
Chapter 2
The space of rough paths

We define the space of (Hölder continuous) rough paths, as well as the subspace of
“geometric” rough paths which preserve the usual rules of calculus. The latter can
be interpreted in a natural way as paths with values in a certain nilpotent Lie group.
At the end of the chapter, we give a short discussion showing how these definitions
should be generalised to treat paths of arbitrarily low regularity.

2.1 Basic definitions

In this section, we give a practical definition of the space of Hölder continuous
rough paths. Our choice of Hölder spaces is chiefly motivated by our hope that most
readers will already be familiar with the classical Hölder spaces from real analysis.
We could in the sequel have replaced “α-Hölder continuous” by “finite p-variation”
for p = 1/α in many statements. This choice would also have been quite natural,
due to the fact that one of our primary goals will be to give meaning to integrals
of the form

∫
f(X) dX or solutions to controlled differential equations of the form

dY = f(Y ) dX for rough paths X . The value of such an integral / solution does not
depend on the parametrisation of X , which dovetails nicely with the fact that the
p-variation of a function is also independent of its parametrisation. This motivated its
choice in the original development of the theory. In some other applications however
(like the solution theory to rough stochastic partial differential equations developed
in [Hai11b, HW13, Hai13] and more generally the theory of regularity structures
[Hai14b] exposed in the last chapters), parametrisation-independence is lost and the
choice of Hölder norms is more natural.

A rough path on an interval [0, T ] with values in a Banach space V then consists
of a continuous function X : [0, T ] → V , as well as a continuous “second order
process” X : [0, T ]2 → V ⊗ V , subject to certain algebraic and analytical conditions.
Regarding the former, the behaviour of iterated integrals, such as (2.2) below, suggests
to impose the algebraic relation (“Chen’s relation”),
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16 2 The space of rough paths

Xs,t − Xs,u − Xu,t = Xs,u ⊗Xu,t , (2.1)

which we assume to hold for every triplet of times (s, u, t). Since Xt,t = 0, it
immediately follows (take s = u = t) that we also have Xt,t = 0 for every t. As
already mentioned in the introduction, one should think of X as postulating the value
of the quantity ∫ t

s

Xs,r ⊗ dXr
def
= Xs,t , (2.2)

where we take the right-hand side as a definition for the left-hand side. (And not
the other way around!) We insist (cf. Exercise 2.4 below) that as a consequence
of (2.1), knowledge of the path t 7→ (X0,t,X0,t) already determines the entire
second order process X. In this sense, the pair (X,X) is indeed a path, and not
some two-parameter object, although it is often more convenient to consider it
as one. If X is a smooth function and we read (2.2) from right to left, then it is
straightforward to verify (see Exercise 2.1 below) that the relation (2.1) does indeed
hold. Furthermore, one can convince oneself that if f 7→

∫
f dX denotes any form

of “integration” which is linear in f , has the property that
∫ t
s
dXr = Xs,t, and is

such that
∫ t
s
f(r) dXr +

∫ u
t
f(r) dXr =

∫ u
s
f(r) dXr for any admissible integrand

f , and if we use such a notion of “integral” to define X via (2.2), then (2.1) does
automatically hold. This makes it a very natural postulate in our setting.

Note that the algebraic relations (2.1) are by themselves not sufficient to determine
X as a function of X . Indeed, for any V ⊗ V -valued function F , the substitution
Xs,t 7→ Xs,t + Ft − Fs leaves the left-hand side of (2.1) invariant. We will see later
on how one should interpret such a substitution. It remains to discuss what are the
natural analytical conditions one should impose for X. We are going to assume that
the path X itself is α-Hölder continuous, so that |Xs,t| . |t− s|α. The archetype of
an α-Hölder continuous function is one which is self-similar with index α, so that
Xλs,λt ∼ λαXs,t.

(We intentionally do not give any mathematical definition of self-similarity here,
just think of ∼ as having the vague meaning of “looks like”.) Given (2.2), it is then
very natural to expect X to also be self-similar, but with Xλs,λt ∼ λ2αXs,t. This
discussion motivates the following definition of our basic spaces of rough paths.

Definition 2.1. For α ∈ ( 1
3 ,

1
2 ], define the space of α-Hölder rough paths (over V ),

in symbols C α([0, T ], V ), as those pairs (X,X) =: X such that

‖X‖α def
= sup
s6=t∈[0,T ]

|Xs,t|
|t− s|α <∞ , ‖X‖2α def

= sup
s6=t∈[0,T ]

|Xs,t|
|t− s|2α <∞ , (2.3)

and such that the algebraic constraint (2.1) is satisfied.

The obvious example is the canonical rough path lift of a smooth path X , of the
form (X,

∫
X ⊗ dX), and we write L (C∞) for the class of rough paths obtained in
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this way.1 We have the strict inclusion L (C∞) ⊂ C∞, the class of smooth rough
paths,2 by which we mean a genuine rough path with the additional property that the
V -valued (resp. V ⊗ V -valued) maps X• and Xs,• are smooth, for every basepoint s.
For instance, X ≡ (0, 0) is the trivial canonical rough path associated to the scalar
zero path, as opposed to the smooth “pure second level” rough path (over R) given
by (s, t) 7→ (0, t− s); see also Exercise 2.10 for a natural example with dimV > 1.

Remark 2.2. Any scalar path X ∈ Cα can be lifted to a rough path (over R), simply
by setting Xs,t := (Xs,t)

2/2. However, for a vector-valued path X ∈ Cα, with
values in some Banach space V , it is far from obvious that one can find suitable
“second order increments” X such that X lifts to a rough path (X,X) ∈ C α. The
Lyons–Victoir extension theorem (Exercise 2.14) asserts that this can always be done,
even in a continuous fashion, provided that 1/α /∈ N which means α ∈ ( 1

3 ,
1
2 ) in our

present discussion. (A counterexample for α = 1
2 is hinted on in Exercise 2.13). The

reader may wonder how this continuity property dovetails with Proposition 1.1. The
point is that if we define X 7→ X by an application of the Lyons–Victoir extension
theorem, this map restricted to smooth paths does in general not coincide with the
Riemann–Stieltjes integral of X against itself.

Remark 2.3. In typical applications to stochastic processes with α-Hölder continuous
sample paths, α ∈ ( 1

3 ,
1
2 ), such as Brownian motion, rough path lift(s) are constructed

via probability, and one does not rely on the extension theorem. In many cases, one
has a “canonical” (a.k.a. Stratonovich, Wong-Zakai) lift of a process given as limit (in
probability and rough path topology) of canonically lifted sample path mollification
of the process. Examples where such a construction works include a large class of
Gaussian processes, in particular Brownian motion, and more generally fractional
Brownian motion for every Hurst parameter H > 1

4 , cf. Section 10. However, this
may not be the only meaningful construction: already in Section 3, we will discuss
three natural, but different, ways to lift Brownian motion to a rough path. For a
detailed discussion of Markov (with uniformly elliptic generator in divergence form)
and semimartingale rough paths we refer to [FV10b].

If one ignores the nonlinear constraint (2.1), the quantities defined in (2.3) suggest
to think of (X,X) as an element of the Banach space Cα ⊕ C2α

2 with (semi-)norm
‖X‖α + ‖X‖2α (which vanishes when X is constant and X ≡ 0). However, taking
into account (2.1) we see that C α is not a linear space, although it is a closed subset
of the aforementioned Banach space; see Exercise 2.7. We will need (some sort of) a
norm and metric on C α. The induced “natural” norm on C α given by ‖X‖α+‖X‖2α
fails to respect the structure of (2.1) which is homogeneous with respect to a natural
dilation on C α, given by δλ : (X,X) 7→ (λX, λ2X). This suggests to introduce the
α-Hölder homogeneous rough path norm

1 We note immediately that “smooth” can be replaced by “sufficiently smooth”, such as C1 and
even Cα, with α > 1/2, in view of Young integration, Section 4.1.
2 We deviate here from the early rough path literature, including [LQ02], where smooth rough paths
meant canonical rough paths. Instead, we are aligned with the terminology of regularity structures,
where (canonical, smooth) models generalise the corresponding notions of rough paths.
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|||X|||α def
= ‖X‖α +

√
‖X‖2α , (2.4)

which, although not a norm in the usual sense of normed linear spaces, is a very
adequate concept for the rough path X = (X,X). On the other hand, (2.3) leads to a
natural notion of rough path metric (and then rough path topology).

Definition 2.4. Given rough paths X,Y ∈ C α([0, T ], V ), we define the (inhomoge-
neous) α-Hölder rough path metric 3

%α(X,Y) := sup
s 6=t∈[0,T ]

|Xs,t − Ys,t|
|t− s|α + sup

s6=t∈[0,T ]

|Xs,t − Ys,t|
|t− s|2α .

The perhaps easiest way to show convergence with respect to this rough path
metric is based on interpolation: in essence, it is enough to establish pointwise
convergence together with uniform “rough path” bounds of the form (2.3); see
Exercise 2.9. Let us also note that C α([0, T ], V ) endowed with this distance is a
complete metric space; the reader is asked to work out the details in Exercise 2.7.

We conclude this part with two important remarks. First, we can ask ourselves up
to which point the relations (2.1) are already sufficient to determine X. Assume that
we can associate to a given function X two different second order processes X and
X̄, and set Gs,t = Xs,t − X̄s,t. It then follows immediately from (2.1) that

Gs,t = Gu,t +Gs,u ,

so that in particular Gs,t = G0,t − G0,s. Since, conversely, we already noted that
setting X̄s,t = Xs,t+Ft−Fs for an arbitrary continuous function F does not change
the left-hand side of (2.1), we conclude that X is in general determined only up to
the increments of some function F ∈ C2α(V ⊗ V ). The choice of F does usually
matter and there is in general no obvious canonical choice.

The second remark is that this construction can possibly be useful only if α ≤ 1
2 .

Indeed, if α > 1
2 , then a canonical choice of X is given by reading (2.2) from

right to left and interpreting the left-hand side as a simple Young integral [You36].
Furthermore, it is clear in this case that X must be unique, since any additional
increment should be 2α-Hölder continuous by (2.3), which is of course only possible
if α ≤ 1

2 . Let us stress once more however that this is not to say that X is uniquely
determined by X if the latter is smooth, when it is interpreted as an element of C α

for some α ≤ 1
2 . Indeed, if α ≤ 1

2 , F is any 2α-Hölder continuous function with
values in V ⊗ V and Xs,t = Ft − Fs, then the path (0,X) is a perfectly “legal”
element of C α, even though one cannot get any smoother than the function 0. The
impact of perturbing X by some F ∈ C2α in the context of integration is considered

3 As was already emphasised, Cα is not a linear space but is naturally embedded in the Banach
space Cα ⊕ C2α2 (cf. Exercise 2.7), the (inhomogeneous) rough path metric is then essentially the
induced metric. While this may not appear intrinsic (the situation is somewhat similar to using the
(restricted) Euclidean metric on R3 on the 2-sphere), the ultimate justification is that the Itô map
will turn out to be locally Lipschitz continuous in this metric.
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in Example 4.14 below. In Chapter 5, we shall use this for a pathwise understanding
of how exactly Itô and Stratonovich integrals differ.

Remark 2.5. There are some simple variations on the definition of a rough path, and
it can be very helpful to switch from one view-point to the other. (The analytic
conditions are not affected by this.)

a) From the “full increment” view point one has (X,X) : [0, T ]2 → V ⊕ V ⊗2,
(s, t) 7→ (Xs,t,Xs,t) subject to the “full” Chen relation

Xs,t = Xs,u +Xu,t, Xs,t = Xs,u + Xu,t +Xs,u ⊗Xu,t . (2.5)

Every path X : [0, T ] → V induces (vector) increments Xs,t ≡ (δX)s,t =
Xt − Xs for which the first equality is a triviality. Conversely, increments
determine a path modulo constants. In particular, Xt = X0 + X0,t and this
definition is equivalent to what we had in Definition 2.1), if restricted to paths
with X0 = 0 (or, less rigidly, by identifying paths X, X̄ for which X̄ −X is
constant). In many situations, notably differential equations driven by (X,X),
this difference does not matter. (This increment view point is also closest to
“models” (Π,Γ ) in the theory of regularity structures, Section 13.3, where s is
regarded as base-point and one is given a collection of functions (Xs,·,Xs,·).
The Chen relation (2.5) then has the interpretation of shifting the base-point.)

b) The “full path” view point starts with X : [0, T ]→ {1} × V ⊕ V ⊗2 ≡ T (2)
1 (V ),

a Lie group under the (truncated) tensor product, the details of which are left to
Section 2.3 below. Every such path has group increments defined by

X−1
s ⊗ Xt =: Xs,t =: (Xs,t,Xs,t).

Chen’s relation (2.5) is nothing but the trivial identity Xs,u⊗Xu,t = Xs,t so that
any such group-valued path X induces an increment map (X,X), of the form
discussed in a). Conversely, such increments determine X modulo constants as
seen from Xt = X0 ⊗ X0,t. If we restrict to X0 = 1 = (1, 0, 0), or identify
paths X, X̃ for which X̃ ⊗ X−1 is constant, then there is no difference. (Such
a “base-point free” object corresponds to “fat” Π in the theory of regularity
structures and induces a model (Π,Γ ) in great generality.)

c) Our Definition 2.1 is a compromise in the sense that we want to start from a
familiar object, namely a path X : [0, T ]→ V , together with minimal second
level increment information to define (in Section 4.2) the prototypical rough
integral

∫
F (X)d(X,X). From the “increment” view point, we have thus sup-

plied more than necessary (namely X0), whereas from the “full path” view point,
we have supplied X, with X0 = (1, X0, ∗) specified on the first level only. (Of
course, this affects in no way the second level increments Xs,t.)
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2.2 The space of geometric rough paths

While (2.1) does capture the most basic (additivity) property that one expects any
decent theory of integration to respect, it does not imply any form of integration by
parts / chain rule. Now, if one looks for a first order calculus setting, such as is valid
in the context of smooth paths or the Stratonovich stochastic calculus, then for any
pair e∗i , e∗j of elements in V ∗, writing Xi

t = e∗i (Xt) and Xijs,t = (e∗i ⊗ e∗j )(Xs,t), one
would expect to have the identity

Xijs,t + Xjis,t “=”
∫ t

s

Xi
s,r dX

j
r +

∫ t

s

Xj
s,r dX

i
r

=

∫ t

s

d(XiXj)r −Xi
sX

j
s,t −Xj

s X
i
s,t

= (XiXj)s,t −Xi
sX

j
s,t −Xj

s X
i
s,t = Xi

s,tX
j
s,t ,

so that the symmetric part of X is determined by X . In other words, for all times s, t
we have the “first order calculus” condition

Sym(Xs,t) =
1

2
Xs,t ⊗Xs,t . (2.6)

However, if we take X to be an n-dimensional Brownian path and define X by Itô
integration, then (2.1) still holds, but (2.6) certainly does not.

There are two natural ways to define a set of “geometric” rough paths for which
(2.6) holds. On the one hand, we can define the space of weakly geometric (α-Hölder)
rough paths.

C α
g ([0, T ], V ) ⊂ C α([0, T ], V ) ,

by stipulating that (X,X) ∈ C α
g if and only if (X,X) ∈ C α and (2.6) holds as

equality in V ⊗ V , for every s, t ∈ [0, T ]. Note that C α
g is a closed subset of C α.

On the other hand, we have already seen that every smooth path can be lifted
canonically to an element in L (C∞) ⊂ C α by reading the definition (2.2) from
right to left. This choice of X then obviously satisfies (2.6) and we can define the
space of geometric (α-Hölder) rough paths,

C 0,α
g ([0, T ], V ) ⊂ C α([0, T ], V ) ,

as the closure of L (C∞) in C α. We leave it as exercise to the reader to see that C∞
here may be replaced by C1 paths without changing the resulting space of geometric
rough paths.

One has the obvious inclusion C 0,α
g ⊂ C α

g , which turns out to be strict. In fact,
C 0,α
g is separable (provided V is separable), whereas C α

g is not, cf. Exercise 2.8
below. The situation is similar to the classical situation of the set of α-Hölder
continuous functions being strictly larger than the closure of smooth functions under
the α-Hölder norm. (Or the set of bounded measurable functions being strictly larger
than C, the closure of smooth functions under the supremum norm.) In practice, at
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least when dimV <∞, the distinction between weakly and “genuinely” geometric
rough paths rarely matters for the following reason: similar to classical Hölder spaces,
one has the converse inclusion C β

g ⊂ C 0,α
g whenever β > α, see Proposition 2.8

below and also Exercise 2.12. For this reason, we will often casually speak of
“geometric rough paths”, even when we mean weakly geometric rough paths. (There
is no confusion in precise statements when we write C 0,α

g or C α
g .) Let us finally

mention that non-geometric rough paths can always be embedded in a space of
geometric rough paths at the expense of adding new components; in the present
(level-2) setting this can be accomplished in terms of a rough path bracket, see
Exercise 2.11 and also Section 5.3.

2.3 Rough paths as Lie group valued paths

We now present a very fruitful view of rough paths, taken over a Banach space V .
Consider X : [0, T ] → V, X : [0, T ]

2 → V ⊗2 subject to (2.1) and define, with
Xs,t = Xt −Xs as usual,

Xs,t := (1, Xs,t,Xs,t) ∈ R⊕ V ⊕ V ⊗2 def
= T (2)(V ). (2.7)

The space T (2)(V ) is itself a Banach space, with the norm of an element (a, b, c)
given by |a|+ |b|+ |c|, where in abusive notation | • | standards for any of the norms
in R, V and V ⊗ V , the norm on the latter assumed compatible and symmetric, cf.
Section 1.4 . More interestingly for our purposes, this space is a Banach algebra,
non-commutative when dimV > 1 and with unit element (1, 0, 0), when endowed
with the product

(a, b, c)⊗ (a′, b′, c′)
def
= (aa′, ab′ + a′b, ac′ + a′c+ b⊗ b′) .

We call T (2)(V ) the step-2 truncated tensor algebra over V . This multiplicative
structure is very well adapted to our needs since Chen’s relation (2.1), combined
with the obvious identity Xs,t = Xs,u +Xu,t, takes the elegant form

Xs,t = Xs,u ⊗ Xu,t . (2.8)

Set T (2)
a (V )

def
= {(a, b, c) : b ∈ V, c ∈ V ⊗ V }. As suggested by (2.7), the affine

subspace T (2)
1 (V ) will play a special role for us. We remark that each of its elements

has an inverse given by

(1, b, c)⊗ (1,−b,−c+ b⊗ b) = (1,−b,−c+ b⊗ b)⊗ (1, b, c) = (1, 0, 0) , (2.9)

so that T (2)
1 (V ) is a Lie group.4 It follows that Xs,t = X−1

0,s ⊗ X0,t are the natural
increments of the group valued path t 7→ X0,t =: Xt.

4 The Lie group T (2)
1 (V ) is finite-dimensional if and only if dimV <∞.
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Identifying 1, b, c with elements (1, 0, 0), (0, b, 0), (0, 0, c) ∈ T (2)(V ), we may
write (1, b, c) = 1+b+c. The resulting calculus is familiar from formal power series
in non-commuting indeterminates. For instance, the usual power series (1 + x)

−1
=

1− x+ x2 − . . . leads to, omitting tensors of order 3 and higher,

(1 + b+ c)
−1

= 1− (b+ c) + (b+ c)⊗ (b+ c)

= 1− b− c+ b⊗ b ,

allowing us to recover (2.9). We also introduce the dilation operator δλ on T (2)(V ),
with λ ∈ R, which acts by multiplication with λn on the nth tensor level V ⊗n,
namely

δλ : (a, b, c) 7→
(
a, λb, λ2c

)
.

Having identified T (2)
1 (V ) as the natural state space of (step-2) rough paths, we now

equip it with a homogeneous, symmetric and subadditive norm. For x = (1, b, c),

|||x||| def
= 1

2

(
N(x) +N(x−1)

)
with N(x) = max{|b|,

√
2|c|} , (2.10)

noting |||δλx||| = |λ||||x|||, homogeneity with respect to dilation, and |||x ⊗ x′||| ≤
|||x|||+ |||x′|||, a consequence of subaddivity for N(•) which requires a short argument
left to the reader. It is clear that

(x, x′) 7→ |||x−1 ⊗ x′ ||| def
= d(x, x′)

defines a bona fide (left-invariant) metric on the group T (2)
1 (V ). Important for us, the

graded Hölder regularity (2.3) of X = (X,X), part of the definition of a rough path,
can now be condensed to demand the “metric” Hölder seminorm

sup
s6=t∈[0,T ]

d(Xs,Xt)
|t− s|α � ‖X‖α +

√
‖X‖2α = |||X|||α;[0,T ] (2.11)

to be finite. To summarise, we arrived at the following appealing characterisation of
(Banach space valued) rough paths.

Proposition 2.6. (Hölder continuity is with respect to the left-invariant metric d.)

a) Assume (X,X) ∈ C α([0, T ], V ). Then the path t 7→ Xt = (1, X0,t,X0,t), with
values in T (2)

1 (V ) is α-Hölder continuous.
b) Conversely, if [0, T ] 3 t 7→ Xt is a T (2)

1 (V )-valued and α-Hölder continuous
path, then (X,X) ∈ C α([0, T ], V ) with (1, Xs,t,Xs,t) := X−1

s ⊗ Xt.

The usual power series and / or basic Lie group theory suggest to define

log (1 + b+ c)
def
= b+ c− 1

2
b⊗ b , (2.12)

exp (b+ c)
def
= 1 + b+ c+

1

2
b⊗ b , (2.13)
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which allow us to identify T (2)
0 (V ) ∼= V ⊕ V ⊗2 with T (2)

1 (V ) = exp(V ⊕ V ⊗2).
The following Lie bracket makes T (2)

0 (V ) a Lie algebra. For b, b′ ∈ V, c, c′ ∈ V ⊗2,

[b+ c, b′ + c′]
def
= b⊗ b′ − b′ ⊗ b ,

and T (2)
0 (V ) is step-2 nilpotent in the sense that all iterated brackets of length 2 vanish.

Define g(2)(V ) ⊂ T (2)
0 (V ) as the closed Lie subalgebra generated by V ⊂ T (2)

0 (V ),
explicitly given by

g(2)(V ) = V ⊕ [V, V ] with [V, V ]
def
= cl(span{[v, w] : v, w ∈ V }) ,

called the free step-2 nilpotent Lie algebra over V . Note that in finite dimensions, say
V = Rd, the closing procedure is unnecessary and [V, V ] is nothing but the space
of antisymmetric d× d matrices, with linear basis ([ei, ej ] : 1 ≤ i < j ≤ d), where
(ei : 1 ≤ i ≤ d) denotes the standard basis of Rd. Thanks to step-2 nilpotency, one
checks by hand the Baker–Campbell–Hausdorff formula

exp(b+ c)⊗ exp(b′ + c′) = exp(b+ b′ + c+ c′ + 1
2 [b, b′]) .

The image of g(2) under the exponential map then defines a closed Lie subgroup,

G(2)(V )
def
= exp

(
g(2)(V )

)
⊂ T (2)

1 (V ) ,

called the free step-2 nilpotent group over V . These considerations provide us with
an elegant characterisation of weakly geometric rough paths. (The proof is immediate
from the previous proposition and rewriting (2.6) as Xs,t − 1

2Xs,t ⊗Xs,t ∈ [V, V ].)

Proposition 2.7 (Weakly geometric case).

a) Assume (X,X) ∈ C α
g ([0, T ], V ). Then the path t 7→ Xt = (1, X0,t,X0,t), with

values in G(2)(V ) is α-Hölder continuous (with respect to the metric d.)
b) Conversely, if [0, T ] 3 t 7→ Xt is a G(2)(V )-valued and α-Hölder continuous

path, then (X,X) ∈ C α
g ([0, T ], V ) with (1, Xs,t,Xs,t) := X−1

s ⊗ Xt.

It is clear from the discussion in Section 2.2 that any sufficiently smooth path, say
γ ∈ C1([0, 1], V ), produces an element in G(2)(V ) by iterated integration, namely

S(2)(γ) =
(

1,

∫ 1

0

dγ(t),

∫ 1

0

∫ t

0

dγ(s)⊗ dγ(t)
)
∈ G(2)(V ) .

The map S(2), which maps (sufficiently regular) paths on a fixed interval, here [0, 1],
into the above collection of tensors is know as step-2 signature map. We note in
passing that Chen’s relation here has the pretty interpretation that the signature map
is a morphism from the space of paths, equipped with concatenation product, to
the tensor algebra. The inclusion S(2)(C1) ⊂ G(2) becomes an equality in finite
dimensions,

{S(2)(γ) : γ ∈ C1([0, 1],Rd)} = G(2)(Rd) . (2.14)
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To see this, fix b + c ∈ g(2)(Rd) and try to find finitely many, say n, affine linear
paths γi, with each signature determined by the direction γi(1)− γi(0) = vi ∈ Rd,
so that

exp(v1)⊗ . . .⊗ exp(vn) = exp(b+ c) .

Properly applied, the Baker–Campbell–Hausdorff formula allows to “break up”
the exponential exp(

∑
i b
iei +

∑
j,k c

jk[ej , ek]). In conjunction with the identity
e[v,w] = e−w ⊗ e−v ⊗ ew ⊗ ev it is easy to find a possible choice of v1, . . . , vn.
By concatenation of the γi’s one has constructed a path γ with prescribed signature
S(2)(γ) = exp(b+ c). This path is clearly in C1, the space of Lipschitz paths.5 This
gives a very natural way to introduce another (homogeneous, symmetric, subadditive)
norm on G(2)(Rd), namely

‖x‖C
def
= inf

{∫ 1

0

|γ̇(t)| dt : γ ∈ C1([0, 1],Rd) , S(2)(γ) = x
}

, (2.15)

known as Carnot–Carathéodory norm. (In infinite dimensions, there is no guar-
antee for the set on the right-hand side to be non-empty.) When equipped with
its Euclidean structure, Rd defines a “horizontal” subspace Rd × {0} ⊂ g(2)(Rd),
seen as tangent space to G(2)(Rd) at (1, 0, 0) which in turn induces a left-invariant
sub-Riemannian structure on G(2)(Rd). The associated left-invariant Carnot–Cara-
théodory metric dC can then be seen as the minimal length of “horizontal” paths
connecting two points. Any minimising sequence in (2.15), parametrised by constant
speed, is equicontinuous so that by Arzela–Ascoli such minimisers, also called sub-
Riemannian geodesics, exist and must be in C1. Such geodesics are a key tool in the
approach of Friz–Victoir [FV10b]. The explicit computation of such geodesics (and
Carnot–Carathéodory norms) is a difficult problem, with explicit formulae available
for d = 2, noting that, as Lie groups, G(2)(R2) ∼= H3, the 3-dimensional Heisen-
berg group, see e.g. [Mon02]. Fortunately, a compactness argument, as detailed for
example in [FV10b, Sec 7.5], shows that all continuous homogeneous norms are
equivalent. Upon checking continuity of the Carnot–Carathéodory norm, one gets,
for x = exp (b+ c) ∈ G(2)(Rd),

‖x‖C �d |b|+ |c|
1/2 � max{|b|, |c|1/2} , (2.16)

which, despite its dependence on the dimension d, is sufficient for many practical
purposes. As a useful application, we now state an approximation result for weakly
geometric roughs over Rd. With the preparations made, the interested reader will
have no trouble to provide a full proof for

Proposition 2.8 (Geodesic approximation). For every (X,X) ∈ C β
g

(
[0, T ],Rd

)
,

there exists a sequence of smooth paths Xn : [0, T ]→ Rd such that

5 In fact, by smoothly slowing down speed to zero whenever switching directions, the path γ can
also be parametrized to be smooth. In particular, in (2.14) and (2.15) below we could have replaced
C1 by C∞.
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(Xn,Xn) :=
(
Xn,

∫ ·
0

Xn
0,t ⊗ dXn

t

)
→ (X,X) uniformly on [0, T ]

with uniform rough path bound supn≥1 |||Xn,Xn|||β . |||X,X|||β . By interpolation,
convergence holds in C α, for any α < β.

Remark 2.9. By definition, every geometric rough path X ∈ C 0,β
g is the limit of

canonical rough path lifts (Xn,Xn) = Xn; trivially then, |||Xn|||β → |||X|||β . This is
not true for a generic weakly geometric rough path X ∈ C β

g . However, the above
proposition supplies approximations (Xn), which converge uniformly with uniform
rough paths bounds. In such a case, |||X|||β ≤ liminfn≥1 |||Xn|||β and this can be strict.
This lower-semicontinuous behaviour of the rough path norm is reminiscent of norms
on Hilbert spaces under weak convergence and led to the terminology of “weakly”
geometric rough paths.

2.4 Geometric rough paths of low regularity

The interpretation given above gives a strong hint on how to construct geometric
rough paths with α-Hölder regularity for α ≤ 1

3 : setting N = b1/αc, one defines the
step-N truncated tensor algebra over a Banach space V

T (N)(V )
def
=

N⊕
n=0

(
V
)⊗n

,

with the natural convention that (V )⊗0 = R. The product in T (N)(V ) is simply the
tensor product⊗, but we truncate it in a natural way by postulating that a⊗ b = 0 for
a ∈ (V )⊗k, b ∈ (V )⊗` with k+` > N . A homogeneous, symmetric and subadditive
norm which generalises (2.10) to the step-N case is given by

|||x||| def
= 1

2

(
N(x) +N(x−1)

)
with N(x) = max

n=1,...,N
(n!|xn|)1/n , (2.17)

where every x = (1, x1, . . . , xN ) ∈ T
(N)
1 (V ), element with scalar component 1,

is invertible, and where | • | denotes any of the tensor norms on (V )⊗n, assumed
compatible and symmetric (permutation invariant).6.

Proposition 2.6 suggests the naı̈ve definition of an α-Hölder rough path over
V as a path X, on [0, T ] say, with values in the group T (N)

1 (V ) which is α-Hölder
continuous with respect to d(x, x′) = |||x−1 ⊗ x′ |||. Modulo knowledge of X0 this is
equivalent to a multiplicative map (s, t) 7→ Xs,t ∈ T (N)

1 (V ), multiplicative in the
sense that Chen’s relation holds,

Xs,t = Xs,u ⊗ Xu,t , (2.18)

6 The definitions from Section 1.4 for N = 2 extend easily to N > 2, see also [LCL07, Def 1.25]
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for every triplet of times (s, u, t), and with graded Hölder regularity,

|Xns,t| . |t− s|kα, n = 1, . . . , N ,

uniformly over s, t ∈ [0, T ]. The interpretation of rough paths discussed at length in
the step-2 setting is unchanged and Xns,t ∈ V ⊗n should be thought of as a substitute
for the (possibly ill-defined) n-fold integral

∫
dXu1

⊗· · ·⊗dXun over the n-simplex
{s < u1 < . . . < un < t}. Such a notion of naı̈ve higher oder rough path is
sometimes sufficient, e.g. for solving linear rough differential equations, see also
Exercise 4.18, but does not contain the necessary information to deal with non-
linearities, already seen in the simple example of the form

∫ t
s
(Xr −Xs)

⊗2 ⊗ dXr.
Higher order (weakly) geometric rough paths resolve this problem by imposing

a chain rule. In the above example, (δX)⊗2/2 = Sym(X2), formerly written as
Sym(X), and the situation is reduced to (a linear combination of) 3-fold iterated
integrals. To proceed in a systematic fashion, we first introduce the correct state
space as the free step-N nilpotent Lie group over V

G(N)(V )
def
= exp(g(N)(V )) ⊂ T (N)

1 (V )

where the exponential map is defined via its power series and g(N) ⊂ T (N)
0 (V ) is the

(closed) Lie algebra generated by all elements of the form (0, c, 0, . . . , 0) with c ∈ V
via the natural Lie bracket [a, b] = a⊗ b− b⊗ a. The neutral element 1 ∈ G(N)(V )
is given by 1 = (1, 0, . . . , 0). Given any α ∈ (0, 1] andN = b1/αc as the number of
“levels”, Proposition 2.7 now suggests the definition of a weakly geometric α-Hölder
rough path over V as a path X, on [0, T ] say, with values in the groupG(N)(V ) which
is α-Hölder continuous with respect to d(x, x′) = |||x−1⊗x′ |||. Modulo knowledge of
X0 this is equivalent to a multiplicative map (s, t) 7→ Xs,t ∈ G(N)(V ) with graded
Hölder regularity, uniformly over s, t ∈ [0, T ],

|Xns,t| . |t− s|nα, n = 1, . . . , N .

Here, again multiplicative means validity of Chen’s relation as spelled out in (2.18)
above.

We now assume, for notationally convenience, V = Rd, which allows us to
think of components of some fixed rough path increment Xs,t ∈ T (N)

1 (Rd) as being
indexed by words w of length at most N with letters in the alphabet {1, . . . , d}.
Similarly to before, given a word w = w1 · · ·wn, the corresponding component Xw,
which we also write as 〈X, w〉, is then interpreted as the n-fold integral

〈Xs,t, w〉 =

∫ t

s

∫ sn

s

· · ·
∫ s1

s

dXw1
s1 · · · dXwn

sn , (2.19)

and |||Xs,t||| . |t− s|α is equivalent to, for all words with length |w| ≤ b1/αc,

|〈Xs,t, w〉| . |t− s|α|w| . (2.20)
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In order to describe the constraints imposed on these iterated integrals by the chain
rule, we define the shuffle product� between two words as the formal sum over all
possible ways of interleaving them. For example, one has

a� x = ax+ xa , ab� xy = abxy + axby + xaby + axyb+ xayb+ xyab ,

with the empty word acting as the neutral element. With this notation at hand, it was
already remarked by Ree [Ree58] (see also [Che71]) that the chain rule implies the
identity

〈Xs,t, v〉〈Xs,t, w〉 = 〈Xs,t, v� w〉 . (2.21)

(The reader is asked to show this in Exercise 2.2.) It is a remarkable fact that the
algebraic properties of the tensor and shuffle algebras combine in such a way that the
set of elements X ∈ T (N) satisfying (2.21) is not only stable under the product ⊗,
but forms a group, which in turn was shown in [Ree58] to be nothing but the group
G(N)(Rd). In the language of Hopf algebras, this group is exactly the character
group for the (truncated) shuffle Hopf algebra.

In general, one may decide to forego the chain rule (after all, it doesn’t hold in the
context of Itô integration, as is manifest in Itô’s formula) in which case there is no
reason to impose (2.21). In this case, considering a rough path as an enhancement
of a path X by iterated integrals of the type (2.19) no longer provides sufficient
additional data. Indeed, in order to solve differential equations driven by X , one
would like to give meaning to expressions like for example∫ t

s

(∫ r

s

dXi
u

)(∫ r

s

dXj
v

)
dXk

r =: 〈Xs,t, k
i j 〉 . (2.22)

We already remarked earlier, that in the (weakly) geometric case, the assumed
chain rule (now in the form of (2.21)) allows to reduce such expressions to linear
combinations of iterated integrals. In general, one should define a rough path as the
enhancement of a path X with additional functions that are interpreted as the various
formal expressions that can be formed by the two operations “multiplication” and
“integration against X”. The resulting algebraic construction is more involved and
gives rise to the concept of branched rough path X due to Gubinelli [Gub10]. The
terminology comes from the fact that the natural way of indexing the components
of such an object is no longer given by words, but by labelled trees, as suggested
in (2.22) above with labels i, j, k ∈ {1, . . . , d}. As detailed in [Gub10], see also
[HK15, BCFP19], branched rough paths take values in the character group of the
Connes–Kreimer Hopf algebra of trees [CK00], also known as the Butcher group
[But72]. A concise description of the branched rough path regularity via an explicit
homogeneous subadditive norms on this Lie group, similar to (2.17), can be found in
[TZ18], cf. also [HS90].
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2.5 Exercises

Exercise 2.1] Let X be a smooth V -valued path.

a) Show that Xs,t :=
∫ t
s
Xs,r ⊗ Ẋr dr satisfy Chen’s relation (2.1).

b) Consider the collection of all iterated integrals over [s, t],

Xs,t :=

(
1, Xs,t,Xs,t,

∫
∆

(3)
s,t

dXu1
⊗ dXu2

⊗ dXu3
, . . .

)
∈ T ((V )) , (2.23)

where ∆(3)
s,t = {u : s < u1 < u2 < u3 < t} and T ((V ))

def
=
∏∞
k=0 V

⊗k is the
space of tensor series over V , equipped with the obvious algebra structure (cf.
Section 2.4). Show that the following general form of Chen’s relation holds:

Xs,t = Xs,u ⊗ Xu,t .

The element Xs,t ∈ T ((V )) is known as the signature of X on the interval [s, t].
c) Show that the indefinite signature S := X0,• solves the linear differential equa-

tion
dS = S⊗ dX , S0 = 1 .

We will see later (Exercises 4.6 and 8.9) that the signature can be defined for every
rough path.

Hint: For point (b), it suffices to consider the projection of Xs,t to V ⊗n, for an
arbitrary integer n, given by the n-fold integral of dXu1

⊗ . . . ⊗ dXun over the
simplex {s < u1 < . . . < un < t}.

Exercise 2.2 (Shuffle)] Let V = Rd. As discussed in (2.19), the collection Xs,t of
all iterated integrals over a fixed interval [s, t] can also be viewed as{

Xws,t = 〈Xs,t, w〉 : w word on A
}

,

with alphabet A = {1, . . . , d}, where we recall that a word on A is a finite sequence
of elements of A, including the empty sequence 6#, called the empty word. By
convention, X6#s,t = 1. Write uv for the concatenation of two words u and v, and
accordingly ui for attaching a letter i ∈ A to the right of u. The linear span of such
words (which can be identified with polynomials in d non-commuting indeterminates)
carries an important commutative product known as the shuffle product. It is defined
recursively by requiring 6# to be the neutral element, ie. u� 6# = 6#� u = u, and
then

ui� vj = (u� vj)i+ (ui� v)j .

Let Xs,t be the signature of a smooth path X , as given in (2.23). Show that, for all
words u, v,

〈Xs,t, u� v〉 = 〈Xs,t, u〉〈Xs,t, v〉 . (2.24)
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The case of single letter words w = i, v = j gives i� j = ij + ji and expresses
precisely the product rule from calculus, which leads us to the level-2 geometricity
condition (2.6).

Hint: Proceed by induction in joint length: express 〈Xs,t, ui〉〈Xs,t, vj〉 by the prod-
uct rule as an integral over [s, t] and use the hypothesis for words of joint length
|u|+ |v|+ 1 < |ui|+ |vj|.
Exercise 2.3∗ Call a tensor series x ∈ T ((Rd)) group-like, in symbols x ∈ G((Rd)),
if for all words u, v,

〈x, u� v〉 = 〈x, u〉〈x, v〉 . (2.25)

An element in T ((Rd)) is called a Lie series if, for all N ∈ N, its projection to
T (N) = T (N)(Rd) is a Lie polynomial, i.e. an element of g(N), which was defined
in Section 2.4 as the Lie algebra generated by Rd ⊂ T (N)

0 . Given x ∈ T ((Rd)), show
that x is group-like, i.e. x ∈ G((Rd)), if and only if log x is a Lie series.

Exercise 2.4]

a) It is common to define the (V ⊗ V )-valued map X on ∆0,T := {(s, t) : 0 ≤
s ≤ t ≤ T} rather than [0, T ]2. There is no difference however: if Xs,t is only
defined for s ≤ t, show that the relation (2.1) implies

Xt,s = −Xs,t +Xs,t ⊗Xs,t .

b) In fact, show that knowledge of the path t 7→ (X0,t,X0,t) already determines
the entire second order process X. In this sense (X,X) is indeed a path, and not
some two-parameter object, cf. Remark 2.5.

c) Specialise to the case of geometric rough path and show the identity Xt,s = XTt,s
where (. . .)T denotes the transpose. (When dimV = 1, so that X is scalar
valued, this is a trivial consequence of Xs,t = X2

s,t/2.)

Exercise 2.5 Consider s ≡ τ0 < τ1 < . . . < τN ≡ t. Show that (2.1) implies

Xs,t =
∑

0≤i<N

Xτi,τi+1
+

∑
0≤j<i<N

Xτj ,τj+1
⊗Xτi,τi+1

=
N−1∑
i=0

(
Xτi,τi+1

+Xs,τi ⊗Xτi,τi+1

)
. (2.26)

This identity effectively compares Xs,t with a left-point Riemann-Stieltjes approxima-
tion

∑N−1
i=0 Xs,τi ⊗Xτi,τi+1

of the “motivating” integral expression in (2.2).

Exercise 2.6 Following Section 2.3 and Exercise 2.4, view X ∈ C α([0, T ], V ) as a
one-parameter path and define the (time T ) time reversal of X in the “naı̈ve” way as

←−
X t = XT−t , 0 ≤ t ≤ T .

Verify that
←−
X is again a rough path, i.e.

←−
X ∈ C α. Show furthermore that

←−
X is

geometric if and only if X is geometric.
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Exercise 2.7] Let V be a Banach space.

a) Let α ∈ (0, 1]. Show that the linear space of all continuous maps X : [0, T ]2 →
V ⊗V s.t. ‖X‖ := sup |Xs,t|/|t− s|2α <∞ is a Banach space, denoted by C2α

2 .
Deduce that Cα⊕C2α

2 is also Banach, with seminorm ‖•, •‖α,2α = ‖ •‖α+‖ •‖2α.
(A genuine norm is given by (X,X) 7→ |X0|+ ‖X,X‖α,2α.)

b) Show that the rough path spaces C α
g and C α are complete metric spaces. In fact,

both are closed subspaces, defined through (nonlinear) algebraic relations, of
the infinite-dimensional Banach space Cα ⊕ C2α

2 .
c) Show that the rough path spaces C α

g and C α over V = R (and a fortiori every
V 6= 0) are not separable. (You may use the well-known fact that the Hölder
spaces Cα([0, T ],R) are non-separable.)

Exercise 2.8 (Separable rough path spaces) Let V be a separable Banach space
and α ∈ ( 1

3 ,
1
2 ].

a) Show separability of the space of geometric (α-Hölder) rough paths

C 0,α
g ([0, T ], V )

def
= cl(L (C∞)) ⊂ C α([0, T ], V ) .

Together with Exercise 2.7, b), this shows that C 0,α
g is Polish.

b) Show that the closure of smooth rough paths,

C 0,α([0, T ], V )
def
= cl(C∞) ⊂ C α([0, T ], V ) ,

is also separable (and hence Polish).

Solution. (a) Let Q be a countable, dense subset of V and consider the space
Λn of paths which are piecewise linear between level-n dyadic rationals Dn :=
{kT/2n : 0 ≤ k ≤ 2n}, and, at level-n dyadic points, take values in Q. Clearly Λ =
∪Λn is countable for each Λn is in one-to-one correspondence with the (2n + 1)-fold
Cartesian product of Q. It is easy to see that each smooth X is the limit in C1 of
some sequence (Xn) ⊂ Λ. Indeed, one can take Xn to be the piecewise linear
dyadic approximation, modified such that Xn|Dn takes values in Q and such that
|(Xn −X)|Dn | < 1/n. By continuity of the map X ∈ C1 7→

(
X,
∫
X ⊗ dX

)
∈

C α in the respective topologies (we could even take α = 1), we have more than
enough to assert that every lifted smooth path,

(
X,
∫
X ⊗ dX

)
, is the limit in C α of

lifted paths in Λ. It is then easy to see that every limit point of lifted smooth paths is
also the limit of lifted paths in Λ.

Exercise 2.9 (Interpolation)] Assume that Xn ∈ C β , for 1/3 < α < β, with
uniform bounds

sup
n
‖Xn‖β <∞ and sup

n
‖Xn‖2β <∞

and uniform convergence Xn
s,t → Xs,t and Xns,t → Xs,t, i.e. uniformly over s, t ∈

[0, T ]. Show that this implies X ∈ C β and Xn → X in C α. Show furthermore that
the assumption of uniform convergence can be weakened to pointwise convergence:
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∀t ∈ [0, T ] : Xn
0,t → X0,t and Xn0,t → X0,t .

Solution. Using the uniform bounds and pointwise convergence, there exists C such
that uniformly in s, t

|Xs,t| = lim
n

∣∣Xn
s,t

∣∣ ≤ C|t− s|β , |Xs,t| = lim
n

∣∣Xns,t∣∣ ≤ C|t− s|2β .
It readily follows that X = (X,X) ∈ C β . In combination with the assumed uniform
convergence, there exists εn → 0, such that, uniformly in s, t,

|Xs,t −Xn
s,t| ≤ εn , |Xs,t −Xn

s,t| ≤ 2C|t− s|β ,

|Xns,t − Xs,t| ≤ εn , |Xns,t − Xs,t| ≤ 2C|t− s|2β .

By geometric interpolation (a ∧ b ≤ a1−θbθ when a, b > 0 and 0 < θ < 1) with
θ = α/β we have

|Xs,t −Xn
s,t| . ε1−α/β

n |t− s|α , |Xns,t − Xs,t| . ε1−α/β
n |t− s|2α ,

and the desired convergence in C α follows.
It remains to weaken the assumption to pointwise convergence. By Chen’s relation,

pointwise convergence of Xn0,t for all t actually implies pointwise convergence of
Xns,t for all s, t. We claim that, thanks to the uniform Hölder bounds, this implies
uniform convergence. Indeed, given ε > 0, pick a (finite) dissection D of [0, T ]
with small enough mesh so that C|D|β < ε/8. Given s, t ∈ [0, T ] write ŝ, t̂ for the
nearest points in D and note that

|Xs,t −Xn
s,t| ≤ |Xŝ,t̂ −Xn

ŝ,t̂
|+ |Xs,ŝ|+ |Xn

s,ŝ|+ |Xt,t̂|+ |Xn
t,t̂
|

≤ |Xŝ,t̂ −Xn
ŝ,t̂
|+ ε/2 .

By picking n large enough, |Xŝ,t̂ −Xn
ŝ,t̂
| can also be bounded by ε/2, uniformly

over the (finitely many!) points in D, so that Xn → X uniformly. Although the
second level is handled similarly, the non-additivity of (s, t) 7→ Xs,t requires some
extra care, (2.1). For simplicity of notation only, we assume s < ŝ < t = t̂ so that

|Xs,t − Xns,t| ≤ |Xs,ŝ − Xnŝ,t|+ |Xŝ,t|+ |Xs,ŝ ⊗Xŝ,t −Xn
s,ŝ ⊗Xn

ŝ,t|.

It remains to write the last summand as |Xs,ŝ⊗(Xŝ,t−Xn
ŝ,t)−(Xn

s,ŝ−Xs,ŝ)⊗Xn
ŝ,t|

and to repeat the same reasoning as in the first level.

Exercise 2.10 (Pure area rough path)] Identify R2 with the complex numbers and
consider

[0, 1] 3 t 7→ n−1 exp
(
2πin2t

)
≡ Xn.

a) Set Xns,t :=
∫ t
s
Xn
s,r ⊗ dXn

r . Show that, for fixed s < t,
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Xn
s,t → 0, Xns,t → π(t− s)

(
0 1
−1 0

)
. (2.27)

b) Establish the uniform bounds supn ‖Xn‖1/2 <∞ and supn ‖Xn‖1 <∞.

c) Conclude that (Xn,Xn) converges in C α, any α < 1/2.

Solution. a) Obviously, Xn
s,t = O(1/n)→ 0 uniformly in s, t. Then

Xns,t =
1

2
Xn
s,t ⊗Xn

s,t +Ans,t = O
(
1/n2

)
+Ans,t

where Ans,t ∈ so(2) is the antisymmetric part of Xns,t. To avoid cumbersome
notation, we identify (

0 a
−a 0

)
∈ so(2)↔ a ∈ R.

Ans,t then represents the signed area between the curve (Xn
r : s ≤ r ≤ t) and

the straight chord from Xn
t to Xn

s . (This is a simple consequence of Stokes
theorem: the exterior derivative of the 1-form 1

2 (x dy − y dx) which vanishes
along straight chords, is the volume form dx∧dy.) With s < t, (Xn

r : s ≤ r ≤ t)
makes bn2(t− s)c full spins around the origin, at radius 1/n. Each full spin
contributes area π(1/n)

2, while the final incomplete spin contributes some area
less than π(1/n)

2. The total signed area, with multiplicity, is thus

Ans,t =
(
n2(t− s) + O(1)

) π
n2

= π(t− s) +
Cs,t
n2

,

where |Cs,t| ≤ π uniformly in s, t. It follows that

Xns,t = π(t− s)
(

0 1
−1 0

)
+ O

(
1/n2

)
(2.28)

and the claimed uniform convergence follows.

b) The following two estimates for path increments of n−1 exp
(
2πin2t

)
≡ Xn

t

hold true:∣∣Xn
s,t

∣∣ ≤ ∣∣Ẋn
∣∣
∞ |t− s| ≤ n|t− s| ,

∣∣Xn
s,t

∣∣ ≤ 2|Xn|∞ = 2/n .

Since a ∧ b ≤
√
ab, it immediately follows that∣∣Xn

s,t

∣∣ ≤√2|t− s| ,

uniformly in n, s, t. In other words, supn ‖Xn‖1/2 <∞. The argument for the
uniform bounds on Xs,t is similar. On the one hand, we have the bound (2.28).
On the other hand, we also have
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∣∣Xns,t∣∣ =

∣∣∣∣∫ ∫
s<u<v<t

Ẋn
u ⊗ Ẋn

v du dv

∣∣∣∣ ≤ ∣∣Ẋn
∣∣2
∞
|t− s|2

2
≤ n2

2
|t− s|2 .

The required uniform bound on ‖X‖1 follows by using (2.28) for n2|t− s| > 1
and the above bound for n2|t− s| ≤ 1.

c) The interpolation argument is left to the reader.

Exercise 2.11 (Second order translation and bracket) Fix α ∈ ( 1
3 ,

1
2 ] and X =

(X,X) ∈ C α([0, T ], V ). Define the (second order) translation of X in direction
H ∈ C2α([0, T ], V ⊗ V ) by

TH(X)
def
=
(
X,X + δH) ,

where (δH) denotes the map (s, t) 7→ Ht −Hs.

a) Show that TH(X) ∈ C α. In fact, show that the (linear) space C2α acts freely on
the (nonlinear) rough path space C α in the sense that, for all G,H ∈ C2α, we
have

TG
(
TH(X)

)
= (TG ◦ TH)(X) = TG+H(X) .

Fix X ∈ C α. Is H 7→ TH(X) is injective?
b) When does TH preserve the space C α

g ([0, T ], V )?
c) Show that any X = (X,X) ∈ C α([0, T ], V ) can be written, in a unique way, as
TH(Xg), where Xg ∈ C α

g ([0, T ], V ) for some H ∈ C2α([0, T ],Sym(V ⊗ V )),
so that we have the bijection

C α([0, T ], V )↔ C α
g ([0, T ], V )× C2α([0, T ],Sym(V ⊗ V )).

Show that 2δH = (δX)⊗2 − 2 Sym(X) =: [X], called bracket of the rough path
X, further studied in Section 5.3.

Exercise 2.12 (Vanishing Hölder oscillation) a) Let X ∈ Cα([0, T ], V ) with
Hölder exponent α ∈ (0, 1]. Define the space of Hölder path with “vanish-
ing Hölder oscillation”,

Cvan,α def
=

{
X ∈ Cα : sup

s,t:|t−s|<ε

|Xs,t|
|t− s|α → 0, as ε→ 0

}
.

Show that for α ∈ (0, 1) we have Cvan,α = C0,α, the closure of smooth paths
in Cα. (For α = 1 this fails, why?) Show by explicit example that the inclusion
C0,α ⊂ Cα is strict. (Hint: consider the function t 7→ tα.)

b) Let X = (X,X) ∈ C α
g ([0, T ], V ) with α ∈ ( 1

3 ,
1
2 ]. Define the space of Hölder

rough paths with “vanishing Hölder oscillation”,

C van,α
g

def
=

{
X ∈ C α

g : sup
|t−s|<ε

|Xs,t|
|t− s|α + sup

|t−s|<ε

|Xs,t|
|t− s|2α

→ 0 as ε→ 0

}
.
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i) Show the inclusions C 0,α
g ⊂ C van,α

g and also C β
g ⊂ C van,α

g , whenever
α < β. Show that the inclusion C van,α

g ⊂ C α
g is strict.

ii) Assume dimV < ∞ from here on. Show C 0,α
g = C van,α

g (Hint: use the
“geodesic” approximations from Proposition 2.8.)

iii) From ii) we have C β
g ⊂ C 0,α

g ⊂ C α
g , whenever 1

3 < α < β ≤ 1
2 . Show that

one has the compact embedding (Hint: Arzela–Ascoli)

C β
g ↪→ C 0,α

g .

c) Discuss similar statements for non-geometric rough path spaces. In particular,
discuss the validity of

C 0,α def
= cl(C∞) = C van,α ,

and also, cf. Exercise 2.11, c),

C 0,α ↔ C 0,α
g × C0,2α ;

for α = 1/2 this fails, why?
Remark: This is essentially taken from [FV06a], for a recent extension to

Exercise 2.13∗ Show that for every geometric 1/2-Hölder rough path, X ∈ C
0,1/2
g ,

X is necessarily the iterated Riemann–Stieltjes integral of the underlying path X ∈
C0,1/2. Show also that there exists X ∈ C0,1/2 (with values in R2) such that the
iterated Riemann–Stieltjes integrals do not exist. This further shows that the Lyons–
Victoir extension (Exercise 2.14, part d) can fail for α-Hölder rough paths when
1/α ∈ N.

Solution. We use C 0,α
g ⊂ C van,α

g Exercise 2.12, for α = 1/2. Consider a dissection
{s = τ0 < τ1 < . . . < τN = t} with mesh≤ ε. It follows from Chen’s relation (2.1),
in the form (2.26),∣∣∣Xs,t − ∑

0≤i<N

Xs,τi ⊗Xτi,τi+1

∣∣∣ =
∣∣∣ ∑
0≤i<N

Xτi,τi+1

∣∣∣
≤ C(ε)

∑
0≤i<N

|τi+1 − τi|2α = TC(ε).

It follows that Xs,t is the limit of the above Riemann–Stieltjes sum.
Regarding the second question, a counterexample is found in [FV10b, Ex.9.14

(iii)].

Exercise 2.14 (Lyons–Victoir extension [LV07])]∗ Let α ∈ (0, 1/2) and consider
X ∈ Cα([0, T ], L(V,W )), Y ∈ Cα([0, T ], V ) and Z ∈ C2α

2 ([0, T ],W ). We omit
[0, T ] and the precise target space in what follows. We here say that Chen’s relation
holds if, for every triple of times (s, t, u),

Zs,u = Zs,t + Zt,u + Ys,tXt,u.



2.5 Exercises 35

(This is the algebraic relation satisfied by (s, t) 7→
∫ t
s
Ys,rdXr whenever X ∈ C1.)

a) Show that here exists a bilinear continuous map Φ : Cα × Cα → C2α
2 ,

(Y,X) 7→ Z := Φ(Y,X)

such that Chen’s relation holds.
b) Show that the restriction of Φ to Hölder paths with exponent β ∈ (1/2, 1)

cannot possibly be a continuous as map Cβ × Cβ → C2β
2 . (Hint: the Chen

relation would force Φ(Y,X) to coincide with the Young integral
∫
Y dX . In

particular, Φ0,· would have to coincide with
∫ ·

0
Y (t)Ẋ(t)dt in case of smooth

path. Proposition 1.1 then allows to conclude.)
c) Show however that Φ can be constructed such that its restriction to a map
Cβ × Cβ → Cβ , where the image is now regarded as path t 7→ Φ(Y,X)0,t, is a
bilinear continuous map.

d) Let α ∈ (1/3, 1/2). Show that every path X ∈ Cα([0, T ], V ) admits a (if so
desired: geometric) rough path lift (X,X) ∈ C α([0, T ], V ).

e) Conclude that the nonlinear rough path space C α([0, T ], V ) is in (non-canonical)
one-one correspondence with the linear space Cα([0, T ], V )⊕ C2α([0, T ], V ⊗
V ). (For a generalisation of this to rough paths of low regularity see [TZ18].)

Solution. We show a) and c) together; d) is really a variation / consequence of a)
and we leave b) and e) to the reader. Without loss of generality, T = 1. Write
Z(s,t] ≡ Zs,t and similarly for the path increments of Y,X . We want to construct Z
such that

ZI = ZL + ZR + YL ⊗XR

whenever I = (s, t] is the union of two adjacent “left and right” intervals L and R,
and such that

|ZI | . |I|2α (?)

where |I| = |t − s|. By a continuity and chaining argument (see the proof of
Theorem 3.1 below), it is enough to do so for dyadic times, i.e. s, t ∈ ⋃n>0 Dn

where D0 = {(0, 1]}, D1 = {(0, 1/2], (1/2, 1]} and so on. We start with the (ad-
hoc!) choice Z0,1 ≡ Z(0,1] = 0 and note its (trivial) bilinearity in (Y,X). Assume
now ZI for I ∈ Dn−1 has been constructed. Write I as the union of two nth level
dyadic intervals, I = L ∪R. Make the (ad-hoc) imposition ZL = ZR which leads to

ZL = ZR =
1

2
(ZI − YL ⊗XR).

(Note that bilinear dependence in Y,X is preserved.) On the analytic side, we have

|ZL| = |ZR| =
1

2
|ZI − YL ⊗XR| 6

1

2
|ZI |+

1

2
|YL| · |XR|

and, setting an := supJ∈Dn
|ZJ |/|J |2α = 22nα supJ∈Dn

|ZJ |, it follows that
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an 6 2−(1−2α)an−1 +
1

2
‖Y ‖α‖X‖α,

so that the sequence (an) is bounded since 1− 2α > 0. In fact, one easily obtains
the bound

sup
n>0
|an| . ‖Y ‖α‖X‖α,

with proportionality constant only depending on α < 1/2. This implies the estimate
(?) and also settles continuity ofΦ = Φ(Y,X). It remains to show that t 7→ Z0,t ∈ Cβ
whenever Y,X ∈ Cβ and β ∈ (1/2, 1). But this is an immediate consequence of the
bound

|Z0,t − Z0,s| 6 |Zs,t|+ |X0,s| · |Xs,t|,
noting that, thanks to the first part of the theorem, |Zs,t| . |t− s|2α for all 2α < 1.

Exercise 2.15 (Translation of rough paths) Fix α ∈ ( 1
3 ,

1
2 ] and X = (X,X) ∈

C α
(
[0, T ],Rd

)
. For sufficiently smooth h : [0, T ] → Rd, the translation of X in

direction h is given by
Th(X)

def
=
(
Xh,Xh

)
,

where Xh := X + h and

Xhs,t := Xs,t +

∫ t

s

hs,r ⊗ dXr +

∫ t

s

Xs,r ⊗ dhr +

∫ t

s

hs,r ⊗ dhr . (2.29)

a) Assume h ∈ C1. (In particular, the last three integrals above are well-defined
Riemann–Stieltjes integrals.) Show that for fixed h, the translation operator
Th : X 7→ Th(X) is a continuous map from C α into itself.

b) By convention, h ∈ C1 means Lipschitz or equivalently h ∈W 1,∞, where W 1,q

denotes the space of absolutely continuous paths h with derivative ḣ ∈ Lq.
Weaken the assumption on h by only requiring ḣ ∈ Lq, for suitable q = q(α).
Show that q = 2 (“Cameron–Martin paths of Brownian motion”) works for all
α ≤ 1/2. (As a matter of fact, the integrals appearing in (2.29) make sense for
every q ≥ 1, but the resulting translated “rough path” falls out of the class of
Hölder rough paths. One can resolve this issue by switching to (1/α)-variation
rough paths.)

c) Call any h = (h,H) : [0, T ] → Rd ⊕ (Rd)⊗2 = T
(2)
0 , with h ∈ W 1,2 and

H ∈ C2α an admissible perturbation. With some notational overloading, T is
also used for the second order translation introduced in Exercise 2.11, show that

Th := Th ◦ TH = TH ◦ Th

is a well-defined action on C α, in the sense of Tg◦Th = Tg+h. Show that for any
fixed (a, b) ∈ T (2)

0 , the constant speed perturbation t 7→ (at, bt) is admissible,
which then yields an action of T (2)

0 with its additive structure on C α. Show that
these statements remain true for C α

g provided admissible perturbations take
values in the Lie algebra g(2) = Rd ⊕ so(d) as introduced in Section 2.3.



2.6 Comments 37

Remark: Some far-reaching extensions of this are found in [BCFP19]. Constant
speed perturbations respect stationarity of the noise (stationary increments of the
process) and thus serve as elementary examples of (algebraic) renormalisation
of models in regularity structures. The (abelian) groups (g(2),+) and (T

(2)
0 ,+)

together with their action h 7→ Th, are examples of a renormalisation group in
the sense of Section 15.5.1.

2.6 Comments

Many early works in stochastic analysis starting from Itô (and then in no particular
order Kunita, Yamato, Sugita, Azencott, Ben Arous [BA89], etc) and in control theory
(Magnus, Brocket, Sussmann, Fliess [FNC82], etc) have recognised the importance
of iterated integrals of the driving noise / signal; many references are given [Lyo98]
and the books [LQ02, LCL07, FV10b].

The notion of rough path is due to Lyons and was introduced in [Lyo98] in p-
variation sense, p ∈ [1,∞), and over Banach spaces. Earlier notes [Lyo94, Lyo95]
already dealt with α-Hölder rough paths for α ∈

(
1
3 ,

1
2

]
.

The analytical aspects of rough paths are related to Young’s seminal work
[You36], revisited in Chapter 4. On the algebraic side, Chen’s relation is rooted
in [Che54, Che57] and encodes abstractly basic additivity properties of iterated
integrals. A key observation of Chen [Che57, Che58] was that log signatures are
Lie series, the description via shuffles (cf. Section 2.4) is due to Ree [Ree58] (see
also [Che71]). It follows from the works of Chow and Rashevskii [Cho39, Ras38],
also [Che57, Che58], that this map is, upon truncation, onto: for every element
in x ∈ G(N)(Rd) := exp(g(N)(Rd)) there exists a smooth path γ : [0, 1] → Rd
with prescribed signature x = S(N)(γ). The shortest such path can be viewed as
sub-Riemannian geodesic, concatenation of such geodesics is then a natural way to
approximate weakly geometric rough paths (cf. Proposition 2.8) and underlies the
geometric approach of Friz–Victoir [FV05, FV10b], surveyed from a sub Rieman-
nian perspective in [FG16a]. The polynomial nature of (truncated) shuffle relations
and log Lie conditions recently led Améndola, Friz and Sturmfels [AFS19] to the
study of signature varieties in computational algebraic geometry.

Up to equivalence under a generalised notion of reparameterisation of paths known
as treelike equivalence, the “full” signature map γ 7→ S(γ) ∈ G((V )) ⊂ T ((V )) was
shown to be injective by Chen [Che58] in case of piecewise smooths paths, Hambly–
Lyons [HL10] in case of rectifiable paths, and Boedihardjo et al. [BGLY16] in case of
weakly geometric rough paths of arbitrarily low regularity, see also Boedihardjo, Ni
and Qian [BNQ14]. The inversion problem “signature 7→ path” is studied by Lyons–
Xu [LX17, LX18] and [AFS19]. All this is part of the mathematical justification of
the signature method in machine learning, see e.g. Lyons’ ICM article [Lyo14] and
the survey [CK16].

For some constructions of level-2 geometric rough paths motivated from harmonic
analysis see Hara–Lyons [HL07] and Lyons–Yang [LY13], see also the comments
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Section 3.8 for some martingale constructions related to harmonic analysis. Lyons–
Qian, in their monograph [LQ02] work with geometric rough paths (over a Banach
space V ), per definition limits of canonically lifted smooth paths. The strict inclusion
“geometric ⊂ weakly geometeric” was somewhat blurred in the earlier rough paths
literature. For dimV < ∞, matters were clarified in [FV06a]. For a discussion
of weakly geometric rough paths over Banach spaces in their own right, see e.g.
in [CDLL16], see also the supplementary appendix [BGLY15] of [BGLY16]. The
discussion in Section 2.4, the “shuffle” view on weakly geometric rough paths and
then Gubinelli’s branched rough paths [Gub10], also extends from V = Rd to infinite
dimension but setting up basis-independent notations is somewhat more involved.
See for example [CW16, CCHS20] for some recent results in this direction.

“Naı̈ve” higher order non-geometric rough paths with values in T (N)
1 (V ) are

called in [Lyo98] multiplicative functionals (with α-Hölder or p-variation regularity,
bpc = N ), insisting on their inability to handle nonlinearities when N ≥ 3. The
notion of branched rough path, for any α ∈ (0, 1], further studied in [HK15, FZ18,
BCFP19, BC19, TZ18] provides the required extra information when N ≥ 3; for
N = b1/αc = 2 there is no difference. It is possible to embed spaces of non-
geometric rough paths of low regularity into suitable spaces of geometric rough
paths, see [LV06] or Exercise 2.11 part c) when N = 2. The case of very low
regularities, with N large, is much more involved and studied by Hairer–Kelly
[HK15] and later Boedihardjo–Chevyrev [BC19].

Rough paths with jumps, in p-variation scale, are studied in [Wil01, FS17, FZ18,
CF19], previously introduced discrete rough paths [Kel16] are also accomodated e.g.
by the càdlàg rough path setting of [FZ18]. See also the comment Sections 4.8, 5.6
and 9.6. Rough paths in a geometric ambient space have been studied by Cass, Driver,
Litterer and Lyons in [CLL12, CDL15], see also Bailleul [Bai19] for rough paths on
Banach manifolds.


	Chapter 2 The space of rough paths
	2.1 Basic definitions
	2.2 The space of geometric rough paths
	2.3 Rough paths as Lie group valued paths
	2.4 Geometric rough paths of low regularity
	2.5 Exercises
	2.6 Comments




