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1  Introduction

The study of activities by which plants obtain their nutrition is called mineral nutri-
tion. In recent decades, this area has become central to climate change, specifically 
environmental protection and modern agriculture. Crop yield is linearly related to 
fertilizer applied and its absorption. To meet the increasing food demand, the world 
consumption of primary elements, mainly N and P, has increased during the last few 
decades. However, crop plants use less than half of the fertilizer applied (Loomis 
and Connor 1992); remaining nutrients leach into surface water or groundwater. 
Some nutrients become attached to soil particles and contribute to air pollution. As 
a consequence of leaching, many water wells in the USA no longer meet the federal 
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standards for nitrate concentrations in drinking water (Nolan and Stoner 2000). It 
can be stated that plants can help in recycling of animal waste and prove to be ben-
eficial for detoxification of waste dumps (Macek et al. 2000).

Light and water must be supplied to plants for efficient utilization of nutrients. 
Plants are specific for their nutrient requirements and have certain optimum range 
for each nutrient, below which plants show nutrient deficiency symptoms. Excessive 
nutrient can also cause poor growth because of toxicity. Hence, adequate amount of 
nutrient supply is required for healthy crop production. Various tests have been 
developed to assess nutrient availability in soil as well as in subsequent crop plants. 
These data help plant scientists to determine nutrient need for a given plant in a 
specific soil. Availability of soil nutrients depends upon soil pH. Most micronutri-
ents are either present in lesser concentration in soil or found as their respective 
salts, depending upon the pH. It has been observed that soil and plants are deficient 
in these essential elements; hence, there is a need to focus on this issue. 
Biofortification is becoming widespread, which depends on the soil–plant interac-
tions (Olsen and Palmgren 2014; Patto et al. 2015; Tan et al. 2015). This chapter 
briefly describes availability of some essential nutrients, forms in which they are 
available to plants, their function in plants, and their availability in soil.

2  Nutrients That Limit Plant Growth and Development

Mineral nutrients have specific and essential functions in plant metabolism. 
Nitrogen, phosphorus, and potassium (macronutrient) are most important nutrients 
for plant growth and development. Nitrogen is a major component of proteins and 
is therefore required in higher concentration. It also catalyzes enzymatic reactions. 
Phosphorus is the main component of ATP and NADPH. Nucleic acids have nitro-
gen and phosphorus; therefore, these two mineral nutrients are the necessary 
requirement for any biological body (Marschner 1995).

2.1  Nitrogen

Green plants are unique in their ability to reduce atmospheric carbon via photosyn-
thesis, and while doing this, they provide the energy source for all life. Nitrogen 
plays an essential role for protein and nucleic acid synthesis, which forms the living 
materials. Proteins are required as enzyme catalyst, while nucleic acids are required 
for translation of genetic material (Novoa and Loomis 1981). Nitrogen plays a role 
in C3 plant photosynthesis; proteins of Calvin cycle and thylakoid represent leaf 
nitrogen. One study suggests that thylakoid nitrogen is proportional to chlorophyll 
content. Since nitrogen is a major element of leaves, in the absence of nitrogen, 
leaves show chlorosis. In the absence of nitrogen, leaves become yellow and this 
color appears in older leaves, while younger ones have mobilized nitrogen from 
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older ones. Even in the absence of nitrogen, plants exhibit slender stem due to 
excess production of carbohydrates and lesser production of proteins. In this regard, 
the plant begins to synthesize anthocyanin and subsequent purple coloration of 
leaves, petioles, and stems.

2.2  Phosphorus

Phosphorus is an integral element of all membrane proteins, lipids, and nucleic 
acids. It plays a vital role in respiration and photosynthesis, that is, as sugar–phos-
phate intermediates, and is an important in energy storage or structural integrity. Its 
deficiency leads to stunted growth of young plants and dark green coloration of 
leaves. Absence of phosphorus causes small spots of dead tissues often called 
necrotic spots. A slight purple color may appear in leaves due to excess production 
of anthocyanin, but it is not associated with chlorosis. Phosphorus deficiency leads 
to delay in plant maturation and appearance of slender stem similar to nitrogen 
deficiency. To increase the yield of agricultural crops, it is required that phosphorus 
should be present in sufficient concentration (Tisdale and Nelson 1975; Denison 
and Kiers 2005). To maintain productive soils for agricultural crops, it is necessary 
to apply available forms of phosphorus (Sims 2000; Fixen 2005; White and 
Brown 2010).

2.3  Potassium

Potassium plays an important role in osmotic potential regulation of plant cells. It 
plays a role in enzyme activation involved in respiration and photosynthesis. Its 
deficiency causes mottled or marginal chlorosis and subsequently, necrosis effects 
mostly at the tips of leaves. Potassium is mobilized to the younger leaves; therefore, 
deficiency symptoms appear mainly in mature and older leaves. In case of mono-
cots, necrotic lesions initially appear at tips and margins of leaves and then at base. 
Plants may also show slender and weak stems with abnormally short intermodal 
regions. Potassium-deficient plant roots exhibit increased susceptibility for root- 
rotting fungi present in the soil. It is extremely dynamic in its ionic form in plants 
but moderate inside soil (Ranade–Malvi 2011).

2.4  Sulfur

Two amino acids containing sulfur are constituents of vitamin complexes and coen-
zymes that are essential for metabolism. Symptoms of sulfur deficiency are mostly 
similar to nitrogen deficiency, including chlorosis, stunting of growth, and 
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anthocyanin accumulation, since sulfur and nitrogen both form the basic structure 
of proteins. Nitrogen deficiency causes chlorosis in older leaves, while sulfur defi-
ciency occurs initially in mature and older leaves due to the fact that in most species, 
sulfur is not easily remobilized to the younger leaves.

2.5  Calcium

In cell wall synthesis, calcium plays a crucial role, especially in case of middle 
lamellae. It plays a significant role in mitotic spindle formation required for proper 
functioning of membranes and also serves as the second messenger for signaling 
processes. It forms the calcium–calmodulin complex, a protein found in cytosol, 
which regulates many metabolic process. Its deficiency leads to necrosis at tips of 
roots and young leaves. Since it is involved in cell wall synthesis, its deficiency 
leads to death of young meristematic regions.

2.6  Magnesium

Magnesium ions have a specific role in activation of some enzymes that are involved 
in synthesis of nucleic acid, respiration, and photosynthesis. It is a part of the chlo-
rophyll molecule. Its deficiency causes chlorosis; in case of extensive deficiency, 
leaves may become white or yellowish. Premature leaf abscission may also occur 
due to its deficiency.

3  Micronutrients

Micronutrients are those elements that are required in lesser quantities and neces-
sary for plant metabolic activities, specifically enzyme activation for reaction catal-
ysis (Epstein 1965).

3.1  Boron

Till now, the precise function of Boron is not clear; it is suggested that it plays a vital 
role in cell elongation nucleic acid synthesis. This micronutrient is essential for the 
normal growth of plants and certain diatom species. Its deficiency causes anatomi-
cal changes with corresponding change in physiology and biochemistry of cell. But 
it is difficult to determine the primary role of boron; probably it is involved at 
membrane- level functions. Other possible roles of boron are sugar transport, 

P. Shrivastav et al.



47

integrity of cell wall structure, lignification, respiration, IAA metabolism, and phe-
nol metabolism. The available concentration of Boron may vary from soil to soil, 
while it is reported in range of 20–200 mg B/Kg (Ahmad et al. 2012).

3.2  Zinc

Zinc in its ionic form is required by plants for enzyme activation involved in many 
metabolic activities such as DNA replication, for activation of DNA polymerases, 
and for chlorophyll biosynthesis in some plants, hydrogenase and carbonic anhy-
drase stabilization of ribosomal fractions, and synthesis of cytochrome (Tisdale 
et al. 1984). Deficiency of zinc appears as reduction in intermodal growth resulting 
in growth. The leaves may appear small. Chlorosis of plant leaves infers require-
ment of zinc for chlorophyll biosynthesis. Plants activated by zinc are also involved 
in carbohydrate metabolism and pollen formation (Marschner 1995). Zinc is 
required for tryptophan biosynthesis, which is a precursor of auxin, hence required 
for hormone biosynthesis (Alloway 2004). Interaction of zinc with sulfhydryl group 
of membrane proteins and phospholipids helps in membrane maintenance (Kabata- 
Pendias and Pendias 2001; Dang et al. 2010; Alloway 2004).

Zinc deficiency is widespread and crops respond positively to application of zinc 
(Welch 2002). Zinc is present in soil primarily due to geochemical and pedochemi-
cal weathering process from rocks. The amount of zinc in soil depends on the type, 
intensity of weathering, and other climatic factors that affect soil genesis (Saeed and 
Fox 1977).

Availability of zinc in soil reduces due to high pH, high CaCO3, clay, and phos-
phate, as these factors fix available zinc in soil (Imtiaz 1999). Zinc is generally 
found at a lower concentration in acidic and sandy soil. About 30% of cultivable 
land soil of the world contains low levels of Zinc (Sillanpaa 1990).

The change in pH affects the availability of zinc in soil because of formation of 
insoluble complexes. It usually forms complexes with Mn and Fe hydroxides 
(Sajwan and Lindsay 1988) Microorganisms play a key role in availability of nutri-
ents; among the nutrients, Zinc is the cofactor and mineral activator of many 
enzymes (Venkatakrishnan et al. 2003). At a higher level, it might limit the cell and 
bacterial growth (Baath 1992).

3.3  Manganese

Manganese in its ionic form is required by plants for the activation of enzymes, 
specifically those that are involved in TCA and ETS. It helps in the assimilation of 
carbon dioxide during photosynthesis and evolution of oxygen from water-splitting 
complex (Marschner 1995) and chlorophyll biosynthesis. Its activity is required in 
the formation of ascorbic acid, riboflavin, and carotene. It is a necessary element 

Role of Nutrients in Plant Growth and Development



48

required by plant in lesser concentration; hence, it may become toxic for plant when 
available in excess and interfere with utilization of other minerals such as Ca, Mg, 
Fe, and P via some inhibitory effects on absorption and translocation (Clark 1982). 
High concentration of Mn affects enzymatic activities and hormonal balance in 
plants; hence, Mn catalyzed reaction becomes less active or sometime nonfunc-
tional (Horst 1988). Intervenous chlorosis (chlorophyll deficiency) with consequent 
development of necrotic spot is a major symptom of Mn deficiency. Depending 
upon plant species, it may occur in younger or older leaves. Deficiency of micronu-
trients in soil is widespread; many millions of hectares of arable land in the world 
are deficient in one or more micronutrients (Rengel 2015).

Availability of Mn in soil depends on the oxidation state of this element; it has 
been observed that Mn 4+ is unavailable for plants, while it is available as Mn 2+ 
(reduced form). Reduction may be biological or chemical in nature (Rengel 2000). 
At alkaline pH, the availability of Mn may decrease; however, the chemistry of that 
Mn is not clear (Clark and Baligar 2000; Pan et al. 2014). It has been observed that 
the concentration of Mn2+ in soil decreases 100 fold with every unit increase in pH 
(Barber 1995). Supply of Mn is a complex variable that is dependent not only on 
soil chemistry but also on responses of plants and microorganisms. The mechanism 
for mobilization of Mn surrounding the root zone via root exudate is not clear 
(Gherardi and Rengel 2004; Mora et al. 2009; George et al. 2014). Nutrient defi-
ciency symptoms in plants occur when the amount of nutrient required is below that 
permissible or optimum range in the soil that cannot be taken up by plants. This may 
occur due to low solubility of nutrients, or poor soil–microbe–plant interactions 
(Marschner et al. 2011).

3.4  Molybdenum

Molybdenum is a transition metal required by plants for the activation of enzymatic 
reactions including nitrogen assimilation, purine degradation, hormone synthesis, 
and sulfite detoxification. It is actually inactive in its native state and needs to be 
complexed by specific organic pterin, which serves as a prosthetic group, molybde-
num cofactor. Recent studies reveal that the concentration of molybdate is con-
trolled by molybdate transporters (Bittner 2014). Molybdenum and iron have a 
close connection, as most molybdo enzymes need iron containing redox groups. 
These ions are components of enzymes as nitrate reductase and nitrogenase. 
Deficiency of this element indicates chlorosis between veins and necrosis of older 
leaves. It may prevent flower formation and also nitrogen deficiency, if the plant 
depends on symbiotic nitrogen fixation. Plants require molybdenum in very low 
concentration; hence, in molybdenum-deficient soil, supply of molybdenum in 
small quantity may increase crop production.

In soil, availability of molybdate is favored above pH 5.5 and lesser pH impairs 
the availability absorption by soil oxides. Under lower pH conditions, its assimila-
tion is limited leading to molybdenum deficiency and subsequent reduction in yield 
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and growth of plants. It can be overcome by fertilization. Excess molybdenum char-
acterized by yellowish leaves (Kaiser et al. 2005) and reduction in anthocyanin and 
seedling growth (Kumchai et al. 2013).

Molybdenum concentration in agricultural soil ranges from 0.2 to 5.0  mg/kg 
(Scheffer and Schachtschabel 2002). Soil solutions have molybdate ions, which are 
available to plants. The content of Fe, Mn, Al oxides, clay minerals, and organic 
carbon influences availability of Mo. Soil pH has a major role on the release of ions 
into the soil solution. It is observed that at pH range from 4 to 5, maximum adsorp-
tion of molybdenum occurs on positively charged metal oxides (Riley et al. 1987; 
Xie et al. 1993; Gupta 1978; Xu et al. 2013).

In acidic conditions, anions of molybdate are adsorbed on Fe, Mn, and Al oxides, 
on clay minerals and organic colloids. Its availability increases with pH through 
decreased adsorption of metal oxides (Jiang et al. 2015; Smith et al. 1997). Well- 
drained sandy soils have a lesser concentration of molybdenum due to leaching, 
while wet soil tends to accumulate higher levels (Riley et al. 1987).

In one study, the concentration of molybdenum in the soil solutions was deter-
mined and it was observed that it ranges from 0.002 to 0.100 μmol/L. It was also 
differentiated depending on different properties of soil. In one study, some soil 
parameters have been analyzed; among them, soil pH has been suggested to be the 
most important factor that affects the concentration of Mo in soil solution. It has 
been observed that in acid sandy soils, the Mo concentration in the soil solution is 
too low to sustain the nutritional need of the plants. Regular liming of soils and 
phosphorus supply can improve the availability of molybdenum to plants (Rutkowska 
et al. 2017).

3.5  Iron

Iron plays an important role as enzyme component, which is involved in electrons 
transfer reactions (redox reactions). It is reversibly oxidized from Fe2+ to Fe3+ during 
electron transfer. Intervenous chlorosis is a characteristic symptom of iron defi-
ciency. In cases of prolonged deficiency, the veins may also appear chlorotic, turn-
ing the whole leaf to white. As iron is required for chlorophyll–protein complex 
synthesis, leaves may become chlorotic. Due to its precipitation in the older leaves, 
low mobility of iron as insoluble oxides or phosphates is observed. Complexes with 
phytoferritin, an iron-binding protein, are also observed in the leaf and other plant 
parts (Oh et al. 1996).

3.6  Copper

Similar to iron, copper is an element associated with enzymes that are involved in 
redox reactions. Plastocyanin, an enzyme involved in electron transfer during light 
reactions of photosynthesis is one example (Haehnel 1984). Dark green leaves, 
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which may contain necrotic spots, are an initial symptom of copper deficiency. 
Leaves may abscise prematurely under extreme copper deficiency.

3.7  Nickel

Nickel, the 22nd most abundant element in the earth’s crust, is found in natural soils 
in trace concentrations (Hussain et al. 2013). It is an essential element for metabolic 
activities of plants and many bacteria (Brown 2007). Ni is present in several enzymes 
in prokaryotes (e.g., glyoxalase-I, hydrogenases, some superoxide dismutases, car-
bon monoxide dehydrogenase, and methyl-coenzyme M reductase (Ragsdale 
1998)), while urease is the only known nickel-containing enzyme in higher plants 
(Polacco et al. 2013). Nickel plays an important role in nitrogen fixation; nitrogen- 
fixing microbes require nickel for the enzymes that reprocess hydrogen gas liber-
ated during fixation. Nickel deficiency appears in plants as leaf tip necrosis and urea 
accumulation. However, these symptoms occur rarely in plants.

3.8  Chlorine

Chlorine in its ionic form is required by plants during photosynthesis in water- 
splitting complex. It plays a role in cell division in leaves and roots (Harling et al. 
1997; Clarke and Eaton-Rye 2000). Bronze like color appears in plant leaves due to 
chlorine deficiency; it may show stunted and thickened root tips. Some plants 
absorbed higher concentration of chlorine than required by plants for normal meta-
bolic activities.

4  Availability of Mineral Nutrients in Soil

One of the most important components of organic material is nitrogen, next to car-
bon. Both these are essential for fertility of soil. The biogeochemical cycle of C and 
N plays an important role in global warming (Yang et al. 2010). The ratio of these 
two regulates the mineralization process in soil, specifically organic matter, which 
eventually releases soil nitrogen (Deng et  al. 2013). Mineralization occurs via 
decomposition process. Significant decline in carbon storage has been observed due 
to change in C and N ratio (Aitkenhead and McDowell 2000). There are many fac-
tors that influence the biogeochemical cycle, namely climate, topography, and some 
basic soil properties, which eventually change the C and N storage. Land use is the 
most significant factor among all (Yang et al. 2010). Organic matter is the main 
source of carbon in soil and C:N represents its degradation. Since soil mechanism is 
governed by climate factors, soil organic carbon is the main factor that determines 
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some important component of terrestrial ecosystem (Sakin et al. 2010; Garcia and 
Alcantara 2013; Zhang et al. 2007). Regarding N and P, their cycling shows many 
differences. The main source of N is atmosphere, while P is derived from rock 
weathering; due to this fact, the former one is usually absent in newly formed soil, 
thus not involved in net primary productivity (Tilman 1986; Berendse 1990; 
Vitousek et al. 1987).

Due to the mobile nature of nitrogen in soil, it is leached away; it can easily move 
from the ecosystem in a gaseous form as in cases of frequent fires and denitrifica-
tion. Therefore, on the extent of nitrogen losses, soil may remain N limited for a 
long period of time. Nitrogen is carbon-bonded, while phosphorus is ester-bonded 
and often soluble, hence easily available for plants to absorb (Hunt et  al. 1983; 
Howarth 1988), while carbon-bonded nitrogen is immobilized for a long time and 
thus promotes nitrogen limitation. Biochemistry is not the only feature that is 
responsible for this difference, but the external environment also affects the nitrogen 
and phosphorus availability. Since these are essential nutrients required by plants in 
excess, there is a need to determine the limitation of these elements in plants and 
soil (Boeye et al. 1997). Factorial fertilizer experiment can be used for macronutri-
ents estimation, but these are time consuming, laborious, and impart some distur-
bances. Interpretation of such results causes difficulty due to disturbances at specific 
sites (Bobbink 1992). Plant responses for nutrient addition are affected by chemical 
adsorption and microbial immobilization.

One group of researcher has suggested that N:P mass ratios in plants indicate the 
limitation of certain nutrients (Koerselman and Meuleman 1996), but it is difficult 
to assess at community and species level; further, the N:P ratio is itself a limiting 
factor for plant growth and development (DiTomasso and Aarssen 1989). Plants 
grown in soil with lower fertility have high capacity to uptake mobile ions (Veerkamp 
and Kuiper 1982) and a comparatively lower capacity to absorb immobile ions 
(Chapin et al. 1986; Raab et al. 1998). Nitrogen found in the soil in the form of 
nitrate, ammonium, and as organic nitrogen, so plants absorb any form of nitrogen 
(soluble form), depending upon their preferences on the basis of different carrier 
proteins (Atkin 1996). It is reported that in Arctic plants, where a high concentration 
of amino acid occurs, plant growth preferentially depends on amino acids (Keilland 
1994), while spruce grows on acidic soil, absorbs ammonium instead of nitrate 
(Kronzucker et al. 1997).

pH is a relevant property of soil which can even determine the yield of certain 
crops (Moody et  al. 1998). It is a dynamic feature with significant differences 
(Behera and Shukla 2015; Kariuki et al. 2010). These differences are due to sea-
sonal variations. During rainfall when evapotranspiration exceeds precipitation, salt 
concentration increases, which forces H+ ions in soil, thereby decrease in pH, 
whereas in wet seasons, soil salts are removed, and hence, pH increases (Rengel 
2002). These fluctuations are seasonal and not to be confused with changes in pH 
over centuries (Tang and Rengel 2003). Soil pH is an important factor, which has a 
dominant effect on the solubility and availability of ions (Clark and Baligar 2000). 
Iron toxicity occurs in soil with pH (<3.2), that is, acidic and anaerobic conditions 
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(Khabaz-Saberi et  al. 2010). Sometimes, manganese becomes toxic in poorly 
drained soil when reducing conditions dominate.

Micronutrient cations occur mainly in five pool types on the basis of their avail-
ability and solubility. These are postulated as A, B, C, D, and E (Fig. 1).

Pool A consists of non-adsorbed ions and ions adsorbed on colloids. Soil pH, 
redox potential, and concentration of other ions affect this zone in terms of ions 
present in this pool. In this pool, small or lesser concentration of Zn and Cu is 
observed, while Mn and Fe may be present in very smaller concentration (< 1 ppm). 
Low redox potential and low pH can increase the pool size for Mn and Fe, but has 
negligible effect on Zn and Cu.

Pool B includes water-soluble pool A and is larger than A. However, it is smaller 
for Zn and Cu except for some in which fertilization has been done for these ele-
ments. To predict the adequacy of Mn, exchangeable Mn of pool B is frequently 
used (Sherman 1957).

Pool C contains those cations which can be exchanged by the mass action of 
cations with affinities for the absorbent or by extraction through chelating agents. It 
has been suggested that this pool contains cations absorbed with great affinity by 
clay and humus of the soil.

E

D

Cations held in primary minerals. The pools
collectively hold the total amount of that

element in the soil

Micronutrient cations in secondary clay
minerals and insoluble metal oxides

cations exchangeable by a weak
exchanger like NH4+

Adsorbed, chelated, or complexed ions
exchangeable by other cations possessing

high affinities for exchange sites or
extractable with stronger chelating agents

Water soluble

C

B

A

Fig. 1 Five major cation pools of micronutrients
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It has been found that pool A, B, and C are in reversible equilibrium shown in 
Fig. 1 (designated by double arrows). The availability of micronutrients in these 
pools is greater than that of others, especially in pool C.

Pool D and pool E consist of secondary minerals around these three pools. These 
two cannot be separated by chemical methods due to precipitation of secondary 
minerals being highly resistant to weathering (Viets 1962).

Temperature, after pH, is the major factor, which can regulate biogeochemical 
processes, for example, soil respiration (Raich and Schlesinger 1992), N mineral-
ization and nitrification (MacDonald et  al. 1995), litter decomposition 
(Meentemeyer 1978; Jansson and Berg 1985; Hobbie 1996), denitrification (Malhi 
et al. 1990), CH4 emission (Crill et al. 1988; Crill 1991; Johnson et al. 1996), fine 
root dynamics (Boone et al. 1998; Pregitzer et al. 2000; Gill and Jackson 2000), 
plant productivity (WarrenWilson 1957), and plant nutrient uptake (BassiriRad 
2000). Anthropogenic activities have an impact on increased concentration of 
green house gases (Intergovernmental Panel on Climate Change (IPCC) 1996). 
Green house gases have a potential ability to capture heat energy and thus 
increased global mean temperature by 0.3–0.6  °C over the last century (IPCC 
1996; Rind 1999; Karl et al. 2000). Global warming affects most of the processes 
on earth; however, it is not clear which processes will be most affected by warm-
ing. One researcher has reported that there are some factors that affect ecosystem 
response, such as stocks and initial turnover rates of labile soil C and N, relative 
size of the plant and soil C pools, dominant form of available N in the soil, soil 
water and precipitation regimes, the chemical composition and turnover rates of 
plant residues, and the longevity of individuals and population turnover rates of 
dominant species (Shaver et  al. 2000) and availability of minerals in soil. Soil 
respiration rates generally increase with warmer temperatures (Peterjohn et  al. 
1993, 1994; McHale et al. 1998; Rustad and Fernandez 1998). Plant productivity 
have all been shown to be affected by climate warming (Van Cleve et al. 1990; 
Joslin and Wolfe 1993; Peterjohn et  al. 1993, 1994; Harte and Shaw 1995; 
Hantschel et al. 1995; Robinson et al. 1995; Hobbie 1996; Lukewille and Wright 
1997; Ineson et al. 1998; Jamieson et al. 1998).

5  Conclusion

Mineral nutrients are essential for plant growth and development. They are 
present in soil in the form of either cation or anion, depending upon their oxi-
dation and reduction reactions. Availability of these elements is much affected 
by pH of the soil. It has been observed that alkaline pH is not favorable for soil 
health because these soils are either micronutrients-deficient or have lesser 
concentration of the same. Besides pH, temperature is another aspect that 
affects nutrient availability and other more parameters of soil and surrounding 
environment. Researches have proved that increase in temperature has a sig-
nificant effect on ecosystem responses, including biogeochemical cycling. Due 
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to disturbances in this cycle, the whole criteria that play governing role for 
ecosystem functioning have changed. Since nutrients are the major source for 
growth and development of plants, and the reservoir of these nutrients is soil, 
it is a necessary field of study with a broad scope. As India is the country of 
farmers and most of the population depends on agriculture, a great attention is 
a need of today. In this regard, necessary steps should be taken by keeping in 
mind the basic criteria of fertilizer supply and this can be done only when one 
has a knowledge of appropriate concentration of nutrients and factors that gov-
ern availability of the same.
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