
Chapter 9
Stochastic differential equations

We identify the solution to a rough differential equation driven by the Itô or
Stratonovich lift of Brownian motion with the solution to the corresponding stochas-
tic differential equation. In combination with continuity of the Itô–Lyons maps, a
quick proof of the Wong–Zakai theorem is given. Applications to Stroock–Varadhan
support theory and Freidlin–Wentzell large deviations are briefly discussed.

9.1 Itô and Stratonovich equations

We saw in Section 3 that d-dimensional Brownian motion lifts in an essentially
canonical way to B = (B,B) ∈ C α

(
[0, T ],Rd

)
almost surely, for any α ∈

(
1
3 ,

1
2

)
.

In particular, we may use almost every realisation of (B,B) as the driving signal
of a rough differential equation. This RDE is then solved “pathwise” i.e. for a
fixed realisation of (B(ω),B(ω)). Recall that the choice of B is never unique: two
important choices are the Itô and the Stratonovich lift, we write BItô and BStrat, where
B is defined as

∫
B⊗ dB and

∫
B⊗◦dB respectively. We now discuss the interplay

with classical stochastic differential equations (SDEs).

Theorem 9.1. Let f ∈ C3
b

(
Re,L

(
Rd,Re

))
, let f0 : Re → Re be Lipschitz continu-

ous, and let ξ ∈ Re. Then,

i) With probability one, BItô(ω) ∈ C α, any α ∈ (1/3, 1/2) and there is a unique
RDE solution (Y (ω), f(Y (ω))) ∈ D2α

B(ω) to

dY = f0(Y )dt+ f(Y ) dBItô , Y0 = ξ.

Moreover, Y = (Yt(ω)) is a strong solution to the Itô SDE dY = f0(Y )dt +
f(Y )dB started at Y0 = ξ.

ii) Similarly, the RDE solution driven by BStrat yields a strong solution to the
Stratonovich SDE dY = f0(Y )dt+ f(Y ) ◦ dB started at Y0 = ξ.

Proof. We assume zero drift f0, but see Exercise 8.5. The map
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B|[0,t] 7→ (B,BStrat)|[0,t] ∈ C 0,α
g

(
[0, t],Rd

)
is measurable, where C 0,α

g denotes the (separable, hence Polish) subspace of C α

obtained by taking the closure, in α-Hölder rough path metric, of piecewise smooth
paths. This follows, for instance, from Proposition 3.6. By the continuity of the
Itô–Lyons map (adding a drift vector field is left as an easy exercise) the RDE
solution Yt ∈ Re is the continuous image of the driving signal (B,BStrat)|[0,t] ∈
C 0,α
g

(
[0, t],Rd

)
. It follows that Yt is adapted to

σ{Br,s,Br,s : 0 ≤ r ≤ s ≤ t} = σ{Bs : 0 ≤ s ≤ t} ,

and it suffices to apply Corollary 5.2. Since BItô
s,t = BStrat

s,t − 1
2 (t− s)I , measurability

is also guaranteed and we conclude with the same argument, using Proposition 5.1.
ut
Remark 9.2. In contrast to standard SDE theory, the present solution constructed
via RDEs is immediately well-defined as a flow, i.e. for all ξ on a common set of
probability one. The price to pay is that of C3 regularity of f , as opposed to the mere
Lipschitz regularity required for the standard theory.

9.2 The Wong–Zakai theorem

A classical result (e.g. [IW89, p.392]) asserts that SDE approximations based on
piecewise linear approximations to the driving Brownian motions converge to the
solution of the Stratonovich equation. Using the machinery built in the previous
sections, we can now give a simple proof of this by combining Proposition 3.6,
Theorem 8.5 and the understanding that RDEs driven by BStrat yield solutions to the
Stratonovich equation (Theorem 9.1).

Theorem 9.3 (Wong–Zakai, Clark, Stroock–Varadhan). Let f, f0, ξ be as in The-
orem 9.1 above. Let α < 1/2. Consider dyadic piecewise linear approximations (Bn)
to B on [0, T ], as defined in Proposition 3.6. Write Y n for the (random) ODE solu-
tions to dY n = f0(Y n)dt+ f(Y n)dBn and Y for the Stratonovich SDE solution to
dY = f0(Y )dt+ f(Y ) ◦ dB, all started at ξ. Then the Wong–Zakai approximations
converge a.s. to the Stratonovich solution. More precisely, with probability one,

‖Y − Y n‖α;[0,T ] → 0.

The only reason for dyadic piecewise linear approximations in the above statement
is the formulation of the martingale-based Proposition 3.6. In Section 10 we shall
present a direct analysis (going far beyond the setting of Brownian drivers) which
easily entails quantitative convergence (in probability and Lq, any q < ∞) for all
piecewise linear approximations towards a (Gaussian) rough path.

In the forthcoming Exercise 10.2 it will be seen that (non-dyadic) piecewise linear
approximations of mesh size∼ 1/n, viewed canonically as rough paths, converge a.s.
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in C α with rate anything less than 1/2−α. As long as α > 1/3, it then follows from
(local) Lipschitzness of the Itô–Lyons map that Wong–Zakai approximations also
converge with rate (1/2− α)−. Note that the “best” rate one obtains in this way is
(1/2− 1/3)− = 1/6−; the reason being that rate is measured in some Hölder space
with exponent 1/3+, rather than the uniform norm. The well-known almost sure
“strong” rate 1/2− can be obtained from rough path theory at the price of working in
rough path spaces of much lower regularity, see [FR14].

9.3 Support theorem and large deviations

We briefly discuss two fundamental results in diffusion theory and explain how
the theory of rough paths provides elegant proofs, reducing a question for general
diffusion to one for Brownian motion and its Lévy area.

The results discussed in this section were among the very first applications of
rough path theory to stochastic analysis, see Ledoux et al. [LQZ02]. Much more
on these topics is found in [FV10b], so we shall be brief. The first result, due to
Stroock–Varadhan [SV72] concerns the support of diffusion processes.

Theorem 9.4 (Stroock–Varadhan support theorem). Let f, f0, ξ be as in Theo-
rem 9.1 above. Let α < 1/2, B be a d-dimensional Brownian motion and consider
the unique Stratonovich SDE solution Y on [0, T ] to

dY = f0(Y )dt+
d∑
i=1

fi(Y ) ◦ dBi (9.1)

started at Y0 = ξ ∈ Re. Write yh for the ODE solution obtained by replacing ◦dB
with dh ≡ ḣ dt, whenever h ∈ H = W 1,2

0 , i.e. absolutely continuous, h(0) = 0 and
ḣ ∈ L2([0, T ],Rd). Then, for every δ > 0,

lim
ε→0

P
(
‖Y − Y h‖α;[0,T ] < δ

∣∣∣ ‖B − h‖∞;[0,T ] < ε
)

= 1 (9.2)

(where Euclidean norm is used for the conditioning ‖B − h‖∞,[0,T ] < ε). As a
consequence, the support of the law of Y , viewed as measure on the pathspace
C0,α([0, T ],Re), is precisely the α-Hölder closure of {yh : ḣ ∈ L2([0, T ],Rd)}.

Proof. Using Theorem 9.1 we can and will take Y as RDE solution driven by
BStrat(ω). For h ∈ H and some fixed α ∈ ( 1

3 ,
1
2 ), we furthermore denote by

S(2)(h) = (h,
∫
h ⊗ dh) ∈ C 0,α

g the canonical lift given by computing the it-
erated integrals using usual Riemann–Stieltjes integration. It was then shown in
[FLS06]1 that for every δ > 0,

1 Strictly speaking, this was shown for h ∈ C2; the extension to h ∈ H is non-trivial and found in
[FV10b].
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lim
ε→0

P
(
%α;[0,T ]

(
BStrat, S(2)(h)

)
< δ

∣∣∣ ‖B − h‖∞;[0,T ] < ε
)

= 1. (9.3)

The conditional statement then follows easily from continuity of the Itô–Lyons map
and so yields the “difficult” support inclusion: every yh is in the support of Y . The
easy inclusion, support of Y contained in the closure of {yh}, follows from the
Wong–Zakai theorem, Theorem 9.3. If one is only interested in the support statement,
but without the conditional statement (9.2), there are “softer” proofs; see Exercise 9.1
below. ut

The second result to be discussed here, due to Freidlin–Wentzell, concerns the
behaviour of diffusion in the singular (ε→ 0) limit when B is replaced by εB. We
assume the reader is familar with large deviation theory.

Theorem 9.5 (Freidlin–Wentzell large deviations). Let f, f0, ξ be as in Theo-
rem 9.1 above. Let α < 1/2, B be a d-dimensional Brownian motion and consider
the unique Stratonovich SDE solution Y = Y ε on [0, T ] to

dY = f0(Y )dt+
d∑
i=1

fi(Y ) ◦ εdBi (9.4)

started at Y0 = ξ ∈ Re. Write Y h for the ODE solution obtained by replacing ◦εdB
with dh where h ∈ H = W 1,2

0 . Then (Y εt : 0 ≤ t ≤ T ) satisfies a large deviation
principle (in α-Hölder topology) with good rate function on pathspace given by

J(y) = inf
{
I(h) : Y h = y

}
.

Here I is Schilder’s rate function for Brownian motion, i.e. I(h) = 1
2‖ḣ‖2L2([0,T ],Rd)

for h ∈ H and I(h) = +∞ otherwise.

Proof. The key remark is that large deviation principles are robust under continuous
maps, a simple fact known as contraction principle. The problem is then reduced to
establishing a suitable large deviation principle for the Stratonovich lift of εB (which
is exacly δεBStrat) in the α-Hölder rough path topology. Readers familiar with general
facts of large deviation theory, in particular the inverse and generalised contraction
principles, are invited to complete the proof along Exercise 9.2 below. ut

9.4 Laplace method

We have seen that (Y εt : 0 ≤ t ≤ T ), given as continuous images of the rescaled
Brownian rough path, Y ε = Φ

(
δεBStrat), satisfies a large deviations principle (in

Hölder and hence also in uniform topology) with rate function

J(y) = inf {I(h) : Φ(h) = y, h ∈ H} (9.5)
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with the mild abuse of notation Φ(h) ≡ Φ(h) where h =
(
h,
∫
h⊗ dh

)
is the canoni-

cal lift of h ∈ H. A standard fact of large deviation theory, Varadhan’s lemma, implies
the following Laplace principle: for bounded continuous F : C([0, T ],Re)→ R,

lim
ε→0

ε2 log E
[
exp

(
−F (Y ε)/ε2

)]
= − inf{FΛ(h) : h ∈ H} ,

where we set FΛ = F ◦ Φ+ I , for I as in Theorem 9.5. We are interested in precise
asymptotics, hence the following collection of hypotheses.

(H1) The function F is bounded continuous on C([0, T ],Re).
(H2) The function FΛ attains its unique minimum at γ ∈ H.
(H3) The function F is C3 in the Fréchet sense at ϕ := Φ(γ).
(H4) The element γ is a non-degenerate minimum of FΛ restricted to H namely,

for all h ∈ H\{0},

D2FΛ(γ)(h, h) = D2(F ◦ Φ)
∣∣
γ
(h, h) + ‖h‖2H > 0

Theorem 9.6. Let Y ε be the unique Stratonovich SDE solution on [0, T ] in the small
noise regime from Theorem 9.5. Under conditions (H1-H4), the following precise
Laplace asymptotic holds

E
[
exp

(
−F (Y ε)/ε2

)]
= exp

(
−FΛ(γ)

ε2

)
(c0 + o(1)) as ε ↓ 0, (9.6)

for some constant c0 ∈ (0,∞).

Proof. (i) Localisation around the minimiser. We regard B = BStrat (and its ε-
dilations) as random variables in the (Polish) rough path space C := C 0,α

g ([0, T ]).
Write γ := (γ,

∫
γ ⊗ dγ) ∈ C for the canonical lift of the minimiser γ ∈ H. Take

now an arbitrary neighbourhood O of γ ∈ C and decompose

E
[
exp

(
−F (Y ε)/ε2

)]
= E

[
exp

(
−F ◦ Φ(δεB)/ε2

)]
= E[. . . ; {δεB ∈ O}] + E[. . . ; {δεB ∈ O}c] .

Since (δεB) satisfies an LDP with good rate function, (H1) implies that there exists
d > a := FΛ(γ) and ε0 > 0 such that for all ε ∈ (0, ε0)

E
[
exp

(
−F ◦ Φ(δεB)/ε2

)
; {δεB ∈ O}c

]
≤ exp

(
−d/ε2

)
. (9.7)

Hence this term does not contribute to the asymptotics (9.6). In the sequel, we shall
take, for some % > 0,

O := O% := {TγX : X ∈ C , |||X||| < %} = {X ∈ C : |||T−γX||| < %} .

(By continuity of the translation operator, this is indeed an open neighbourhood of
Tγ0 = γ.) We are thus left to analyse

J% := E
[
exp

(
−F ◦ Φ(δεB)/ε2

)
; |||T−γδεB||| < %

]
.
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(ii) Cameron–Martin shift. It is easy to see that, for Wiener a.e. ω, one has
B(ω + h) = ThB(ω). In particular, the Cameron–Martin shift εB  εB + γ (or
ω  ω + γ/ε) induces a translation of δεB in the sense that

δεB =
(
εB,

∫
εB ⊗ d(εB)

)
 
(
εB + γ,

∫
(εB + γ)⊗ d(εB + γ)

)
= TγδεB .

From the Cameron–Martin theorem, with all integrals below understood over [0, T ],

J%(ε) = E
(

exp
(
− ‖γ‖

2
H

2ε2
−
∫
γ̇d(εB)

ε2

)
exp

(
− F ◦ Φ(TγδεB)

ε2

)
; |||δεB||| < %

)
= exp

(
− ‖γ‖

2
H + F ◦ Φ(γ)

2ε2

)
E
(

exp
(
− (∗)
ε2

)
; |||δεB||| < %

)
;

where we recognise FΛ(γ) in the first exponential and also set

(∗) = F ◦ Φ(TγδεB)− F ◦ Φ(γ) + ε

∫
γ̇dB .

(iii) Local analysis around the minimiser. We argue on a fixed rough path realisation
X := B(ω). One checks that ε 7→ Φ(TγδεX) is sufficiently smooth so that

Φ(TγδεX) = Φ(γ) + εG1(X) + ε2

2 G
2(X) + ε3Rε(X)

with remainder Rε(X), uniformly bounded in ε ∈ (0, 1]. We now use (H3) to obtain
the expansion

(F ◦ Φ)(TγδεX) = (F ◦ Φ)(γ) + εDF |ϕ
(
G1(X)

)
+
ε2

2

[
DF |ϕ

(
G2(X)

)
+D2F |ϕ

(
G1(X), G1(X)

)]
︸ ︷︷ ︸

=:Q(X)

+ ε3RFε (X) ,

where (H3) requires us to take ε less than some ε1(X), with remainder RFε (X),
uniformly bounded in ε ∈ (0, ε1). Write G1 = G1(h), and similar for G2, Q, when
evaluated at the canonical lift of an element h ∈ H. We note for later

Q(h) =
∂2

∂ε2

∣∣∣
ε=0

(F ◦ Φ)(γ + εh) .

Since γ minimises FΛ = F ◦ Φ+ I , first order optimality leads precisely to

DF |ϕ
(
G1(h)

)
+

∫
γ̇dh = 0 , (9.8)

for any h ∈ H. By continuous extension we have DF |ϕ
(
G1(B(ω))

)
+
∫
γ̇dB = 0,

see Exercise 9.3 (ii), and so
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J%(ε) = exp
(
−FΛ(γ)

2ε2

)
E
(
exp

(
−Q(B)/2 + εRFε (B)

)
; |||δεB||| < %

)
.

We claim that, as one would expect from exchanging ε→ 0 with expectation,

lim
ε→0

E
[
exp

(
−Q(B)/2 + εRFε (B)

)
; ‖δεB‖ < %

]
= E[exp(−Q(B))/2] <∞.

To see why this is so, we first show integrability and even exp [−Q(B)/2] ∈ L1+β ,
for some β > 0, as consequence of the non-degeneracy assumption on the minimizer.
The claimed integrability follows from the tail estimate P(−Q(B)/2 ≥ r) ≤ e−Cr,
with C > 1 and for sufficiently large r. Now Q is “quadratic” in the precise sense
Q(δλX) = λ2Q(X), λ > 0, so that upon setting r ≡ 1/ε2, we are left to show

P(−Q(δεB) ≥ 2) ≤ e−C/ε2 .

Since Q is seen to be continuous on rough path space, we have a good Large
Deviations Principle for {−Q(δεB) : ε > 0}, and using the upper LDP bound

P(−Q(δεB)/2 ≥ 1) ≤ e−(C∗+o(1))/ε2 ,

it remains to see 1 < C∗, where, using goodness of the rate function,

C∗ = inf
{

1
2‖h‖2H : h ∈ H,−Q(h)/2 ≥ 1

}
= 1

2‖h∗‖2H for some h∗ ∈ H .

But this follows exactly from “D2(F ◦ Φ+ I)(γ) > 0” in direction h∗,

1 ≤ −Q(h∗)/2 =
1

2

∂2

∂ε2

∣∣∣
ε=0

(−F ◦ Φ)(γ + εh∗) <
1

2
‖h∗‖2H .

This establishes exp [−Q(B)/2] ∈ L1+β . This additional amount of integrability,
β > 0, is now used to give a uniform L1-bound on exp

(
−Q(B)/2 + εRFε (B)

)
over

|||δεB||| < %, after which one can conclude by dominated convergence. To this end,
we revert to a pathwise consideration, X := B(ω). We need the remainder estimate,
Exercise 9.4,

sup
ε∈(0,ε1]

∣∣RFε (X)
∣∣ . 1 + |||X|||3 , (9.9)

valid whenever ε|||X||| = |||δεX||| remains bounded. It follows that, on |||δεB||| < %, we
have the (uniform in small ε) estimate

ε
∣∣RFε (B)

∣∣ . 1 + ε|||B|||3 . 1 + %|||B|||2 (9.10)

and this estimate is uniform over ε ∈ (0, 1]. By Fernique’s estimate for the (homoge-
neous!) rough path norm |||B||| of B = B(ω) and by choosing % = %(β) small enough,
we can guarantee that

eεR
F
ε (B)1{|||δεB|||<%} . exp

(
C%|||B|||2

)
∈ Lβ′ ,
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where β′ <∞ is the Hölder conjugate of β > 1. Hence exp[−Q(B)/2 + %|||B|||2] ∈
L1 serves as the uniform L1-bound we were looking for and the proof is complete.
ut

9.5 Exercises

Exercise 9.1 (Support of Brownian rough path [FV10b]) Fix α ∈ ( 1
3 ,

1
2 ) and

view the law µ of BStrat as probability measure on the Polish space C 0,α
g,0 , the (closed)

subspace of C 0,α
g of rough paths X started at X0 = 0. Show that BStrat has full

support. The “easy” inclusion, supp µ ⊂ C 0,α
g is clear from Proposition 3.6. For the

other inclusion, recall the translation operator from Exercise 2.15 and follow the
steps below.

a) (Cameron–Martin theorem for Brownian rough path) Let h ∈ [0, T ] ∈
H = W 1,2

0 . Show that X ∈ suppµ implies Th(X) ∈ suppµ.
b) Show that the support of µ contains at least one point, say X̂ ∈ C 0,α

g with
the property that there exists a sequence of Lipschitz paths (h(n)) so that
Th(n)(X̂)→ (0, 0) in α-Hölder rough path metric.

Hint: Almost every realisation of BStrat(ω) will do, with −h(n) = B(n), the
dyadic piecewise linear approximations from Proposition 3.6.

c) Conclude that (0, 0) = limn→∞ Th(n)(X̂) ∈ suppµ.
d) As a consequence, any (h,

∫
h⊗ dh) = Th(0, 0) ∈ suppµ, for any h ∈ H and

taking the closure yields the “difficult” inclusion.
e) Appeal to continuity of the Itô–Lyons map to obtain the “difficult” support

inclusion (“every yh is in the support of Y ” ) in the context of Theorem 9.4.

Exercise 9.2 (“Schilder” large deviations, see [FV10b]) Fix α ∈ ( 1
3 ,

1
2 ) and con-

sider
δεBStrat = (εB, ε2BStrat) ,

the laws of which are viewed as probability measures µε on the Polish space C 0,α
g,0 .

Show that (µε) : ε > 0 satisfies a large deviation principle in α-Hölder rough path
topology with good rate function

J(X) = I(X) ,

where X = (X,X) and I is Schilder’s rate function for Brownian motion, i.e.
I(h) = 1

2‖ḣ‖2L2([0,T ],Rd)
for h ∈ H = W 1,2

0 and I(h) = +∞ otherwise.

Hint: Thanks to Gaussian integrability for the homogeneous rough paths norm of
BStrat it is actually enough to establish a large deviation principle for (δεBStrat : ε >
0) in the (much coarser) uniform topology, which is not very hard to do “by hand”,
cf. [FV10b].
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Exercise 9.3 In the context of Laplace asymptotics given in Theorem 9.6:

a) Detail the localisation estimate (9.7).
b) Derive the first order optimality condition (9.8) and justify its “continuous

extension”, i.e. replacing h by B(ω).
c) Show that G2 = G2(X) is continuous in rough path sense. Conclude that the

same holds for Q = Q(X).

Remark: Related results appear in [BA88] (on path space) and [Ina06, Lemma 8.2].

Exercise 9.4 (Stochastic Taylor-like rough path expansion) We aim to show the
remainder estimate (9.9).

a) As a warmup, consider Φ : C([0, 1],Rd)→ R so that Φ(X) = ϕ(X1), for some
ϕ ∈ C3(Rd). Fix γ ∈ C([0, 1],Rd) and establish the expansion

Φ(γ + εX) ≡ g0 + εg1(X) + ε2g2(X) + ε3rε(X) ,

such that |rε(X)| . |X1|3, uniformly in ε ∈ (0, 1], provided |εX1| remains
bounded.

b) Show that an extra ε-dependent drift, say εX replaced by εX + εµ for some
fixed µ ∈ C([0, 1],Rd), alters the remainder estimate to |rε(X)| . 1 + |X1|3.

c) Generalise a) and b) to the situation when Φ is C3-regular in Fréchet sense. (This
trivially covers the case F ◦ Φ, with another F ∈ C3.)

d) Prove the real thing, i.e. the remainder estimate (9.9) based on the expansion
of ε 7→ F ◦ Φ(TγδεX) where Φ is the Itô–Lyons map. (See e.g. [IK07, Thm 5.1]
and the references therein. For a similar estimate in a slightly different setting,
see also [FGP18].)

9.6 Comments

The rough path approach to solving stochastic differential equations (SDEs) driven
by d-dimensional noise, can be seen as far-reaching extension of the works of Doss
and Sussmann [Dos77, Sus78], and the Wong–Zakai approximation result [WZ65]
(d = 1) and Clark [Cla66], Stroock-Varadhan [SV72] for d > 1. Lyons [Lyo98]
used the Wong–Zakai theorem in conjunction with his continuity result to deduce
the fact that RDE solutions (driven by the Brownian rough path BStrat) coincide with
solution to (Stratonovich) stochastic differential equations. Similar to Friz–Victoir
[FV10b], the logic is reversed in our presentation: thanks to an a priori identification
of
∫
f(Y ) dBStrat as a Stratonovich stochastic integral, the Wong–Zakai results is

obtained. Ikeda–Watanabe [IW89] present “twisted” Wong–Zakai approximation,
based on McShane [McS72], in which case an additional limiting drift vector field
appears; see also [Sus91, FO09]. Wong-Zakai type results for SPDEs (with finite-
dimensional noise) is a straight-forward consequence of continuity statements for
rough partial differential equations, as discussed in Sections 12.1 and 12.2. A version
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of the Wong–Zakai theorem for a singular SPDEs with space-time white noise via
regularity structures is established by Hairer–Pardoux [HP15].

Almost sure rates for Wong–Zakai approximations in Brownian (and then more
general Gaussian) rough path situations, were studied by Hu–Nualart [HN09], Deya–
Neuenkirch–Tindel [DNT12] and Friz–Riedel [FR14]; see also Riedel–Xu [RX13].
Let us also note that Lq-rates for the convergence of approximations are not easy
to obtain with rough path techniques (in contrast to Itô calculus which is ideally
suited for moment calculations). Nonetheless, such rates can be obtained by Gaussian
techniques, as discussed in Section 11.2.3 below; applications include multi-level
Monte Carlo for SDEs and more generally Gaussian RDEs [BFRS16]. The rough
path approach to SDEs (and more generally Gaussian RDEs) leads naturally to
random dynamical systems, cf. comment Section 10.5.

The rough path approach to the Stroock-Varadhan support theorem [SV72] in
Section 9.3 goes back to Ledoux–Qian–Zhang [LQZ02] in p-variation and Friz
[Fri05] in Hölder topology, simplified and extended with Victoir in [FV05, FV07,
FV10b]; the conditional estimate (9.3) is due to Friz, Lyons and Stroock [FLS06].
We note that this strategy of proof applies whenever one has rough path stability,
which includes many stochastic partial differential equations (with finite-dimensional
noise) discussed in Chapter 12. In the case of infinite-dimensional noise, a general
support theorem for singular SPDEs was obtained via regularity structures by Hairer–
Schönbauer [HS19] and extends the paracontrolled work of Chouk–Friz [CF18], as
well as classical results such as the work of Bally, Millet and Sanz-Sole [BMSS95].

The rough path approach to Freidlin–Wentzell (small noise) large deviations in
Section 9.3 goes also back to Ledoux, Qian and Zhang [LQZ02]; in p-variation,
strengthened to Hölder topology in [FV05]; Inahama studies large deviations for
pinned diffusions [Ina15], see also [Ina16a]. Once more, the strategy of proof applies
whenever one has rough path stability, and thus applies to many stochastic partial
differential equations as discussed in Chapter 12. Large deviations for Banach valued
Wiener–Itô chaos proved useful in extensions to Gaussian rough paths and then Gaus-
sian models (in the sense of regularity structures), see [FV07] and [HW15], where
Hairer–Weber establish small noise large deviations for large classes of singular
SPDEs.

Theorem 9.6 is an elegant application of rough paths, due to Aida [Aid07], to the
classical theme of Laplace method on Wiener space, in a setting close to Ben Arous
[BA88]; see also Inahama [Ina06], his work with Kawabi [IK07] and [Ina13]. Our
presentation borrows from Friz, Gassiat and Pigato [FGP18]. See Friz–Klose [FK20]
for a recent extension of these works to singular SPDEs via regularity structures.
Recent applications to heat kernel expansions include [IT17].

The pathwise approach has also been useful to study mean field or McKean–Vlasov
stochastic differential equations. This goes back to Tanaka [Tan84], with pathwise
analysis of additive noise, revisited and extended by Coghi et al. [CDFM18]. The
rough path case was pioneered by Cass–Lyons [CL15], with measure dependent drift,
followed by Bailleul, Catellier and Delarue [BCD20, BCD19] to a setup that includes
the important case of measure dependent noise vector fields. Dawson–Gärtner type
large deviations from the McKean-Vlasov limit of weakly interacting diffusions is
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studied in by [Tan84, CDFM18], and also in Deuschel et al. [DFMS18] via rough
paths, always under additive noise. Coghi–Nilssen [CN19] study, from a rough path
point of view, McKean-Vlasov diffusion with “common” noise.

The Lions–Sznitman theory of reflecting SDEs [LS84] was revisited from a
purely analytic rough path perspective by Aida [Aid15] and Deya et al. [DGHT19a]
(existence) Gassiat [Gas20] shows non-uniqueness.

Homogenisation has also seen much impetus from rough path theory. After early
works by Lejay–Lyons [LL03], we mention Bailleul–Catellier [BC17] and Kelly–
Melbourn [KM16, KM17], who pioneered applications to deterministic homogeni-
sation for fast-slow systems with chaotic noise, work continued by Chevyrev et al.
[CFK+19b, CFK+19a, CFKM19].

Stochastic differential equations with jumps, driven by Lévy or general semi-
martingale noise, noise are well-known [KPP95, Pro05, App09] to require a careful
interpretation: forward vs. geometric (a.k.a. Marcus canonical) sense. The pathwise
interpretation of such differential equations was started by Williams [Wil01] and
essentially completed by Chevyrev, Friz, Shekhar and Zhang [FS17, FZ18, CF19],
consistency with the corresponding stochastic theories is also shown.

Rough analysis is “strong” by nature, yet has also proven a powerful tool for
“weak” (or martingale) problems. This was pioneered by Delarue–Diehl [DD16],
using rough paths to study a one-dimensional SDE with distributional drift, with
applications to polymer measures. The extension to higher dimensions was carried
out with paracontrolled methods by Cannizzaro–Chouk [CC18a].

Bruned et al. [BCF18] construct examples of renormalised SDE solutions, par-
tially based on the “Hoff” process [Hof06, FHL16], related to Itô SDE solutions as
averaging Stratonovich solutions [LY16].


	Chapter 9 Stochastic differential equations
	9.1 Itô and Stratonovich equations
	9.2 The Wong–Zakai theorem
	9.3 Support theorem and large deviations
	9.4 Laplace method
	9.5 Exercises
	9.6 Comments




