
Chapter 15
Application to the KPZ equation

We show how the theory of regularity structures can be used to build a robust
solution theory for the KPZ equation. We also give a very short survey of the original
approach to the same problem using controlled rough paths and we discuss how the
two approaches are linked.

15.1 Formulation of the main result

Let us now briefly explain how the theory of regularity structures can be used to
make sense of solutions to very singular semilinear stochastic PDEs. We will keep
the discussion in this chapter at a very informal level without attempting to make
mathematically precise statements. The interested reader may find more details in
[Hai13, Hai14b].

For definiteness, we focus on the case of the KPZ equation [KPZ86], which is
formally given by

∂th = ∂2
xh+ (∂xh)2 + ξ − C , (15.1)

where ξ denotes space-time white noise, the spatial variable takes values in the
one-dimensional torus T, i.e. in the interval [0, 2π] endowed with periodic boundary
conditions, and C is a fixed constant. The problem with such an equation is that even
the solution to the linear part of the equation, namely

∂tΨ = ∂2
xΨ + ξ ,

is not differentiable as a function of the spatial variable. As a matter of fact, as already
noted in Section 12.3, for any fixed time t, Ψ has the regularity of Brownian motion
as a function of the spatial variable x. As a consequence, the only way of possibly
giving meaning to (15.1) is to “renormalise” the equation by subtracting from its
right-hand side an “infinite constant”, which counteracts the divergence of the term
(∂xh)2.
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This has usually been interpreted in the following way. Assuming for a moment
that ξ is a smooth function, a simple consequence of the change of variables formula
shows that if we define h = logZ, then Z satisfies the PDE

∂tZ = ∂2
xZ + Z ξ .

The only ill-posed product appearing in this equation now is the product of the
solution Z with white noise ξ. As long as Z takes values in L2, this product can
be given a meaning as a classical Itô integral, so that the equation for Z can be
interpreted as the Itô equation

dZ = ∂2
xZ dt+ Z dW , (15.2)

were W is an L2-cylindrical Wiener process. It is well known [DPZ92] that this
equation has a unique (mild) solution and we can then go backwards and define the
solution to the KPZ equation as h = logZ. The expert reader will have noticed that
this argument appears to be flawed: since (15.2) is interpreted as an Itô equation,
we should really use Itô’s formula to find out what equation h satisfies. If one does
this a bit more carefully, one notices that the Itô correction term appearing in this
way is indeed an infinite constant! This is the case in the following sense. If Wε

is a Wiener process with spatial covariance given by x 7→ ε−1%(ε−1x) for some
smooth compactly supported function % integrating to 1 and Zε solves (15.2) with
W replaced by Wε, then hε = logZε solves

dh = ∂2
xh dt+ (∂xh)2 dt+ dWε − ε−1C% dt , (15.3)

for some constant C% depending on %. Since Zε converges to a strictly positive limit
Z, this shows that the sequence of functions hε solving (15.3) converges to a limit
h. This limit is called the Hopf–Cole solution to the KPZ equation [Hop50, Col51,
BG97, Qua11].

This notion of solution is of course not very satisfactory since it relies on a nonlin-
ear transformation and provides no direct interpretation of the term (∂xh)2 appearing
in the right-hand side of (15.1). Furthermore, many natural growth models lead to
equations that structurally “look like” (15.1), rather than (15.2). Since perturbations
are usually rather badly behaved under exponentiation and since there is no really
good approximation theory for (15.2) either (for example it had been an open problem
for some time whether space-time regularisations of the noise lead to the same notion
of solution), one would like to have a robust solution theory for (15.1) directly.

Such a robust solution theory is precisely what the theory of regularity structures
provides. More precisely, it provides spaces M (a suitable space of “admissible
models”) and Dγ , maps Sa (an abstract “solution map”), R (the reconstruction
operator) and L (a “canonical lift map”), as well as a finite-dimensional group R
acting both on R and M such that the following diagram commutes:
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RL

Sa

Sc
(15.4)

Here, Sc denotes the classical solution map Sc(C, ξ, h0) which provides the solution
(up to some fixed final time T ) to the equation

∂th = ∂2
xh+ (∂xh)2 + ξ − C , h(0, x) = h0(x) , (15.5)

for regular instances of the noise ξ. The space F of “formal right-hand sides” is in
this case just a copy of R which holds the value of the constant C appearing in (15.5).
The diagram commutes in the sense that if M ∈ R, then

Sc(M(C), ξ, h0) = RSa(C,M(L (ξ)), h0) ,

where we identify M with its respective actions on R and M . A full justification of
these considerations for a very large class of systems of SPDEs is beyond the scope
of this text. The construction of R in full generality and its action on the space of
admissible models was obtained in [BHZ19]. Its adjoint action on a suitable space of
equations F as well as the commutativity of the above diagram were then obtained
in [BCCH17]. Important additional features of this picture are the following:

• If ξε denotes a “natural” regularisation of space-time white noise, then there ex-
ists a sequence Mε of elements in R such that MεL (ξε) converges to a limiting
random element (Π,Γ ) ∈M . This element can also be characterised directly
without resorting to specific approximation procedures andRSa(0, (Π,Γ ), h0)
coincides almost surely with the Hopf–Cole solution to the KPZ equation. The
fact that an analogous statement “always” holds for subcritical equations was
shown in the work [CH16].
• The maps Sa and R are both continuous, unlike the map Sc which is discon-

tinuous in its second argument for any topology for which ξε converges to
ξ.
• As an abstract group, the “renormalisation group” R is simply equal to (R3,+).

However, it is possible to extend the picture to deal with much larger classes of
approximations, which has the effect of increasing both R and the space F of
possible right-hand sides. See for example [HQ18] for a proof of convergence to
KPZ for a much larger class of interface growth models.

Remark 15.1. An important condition for the convergence result in [CH16] to hold is
that T does not contain any symbol τ with deg τ ≤ −d2 and such that τ contains more
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than one noise as a subsymbol. This in particular explains why fractional Brownian
motion BH with Hurst parameter H can only be lifted to a rough path when H > 1

4
even though SDEs driven by fractional Brownian motion are “subcritical” for every
H > 0. Indeed, for H = 1

4 , the natural degree of the symbol Ẇ of Section 13.2.2
(which would be represented by in the graphical notation used earlier and contains
two instances of the noise) would be (2H − 1)− = − 1

2

−
< −d2 .

An example of statement that can be proved from these considerations (see
[Hai13, Hai14b, HQ18]) is the following.

Theorem 15.2. Consider the sequence of equations

∂thε = ∂2
xhε + (∂xhε)

2 + ξε − Cε , (15.6)

where ξε = δε ∗ ξ with δε(t, x) = ε−3%(ε−2t, ε−1x), for some smooth compactly
supported function % with

∫
% = 1, and ξ denotes space-time white noise. Then, there

exists a (diverging) choice of constants Cε such that the sequence hε converges in
probability to a limiting process h.

Furthermore, one can ensure that the limiting process h does not depend on the
choice of mollifier % and that it coincides with the Hopf–Cole solution to the KPZ
equation.

Remark 15.3. It is important to note that although the limiting process is independent
of the choice of mollifier %, the constant Cε does very much depend on this choice,
as we already alluded to earlier.

Remark 15.4. Regarding the initial condition, one can take h0 ∈ Cβ for any fixed
β > 0. Unfortunately, this result does not cover the case of “infinite wedge” initial
conditions, see for example [Cor12].

The aim of this section is to sketch how the theory of regularity structures can be
used to obtain this kind of convergence results and how (15.4) is constructed. First of
all, we note that while our solution h will be a Hölder continuous space-time function
(or rather an element of Dγ for some regularity structure with a model over R2), the
“time” direction has a different scaling behaviour from the three “space” directions.
As a consequence, it turns out to be effective to slightly change our definition of
“localised test functions” by setting

ϕλ(s,x)(t, y) = λ−3ϕ
(
λ−2(t− s), λ−1(y − x)

)
.

Accordingly, the “effective dimension” of our space-time is actually 3, rather than 2.
The theory presented in Chapter 13 extends mutatis mutandis to this setting. (Note
however that when considering the degree of a regular monomial, powers of the time
variable should now be counted double.) Note also that with this way of measuring
regularity, space-time white noise belongs to C−α for every α > 3

2 . This is because
of the bound (

E〈ξ, ϕλx〉2
)1/2

= ‖ϕλx‖L2 ≈ λ− 3
2 ,
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combined with an argument somewhat similar to the proof of Kolmogorov’s continu-
ity lemma.

15.2 Construction of the associated regularity structure

Our first step is to build a regularity structure that is sufficiently large to allow to
reformulate (15.1) as a fixed point in Dγ for some γ > 0. Denoting by G the heat
kernel (i.e. the Green’s function of the operator ∂t − ∂2

x), we can rewrite the solution
to (15.1) with initial condition h0 as

h = G ∗
(
(∂xh)2 + ξ

)
+ Gh0 , (15.7)

where ∗ denotes space-time convolution and where we denote by Gh0 the harmonic
extension of h0. (That is the solution to the heat equation with initial condition h0.)

Remark 15.5. We view (15.7) as an equation on the whole space by considering its
periodic extension.

In order to have a chance of fitting this into the framework described above, we
first decompose the heat kernel G as in Exercise 14.5 as

G = K + K̂ ,

where the kernel K satisfies all of the assumptions of Section 14.4 (with β = 2) and
the remainder K̂ is smooth. If we consider any regularity structure containing the
usual Taylor polynomials and equipped with an admissible model, is straightforward
to associate to K̂ an operator K̂ : Dγ → D∞ via

(
K̂f
)
(z) =

∑
k

Xk

k!

(
DkK̂ ∗ Rf

)
(z) ,

where z denotes a space-time point and k runs over all possible 2-dimensional
multiindices. Similarly, the harmonic extension of h0 can be lifted to an element
in D∞ which we denote again by Gh0 by considering its Taylor expansion around
every space-time point. At this stage, we note that we actually cheated a little: while
Gh0 is smooth in {(t, x) : t > 0, x ∈ T} and vanishes when t < 0, it is of course
singular on the time-0 hyperplane {(0, x) : x ∈ T}. This problem can be cured
by introducing weighted versions of the spaces Dγ allowing for singularities on
a given hyperplane. A precise definition of these singular model spaces and their
behaviour under multiplication and the action of the integral operator K can be found
in [Hai14b]; but see Exercise 4.12 for the (singular, controlled) rough path analogue.
For the purpose of the informal discussion given here, we will simply ignore this
problem.

This suggests that the “abstract” formulation of (15.1) should be given by
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H = K
(
(∂H)2 +Ξ

)
+ K̂

(
(∂H)2 +Ξ

)
+ Gh0 , (15.8)

where it still remains to be seen how to define an “abstract differentiation operator” ∂
realising the spatial derivative ∂x as in Section 14.1. In view of (14.11), this equation
is of the type

H = I
(
(∂H)2 +Ξ

)
+ (. . .) , (15.9)

where the terms (. . .) consist of functions that take values in the subspace T̄ of
T spanned by regular Taylor polynomials in the time variable X0 and the space
variable X1. (As previously, X denotes the collection of both.) In order to build
a regularity structure in which (15.9) can be formulated, it is then natural to start
with the structure T̄ given by these abstract polynomials (again with the parabolic
scaling which causes the abstract “time” variable to have degree 2 rather than 1),
and to then add a symbol Ξ to it which we postulate to have degree − 3

2

−, where
we denote by α− an exponent strictly smaller than, but arbitrarily close to, the value
α. As a consequence of our definitions, it will also turn out that the symbol ∂ is
always immediately followed by the symbol I , so that it makes sense to introduce the
shorthand I ′ = ∂I . This is also suggestive of the fact that I ′ can itself be considered
an abstract integration map, associated to the kernel K ′ = ∂xK. Comparing this to
Remark 14.24, we see that we could alternatively view I ′ as the operator I(0,1).

Remark 15.6. In order to avoid a proliferation of inconsequential terms, we impose
from the start the identity I ′(1) = 0 in T (we can do this by Remark 15.6). We could
also set I(1) = 0 by choosing K appropriately, but this is irrelevant anyway in view
of Remark 15.8 below.

We then simply add to T all of the formal expressions that an application of the
right-hand side of (15.9) can generate for the description of H , ∂H , and (∂H)2.
The degree of a given expression is furthermore completely determined by the rules
deg Iτ = deg τ + 2, deg ∂τ = deg τ − 1 and deg τ τ̄ = deg τ + deg τ̄ . For example,
it follows from (15.9) that the symbol I(Ξ) is required for the description of H , so
that I ′(Ξ) is required for the description of ∂H . This then implies that I ′(Ξ)2 is
required for the description of the right-hand side of (15.9), which in turn implies
that I(I ′(Ξ)2) is also required for the description of H , etc. This “Picard iteration”
yields the (formal) expansion, writing z for a generic space-time point,1

H(z) = h(z) 1 + I(Ξ) + I(I ′(Ξ)2) + h′(z)X1

+ 2I(I ′(Ξ)I ′(I ′(Ξ)2)) + 2h′(z)I(I ′(Ξ)) + . . .

where h and h′ are to be considered as independent functions (similar to a controlled
rough path). In particular, h may not be differentiable at all.

Remark 15.7. Here we made a distinction between I(Ξ), interpreted as the linear
map I applied to the symbol Ξ, and the symbol I(Ξ). Since the map I is then

1 Note that h′ is treated as an independent function (similar to the Gubinelli derivative of a controlled
path); we do not even expect h to be differentiable!
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defined by I(Ξ) := I(Ξ), this distinction is somewhat moot and will be blurred in
the sequel. Similarly, the abstract (spatial) differentiation operator ∂ acts on suitable
symbols as ∂(I(. . .)) := I ′(. . .), plus of course ∂(Xk0

0 Xk1
1 ) := k1X

k0
0 Xk1−1

1 , for
every multi-index (k0, k1).

More formally, denote by U the collection of those formal expressions that are
required to describe H . This is then defined as the smallest collection containing Xk

for all multiindices k ≥ 0, I(Ξ), and such that

τ1, τ2 ∈ U =⇒ I(∂τ1∂τ2) ∈ U .

We then set
W = U ∪ {Ξ} ∪ {∂τ1∂τ2 : τi ∈ U} , (15.10)

and define T as the set of all linear combinations of elements in a finite subset
W0 ⊂ W , sufficiently large to allow close the fixed pointed problem (15.8). Remark
that this defines (implicitly!) a multiplication between some (but not all) of the
symbols, notably ∂τ1 ? ∂τ2 := ∂τ1∂τ2 so that we can safely omit ? in the sequel.
Naturally, Tα consists of those linear combinations that only involve elements inW0

of degree α. (AlreadyW contains only finitely many elements of degree less than α,
which reflects subcriticality of the problem.)

In order to simplify expressions later, we use again a shorthand graphical notation
for elements of W as we already did in Section 14.5. Similarly to before, Ξ is
represented a small circle, while the integration map I is represented by a downfacing
wavy line and I ′ = ∂I is represented by a downfacing plain line. For example, we
write

I ′(Ξ)2 = ? = , (I ′(I ′(Ξ)2))2 = ? = , I(I ′(Ξ)2) = .

Symbols containing factors of X have no particular graphical representation, so we
will for example write XiI ′(Ξ)2 = Xi . With this notation,

H = h 1 + + + h′X1 + 2 + 2h′ + . . .

described with symbols in U = {1, , , X1, , , . . .}, here spelled out up to degree
3
2 (which will turn out to be “enough”, cf. Remark 15.8 below). For the “right-hand
side” of the equation we need to include Ξ and, spelling out symbols up to degree 0
which is the minimum required to be able to apply the reconstruction operator to it,

{∂τ1∂τ2 : τi ∈ U} = { , , , , , , , 1, . . .} .

As it turns out, provided that we also include the noise itself, the 14 symbols encoun-
tered so far already generate a sufficiently large structure space, given by

T = TKPZ
def
= 〈W0〉 = 〈Ξ, , , , , , , , 1, , , X1, , 〉 . (15.11)

Here we ordered symbols by increasing order of degree. In fact, if τ is a tree with
l circles, m plain lines and k wavy lines, then deg τ = n × 3

2

−
+ m + 2k. Note
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that degX1 = 1 for the abstract space variable, whereas due to parabolic scaling the
abstract time variable has degX0 = 2 and does not show up here.

Note that at this stage, we have not defined a regularity structure yet, as we have
not described a structure group G acting on T . However, similarly to what was done
in (14.24), it is already natural to consider “representations” of the existing structure,
which are linear mapsΠ from T into some suitable space of functions / distributions
respecting a form of admissibility condition. For the sake of the present discussion,
we assume that all objects are smooth. Given a (smooth) realisation of a “driving
noise” ξ, we can then define its canonical lift by setting(

ΠΞ
)
(x) = ξ(x) ,

(
ΠXk

)
(x) = xk , (15.12)

and then recursively by

Πτ τ̄ = Πτ ·Π τ̄ , ΠIτ = K ∗Πτ . (15.13)

In general, we say that a linear map Π : T → C(Rd) is admissible if one has the
relations

ΠIτ = K ∗Πτ , Π1 = 1 , ΠXkτ = (•)kΠτ . (15.14)

(And similarly with I replaced by I ′ and K replaced by ∂xK in the case of KPZ. . .)
Such a mapΠ is clearly not a model since it is a single linear map rather than a

family of such maps and the admissibility condition (14.8) is replaced by the more
“natural” identityΠIτ = K ∗Πτ . We will see in the next section how to construct
the structure group G and how to use its construction to assign in a unique way a
model to the linear mapΠ .

Remark 15.8 (Where to truncate?). The (14-dimensional) space TKPZ is indeed suffi-
cient to treat the KPZ equation. Indeed, once in possession of an admissible model,
thanks to Theorem 14.5, the fixed point problem (15.8) can be solved in Dγ as soon
as γ is a little bit greater than 3/2. This is why we only need to keep track of terms
describing the abstract KPZ solution up to degree 3/2. Regarding the terms required
to describe the right-hand side of the fixed point problem, we need to go up to degree
0, which guarantees that the reconstruction operator (and therefore also the integra-
tion operator K) is well-defined. This is similar to T = T<1/2, as in Definition 13.4,
being sufficient to treat rough / stochastic integration (and then SDEs) in a Brown-
ian rough path / model context. Indeed, in that context (Proposition 13.21) consider
Y ∈ D2α

0 (now for α to be determined!) and abstract Brownian noise Ẇ ∈ D∞−1/2−
.

Then f(Y ), composition with a nice function f , is also in D2α
0 and the product is

in D2α−1/2− . We needed this exponent to be positive to have a well-defined rough
integration which in turn allows to formulate a fixed point problem, so that we need
2α ≥ 1/2. By definition of D2α, this means that we need Y to take values in T<1/2

which is of course what we did by working in 〈Ẇ , Ẇ, 1,W 〉, ignoring all symbols
of higher degree.
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15.3 The structure group and positive renormalisation

Recall that the purpose of the group G is to provide a class of linear maps Γ : T → T
arising as possible candidates for the action of “reexpanding” a “Taylor series” around
a different point. In our case, in view of (14.8) and Definition 14.3, the coefficients
of these reexpansions will naturally be some polynomials in x and in the expressions
appearing in (14.9). This suggests that we should define a space T+ whose basis
vectors consist of formal expressions of the type

Xk
N∏
i=1

J`i(τi) , (15.15)

where N is an arbitrary but finite number, the τi are canonical basis elements in
W defined in (15.10), and the `i are d-dimensional multiindices satisfying |`i| <
deg τi + 2. (The last bound is a reflection of the restriction of the summands in (14.9)
with β = 2.) The space T+, which also contains the empty product 1, is endowed
with a natural commutative product, written as · or (usually) omitted. (T+, ·,1)
is nothing but the free commutative algebra over the symbols {Xi,J`(τ)} with
i ∈ {1, . . . , d} and τ ∈ W with degJ`(τ) := deg τ + 2− |`| > 0.)

Remark 15.9. While the canonical basis of T+ is related to that of T , it should be
viewed as a completely disjoint space. We emphasise this by using the notation J`
rather than I`.

The space T+ also has a natural graded structure T+ =
⊕
T+
α similarly to before

by setting
degJ`(τ) = deg τ + 2− |`| , degXk = |k| ,

and by postulating that the degree of a product is the sum of the degrees of its factors.
Unlike in the case of T however, elements of T+ all have strictly positive degree,
except for the empty product 1 which we postulate to have degree 0.

Still inspired by (14.8), as well as by the multiplicativity constraint given by
Definition 14.3, we consider the following construction. We define a linear map,
sometimes called coaction, ∆+ : T → T ⊗ T+ in the following way. For the basic
elements Ξ , 1 and Xi (i ∈ {0, 1}), we set

∆+1 = 1⊗ 1 , ∆+Ξ = Ξ ⊗ 1 , ∆+Xi = Xi ⊗ 1 + 1⊗Xi .

We then extend this recursively to all of T by imposing the following identities

∆+(τ τ̄) = ∆+τ ·∆+τ̄ ,

∆+I(τ) = (I ⊗ Id)∆+τ +
∑
`

X`

`!
⊗ J`(τ) ,

∆+I ′(τ) = (I ′ ⊗ Id)∆+τ +
∑
`,m

X`

`!
⊗ J`+(0,1)(τ) .
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Here, we extend τ 7→ Jk(τ) to a linear map Jk : T → T+ by setting Jk(τ) = 0 for
those basis vectors τ ∈ W for which deg τ ≤ |k| − 2. This in particular shows that
the sums appearing in the above expressions are actually finite.

Let now G+ denote the set of characters on T+, i.e. all linear maps g : T+ → R
with the property that g(σσ̄) = g(σ)g(σ̄) for any two elements σ and σ̄ in T+. Then,
to any such map, we can associate a linear map Γg : T → T by

Γgτ = (Id⊗ g)∆+τ . (15.16)

In principle, this definition makes sense for every g ∈ (T+)∗. However, as already
seen in (14.21) it turns out that the set of such maps with g ∈ G+ forms a group,
which we take as our structure group G by setting again

G
def
= {Γg : g ∈ G+} . (15.17)

Remark 15.10. A less explicit way to define G is to simply take it as the set of
all linear maps that are ‘allowed’ in the sense that they are upper triangular with
the identity on the diagonal as imposed by (13.5), commute with derivatives as in
Definition 14.1, are multiplicative with respect to the product as in Definition 14.3,
and satisfy (14.7). See for example [Hai16].

Example 15.11 (KPZ structure group). Running through this procedure, and restrict-
ing to T = TKPZ reveals G as a 7-dimensional (non-commutative) matrix group,
canonically realised as a subgroup of the invertible maps T → T , themselves repre-
sentable as 16× 16-matrix. Full details are left for Exercise 15.1.

Example 15.12 (KPZ). Recall T = 〈Ξ, , , , , , , , 1, . . .〉 in the
case of KPZ. Then T+ is linearly spanned by the symbol 1 and polynomials in the
commuting symbols as (partially!) listed in

{J ′( ),J ′( ), . . . ,J (Ξ),J ( ), X1,J ( ),J ( ), . . .}

with (non-negative) degrees { 1
2

≡
, 1

2

−
, . . . , 1=, 1, 3

2

≡
, 3

2

−
, . . .} and shorthands J =

J(0,0),J ′ = J(0,1). We note that all symbols here can be represented by elementary
trees,2 where J (τ) (resp. J ′(τ)) is represented by attaching a single downfacing
wavy (resp. plain) line to the root of τ . For instance

3 · 1− J (Ξ) + 2 · J ′( ) · J ′( ) ∈ T+

but the symbol J ′(Ξ) (which would be of negative homogeneity) is not an element
of T+.

Before we show that G does indeed form a group (actually a subgroup of the
invertible maps from T to T ), we show how to use it to turn an admissible linear

2 With some goodwill this even includes X-factors, which then appear as polynomial decorations
of the trees.
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mapΠ : T → C∞(Rd) (in the sense of (15.14)) into a model (Π,Γ ). Consider the
recursion

fx(J`(τ)) = −
∑

|k+`|<|τ |+2

(−x)k

k!

∫
D`+kK(x− y)

(
Πxτ

)
(dy) ,

Πxτ = (Π ⊗ fx)∆+τ , (15.18)

where we furthermore impose that the fx are characters, namely that they extend
to all of (T+)∗ in a multiplicative fashion, fx(σσ̄) = fx(σ)fx(σ̄). We leave it as a
simple exercise to verify that these two identities are sufficient to define the fx and
the Πx uniquely.

Remark 15.13. The correspondenceΠ ⇔ (Π,Γ ) can also be inverted and the two
notions of admissibility are consistent, so that these are two completely equivalent
ways of looking at admissible models for our regularity structure. Indeed, it suffices
to set Πτ = RHτ , where the elements Hτ ∈ D∞ (i.e. one can make sure that
Hτ ∈ Dγ for any fixed γ) are given by HXk(x) = (X + x)k, HΞ(x) = Ξ, and
then recursively by

HI(τ) = KHτ , Hττ̄ = Hτ ·Hτ̄ .

In particular, this correspondence does not at all rely on the fact that the model
was built by lifting a smooth function. Note that this is strongly reminiscent of the
construction given in Exercise 13.11. See also Exercise 15.3.

If we now define elements Fx ∈ G by

Fxτ
def
= Γfx = (Id⊗ fx)∆+τ , (15.19)

and then set (an expression for F−1
x is given below)

Γxy = F−1
x Fy , (15.20)

it follows immediately from (15.18) that the Πx and the maps Γxy do indeed satisfy
the desired algebraic relation ΠxΓxy = Πy. We also note that the coefficients of
the linear maps Γxy are expressed as polynomials of the numbers fx(J`i(τi)) and
fy(J`i(τi)) for suitable expressions τi and multiindices `i. Note that the linear maps
Fx : T → T perform a kind of “recentering” ofΠ around x in the sense that (15.18)
guarantees that, at least whenΠ is sufficiently smooth, ΠxI(τ) vanishes at the order
determined by the degree of τ . As a matter of fact, one could even have taken this as
the defining property of the maps Fx (together with the fact that they are of the form
(15.19) for some multiplicative functional fx). We will see in Section 15.5 below
that the renormalisation procedure required to give a meaning to singular SPDEs
like the KPZ equation can equally be interpreted as a type of recentering procedure,
but this time in “probability space”. This also explains the terminology “positive
renormalisation” which is sometimes encountered for the maps Fx.
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We now argue that G as defined above actually forms a group, so that in particular
the maps Fx are invertible. To this end, define a linear map ∆+ : T+ → T+ ⊗ T+,
very similarly to the previously defined map ∆+ : T → T ⊗ T+, by

∆+1 = 1⊗ 1 , ∆+X = X ⊗ 1 + 1⊗X ,

extended recursively to all of T+ by imposing the identities, for all multiindices k,

∆+(σσ̄) = (∆+σ)(∆+σ̄) ,

∆+Jk(τ) = (Jk ⊗ Id)∆+τ +
∑
`∈N2

X`

`!
⊗ J`+k(τ) .

(15.21)

It can be verified that ∆+ is coassociatve in the sense

(∆+ ⊗ Id)∆+ = (Id⊗∆+)∆+ . (15.22)

This and the multiplicative property make ∆+ a coproduct and T+ a (connected,
graded) coalgebra. From general principles there exists a unique linear map A+ :
T+ → T+, called antipode, so that (T+, ·, ∆+,A+) is a Hopf algebra. Moreover,
our notational overload is justified by the fact that (15.22) also holds when both sides
of the identity are interpreted as linear maps T → T ⊗ T+ ⊗ T+.

We then define a product ◦ on the space of linear functionals f : T+ → R by

(f ◦ g)(σ) = (f ⊗ g)∆+σ , (15.23)

noting that coassociativity of ∆+ implies associativity of ◦. Restricted to multiplica-
tive elements, i.e. to G+, the definition of the antipode implies that G+ is indeed
a group with f−1 = fA+, that is f−1 ◦ f = f ◦ f−1 = e, where e : T+ → R
maps every basis vector of the form (15.15) to zero, except for e(1) = 1. This is a
general construction for Hopf algebras and G+ is known as the character group of
T+. The product ◦ in this context is usually called the convolution product. Indeed,
the first identity in (15.21), valid by definition for every coproduct in a Hopf algebra,
ensures that if f and g belong to G+, then f ◦ g ∈ G+. (Spelled out, this says if
f, g ∈ (T+)∗ are both multiplicative in the sense that f(σσ̄) = f(σ)f(σ̄), then f ◦ g
is again multiplicative.)

Since, by definition, Γf = (Id⊗ f)∆ we can rewrite (15.19) as Fx = Γfx , and
the intertwining identity (15.22) entails that

Γf◦g = ΓfΓg .

Also, the element e is neutral in the sense that Γe is the identity operator, and as a
consequence Γf−1 = Γ−1

f whenever f ∈ G+. In particular then,

F−1
x = Γf−1

x
= ΓfxA+

and we can fully spell out (15.20) as
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Γxy = ΓfxA+◦fy = (Id⊗ γx,y)∆+ , γx,y
def
= fxA+ ◦ fy = (fxA+ ⊗ fy)∆+ .

The fact that ∆+ preserves degree (as can be seen by induction from its definition)
and that elements of T+ all have strictly positive degree, except for 1 leads to
the conclusion that, for every Γ ∈ G and every τ ∈ T , Γτ is indeed of the form
(13.5). The multiplicativity property of∆+ furthermore guarantees that the constraint
mentioned in Definition 14.3 does hold. This justifies our definition of structure group
G associated to T as the set of all multiplicative linear functionals on T+, acting on
T via (15.16), as given in (15.17), for G has group structure induced from G+.

Returning to the relation between Πx andΠ , we showed actually more, namely
that the knowledge of Π and the knowledge of (Π,Γ ) are equivalent. Indeed, on
the one hand one has Π = ΠxF

−1
x and the map Fx can be recovered from Πx by

(15.18) and (15.19). On the other hand however, one also has of course Πx = ΠFx
and, if we equip T with an adequate recursive structure, then we have already seen
that the coefficients fx are uniquely determined byΠ .

Furthermore, the correspondence (Π,Γ ) ↔ Π outlined above works for any
admissible model and does not at all rely on the fact that it was built by lifting a
continuous function. In particular, it does not rely on the fact that Πx and Π are
multiplicative. In the general case, the first identity in (15.13) may then of course
fail to be true, even ifΠτ happens to be a continuous function for every τ ∈ T . The
only reason why our definition of an admissible model does not simply consist of
the single mapΠ is that there seems to be no simple way of describing the topology
given by Definition 13.5 in terms ofΠ .

15.4 Reconstruction for canonical lifts

Recall that, given any sufficiently regular function ξ (say a continuous space-time
function), there is a canonical way of lifting ξ to an admissible model L ξ = (Π,Γ )
for T by imposing (15.12) and (15.13), and then turningΠ into a model as described
in the previous paragraph. With such a model L ξ at hand, it follows from (15.13)
and (13.26) that the associated reconstruction operator satisfies the properties

RKf = K ∗ Rf , R(fg) = Rf · Rg ,

as long as all the functions to whichR is applied belong to Dγ for some γ > 0. As
a consequence, applying the reconstruction operator R to both sides of (15.8), we
see that if H solves (15.8) then, provided that the model (Π,Γ ) = L ξ was built as
above starting from any continuous realisation ξ of the driving noise, the function
h = RH solves the equation (15.1).

At this stage, the situation is as follows. For any continuous realisation ξ of the
driving noise, we have factorised the solution map (h0, ξ) 7→ h associated to (15.1)
into maps

(h0, ξ) 7→ (h0,L ξ) 7→ H 7→ h = RH ,
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where the middle arrow corresponds to the solution to (15.8) in some weighted
Dγ-space. The advantage of such a factorisation is that the last two arrows yield
continuous maps, even in topologies sufficiently weak to be able to describe driving
noise having the lack of regularity of space-time white noise. The only arrow that
isn’t continuous in such a weak topology is the first one. At this stage, it should
be believable that a similar construction can be performed for a very large class of
semilinear stochastic PDEs, provided that certain scaling properties are satisfied.
This is indeed the case and large parts of this programme have been carried out in
[Hai14b].

Given this construction, one is lead naturally to the following question: given a
sequence ξε of “natural” regularisations of space-time white noise, for example as
in (15.6), do the lifts L ξε converge in probably in a suitable space of admissible
models? Unfortunately, unlike in the theory of rough paths where this is very often
the case (see Section 10), the answer to this question in the context of SPDEs is often
an emphatic no. Indeed, if it were the case for the KPZ equation, then one could
have been able to choose the constant Cε to be independent of ε in (15.6), which is
certainly not the case.

15.5 Renormalisation of the KPZ equation

One way of circumventing the fact that L ξε does not converge to a limiting model
as ε→ 0 is to consider instead a sequence of renormalised models. The main idea
is to exploit the fact that our definition of an admissible model does not impose the
multiplicative identity

Πτ τ̄ = Πτ ·Π τ̄ ,

used in (15.13) for the canonical lift, even in situations where ξ itself happens to be a
continuous function. One question that then imposes itself is: what are the natural
ways of “deforming” the usual product which still lead to lifts to an admissible model?
It turns out that the regularity structure whose construction was sketched above comes
equipped with a natural finite-dimensional group of continuous transformations R
on its space of admissible models (henceforth called the “renormalisation group”),
which essentially amounts to the space of all natural deformations of the product. It
then turns out that even though the canonical lift L ξε does not converge, it is possible
to find a sequence Mε of elements in R such that the sequence MεL ξε converges
to a limiting model (Π̂, Γ̂ ). Unfortunately, the elements Mε do not preserve the
image of L in the space of admissible models. As a consequence, when solving the
fixed point map (15.8) with respect to the model MεL ξε and inserting the solution
into the reconstruction operator, it is not clear a priori that the resulting function
(or distribution) can again be interpreted as the solution to some modified PDE. It
turns out that in the present setting this is again the case and the modified equation
is precisely given by (15.6), where Cε is some linear combination of the constants
appearing in the description of Mε.
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There are now three questions that remain to be answered:

1. How does one construct the renormalisation group R?
2. How does one derive the new equation obtained when renormalising a model?
3. What is the right choice of Mε ensuring that the renormalised models converge?

As already pointed out at the start of this chapter, these questions have now been an-
swered in full generality in the series of articles [Hai14b, BHZ19, CH16, BCCH17].
The aim of this section is to illlustrate how the machinery developed there applies to
the particular case of the KPZ equation and go give a feeling for how the main steps
of the construction generalise to other settings.

15.5.1 The renormalisation group

How does all this help with the identification of a natural class of deformations for
the usual product? Throughout this section, we will only consider models constructed
from a single map Π by the recursive procedure given in (15.18), combined with
(15.20). At this point, we crucially note that if Π : T → C∞(Rd) is an arbitrary
admissible linear map (in the sense thatΠIτ = K ∗Πτ as before), then there is no
reason in general for (15.18) and (15.20) to define a model. The reason is that while
these definitions do guarantee that ΠxIτ satisfies the first bound in (13.13), there
is no reason in general for

(
Πxτ

)
(y) to vanish at the right order as y → x for an

arbitrary symbol τ that is not obtained by applying the integration map to some other
symbol. It is however the case that these bounds hold wheneverΠ is obtained as the
canonical lift of a smooth function, as can easily be seen from the multiplicativity
property of the canonical lift.

This suggests to define a space M∞ consisting of those admissible mapsΠ : T →
C∞(Rd) which do generate a model by the above procedure. By Remark 15.13, there
is a canonical bijection between M∞ and the set of all smooth admissible models,
so we henceforth also call an elementΠ ∈M∞ simply a model (or an admissible
model). Note that even though the space of linear maps T → C∞(Rd) is linear, the
space M∞ is far from being a linear space.

At this stage, we would like to introduce probability into the game. For this, note
first that we have a natural action S of the group of translations (Rd,+) onto T by
setting ShXk = (X + h)k, ShΞ = Ξ , and then recursively by

ShIτ = IShτ , Shτ τ̄ = ShτShτ̄ .

We then note that if ξ happens to be a stationary stochastic process andΠ = L ξ is
its canonical lift as a random model, thenΠ is a stationary stochastic process in the
generalised sense that (

Πτ
)
(• + h)

law
=
(
ΠShτ

)
(•) .
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In order to define the renormalisation group R, it is then natural to consider only
transformations of the space of admissible models that preserve this property. Since
we are not in general allowed to multiply components of Π and we do not want
to “pull arbitrary functions out of a hat”, the only remaining operation is to form
linear combinations. It is therefore natural to look for linear maps M : T → T which
furthermore preserve M∞ in the sense that if, givenΠ ∈M∞, we defineΠM by

ΠMτ = ΠMτ , (15.24)

one would like to have againΠM ∈M∞. It is clear that in order to guarantee this,
M needs to commute with the integration operators I and I ′, but this alone is by no
means sufficient.

It turns out that the construction of a natural family of operators with the required
properties goes in a way that is strongly reminiscent of the construction of the
structure group, but with many aspects of the construction “reversed”. A natural
starting point of the construction is given by the set W− ⊂ W consisting of the
canonical basis vectors of strictly negative degree of our regularity structure T which
furthermore have the property that they can be built from products and integrations
applied to Ξ, i.e. do not involve any Xk for k > 0. We then define T− similarly to
T+ as the free unital algebra generated byW−, i.e.3

T−
def
= Alg

({
, , , , , , ,

})
,

the algebra given by all polynomials with real coefficients and indeterminates in
W−; the unit is denoted by 1 (or, equivalently, as the empty forest 6#). The reason
whyW− is expected to play a major role is that, by combing Exercise 13.11 with
admissibility and multiplicativity of the action of Γ ,Πτ for deg τ > 0 is uniquely
determined by the knowledge ofΠτ for all symbols τ with deg τ ≤ 0.

By analogy with the BPHZ renormalisation procedure in quantum field theory
[BP57, Hep69, Zim69], it is natural to look for renormalisation maps that consist in
“contracting subtrees of negative degree”. In order to formalise such an operation, we
take more seriously the interpretation of the canonical basis elements of T as “trees”.
More precisely, we consider labelled trees τ = (V,E, %, n, e), where V is a finite
vertex set, E ⊂ V × V is an edge set, % ∈ V is a root, n : V → Nd is a “polynomial
label” and e : E → {Ξ, I, I ′} is an “edge label”. As usual, we identify labelled
trees if they can be related by a tree isomorphism preserving the root and labels.
The way this correspondence works is as follows. The symbol Xk is represented as
the (unique) tree with a sole vertex V = {%} and polynomial label n(%) = k. The
symbol Ξ is represented by the tree with two vertices V = {%, •}, one (oriented)
edgeE = {e} = {(•, %)}, and labels n = 0, e(e) = Ξ . Integration is then performed
by adding an edge of the corresponding type to the root, i.e. we have for example

3 As in the case of rough volatility, cf. 14.26, we colour basis elements of T− differently to
distinguish them from those of T and / or T+. Elements in T− are naturally represented as
(unordered) forests.
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I(V,E, %, n, e) = (V t {%̄}, E t {(%, %̄)}, %̄, In, Ie) ,

where In(%̄) = 0 and otherwise agrees with n, while Ie((%, %̄)) = I and again
otherwise agrees with e. Multiplication is obtained by joining roots:

(V,E, %, n, e) · (V̄ , Ē, %̄, n̄, ē) = ((V t V̄ )/{%, %̄}, E t Ē, {%, %̄}, n t n̄, e t ē) ,

where (n t n̄)({%, %̄}) = n(%) + n̄(%̄).

Remark 15.14. This is nothing but a formalisation of the graphical notation already
used earlier. The notation used in (15.11) for example suggests that one could equiva-
lently have viewed the noise as part of a “vertex label” and this is the viewpoint taken
for example in [BCCH17]. It appears however that viewing noises as edges, as for
example in [BHZ19], usually yields a more consistent formalism. This is especially
the case in situations where one would like to “attach” additional information to
noises as done in [CCHS20, Sec. 5].

In a similar way, elements of T− can be interpreted as elements A = (V,E, %, e)
as above, except that there is no “polynomial label” n and (V,E) is allowed to be a
forest, with % denoting the set of its roots, one per connected component. In particular,
the empty forest V = 6# is allowed, which wasn’t the case for T .

Given A = (V̄ , Ē, %̄, ē) ∈ T− and τ = (V,E, %, n, e) ∈ T , we say that A ⊂ τ
if one has an injective map ι : V̄ t Ē → V t E preserving connectivity and edge
labels. Note that the injectivity of ι implies in particular that the different connected
components of A are vertex-disjoint in τ . In such a situation, we then writeRAτ for
the tree obtained by contracting the connected components of A in τ , i.e. the vertex
set ofRAτ consists of V/∼ where v ∼ v̄ if v and v̄ are equal or belong to the image
of the same connected component of A, while the edge set ofRAτ equals E \ ιĒ.

We then define an operator ∆− : T → T− ⊗ T by

∆−τ =
∑
A⊂τ
Q−A⊗RAτ , (15.25)

where Q−A = A if every connected component of A has negative degree and
Q−A = 0 otherwise. Note again the graphical interpretation of extracting possibly
empty collections of subtrees of negative degree.

Example 15.15. For the regularity structure associated to the KPZ equation, we have
for example4

∆− = ⊗ 1 + 1⊗ + 2 ⊗ + ⊗
+ ⊗ + 2 ⊗ + ⊗ + ⊗
+ 2 ⊗ + 2 ⊗ + 2 ⊗ ,

(15.26)

where we used red symbols to denote elements of T− just as in Section 14.5. In most
situations it is natural to only consider characters of T− that vanish on planted trees,

4 Mind that ≡ ⊂ in three distinct ways which explains the terms 2 ⊗ + ⊗ .
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i.e. trees with only one edge incident to the root,5 in which case this simplifies to

∆− = ⊗ 1 + 1⊗ + 2 ⊗ + ⊗ .

Note also that there is for example no term ⊗ appearing in (15.26); indeed
fails to have negative degree, hence is not an element of T− and killed by Q−.

Remark 15.16. Since I ′(1) = 0 by Remark 15.6, there is no term such as ⊗
appearing in the right-hand side of (15.26).

Remark 15.17. While the present construction is sufficient for KPZ, in full generality,
one should also allow polynomial decorations for elements in T− in which case
the expression for ∆− involves additional combinatorial factors, similarly to the
definition of ∆+.

Our motivation for the definition of ∆− is as follows. Assigning a number to each
τ ∈ W− is equivalent to choosing an algebra morphism g : T− → R. If we ignore
for a moment the labels n and e, an operation of the type Mg : T → T with

Mgτ = (g ⊗ Id)∆−τ , (15.27)

then corresponds to iterating over all ways of contracting subtrees of negative degree
contained in τ and replacing them by the corresponding constant assigned to it by g.
This corresponds to replacing a kernel of possibly several variables by a multiple of
a Dirac delta function forcing all arguments to collapse.

Similarly to before, one can also define an operator ∆− : T− → T− ⊗ T− by
setting

∆−B =
∑
A⊂B

Q−A⊗Q−RAB ,

where the notions of inclusion A ⊂ B and the contraction RAB are defined in
complete analogy to above.

This yields an algebraic structure very similar to the one given by T and T+. We
will however not describe it in any more detail here, but refer instead to [BHZ19] for
additional details. In particular, T−, with forest product and coproduct ∆−, admits
an antipode A− turning it into a commutative Hopf algebra. Its characters then form
a group with product analogous to (15.23) and inverse given by g 7→ gA−, acting on
T by (15.27).

Definition 15.18. The renormalisation group R for our regularity structure T is
defined as the character group of T−.

Remark 15.19. The original definition of the “renormalisation group” given in
[Hai14b] (and in the first edition of this book) is slightly more general. In the
situation of the regularity structure built for a two-component KPZ equation, i.e.

5 In essence, extracting negative trees will help to renormalise otherwise ill-posed products. A single
edge incident to the root corresponds to convolution with a (compactly supported) kernel, which is
always well-posed.
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exactly the same as discussed here, except that there are two “noises” Ξ1 and Ξ2

and every occurrence of Ξ can be replaced by either of them, the old definition
would for example include the map M that swaps the two noises in a consistent
way. (Consistency is in the sense that MI ′(Ξ2)I ′(I ′(Ξ1)2) = I ′(Ξ1)I ′(I ′(Ξ2)2)
for example.) This is not an operation that is described by a character of T−. The
advantage of the present definition is that it is much more explicit. Furthermore, it
follows from the analytical results of [CH16] that it is sufficiently large to serve the
purpose of renormalising divergent models.

Example 15.20. Continuing the above example, we have

∆− = ⊗ 1 + 1⊗ + 2 ⊗ + ⊗ + ⊗ .

Note that we have not considered the simplification of removing planted trees. Instead,
the analogues of the remaining terms appearing in (15.26) are killed by the projection
Q−. We also note that this expression is symmetric in the two factors T− which
is the case for all the symbols appearing in the analysis of the KPZ equation. This
implies that the KPZ renormalisation group R is abelian. (In general though, the
presence of “overlapping divergencies” can cause R to be non-abelian.)

One of the main results of [BHZ19] is a generalisation of the following statement,
which shows that the action of the renormalisation group plays nice with our notion
of admissible model.

Theorem 15.21. Let g ∈ R and define Mg = (g ⊗ Id)∆− as in (15.27). Then, for
anyΠ ∈M∞, one hasΠg def

= ΠMg ∈M∞. Furthermore, one has

Πg
x = ΠxMg , Γ gxy = M−1

g ΓxyMg . (15.28)

Proof. We sketch the proof. Recall that ∆− has been defined (with notational over-
load) as map from T → T− ⊗ T and T− → T− ⊗ T− ; we now also define
∆− : T+ → T− ⊗ T+ as multiplicative linear map, determined by

∆−Xi = 1⊗Xi, ∆−J`(τ) = (Id⊗ J`(·))∆−τ .

In the special case of KPZ one can check by hand that, thanks in particular to the
fact that I ′(1) = 0 by Remark 15.6 (which correctly suggests that we should also
impose J ′(1) = 0),

(i) On T one has the cointeraction formula

M13(∆− ⊗∆−)∆+ = (Id⊗∆+)∆− , (15.29)

where M13 : T− ⊗ T ⊗ T− ⊗ T+ → T− ⊗ T ⊗ T+ is the map that multiplies
the first and third factor (in T−), and the same holds also on T+.

(ii) The actions of R onto T and T+ given by Mg do not decrease the degree. (For
the relevant set of characters g, this is seen explicitly in Exercise 15.2.)
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Recall the correspondence Π ⇔ (Π,Γ ) given in Remark 15.13. With the special
properties (i)-(ii) it is straightforward to verify that, for g ∈ R arbitrary,Πg = ΠMg

defines a modelΠg ⇔ (Πg, Γ g) with

Πg
x = ΠxMg = (g ⊗Πx)∆− , Γ gxy = (Id⊗ γgx,y)∆+ , γgxy

def
= (g ⊗ γxy)∆− .

(The second identity in (15.28) then follows from the formula for γgxy, combined
with the cointeraction formula.) To show all this, first write fx = fΠx for fx obtained
fromΠ as in (15.18). One shows recursively that

fΠ
g

x = fΠx Mg .

One then uses (i), on T , to show that the required identity for Πg
z holds. Finally, one

uses (i), on T+ to show that if one views Mg = (g ⊗ Id)∆− as acting on T+, then
its action distributes over the product in the character group defined in (15.23) in the
sense that (Mgf) ◦ (Mg f̄) = Mg(f ◦ f̄), which then implies the required identity
for γgxy. The fact that the action of Mg does not decrease degrees guarantees that
(Πg, Γ g) is again a model (since (Π,Γ ) is). ut
Remark 15.22. In general (i.e. in the case of similar regularity structures set up
for different examples of subcritical semilinear SPDEs), the cointeraction property
(15.29) may fail. It turns out however that it can still be rescued by working in a
suitably extended regularity structure, see [Hai16, BHZ19].

One important feature of this theorem is that the last statement provides quantita-
tive bounds on the mapΠ 7→Πg which show that it can be extended to a continuous
action of R onto the space M of all admissible models. A crucial property of R is
that it is sufficiently large to allow us to “recenter” models in a natural way.

Definition 15.23. Let ξ be a (smooth) stationary stochastic process and letΠ be its
canonical lift. Then, there exists a unique character gBPHZ ∈ R such that ΠBPHZ =
ΠMgBPHZ satisfies E(ΠBPHZτ)(0) = 0 for every canonical basis vector τ ∈ T with
deg τ < 0. We callΠBPHZ the BPHZ lift of ξ.

Remark 15.24. This is named after Bogoliubow, Parasiuk, Hepp and Zimmermann
[BP57, Hep69, Zim69] who introduced an analogous renormalisation procedure in
the context of perturbative quantum field theory in the sixties.

Remark 15.25. Note also that while the BPHZ lift of a noise ξ is “canonical”, it
does depend on the choice of kernel K for our notion of admissibility. In particular,
different truncations of the heat kernel will in general lead to different values for the
BPHZ renormalisation constants.

A beautiful property of the BPHZ lift is that it is much more stable than the
canonical lift. Indeed, it was shown in [CH16] that one can introduce a natural
measure of the “size”N(ξ) of a stationary noise ξ which is such that for any sequence
ξn such that supnN(ξn) <∞ and ξn → ξ in probability as random distributions, the
corresponding BPHZ liftsΠBPHZ

n converge to a limiting modelΠBPHZ. This limiting
model is furthermore independent of the choice of approximating sequence.
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15.5.2 The renormalised equations

As introduced, the renormalisation group R for KPZ is a Lie group of dimension
8, equal to the number of symbols ( , , , , , , , ) used to generate T−.
As already hinted in Example 15.15 above, we will not need to renormalise planted
trees, nor the noise symbol itself, nor symbols with three leaves (cubic in Gaussian
noise, hence of zero mean, so that the BPHZ condition is trivially satisfied). We thus
define a character g on T− by specifying

g( ) = C0, g( ) = C1, g( ) = C2, g( ) = C3 , (15.30)

and set to vanish on the remaining symbols which require no renormalisation. The
resulting renormalisation maps M : T → T is then given by M := (g ⊗ Id)∆−.
(It turns out that we only need a three-parameter subgroup of R to renormalise the
equation, but in order to explain the procedure we prefer to work with the larger
4-dimensional subgroup of R.) It is now rather straightforward to show the following:

Proposition 15.26. Let M := (g ⊗ Id)∆− with g as specified in (15.30) and let
(ΠM , ΓM ) = ML ξ, where L ξ is the canonical lift of some smooth function ξ. Let
furthermore H be the solution to (15.8) with respect to the model (ΠM , ΓM ). Then,
writingRM for the reconstruction operator associated to this renormalised model,
the function h(t, x) =

(
RMH

)
(t, x) solves the equation

∂th = ∂2
xh+ (∂xh)2 − 4C0 ∂xh+ ξ − (C1 + C2 + 4C3) .

Proof. By Theorem 14.5, it turns out that (15.8) can be solved in Dγ as soon as γ is
a little bit greater than 3/2. Therefore, we only need to keep track of its solution H
up to terms of degree 3/2. By repeatedly applying the identity (15.9), we see that the
solution H ∈ Dγ for γ close enough to 3/2 is necessarily of the form

H = h 1 + + + h′X1 + 2 + 2h′ ,

for some real-valued functions h and h′. (Note that h′ is treated as an independent
function here, we certainly do not suggest that the function h is differentiable! Our
notation is only by analogy with the classical Taylor expansion.) As an immediate
consequence, ∂H is given by

∂H = + + h′ 1 + 2 + 2h′ , (15.31)

as an element of Dγ for γ sufficiently close to 1/2. Similarly, the right-hand side of
the equation is given up to order 0 by

(∂H)2 +Ξ = Ξ+ +2 +2h′ + +4 +2h′ +4h′ +(h′)2 1 . (15.32)

It follows from the definition of M that one then has the identity

M∂H = ∂H − 4C0 ,
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so that, as an element of Dγ with very small (but positive) γ, one has the identity

(M∂H)2 = (∂H)2 − 8C0 .

As a consequence, after neglecting all terms of strictly positive order, one has the
identity (writing c instead of c1 for real constants c)

M
(
(∂H)2 +Ξ

)
= (∂H)2 +Ξ − C0

(
4 + 4 + 8 + 4h′ 1

)
− C1 − C2 − 4C3

= (M∂H)2 +Ξ − 4C0M∂H − (C1 + C2 + 4C3) .

Combining this with the fact that M and ∂ commute, the claim now follows at once.
ut
Remark 15.27. It turns out that, thanks to the symmetry x 7→ −x enjoyed by our
problem, the corresponding model can be renormalised by a map M as above, but
with C0 = 0. The reason why we considered the general case here is twofold. First, it
shows that it is possible to obtain renormalised equations that differ from the original
equation in a more complicated way than just by the addition of a large constant.
Second, if one tries to approximate the KPZ equation by a microscopic model which
is not symmetric under space inversion, then the constant C0 plays a non-trivial role,
see for example [HS17].

15.5.3 Convergence of the renormalised models

It remains to argue why one expects to be able to find constants Cεi such that the
sequence of renormalised models MεL ξε with Mε = exp(

∑3
i=1 C

ε
i Li) converges

to a limiting model. Instead of considering the actual sequence of models, we only
consider the sequence of stationary processes Π̂

ε
τ := ΠεMετ , where Πε is

associated to (Πε, Γ ε) = L ξε as in Section 15.5.1.

Remark 15.28. It is important to note that we do not attempt here to give a full proof
that the renormalised model converges to a limit in the correct topology for the space
of admissible models. We only aim to argue that it is plausible that Π̂

ε
converges

to a limit in some topology. A full proof of convergence (but in a slightly different
setting) can be found in [Hai13], see also [Hai14b, Section 10] and [CH16] for most
general statements.

Since there are general arguments available to deal with all the expressions τ
of positive degree as well as expressions of the type I ′(τ) and Ξ itself, we restrict
ourselves to those that remain. Inspecting (15.11), we see that they are given by

, , , , .

For this part, some elementary notions from the theory of Wiener chaos expansions
are required, but we’ll try to hide this as much as possible. At a formal level, one has
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the identity
Πε = K ′ ∗ ξε = K ′ε ∗ ξ ,

where the kernel K ′ε is given by K ′ε = K ′ ∗ δε. This shows that, at least formally,
one has(
Πε

)
(z) =

(
K ′ ∗ ξε

)
(z)2 =

∫ ∫
K ′ε(z − z1)K ′ε(z − z2) ξ(z1)ξ(z2) dz1 dz2 .

Similar but more complicated expressions can be found for any formal expression τ .
This naturally leads to the study of random variables of the type

Ik(f) =

∫
· · ·
∫
f(z1, . . . , zk) ξ(z1) · · · ξ(zk) dz1 · · · dzk . (15.33)

Ideally, one would hope to have an Itô isometry of the type EIk(f)Ik(g) =
〈f sym, gsym〉, where 〈·, ·〉 denotes the L2-scalar product and f sym denotes the sym-
metrisation of f . This is unfortunately not the case. Instead, one should replace the
products in (15.33) by Wick products, which are formally generated by all possible
contractions of the type

ξ(zi)ξ(zj) 7→ ξ(zi) � ξ(zj) + δ(zi − zj) .

If we then set

Îk(f) =

∫
· · ·
∫
f(z1, . . . , zk) ξ(z1) � · · · � ξ(zk) dz1 · · · dzk ,

One has indeed
EÎk(f)Îk(g) = 〈f sym, gsym〉 .

Furthermore, one has equivalence of moments in the sense that, for every k > 0 and
p > 0 there exists a constant Ck,p such that

E|Îk(f)|p ≤ Ck,p‖f sym‖p .

Finally, one has EÎk(f)Î`(g) = 0 if k 6= `. Random variables of the form Îk(f) for
some k ≥ 0 and some square integrable function f are said to belong to the kth
homogeneous Wiener chaos.

Returning to our problem, we first argue that it should be possible to choose Mε

in such a way that Π̂
ε

converges to a limit as ε → 0. The above considerations
suggest that one should rewriteΠε as(

Πε
)
(z) =

(
K ′ ∗ ξε

)
(z)2 (15.34)

=

∫ ∫
K ′ε(z − z1)K ′ε(z − z2) ξ(z1) � ξ(z2) dz1 dz2 + C(1)

ε ,

where the constant C(1)
ε is given by the contraction
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C(1)
ε =

def
=

∫ (
K ′ε(z)

)2
dz .

Note now thatK ′ε is an ε-approximation of the kernelK ′ which has the same singular
behaviour as the derivative of the heat kernel. In terms of the parabolic distance, the
singularity of the derivative of the heat kernel scales like K(z) ∼ |z|−2 for z → 0.
(Recall that we consider the parabolic distance |(t, x)| =

√
|t|+ |x|, so that this is

consistent with the fact that the derivative of the heat kernel is bounded by t−1.) This
suggests that one has

(
K ′ε(z)

)2 ∼ |z|−4 for |z| � ε. Since parabolic space-time has
scaling dimension 3 (time counts double!), this is a non-integrable singularity. As a
matter of fact, there is a whole power of z missing to make it borderline integrable,
which suggests that one has

C(1)
ε ∼ 1

ε
.

This already shows that one should not expectΠε to converge to a limit as ε→ 0.
However, it turns out that the first term in (15.34) converges to a distribution-valued
stationary space-time process, so that one would like to somehow get rid of this
diverging constant C(1)

ε . This is exactly where the renormalisation map Mε (in
particular the factor exp(−C1L1)) enters into play. Following the above definitions,
we see that one has(

Π̂
ε )

(z) =
(
ΠεM

)
(z) =

(
Πε

)
(z)− C1 .

This suggests that if we make the choice C1 = C
(1)
ε , then Π̂

ε
does indeed converge

to a non-trivial limit as ε→ 0. This limit is a distribution given, at least formally, by

(
Πε

)
(ψ) =

∫ ∫
ψ(z)K ′(z − z1)K ′(z − z2) dz ξ(z1) � ξ(z2) dz1 dz2 .

Using again the scaling properties of the kernel K ′, it is not too difficult to show that
this yields indeed a random variable belonging to the second homogeneous Wiener
chaos for every choice of smooth test function ψ.

The case τ = is treated in a somewhat similar way. This time one has(
Πε

)
(z) =

(
K ′ ∗ ξε

)
(z)
(
K ′ ∗K ′ ∗ ξε

)
(z)

=

∫ ∫
K ′ε(z − z1)(K ∗K ′ε)(z − z2) ξ(z1) � ξ(z2) dz1 dz2 + C(0)

ε ,

where the constant C(0)
ε is given by the contraction

C(0)
ε =

def
=

∫
K ′ε(z)

(
K ′ ∗K ′ε

)
(z) dz .

This time however K ′ε is an odd function (in the spatial variable) and K ′ ∗K ′ε is an
even function, so that C(0)

ε vanishes for every ε > 0. This is why we can set C0 = 0
and no renormalisation is required for .
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Turning to our list of terms of negative degree, it remains to consider , , and
. It turns out that the latter two are the more difficult ones, so we only discuss

these. Let us first argue why we expect to be able to choose the constant C2 in such
a way that Π̂

ε
converges to a limit. In this case, the “bad” term comes from the

part of
(
Πε

)
(z) belonging to the homogeneous chaos of order 0. This is simply

a constant, which is given by

C(2)
ε = 2

def
= 2

∫
K ′(z)K ′(z̄)Q2

ε(z − z̄) dz dz̄ , (15.35)

where the kernel Qε is given by

Qε(z) =

∫
K ′ε(z̄)K

′
ε(z̄ − z) dz̄ .

Remark 15.29. The factor 2 comes from the fact that the contraction (15.35) appears
twice, since it is equal to the contraction . In principle, one would think that the
contraction also contributes to C(2)

ε . This term however vanishes due to the fact
that the integral of K ′ε vanishes.

Since K ′ε is an ε-mollification of a kernel with a singularity of order −2 and
the scaling dimension of the underlying space is 3, we see that Qε behaves like an
ε-mollification of a kernel with a singularity of order −2− 2 + 3 = −1 at the origin.
As a consequence, the singularity of the integrand in (15.35) is of order −6, which
gives rise to a logarithmic divergence as ε→ 0. This suggests that one should choose
C2 = C

(2)
ε in order to cancel out this diverging term and obtain a non-trivial limit

for Π̂
ε

as ε→ 0. This is indeed the case.
We finally turn to the case τ = . In this case, there are “bad” terms appearing in

the Wiener chaos decomposition ofΠε both in the second and the zeroth Wiener
chaos. This time, the constant appearing in the zeroth Wiener chaos is given by

C(3)
ε = 2

def
= 2

∫
K ′(z)K ′(z̄)Qε(z̄)Qε(z + z̄) dz dz̄ ,

which diverges logarithmically for exactly the same reason as C(2)
ε . Setting C2 =

C
(2)
ε , this diverging constant can again be cancelled out. The combinatorial factor 2

arises in essentially the same way as for and the contribution of the term where
the two top nodes are contracted vanishes for the same reason as previously.

It remains to consider the contribution ofΠε to the second Wiener chaos. This
contribution consists of three terms, which correspond to the contractions

It turns out that the first one of these terms does not give raise to any singularity. The
last two terms can be treated in essentially the same way, so we focus on the last one,
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which we denote by ηε. For fixed ε, the distribution (actually smooth function) ηε is
given by

ηε(ψ) =

∫
ψ(z0)K ′(z0 − z1)Qε(z0 − z1)K ′(z2 − z1)

×K ′ε(z3 − z2)K ′ε(z4 − z2) ξ(z3) � ξ(z4) dz .

The problem with this is that as ε→ 0, the product Q̂ε := K ′Qε converges to a
kernel Q̂ = K ′Q, which has a non-integrable singularity at the origin. In particular,
it is not clear a priori whether the action of integrating a test function against Q̂ε
converges to a limiting distribution as ε→ 0. Our saving grace here is that since Qε
is even and K ′ is odd, the kernel Q̂ε integrates to 0 for every fixed ε.

This is akin to the problem of making sense of the “Cauchy principal value”
distribution, which formally corresponds to the integration against 1/x. For the sake
of the argument, let us consider a functionW : R→ R which is compactly supported
and smooth everywhere except at the origin, where it diverges like |W (x)| ∼ 1/|x|.
It is then natural to associate to W a “renormalised” distribution RW given by

(
RW

)
(ϕ) =

∫
W (x)

(
ϕ(x)− ϕ(0)

)
dx .

Note that RW has the property that if ϕ(0) = 0, then it simply corresponds to
integration against W , which is the standard way of associating a distribution to
a function. Furthermore, the above expression is always well-defined, since ϕ is
smooth and therefore the factor (ϕ(x)− ϕ(0)) cancels out the singularity of W at
the origin. It is also straightforward to verify that if Wε is a sequence of smooth
approximations to W (say one has Wε(x) = W (x) for |x| > ε and |Wε| . 1/ε
otherwise) which has the property that each Wε integrates to 0, then W ε → RW in
a distributional sense.

In the same way, one can show that Q̂ε converges as ε→ 0 to a limiting distribu-
tion RQ̂. As a consequence, one can show that ηε converges to a limiting (random)
distribution η given by

η(ψ) =

∫
ψ(z0) RQ̂(z0−z1)K ′(z2−z1)K ′(z3−z2)K ′(z4−z2) ξ(z3)�ξ(z4) dz .

It should be clear from this whole discussion that while the precise values of the
constants Ci depend on the details of the mollifier δε, the limiting (random) model
(Π̂, Γ̂ ) obtained in this way is independent of it. Combining this with the continuity
of the solution to the fixed point map (15.8) and of the reconstruction operator R
with respect to the underlying model, we see that the statement of Theorem 15.2
follows almost immediately.
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15.6 The KPZ equation and rough paths

In the particular case of the KPZ equation, it turns out that is possible to give a robust
solution theory by only using “classical” controlled rough path theory, as exposed in
the earlier part of this book. This is actually how it was originally treated in [Hai13].
To see how this can be the case, we make the following crucial remarks:

1. First, looking at the expression (15.31) for ∂H , we see that most symbols come
with constant coefficients. The only non-constant coefficients that appear are
in front of the term 1, which is some kind of renormalised value for ∂H , and
in front of the term . This suggests that the problem of finding a solution h to
the KPZ equation (or equivalently a solution h′ to the corresponding Burgers’
equation) can be simplified considerably by considering instead the function v
given by

v = ∂xh−Π
(

+ + 2
)

, (15.36)

whereΠ is the operator given by (15.12–15.14).
2. The only symbol τ appearing in ∂H such that deg τ + deg < 0 is the symbol

. Furthermore, one has

∆1 = 1⊗ 1 , ∆ = ⊗ 1 + 1⊗ J ′( ) ,
∆ = ⊗ 1 , ∆ = ⊗ 1 + ⊗ J ′( ) .

It then follows from this and the definition (15.16) of the structure group G that
the space 〈 , , 1, 〉 ⊂ T is invariant under the action of G. Furthermore, its ac-
tion on this subspace is completely described by one real number corresponding
to J ′( ). Finally, viewing this subspace as a regularity structure in its own right,
we see that it is nothing but the regularity structure of Section 13.3.2, provided
that we make the identifications ∼ Ẇ , ∼W , and ∼ Ẇ.

3. One has the identities

∆ = ⊗ 1 + ⊗ J ′( ) , ∆ = ⊗ 1 + ⊗ J ′( ) ,

so that the pair of symbols { , } could also have played the role of {W, Ẇ}
in the previous remark.

Let now ξ be a smooth function and let h be given by the solution to the unrenor-
malised KPZ equation (15.1). Defining Π by ΠΞ = ξ and then recursively as in
(15.13), and defining v by (15.36), we then obtain for v the equation

∂tv = ∂2
xv + ∂x

(
vΠ + 4Π

)
+R , (15.37)

where the “remainder”R belongs to Cα for every α < −1. Similarly to before, it also
turns out that if we replaceΠ bi Π̂ = ΠM defined as in (15.24) (with C0 = 0) and
h as the solution to the renormalised KPZ equation (15.6) with Cε = C1 +C2 +4C3,
then v also satisfies (15.37), but withΠ replaced by the renormalised model Π̂ .
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We are now in the following situation. As a consequence of (15.31) we can guess
that for any fixed time t, the solution v should be controlled by the function Π̂ ,
which we can interpret as one component (say W 1) of some rough path (W,W).
Note that here the spatial variable plays the role of time! The time variables merely
plays the role of a parameter, so we really have a family of rough paths indexed
by time. Furthermore, Π̂ can be interpreted as the distributional derivative of
another component (say W 0) of the rough path W . Finally, the function Π̂ can be
interpreted as a third component W 2 of W .

As a consequence of the second and third remarks above, the two distributions
Π̂ and Π̂ can then be interpreted as the distributional derivatives of the “iterated
integrals” W1,0 and W2,1. It follows automatically from these algebraic relations
combined with the analytic bounds (13.13) that W1,0 and W2,1 then satisfy the
required estimates (2.3). Our model does not provide any values for W1,2, but these
turn out not to be required. Assuming that v is indeed controlled by X1 = Π̂ , it
is then possible to give meaning to the term vΠ appearing in (15.37) by using
“classical” rough integration.

As a consequence, we then see that the right-hand side of (15.37) is of the form
∂2
xY , for some function Y controlled by W 0. One of the main technical results of

[Hai13] guarantees that if Z solves

∂tZ = ∂2
xZ + ∂2

xY ,

and Y is controlled by W 0, then Z is necessarily controlled by W 1 = Π̂ . This
“closes the loop” and allows to set up a fixed point equation for v that is stable as
a function of the underlying model Π̂ and therefore also allows to deal with the
limiting case of the KPZ equation driven by space-time white noise.

15.7 Exercises

Exercise 15.1 (KPZ Structure Group) Consider the 16-dimensional KPZ regular-
ity structure with T = TKPZ given by

T = 〈 Ξ, , , , , , , , 1, , , , , X1, , 〉 .

Show that the structure group G is a 7-dimensional (non-commutative) Lie group, an
element Γ ∈ G ⊂ L(T, T ) of which has the upper triangular matrix representation
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Ξ 1 X1



Ξ 1
1

1
1 c1 c2

1

1
1

1
1 1 c1 c2 c3 c4 c5 c6 c7

1
1

1
1

X1 1 c1 c2
1

1

where empty entries mean zeros. Note that the upper-triangular form reflects the fact
that Γ − Id is only allowed to produce lower order terms. (Remark: It is immediate
from this representation that 〈 , , 1, 〉 and 〈 , , 1, 〉 are indeed sectors, with

“rough path” index set {− 1
2

−
, 0−, 0, 1

2

−}, and action of the structure group exactly
as in the rough path case (13.12) (with “h” replaced by c1 and c2, respectively.)

Solution. We first derive the coaction on all the symbols, and here prefer to write ∆
for the coaction and keep ∆+ for the coproduct on T+. By definition of the coaction,
∆(Ξ) = Ξ ⊗ 1 and

∆( ) = I ′(Ξ)⊗ 1 +
∑
k∈N2

Xk

k!
⊗ J ′k(Ξ) = ⊗ 1 ,

since degJ ′k(Ξ) = degJk+(0,1)(Ξ) = degΞ + 1 − |k| < 0 so that J ′k(Ξ) = 0.
Similarly, write ∆ instead of ∆+ for better readability,

∆( ) = ∆( )∆( ) = ( ? )⊗ 1 = ⊗ 1,

∆
( )

= ∆I ′( ) = . . . = ⊗ 1,

∆
( )

= ∆( )∆
( )

= . . . = ⊗ 1,

∆
( )

= ∆
( )

∆
( )

= ⊗ 1,

∆
( )

= ⊗ 1 + 1⊗ J ′
( )

,

∆
( )

= ∆( )∆
( )

= ⊗ 1 + ⊗ J ′
( )

.
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Note the interpretation of cutting off positive branches: degJ ′
( )

= 1+3(− 3
2

−
)+

4 = 1
2

−
> 0, and also degJ ′( ) = 1

2

− as seen in

∆
( )

= ⊗ 1 + 1⊗ J ′( ),

∆
( )

= ∆
( )

∆( ) = ⊗ 1 + ⊗ J ′( ).

To deal with = I(Ξ), note degJ (Ξ) > 0, degJ ′(Ξ) < 0 so that the latter term
does not figure (same reasoning for = I( )), and obtain

∆( ) = ⊗ 1 + 1⊗ J (Ξ),

∆( ) = ⊗ 1 + 1⊗ J ( ).

By definition, ∆X1 = X1 ⊗ 1 + 1 ⊗ X1. Next consider and . In view of
|J
( )

| and |J ′
( )

| > 0 we have (same reasoning for ),

∆
( )

= ⊗ 1 + 1⊗ J ( ) +X1 ⊗ J ′
( )

,

∆
( )

= ⊗ 1 + 1⊗ J ( ) +X1 ⊗ J ′( ),

Inspecting the above reveals that we need 1 and then the following 7 “positive”
symbols (also viewable as trees) in T+,

J ′( ),J ′( ),J (Ξ),J ( ), X1,J ( ),J ( ), (15.38)

of resp. homogeneities 1
2

−
, 1

2

−
, 1

2

−
, 1−, 1, 3

2

−
, 3

2

−. On the other hand, T+ was
introduced abstractly as free commutative algebra generated by all of the above
symbols (with unit element 1). Even upon truncation, say T+ = T+

<3/2 with abusive
notation, this leaves us with 10 + 4 + 1 = 15 generating symbols,

J ′( ),J ′( ), . . . ,J ′( );J (Ξ), . . . ,J ( );X1 (15.39)

(of which only 7 are needed). Of course, T+ also contains (free) products such as
J ′( )J ′( ), X1J ′( ), J ′( )J ( , ) (all of degree < 3/2), however by working
in T these did not appear as “right-hand side”-image of ∆ above.

Consider now a character of the algebra T+; that is, an element g ∈ (T+)∗,
so that g(1) = 1 and g(σσ̄) = g(σ)g(σ̄). (Actually, in view of the truncation we
impose this only for σ, σ̄ with deg(σσ̄) = degσ+ deg σ̄ < 3/2.) Such g is obviously
determined by its value on each of the 15 basis symbols listed in (15.39). Now T+

can be given a Hopf structure, with coproduct ∆+ and antipode, so that the set of
characters forms the group G+, with product given by

(f ◦ g)(σ) = (f ⊗ g)∆+σ =
∑
(σ)

〈f, σ′〉〈g, σ′′〉;

inverses are given in terms of the antipode. One thus sees thatG+ is a 15-dimensional
(Lie) group. However, only a 7-dimensioal subgroup is needed, for we only care
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about the 7 values arising from (15.38), which we call

c1 = g
(
J ′
( ))

, . . . , c7 = g(J ( )).

It then follows from Γg := (Id⊗ g)∆ that Γg : T → T acts as identity on all
symbols other than

Γg

( )
= + g(J ′( ))1 ≡ + c11,

Γg

( )
= + g(J ′( )) = + c1 ,

Γg
( )

= + g(J ′( ))1 = + c21,
Γg
( )

= + c2 ,

Γg( ) = + g(J (Ξ))1 = + c31,
Γg( ) = + g(J ( ))1 = + c41,
Γg(X1) = X1 + c51,

Γg( ) = + c61 + c1X1,

Γg( ) = + c71 + c2X1.

The matrix representation of Γg is then immediate.

Exercise 15.2 (KPZ Renormalisation Group) Consider again the 16-dimensional
KPZ regularity structure with structure space T = TKPZ. The renormalisation group
was given as subgroup R ⊂ L(T, T ), given byMgτ = (g⊗ Id)∆−τ , where g ranges
over the characters of T−. Consider more specifically M = Mg with g as specified
in (15.30), i.e. g( ) = C0, g( ) = C1, g( ) = C2, g( ) = C3 and set to vanish
on the remaining symbols.

Show that this gives a subgroup of R which is a 4-dimensional (commutative)
Lie group, an element M ∈ R ⊂ L(T, T ) of which has lower triangular matrix
representation
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Ξ 1 X1



Ξ 1
1

1
2C0 1

1

1
C0 1
2C0 1

1 C1 C2 C3 C0 1

1
2C0 1

1
1

X1 1

1
2C0 1

Exercise 15.3 Show that the two procedures for recoveringΠ from the knowledge
of (Π,Γ ) outlined in Remark 15.13 and on page 301 are equivalent.

15.8 Comments

The original proof [Hai13] of well-posedness of the KPZ equation without using the
Cole–Hopf transform did not use regularity structures but instead viewed the solution
at any fixed time as a spatial rough path controlled by the solution to the linearised
equation, in the spirit of Section 12.3. An alternative approach using paracontrolled
distributions as developed in [GIP15] was used in [GP17] to obtain a number of
additional properties of the solutions, including a clean variational formulation.

Given that the KPZ equation is expected to enjoy a form of “universality”, a very
natural question is that of showing that “most” classes of interface fluctuation models
converge to in in the weakly asymmetric regime. The first result in this direction was
obtained by Bertini–Giacomin [BG97], but this relied crucially on a microscopic
version of the Hopf–Cole transform to show that the transformed particle system
converges to the multiplicative stochastic heat equation. A first more general result
was obtained by Jara–Conçalves [GJ14] who showed that the large scale fluctuations
of a large number of particle systems solve the KPZ equation in a relatively weak
sense. It has been an open problem for quite some time now whether such a weak
notion of solution characterises solutions to the KPZ uniquely. Major progress in
this direction was obtained by Gubinelli–Perkowski [GP18] who showed that this
is indeed the case at stationarity under an additional structural assumption on the
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generator of the particle system that can be verified for a number of systems of
interest.

On the other hand, a large class of interface fluctuation models that fall outside of
this approach is given by solutions to an equation of the type

∂thε = ∂2
xhε +

√
εF (∂xhε) + η(t, x) , (15.40)

where η is a (smooth) space-time random field with sufficiently good mixing prop-
erties, F : R→ R is an even function growing at infinity, and ε > 0 is a parameter
controlling the asymmetry of the problem. Under rather weak assumptions on η and F
one then expects to be able to find constantsCε such that ε−1/2hε(ε

−2t, ε−1x)−Cεt
converges to solutions to the KPZ equation. This was shown to be indeed the case in
various special cases of increasing generality in [HS17, HQ18, HX19, FG19]. (The
last reference treats a different class of models but its proofs could be adapted to the
setting of (15.40).)

There is a natural generalisation of the KPZ equation going in a completely
different direction. Indeed, given a Riemannian manifold (M, g) (where g denotes
the metric tensor), we can ask ourselves what the natural “stochastic heat equation
with values inM” looks like. A moment’s thought suggests that it should be given,
in local coordinates, by an equation of the form

∂tu
α = ∂2

xu
α + Γαβγ(u) ∂xu

β ∂xu
γ + σαi (u) ξi , (15.41)

where the ξi are i.i.d. space-time white noises, Γαβγ are the Christoffel symbols for
M, the σi are any finite collection of vector fields such that

σαi σ
β
i = g , (15.42)

and summation over repeated indices is implied. By combining the results of
[CH16, BHZ19, BCCH17], it is not difficult to see that there are natural notions
of solution to (15.41), but these are of course only well-defined modulo an element
of the renormalisation group R. It turns out that in this case, even after taking into
account simplifications due to the symmetry x↔ −x and the fact that the noises are
i.i.d. Gaussian, the relevant subgroup of R is generically (namely for large enough
dimension ofM) of dimension 54.

This is a good example illustrating the role played by symmetries. In this particular
case, there are two additional symmetries one would like to exploit. On the one hand,
one would like to enforce equivariance under the group of diffeomorphisms ofM.
In other words, solutions to (15.41) should be independent of the specific coordinate
system used to write (15.41). This is akin to the property of solutions to regular
SDEs written in Stratonovich form (or indeed those of RDEs driven by a geometric
rough path). On the other hand, the derivation of (15.41) implicitly makes use of
Itô’s isometry to guarantee that, at least in law, its solutions do not depend on the
specific choice of the vector fields satisfying (15.42). This in turn is akin to the
property of solutions to SDEs written in Itô form. It turns out – and this is the main
result of [BGHZ19] – that in this context it is possible to find solution theories that
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do satisfy both properties simultaneously! In fact there still exists a two-parameter
family of them, but if we restrict ourselves to (15.1) (i.e. with Γ and σ related to
the same metric g), then it reduces to a one-parameter family and the corresponding
correction term (analogous to the Itô-Stratonovich correction term allowing to switch
between solution theories for SDEs) is given by a multiple of the gradient of the
scalar curvature ofM. This sheds new light on observations that had previously
been made in a closely related context both in the physics [Che72, Um74] and in the
mathematics [Dar84, IM85, AD99] literatures.
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