
Chapter 14
Operations on modelled distributions

The original motivation for the development of the theory of regularity structures
was to provide robust solution theories for singular stochastic PDEs like the KPZ
equation or the dynamical Φ4

3 model. The idea is to reformulate them as fixed point
problems in some space Dγ (or rather a slightly modified version that takes into
account possible singular behaviour near time 0) based on a suitable random model
in a regularity structure purpose-built for the problem at hand. In order to achieve
this this chapter provides a systematic way of formulating the standard operations
arising in the construction of the corresponding fixed point problem (differentiation,
multiplication, composition by a regular function, convolution with the heat kernel)
as operations on the spaces Dγ .

14.1 Differentiation

Being a local operation, differentiating a modelled distribution is straightforward,
provided that the model one works with is sufficiently rich. Denote by L some
(formal) differential operator with constant coefficients that is homogeneous of
degree m, i.e. it is of the form

L =
∑
|k|=m

akD
k ,

where k is a d-dimensional multi-index, ak ∈ R, and Dk denotes the kth mixed
derivative in the distributional sense.

Given a regularity structure (T,G), it is convenient to define “abstract” differenti-
ation only on suitable substructures. The appropriate notion of sector was already
introduced in Definition 13.1. We have

Definition 14.1. Consider a sector V ⊂ T . A linear operator ∂ : V → T is said to
realise L (of degree m) for the model (Π,Γ ) if
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264 14 Operations on modelled distributions

• one has ∂τ ∈ Tα−m for every τ ∈ Vα,
• one has Γ∂τ = ∂Γτ for every τ ∈ V and every Γ ∈ G.
• one has Πx∂τ = LΠxτ for every τ ∈ V and every x ∈ Rd.

Writing Dγ(V ) for those elements in Dγ taking values in the sector V , it then
turns out that one has the following fact:

Proposition 14.2. Assume that ∂ realises L for the model (Π,Γ ) and let f ∈ Dγ(V )
for some γ > m. Then, ∂f ∈ Dγ−m and the identityR∂f = LRf holds.

Proof. The fact that ∂f ∈ Dγ−m is an immediate consequence of the definitions, so
we only need to show thatR∂f = LRf .

By the “uniqueness” part of the reconstruction theorem, this on the other hand
follows immediately if we can show that, for every fixed test function ψ and every
x ∈ Rd, one has (

Πx∂f(x)− LRf
)
(ψλx) . λδ ,

for some δ > 0. Here, we defined ψλx as before. By the assumption on the model Π ,
we have the identity(
Πx∂f(x)−LRf

)
(ψλx) =

(
LΠxf(x)−LRf

)
(ψλx) = −

(
Πxf(x)−Rf

)
(L∗ψλx) ,

where L∗ is the formal adjoint of L. Since, as a consequence of the homogeneity of
L, one has the identity L∗ψλx = λ−m

(
L∗ψ

)λ
x

, it then follows immediately from the
reconstruction theorem that the right-hand side of this expression is of order λγ−m,
as required. ut

14.2 Products and composition by regular functions

One of the main purposes of the theory presented here is to give a robust way to
multiply distributions (or functions with distributions) that goes beyond the barrier
illustrated by Theorem 13.18. Provided that our functions / distributions are repre-
sented as elements in Dγ for some model and regularity structure, we can multiply
their “Taylor expansions” pointwise, provided that we give ourselves a table of
multiplication on T .

It is natural to consider products with the following properties.

Definition 14.3. Given a regularity structure (T,G) and two sectors V, V̄ ⊂ T , a
product on (V, V̄ ) is a bilinear map ? : V × V̄ → T such that, for any τ ∈ Vα and
τ̄ ∈ V̄β , one has τ ? τ̄ ∈ Tα+β and such that, for any element Γ ∈ G, one has
Γ (τ ? τ̄) = Γτ ? Γ τ̄ .

Remark 14.4. The condition that degrees add up under multiplication is very natural,
bearing in mind the case of the polynomial regularity structure. The second condition
is also very natural since it merely states that if one reexpands the product of two
“polynomials” around a different point, one should obtain the same result as if one
reexpands each factor first and then multiplies them together.
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Given such a product, we can ask ourselves when the pointwise product of an
element Dγ1 with an element in Dγ2 again belongs to some Dγ . In order to answer
this question, we introduce the notation Dγ

α to denote those elements f ∈ Dγ such
that furthermore

f(x) ∈ T≥α =
⊕
β≥α

Tβ ,

for every x. With this notation at hand, it is not hard to show:

Theorem 14.5. Let f1 ∈ Dγ1
α1

(V ), f2 ∈ Dγ2
α2

(V̄ ), and let ? be a product on (V, V̄ ).
Then, the function f given by f(x) = f1(x) ? f2(x) belongs to Dγ

α with

α = α1 + α2 , γ = (γ1 + α2) ∧ (γ2 + α1) . (14.1)

Proof. It is clear that f(x) ∈ T≥α, so it remains to show that it belongs to Dγ .
Furthermore, since we are only interested in showing that f1 ? f2 ∈ Dγ , we discard
all of the components in Tβ for β ≥ γ.

By the properties of the product ?, it remains to obtain a bound of the type

‖Γxyf1(y) ? Γxyf2(y)− f1(x) ? f2(x)‖β . |x− y|γ−β .

By adding and subtracting suitable terms, we obtain

‖Γxyf(y)− f(x)‖β ≤ ‖
(
Γxyf1(y)− f1(x)

)
?
(
Γxyf2(y)− f2(x)

)
‖β

+ ‖
(
Γxyf1(y)− f1(x)

)
? f2(x)‖β (14.2)

+ ‖f1(x) ?
(
Γxyf2(y)− f2(x)

)
‖β .

It follows from the properties of the product ? that the first term in (14.2) is bounded
by a constant times∑

β1+β2=β

‖Γxyf1(y)− f1(x)‖β1‖Γxyf2(y)− f2(x)‖β2

.
∑

β1+β2=β

‖x− y‖γ1−β1‖x− y‖γ2−β2 . ‖x− y‖γ1+γ2−β .

Since γ1 + γ2 ≥ γ, this bound is as required. The second term is bounded by a
constant times∑

β1+β2=β

‖Γxyf1(y)− f1(x)‖β1
‖f2(x)‖β2

.
∑

β1+β2=β

‖x− y‖γ1−β1 1β2≥α2

. ‖x− y‖γ1+α2−β ,

where the second inequality uses the identity β1 + β2 = β. Since γ1 + α2 ≥ γ, this
bound is again of the required type. The last term is bounded similarly by reversing
the roles played by f1 and f2. ut
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Remark 14.6. Strictly speaking, it is the projection of f(x) = f1(x) ? f2(x) to T<γ
that belongs to Dγ

α , see Exercise 13.4.

Remark 14.7. It is clear that the formula (14.1) for γ is optimal in general as can
be seen from the following two “reality checks”. First, consider the case of the
polynomial model and take fi ∈ Cγi . In this case, the (abstract) truncated Taylor
series fi for fi belong to Dγi

0 . It is clear that in this case, the product cannot be
expected to have better regularity than γ1∧γ2 in general, which is indeed what (14.1)
states. The second reality check comes from (the proof of) Theorem 13.18. In this
case, with β > α ≥ 0, one has f ∈ Dβ

0 , while the constant function x 7→ Ξ belongs
to D∞−α so that, according to (14.1), one expects their product to belong to Dβ−α

−α ,
which is indeed the case.

It turns out that if we have a product on a regularity structure, then in many
cases this also naturally yields a notion of composition with regular functions. Of
course, one could in general not expect to be able to compose a regular function with a
distribution of negative order. As a matter of fact, we will only define the composition
of regular functions with elements in some Dγ for which it is guaranteed that the
reconstruction operator yields a continuous function. One might think at this case
that this would yield a triviality, since we know of course how to compose arbitrary
continuous function. The subtlety is that we would like to design our composition
operator in such a way that the result is again an element of Dγ .

For this purpose, we say that a given sector V ⊂ T is function-like if α <
0 =⇒ Vα = 0 and if V0 is one-dimensional. (Denote the unit vector of V0 by 1.)
We will furthermore always assume that our models are normal in the sense that(
Πx1

)
(y) = 1. In this case, it turns out that if f ∈ Dγ(V ) for a function-like sector

V , thenRf is a continuous function and one has the identity
(
Rf
)
(x) = 〈1, f(x)〉,

where we denote by 〈1, •〉 the element in the dual of V which picks out the prefactor
of 1.

Assume now that we are given a regularity structure with a function-like sector
V and a product ? : V × V → V . For any smooth function G : R → R and any
f ∈ Dγ(V ) with γ > 0, we can then define G ◦ f (also denoted G(f)) to be the
V -valued function given by

(
G ◦ f

)
(x) =

∑
k≥0

G(k)(f̄(x))

k!
Q<γ f̃(x)?k ,

where we have set

f̄(x) = 〈1, f(x)〉 , f̃(x) = f(x)− f̄(x)1 ,

and weher Q<γ : T → T<γ is the natural projection. Here, G(k) denotes the kth
derivative of G and τ?k denotes the k-fold product τ ? · · · ? τ . We also used the usual
conventions G(0) = G and τ?0 = 1.

Note that as long as G is C∞, this expression is well-defined. Indeed, by as-
sumption, there exists some α0 > 0 such that f̃(x) ∈ T≥α0 . By the properties of
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the product, this implies that one has f̃(x)?k ∈ T≥kα0
. As a consequence, when

considering the component of G ◦ f in Tβ for β < γ, the only terms that give a
contribution are those with k < γ/α0. Since we cannot possibly hope in general that
G ◦ f ∈ Dγ′ for some γ′ > γ, this is all we really need.

It turns out that if G is sufficiently regular, then the map f 7→ G ◦ f enjoys
similarly nice continuity properties to what we are used to from classical Hölder
spaces. The following result is the analogue in this context to Lemma 7.3:

Proposition 14.8. In the same setting as above, provided that G is of class Ck with
k > γ/α0, the map f 7→ G◦f is continuous from Dγ(V ) into itself. If k > γ/α0 +1,
then it is locally Lipschitz continuous.

The proof of the first statement can be found in [Hai14b], while the second
statement was shown in [HP15]. It is a somewhat lengthy, but ultimately rather
straightforward calculation.

14.3 Classical Schauder estimates

One of the reasons why the theory of regularity structures is very successful at
providing detailed descriptions of the small-scale features of solutions to semilinear
(S)PDEs is that it comes with very sharp Schauder estimates. A full proof of the
Schauder estimates for regularity structures is beyond the scope of this book, but we
want to convey the flavour of the proof. The aim of this section is therefore to give
a self-contained proof of the classical Schauder estimates which state that for any
(compactly supported) kernel K that is approximately homogeneous of degree β− d,
the convolution map ζ 7→ K ∗ ζ is continuous from Cα to Cα+β , provided that α+ β
is not a positive integer. We first make precise our assumptions on the kernel K.

Definition 14.9. Given β > 0, a kernel K : Rd\{0} → R, smooth except for a
singularity at the origin, is said to be β-regularising if it is supported in the unit
ball around the origin and, for every k ∈ Nd, there exists a constant C such that
|DkK(x)| ≤ C|x|β−d−|k|.

Immediate examples are (smooth truncations of) the Newton potential in dimension
d ≥ 3, proportional to 1/|x|d−2 and hence 2-regularising, the fractional Volterra
kernel (xH−1/21x>0) with d = 1 and β = H + 1/2. The heat kernel on space-time
Rn+1, proportional to (t, x) 7→ t−n/2 exp(− |x|

2

4t )1t>0, also fits in this setting (and
is 2-regularising), provided one works with “parabolic” scaling (cf. Remark 13.9).

As in Section 13.3, and for any r ∈ N, we work with Br ⊂ D, the set of smooth
test functions with Cr-norm bounded by 1 and supported in the unit ball. It will be
convenient for the purpose of this section to write Bλr,x for the set of all test functions
of the form ϕλx with ϕ ∈ Br. Such ψ ∈ Bλr,x are characterised by having support in
the ball of radius λ centred at x and derivatives bounds |Dkψ| ≤ λ−d−|k| for |k| ≤ r.
We also note that, for any real s ∈ [0, r], the estimate ‖ψ‖Cs . λ−d−s holds true.
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Lemma 14.10. Given a β-regularising kernel K and r ≥ 0, one can write K =∑
n≥−1Kn in such a way that 2βnKn ∈ CB2−n

r,0 for some C > 0.

Proof. As is common in the construction of Paley–Littlewood blocks, we work with
a dyadic partitions of unity, based on a smooth “cutoff” function” ϕ : R+ → [0, 1],
supported in [2−1, 21], such that

∑
n≥0 ϕn ≡ 1 on (0, 1], where ϕn := ϕ(2n •) is

supported in [2−n−1, 2−n+1]. Since K is supported in {x : |x| ≤ 1}, the stated
decomposition clearly holds with (smooth) Kn(x) := ϕn+1(|x|)K(x), supported in
the ball of radius 2−n centred at the origin. To see that 2βnKn ∈ CB2−n

r,0 , for given
r ≥ 0, it remains to see that |DjKn| . (2−n)β−d−|j| for |j| ≤ r. This estimate
holds, with Kn replaced by K, by the defining property of a β-regularising kernel,
restricted to x � 2−n. On the other hand, |Diϕn| = |(2n)|i|Diϕ| . (2n)|i|, and we
conclude with Leibnitz’ product rule. ut

The following simple proposition is the first crucial ingredient in our approach.
Loosely speaking, it states that the convolution of two test functions localised at two
distinct scales is localised at the sum (or equivalently maximum) of the two scales
and that one gains in amplitude if the tighter of the two test functions annihilates
polynomials of a certain degree.

Proposition 14.11. There exists C > 0 such that, for all ϕ ∈ Bλr,x and ψ ∈ Bµr,y , one
has ψ ∗ ϕ ∈ CBλ+µ

r,x+y . If furthermore λ ≤ µ and
∫
P (z)ϕ(z) dz = 0 for every poly-

nomial P with degP < γ ≤ r, some γ ∈ R+, then ψ ∗ ϕ ∈ C(λ/µ)γB2µ
br−γc,x+y .

Proof. Clearly, ψ ∗ϕ is supported in the ball of radius λ+µ centred at x+y. For the
first claim, by swapping the roles of ϕ and ψ if necessary, we may assume λ ≤ µ. To
see that the convolution yields an element in Bλ+µ

r,x+y , in view of the characterisation
of such spaces, it suffices to estimate, for |k| ≤ r, Dk(ψ ∗ ϕ) = (Dkψ) ∗ ϕ using
|(Dkψ)| . µ−d−|k| � (λ + µ)−d−|k| and

∫
|ϕ(z)| dz ≤ C (independent of λ).

Regarding the second claim, we write

Dk(ψ ∗ ϕ)(•) =

∫
ψ(k)(• − z)ϕ(z) dz

=

∫ (
ψ(k)(• − z)− P γ;(k)

• (• − z)
)
ϕ(z) dz ,

for 0 ≤ |k| ≤ r − γ, where P γ;(k)
• denotes the Taylor expansion (at the dotted

base-point) of ψ(k) ≡ Dkψ of integer degree γ − {γ} < γ (annihilated by ϕ). It
remains to be seen that, for all such k,

|Dk(ϕ ∗ ψ)(•)| . (λ/µ)γµ−d−|k| .

To this end, using that γ + |k| ≤ r, one has the estimate

|ψ(k)(• − z)− P k,γ• (• − z)| . ‖ψ‖Cγ+|k| |z|γ . µ−d−γ−|k||z|γ .
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We only need to consider z in the support of ϕ, and in fact can assume without loss of
generality that x = 0 (otherwise subtract another annihilated Taylor polynomial. . .),
so that

∫
|z|γ |ϕ(z)| dz ≤ λγ

∫
|ϕ(z)| dz . λγ . The desired estimate now follows.

ut

Our second crucial ingredient is a characterisation of Hölder spaces that is well
adapted to our approach. For this, we define the following scale of spaces of distribu-
tions.

Definition 14.12. For α ∈ R, write r = ro(α) for the smallest non-negative integer
such that r+α > 0. We then define Zα as the space of distributions on Rd such that
for every compact set K ⊂ Rd there exists a constant C such that the bound

|ζ(ϕ)| ≤ Cλα ,

holds uniformly λ ∈ (0, 1], x ∈ K and all ϕ ∈ Bλr,x such that
∫
ϕ(z)P (z) dz = 0

for all polynomials P with degP ≤ α. For any compact set K, the best possible
constant such that the above bound holds uniformly over x ∈ K yields a seminorm.
The collection of these seminorms endows Zα with a Fréchet space structure.

The precise choice of r in Definition 14.12 is not very important, as one could
have taken any other choice r ≥ ro(α). More precisely, one has the following result.

Lemma 14.13. For r ≥ ro(α), write Zαr for Zα as defined above, but with ro(α)
replaced by r. Then Zαr = Zα.

Proof. We fix a partition of unity {χy}y∈Λ for Rd such that all the χy are translates
of χ0 by y ∈ Rd and Λ ⊂ Rd is a lattice. In particular, we make sure that χy ∈ Bλr,y .
Given any λ > 0, we write χy,λ(x) = χy/λ(x/λ) and we set Λλ = Λ/λ. We also
fix a function ψ ∈ C∞ with support in the centred unit ball and such that∫

Rd
xkψ(x) dx = δk,0 , ∀k : |k| ≤ r . (14.3)

(Such functions exist by Exercise 13.8.) We then write ψ̃(x) = 2dψ(2x)− ψ(x) and
note that by (14.3) one has

∫
Rd x

kψ̃(x) dx = 0 for |k| ≤ r.
Let now α < 0 and take ζ ∈ Zαr , we want to show that ζ ∈ Zα. Given ϕ ∈ Bλro,x

and setting λn = 2−nλ, we write

ϕ = ϕ ∗ ψλ +
∑
n≥0

∑
y∈Λλn

ϕn,y , ϕn,y =
(
ϕ ∗ ψ̃λn

)
· χy,λn . (14.4)

As a simple consequence of the Taylor remainder theorem, one has the bound∥∥ϕ ∗Dkψ̃λn
∥∥
∞ . λ

−d2−ronλ−|k|n = 2−(d+ro)nλ−d−|k|n ,

so that there exists a constant C independent of ϕ such that ϕn,y ∈ C2−(d+ro)nBλnr,y ,
which in particular implies that
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|ζ(ϕn,y)| . λα2−(d+ro+α)n . (14.5)

Since the number of terms in Λλn such that ϕn,y is non-zero is of order 2nd, we
conclude that

|ζ(ϕ)| . λα +
∑
n≥0

λα2−(ro+α)n . λα ,

where we used the fact that ro + α > 0 by definition.
Note that the assumption α < 0 was used in order to obtain the bound (14.5)

since there is no reason for ϕn,y to annihilate polynomials even if ϕ does. The case
α > 0 is easier, noting that the definition of Zαr implies that ζ ∗ ψ̃λn is a continuous
function bounded by O(λαn). We then use the fact that

ζ(ϕ) = ζ(ϕ ∗ ψλ) +
∑
n≥0

〈ζ ∗ ψ̃λn , ϕ〉 ,

with 〈·, ·〉 denoting the L2 scalar product, combined with the fact that ϕ integrates to
O(1), to conclude that |ζ(ϕ)| . λα(1 +

∑
n≥0 2−αn) . λα as required.

The case α = 0 is a bit more delicate and we leave it as Exercise 14.3. ut

Remark 14.14. Validity of the stated bounds implies that distributions in Zα ⊂ D′
can be extended canonically to test functions in Crc (elements in Cr with compact
support). In this sense, Zα is contained in the topological dual of Crc . (The situation
is similar in the definition of models, cf. Remark 13.7.)

For α < 0, the polynomial-annihilation condition is void and there is no additional
condition on ϕ besides ϕ ∈ Bλr,x. In this case Zα is precisely the negative Hölder
space Cα introduced in Section 13.3.1. The following proposition shows that to some
extent this is also true in case of positive Hölder spaces, as previously encountered in
Section 13.3.1.

Proposition 14.15. For α 6∈ N, one has Zα = Cα.

Proof. There is nothing to prove for α < 0, so let α > 0. We first show that
Cα ⊂ Zα, this inclusion also being valid for integer values of α. In fact, it suffices to
note that, given f ∈ Cα and ϕ ∈ Bλr,x as in Definition 14.12, one has∫

f(y)ϕ(y) dy =

∫ (
f(y)− Pαx (y − x)

)
ϕ(y) dy . λα ,

where the identity follows from the fact that ϕ annihilates Pαx , the Taylor expansion
at order α of f , based at x, and the bound is as in the proof of Proposition 14.11.

For the converse inclusion, we first consider the case α ∈ (0, 1) and let ζ ∈ Zα.
Let % : Rd → R be a smooth function that is compactly supported in the unit ball
around the origin and such that

∫
%(z) dz = 1. Note first that, for any x ∈ Rd and

λ ∈ (0, 1], it follows from the definition of Zα that one has the bound

|ζ(%2−nλ
x )− ζ(%2−n−1λ

x )| = |ζ(%2−nλ
x − %2−n−1λ

x )| ≤ Cλα2−αn .
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It follows that f(x) = limn→∞ ζ(%2−nλ
x ) is well-defined and that

|f(x)− ζ(%λx)| . λα .

As a consequence, one has

|f(x)− f(y)| . λα +
∣∣ζ(%λx − %λy )

∣∣ .
Choosing λ = |x− y|, it follows that f ∈ Cα. The fact that f = ζ in the sense that
ζ(ϕ) =

∫
f(z)ϕ(z) dz follows immediately from the fact that

ζ(ϕ) = lim
λ→0

ζ(ϕ ∗ %λ) = lim
λ→0

∫
ζ(%λx)ϕ(x) dx .

The claim for general non-integer α can then be seen from the fact that ζ ∈ Zα
implies Dkζ ∈ Zα−|k| (interpreted as distributional derivatives) for every multi-
index k. Details are left to the reader. ut

Remark 14.16. For n ∈ N, the spaces Zn are usually called Hölder–Zygmund spaces
in the literature (thus our choice of symbol Z). They are distinct from the usual
Hölder spaces since one can check that x 7→ xn logx belongs to Zn, but not to Cn.

With all of these preliminaries in place, we can give a very simple proof of
Schauder’s theorem. (See for example [Sim97] for an alternative proof of a very
similar statement.)

Theorem 14.17. For any β-regularising kernel K, the map ζ 7→ K ∗ ζ is continuous
from Zα to Zα+β for every α ∈ R.

Proof. Let ζ ∈ Zα and let ϕ ∈ Bλr,x where we will (and can by Lemma 14.13) work
with suitable r ≥ ro(α+ β), chosen below, such that

∫
ϕ(z)P (z) dz = 0 for every

P with degP ≤ α + β. Lemma 14.10 yields a decomposition (Kn : n ≥ −1) for
Ǩ(x) = K(−x), so that

(K ∗ ζ)(ϕ) = ζ(Ǩ ∗ ϕ). =
∑
n

ζ(Kn ∗ ϕ) =
∑
n

2−βnζ(2βnKn ∗ ϕ) , (14.6)

with 2βnKn ∈ CB2−n

r,0 for some C > 0. It then follows from Proposition 14.11
(applied with µ = 2−n, noting that Kn ∗ ϕ also annihilates polynomials of degree
up to α+ β) and the definition of Zα that

|ζ(2βnKn ∗ ϕ)| .
{

λα if 2−n ≤ λ,
(2nλ)γ2−αn otherwise,

provided br − γc ≥ ro(α+ β). We will also need γ > α+ β, so that for instance
r := 2(|α| + β) + 2 is a safe choice. Inserting this bound into (14.6), and using
β > 0, γ > α+ β to estimate the geometric sums, one has the bounds
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n≥0

2−n≤λ

2−βnλα . λα+β ,
∑
n≥0

2−n≥λ

2(γ−α−β)nλγ . λα+β ,

it follows that |(K ∗ ζ)(ϕ)| . λα+β , whence the claim follows. ut
Remark 14.18. The proof is (much) simpler in the “negative” case, with Hölder
exponents α < α + β < 0. In essence, this is due to the absence of polynomial
vanishing conditions. More specifically, one can take r = ro(α + β) in the above
proof, and then γ = 0 later on, so that only the easy (first) part of Proposition 14.15
is used. A reduction of the general to the negative case, in dimension d = 1, is
discussed in Exercise 14.2.

Remark 14.19. One can verify that the proof never made explicit use of the Euclidean
scaling and can be adapted mutatis mutandis to the case of arbitrary scalings as
mentioned in Remark 13.9, provided that the notion of “β-regularising kernel” is
adjusted accordingly (replace the exponent β − d− |k| by β − |s| − |k|s).

14.4 Multilevel Schauder estimates and admissible models

As we saw in the previous section, the classical Schauder estimates state that if
K : Rd → R is a kernel that is smooth everywhere, except for a singularity at the
origin that is approximately homogeneous of degree β − d for some fixed β > 0 (i.e.
it is β-regularising in the sense of Definition 14.9), then the operator f 7→ K ∗ f
maps Cα into Cα+β for every α ∈ R, except for those values for which α+ β ∈ N.

It turns out that similar Schauder estimates hold in the context of general regularity
structures in the sense that it is in general possible to build an operator K : Dγ →
Dγ+β with the property thatRKf = K∗Rf . We call such a statement a “multi-level
Schauder estimate” since it is a form of Schauder estimate for all the components of
f in Tα for all α < γ. Of course, such a statement can only be expected to hold if
our regularity structure contains not only the objects necessary to describeRf up to
order γ, but also those required to describe K ∗Rf up to order γ+β. What are these
objects? At this stage, it might be useful to reflect on the effect of the convolution of
a singular function (or distribution) with K.

Let us assume for a moment that a given real-valued function f is smooth ev-
erywhere, except at some point x0. It is then straightforward to convince ourselves
that K ∗ f is also smooth everywhere, except at x0. Indeed, for any δ > 0, we can
write K = Kδ + Kc

δ , where Kδ is supported in a ball of radius δ around 0 and
Kc
δ is a smooth function. Similarly, we can decompose f as f = fδ + f cδ , where

fδ is supported in a δ-ball around x0 and f cδ is smooth. Since the convolution of
a smooth function with an arbitrary distribution is smooth, it follows that the only
non-smooth component of K ∗ f is given by Kδ ∗ fδ , which is supported in a ball of
radius 2δ around x0. Since δ was arbitrary, the statement follows. By linearity, this
strongly suggests that the local structure of the singularities ofK ∗f can be described
completely by only using knowledge on the local structure of the singularities of f .
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It also suggests that the “singular part” of the operator K should be local, with the
non-local parts of K only contributing to the “regular part”.

This discussion suggests that we need the following ingredients to build an
operator K with the desired properties:

• The polynomial structure should be part of our regularity structure in order to be
able to describe the “regular parts”.
• We should be given an “abstract integration operator” I (of order β) on T which

describes how the “singular parts” ofRf transform under convolution by K.
• We should restrict ourselves to models which are “compatible” with the action

of I in the sense that the behaviour of ΠxIτ should relate in a suitable way to
the behaviour of K ∗Πxτ near x.

One way to implement these ingredients is to assume first that our regularity structure
contains abstract polynomials in the following sense.

Assumption 14.20 There exists a sector T̄ ⊂ T isomorphic to the polynomial
regularity structure. In other words, T̄α 6= 0 if and only if α ∈ N, and one can
find basis vectors Xk of T|k| such that every element Γ ∈ G acts on T̄ by ΓXk =

(X + h1)k for some h ∈ Rd.

Furthermore, we assume that there exists an abstract integration operator I, of
fixed order β > 0, with the following properties.

Assumption 14.21 There exists a linear map I : V → T for some sector V ⊂ T
such that IVα ⊂ Tα+β and, for every Γ ∈ G and τ ∈ T ,

ΓIτ − IΓτ ∈ T̄ . (14.7)

Remark 14.22. We do not want to assume ΓI = IΓ . This is already seen in case
of the rough path structure given by Definition 13.4. The map I : Ẇ i 7→ W i,
1 ≤ i ≤ e, constitutes an abstract integration operator (defined on the sector Tα−1).
Since a generic Γh ∈ G maps W i to W i + hi1, we see that ΓI − IΓ 6= 0 (for
h 6= 0) and takes values in T0 = 〈1〉.

Finally, we want to restrict our attention to models that are compatible with this
structure for a given kernel K in the following sense.

Definition 14.23. Given a β-regularising kernel K and a regularity structure T
satisfying Assumptions 14.20 and 14.21, we say that a model (Π,Γ ) is admissible if
the identities(

ΠxX
k
)
(y) = (y − x)k , ΠxIτ = K ∗Πxτ −ΠxJxτ , (14.8)

hold for every τ ∈ V . Here, Jx : V → T̄ is the linear map given on homogeneous
elements by

Jxτ =
∑

|k|<deg τ+β

Xk

k!

∫
DkK(x− y)

(
Πxτ

)
(dy) . (14.9)
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Remark 14.24. In some cases, it will be convenient to introduce a whole family Ik
of integration operators of order β − |k|. The notion of admissibility is then defined
similarly, with I replaced by Ik and K replaced by DkK, to the extent that these
symbols are included in the structure space.

Remark 14.25. If ξ is smooth and we furthermore impose that Πx is multiplicative
(which is not enforced in general!), this yields a recursion to define the canonical
model associated to ξ provided one manages to construct Γxy at the same time. The
correct recursion to do this is

Γxy(I + Jy)τ = (I + Jx)Γxyτ , (14.10)

which is clearly consistent with the constraint (14.7) and which one can show guar-
antees that ΠxΓxyIτ = ΠyIτ . See also Exercise 14.6.

Remark 14.26. Recall that if P is a polynomial and K is a compactly supported
function, then K ∗ P is again a polynomial of the same degree as P . Since, for
Πxτ smooth enough, the term ΠxJxτ appearing in (14.8) is nothing but the Taylor
expansion of K ∗Πxτ around x, it follows that one has ΠxIXk = 0 for any multi-
index k and any admissible model, which would suggest that one could have imposed
the identity IXk = 0 already at the algebraic level. This would however create
inconsistencies later on when incorporating renormalisation, unless we assume that∫
K(x)P (x) dx = 0 for every polynomial P of degree N , for some sufficiently

large value of N . Here, we chose to simply add instead IXk as separate symbols to
our regularity structure and to then set IXk = IXk.

Remark 14.27. While K ∗ ξ is well-defined for any distribution ξ, it is not so clear a
priori whether the operator Jx given in (14.9) is also well-defined. It turns out that
the axioms of a model do ensure that this is the case. The correct way of interpreting
(14.9) is by

Jxτ =
∑

|k|<deg τ+β

∑
n≥0

Xk

k!

(
Πxτ

)(
DkKn(x− •)

)
,

withKn as in Lemma 14.10. The scaling properties of theKn ensure that the function
2(β−|k|)nDkKn(x− •) is a test function that is localised around x at scale 2−n. As
a consequence, one has∣∣(Πxτ

)(
DkKn(x− •)

)∣∣ . 2(|k|−β−deg τ)n ,

so that this expression is indeed summable as long as |k| < deg τ + β.

Remark 14.28. As a matter of fact, it turns out that the above definition of an ad-
missible model dovetails very nicely with our axioms defining a general model.
Indeed, starting from any regularity structure T , any model (Π,Γ ) for T , and a
β-regularising kernel K, it is usually possible to build a larger regularity structure
T̂ containing T (in the “obvious” sense that T ⊂ T̂ and the action of Ĝ on T is
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compatible with that of G) and endowed with an abstract integration map I, as well
as an admissible model (Π̂, Γ̂ ) on T̂ which reduces to (Π,Γ ) when restricted to T .
See [Hai14b] for more details.

The only exception to this rule arises when the original structure T contains some
homogeneous element τ which does not represent a polynomial and which is such
that deg τ + β ∈ N. Since the bounds appearing both in the definition of a model
and in that of a β-regularising kernel are only upper bounds, it is in practice easy to
exclude such a situation by slightly tweaking the definition of either the exponent β
or of the original regularity structure T .

With all of these definitions in place, we can finally build the operator K : Dγ →
Dγ+β announced at the beginning of this section. Recalling the definition of J from
(14.9), we set (

Kf
)
(x) = If(x) + Jxf(x) +

(
N f
)
(x) , (14.11)

where the operator N is given by

(
N f
)
(x) =

∑
|k|<γ+β

Xk

k!

∫
DkK(x− y)

(
Rf −Πxf(x)

)
(dy) . (14.12)

Note first that thanks to the reconstruction theorem, it is possible to verify that the
right-hand side of (14.12) does indeed make sense for every f ∈ Dγ in virtually the
same way as in Remark 14.27. One has:

Theorem 14.29. Let K be a β-regularising kernel, let T = (T,G) be a regularity
structure satisfying Assumptions 14.20 and 14.21, and let (Π,Γ ) be an admissible
model for T . Then, for every f ∈ Dγ with γ ∈ (0, N − β) and γ + β 6∈ N, the
function Kf defined in (14.11) belongs to Dγ+β and satisfiesRKf = K ∗ Rf .

Proof. The complete proof of this result can be found in [Hai14b] and will not
be given here. Since it is rather straightforward, we will however give a proof
of Schauder’s estimate in the classical case (i.e. that of the polynomial regularity
structure) in Section 14.3 below.

Let us simply show that one has indeed RKf = K ∗ Rf in the particular case
when our model consists of continuous functions so that Remark 13.27 applies. In
this case, one has(

RKf
)
(x) =

(
Πx(If(x) + Jxf(x))

)
(x) +

(
Πx

(
N f
)
(x)
)
(x) .

As a consequence of (14.8), the first term appearing in the right-hand side of this
expression is given by(

Πx(If(x) + Jxf(x))
)
(x) =

(
K ∗Πxf(x)

)
(x) .

On the other hand, the only term contributing to the second term is the one with
k = 0 (which is always present since γ > 0 by assumption) which then yields
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Πx

(
N f
)
(x)
)
(x) =

∫
K(x− y)

(
Rf −Πxf(x)

)
(dy) .

Adding both of these terms, we see that the expression
(
K ∗Πxf(x)

)
(x) cancels,

leaving us with the desired result. ut

We are now in principle in possession of all of the ingredients required to formulate
fixed point problems for a large number of semilinear stochastic PDEs: multiplication,
composition by regular functions, differentiation, and integration against the Green’s
function of the linearised equation. Before we show how this can be leveraged in
practice in order to build a robust solution theory for the KPZ equation, we briefly
explore some of main concepts in setting of (very) rough paths.

14.5 Rough volatility and robust Itô integration revisited

Recent applications from mathematical finance, where σ(t, ω) = σ(Ŵt) models
rough stochastic volatility, involve (standard) Itô integrals of the form∫ T

0

σ(Ŵt)d(Wt, W̄t) ≡
∫ T

0

f(Ŵt)dWt +

∫ T

0

f̄(Ŵt)dW̄t , (14.13)

where σ = (f, f̄) : R→ R2 is a sufficiently smooth map, (W, W̄ ) is a 2-dimensional
standard Brownian motion, and Ŵt given by∫

KH(t− s) dWs , (14.14)

with Riemann–Liouville kernel KH(x) = xH−1/21x>0. Since KH ∈ L2
loc(R) but

not in L2(R), we replace it in the sequel by a compactly supported K, smooth away
from zero and equal to KH in some neighbourhood of zero. We then require W to
be a two-sided Brownian motion, so that ξ := Ẇ defines Gaussian white noise on R,
and

Ŵ = K ∗ ξ . (14.15)

Alternatively, as done in [BFG+19], see also [BFG20], one can restrict integration in
(14.14) to [0, t] with the benefit of exactly recovering Brownian motion Ŵ = W for
H = 1/2 in which case the integral (14.13) fits squarely into rough integration theory
(namely Theorem 4.4, applied with the Itô Brownian rough path from Proposition 3.4).
However, for H ∈ (0, 1/2) rough integration must fail. Indeed, K is (1/2 + H)-
regularising so that it follows from Schauder’s Theorem 14.17 that Ŵ and then
σ(Ŵ ) have generically H−-Hölder regularity and hence cannot be expected to be
controlled by W ∈ C1/2− . We can make (minor) progress by noting that (Ŵ , W̄ )
is a 2-dimensional Gaussian process with independent components. At least for
H > 1/3, the results of Section 10.3 for Gaussian rough paths apply essentially



14.5 Rough volatility and robust Itô integration revisited 277

directly to the final integral
∫
f̄(Ŵ )dW̄ above and Exercise 14.8 allows to deal with

arbitrary H > 0.
The remainder of this section will focus on the other, seemingly harmless, one-

dimensional Itô integral, with Ŵ as given in (14.15),∫ T

0

f(Ŵ )dW . (14.16)

We are interested in a robust form of this Itô stochastic integral. In case of Ŵ = W
we can in fact express (14.16) via Itô’s formula, which immediately gives a version
of this integral which is continuous in W , even in uniform topology. Certainly, this
trick fails when Ŵ 6= W .

In this section we set up a regularity structure that provides a full solution to this
problem. Needless to say, this structure is much simpler than what is needed for the
KPZ equation in the next chapter. Yet, it showcases a number of features omnipresent
for singular SPDEs, but without some of the added complexity coming from PDE
theory.

Recall that the Hölder exponent of Ŵ is H − κ for any κ > 0. As a result, we
have |Ŵm

s,t| . |t− s|m(H−κ) and the building blocks for a robust representation of
(14.16) are

Wm
s,t =

∫ t

s

(Ŵs,r)
m dWr , (14.17)

with m = 0, 1, 2, . . . ,M where M is the smallest integer such that (M + 1)H +
1/2 > 1, which reflects the analytic redundancy of WM+1 in the sense of

|WM+1(s, t)| . |t− s|(M+1)(H−κ)+1/2 = o(t− s) ,

for small enough κ > 0. For definiteness, let us focus on the case

H >
1

8
, M = 3 .

We first define symbols (these will be the basis vectors of our regularity structure) to
represent (Ŵs,t)

m, 0 ≤ m ≤ 3. If Ξ ≡ is the symbol for white noise ξ ≡ Ẇ , we
can write the required symbols indifferently as

{1, I(Ξ), I(Ξ)2, I(Ξ)3} ≡ {1, , , }.

The map I : Ξ 7→ I(Ξ) represents convolution with K and is graphically repre-
sented by a downfacing plain line; multiplication (which we postulate to be commuta-
tive and associative) is depicted by joining trees at their roots. For instance, ? =

(we will omit ? in the sequel). Similarly, the symbols denoting (Ŵs,t)
mẆt, defined

as the generalised derivative ∂Wm
s,• , are given in the same pictorial representation as

{ , , , } (with for example = I(Ξ)2Ξ). We then define the structure space of
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our regularity structure as the free vector space generated by these symbols, namely

T = 〈 , , , , 1, , , 〉 . (14.18)

The partial product defined on T (for example = ) does not extend to all of T .1 It
is natural to postulate that Ξ has degree degΞ = − 1

2

− (the presence of the exponent
‘−’ reflects the fact that in order for the bound (13.13) to be satisfied when ΠtΞ is
given by white noise, we need to make sure that degΞ is strictly smaller than − 1

2 ,
but by how much exactly is irrelevant as long as it is a small enough quantity), that I
increases degree byH+ 1

2 , and that the degree is additive under multiplication. Since
it is natural to take deg 1 = 0 to retain consistency with the polynomial regularity
structure, this uniquely determines the degree of each of the basis vectors of T , for
instance

deg = deg + 3 deg = (3H − 1
2 )− .

To understand the structure group, we shift from a base point s to a new base
point t. Basic additivity properties of the integral in (14.17) show that

W3
s,• = W3

t,• + 3W2
t,•Ŵs,t + 3W1

t,•Ŵ
2
s,t + W0

t,•Ŵ
3
s,t + W3

s,t .

Considering the (generalised) derivative in the free variable, we have

∂W3
s,• = ∂W3

t,• + 3(∂W2
t,•)Ŵs,t + 3(∂W1

t,•)Ŵ
2
s,t + (∂W0

t,•)Ŵ
3
s,t . (14.19)

This suggests to “break up” the symbol (for ∂W3
∗,•) in the form

∆+( ) := ⊗ 1 + 3 ⊗ + 3 ⊗ + ⊗ ∈ T ⊗ T+ ,

where the introduction of a new space T+ is justified by the fact that elements in T+

represent functions of two variables (s and t here), while elements of T represent
functions of one variable (the base point s resp. t) that are distributions in the
remaining free variable. In particular, it is rather natural that T+ (unlike T ) contains
no symbols of negative degree and that elements of T+ can be multiplied freely. In
other words, it is natural in this context to define T+ as the free commutative algebra
generated by the single element def

= J ( ). The difference between T+ and T is
emphasised in our notation by drawing basis vectors of T+ in black.

The action of the linear map ∆+ : T → T ⊗ T+ has the appealing graphical
interpretation of cutting off positive branches: for instance, the summand 3 ⊗ =
⊗3 in∆+( ) is explained as follows: there are three ways to “cut off” a “lollipop”
from , which are then painted black and put as 3 ∈ T+ to the right-hand side;

the remaining “pruned” tree ∈ T goes to the left. Similarly, there are three ways to
cut off two lollipops from , which then appear as 3 ∈ T+ on the right-hand side,
while the pruned remainder ∈ T appears on the left.

1 For instance, we do not want our regularity structure to contain a symbol Ξ2 denoting the square
of white-noise. We also have no need for trees with ≥ 4 branches so that products like ,
etc. remain deliberately undefined within T .
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A concise recursive algebraic description of ∆+ starts with

∆+1 = 1⊗ 1 , ∆+Ξ = Ξ ⊗ 1 ,

followed by an extension to all of T by imposing the identities2

∆+(τ τ̄) = ∆+τ ·∆+τ̄ ,
∆+I(τ) = (I ⊗ Id)∆+τ + 1⊗ J (τ) .

Here, J (τ) is the element in T+ obtained from a (then painted black) symbol τ .
In our pictorial representation J is visualised by a (black) downfacing line. The
tree associated to J (τ) has exactly one line emerging from the root (such trees are
called planted). In the present example, τ = is the only symbol in T , as given in
(14.18), with image under I in T , so that the second relation above can only produce

= J ( ) ∈ T+; whereas the first relation leads to powers thereof (in T+).
Let now G+ denote the set of characters on T+, i.e. all linear maps g : T+ → R

with the property that g(σσ̄) = g(σ)g(σ̄) for any two elements σ and σ̄ in T+. There
is not much choice here, since c = g( ) ∈ R fully determines any such map. In order
to get back to (14.19), we introduce Γg : T → T by

Γgτ = (Id⊗ g)∆+τ , (14.20)

so that, for instance, Γg( ) = +3c +3c2 +c3 ∈ T , and with c = g( ) = Ŵs,t

this precisely captures (14.19) as an abstract shift map Γst = Γgs,t with gs,t( ) =

Ŵs,t. In principle, (14.20) makes sense for every g ∈ (T+)∗, but it turns out that the
set of those maps Γg with g ∈ G+ forms a group, which is precisely our structure
group:

G := {Γg : g ∈ G+}. (14.21)

Written in matrix form, with respect to the ordered basis of T consisting of 4 negative
and 4 non-negative symbols, each Γg is block-diagonal with two (4× 4)-blocks of
the form 

1 c c2 c3

0 1 2c 3c2

0 0 1 3c
0 0 0 1

 =: Nc

One can check that NcNc̄ = Nc+c̄ with c, c̄ ∈ R so that, as a group, G is isomorphic
to (R,+). This completes the construction of the regularity structure (T,G). We
leave it to the reader to identify pairs of sectors on which (the usually omitted) ?
defines a product in the sense of Section 14.2 and to show that I is indeed an abstract
integration operator3 in the sense of Definition 14.21.

2 The multiplicative property is understood for all symbols τ , τ̄ ∈ T which can be multiplied in T .
3 In the present setting there is no need to include higher order abstract polynomials X,X2, . . . as
part of T .
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As already hinted at, the natural Itô model MItô := (Π,Γ ) in this context is
defined by setting

Πs1 = 1 , ΠsΞ = Ẇ , Πs(I(Ξ)m) = Ŵm
s,• , Πs(ΞI(Ξ)m) = ∂W ,

as well as Γst = Γgs,t with gs,t( ) = Ŵs,t. We leave it to the reader to check that
MItô satisfies the required bounds (13.13) and therefore really defines a random
model for the regularity structure (T,G). We also note that the model is admissible
in the sense of Definition 14.23: in essence, this is seen from the identity

ΠsIΞ = K ∗ΠsΞ −ΠsJ (s)Ξ = K ∗ Ẇ − (K ∗ Ẇ )(s) = Ŵs,• (14.22)

where we used that only k = 0 figures in the sum of (14.9), so that

JsΞ = 1
∫
K(s− t)

(
ΠtΞ

)
(dt) = (K ∗ Ẇ )(s) 1 .

On the other hand, we can replace white noise Ẇ = Ẇ (ω) by a mollification
Ẇ ε := δε ∗ Ẇ with δε(t) = ε−1%(ε−1t), for some % ∈ C∞c with

∫
% = 1, or indeed

any smooth function ξ, and define the associated canonical model L (ξ) = (Π,Γ )
by prescribing

ΠsΞ = ξ, Πs(I(Ξ)m) = (K ∗ ξ)ms,• , Πs(ΞI(Ξ)m) = ξ(·)(K ∗ ξ)ms,• ,

as well as gs,t( ) = (K ∗ ξ)s,t. We again leave it to the reader to check that L (ξ) is
indeed an admissible model for our regularity structure.

It is interesting to consider the canonical model L (Ẇ ε) as ε→ 0. Formally, one
would expect convergence to a “Stratonovich model”, but this does not exist because
of an infinite Itô–Stratonovich correction. To wit, assume the approximate bracket

[W, Ŵ ]π :=
∑

[s,t]∈π

Ws,tŴs,t

converges, say in L1, upon refinement |π| → 0. Then the mean would have to
convergence, which is contradicted by the computation, using Itô isometry,

EWs,tŴs,t =

∫ t

s

K(t− r)dr =

∫ t−s

0

K(r)dr

∼
∫ t−s

0

KH(r)dr = cH(t− s)H+
1
2 ,

and the standing assumption that H < 1/2. As a consequence, the canonical model
L (Ẇ ε) will not converge as ε → 0, although the previous discussion suggests to
“cure” this by subtracting a diverging term, namely to consider4

4 This is an instance of Wick renormalisation where one replaces the product of two scalar Gaussian
random variables X,Y by X � Y := XY − E[XY ].
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Ŵ εdW ε − E

(∫
Ŵ εdW ε

)
, (14.23)

with integration understood over [s, t] with re-centred integrand Ŵs,• . However, such
Wick renormalisation at the level of generalised increments may destroy the algebraic
Chen relations. (Indeed, they only hold when the expectation is proportional to [s, t],
which has no reason to be the case in general.)

In fact, our admissible model (Π,Γ ) here can be described in terms of a single
“base-point free” realisation mapΠ : T → D′ which enjoys somewhat more natural
relations, such as

ΠIΞ = K ∗ΠΞ = K ∗ Ẇ = K ∗ ξ
instead of (14.22) in the Itô-model case, and similarly forΠε with Ẇ replaced by
Ẇ ε = ξε. The full specification reads5

Πε1 = 1, ΠεΞ = ξε,

Πε(I(Ξ)m) = (K ∗ ξε)m, Πε(ΞI(Ξ)m) = ξε(K ∗ ξε)m .
(14.24)

Remark 14.30. Define a character ft on T+ by specifying (in the Itô model6)

ft( ) = ft(J (Ξ)) :=

∫
K(t− s)

(
ΠtΞ

)
(s) = (K ∗ ξ)t , (14.25)

and also a linear map Ft : T → T by Ftτ = (Id ⊗ ft)∆+τ . One checks without
difficulty that Ft is an invertible map, Γts = F−1

t ◦ Fs and

Π = ΠsF
−1
s = ΠtF

−1
t =⇒ Πs = ΠtF

−1
t ◦ Fs = Π ◦ Fs .

At the level of the canonical modelΠε, switching to Πε
t = ΠεFt, this construction

merely replaces K ∗ ξε with the “base-pointed” expression (K ∗ ξε)t,• and tracks
the induced changes to the higher levels.

The Wick renormalisation in (14.23) points us to the (divergent) quantity7

def
= E(Πε( )) = E[(K ∗ δε ∗ ξ)(t)(δε ∗ ξ)(t)]

=

∫
R
(K ∗ δε)(t− s)δε(t− s)ds = (K ∗ δ̄ε)(0) .

where we recall δε = ε−1%(ε−1 •); and similarly for δ̄ε with %̄ = %(−(•)) ∗ %. Since
K(x) = xH−1/21x>0 in a neighourhood of zero, there is no loss of generality in
assuming that this includes the support of %̄. For ε ∈ (0, 1], it follows that8

5 One definesΠ(ΞI(Ξ)m) as the distributional derivative of an Itô integral.
6 . . .and similarly in the canonical one, with (K ∗ ξ)t replaced by (K ∗ ξε)t. . .
7 Thanks to stationarity, this quantity is independent of t. In particular, one could immediately take
t = 0.
8 In the case of H = 1/2, so that KH ≡ 1, noting that %(•), and hence %̄ = %(−(•)) ∗ %, has unit
mass, the constant equals 1/2, which is the same 1/2 appearing in the Itô–Stratonovich correction.
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= (K ∗ δ̄ε)(0) =

∫ ∞
0

KH(s)
1

ε
%̄
(s
ε

)
ds = εH−1/2

∫ ∞
0

KH(s) %̄(s)ds .

We can now replace the informal (14.23) by defining a “renormalised” (admissible)
model

Πε;ren(ΞI(Ξ)) := Πε(ΞI(Ξ) + cε11) ,

with diverging constant
cε1 = −E(Πε( )) = − .

In essence, we can leave it to the algebra to handle the correct shifting to different
base points (in other words: to recover (Πε;ren, Γ ε;ren) from knowledge of Πε;ren)
in the same spirit as Chen’s relation allows to work out increments Xs,t of a given
rough path t 7→ Xt.) On the analytic side, we note that the right-hand side still has
controlled blow up of order degΞI(Ξ) = (−1/2 +H)− < 0. This further suggests
that the renormalisation procedure can be described by suitable (linear) maps, say
M : T → T , which are (only) allowed to produces additional terms (of higher
degrees) as, for instance, Mc1 : ΞI(Ξ) 7→ ΞI(Ξ) + c11 in our present example.

At this stage we could proceed “by hand” and try to work out the correct fixes for
all Πε

s (ΞI(Ξ)m), m = 1, 2, 3, but care is necessary since “curing” level m = 1, as
done above, will spill over to the higher levels. This is already seen in the instructive
case when m = 0, i.e. for Πs(Ξ) = Ẇ . Indeed, if one “renormalises” Ẇ =⇒
Ẇ + c0, then writing V (t) := t, this leads to9

Wm
s,t =

∫ t

s

(Ŵs,r)
m dWr 7→

∫ t

s

(Ŵs,r + c0V̂s,r)
m (dWr + c0dVr) .

and hence affects all higher levels (m = 1, 2, . . .). While V̇ = 1 naturally has 1
as associated symbol, V̂ leads to a new symbol, indifferently written as I1 ≡ I()
or , in agreement with out earlier convention to represent action of I as single
downfacing line.

Ξ(IΞ)m 7→ (Ξ + c01)(IΞ + c0I1)m .

Provided we manage to define all these “fixes” (for m = 0, 1, 2, 3) consistently,
we can expect a family of linear maps M = Mc indexed by c = (c0, c1, c2, c3) ∈ R4

which furthermore constitutes a group in the sense that of (the matrix identity)
McMc̄ = Mc+c̄ with c, c̄ ∈ R4. This is the renormalisation group, here isomorphic
to (R4,+). There was a cheat here, in that our initial collection of symbols (with
linear span T ) was not rich enough to define Mc as linear map from T into itself. In
this sense T was incomplete, and one should work on a space T̃ ⊃ T which contains
required symbols such as or . (The notion of complete rule put forward in [BHZ19]
formalises this.) However, in the present example this was really a consequence of
the (analytically unnecessary!) level-0 renormalisation. In fact, c0 = 0 is the only
possible choice that respects the symmetry of the noise, in the sense that Ẇ and −Ẇ

9 This is nothing but a variation of the concept of translation of rough paths.
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have identical law. This reduces the renormalisation group to (R3,+) and reflects a
general principle: symmetries help to reduce the dimension of the renormalisation
group. See [BGHZ19] for an example where this principle takes centre stage in a
striking manner.

In general one proceeds as follows. Define T− as the free commutative algebra
generated by all negative symbols in T ; that is,

T− := Alg({ , , , }) . (14.26)

(Similarly to before, we colour basis elements of T− differently to distinguish them
from those of T and / or T+.) Elements in T− are naturally represented as linear
combination of (unordered) forests; for instance

− 1
2 1− 3 + + 4

3 ∈ T− ,

where 1 denotes the empty forest. As before, it is useful to introduce a linear map
∆− : T → T− ⊗ T which iterates over all possible ways of extracting possibly
empty collections of subtrees of negative degree, putting them as a forest on the
left-hand side, and leaving the remaining tree (where all “extracted” subtrees have
now been contracted to a point) on the T -valued right-hand side. For instance,

∆−( ) = 1⊗ + . . .+ 3 ⊗ + . . .+ 3 ⊗ + . . .+ ⊗ 1 .

The resulting renormalisation maps M : T → T are then parametrised by characters
on T−, similar to the construction of the structure group. Consider for instance the
case of a character g = gε defined by g( ) = cε1, g( ) = cε3, and set to vanish on
the remaining two generators and . Then, the map Mg given by

Mg = (g ⊗ Id)∆−

acts as the identity on all symbols of T other than

Mg = + cε11, Mg = + 2cε1 , Mg = + 3cε1 + cε31 . (14.27)

The resulting renormalised model Πε;ren ≡ ΠεMgε realises, for instance, the
symbol as

Πε;ren = ΠεMg = ξε (K ∗ ξε)3 + 3cε1(K ∗ ξε)2 + cε3 .

It is a non-trivial but nevertheless fairly general fact that it is possible to choose
the character gε in such a way that the modelΠε;ren converges to a limiting model.
This is the case if we choose gε as the BPHZ character (see [BHZ19, Thm 6.18])
associated toΠε. This is defined in general as the unique character gε of T− such
that the renormalised model Πε;ren satisfies EΠε;renτ = 0 for every symbol τ of
strictly negative degree. With our earlier choice

cε1 = −E(Πε )(0) = −
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it is immediate from (14.27) that one has indeed E(ΠεMgε ) = 0. Further-
more, since first and third moments of centred Gaussians vanish, we also have
E(ΠεMgε ) = E(ΠεMgε ) = 0 as a consequence of the fact that we set
g( ) = g( ) = 0. Finally, it follows from Wick’s formula that

EΠεMgε = E[ξε(K ∗ ξε)3] + 3cε1E(K ∗ ξε)2 + cε3

= 3
(

E[ξε(K ∗ ξε)] + cε1

)
E(K ∗ ξε)2 + cε3

= 3
(

+ cε1
)

+ cε3 = cε3 ,

so thatΠεMgε has vanishing mean if and only if we also choose cε3 = 0.
We have made it plausible that

Mε;ren := (Πε;ren, Γ ε;ren)↔Πε;ren,

indeed gives rise to an (admissible) model, with all analytic bounds and algebraic
constraints intact, and such that in the sense of model convergence,

Mε;ren → MBPHZ = MItô . (14.28)

The main result of [CH16] is that the convergence Mε;ren → MBPHZ remains true in
vastly greater generality and that the limiting model is independent of the specific
choice of Mε for a large class of stationary approximations ξε to the noise ξ.

At last, we leave it to the reader to adapt the material of Section 13.3.2 to define
the modelled distribution that allows to reconstruct the Itô integral

∫ t
0
f(Ŵs)dWs

and further deduce from (14.28) the following (renormalised) Wong–Zakai result,∫ t

0

f(Ŵ ε
s )dW ε

s − cε1
∫ t

0

f ′(Ŵ ε
s )ds→

∫ t

0

f(Ŵs)dWs (14.29)

where we recall that cε1 = εH−1/2
∫∞

0
KH(s) %̄(s)ds. Noting that %̄ = %(−(•)) ∗ %

is even and has unit mass, we see that cε1 = 1
2 when H = 1/2. We can then pass to

the limit for each term on the right-hand side of (14.29) separately. This allows us to
recover the identity∫ t

0

f(Ws) ◦ dWs −
1

2

∫ t

0

f ′(Ws)ds =

∫ t

0

f(Ws)dWs ,

in agreement with the usual Itô–Stratonovich correction familiar from stochastic
calculus.
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14.6 Exercises

Exercise 14.1 a) Construct an example of a regularity structure with trivial group
G, as well as a model and modelled distributions fi such that both Rf1 and
Rf2 are continuous functions but the identity

R(f1 ? f2)(x) = (Rf1)(x) (Rf2)(x)

fails.
b) Transfer Exercise 2.10 to the present context.

Solution. (We only address the first part.) Consider for instance the regularity struc-
ture given by A = (−2κ,−κ, 0) for fixed κ > 0 with each Tα being a copy of R
given by T−nκ = 〈Ξn〉. We furthermore take for G the trivial group. This regularity
structure comes with an obvious product by setting Ξm ? Ξn = Ξm+n provided
that m+ n ≤ 2.

Then, we could for example take as a model for T = (T,G):(
ΠxΞ

0
)
(y) = 1 ,

(
ΠxΞ

)
(y) = 0 ,

(
ΠxΞ

2
)
(y) = c , (14.30)

where c is an arbitrary constant. Let furthermore

f1(x) = f1(x)Ξ0 + f̃1(x)Ξ , f2(x) = f2(x)Ξ0 + f̃2(x)Ξ .

Since our group G is trivial, one has fi ∈ Dγ provided that each of the fi belongs to
Cγ and each of the f̃i belongs to Cγ+κ. (And one has γ + κ < 1.) One furthermore
has the identity

(
Rfi

)
(x) = fi(x).

However, the pointwise product is given by(
f1 ? f2

)
(x) = f1(x)f2(x)Ξ0 +

(
f̃1(x)f2(x) + f̃2(x)f1(x)

)
Ξ + f̃1(x)f̃2(x)Ξ2 ,

which by Theorem 14.5 belongs to Dγ−κ. Provided that γ > κ, one can then apply
the reconstruction operator to this product and one obtains

R
(
f1 ? f2

)
(x) = f1(x)f2(x) + cf̃1(x)f̃2(x) ,

which is obviously quite different from the pointwise product (Rf1)(x) · (Rf2)(x).
How should this be interpreted? For n > 0, we could have defined a model Π(n)

by(
Π(n)
x Ξ0

)
(y) = 1,

(
Π(n)
x Ξ

)
(y) =

√
2c sin(ny),

(
Π(n)
x Ξ2

)
(y) = 2c sin2(ny).

Denoting byR(n) the corresponding reconstruction operator, we have the identity(
R(n)f i

)
(x) = fi(x) +

√
2cf̃i(x) sin(nx) ,
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as well asR(n)(f1 ? f2) = R(n)f1 · R(n)f2. As a model, the model Π(n) actually
converges to the limiting model Π defined in (14.30). As a consequence of the
continuity of the reconstruction operator, this implies that

R(n)f1 · R(n)f2 = R(n)(f1 ? f2)→ R(f1 ? f2) 6= Rf1 · Rf2 ,

which is of course also easy to see “by hand”. This shows that in some cases, the
“non-canonical” models as in (14.30) can be interpreted as limits of “canonical”
models for which the usual rules of calculus hold. Even this is however not always
the case (think of the Itô Brownian rough path).

Exercise 14.2 Consider Zα = Zα(Rd).

a) Show that distributional derivatives satisfy DkZα ⊂ Zα−|k| for any multi-index
k. Show that for d = 1 equality holds. That is, any g ∈ Zα−k, with k ∈ N, is
the kth distributional derivative of some f ∈ Zα.

b) The proof of Schauder’s theorem in Section 14.3 was more involved in the
“positive” case, when 0 ≤ α+β ∈ [n− 1, n), some n ∈ N. Give an easier proof
in the case d = 1 by reducing the positive to the negative case.

Exercise 14.3∗∗ Provide a proof of the case α = 0 in Lemma 14.13.

Solution. As in Lemma 14.13, we aim to bound |ζ(ϕ)| for ϕ ∈ Bλro,x and ζ ∈ Zαr
for some r ≥ ro. One strategy is to consider a compactly supported wavelet basis of
regularity r and to separately bound the terms in the wavelet expansion of ϕ.

If we wish to rely purely on elementary arguments, one strategy goes as follows.

a) Show first that ζ ∈ Zαr if and only if ζχ ∈ Zαr for every smooth compactly
supported function χ. This allows us to reduce ourselves to the case when ζ
itself is compactly supported and we assume this from now on.

b) Show that if ζ ∈ Z0
r is supported in a ball of radius 1 and if ψ is such that∫

ψ(x) dx = 0 and such that |Dkψ(x)| ≤ (1 + |x|)−β−|k| for |k| ≤ r and some
large enough exponent k, then |ζ(ψλx)| . 1, uniformly over such ψ and over
x ∈ Rd and λ ∈ (0, 1].

c) Choose a function ψ with the property that its Fourier transform is smooth,
identically 1 in the ball of radius 1, and identically 0 outside of the ball of radius
2 and define ψ̃ as in the proof of Lemma 14.13. Write

ϕ = ϕ ∗ ψλ +
∑
n≥0

ϕ ∗ ψ̃λn

as in the proof of Lemma 14.13.
d) Choose χ such that its Fourier transform is smooth, identically equal to 1 on

the annulus of radii in [1, 4] and vanishes outside the annulus of radii in [1/2, 5].
Note that this implies that ψ̃λn = ψ̃λn ∗ χλn and conclude that

ζ(ϕ ∗ ψ̃λn) = 〈ζ ∗ ψ̃λn , ϕ ∗ χλn〉 .
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e) Use the fact that ϕ ∈ C1 and χ integrates to 0 to conclude that |ϕ ∗ χλn | .
2−nλ−d and therefore that |ζ(ϕ ∗ ψ̃λn)| . 2−n, which is summable as required.

Exercise 14.4∗ Show that, for g smooth enough, one has K ∗ (gη) − g(K ∗ η) ∈
Cα+β+1 for every β-regularising kernel K and η ∈ Cα with α < 0. How smooth is
smooth enough? Compare the following two strategies.
Strategy 1: Go through the proof of the Schauder estimate in Section 14.3 and
estimate the difference 〈Kn ∗ (gη)− g(Kn ∗ η), ψλ〉.
Strategy 2: Consider the regularity structure T spanned by the Taylor polynomials
and an additional symbol Ξ of degree α, with the structure group acting trivially on
Ξ . We extend this by adding an integration operator of order β and all products with
Taylor polynomials. We also consider on it the natural model mappingΞ to η. Writing
g ∈ Dγ for the Taylor lift of g as in Proposition 13.16, verify that gΞ ∈ Dγ+α. The
multilevel Schauder estimate then shows that, provided that γ + α > 0, one has
K(gΞ) ∈ Dγ+α+β and gK(Ξ) ∈ Dγ+min{0,α+β}, so in particular

F
def
= K(gΞ)− gK(Ξ) ∈ D1+α+β ,

provided that γ > max{1,−α, 1 + α+ β}. Furthermore, the explicit expression for
K shows that

K(gΞ) = gI(Ξ) + g′I(XΞ) + (. . .) , gK(Ξ) = gI(Ξ) + (. . .) ,

where (. . .) denotes terms that either belong to the polynomial part of the regularity
structure or are of degree strictly greater than α + β + 1 (which is the degree of
I(XΞ)). In particular, the truncation of F at level α+ β + 1 belongs to Dα+β+1

P ,
and we conclude by the second part of Proposition 13.16.

Exercise 14.5 Consider space-time Rd with one temporal and (d − 1) spatial di-
mensions, under the parabolic scaling (2, 1, . . . , 1), as introduced in Remark 13.9.
Denote by G the heat kernel (i.e. the Green’s function of the operator ∂t − ∂2

x). Show
that one has the decomposition

G = K + K̂ ,

where the kernel K satisfies all of the assumptions of Section 14.4 (with β = 2) and
the remainder K̂ is smooth and bounded.

Exercise 14.6 (From [Bru18]) In the context of Remark 14.25, establish the recur-
sion

ΓxyIτ = I(Γxyτ)− ΓxyJxyτ , (14.31)

with

Jxyτ :=
∑

|k|<deg τ+β

Xk

k!
Πx(Ik(Γxyτ))(y) .

Exercise 14.7 Show that if one defines ΓxyIτ in such a way that (14.10) holds, then
it guarantees that ΠxΓxyIτ = ΠyIτ .
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Exercise 14.8 Adapt the material in Section 14.5 and construct a suitable regularity
structure and model so that the two-dimensional Itô integral (14.13) is obtained as
reconstruction of a suitable modelled distribution.

14.7 Comments

The material on differentiation, products and admissible models follows essentially
[Hai14b], although the conditions on the kernelK – previously assumed to annihilate
certain polynomials – are now more flexible. In particular, we do not enforce the
identity I(Xk) = 0 and instead allow for the possibility of simply including symbols
I(Xk) as basis vectors of our regularity structure. It is the case that any admissible
model will necessarily satisfy ΠxI(Xk) = 0, but in general ΓxyI(Xk) 6= 0. The
material of Section 14.5 is essentially taken from [BFG+19], with a viewpoint similar
to [BCFP19].
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