follows. In Sect. 2, we introduce some
background knowledge of the research. Section 3 summarizes the related work.
In Sect. 4, we introduce and describe the details of the proposed hierarchical rep-
resentation network architecture. In Sect. 5, we introduce the experiment setting
and benchmark. The experimental results and models are also discussed in this
part. In Sect. 6, the concluding remarks are given.

2 Preliminaries

2.1 Linear Predictive Coding

Linear Predictive Coding (LPC) is mostly used for representing the spectral
envelope of a digital signal of speech in compressed form, using the information
of a linear predictive model. It is very useful for encoding speech at a low-bit
rate and provides accurate estimates of speech parameters. Speech codecs such
as G.729 and G.723.1 are based on the linear predictive coding (LPC) model,
which uses an LPC filter to analyze and synthesize acoustic signals between the
encoding and decoding endpoints. LPC filter can expressed as follow:

H(z) =
1

A(z)
=

1
1 − ∑n

i=1 aiz−i
, (1)

where ai is the ith coefficient of the LPC filter. The short-time stationary nature
of the voice signal requires the entire signal sample to be divided into frames
and the LPC filter’s coefficients are then computed for each frame. During the



786 H. Yang et al.

speech coding, the LPC filter’s coefficients of each frame are first computed and
converted to line spectrum frequency (LSF) coefficients. Subsequently, the LSF
coefficients are encoded by using vector quantization (VQ). Speech codecs adopt
split VQ and use different split vectors to quantify the LSF coefficients and then
Quantization Index Sequence (QIS) is generated, which can be formulated as:

S = [s1, s2, · · · , sT ] =

⎡

⎣
s1,1 s2,1

s1,2 s2,2

s1,3 s2,3

.....
sT,1

sT,2

sT,3

⎤

⎦ , (2)

where T is the total frame numbers in the sample window of the speech, si

denotes the vector in i-th frame of the speech segment, and si,j denotes the j-th
code-word in the i-th frame respectively.

2.2 QIM-Based Steganography

Quantization index modulation techniques have been gaining popularity in the
data hiding community because of their robustness and information-theoretic
optimality against a large class of attacks. The QIM-based VoIP steganography
hides the secret data during the VQ process by embedding information in the
choice of quantizers [1]. For example if we want to embed bit stream, a standard
scalar QIM with two sub-codebooks L1 and L2 can be simply expressed as follow:

si = Qm(xi) =
{

Q0(xi) if mi = 0,
Q1(xi) if mi = 1.

where xi represents the input signal, and m is the message bit we want to embed-
ded. Qi is the quantizers which choose quantitative vector from sub-codebook of
Li. Li is the sub-codebook of L in VQ process. For a two division of codebook
L, the sub-codebook should satisfy the following conditions:

L1 ∩ L2 = ∅ and L1 ∪ L2 = L. (3)

The receiver can recover the secret information by judging to which sub-
codebook the quantitative vector belongs.

For VoIP frames, QIM steganography is used to quantify the LSF coefficients.
Obviously, QIM steganography will have an impact on the elements of QIS. Thus,
QIS is a proper clue for steganalysis of QIM steganography. Another advantage of
using QIS is that we can conduct steganalysis directly in the compressed domain,
which will have little impact on user experiences of VoIP service [31,32].

3 Related Work

In this section, we introduce conventional steganalysis method in VoIP and deep
learning based models in this field.
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3.1 Conventional Steganalysis Method in VoIP

Conventional steganalysis method always focuses on extracting statistical fea-
tures. For example, there are some audio steganalysis methods that can be uti-
lized for detecting the QIM-based VoIP steganography by extracting statistical
features in the uncompressed domain [7,12]. Nevertheless, these methods are not
effective in detecting QIM steganography VoIP streams which are integrated with
low bit-rate speech codecs. The reason is that these methods introduce minimal
additional distortion in decoded speech signals. Thus it is difficult to obtain fea-
tures in uncompressed domain for steganalysis. Besides, some researchers try to
conduct steganalysis in the transform domain, where the statistical characteris-
tics of elements in transform domain can be distorted during QIM steganography
in speech encoding process. Therefore, the corresponding steganalysis methods
usually exploit the statistical characteristics of the carrier, such as Mel-frequency
features [13], statistic features [7], codewords correlations [15] and so on. Most
of these traditional methods either have low accuracy or require a lot of compu-
tation to extract features which made them hard to reach the requirements of
VoIP scenario. For example, Li et al. [15] extracted the modified codewords into
a data stream, and used Markov chain to model the transition pattern between
successive code-words which was very time consuming and was hard to apply at
real scenarios.

3.2 Deep Learning Based Steganalysis Method in VoIP

Deep learning techniques have been well applied in image [6], speech [30] and
natural language processing [2]. Application of deep learning techniques in the
field of steganalysis has also be further explored [34]. In the steganalysis of
audio. Paulin et al. [19] presents a steganalysis method that used a deep belief
network (DBN) as a classifier for audio files. In another work, Paulin et al.
[20] presented a new method to train Restricted Boltzmann Machines (RBMs)
using Evolutionary Algorithms (EAs), where RBMs are used in the first step of
a steganalysis tool for audio files and the vector they used to train the model
was MFCC. Rekik et al. [22] advocated a powerful and sophisticated classifier
called Autoregressive Time Delay Neural Network (AR-TDNN). The approach
uses LSF (line spectral frequencies) parameters as a cue of audio type. Wang
et al. [27] presents an effective steganalytic scheme based on CNN for detecting
MP3 steganography in the entropy code domain. The above all focused on static
audio file and can’t be directly applied to stream media carrier.

There are also several attempts to apply deep learning methods to steganal-
ysis of VoIP. Lin et al. [16] found there are four strong codeword correlation
patterns in VoIP streams, which will be distorted after embedding with hidden
data. Thus, to extract those correlation features, they propose the codeword
correlation model, which is based on recurrent neural network (RNN). Yang
et al. [34] defined multi-channel sliding detection windows to extract feature
from raw speech stream. Then, they used two feature extraction channels with
CNN to extract correlations features of the input signal between neighborhood
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frames. The method they proposed can achieve almost real-time detection of
VoIP speech signals. Although the above methods had significantly improved
the performance of VoIP steganalysis, they all neglected the hierarchical struc-
ture in speech carrier which has great potential to improve the performance of
steganalysis.

4 Methodology

4.1 Problem Definition

Steganalysis of speech streams in this paper is to judge whether there wes extra
information embeded in the raw speech frame. For the online real-time speech
service network system, it is unlikely to get a complete voice sample, because it
will seriously affect the quality of network voice services. In general, we can only
use a small window to sample a small segment of the network voice stream as our
test sample. Assume that the sample window size is N and C category in total,
the corresponding speech sequence can be written as St = [st

1, s
t
2, ..., s

t
N ], where

St
i represents speech frame code-words at time step t. The label for a sequence

is denoted as y, 1 ≤ y ≤ C. Our goal is to construct an end-to-end model φ(St)
to predict a label ŷ.

4.2 Model Structure

The architecture of proposed model is shown in Fig. 1. In the proposed model,
raw speech is first sampled by a sliding window and QIM sequences generated
after this step. Then, the sequences are fed into the proposed model. In the pro-
posed model, there are two main parts including feature extraction module, fea-
ture fusion and classification module. In feature extraction module, convolution
layers are cascaded to model the hierarchical structure, and attention mechanism
[26] is used to select important features from different levels. In feature fusion
and classification module, features from different level are concatenated for final
classification and two fully connected layers serve as classification in these parts.
Moreover, parameters in the proposed model are trained on a supervised learn-
ing framework. In the following part, we will introduce the detail parts of each
module.

4.3 Convolution Layers

Convolution layers are the backbone of the feature extraction module. We cas-
cade three convolution blocks to capture different levels of features. Convolution
layers in our model all used one-dimensional convolution [10]. In the module, a
filter m convolves with the window vectors at each position in a valid way to
generate a feature map h, each element hi of the feature map for window vector
hj is produced as follows:

hj = f(sj:j+k−1 � m + b), (4)
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Fig. 1. Structure of proposed hierarchical representation network

where sj:j+k−1 means a vector with k consecutive frame vector in S, � is element-
wise multiplication, b is a bias term and f is a nonlinear transformation function
where ReLU [18] is used in our model. The structure of the second and third
convolution blocks is essentially similar to the first one but with different con-
volution kernel sizes.

4.4 Attention Mechanism

In the proposed model, attention mechanism [26] is used for selecting different
features in each layer. It is generally believed that the more the neural network
layers in a model, the more abstract the features will be extracted [35]. In the
feature extraction module, we use a 3-layer convolutional layer to extract hierar-
chical features. For steganalysis, the impact of steganography on speech stream
may occur at each level of the hierarchical structure. Therefore, we believe that
features in each layer of the model are useful and they are all used for final
classification. However, in each steganography sample, the importance of differ-
ent levels are not equal. Thus, we introduce attention mechanism in our model
to select important feature in each sample. In the attention block of Fig. 1,
inputted data which generated by each convolution block can be denoted as
h = [h1, h2, · · · , hj ], and for hi ∈ h, its attention weight αi can be formulated as
follows:

mi = tanh(hi),
∧
αi = wimi + bi,

αi = exp(
∧
αi)

∑
j exp(

∧
αi)

,

(5)
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where w and b are the parameters of the attention layer. Therefore, the output
representation r in every attention path is given by:

r =
∑

i
αihi. (6)

Based on such transformation, the features from convolution layers will be
assigned with different attention weights. Thus, important information can be
identified more easily.

4.5 Feature Fusion and Classification Layer

After the sample has been processed by the feature extraction module, we will
get features from different levels. These features were concatenated for final
classification and the compound feature vector z can be denoted as follow:

z = [r1, r2, r3], (7)

where ri is the representative feature from the i-th attention block. Generally, the
dimension of z is still very high, which is under the risk of over-fitting. Therefore,
we take a two-layer fully-connected layers to compress it. The compress process
can be expressed as follow:

zc = f2(w2f1(w1z + b1) + b2), (8)

where wi and bi is the parameters of the i-th fully-connected layer. fi is the
activation function in i-th fully-connected layer and we use ReLu [18] in our
model. The compressed feature vector zc is then sent to a softmax classifier to
generate the probability distribution over the label set Y . The soft-max classifier
can be denoted as:

pt(i) =
exp(wi · zc + bi)

C∑

k=1

exp(wk · zc + bk)
, (9)

where pt(i) is the probability of the category i at time step t, the total category
number is C. wk and bk are the parameters in soft-max classifier. After these step,
we can get predicted label ŷ, which is the element position with the maximum
probability in the distribution pt and the label value decides the speech sample
belongs to ‘Cover’ or ‘Stego’.

4.6 Loss Function

The whole proposed model is trained under a supervised learning framework
where cross entropy error loss is chosen as loss function of the network. Given
a training sample si and its true label yi ∈ {1, 2, ..., k} where k is the number
of possible labels and the estimated probabilities ŷi

j ∈ [0, 1] for each label j ∈
{1, 2, ..., k}, the error is defined as:

L(si, yi) =
k∑

j=1

1{yi = j} log(ŷi
j), (10)
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where 1{condition} is an indicator such that 1{condition is true} = 1 otherwise
1{condition is false} = 0. Moreover, in order to mitigate overfitting, we apply
dropout technique [23] and Batch Normalization [9] to regularize our model.

5 Model Evaluation and Discussion

5.1 Dataset

Our experiments were conducted in a public dataset1 that has been published
by Lin et al. [16]. Samples in this dataset have different types of native speakers.
Each speech file in the datasets was encoded according to the G.729a standard.
Speech clips without hidden information were assigned the category label ‘cover’
which made up the cover speech dataset, while, secret data were embedded using
CNV-QIM [28] steganography in split vector quantization process. Those speech
samples with hiding data were assigned the category label ‘stego’ and make
up the stego speech dataset. When we conducted experiment, samples in cover
speech dataset and stego speech dataset were cut into different lengths to test
the model performance with different duration. Segments of the same length
were successive and not overlapped. For the training set with 0.1s clips, there
were 2,486,708 samples with the 1:1 ratio of cover clips and stego clips.

5.2 Experimental Setting

Baselines. In order to validate the effectiveness of the proposed model, we
compared the performance of our model with several baseline methods. Methods
to be compared include:

IDC [7]: This method tries to exploit the Index Distribution Characteristics
(IDC). The model extracted vector variation rate to measure the change of a
vector and used first-order Markov chain for quantifying the correlated features.
Then, they used Support Vector Machine (SVM) for classification.

QCCN [15]: The authors constructed a model called the Quantization code-
word correlation network (QCCN) based on split VQ code-words from adjacent
speech frames. They used high order Markov to model correlation characteristics
of split VQ code-words and they also used SVM for classification.

RNN-SM [16]: This method indicated four strong code-word correlation pat-
terns in VoIP streams, which will be distorted after embedding with hidden
data. To extract those correlation features, the author proposed the codeword
correlation model, which was based on Recurrent Neural Network (RNN).

CSW [34]: In order to exploit the correlations between frames and different
neighborhood frames in a VoIP signal, the method combines sliding windows
and convolution neural network to conduct steganalysis in compressed domains.

1 https://github.com/fjxmlzn/RNN-SM.

https://github.com/fjxmlzn/RNN-SM
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Setting of the Proposed Model. The hyperparameters in our model were
selected via cross-validation on the trail set. More specifically, the convolution
kernel sizes of CNN filters were 1, 3, 5 from the first convolution block to the third
convolution block. The number of each CNN filter in each convolution block was
256. The dimension of fully connected layer was 64, and the dropout rate was
0.6 for fully connected layer. The batch size in training process was 256, and the
maximal training epoch was set to 200 which was large enough for convergence
of all the models. We used Adam [11] as the optimizer for network training.
Our model was implemented by Keras. We train all networks on GeForce GTX
1080 GPU with 16G graphics memory. The prediction process is done both on
previous GPU and on Intel(R) Xeon(R) CPU E5-2683 v3 2.00 GHz.

Evaluation metric we chose to validate our model performance was classifica-
tion accuracy, defined as the ratio of the number of samples that were correctly
classified to the total number of samples.

5.3 Evaluation Results and Discussion

Table 1. Detection accuracy of 10s samples under different embedding rate

Language Method Embedding rate

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

EN IDC [7] 51.60 58.55 63.65 71.50 76.25 83.50 87.25 91.60 95.55 97.20

QCCN [15] 54.40 75.45 92.45 97.35 99.15 99.60 100.00 100.00 99.95 99.30

RNN-SM [16] 59.64 92.44 94.56 96.90 97.76 98.77 99.24 99.71 99.79 98.78

CSW [34] 83.48 94.15 97.76 99.17 99.71 99.91 99.95 99.98 100.00 99.05

Ours 86.83 95.08 98.25 99.53 99.84 99.95 99.99 100.00 100.00 99.13

CH IDC [7] 52.75 59.25 65.55 71.40 78.50 82.60 89.15 93.60 96.05 98.05

QCCN [15] 57.35 75.00 92.00 98.25 99.50 99.85 100.00 99.95 99.90 99.75

RNN-SM [16] 55.14 74.19 90.12 95.24 98.05 98.25 99.09 99.51 99.76 99.55

CSW [34] 77.18 92.05 96.58 98.70 99.64 99.87 99.94 99.98 100.00 99.51

Ours 86.54 95.24 98.28 99.38 99.81 99.92 100.00 100.00 100.00 99.61

Influence of Embeding Rate. The embedding rate is an important factor
influencing detecting accuracy. At first, we fixed the sample length at 10s, and
changed embedding rate from 10% to 100% with step size of 10% to test different
models. English and Chinese speeches were tested separately. As Table 1 shows,
when the embedding rate is low, the detection accuracy is also low. The reason
is that when the embedding rate is small, the statistical distribution of the
carrier before and after steganography is small, making it more difficult to be
detected. Furthermore, all the models increase remarkably with the increase
of the embedding rate when the embedding rate is low, but it is not obvious
when the embedding rate is high. Because as the embedding rate increases, the
samples have more clues for steganalysis leading to higher detection accuracy but
it doesn’t benefit more when the embedding rate is high relatively. Besides, we
can see that when the embedding rate is 10%, the proposed model outperforms
the CSW method by more than 11% in testing Chinese samples. Overall, our
model significantly improves the detection accuracy in low embedding rate.
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Influence of Sample Length. The duration of voice is another factor which
has great impact when detecting QIM based steganography in VoIP streams. The
detection of short steganography samples is challenging. To test the performance
of the proposed algorithm against different lengths of samples, we fixed the
embedding rate at 100%. As for the sample length, we tested 10 samples whose
lengths are equally spaced in the range of 0.1 s to 1 s with step equals to 0.1 s.

According to the results shown in Table 2, we can see that when the sample
length increases, the detection accuracy increases. This phenomenon is easy to
explain. Longer sequence provides more observations on code-word correlations,
which can therefore be modeled more accurately. Thus, the difference between
the code-word correlation patterns of stego speech and cover speech is more
distinct, leading to easier classification. Moreover, when the sample is short,
increasing sample length significantly benefits the accuracy. As the sample length
increases, the benefit of increasing sample length diminishes. Most importantly,
we can come to the conclusion that our model is better than all the previous
methods when the samples are short. It means that our method can effectively
detect the QIM steganography in low bit rate speech only by capturing a small
segment speech stream of a monitored VoIP session, which is very important for
VoIP corresponding censoring.

Table 2. Detection accuracy of 100% embedding rate samples under different lengths

Language Method Sample length (s)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

EN IDC [7] 85.40 88.00 88.50 89.25 90.10 91.45 91.40 92.40 92.95 93.70

QCCN [15] 82.00 88.85 92.15 95.00 95.70 96.15 96.25 96.90 96.90 98.00

RNN-SM [16] 90.40 95.50 97.38 97.81 98.16 98.23 98.38 98.48 98.49 98.54

CSW [34] 91.59 95.63 97.40 97.85 98.21 98.36 98.40 98.43 98.49 98.47

Ours 92.63 96.41 97.85 98.25 98.53 98.71 98.80 98.82 98.93 98.95

CH IDC [7] 86.80 88.65 90.20 90.50 91.20 92.25 93.10 94.25 94.70 94.05

QCCN [15] 81.20 90.05 93.75 95.25 96.50 97.45 97.60 98.30 98.10 98.50

RNN-SM [16] 90.91 95.91 97.03 97.72 98.09 98.12 98.51 98.69 99.06 98.86

CSW [34] 91.84 96.12 97.70 98.32 98.56 98.40 98.99 98.80 99.13 98.95

Ours 92.33 96.79 98.20 98.82 99.11 99.24 99.34 99.41 99.42 99.43

Besides, we also tested our algorithm under different lengths and different
embedding rates. From the Table 3 we can see, the proposed model output per-
form all the state-of-the art method in both short and low embedded samples.

5.4 Time Efficiency of Different Model

Time efficiency is also an important factor in determining whether a model can
actually be applied to an online scenario. Yang et al. [34] have demonstrated
in their article that CSW significantly outperforms other methods in terms of
time efficiency. Thus, our experiments only compare the time efficiency of our
model with the CSW method. The results are shown in the Table 6 and Fig. 2.
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Table 3. Classification accuracy under different length and different embedding rate

Language. Embed. rates 0.3 s 0.5 s

IDC QCCN RNN-SM CSW Ours IDC QCCN RNN-SM CSW Ours

Chinese 10 54.50 53.15 57.61 59.66 60.73 56.55 53.65 71.43 62.45 64.03

20 60.10 58.25 66.81 70.02 71.76 59.60 61.85 71.29 74.21 76.21

30 65.70 62.90 74.60 77.87 85.05 65.45 67.35 78.42 82.19 84.09

40 70.05 71.45 80.08 82.75 85.11 70.15 75.20 84.39 86.83 90.03

English 10 54.55 53.15 59.68 61.23 62.81 51.85 53.65 62.46 64.33 66.57

20 58.15 58.25 70.05 70.61 73.50 59.85 61.85 72.45 75.72 79.23

30 63.65 62.90 77.17 78.21 81.16 64.05 67.35 80.38 83.80 85.83

40 69.50 71.45 77.27 84.43 86.66 72.30 75.20 86.22 89.49 91.26

Obviously, from the Table 6, our model performs significantly better than the
CSW method in various sample lengths. Especially, when the sample length is
short, such as 0.1s, inference time of the proposed model is only 2/3 of the
CSW method. In addition, we also noticed that because the CSW model uses
multi-channel convolution to extract features and our model used share convo-
lution with single convolution path, parameters of proposed model have been
significantly reduced. For instance, when the sample length is 1s, parameters of
proposed model are also 1/4 of the CSW method, which makes it easier to apply
to real scenarios (Table 4).

Fig. 2. Time efficiency of different models

5.5 Discussion of Model Variants

In this part, we try to investigate the function of different parts in the pro-
posed model by comparing it with its several variants. Performances of different
variants are shown in Table 5.
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Table 4. Parameters of different model

Model Total parameters

CSW [34] 567,041

Ours 157,825

First, comparing #0, #1, #2 and #3, we can see that features extracted from
different aspects are beneficial to steganalysis. It is easy to explain that steganog-
raphy will change the structure of speech in different aspects, and features from
different shortcut connections provide abundant information for detection.

Table 5. The detection accuracy of various models

Index Network description Accuracy

#0 The proposed model 87.14

#1 Remove path 1 86.97

#2 Remove path 2 86.76

#3 Remove 1 and 2 86.82

#4 Replace attention with max pooling 79.63

#5 Reduce convolution block to 2 82.06

#6 Add convolution block to 4 85.59

Meanwhile, the attention mechanism is used in our model to select impor-
tant information as well as to reduce dimensions. However, pooling [14] is the
most common way to reduce the dimension of features which has a similar func-
tion attention mechanism. Hence, we replaced the attention mechanism with
max pooling operation to show the effectiveness of attention mechanisms. It is
obvious that giving different weights to different vectors is helpful to our model
when #0 is compared with #4. Moreover, models in #0, #5 and #6 shows that
three convolution blocks are proper in our experiments. In general, more fea-
tures of the input data can be captured by a deeper network and the difference
between model #0 and #6 proves that. However, performances of #0 and #6

Table 6. Detection performance of different model under different lengths

Method Metric Sample length (s)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2

CSW Mean

(ms)

0.3509 0.4113 0.4671 0.4494 0.5023 0.5073 0.5512 0.5718 0.6005 0.6413 0.8749

Std 0.1490 0.1957 0.2033 0.1637 0.1829 0.1446 0.1806 0.2000 0.2059 0.2160 0.2913

Ours Mean

(ms)

0.2683 0.3181 0.3488 0.3542 0.3975 0.4078 0.4212 0.4530 0.4833 0.5115 0.7225

Std 0.1322 0.1613 0.1581 0.1594 0.1636 0.1406 0.1292 0.1492 0.1609 0.1563 0.2373
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demonstrate that it doesn’t mean that the deeper the network is, the better the
model performance will be, since deeper networks may result in over-fitting and
vanishing gradient problems.

6 Conclusions

VoIP is a very popular streaming media for steganography. Detecting short and
low embeded QIM steganography samples in VoIP stream remains an unsolved
challenge in real circumstances. Potential VoIP-based covert communications
based on QIM steganography pose a great threat to the security of cyberspace.
Previous methods in steganalysis of QIM based steganography always pay much
attention to the correlations in inter-frames and intra-frames but ignore the
hierarchical structure in speech frames. In this paper, motivated by the complex
multi-scale structure which appears in speech, we proposed hierarchical repre-
sentative network to address this steganalysis problem in VoIP streams. In our
model, CNN is stacked to model hierarchical structure in speech and attention
mechanisms are applied to select import information. Experiments demonstrate
that our model is effective and can achieve state-of-the-art results. Besides, our
model needs less computation and has higher time efficiency to be applied to real
online services. Although our model performs well enough, detection accuracy
in low embedded rate still needs improvement.
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Abstract. Deep learning is progressively gaining attention as a power-
ful tool for conducting profiling side-channel attacks. In particular, con-
volutional neural network (CNN) is one of the mostly employed learn-
ing techniques in the context of side-channel analysis. The first layer
of a standard CNN always performs a set of convolutions between the
input and some finite impulse response filters. In this work, we substi-
tute the standard filter by a customized filter borrowed from the domain
of speaker recognition due to the resemblance between the power traces
and speech signals. In contrast to standard filters, the new filter only
depends on parameters with a clear physical meaning, where only low
and high cutoff frequencies are learned from the training data. Experi-
mental results obtained from public datasets show that the side-channel
attacks based on CNNs equipped with this new filter are more effective
and robust than attacks based on standard CNNs. The results of this
work open new perspective and encourage further research on the effect
of the filters of the CNN-based side-channel attacks.

Keywords: Side-Channel Analysis · Machine Learning · Deep
learning · Convolutional Neural Networks

1 Introduction

Side-Channel Analysis (SCA) has been a serious concern as it is able to retrieve
secret information from real cryptographic devices by exploiting physical leak-
ages like power consumptions [22], timing information [21], and electromagnetic
radiations [6]. Generally, SCA can be divided into non-profiling attacks and
profiling attacks. In non-profiling attacks, the attacker can only use the physi-
cal leakages captured on the target device to extract its secret key. This class
c© Springer Nature Switzerland AG 2020
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of attacks includes Differential Power Analysis (DPA) [22], Correlation Power
Analysis (CPA) [11] and Mutual Information Analysis (MIA) [16]. While in pro-
filing attacks, the attacker is in possession of a profiling device, which has similar
leakage characteristics of the target device with a configurable key. Therefore, the
attacker can play with the profiling device to learn the characteristic of its phys-
ical leakages (the profiling phase). Based on the knowledge obtained from the
profiling device and the physical leakages captured on the target device, the
attacker can perform an attack on the target device (the attack phase). This
class of attacks includes Template Attacks [13] and Stochastic Attacks (a.k.a.,
Linear Regression Analysis) [15,33,34].

Due to its very nature, profiling attacks have successfully borrowed tech-
niques from Machine Learning (e.g., the Support Vector Machine [14,36], the
Random Forest [32], etc.) to defeat both protected [17,26] and unprotected
cryptographic implementations [8,19,20,25,27]. In particular, the discovery of
techniques for learning in so-called deep neural networks in year 2006 known as
deep learning [1,9,24] has further stimulated the endeavor of automatic learning
from data in all scientific and industrial domains. To the best of our knowl-
edge, Maghrebi et al. was the first to perform profiling attacks with deep learn-
ing techniques [28], which confirmed the overwhelming advantages compared
to template attacks in certain cases. Moreover, unlike template attacks which
typically suffer from the difficulty to deal with the misalignment and high dimen-
sionality of the data, the deep learning based approach was shown to be quite
robust to trace misalignment especially when enhanced by data augmentation
techniques [12]. It is also possible to apply the deep learning technique in the
time-frequency domain. In [37], Yang et al. proposed a deep learning based side-
channel attack where Convolutional Neural Network (CNN) was employed to
learn time-frequency 2D patterns and extract high level key-related features in
the spectrograms. More and more evidence indicates that the deep learning based
approach is a promising way for side-channel analysis, and this line of research
is developed rapidly [18,35].

Contribution. In this work, we use a set of parameterized sinc functions that
implement band-pass filters as the convolution filters of the CNNs employed
in deep learning based side-channel attacks. This technique is first successfully
applied in the domain of speaker recognition, which inspires us to try it out in
the context of deep learning based side-channel attacks since the power traces are
quite similar to speech signals in nature. We perform experiments on several pub-
lic datasets include traces captured on both unprotected and protected (masking
and jitter-based countermeasures) implementations, which demonstrate that the
new CNNs are more effective than the standard ones. For example, in the attack
on a masked AES implementation with simulated jitter, our CNNs perform much
better than the standard ones. Along the way, we also discuss the impact of the
size of the customized filter on the network performance for each dataset. The
architecture can not only improve the convergence speed over a standard CNN,
but also save the computation in the first layer. Our work opens new perspective
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and encourages further investigations on the effect of the filters of the CNN-based
side-channel attacks.

Organization. In Sect. 2, we give a brief introduction of convolutional neural
network based side-channel attack together with the so-called sinc filter that
will be used in the following sections. Then in Sect. 3, we perform experimental
attacks on several public datasets with both protected and unprotected AES
implementations. A comparison is made between CNNs with sinc filters and
standard CNNs. Section 4 concludes the paper.

2 Preliminaries

In this section, we give a brief introduction of profiling side-channel attacks,
convolutional neural networks, and the filter that will be applied in our CNN-
based side-channel attacks.

2.1 Profiling Side-Channel Attacks

A profiling side-channel attack is composed of two phases: a profiling phase (i.e.,
training in the machine learning context) and an attack phase (i.e., matching).
During the profiling phase, the adversary has fully control of a copy of the target
device, and can set the input and secret key with desired values. Thus he can
acquire a set of Np side-channel traces Dprofiling = {xi : i = 1, 2, . . . , Np}.
Every trace xi corresponds to a computation vi = f(pi, ki), which represents the
value of a target sensitive variable V = f(P,K), where P stands for the input
information (plaintext or ciphertext), and K is the secret key. In the context of
machine learning, the value of the sensitive variable V is computed as a label to
construct a classifier. The adversary aims at building a discriminative model for
each possible value of the label with the training set Dprofiling.

During the attack phase, the adversary acquires a new set of Na traces
Dattack = {xi : i = 1, 2, . . . , Na} from the real target device, where the secret
key k∗ is fixed and unknown. With the established model, the most likely
key (deduced from the label) can be output for a trace xi in Dattack. To retrieve
the correct key, the maximum likelihood approach can be used to compute dNa

[k]
with Na traces for every key candidate k ∈ K:

dNa
[k] =

Na∏

i=1

Pr[vi = f(pi, k)|x = xi], (1)

the hypothesis key which maximizes dNa
[k] is supposed to be the correct key.

Evaluation Metrics. In machine learnings, the accuracy is used to assess the
efficiency of a model, which is defined as the percentage of the number of correct
predictions in the total number of input samples. In the context of side-channel
analysis, it corresponds to the proportion of correct secret key predictions in the
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total input traces, where a correct key prediction for a given trace xi is fulfilled
when the actual key equals to k such that d1[k] = Pr[vi = f(p, k)|x = xi] is
maximized. That is, the event of a correct prediction is defined in the situation
where only one single trace is available in the key-recovery attack. However, in
many practical cases, it is difficult to recover the key with only one trace, which
leads to the following more reasonable metric for the multiple traces matching.

In side-channel analysis, the so-called rank is commonly used to evaluate the
effectiveness of an attack. Let Dprofiling and Dattack be the profiling and attack
dataset respectively. The model ĝ is trained with traces in Dprofiling, and tested
with traces in Dattack. A rank is defined as the amount of hypothetical key values
k ∈ K providing with higher probabilities than that of the true key k∗:

rank(ĝ,Dprofiling,Dattack, i) = |{k ∈ K : di[k] > di[k∗]}|,

where di[k] is the likelihood of the candidate k estimated from the first i traces in
Dattack. The rank quantifies the difficulty of correct key recovery under a given
number of available traces.

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a kind of popular neural networks in
image processing and speaker recognitions. A general CNN architecture includes
convolutional blocks and one or more fully-connected layers. The convolutional
block studied in this paper is composed of a convolutional layer followed by
activation functions, and a pooling layer. We refer the reader to [23,29] for a
more systematic exhibition of the topic, and only give a brief description of the
key components which are relevant to our work.

Convolutional Layer. A convolutional layer extracts the local features of the
input by performing a set of time domain convolutions between the input data
and convolution filters. A convolutional operation can be defined as:

y[n] = (x ∗ h)[n] =
L∑

l=1

x[l] · h[n − l],

where x is a chunk of the input signal, and h is the convolution filter of size L.
The convolution filter slides over the input data with its step length controlled
by the stride.

The input data can be padded with 0 such that the output keeps the same
shape as the input, called the same padding, or the data is not padded, resulting
in a smaller output, called the valid padding. During the training phase in a
standard convolution filter, all the L elements of the filter are learned from data.
Followed the convolutional layer, a non-linear activation function is applied to
each input neuron, where Sigmoid, TanHyperbolic (Tanh), and Rectified Linear
Unit (ReLU) functions are commonly used.
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Pooling Layer. A pooling layer can decrease the amount of neurons by dis-
carding unnecessary details while reserving useful features [10]. The pooling layer
also makes filters slide over the input. However, different from the convolutional
layer, the pooling filter is controlled by the pooling function without trainable
weight. The max pooling function outputs the maximum values within the slide
window, and the average pooling function outputs the average values within the
slide window.

Fully Connected Layer. Commonly, several so-called fully-connected (FC)
layers are connected to the CNN blocks to obtain a global result after the features
derived from the previous layers. For the classification problem, the last FC layer
is usually activated by the so-called softmax function.

2.3 The Sinc Filter

The sinc filter was first successfully employed in speaker recognitions [31]. The
sinc filter is based on parametrized sinc function and the convolutional operation
with a sinc filter g, defined as:

y[n] = (x ∗ g)[n, f1, f2] =
L∑

l=1

x[l] · g[n − l, f1, f2],

where only f1, and f2 are the trainable parameters, and g implements a rect-
angular bandpass filter. In the frequency domain, the magnitude of a bandpass
filter can be written as the difference between two lowpass filter:

G[f, f1, f2] = rect(
f

2f2
) − rect(

f

2f1
),

where f1 and f2 are the low and high cut-off frequencies, and rect() is the rect-
angular function in the magnitude frequency domain. The function g transforms
the bandpass filter from the frequency domain to the time domain using the
inverse Fourier transform. Thus the function g can be expressed by the following
equation:

g[n, f1, f2] = 2f2sinc(2πf2n) − 2f1sinc(2πf1n), (2)

where the sinc function is defined as sinc(x) = sin(x)/x. Since the cut-off
frequencies f1, f2 are learnable during the training phase, they can be initialized
randomly in the range [0, fs/2], where fs represents the sampling frequency of the
input signal. To ensure f1 ≥ 0 and f2 ≥ f1, we replace f1 and f2 in Equation (2)
by |f1| and |f1| + |f2 − f1| respectively in practice.

Moreover, due to the limited number of elements in the time domain, the
function g should be truncated. To smooth out the abrupt discontinuities of g,
a Hamming window function w[n] = 0.54 − 0.46 · cos(2πn

L ) is applied:

gw[n, f1, f2] = g[n, f1, f2] · w[n].

Note that function g is symmetric. Therefore, the input only needs to be
convoluted with half of the filter and inherits the results for the other half.
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3 Experimental Analysis of the CNN-based Attack with
the Sinc Filter

In this work, our experiments are conducted on a computer equipped with one
NVIDIA GeForce GTX 1080Ti GPU. The deep-learning based algorithms are
implemented with the Keras library [4] and the Tensorflow library [5].

Datasets. We consider three public datasets commonly used in the community
to study deep-learning based attacks: DPA contest V4 [3], DPA contest V2 [2],
and ASCAD [7].

• DPA contest V4 (DPAv4) provides a set of power traces which were collected
from a masked software implementation of AES-256 on an Atmel ATMega-163
smart-card connected to a SASEBO-W FPGA board. Each measurement has
125 points per clock cycle with a sampling rate of 500M samples per second.
In our case, we focus on the output of the first round S-box, and use the first
byte of the output V = Sbox(p[1] ⊕ k∗[1]) as the label during the training
phase, where p[1] is the first byte of a plaintext p. Thus the label contains
256 classes. We use 30000 traces of the dataset as the training set, and 5000
traces as the matching set.

• DPA contest V2 (DPAv2) targets on an unprotected hardware implementa-
tion of AES-128 on SASEBO GII FPGA board. The sampling rate is 5G sam-
ples per second, and each acquisition has approximately 213 points per clock
cycles. We analyse the leakage of the register updating in the last round:
V = Sbox−1(c[1] ⊕ k∗[1]) ⊕ c[1], where c[1] is the first byte of ciphertext c.
The training set contains 90000 traces, and the matching set contains 10000
traces.

• ASCAD is an open database which is exclusively used for the deep learning
analysis [30]. The raw traces were obtained from a software protected AES
implementation on an ATMega-8515. Each one was acquired with a sam-
pling rate of 2G samples per second, and has 500 points per clock cycle.
The database includes three processed datasets with corresponding labeled
datasets: ASCAD.h5, ASCAD desync50.h5 and ASCAD desync100.h5, which
are composed of traces without jitter, traces with a 50 samples window max-
imum jitter, and traces with a 100 samples window maximum jitter, respec-
tively. Each dataset is divided into a training set with 50000 traces and a
matching set with 10000 traces. The corresponding label is the value of the
third byte of the masked S-box output V = Sbox(p[3] ⊕ k∗[3]) in the first
round.

Remark. Except ASCAD, both DPAv4 and DPAv2 need certain preprocessing to be
successful attacked in the open literature. In this work, a min-max normalization

x−xmin

xmax−xmin
is performed to rescale a measurement x. The scaling plays a key role

in the gradient problem such that the model becomes more susceptible in the
training phase (Table 1).
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Table 1. Data splitting size in datasets

Dataset Profiling traces Attack traces

DPAv4 30000 5000

DPAv2 90000 10000

ASCAD 50000 10000

ASCAD desync50 50000 10000

ASCAD desync100 50000 10000

3.1 Evaluation Method

In this paper, we split the tenth of the training dataset as a validation dataset.
The candidate SincNet is trained and validated on the given dataset of Dprofiling,
and the model with the best validation accuracy will be saved during the training
phase. Then the algorithm performs an attack on the given dataset of Dattack

and are evaluated with metrics like the accuracy, the top-5 accuracy (i.e., the
proportion where the correct label is amongst the best 5 predictions in the match-
ing set), and the rank. Based on these evaluation metrics, the suitable hyper-
parameters are determined through synthetical consideration. We also compare
the performances of SincNet based attack and CNN based attack on each dataset
respectively according to these metrics.

3.2 CNN Architecture

We establish our CNN model with sinc filters in the first convolutional layer,
which is called SincNet in [31]. The convolution stride is set to 1, and the same-
padding is used to preserve the size of the output. Each convolutional layer is
followed by the ReLU activation function. The pooling layer uses the average
pooling function, and the stride is set 2. After the feature extraction, several
fully-connected layers are added, which include a flatten layer, one or more dense
layers activated by the ReLU function, and the output layer activated by the
softmax function. Indeed, the main purpose of our experiments is to determine
the validity of SincNet, not to find the optimal model for each dataset. Therefore
we do not spend much effort to determine these architecture parameters of CNN.

However, due to the differences of the targeted datasets, we make some
adjustments in the detailed architecture for each one. For DPAv4 which targets
on a software implementation, the complete architecture is illustrated in Fig. 1,
which contains one convolutional block with 32 sinc filters, one convolutional
block with 64 standard filters of length 11, and one dense layer of 512 neutrons.

While DPAv2 refers to an FPGA implementation and needs much more traces
to perform training, more convolutional operations are employed. Based on the
architecture for DPAv4, we add a third convolutional block which has 128 stan-
dard convolution filters of length 11, and the rest of the architecture remains the
same.
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Input trace Convolutional layer Pooling layer FC layerPooling layerConvolutional layer FC layer FC layer

500

32@500

32@250 64@250

64@125

8000

512
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Fig. 1. The CNN architecture for DPAv4

As for ASCAD, a CNN model called CNNbest was proposed in [30]. The archi-
tecture consists of 5 convolutional blocks where each block has a convolutional
layer with respectively 64, 128, 256, 512, and 512 filters of length 11, and two
dense layers of 4096 neutrons. We directly replace the standard CNN filters in
the first convolutional layer with the sinc filters.

These models will be trained with a batch size of 200 using the RMSprop
optimizer, and the initial learning rates are set to 0.00001 except for DPAv4 whose
learning rate is set to 0.0001. According to previous work on these datasets, 75
epochs are sufficient for training. During the training phase, the network filter
weights are recorded for the best validation accuracy. Then the size of the sinc
filter in each model will be tuned for each target in the next section.

On the Size of the Sinc Filters. Note that the increased bandpass filter
size does not change the number of trainable parameters. Thus larger filter size
will put no extra burdens on the optimization problem. Following the previous
experiments in [37], we select the filter size of 1/8, 1/4, and 1/2 percentage of
one clock cycle respectively. Then we do the training and attack with all these
different filter sizes for each dataset.

The ranking convergence of the experimental attacks can be seen in Fig. 2,
and a comparison is made with respect to some important metrics in Table 2.
We report the minimum number of traces when the rank first achieves 0, and
also report the minimum number of traces where the rank reaches 0 and remains
the same till all traces traversed in Dattack.

In DPAv4, according to Table 2, all the architectures with different filter sizes
of 31 (1/8 clock cycle), 63 (1/4 clock cycle), and 125 (1/2 clock cycle) result in
the rank 0 with only one challenge trace, where the filter size of 125 archives
the best accuracy 26.22%. In DPAv2, when the filter size is set to 27 (1/8 clock
cycle), the rank first achieves 0 with 398 traces and is stabilized at 0 after 569
traces. Although the accuracy results are around the probability of the random
guessing, the correct key can be distinguished from other key guesses when
plenty of traces are combined. Thus we are more concerned with the rank to
evaluate the effectiveness of an attack. In ASCAD, only 37 traces can stabilize
a rank 0 with a filter size of 63 (1/8 clock cycle). As for ASCAD desync50 and
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Fig. 2. Ranking convergence with different filter sizes

ASCAD desync100, we find that less traces are needed to recover the correct key
when the fiter size is larger.

These experimental results suggest that sinc filter size from 1/4 clock cycle
to 1/2 clock cycle is a appropriate range for some practical cases. In particular,
for the desynchronized dataset, larger filter size like 1/2 clock cycle can be a
preference.
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Table 2. Results for different filter sizes of SincNet-based attack

Dataset Filter size Accuracy Top-5 accuracy Rank = 0 Rank ≡ 0

DPA v4 31 (1/8) 25.26% 67.72% 1 1

63 (1/4) 24.12% 66.84% 1 1

125 (1/2) 26.22% 67.72% 1 1

DPA v2 27 (1/8) 0.35% 2.13% 398 569

53 (1/4) 0.50% 2.37% 585 815

107 (1/2) 0.43% 2.41% 741 776

ASCAD 63 (1/8) 0.59% 3.16% 52 91

125 (1/4) 0.58% 3.00% 21 37

251 (1/2) 0.70% 2.98% 71 468

ASCAD desync50 63 (1/8) 0.45% 2.34% 718 4725

125 (1/4) 0.56% 2.17% 237 4213

251 (1/2) 0.55% 2.43% 403 738

ASCAD desync100 63 (1/8) 0.53% 2.35% 4521 6439

125 (1/4) 0.38% 2.41% 3931 5361

251 (1/2) 0.48% 2.38% 2034 2055

Remark. Indeed, results not reported here reveals that larger filter size more
than 1/2 clock cycle such as one clock cycle may bring a gradient vanish. During
the training phase, the accuracy stops rising in the early phase, and probably
leads a profiling failure.

3.3 Comparisons with Standard CNNs

In this section, we compared the performance of our SincNet architecture with
the classical CNN architecture in SCA. For each dataset, we considered a stan-
dard CNN architecture based on the same architecture as the best-behaved Sinc-
Net and only replacing the sinc filter in the first convolutional layer with standard
CNN filter of the same size.

The ranking convergence is presented in Fig. 3, and the evaluation results are
summarized in Table 3. They show that our SincNet perform successful attacks
with different datasets. In DPAv4, only one single trace can recover the correct
key in SincNet, which is one less than in CNN. As for DPAv2, the rank score
stabilized at 0 only after 569 traces in SincNet, while 1191 traces in CNN. As for
ASCAD, SincNet performs better than CNN both in the top-5 accuracy and rank.
In particular for ASCAD desync50 and ASCAD desync100, SincNet significantly
outperforms CNN in all metrics.
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Fig. 3. Ranking convergence of SincNet and CNN model

As it is observed from Fig. 4, the SincNet has some other advantages. The
accuracy curve of SincNet converges faster in the training phase over the stan-
dard CNN. Since the first layer only focus the filter parameters with major
impact on performance, the meanful filters learn the characteristics much easier.
Besides, SincNet reduces not only the number of parameters, but also half of
computations in the first convolutional layer.
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Fig. 4. Accuracy and validation accuracy of SincNet and CNN model over different
training epoches
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Table 3. Results of CNN-based attack and SincNet-based attack

Dataset Model Accuracy Top-5 accuracy Rank = 0 Rank ≡ 0

DPA v4 CNN 22.56% 63.46% 2 2

SincNet 26.22% 67.22% 1 1

DPA v2 CNN 0.42% 2.43% 578 1191

SincNet 0.35% 2.13% 398 569

ASCAD CNN 0.71% 2.93% 148 612

SincNet 0.58% 3.00% 21 37

ASCAD desync50 CNN 0.39% 1.93% 4576 >10000

SincNet 0.55% 2.43% 403 738

ASCAD desync100 CNN 0.41% 2.04% 4471 >10000

SincNet 0.48% 2.38% 2034 2055

4 Conclusion

In this work, by using CNNs with customized filters borrowed from the domain
of speaker recognitions, we show that the first layer of CNNs (the filters) has an
important effect on the overall performance of CNN-based side-channel analysis.
In particular, CNNs with the sinc filters outperforms standard CNNs on several
public datasets. This work serves to motivate further research on the design and
selection of convolution filters.
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Abstract. With the continuous improvement of the traffic analysis tech-
niques, traditional network covert channels based on the TCP/IP archi-
tecture are facing many risks. Blockchain is a new kind of decentralized
public network. The openness together with strong tamper resistance of
the blockchain makes it become a natural platform to construct covert
channel. However, the existing blockchain-based covert channels have
a major drawback: the recipient identifies the transactions containing
covert messages through the fixed labels, which significantly reduces the
availability and concealment of the system. In this paper, we propose
a new blockchain covert channel construction scheme, DLchain, which
substitutes the fixed labels with dynamic labels. We design a dynamic
label generation algorithm based on the statistical distribution of the real
transaction data to ensure the concealment of the dynamic labels. We
prove that DLchain has the features of undetectability, anti-traceability
and strong robustness.

Keywords: Blockchain · Covert channel construction · Dynamic label

1 Introduction

When network users communicate on the Internet, they typically ensure the
confidentiality of messages through encryption. However, the communication
participants may expose their meta-data such as IP address, to the network
eavesdroppers. The meta-data can be used to identify the users and discover
communication links between them. Therefore, an outside observer with ulte-
rior motives can easily monitor and analyze the traffic, and expose the identity
information of communicators, which greatly threatens the user privacy and the
freedom of communication. For example, malicious attacks from private organi-
zations aimed at stealing confidential government data, such as GhostNet [14],
ShadowNet [4] and Axiom [2], have emerged.
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In this context, the demand to construct network covert channels is increas-
ing, and many covert communication systems have been proposed [15,27,37].
There are two main kinds of covert network channels [23], covert timing channels
(CTCs) and covert storage channels (CSCs). CTCs include the covert messages
into the timing behavior at the sender and then extract the covert messages at
the receiver. CTCs are greatly influenced by network delay or jitters, so their
robustness is not very well [23]. CSCs include the messages to storage objects at
the sender and then reading them at the receiver. A typical CSC is Tor [15], which
is an implementation of onion routing. Tor has about 8 million daily users [21].
However, storage-based mechanism is susceptible to traffic analysis attacks by
adversaries who can monitor it. Many of the literatures show how to detect the
channel and trace the traffic, including strong flow correlation attack [25], Low-
resource routing attacks [26] and Torben attack [7]. A successful covert channel
requires undetectability, anti-traceability and good robustness. However, the tra-
ditional covert channel cannot meet these requirements.

Blockchain is the representative of the new generation of information tech-
nology. It has the characteristics of participant-anonymity, flooding propagation
mechanism and tampering resistance, which means it is a compelling platform
for covert communication. The botchain [1] is the first mechanism that enables
botmaster to communicate covertly with bots by embedding command & con-
tro (C&C) instructions in Bitcoin transactions. Besides, chainchannels [16] and
other similar systems [5,13] also use blockchains to prevent the traffic tracked
by the observers. However, they all select the fixed labels such as public keys
and wallet addresses to ensure that the receiver can identity the special trans-
actions containing covert messages from thousands of transactions. Once these
labels are exposed, the whole channel will be exposed and the communication
will be broken, which significantly reduces the availability and concealment of
the system.

For this reason, we reinvent blockchain-based covert transmission architec-
ture, in the form of the DLchain. DLchain can generate labels dynamically,
which alleviates the risk of channel exposure. Our dynamic labels are based
on the probability distribution of true transaction data, which greatly increases
the statistical undetectability of the channel. DLchain provides anti-traceability,
including message indistinguishability, sender or receiver anonymous and unob-
servability. The blockchain feature of tamper resistance and the cryptographic
characteristic of ECDSA (elliptic curve digital signature algorithm) [11] ensure
the robustness of our channel.

Contributions. In this paper we make the following contributions:

1. We propose DLchain, a mechanism enabling the senders and receivers to
covertly communicate over public blockchain. It can hide communication rela-
tionships and protect user privacy.

2. We present dynamic label generation algorithm. It can dynamicly generate
labels that are statistically undetectable.

3. We show that DLchain satisfies the undetectability, anti-traceability and
robustness. Moreover, compared with the existing systems, DLchain can resist
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the message statistical analysis and the address association attack while still
ensuring high availability.

The remainder of this paper is organized as follows. In Sect. 2, we overview the
existing blockchain based covert channels and motivate our work. Section 3 intro-
duces the DLchain architecture and Sect. 4 shows the dynamic label generation
algorithm. In Sect. 5, we assess and analyze our system. We compare DLchain to
previous covert channels in Sect. 6 and make a conclusion in Sect. 7. we discuss
future work in Sect. 8.

2 Review of the Existing Blockchain Based Covert
Channels

There are three existing systems on blockchain based covert channel: zom-
biecoin [13], botchain [1] and chainchannel [16]. Brenner et al. [13] explored
the possibility of applying blockchain technology to the transmission of C&C
instructions in a secret way, and they described the prototypes of zombiecoin,
which are based on Ethereum. After that, Ali et al. [5] proposes zombiecoin2.0,
which validates the claims in [13] and deploys successfully over the Bitcoin net-
work. Chainchannels [16] realizes a new way of embedding covert messages in
blockchain with key leakage and makes some cryptographic proofs. Botchain [1]
is a fully functional botnet which is based on Bitcoin protocol.

Fig. 1. The general framework of blockchain covert channel.

The designs of these three systems are very similar. Figure 1 shows the gen-
eral framework of them. In the three systems, communication participants are
expected to covertly transmit messages through blockchain. They first apply to
be the client nodes of the blockchain network, and negotiate labels in advance so
that the receiver can identify the transactions containing covert messages from
thousands of transactions. To ensure security, both sides also need to negotiate
the encoding, encryption algorithm and the way of message embedding. Then
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the sender encodes, encrypts, embeds the messages into certain transactions
according to the negotiated algorithm, and sends them to the server nodes of
blockchain. After the flooding propagation mechanism of blockchain network, the
receiver identifies the special transactions through negotiated labels and extracts
the covert messages.

The differences between the three systems lie in two aspects: how to insert
covert messages and what the fixed labels used. In terms of the first aspect, Zom-
biecoin [13] and botchain [1] directly embed the messages in the output script
function OP RETURN1, which is a field of particular blockchain implemen-
tation and originally used to carry additional transaction information. Chain-
channels [16] is different from them at this aspect. It uses a subliminal channel
to insert messages totally in digital signatures. In terms of the second aspect,
Botchain [1], proposed by Cybaze, uses pre-negotiated virtual currency wallet
addresses as the labels to scan transactions. However, in both zombiecoin [13] and
chainchannels [16], scanning transactions that contain covert messages is done
through a pair of pre-negotiated public-private keys. In the two systems, the
receiver identifies these transactions by scanning the ScriptSig 2 which contains
the sender’s public-key and the digital signature (computed over the transaction)
using private-key. The receiver verifies the signature and decodes the messages.

So labels are very important to identify covert messages in blockchain. Once
the labels are detected or thwarted, the whole covert channel will expose and
may be destroyed. There are methods that systematically detect and thwart
unwanted data insertion on blockchain [22], indicating that the attackers can
identify the messages by analyzing the label characteristics. However, none of
the existing blockchain based covert channels addresses the concealment and
privacy of the labels, which is the main motivation of our proposal. Unlike any
of the existing schemes using fixed labels, DLchain functions with a dynamic
label generation algorithm, making it more covertly to transmit messages.

3 DLchain Architecture

3.1 System Overview

We use Bitcoin [24] to illustrate DLchain. It consists of the senders, the receivers,
Bitcoin network, message embedding and extracting, dynamic label embedding
and scanning. The initial seed, signature scheme, and encoding are negotiated
by both parties in advance, and the next seed will be transferred at the end of
this communication. Then, the senders and receivers generate labels simultane-
ously using the seed and the algorithm mentioned in Sect. 3. The Fig. 2 gives an
overview of the DLchain architecture.

1 Available under https://en.bitcoin.it/wiki/OP RETURN.
2 The unlocking script in Bitcoin to verify whether a transaction is passed.

https://en.bitcoin.it/wiki/OP_RETURN
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inserting message
(in signature)

Fig. 2. DLchain architecture. 1. The senders and receivers generate dynamic labels
at the same time. So the receivers can identity transactions from the senders. 2. The
senders encrypt the messages using the pre-negotiated key. And the private-key used
for signature is substituted by the encrypted messages. Then the senders sign two
transactions using the special private-key and pack the label into the transactions. 3.
The transactions are verified, propagated in the whole network and are recorded on
blockchain. 4, 5. The receivers identify transactions according to the label, get the
transactions and extract the covert message.

3.2 Embedding and Scanning Dynamic Labels

The labels should be directly embedded in an obvious location to facilitate rapid
identification by the receivers. And labels need to be confused with a large
number of normal data, which makes it difficult for the outside observers to
identify them.

The output script function OP RETURN allows users to insert up to 220
bytes of data in each transaction after it was expanded in May 2018 [6]. Many
services plan to migrate to using that function, such as Proof of Existence [18].
An analysis in 2014 reveals that the OP RETURN field was used in about a
quarter of transactions in 80-block portion of the blockchain [12]. The amount
of scripts increases dramatically around Nov. 2018 [3], indicating the feature is
very popular now. So, we can use the OP RETURN script to insert our labels.

The length of our label is the second consideration. If the length is too short,
it may lead to duplication with real data. Conversely, too long will cause the
increased cost of scanning. The first 3 bytes of the OP RETURN data can indi-
cate the protocol but it’s not an enforced rule [10]. More than 40% of the first
3 bytes are a fixed protocol [3], which means the first 3 bytes in each transac-
tion are easy to repeat. So the length of our labels should be greater than three
bytes. In addition, the website [3] records the distribution of the sizes of the
OP RETURN scripts since the birth of the Bitcoin and the most two common
script lengths until Aug.2019 are 23 (12078010 transactions) and 83 (12078010
transactions). Considering both concealment and the cost of scanning, we choose
23 as the length of the labels. The receivers identify the special transactions by
scanning the OP RETURN and extract the messages.
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3.3 Embedding and Extracting Covert Messages

On the other hand, covert messages should be inserted indirectly in a hidden
way, so that even if the labels are exposed, the messages will not be leaked.

Algorithm 1. Embedding Algorithm.
Input:

Two transactions: tx1, tx2; Random factor: k; Covert message: d; The generator
point, G; the order of the curve n.

Output:
1: (x1, y1) = k · G
2: r = x1 mod n
3: t1 = SHA-1(tx1)
4: t2 = SHA-1(tx2)
5: s1 ≡ k−1(t1 + dr) mod n
6: s2 ≡ k−1(t2 + dr) mod n
7: return (r, s1), (r, s2)

Algorithm 2. Extraction Algorithm.
Input:

the order of the curve n; s1, s2; r; Two transactions: tx1, tx2.
Output:

Determining random factor k from sign1, sign2 and using k to recover covert mes-
sage d.

1: k · s1 ≡ t1 + dr mod n
2: k · s2 ≡ t2 + dr mod n
3: k (s1 − s2) ≡ t1 − t2 mod n
4: k ≡ (s1 − s2)

−1 (t1 − t2) mod n
5: d = r−1(k · s1 − t1) ≡ r−1(k · s2 − t2) mod n

Many blockchain-based virtual currencies use the ECDSA (elliptic curve dig-
ital signature algorithm) [11]. Simmons first expounds how to implement mes-
sages transmission in digital signature schemes [32,33]. We choose a subliminal
channel in the signature as a covert approach to insert messages. The chainchan-
nels [16] uses the subliminal channel technique too. It substitutes the nonce used
in ECDSA with the covert message. Different from chainchannels, we substitute
private-key with the covert message and use this special private-key to derive a
public-key pk, which allows the pk to change based on the transmitted message.
Then we sign two transactions carrying the covert message, just that the d rep-
resents the message instead of private-key. The embedding process is shown in
Algorithm 1. Because the reuse of random factor will cause the private-key d in
ECDSA to be recovered by an observer [11]. The receiver can recover the d as
the Algorithm 2.
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4 Dynamic Label Generation Algorithm

There are two basic requirements for the labels: one is dynamic, which means
that labels must be constantly changing, and the other is consistency, which
means that both sides must ensure the same labels in the same period of time.
So we think of DGA (Domain Generation Algorithm), which is used in botnet
communication. It is a technique that generates dynamic domains, thus avoid-
ing the detection based on domain blacklists. In the DGA-based botnet, bot-
master runs a certain DGA using a seed to generate a large number of AGDs
(Algorithmically-generated Domains), and a small number of them are randomly
selected for registration and point to the botnet C&C servers. Bots use the same
seed to run the DGA and generate the same domains. Then they use these
domains to make DNS request and get the C&C server addresses.

AGDs satisfy the basic requirements of label composition, namely, dynamic
and consistency, but they do not meet the concealment: because the generation
process of AGDs has nothing to do with benign domains, AGDs and benign
domains have obvious differences in grammatical features, and they will be easily
detected by statistical feature-based algorithms [31]. So we modify it and design
a new algorithm for generating covert labels.

Fig. 3. Banjori domain production process: it uses a domain mutation scheme where
a previously generated domain is used as input for the calculation of the subsequent
domain, and it only modifies the first four positions of a given hard-coded seed domain.
In addition, all AGDs of one seed have the same length.

The dynamic labels require the capability of concealment. To accomplish this,
we utilize several tricks gleaned from a close reading of the study of DGA [28,29]
and blockchain protocol format to allow the label to change over time and imper-
sonate the real data in transactions. Our dynamic label generation algorithm uses
the DGA algorithm Banjori [8] for reference, whose seeds are time-independent
and deterministic, and the generation scheme is arithmetic-based [29]. The Fig. 3
illustrates its specific production process.

Not like Banjori [8], which only modifies the first four positions, our dynamic
label generation algorithm modifies the entire string. In addition, the generation



DLchain 821

Algorithm 3. Dynamic Label Generation Algorithm.
Input:

The seed of length N, Sn = {si, 0 ≤ i < N};
The character set of the first N positions of OP RETURN, Cn = {ci, 0 ≤ i ≤ n};
The frequency distribution of Cn, Fn = {fi, 0 ≤ i < n};

Output:
1: Initialize a dictionary D;
2: Sorting Fn in descending order;
3: Sorting Cn in its corresponding fn;
4: for each fi ∈ Fn do
5: vi ⇐ fi*N;
6: Rounding the value of vi;
7: Generating a term di in the dictionary D, di ⇐ {ci : vi};
8: end for
9: Ln ⇐ Sn;

10: for each vi ∈ Dn do
11: Selecting vi positions from Sn : P ⇐ {pj , 0 ≤ j < vi};
12: Replacing each position pj ∈ P in Ln with ci;
13: Sn ⇐ Sn − ci;
14: end for
15: return Ln;

scheme is not based on the addition of some fixed position characters, but on the
statistical distribution of the real transaction data on the OP RETURN, which
makes the label indistinguishable from the real data. We depict our algorithm in
Algorithm 3. The length of seed N is 23, which is introduced in Sect. 3.2. The fre-
quency distribution Cn in the algorithm is updated every day, so different labels
are generated constantly. By calculating ER (entropy rate) and conducting KS
test (Kolmogorov-smirnov D test) in Sect. 5.1, we prove that our transformation
for Banjori is very successful.

5 Assessment and Analysis

In this section, we make a complete assessment for DLchain from the aspects of
the undetectability, anti-traceability and robustness. In addition, we also show
that our transformation for Banjori is very successful.

5.1 Undetectability

We assume an adversary can analyze transaction information to find suspicious
data, then detects labels to expose the covert channels. We analyze the labels
in two aspects, one is the regularity of change, the other is the difference of
probability distribution.
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The Regularity of the Change. Because covert channels will cause the
change of ER, many literatures [17,34–36] use ER to detect covert channels.
ER is the conditional entropy as the random variable sequence length m → ∞,
which describes the uncertainty of a random variable sequence. And the smaller
the ER, the stronger the regularity. So we use the ER to measure the regularity
of the change of dynamic labels. However, in practical applications, only limited
samples can be used for estimation. Porta et al. [30] propose to use the entropy
rate of finite samples to reflect the nature of random events by CCE (corrected
conditional entropy), which is shown in Eq. 1. The estimated value of ER, which
is calculated in Eq. 2, is the minimum value of CCE when m changes.

CCE (Xm|Xm−1) = H (Xm|Xm−1) + p (Xm) H (X1) (1)

ER = min
i=1,m

(CCE (Xi|Xi−1)) (2)

We use bitcoin-etl3 to collect the OP RETURN from Jan.2019 to Jul.2019 as the
real data. Figure 4 shows the trends of the ER for real data and dynamic labels
over time. As you can see, the trend of the ER of real data is almost the same as
that of dynamic labels and the ER of Banjori almost remains unchanged. That
is to say, our transformation for Banjori is very successful and dynamic labels
can simulate the change regularity of the real data very well.

Fig. 4. Entropy rate for label and real data over the first half of this year, and use the
Banjori as a comparison

The Difference of Probability Distribution. KS test [20], points an upper
bound between the cumulative probability of experience and the cumulative
probability of the target distribution at each data point. How to calculate the
upper bound is shown as Eq. 3.

Dn = max
1≤k≤n

{|Fn (xk) − F0 (xk)| , |F0 (xk+1) − Fn (xk)|} (3)

3 ETL scripts for Bitcoin, available under https://twitter.com/BlockchainETL.

https://twitter.com/BlockchainETL
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Now it usually uses the p-value to decide whether or not two sets of samples
are drawn from the same distribution [19]. Generally speaking, if the p-value is
greater than designated significance-level (generally set to 0.05), it is concluded
that the two sets come from the same distribution. The first set we choosed
is the distribution of characters in the real OP RETURN data from Jan.2019
to Jul.2019. The second we consider is the distribution of character in labels
generated by our algorithm introduced in Sect. 3. In addition, we replace the
second distribution with Banjori domains to prove that our transformation for
Banjori is successful.

The Fig. 6 in Sect. 6 shows that all KS p-values for Banjori domains are less
than 10−6, which shows the probability distribution of Banjori is very differ-
ent from real data. However, all KS p-values for the dynamic labels over time
are greater than 0.05, which proves the effectiveness of our transformation for
Banjori and KS test will be not valid in detecting the covert labels.

5.2 Anti-traceability

Message Indistinguishability. There are two aspects of indistinguishability:
one is indistinguishability in behavior. All network communication between the
sender and receiver proceeds as the standard Bitcoin protocol specification, so
the network behavior of both sides to an outside observer is indistinguishable
from the traffic of genuine Bitcoin users. The other is indistinguishability in
content. An adversary observing the network will not be able to distinguish
covert messages from transactions without knowing the labels. Thus, he can not
distinguish the messages from content.

Sender or Receiver Anonymous. For the sender’s anonymity, Bitcoin pro-
vides pseudonymity, a weaker form of anonymity, which causes that the attackers
can find the correlation between different Bitcoin addresses and infer the user
identities. In Sect. 6, we show that DLchain resists address association attack and
is superior to other fixed label systems in sender’s anonymity. For the receiver’s
anonymity, because of the mechanism of flooding propagation in blockchain,
senders and receivers can communicate without any direct connection. The num-
ber of receivers will not be known by monitors because who has received the
messages will not be recorded. Messages are propagated to all nodes in the
blockchain, and the receivers identify them according to the labels. This kind of
indirect communication makes the adversaries unable to identify the receivers,
so it can ensure the anonymity of the receivers.

Sender or Receiver Unobservability. Unobservability means that an adver-
sary can not learn whether the senders or receivers are sending or receiving
messages. For the senders, they will make normal transactions while sending
covert messages. Thus, the adversaries cannot tell whether the transaction con-
tains a covert message. For the receivers, Once the transaction is recorded in
the blockchain by miners, anyone can view and scan the public transactions at



824 J. Tian et al.

any time. In the current standard protocol, blockchain nodes receive transac-
tions and perform checks for correctness, such as whether the syntax and data
structure of the transaction is correct, whether the input/output list is empty,
etc. After that, the nodes forward the transaction on to other nodes. So even
if the minors reject the transaction because of the low transaction fee or other
reasons, the receivers have already got it, validated it, and received the mes-
sages. Adversaries have no way of knowing how many covert messages are in the
blockchain or whether anyone is receiving them.

5.3 Robustness Analysis

We illustrate robustness in two aspects. The one is tamper resistance to ensure
that the message is transmitted to the receivers correctly. The other is error
analysis when the receivers extract the message.

Tamper Resistance. Each block in the blockchain contains the hash of pre-
vious block, corresponding time stamp and transaction data, which makes the
content of block difficult to tamper with. The literature [36] discusses the prob-
ability of successful tampering, as shown in Eq. 4. The p is the probability that
the next data is normally stored as a block, q is the probability that it is tam-
pered with and stored as a block, and z is the number of blocks that need to be
supplemented.

qz = 1 −
z∑

k=0

λke−λ

k!

(
1 − q

p(z−k)

)
(4)

When p = 0.9 and z = 5, the calculation result is less than 0.001. In practical
scenarios, p is much larger than q, because adversaries must have extremely
strong computational power to calculate a long enough forked chain and obtain
recognition from other nodes in order to achieve the propose of tampering with
data. So there are almost no errors in the message transmission.

Error Analysis When Extracting Messages. The other aspect to illustrate
robustness is from the perspective of message recovery. The more complete the
message recovery is, the more robust the system will be. In our system, we
mainly consider whether there will be errors in the process of extracting the final
message after the original message is embedded through the subliminal channel.
Since we use ECDSA, its cryptographic characteristics ensure that the private-
key is unique. We use the covert message as the private-key. The extraction of
private-key is accomplished by the attack of repeated use of random factor, so
the private-key calculated in that process will not change. That is, no errors
occur during the process of extracting the message.

6 Comparison

The covert channels share the common goal of hiding communication relation-
ship from the outside observers, simultaneously ensuring the users’ identity
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anonymity while still providing high availability. The comparison between the
fixed label systems and DLchain is carried out from the following aspects (a
summary is provided in Table 1).

Table 1. Comparing blockchain based covert channel systems. By †, we mean if the
covert messages are embedded by the technique of subliminal channel.

Zombiecoin Botchain Chainchannels DLchain

Message indirectly embedding† × × � �
Channel availability × × × �
Address association attack resistant × × × �
Message statistical analysis resistant × × � �

The Channel Availability. The following Fig. 5 illustrates the blockchain
protocol fields used by DLchain and a typical fixed label system, zombiecoin [13],
to insert labels and covert messages. The zombiecoin [13] uses the public-key in
TxIn as the fixed label and inserts covert messages in the OP RETURN. If the
label used in last communication is found by the outside observers, they can
identify the specific transactions according the fixed label. This indicates that
the channel has already exposed. The two parties of the communication can
not continue to communicate, thus reducing the availability of the channel. This
problem exists in all fixed label systems. But in DLchain the labels change all
the time, which means they are used only once. The use of dynamic labels So
the communication can continue.

TxIn:  txid
sequence
signature

TxOut:

metadata

public key

value
type

address
OP_RETURN

fixed
label

covert
message

address

(a) Zombiecoin

TxIn:  txid
sequence

TxOut:

metadata

signature
public key
address

value
type

address
OP_RETURN

dynamic
label

covert
message

(b) DLchain

Fig. 5. Fields used by DLchain and zombiecoin
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Address Association Attack Resistant. We assume in a period of time, nu

users, U = {u1, u2, . . . , unu
}, make transactions T . H(U) represents the entropy

of users. H(U |T ) represents the entropy under the condition of knowing T . The
greater the entropy of users, the more uncertain the users’ identity is. In the
fixed label systems, the transactions made by the same sender have the same
public-key and address in TxIn, so the observers can find the correlation between
different Bitcoin addresses by analyzing the transactions related to the fixed
address or public-key. These address relationships can be used for user identity
association and traceability. So in all three fixed label systems, the entropy of
users is H(U |T ).

Lemma 1. (Non-negativity of the mutual information): for random variables U
and T hold I(U ;T ) = H(U) − H(U |T ) ≥ 0

But in DLchain, we substitute the private-key with the covert message. The
public-key is derived from the special private-key. The transactions made by the
same sender have different public-keys and addresses, thus leading to the failure
of the correlation attack. So the entropy of users is H(U). From the lemma 1,
we can conclude that the DLchain is superior than the fixed label systems at
user identity anonymity.

Defend Against Message Statistical Analysis. An observer can analyze
the OP RETURN data to find abnormal data. Some fixed label systems such
as zombiecoin [13] and botchain [1], directly use the OP RETURN to insert
messages. We use the DDoS attack library for Agobot [9] as a C&C instruction
set used in these fixed label systems. Because this instruction set will not change
with time. The ER of it will be a fixed value. So we use this data and the real
OP RETURN data collected in Sect. 5.1 to do KS test (introduced in Sect. 5.1).
The Fig. 6 shows the result of p-value of KS test.

We can know the p-value of C&C instructions used in the fixed label systems
is low than 0.05, which means their probability distribution patterns are very
different from real data in OP RETURN. So the covert messages in zombiecoin
and botchain have higher risk to be exposure by statistical analysis.

But in DLchain, the OP RETURN field is inserted by the dynamical labels
that are generated as the distribution of real transaction data, which makes the
p-value of DLchain is much larger than 0.05, so the labels are statistically indis-
tinguishable. In addition, the chainchannels [16] doesn’t use the OP RETURN
field to insert messages or labels, so it doesn’t have this problem too.

In summary, DLchain can effectively guarantee the channel availability. It
provides the resistance against address association attack and message statistical
analysis.
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Fig. 6. p-value of Kolmogorov-Smirnov test. The ks test’s first set is the distribution
of characters in the real OP RETURN data from Jan.2019 to Jul.2019. The second is
dynamic labels used in DLchain, Banjori domains and the Agobot’s C&C instructions,
respectively.

7 Conclusion

In this paper, we propose DLchain for the first time. DLchain can hide the com-
munication relationship. It is an effective method to decrease the risk of chan-
nel exposure and protect user privacy. DLchain uses dynamic and undetectable
labels to construct the blockchain-based covert channel. We compare DLchain
with other systems and demonstrate the undetectability, anti-traceability and
robustness of it. We believe that DLchain poses a reliable method of covert mes-
sage transmission, and we hope that our work will prompt further discussion
about blockchain-based covert channels.

8 Future Work

DLchain can transmit different covert messages according to the application sce-
narios. For example, in order to avoid network filtering based on IP and port, we
can use DLchain to transmit the network access points to Tor clients. However, if
it is applied to malicious behavior, it will make malicious behavior more difficult
to detect. For example, if DLchain is used for botnet communication, the botnet
will be more difficult to be taken over or eradicated.

However, the Bitcoin community is not aware of the threat that this covert
channel may be used for malicious behavior. We think it is necessary to make a
research regarding discovering the abuse and regulating the network with traffic
analysis or other techniques.
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