
Chapter 11
Cameron–Martin regularity and applications

A continuous Gaussian process gives rise to a Gaussian measure on path-space.
Thanks to variation regularity properties of Cameron–Martin paths, powerful tools
from the analysis on Gaussian spaces become available. A general Fernique type
theorem leads us to integrability properties of rough integrals with Gaussian integrator
akin to those of classical stochastic integrals. We then discuss Malliavin calculus for
differential equations driven by Gaussian rough paths. As application a version of
Hörmander’s theorem in this non-Markovian setting is established.

11.1 Complementary Young regularity

Although we have chosen to introduce (rough) paths subject to α-Hölder regularity,
the arguments are not difficult to adapt to continuous paths with finite p-variation
with p = 1/α ∈ [1,∞). Recall that Cp-var([0, T ],Rd) is the space of continuous
paths X : [0, T ]→ Rd so that

‖X‖p-var;[0,T ]
def
=
(

sup
P

∑
[s,t]∈P

|Xs,t|p
) 1
p

<∞ , (11.1)

with supremum taken over all partitions of [0, T ] and this constitutes a seminorm
on Cp-var. The 1-variation (p = 1) of such a path is of course nothing but its length,
possibly +∞. Hölder implies variation regularity, one has the immediate estimate

‖X‖p-var;[0,T ] ≤ Tα‖X‖α;[0,T ].

Conversely, a time-change renders p-variation paths Hölder continuous with exponent
α = 1/p. Given two paths X ∈ Cp-var([0, T ],Rd), h ∈ Cq-var([0, T ],Rd) let us say
that they enjoy complementary Young regularity if Young’s condition

1

p
+

1

q
> 1 , (11.2)
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is satisfied.
We are now interested in the regularity of Cameron–Martin paths. As in the

last section, X is an Rd-valued, continuous and centred Gaussian process on [0, T ],
realised as X(ω) = ω ∈ C

(
[0, T ],Rd

)
, a Banach space under the uniform norm,

equipped with a Gaussian measure. General principles of Gaussian measures on
(separable) Banach spaces thus apply, see e.g. [Led96]. Specialising to the situation
at hand, the associated Cameron–Martin spaceH ⊂ C

(
[0, T ],Rd

)
consists of paths

t 7→ ht = E(ZXt) where Z ∈ W1 is an element in the so-called first Wiener
chaos, the L2-closure of span

{
Xi
t : t ∈ [0, T ], 1 ≤ i ≤ d

}
, consisting of Gaussian

random variables. We recall that if h′ = E
(
Z ′X·

)
denotes another element inH, the

inner product 〈h, h′〉H = E(ZZ ′) makesH a Hilbert space; Z 7→ h is an isometry
betweenW1 andH.

Example 11.1. (Brownian motion). Let B be a d-dimensional Brownian motion, let
g ∈ L2

(
[0, T ],Rd

)
, and set

Z =

d∑
i=1

∫ T

0

gisdB
i
s ≡

∫ T

0

〈g, dB〉 .

By Itô’s isometry, hit := E
(
ZBit

)
=
∫ t

0
gisds so that ḣ = g and ‖h‖2H := E

(
Z2
)

=∫ T
0
|gs|2ds = ‖ḣ‖2L2 where | • | denotes Euclidean norm on Rd. Clearly, h is of finite

1-variation, and its length is given by ‖ḣ‖L1 . On the other hand, Cauchy–Schwarz
shows any h ∈ H is 1/2-Hölder which, in general, “only” implies 2-variation.

The proposition below applies to Brownian motion with % = 1, also recalling that
‖R‖1;[s,t]2 = |t− s| in the Brownian motion case.

Proposition 11.2. Assume the covariance R : (s, t) 7→ E(Xs ⊗Xt) is of finite %-
variation (in 2D sense) for % ∈ [1,∞). Then H is continuously embedded in the
space of continuous paths of finite %-variation. More, precisely, for all h ∈ H and all
s < t in [0, T ],

‖h‖%-var;[s,t] ≤ ‖h‖H
√
‖R‖%-var;[s,t]2 .

Proof. We assume X,h to be scalar, the extension to d-dimensional X is straightfor-
ward (and even trivial when X has independent components, which will always be
the case for us). Setting h = E(ZX•), we may assume without loss of generality (by
scaling), that ‖h‖2H := E

(
Z2
)

= 1. Let (tj) be a dissection of [s, t]. Let %′ be the
Hölder conjugate of %. Using duality for l%-spaces, we have1

(∑
j

∣∣htj ,tj+1

∣∣%)1/%

= sup
β,|β|

l%
′≤1

∑
j

〈
βj , htj ,tj+1

〉
= sup
β,|β|

l%
′≤1

E
(
Z
∑
j

〈
βj , Xtj ,tj+1

〉)
1 The case % = 1 may be seen directly by taking βj = sgn

(
htj,tj+1

)
.
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≤ sup
β,|β|

l%
′≤1

√∑
j,k

〈
βj ⊗ βk,E

(
Xtj ,tj+1

⊗Xtk,tk+1

)〉

≤ sup
β,|β|

l%
′≤1

√√√√(∑
j,k

|βj |%
′ |βk|%

′
) 1
%′
(∑
j,k

∣∣E(Xtj ,tj+1
⊗Xtk,tk+1

)∣∣%) 1
%

≤
(∑
j,k

∣∣E(Xtj ,tj+1
⊗Xtk,tk+1

)∣∣%)1/(2%)

≤
√
‖R‖%-var;[s,t]2 .

The proof is then completed by taking the supremum over all dissections (tj) of [0, t].
ut

Remark 11.3. It is typical (e.g. for Brownian or fractional Brownian motion, with
% = 1/(2H) ≥ 1) that

∀s < t in [0, T ] : ‖R‖%-var;[s,t]2 ≤M |t− s|
1/%

.

In such a situation, Proposition 11.2 implies that

|hs,t| ≤ ‖h‖%-var;[s,t] ≤ ‖h‖HM1/2|t− s|1/(2%) ,

which tells us that H is continuously embedded in the space of 1/(2%)-Hölder
continuous paths (which can also be seen directly from hs,t = E(ZXs,t) and Cauchy–
Schwarz). The point is that 1/(2%)-Hölder only implies 2%-variation regularity, in
contrast to the sharper result of Proposition 11.2.

In part i) of the following lemma we allow X = (X,X) to be a (continuous) rough
path of finite p-variation rather than of α-Hölder regularity. More formally, we write
X ∈ C p-var([0, T ],Rd) when p ∈ [2, 3) and the analytic Hölder type condition (2.3)
in the definition of a rough path is replaced by ‖X‖p-var;[0,T ] < ∞ and the second
order regularity condition

‖X‖p/2-var;[0,T ]
def
=
(

sup
P

∑
[s,t]∈P

|Xs,t|p/2
)2/p

<∞ . (11.3)

(As before, we shall drop [0, T ] from our notation whenever the time horizon is
fixed.) The homogeneous p-variation rough path norm (over [0, T ]) is then given by

|||X|||p-var;[0,T ] = |||X|||p-var
def
= ‖X‖p-var +

√
‖X‖p/2-var. (11.4)

Of course, a geometric rough path of finite p-variation, X ∈ C p-var
g is one for which

the “first order calculus” condition (2.6) holds.
The following results will prove crucial in Section 11.2 where we will derive,

based on the Gaussian isoperimetric inequality, good probabilistic estimates on
Gaussian rough path objects. They are equally crucial for developing the Malliavin
calculus for (Gaussian) rough differential equations in Section 11.3.
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Recall from Exercise 2.15 that the translation of a rough path X = (X,X) in
direction h is given by

Th(X)
def
=
(
Xh,Xh

)
(11.5)

where Xh := X + h and

Xhs,t := Xs,t +

∫ t

s

hs,r ⊗ dXr +

∫ t

s

Xs,r ⊗ dhr +

∫ t

s

hs,r ⊗ dhr , (11.6)

provided that h is sufficienly regular to make the final three integrals above well-
defined.

Lemma 11.4. i) Let X ∈ C p-var
g ([0, T ],Rd), with p ∈ [2, 3) and consider a func-

tion h ∈ Cq-var([0, T ],Rd) with complementary Young regularity in the sense
that

1/p+ 1/q > 1 .

Then the translation of X in direction h is well-defined in the sense that the
integrals appearing in (11.6) are well-defined Young integrals and Th : X 7→
Th(X) maps C p-var

g

(
[0, T ],Rd

)
into itself. Moreover, one has the estimate, for

some constant C = C(p, q),

|||Th(X)|||p-var ≤ C
(
|||X|||p-var + ‖h‖q-var

)
.

ii) Similarly, let α = 1/p ∈ ( 1
3 ,

1
2 ], X ∈ C α

g

(
[0, T ],Rd

)
and h : [0, T ]→ Rd again

of complementary Young regularity, but now “respectful” of α-Hölder regularity
in the sense that 2

‖h‖q-var;[s,t] ≤ K|t− s|
α
, (11.7)

uniformly in 0 ≤ s < t ≤ T . Write ‖h‖q,α for the smallest constant K in the
bound (11.7). Then again Th is well-defined and now maps C α

g

(
[0, T ],Rd

)
into

itself. Moreover, one has the estimate, again with C = C(p, q),

|||Th(X)|||α ≤ C(|||X|||α + ‖h‖q,α) .

Proof. This is essentially a consequence of Young’s inequality which gives∣∣∣∣∫ t

s

hs,r ⊗ dXr

∣∣∣∣ ≤ C‖h‖q-var;[s,t]‖X‖p-var;[s,t] ,

and then similar estimates for the other (Young) integrals appearing in the definition
of Xh. One then uses elementary estimates of the form

√
ab ≤ a+b (for non-negative

reals a, b), in view of the definition of homogeneous norm (which involves Xh with a
square root). Details are left to the reader. ut

By combining the Cameron–Martin regularity established in Proposition 11.2, see
also Remark 11.3, with the previous lemma we obtain the following result.

2 From Remark 11.3, ‖h‖%,α . ‖h‖H for all α ≤ 1
2%

.
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Theorem 11.5. Assume (Xt : 0 ≤ t ≤ T ) is a continuous d-dimensional, centred
Gaussian process with independent components and covariance R such that there
exists % ∈ [1, 3

2 ) and M <∞ such that for every i ∈ {1, . . . , d} and 0 ≤ s ≤ t ≤ T ,

‖RXi‖%-var;[s,t]2 ≤M |t− s|
1/%
.

Let α ∈ ( 1
3 ,

1
2% ] and X = (X,X) ∈ C α

(
[0, T ],Rd

)
a.s. be the random Gaussian

rough path constructed in Theorem 10.4. Then there exists a null set N such that for
every ω ∈ N c and every h ∈ H,

Th(X(ω)) = X(ω + h) .

Proof. Note that complementary Young regularity holds, with p = 1
α < 3 and

q = % < 3
2 , as is seen from 1

p + 1
q >

1
3 + 2

3 = 1. As a consequence of Lemma 11.4,
the translation Th(X(ω)) is well-defined whenever X(ω) ∈ C α. The proof requires
a close look at the precise construction of X(ω) = (X(ω),X(ω)) in Theorem 10.4,
using Kolmogorov’s criterion to build a suitable (continuous, and then Hölder) modi-
fication from X restricted to dyadic times. We recall that X(ω) = ω ∈ C([0, T ],Rd).
Let N1 be the null set of ω where X(ω) fails to be of α-Hölder (or p-variation)
regularity. Note that ω ∈ N c

1 implies ω + h ∈ N c
1 for all h ∈ H. By the very

construction of Xs,t as an L2-limit, for fixed s, t there exists a sequence of partitions
(Pm) of [s, t] such that Xs,t(ω) = limm

∫
Pm X ⊗ dX exists for a.e. ω, and we write

N2;s,t for the null set on which this fails. The intersections of all these, for dyadic
times s, t, is again a null set, denoted by N2. Now take ω ∈ N c

1 ∩ N c
2 . For fixed

dyadic s, t, consider the aforementioned partitions (Pm) and note∫
Pm

X(ω + h)⊗ dX(ω + h)

=

∫
Pm

X(ω)⊗ dX(ω) +

∫
Pm

h⊗ dX +

∫
Pm

X ⊗ dh+

∫
Pm

h⊗ dh .

Thanks to ω ∈ N c
1 and Proposition 11.2, X(ω) and h have complementary

Young regularities, which guarantees convergence of the last three integrals to
their respective Young integrals. On the other hand, ω ∈ N c

2 guarantees that∫
Pm X(ω) ⊗ dX(ω) → Xs,t(ω). This shows that the left-hand side converges,

the limit being by definition X(ω + h). In other words, for all ω ∈ N c
1 ∩N c

2 , h ∈ H
and dyadic times s, t,

Th(X(ω))s,t = X(ω + h)s,t .

The construction of Xs,t for non-dyadic times was obtained by continuity (see
Theorem 10.4) and the above almost sure identity remains valid. ut
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11.2 Concentration of measure

11.2.1 Borell’s inequality

Let us first recall a remarkable isoperimetric inequality for Gaussian measures.
Following [Led96], we state it in the form due to C. Borell [Bor75], but an essentially
equivalent result was obtained independently by Sudakov and Tsirelson [ST78].
In order to state things in their natural generality, we consider in this section an
abstract Wiener-space (E,H, µ). The reader may have in mind the Banach space
E = C

(
[0, T ],Rd

)
, equipped with norm ‖x‖E := sup0≤t≤T |xt| and a Gaussian

measure µ, the law of a d-dimensional, continuous centred Gaussian process X . In
this example, the Cameron–Martin space is given byH =

{
E(X·Z) : Z ∈ W1

}
with

‖h‖H = E
(
Z2
)1/2

for h = E(X·Z). Let us write

Φ(y) =
1√
2π

∫ y

−∞
e−x

2/2dx

for the cumulative distribution function of a standard Gaussian, noting the elementary
tail estimate

Φ̄(y) := 1− Φ(y) ≤ exp
(
−y2/2

)
, y ≥ 0.

Theorem 11.6 (Borell’s inequality). Let (E,H, µ) be an abstract Wiener space and
A ⊂ E a measurable Borel set with µ(A) > 0 so that

â := Φ−1(µ(A)) ∈ (−∞,∞]

Then, if K denotes the unit ball inH, for every r ≥ 0,

µ((A+ rK)
c
) ≤ Φ̄(â+ r).

where A+ rK = {x+ rh : x ∈ A, h ∈ K} is the so-called Minkowski sum.3

Theorem 11.7 (Generalised Fernique Theorem). Let a, σ ∈ (0,∞) and consider
measurable maps f, g : E → [0,∞] such that

Aa = {x : g(x) ≤ a}

has (strictly) positive µ measure4 and set

â := Φ−1(µ(Aa)) ∈ (−∞,∞].

Assume furthermore that there exists a null-set N such that for all x ∈ N c, h ∈ H :

f(x) ≤ g(x− h) + σ‖h‖H. (11.8)

3 Measurability is a delicate matter but circumventable by reading µ as outer measure; [Led96].
4 Unless g = +∞ almost surely, this holds true for sufficienly large a.
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Then f has a Gaussian tail. More precisely, for all r > a and with ā := â− a/σ,

µ({x : f(x) > r}) ≤ Φ̄(ā+ r/σ).

Proof. Note that µ(Aa) > 0 implies â = Φ−1(µ(Aa)) > −∞. We have for all
x /∈ N and arbitrary r,M > 0 and h ∈ rK,

{x : f(x) ≤M} ⊃ {x : g(x− h) + σ‖h‖H ≤M}
⊃ {x : g(x− h) + σr ≤M}
= {x+ h : g(x) ≤M − σr}.

Since h ∈ rK was arbitrary, this immediately implies the inclusion

{x : f(x) ≤M} ⊃
⋃
h∈rK

{x+ h : g(x) ≤M − σr}

= {x : g(x) ≤M − σr}+ rK ,

and we see that

µ(f(x) ≤M) ≥ µ({x : g(x) ≤M − σr}+ rK) .

Setting M = σr + a and A := {x : g(x) ≤ a}, it then follows from Borell’s
inequality that

µ(f(x) > σr + a) ≤ µ((A+ rK)
c
) ≤ Φ̄(â+ r) .

It then suffices to rewrite the estimate in terms of r̃ := σr + a > a, noting that
â+ r = ā+ r̃/σ. ut

Example 11.8 (Classical Fernique estimate). Take f(x) = g(x) = ‖x‖E . Then the
assumptions of the generalised Fernique Theorem are satisfied with σ equal to the
operator norm of the continuous embedding H ↪→ E. This applies in particular to
Wiener measure on C

(
[0, T ],Rd

)
.

11.2.2 Fernique theorem for Gaussian rough paths

Theorem 11.9. Let (Xt : 0 ≤ t ≤ T ) be a d-dimensional, centred Gaussian process
with independent components and covariance R such that there exists % ∈ [1, 3

2 ) and
M <∞ such that for every i ∈ {1, . . . , d} and 0 ≤ s ≤ t ≤ T ,

‖RXi‖%-var;[s,t]2 ≤M |t− s|
1/%
.

Then, for any α ∈ ( 1
3 ,

1
2% ), the associated rough path X = (X,X) ∈ C α

g built in
Theorem 10.4 is such that there exists η = η(M,T, α, %) with
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E exp
(
η|||X|||2α

)
<∞ . (11.9)

Remark 11.10. Recall that the homogeneous “norm” |||X|||α was defined in (2.4) as
the sum of ‖X‖α and

√
‖X‖2α. Since X is “quadratic” in X (more precisely: in the

second Wiener–Itô chaos), the square root is crucial for the Gaussian estimate (11.9)
to hold.

Proof. Combining Theorem 11.5 with Lemma 11.4 and Proposition 11.2 shows that
for a.e. ω and all h ∈ H

|||X(ω)|||α ≤ C
(
|||(X(ω − h))|||α +M1/2‖h‖H

)
.

We can thus apply the generalised Fernique Theorem with f(ω) = |||X|||α(ω) and
g(ω) = Cf(ω), noting that |||X|||α(ω) <∞ almost surely implies that

Aa
def
= {x : g(x) ≤ a}

has positive probability for a large enough (and in fact, any a > 0 thanks to a
support theorem for Gaussian rough paths, [FV10b]). Gaussian integrability of the
homogeneous rough path norm, for a fixed Gaussian rough path X is thus established.
The claimed uniformity, η = η(M,T, α, %) and not depending on the particular X
under consideration requires an additional argument. We need to make sure that
µ(Aa) is uniformly positive over all X with given bounds on the parameters (in
particular M,%, a, d); but this is easy, using (10.16),

µ(|||X|||α ≤ a) ≥ 1− 1

a2
E|||X|||2α ≥ 1− 1

a2
C ,

where C = C(M,%, α, d) and so, say, a =
√

2C would do. ut

11.2.3 Integrability of rough integrals and related topics

The price of a pathwise integration / SDE theory is that all estimates (have to) deal
with the worst possible scenario. To wit, given X = (X,X) ∈ C α

g and a nice 1-form,
F ∈ C2

b say, we had the estimate∣∣∣ ∫ T

0

F (X)dX
∣∣∣ ≤ C(|||X|||α;[0,T ] ∨ |||X|||1/αα;[0,T ]

)
,

where C may depend on F , T and α ∈
(

1
3 ,

1
2

]
. In terms of p-variation, p = 1/α, one

can show similarly, with |||X|||p-var;[0,T ] as introduced earlier, cf. (11.4),

∣∣∣ ∫ T

0

F (X)dX
∣∣∣ ≤ C(|||X|||p-var;[0,T ] ∨ |||X|||pp-var;[0,T ]

)
, (11.10)
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where C depends on F and α ∈
(

1
3 ,

1
2

]
but not on T , thanks to invariance under

reparametrisation. For the same reason, the integration domain [0, T ] in (11.10) may
be replaced by any other interval.

Example 11.11. The estimate (11.10) is sharp, at least when p = 1/α = 2, in the
following sense. Consider the (“pure-area”) rough path given by

t 7→ (0, At) , A =

(
0 c
−c 0

)
,

for some c > 0. The homogeneous (p-variation, or α-Hölder) rough path norm here
scales with c1/2. Hence, the right-hand side of (11.10) scales like c (for c large), as
does the left-hand side which in fact is given by T |DF (0)A|.

The “trouble”, in Brownian (% = 1) or worse (% > 1) regimes of Gaussian rough
paths is that, despite Gaussian tails of the random variable |||X(ω)|||α, established
in Theorem 11.9, the above estimate (11.10) fails to deliver Gaussian, or even
exponential, integrability of the “random” rough integral

Z(ω)
def
=

∫ T

0

F (X(ω))dX(ω) ,

something which is rather straightforward in the context of (Itô or Stratonovich)
stochastic integration against Brownian motion.

As we shall now see, Borell’s inequality, in the manifestation of our generalised
Fernique estimate, allows to fully close this “gap” between integrability properties.
The key idea, due to Cass–Litterer–Lyons [CLL13] is to define, for a fixed rough path
X of finite homogeneous p-variation in the sense of (11.4), a tailor-made partition5

of [0, T ], say
P = {[τi, τi+1] : i = 0, . . . , N}

with the property that for all i < N

|||X|||p-var;[τi,τi+1] = 1,

i.e. for all but the very last interval for which one has |||X|||p-var;[τN ,τN+1] ≤ 1. One
can then exploit rough path estimates such as (11.10) on (small) intervals [τi, τi+1]
on which estimates are linear in |||X|||p-var ∼ 1. The problem of estimating rough
integrals is thus reduced to estimating N = N(X) and it was a key technical result
in [CLL13] to use Borell’s inequality to establish good (probabilistic) estimates on
N when X = X(ω) is a Gaussian rough path. (Our proof below is different from
[CLL13] and makes good use of the generalised Fernique estimate.)

To formalise this construction, we fixed a (1D) control function w = w(s, t), i.e.
a continuous map on {0 ≤ s ≤ t ≤ T}, super-additive, continuous and zero on the

5 The construction is purely deterministic. Of course, when X = X(ω) is random, then so is the
partition.
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diagonal.6 The canonical example of a control in this context is7

wX(s, t) = |||X|||pp-var;[s,t].

Thanks to continuity of w = wX we can then define a partition tailor-made for X
based on eating up unit (β = 1 below) pieces of p-variation as follows. Set

τ0 = 0 , τi+1 = inf {t : w(τi, t) ≥ β, τi < t ≤ T} ∧ T , (11.11)

so that w(τi, τi+1) = β for all i < N , while w(τN , τN+1) ≤ β, where N is given
by

N(w) ≡ Nβ(w; [0, T ]) := sup {i ≥ 0 : τi < T}.
As immediate consequence of super-additivity of controls,

βNβ(w; [0, T ]) =
N−1∑
i=0

w(τi, τi+1) ≤ w(0, τN ) ≤ w(0, τN+1) = w(0, T ).

Note also thatN is monotone in w, i.e. w ≤ w̃ impliesN(w) ≤ N(w̃). At last, let us
set N(X) = N(wX). The following (purely deterministic) lemma is most naturally
stated in variation regularity.

Lemma 11.12. Assume X ∈ C p-var
g , p ∈ [2, 3), and h ∈ Cq-var, q ≥ 1, of complemen-

tary Young regularity in the sense that 1
p + 1

q > 1. Then there exists C = C(p, q) so
that

N1(X; [0, T ])
1
q ≤ C

(
‖T−h(X)‖

p
q

p-var;[0,T ] + ‖h‖q-var;[0,T ]

)
. (11.12)

Proof. (Riedel) It is easy to see that all Nβ , Nβ′ , with β, β′ > 0 are comparable, it
is therefore enough to prove the lemma for some fixed β > 0.

Given h ∈ Cq-var, wh(s, t) = |||h|||qq-var;[s,t] is a control and so is wθh whenever
θ ≥ 1. (Noting 1 ≤ q ≤ p, we shall use this fact with θ = p/q.) From Lemma 11.4
we have, for any interval I

|||ThX|||p-var;I . |||X|||p-var;I + ‖h‖q-var;I .

Raise everything to the pth power to see that

(s, t) 7→ |||ThX|||pp-var;[s,t] ≤ C
(
|||X|||pp-var;[s,t] + ‖h‖pq-var;[s,t]

)
=: Cw̃(s, t) .

where C = C(p, q) and w̃ is a control. Choose β = C. By monotonicity of Nβ in
the control,

6 Do not confuse a control w with “randomness” ω.
7 Super-additivity, i.e. ω(s, t) + ω(t, u) ≤ ω(s, u) whenever s ≤ t ≤ u is immediate, but
continuity is non-trivial see e.g. [FV10b, Prop. 5.8])
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Nβ(ThX; [0, T ]) ≤ Nβ(Cw̃; [0, T ]) = N1(ω̃; [0, T ]).

By definition, Ñ := N1(ω̃; [0, T ]) is the number of consecutive intervals [τi, τi+1]
for which

1 = ω̃(τi, τi+1) = |||X|||pp-var;[τi,τi+1] + ‖h‖pq-var;[τi,τi+1].

Using the manifest estimate ‖h‖pq-var;[τi,τi+1] ≤ 1 and q/p ≤ 1 we have

1 ≤ |||X|||pp-var;[τi,τi+1] + ‖h‖qq-var;[τi,τi+1] = wX(τi, τi+1) + wh(τi, τi+1)

for 0 ≤ i < Ñ . Summation over i yields

Ñ ≤ wX(0, τÑ ) + wh(0, τÑ ) ≤ |||X|||pp-var;[0,T ] + ‖h‖qq-var;[0,T ].

Combination of these estimate hence shows that

Nβ(ThX; [0, T ]) ≤ |||X|||pp-var;[0,T ] + ‖h‖qq-var;[0,T ].

Replace X = ThT−hX by T−hX and then use elementary estimates of the type
(a+ b)1/q ≤ (a1/q + b1/q) for non-negative reals a, b, to obtain the claimed estimate
(11.12). ut

The previous lemma, combined with variation regularity of Cameron–Martin
paths (Proposition 11.2) and the generalised Fernique Theorem 11.7 then gives
immediately

Theorem 11.13 (Cass–Litterer–Lyons). Let X = (X,X) ∈ C α
g a.s. be a Gaussian

rough path, as in Theorem 11.9. (In particular, the covariance is assumed to have
finite 2D %-variation.) Then the integer-valued random variable

N(ω) := N1(X(ω); [0, T ])

has a Weibull tail with shape parameter 2/% (by which we mean that N1/% has a
Gaussian tail).

Let us quickly illustrate how to use the above estimate.

Corollary 11.14. Let X be as in the previous theorem and assume F ∈ C2
b . Then the

random rough integral

Z(ω)
def
=

∫ T

0

F (X(ω))dX(ω)

has a Weibull tail with shape parameter 2/% by which we mean that |Z|1/% has a
Gaussian tail.

Proof. Let (τi) be the (random) partition associated to the p-variation of X(ω) as
defined in (11.11), with β = 1 and w = wX. Thanks to (11.10) we may estimate
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∫ T

0

F (X(ω))dX(ω)

∣∣∣∣∣ ≤ ∑
[τi,τi+1]∈P

∣∣∣∣∫ τi+1

τi

F (X(ω))dX(ω)

∣∣∣∣
. (N(ω) + 1) sup

i

(
|||X|||p-var;[τi,τi+1] ∨ |||X|||

p
p-var;[τi,τi+1]

)
= (N(ω) + 1) ,

where the proportionality constant may depend on F , T and α ∈
(

1
3 ,

1
2%

]
. ut

11.3 Malliavin calculus for rough differential equations

In this section, we assume that the reader is already familiar with the basics of
Malliavin calculus as exposed for example in the monographs [Mal97, Nua06].

11.3.1 Bouleau–Hirsch criterion and Hörmander’s theorem

Consider some abstract Wiener space (W,H, µ) and a Wiener functional of the form
F : W → Re. In the context of stochastic – or rough – differential equations driven
by Gaussian signals, the Banach space W is of the form C

(
[0, T ],Rd

)
where µ

describes the statistics of the driving noise. If F denotes the solution to a stochastic
differential equation at some time t ∈ (0, T ], then, in general, F is not a continuous,
let alone Fréchet regular, function of the driving path. However, as we will see in this
section, it can be the case that for µ-almost every ω, the mapH 3 h 7→ F (ω + h), i.e.
F (ω + ·) restricted to the Cameron-Martin space (H, 〈·, ·〉) is Fréchet differentiable.
(This implies D1,p

loc -regularity, based on the commonly used Shigekawa Sobolev space
D1,p; our notation here follows [Mal97] or [Nua06, Sec. 1.2, 1.3.4].) More precisely,
we introduce the following notion, see for example [Nua06, Sec. 4.1.3]:

Definition 11.15. Given an abstract Wiener space (W,H, µ), a random variable
F : W → R is said to be continuouslyH-differentiable, in symbols F ∈ C1

H, if for
µ-almost every ω, the map

H 3 h 7→ F (ω + h)

is continuously Fréchet differentiable. A vector-valued random variable is said to be
in C1

H if this is the case for each of its components. In particular, µ-almost surely,
DF (ω) =

(
DF 1(ω), . . . , DF e(ω)

)
is a linear bounded map fromH to Re.

Given an Re-valued random variable F in C1
H, we define the Malliavin covariance

matrix
Mij(ω)

def
=
〈
DF i(ω), DF j(ω)

〉
. (11.13)
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The following well-known criterion of Bouleau–Hirsch, see [BH91, Thm 5.2.2] and
[Nua06, Sec. 1.2, 1.3.4] then provides a condition under which the law of F has a
density with respect to Lebesgue measure:

Theorem 11.16. Let (W,H, µ) be an abstract Wiener space and let F be an Re-
valued random variable F in C1

H. If the associated Malliavin matrixM is invertible
µ-almost surely, then the law of F is has a density with respect to Lebesgue measure
on Re.

Remark 11.17. Higher order differentiability, together with control of inverse mo-
ments ofM allow to strengthen this result to obtain smoothness of this density.

As beautifully explained in his own book [Mal97], Malliavin realised that the
strong solution to the stochastic differential equation

dYt =
d∑
i=1

Vi(Yt) ◦ dBit , (11.14)

started at Y0 = y0 ∈ Re and driven along C∞-bounded vector fields Vi on Re, gives
rise to a non-degenerate Wiener functional F = YT , admitting a density with respect
to Lebesgue measure, provided that the vector fields satisfy Hörmander’s famous
“bracket condition” at the starting point y0:

Lie {V1, . . . , Vd}
∣∣
y0

= Re . (H)

(Here, LieV denotes the Lie algebra generated by a collection V of smooth vector
fields.) There are many variations on this theme, one can include a drift vector
field (which gives rise to a modified Hörmander condition) and under the same
assumptions one can show that YT admits a smooth density. This result can also
(and was originally, see [Hör67, Koh78]) be obtained by using purely functional
analytic techniques, exploiting the fact that the density solves Kolmogorov’s forward
equation. On the other hand, Malliavin’s approach is purely stochastic and allows to
go beyond the Markovian / PDE setting. In particular, we will see that it is possible
to replace B by a somewhat generic sufficiently non-degenerate Gaussian process,
with the interpretation of (11.14) as a random RDE driven by some Gaussian rough
path X rather than Brownian motion.

11.3.2 Calculus of variations for ODEs and RDEs

Throughout, we assume that V = (V1, . . . , Vd) is a given set of smooth vector fields,
bounded and with bounded derivatives of all orders. In particular, there is a unique
solution flow to the RDE

dY = V (Y ) dX , (11.15)
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for any α-Hölder geometric driving rough path X = (X,X) ∈ C 0,α
g , which may

be obtained as limit of smooth, or piecewise smooth, paths in α-Hölder rough path
metric. Set p = 1/α. Recall that, thanks to continuity of the Itô–Lyons maps, RDE
solutions are limits of the corresponding ODE solutions.

The unique RDE solution (11.15) passing through Yt0 = y0 gives rise to the
solution flow y0 7→ UX

t←t0(y0) = Yt. We call the derivative of the flow with respect
to the starting point the Jacobian and denote it by JX

t←t0 , so that

JX
t←t0a =

d

dε
UX
t←t0(y0 + εa)

∣∣∣
ε=0

.

We also consider the directional derivative

DhU
X
t←0 =

d

dε
UTεhX
t←0

∣∣∣
ε=0

,

for any sufficiently smooth path h : R+ → Re. Recall that the translation operator
Th was defined in (11.5). In particular, we have seen in Lemma 11.4 that, if X arises
from a smooth path X together with its iterated integrals, then the translated rough
path ThX is nothing but X+h together with its iterated integrals. In the general case,
given h ∈ Cq-var of complementary Young regularity, i.e. with 1/p + 1/q > 1, the
translation ThX can be written in terms of X and cross-integrals between X and h.

Suppose for a moment that the rough path X is the canonical lift of a smooth
Rd-valued path X . Then, it is classical to prove that JX

t←t0 = JXt←t0 , where JXt←t0
solves the linear ODE

dJXt←t0 =
d∑
i=1

DVi(Yt)J
X
t←t0 dX

i
t , (11.16)

and satisfies JXt2←t0 = JXt2←t1 · JXt1←t0 . Furthermore, the variation of constants
formula leads to

DhU
X
t←0 =

∫ t

0

d∑
i=1

JXt←s Vi(Ys) dh
i
s . (11.17)

Similarly, given any smooth vector field W , a straightforward application of the
chain rule yields

d
(
JX0←tW (Yt)

)
=

d∑
i=1

JX0←t [Vi,W ](Yt) dX
i
t , (11.18)

where [V,W ] denotes the Lie bracket between the vector fields V and W . All this
extends to the rough path limit without difficulties. For instance, (11.16) can be
interpreted as a linear equation driven by the rough path X, using the fact that
DV (Y ) is controlled by X to give meaning to the equation. It is then still the case
that JX

t←t0 is the derivative of the flow associated to (11.15) with respect to its initial
condition.
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Proposition 11.18. Let X ∈ C 0,α
g ([0, T ],Rd) and h ∈ Cq-var

(
[0, T ],Rd

)
with α ∈

( 1
3 ,

1
2 ] and complementary Young regularity in the sense that α+ 1

q > 1. Then

DhU
X
t←0(y0) =

∫ t

0

d∑
i=1

JX
t←s
(
Vi
(
UX
s←0

))
dhis (11.19)

where the right-hand side is well-defined as Young integral.

Proof. Both JX
t←0 and DhU

X
t←0 satisfy (jointly with UX

t←0) an RDE driven by X.
This is well known in the ODE case, i.e. when both X,h are smooth, (Duhamel’s
principle, variation of constant formula, . . .) and remains valid in the geometric rough
path limit by appealing to continuity of the Itô–Lyons and continuity properties
of the Young integral. A little care is needed since the resulting vector fields are
not bounded anymore. It suffices to rule out explosion so that the problem can be
localised. The required remark is that that JX

t←0 also satisfies a linear RDE of form

dJX
t←0 = dMX · JX

t←0(y0)

and linear RDEs do not explode. ut

Consider now an RDE driven by a Gaussian rough path X = X(ω). We now show
that the Re-valued random variable obtained from solving this random RDE enjoys
C1
H-regularity.

Proposition 11.19. With % ∈ [1, 3
2 ) and α ∈ ( 1

3 ,
1
2% ), let X = (X,X) ∈ C α

g be a
Gaussian rough path as constructed in Theorem 10.4. For fixed t ≥ 0, the Re-valued
random variable

ω 7→ U
X(ω)
t←0 (y0)

is continuouslyH-differentiable.

Proof. Recall h ∈ H ⊂ C%-var so that a.e. X(ω) and h enjoy complementary Young
regularity. As a consequence, we saw that the event

{ω : X(ω + h) ≡ ThX(ω) for all h ∈ H} (11.20)

has full measure. We show that h ∈ H 7→ U
X(ω+h)
t←0 (y0) is continuously Fréchet

differentiable for every ω in the above set of full measure. By basic facts of Fréchet
theory, it is sufficient to show (a) Gâteaux differentiability and (b) continuity of the
Gâteaux differential.
Ad (a): Using X(ω + g + h) ≡ TgThX(ω) for g, h ∈ H it suffices to show Gâteaux
differentiability of UX(ω+·)

t←0 (y0) at 0 ∈ H. For fixed t, define

Zi,s ≡ JX
t←s
(
Vi
(
UX
s←0

))
.

Note that s 7→ Zi,s is of finite p-variation, with p = 1/α. We have, with implicit
summation over i,



200 11 Cameron–Martin regularity and applications

∣∣DhU
X
t←0(y0)

∣∣ =

∣∣∣∣∫ t

0

JX
t←s
(
Vi
(
UX
s←0

))
dhis

∣∣∣∣ =

∣∣∣∣∫ t

0

Zidh
i

∣∣∣∣
. (‖Z‖p-var + |Z(0)|)× ‖h‖%-var

. (‖Z‖p-var + |Z(0)|)× ‖h‖H.

Hence, the linear map DUX
t←0(y0) : h 7→ DhU

X
t←0(y0) ∈ Re is bounded and each

component is an element ofH∗. We just showed that

h 7→ d

dε
U
TεhX(ω)
t←0 (y0)

∣∣∣∣
ε=0

=
〈
DU

X(ω)
t←0 (y0), h

〉
H

and hence

h 7→ d

dε
U

X(ω+εh)
t←0 (y0)

∣∣∣∣
ε=0

=
〈
DU

X(ω)
t←0 (y0), h

〉
H

emphasizing again that X(ω + h) ≡ ThX(ω) almost surely for all h ∈ H simulta-
neously. Repeating the argument with TgX(ω) = X(ω + g) shows that the Gâteaux
differential of UX(ω+·)

t←0 at g ∈ H is given by

DU
X(ω+g)
t←0 = DU

TgX(ω)
t←0 .

(b) It remains to be seen that g ∈ H 7→ DU
TgX(ω)
t←0 ∈ L(H,Re), the space of linear

bounded maps equipped with operator norm, is continuous. We leave this as exercise
to the reader, cf. Exercise 11.4 below. ut

11.3.3 Hörmander’s theorem for Gaussian RDEs

Recall that % ∈ [1, 3
2 ), α ∈ ( 1

3 ,
1
2% ) and X = (X,X) ∈ C α

g a.s. is the Gaussian
rough path constructed in Theorem 10.4. Any h ∈ H ⊂ C%-var and a.e. X(ω) enjoy
complementary Young regularity. We now present the remaining conditions on X ,
followed by some commentary on each of the conditions, explaining their significance
in the context of the problem and verifying them for some explicit examples of
Gaussian processes.

Condition 1 Fix T > 0. For every t ∈ (0, T ] we assume non-degeneracy of the law
ofX on [0, t] in the following sense. Given f ∈ Cα([0, t],Rd), if

∑d
j=1

∫ t
0
fjdh

j = 0
for all h ∈ H, then one has f = 0.

Note that, thanks to complementary Young regularity, the integral
∫ t

0
fjdh

j makes
sense as a Young integral. Some assumption along the lines of Condition 1 is certainly
necessary: just consider the trivial rough differential equation dY = dX , starting at
Y0 = 0, with driving process X = X(ω) given by a Brownian bridge which returns
to the origin at time T (i.e. Xt = Bt− t

T BT in terms of a standard Brownian motion
B). Clearly YT = XT = 0 and so YT does not admit a density, despite the equation
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dY = dX being even “elliptic”. However, it is straightforward to verify that in this
example

∫ T
0
dh = 0 for every h belonging to the Cameron–Martin space of the

Brownian bridge, so that Condition 1 is violated by taking for f a non-zero constant
function.

Condition 2 With probability one, sample paths of X are truly rough, at least in a
right-neighbourhood of 0.

These conditions obviously hold for d-dimensional Brownian motion: the first
condition is satisfied because 0 is the only (continuous) function orthogonal to all of
L2([0, T ],Rd); the second condition was already verified in Section 6.3. More inter-
estingly, these conditions are very robust and also hold for the Ornstein–Uhlenbeck
process, a Brownian bridge which returns to the origin at a time strictly greater than
T , and some non-semimartingale examples such as fractional Brownian motion,
including the rough regime of Hurst parameter less than 1/2. We now show that
under these conditions the process admits a density at strictly positive times. Note
that the aforementioned situations are not at all covered by the “usual” Hörmander
theorem.

Theorem 11.20. With % ∈ [1, 3
2 ) and α ∈ ( 1

3 ,
1
2% ), let X = (X,X) ∈ C α

g be a
Gaussian rough path as constructed in Theorem 10.4. Assume that the Gaussian
process X satisfies Conditions 1 and 2. Let V = (V1, . . . , Vd) be a collection of
C∞-bounded vector fields on Re, which satisfies Hörmander’s condition (H) at some
point y0 ∈ Re. Then the law of the RDE solution

dYt = V (Yt) dXt , Y (0) = y0 ,

admits a density with respect to Lebesgue measure on Re for all t ∈ (0, T ].

Proof. Thanks to Proposition 11.19 and in view of the Bouleau–Hirsch criterion,
Theorem 11.16 we only need to show almost sure invertibility of the Malliavin matrix
associated to the solution map. As a consequence of (11.13) and (11.19), we have
for every z ∈ Re the identity

zᵀMtz =
d∑
j=1

∥∥zᵀJX
t←·Vj(Y·)

∥∥2

t
,

where we wrote ‖ • ‖t for the norm given by

‖f‖t = sup
h∈H : ‖h‖=1

∫ t

0

f(s) dh(s) .

Before we proceed we note that, by the multiplicative property of JX
t←s, see the

remark following (11.16), one has

Mt = JX
t←0M̃t

(
JX
t←0

)ᵀ
,
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where M̃t is given by

zᵀM̃tz =
d∑
j=1

∥∥zᵀJX
0←·Vj(Y·)

∥∥2

t
.

Since we know that the Jacobian is invertible, invertibility ofMt is equivalent to
that of M̃t, and it is the invertibility of the latter that we are going to show.

Assume now by contradiction that M̃t is not almost surely invertible. This im-
plies that there exists a random unit vector z ∈ Re such that zᵀM̃tz = 0 with
non-zero probability. It follows immediately from Condition 1 that, with non-zero
probability, the functions s 7→ zᵀJ

X(ω)
0←s Vj(Ys) vanish identically on [0, t] for every

j ∈ {1, . . . , d}. By (11.18), this is equivalent to

d∑
i=1

∫ ·
0

zᵀJX
0←s [Vi, Vj ](Ys) dXi(s) ≡ 0

on [0, t]. Thanks to Condition 2, true roughness of X , we can apply Theorem 6.5 to
conclude that one has

zᵀJX
0←· [Vi, Vj ](Y·) ≡ 0 ,

for every i, j ∈ {1, . . . , d}. Iterating this argument shows that, with non-zero prob-
ability, the processes s 7→ zᵀJX

0←sW (Ys) vanish identically for every vector field
W obtained as a Lie bracket of the vector fields Vi. In particular, this is the case for
s = 0, which implies that with positive probability, z is orthogonal to W (z0) for
all such vector fields. Since Hörmander’s condition (H) asserts precisely that these
vector fields span the tangent space at the starting point y0, we conclude that z = 0
with positive probability, which is in contradiction with the fact that z is a random
unit vector and thus concludes the proof. ut

11.4 Exercises

Exercise 11.1 (Improved Cameron–Martin regularity, [FGGR16]) A combina-
tion of Theorem 10.9 with the Cameron–Martin embedding, Proposition 11.2, shows
that every Cameron–Martin path associated to a Gaussian process enjoys finite
q-variation regularity with q = %. Show that, under the assumptions of Theorem 10.9,
this can be improved to

q =
1

1
2 + 1

2%

. (11.21)

As a consequence, “complementary Young regularity”, now holds for all % < 2. In
the fBm setting, this covers every Hurst parameter H > 1/4. (To exploit this in the
newly covered regime H ∈ (1/4, 1/3], one would need to work in a “level-3” rough
path setting.)
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Exercise 11.2 Formulate a quantitative version of Theorem 11.14. Show in particu-
lar that the Gaussian tail of |Z|1/% is uniform over rough integrals against Gaussian
rough paths, provided that ‖F‖C2b and the %-variation of the covariance, say in the
form of the constant M in Theorem 11.9, are uniformly bounded.

Exercise 11.3 (Noise doubling, from [Ina14, Sch18]) Let X be a d-dimensional
Gaussian process as considered in Theorem 10.4 and X = (X,X) the random α-
Hölder rough path over Rd constructed therein. Recall that any h ∈ H, withH the
associated Cameron–Martin space, is given by ht = E(ΞXt) = Ē(Ξ̄X̄t) ∈ Rd
where X̄ = X̄(ω̄) is an IID copy of X = X(ω) and Ξ̄, Ξ are elements in their
respective first Wiener chaoses with L2-norm equal to ‖h‖H.

a) Apply Theorem 10.4 to construct the “doubled” rough path associated to the
2d-dimensional process (X, X̄) and use this to show that Zh := (X,h) can be
extended canonically to a random rough path Zh = (Zh,Zh) over R2d.

Hint: Formally, in case d = 1 for notational simplicity,

Zh =

( ∫
XdX Ē

(
Ξ̄
∫
XdX̄

)
Ē
(
Ξ̄
∫
X̄dX

)
Ē
(
Ξ̄Ξ̄

∫
X̄dX̄

)) ,

where Ē = Ēω̄ only averages over ω̄.
b) Show further that

E
(
‖Zh − Zk‖22α

)
. ‖h− k‖2H .

(Since ‖Zh − Zk‖α = ‖h− k‖α . ‖h− k‖H this shows that the construction
of the joint lift of (X,h) as a random rough path is continuous in h ∈ H.)

Exercise 11.4 Finish the proof of part (b) of Proposition 11.19.

Solution. In the notation of the (proof of) this Proposition, we have to show that
g ∈ H 7→ DU

TgX(ω)
t←0 ∈ L(H,Re) is continuous. To this end, assume gn → g in H

(and hence in C%-var). Continuity properties of the Young integral imply continuity of
the translation operator viewed as map h ∈ C%-var 7→ ThX(ω) and so

TgnX(ω)→ TgX(ω)

in p-variation rough path metric. The point here is that

x 7→ Jx
t←· and Jx

t←·(Vi(U
x
·←0)) ∈ Cp-var

depends continuously on x with respect to p-variation rough path metric: using the
fact that Jx

t←· and U x
·←0 both satisfy rough differential equations driven by x this is

just a consequence of Lyons’ limit theorem (the universal limit theorem of rough path
theory). We apply this with x = X(ω) where ω remains a fixed element in (11.20). It
follows that∥∥∥DUTgnX(ω)

t←0 −DUTgX(ω)
t←0

∥∥∥
op

= sup
h:‖h‖H=1

∣∣∣DhU
TgnX(ω)
t←0 −DhU

TgX(ω)
t←0

∣∣∣
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and defining Zgi (s) ≡ JTgX(ω)
t←s

(
Vi
(
U
TgX(ω)
s←0

))
, and similarly Zgni (s), the same rea-

soning as in part (a) leads to the estimate∥∥∥DUTgnX(ω)
t←0 −DUTgX(ω)

t←0

∥∥∥
op
≤ c
(
|Zgn − Zg|p-var + |Zgn(0)− Zg(0)|

)
.

From the explanations just given this tends to zero as n → ∞ which establishes
continuity of the Gâteaux differential, as required, and the proof is finished.

Exercise 11.5 Prove Theorem 11.20 in presence of a drift vector field V0. In particu-
lar, show that in this case condition (H) can be weakened to

Lie {V1, . . . , Vd, [V0, V1], . . . , [V0, Vd]}
∣∣
y0

= Re . (11.22)

11.5 Comments

Section 11.1: Regularity of Cameron–Martin paths (q-variation, with q = %) under
the assumption of finite %-variation of the covariance was established in Friz–Victoir,
[FV10a], see also [FV10b, Ch.15]. In the context of Gaussian rough paths, this leads
to complementary Young regularity (CYR) whenever % < 3

2 which covers general
“level-2” Gaussian rough paths as discussed in Chapter 10. On the other hand, “level-
3” Gaussian rough paths can be constructed for any % < 2 which includes fBm
with H = 1

2% >
1
4 ). A sharper Cameron regularity result specific to fBm follows

from a Besov–variation embedding theorem [FV06b], thereby leading to CYR for
all H > 1

4 . The general case was understood in [FGGR16]: one can take q as in
(11.21), provided one makes the slightly stronger assumption of finite “mixed” (1, %)-
variation of the covariance. The conclusion concerning %-variation of Theorem 10.9
can in fact be strengthened to finite mixed (1, %)-variation at no extra cost and indeed
this theorem is only a special case of a general criterion given in [FGGR16].
Section 11.2: Theorem 11.9 was originally obtained by careful tracking of constants
via the Garsia–Rodemich–Rumsey Lemma, see [FV10b]. The generalised Fernique
estimate is taken from Friz–Oberhauser and then Diehl, Oberhauser and Riedel
[FO10, DOR15]; Riedel [Rie17] establishes a further generalisation in form of a
transportation cost inequality in the spirit of Talagrand. This yields an elegant proof
of Theorem 11.13 with which Cass, Litterer, and Lyons [CLL13] have overcome the
longstanding problem of obtaining moment bounds for the Jacobian of the flow of a
rough differential equation driven by Gaussian rough paths, thereby paving the way
for the proof of the Hörmander-type results, see below. As was illustrated, this above
methodology can be adapted to many other situations of interest, a number of which
are discussed in [FR13]. See also [CO17] for Fernique type estimate in a Markovian
context.
Section 11.3: Baudoin–Hairer [BH07] proved a Hörmander theorem for differen-
tial equations driven by fBm in the regular regime of Hurst parameter H > 1/2
in a framework of Young differential equations. The Brownian case H = 1/2
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of course classical, see the monographs [Nua06, Mal97] or the original articles
[Mal78, KS84, KS85, KS87, Bis81b, Bis81a, Nor86], a short self-contained proof
can be found in [Hai11a]. In the case of rough differential equations driven by less
regular Gaussian rough path (including the case of fBm withH > 1/4), the relevance
of complementary Young regularity of Cameron–Martin paths to Malliavin regularity
or (Gaussian) RDE solutions was first recognised by Cass, Friz and Victoir [CFV09].
Existence of a density under Hörmander’s condition for such RDEs was obtained
by Cass–Friz [CF10], see also [FV10b, Ch.20], but with a Stroock-Varadhan sup-
port type argument instead of true roughness (already commented on at the end of
Chapter 6.) Smoothness of densities was subsequently established by Hairer–Pillai
[HP13] in the case of fBm and then Cass, Hairer, Litterer and Tindel [CHLT15] in
the general Gaussian setting of Chapter 10, making crucial use of the integrability
estimates discussed in Section 11.2. Indeed, combined with known estimates for
the Jacobian of RDE flows (Friz–Victoir, [FV10b, Thm 10.16]) one readily obtains
finite moments of the Jacobian of the inverse flow. This is a key ingredient in the
smoothness proof via Malliavin calculus, as is the higher-order Malliavin differentia-
bility of Gaussian RDE solutions established by Inahama [Ina14]. Several authors
have studied the resulting density, see e.g. [BNOT16, Ina16b, GOT19, IN19] and the
references therein.

We note that existence of densities via Malliavin calculus for singular SPDEs,
in the framework of regularity structures, has been studied by Cannizzaro, Friz and
Gassiat [CFG17], Gassiat–Labbé [GL20] and in great generality by Schönbauer
[Sch18].
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