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Chapter 7
Bladder Dysfunction

Seyed Mohammad Kazem Aghamir  and Fateme Guitynavard

Abstract  The studies focusing on the use of stem cells in treatment of different 
medical condition is growing over the time. But yet a few studies conducted to 
evaluate efficacy and safety of stem cell therapy in different types of bladder dys-
function. In addition, these studies are mainly focuse on experimental models rather 
than tissue engineering and bladder regeneration. There are some defined models of 
bladder dysfunction in literature: bladder outlet obstruction, cryoinjured, diabetes, 
ischemia, and spinal cord injury models. Among the different subgroups of stem 
cells, adipose derived stem cells (ADSCs), skeletal muscle derived stem cells 
(SkMSCs) and bone marrow stem cells (BMSCs) are used more commonly in favor 
of bladder dysfunction treatment. These stem cells with unique characteristics and 
multiple mechanisms of action (migration, differentiation and their paracrine effect) 
are so suitable for using in different clinical approaches to treat bladder dysfunction 
including bladder bioengineering and bioprinting.

This chapter is aimed at providing the current status of using stem cells for blad-
der dysfunction treatment as well as exploring future prospects on this topic.
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7.1  �Introduction

While various therapies have been developed for different types of bladder dysfunc-
tion, such as detrusor overactivity or underactivity, but little progress has been made 
in reduction of voiding dysfunction using stem cells. Recently, growing attractions 
are toward stem cell therapy in the field of bladder dysfunction and investigators are 
willing to document promising results in this area.

Stem cells (SCs) or Mesenchymal stem cells (MSCs) have ability of self-renewal 
and differentiation to create different lines of mature cells [1]. Because of their distinc-
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tive characteristics, unique plasticity of migration, and capacity for tissue repair or 
regeneration, stem cells are use to perform injury repair in different injured organs. 
Among bladder dysfunction models, bladder outlet obstruction (BOO) is the well-
defined one. The other forms of bladder dysfunction template are yet in an incomplete 
state. There are current clinical efforts to both prevent and cure BOO. There are stud-
ies conducted to provide better understanding of the cellular-level consequences and 
specific mechanisms responsible for developing BOO.  Although abundant reports 
have demonstrated the MSCs capability to engrave different tissues like brain, heart, 
liver, and lung, data on bladder dysfunction repair is still scarce [2–4].

7.2  �Stem Cells Sources and Their Mechanism of Action 
in Bladder Dysfunction Recovery

MSCs have self-renewing ability and can differentiate into a range of different cell 
types, such as chondrocytes, osteoblasts, and adipocytes. While all MSCs including 
bone marrow stem cells (BM-MSCs), skeletal muscle stem cells (SkMSCs), and 
adipose tissue stem cells (ADSCs) have similar properties, their availability vary 
very much based on therapeutic goals [5]. For instance, although SkMSCs need a 
long expansion with a difficult isolation procedure, it is possible to prepare ADSCs 
within a few hours. ADSCs are some kinds of mesenchymal cells which are found 
in the perivascular areas of the adipose tissue [6]. The advantage of ADSCs is that 
plenty of them are easily accessible in comparison to other types of stem cells. In 
experimental studies ADSCs showed efficacy on urological diseases [7, 8]. SkMSCs 
are primarily used in injury models [9, 10]. As a stem cell source for autologous 
transplantation, SkMSCs have several benefits because the skeletal muscle can be 
reached quite easy and safe and during surgery SkMSCs can easily be harvested. 
Cells in the CD3−/CD45− fraction (Sk-DN cells) and CD34+/CD45− fraction (Sk-34 
cells) can reconstitute nerve-muscle units of the blood vessel synchronously after 
transplantation. SkMSC transplantation results in significant functional regenera-
tion of skeletal muscle cells, vascular cells and peripheral nerve cells through cell 
differentiation [11, 12]. So, different human tissues can be used as the source of 
stem cells and selection is based on the goal of their therapeutic use.

Stem cell migration, differentiation and their paracrine effect are discussed here 
for better understanding of these cells mechanism of action for treating bladder 
dysfunction.

SCs migration into the bladder tends to be associated with improvements in his-
topathological and functional parameters [13]. MSCs can migrate into the damaged, 
ischemic or inflamed tissues. This migration is contributed to expression and secre-
tion of specific chemokines by such tissues [14]. There is a wide range of studies on 
the stem cells migration into many different organs [15–18].

Differentiation is the novel mechanism for stem cell therapy, and bladder regen-
eration via differentiation has been recurrently shown in models of nonpathogenic 
bladder. Many studies conducted focusing on non-pathogenic tissue regeneration 
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models have documented the differentiation of stem cells into detrusor smooth mus-
cles that can finally lead to bladder repair or even replacement [19, 20].

Although differentiation is an important mechanism, it seems rational to assume 
the effects of paracrine cytokines and growth factors released by transplantated 
MSCs or adjacent cells. That is called “paracrine effect”. SCs secretory factors are 
shown to induce therapeutic effects by regulating local and systemic immune 
responses and promoting regeneration of local tissue, as well as recruiting host 
cells. MSCs replace damaged cells, by secreting growth factor via their paracrine 
effect [21]. BM-MSCs or ADSCs may secrete multiple growth factors, such as 
insulin-like growth factor (IGF), hepatic growth factor (HGF) and endothelial vas-
cular growth factor (VEGF) [22]. They play an important role in an antifibrosis 
pathway in the damaged tissue, which indicates that the reduction of fibrosis is 
rather contributed to paracrine processes than cell incorporation [15, 23, 24]. HGF 
as a strong mitogen of hepatocytes has an important role in tissue regeneration [21, 
25]. Besides antifibrotic functions, BM-MSCs or ADSCs can also secrete free radi-
cal scavengers and antioxidants into ischemic tissues [26].

These three interesting charachteristics of stem cells make them capable for 
using in treatment of various pathologic conditions and that’s why stem cell therapy 
attracts attentions for treating bladder dysfunction.

7.3  �Stem Cell Therapy and Pathogenic Models of Bladder 
Dysfunction

Kim et al. in a comprehensive review explain deferent models of bladder dysfunc-
tion such as bladder outlet model, bladder ischemia model, diabetes model, etc. 
[27]. The BOO model is the only well-described model of bladder dysfunction and 
the other pathological models are yet in a challenging condition.

7.3.1  �Bladder Outlet Model

Bladder outlet obstruction (BOO) as a result of collagen accumulation is a common 
condition involving elderly males. Deposition of collagen in the bladder is seen in 
various pathological processes and ultimately ends in bladder fibrosis and makes the 
bladder flaccid. The bladder fibrosis impairs function of detrusor smooth muscles 
and bladder compliance [28]. Bladder dysfunction was observed when the bladder 
outlet was obstructed [29].

Lee et al. stated that in a rat BOO model, transplantation of human MSCs marked 
with nanoparticles (superparamagnetic iron oxide) into the bladder, prevented fibro-
sis and improved bladder dysfunction [16]. Growth factors also have an important 
role in bladder wall remodeling following an outlet obstruction [30]. This finding 
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that human MSCs over-expressing HGF inhibite collagen deposition and improved 
cystometric parameters in rat BOO, was also reported by Song et al. [17].

Fibrosis and hypertrophy are believed to cause vessel compression that lead to 
reduction of bladder blood flow. So, as a result, severe tissue ischemia can be a pos-
sible explanation of bladder dysfunction [31, 32].

Differentiation of MSCs into the detrusor smooth muscles is not only make them 
suitable to treat detrusor overactivity but also make them useful in underactive 
detrusors. Nishijima et  al. [33] showed that transplanted BMCs would cause an 
improvement in detrusor muscles contractility after differentiation into smooth 
muscle-like cells in an underactive BOO bladder.

7.3.2  �Bladder Ischemia Model

Using bilateral ligation of the iliac artery [34] or hyperlipidemia [35], The ischemia 
prototype for the bladder is found. Several research [36] have shown that ischemia 
can lead to major structural and functional changes in the bladder. The bladder dys-
function mechanism caused by ischemia is complex, and ischemic denervation may 
be involved. This makes the M-cholinergic receptors hypersensitive to acetylcholine 
[37] which results in bladder overactivity. Since the ischemia is a high probable 
process in the elderly, ischemia rat model can be a proper model for investigating 
detrusor changes caused by aging [34]. Huang et  al. [35] indicated that bladder 
instillation or intravenous administration of ADSCs can improve both tissue and 
urodynamics parameters in rats with overactive bladder.

7.3.3  �Diabetes Model

Diabetic bladder dysfunction (DBD) usually causes gradual and progressive impair-
ment in both storage and voiding phase. In early phase, DBD causes detrusor over-
activity. Over the time, detrusor muscle will be decompensated, resulting in an 
underactive or atonic bladder.

In rats treated with ADSCs, Zhang et al. [38] reported voiding function improve-
ment compared to saline rats treated with phosphate buffer. The DBD trend in their 
experimental model was hypocontractile bladders. Although some ADSCs have 
been transformed into detrusor smooth muscles, their paracrine antiapoptotic effects 
can not be ignored in this process. These data will offer an opportunity for clinical 
use of stem cell therapy for difficult-treating underactive bladder conditions.
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7.3.4  �Spinal Cord Injured Model

spinal cord injury (SCI) causes so many lower urinary tract problems such as recur-
rent infections, impaired bladder compliance and voiding dysfunction [39]. In a 
study, it was shown that spinal cord injured rats had a higher thickness of bladder 
wall and a higher collagen to smooth muscle ratio [40].

The main goals of urinary tract care in spinal cord injured patients is to reduce 
the episodes of urinary infections, maintain function of kidneys, and enhance 
patients’ quality of life. In an animal model study, neural stem cell transplantation 
into the damaged spinal cord caused an improvement in behavior of the bladder [41].

The functional recovery of the bladder after SCI is limited because new neurons 
or glial cells are not generated after maturation of central nervous system.

Nonetheless, recent studies have shown that transplanted neural progenitor cells 
make it easier to restore bladder function by regenerating the damaged tissues [41–
44]. Stem cells are directly inserted with a needle into the affected lesion in most of 
these trials. In an study it was shown that intravenously administered BMSCs 
resided in L3-4 which cause bladder function improvement in rats following spinal 
cord injury [45]. So, both intravesical and intravascular administration of the stem 
cells can be used in treating bladder dysfunction in spinal cord injured patients. 
Although, more strong studies are required to assess the safety, efficacy and durabil-
ity of stem cell therapy and studies to make comparison between different rout of 
stem cell administration.

7.3.5  �Cryo-Injured Model

In cyro-injured model, bladder hypertrophy exists but with an inappropriate colla-
gene to smooth muscle ratio just like what happens in BOO models [46]. The main 
result of stem cell transplantation into cryo-injured model is to decrease surviving 
smooth muscle cells’ size and differentiation of stem cells into the smooth muscle 
cells. This compensatory smooth muscle cells hypertrophy play a key role in remod-
eling of the injured bladder.

Huard et al. [47] showed that injected muscle-derived cells (MDCs) could nest in 
the bladder and enhance the bladder contractility in the cryo-injured model.

Sakuma et al. [48] have shown that fat cells that were dedifferentiated could dif-
ferentiate into smooth muscle cell lines and contribute to bladder smooth muscle 
regeneration.

Thus, interestingly not only stem cells but also dedifferentiated cells can be used 
for treatment of bladder dysfunction.
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7.3.6  �Other Bladder Dysfunction Models

Based on Nitta et al. [9], transplantation of multipotent stem cells originating from 
the skeletal muscle in the bladder branch of pelvic plexus (BBBP) causes a drasti-
cally higher bladder functional improvement in injured model. Kwon et  al. [10] 
achieved similar results in rats with unilateral transected pelvic plexus.

7.4  �Regeneration of the Bladder

As far as bladder tissue engineering is concerned, there are few revolutionary stud-
ies which have shown that stem cells or BMSCs derived from embryoid bodies 
seeded on small intestinal submucosa (SIS) promote regeneration in partially cys-
tectomized model [49–51]. Recently, many other types of stem cells which are 
seeded on bladder acellular matrix (BAM) demonstrate potential for bladder regen-
eration like hair stem cells and ADSCs [52, 53]. In studies on the use of synthetic 
scaffolds instead of using BAM and SIS results showed that BMSCs seeded on thin 
film of 1,8-octanediol-co-citrate can lead to bladder regeneration [54]. In addition, 
Tian et al. demonstrated the potential for bladder engineering of BMSCs with myo-
genic differentiation which are seeded on polylactic acid scaffolds [9, 55]. Similarly, 
polylactic glycolic acid seeded with human ADSCs with myogenically differentia-
tion preserved both bladder compliance and capacity when transplanted into par-
tially cystectomized rats [19]. In comparison to use of differentiated cells, bladder 
tissue engineering by the use of MSCs could produce better results. MSCs can 
differentiate into SMC after migration to the bladder’s grafts and [56] such cells 
will replace the grafts rapidly with a good neural function and also low fibrosis 
formation [48].

During the past two decades researchers have eagerly waited to see the regener-
ated bladders full success, while over the last 80 years the intestine was effectively 
used to replace the bladder. So, one of the organs that can be a target of stem cell 
researches is the human bladder. Nonetheless, these studies are very limited; there 
are no systematic reports of dysfunction of the bladder. Only trials focusing on the 
urethral sphincter and neobladder could be found in literature. Urologists need a 
suitable replacement for traditional conduits and neobladders due to their adhesion 
problems, mucus development, emptying difficulties, and metabolic conditions and 
transformations into malignancies. Autotransplantation was used in innovative 
work to build artificially engineered bladder tissues [57]. Both urothelial and detru-
sor smooth muscle cells retrieved by bladder biopsy and cultured for 7 weeks and 
transplanted into a bladder-shaped biodegradable scaffold mainly consists of poly-
glycolic acid and collagen.

Many other approaches for reconstructing the bladder [58–60] were investigated 
in attempt to find safe and usable bowel replacement material and to prevent the 
complications. Nonetheless, only modest success is yet achieved. Although both 
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robotic and open route is available for radical cystectomy, open surgery is usually 
performed in most patients with urinary diversion. Costs of this method vary in dif-
ferent countries. Involvement of an intestinal segment is responsible for the main 
proportion of the costs.

Hospital readmission rates are high after cystectomy and urinary diversion; thus, 
the readmission cost is important, too.

Thus, new alternative solutions are looked-for to lessen the significant economic 
burden of cystectomy and post urinary diversion complications. So, a great deal of 
the latest research focuses on bioengineering methods for the reconstruction of uri-
nary bladder including tissue engineering, bioreactors and bioprinting.

7.4.1  �Tissue Engineering

So far, tissue engineering has focused on the reconstruction of bladder tissue, and 
significant progress is made. A multidisciplinary approach to bioengineering is 
mainly based on the human body’s potential of natural regeneration and involves the 
use of a polymers matrix or cell-seeded scaffolds to promote more regeneration 
[61]. Such complex technologies of regeneration are being studied to create an effi-
ciently designed bladder.

Tissue engineering for bladder reconstruction has significant benefits. It is time-
saving in the operating room, helps to prevent digestive problems and increases 
patient quality of life. Also, this technique is a very promising approach and devel-
ops new treatments for other pathologies of the lower urinary tract that do not essen-
tially require a total replacement of the bladder [57]. To date, different animal 
models were used to ensure the effectiveness of different scaffolds for cell-seeding 
[62, 63]. The concept of using tissue engineering for urinary bladder regeneration 
actually goes back to the 1950s.

Type and charachteristics of the scaffolds has a key role to support the complex 
chemical and mechanical bladder function during both filling and emptying. The 
matrix microenvironment can influences the stem cells migration, proliferation and 
differentiation into the regenerating cells [62].

The biomaterials used in bladder tissue engineering should have acceptable 
mechanical and chemical properties as well as appropriate biocompatibility [64] to 
provide a good support for structure of several separate layers of cells.

An ideal biomaterial should offer an adequate plane for attachment of urothelial 
cells at its lumen, and its visceral side should be capable of nesting the muscle cells, 
which are necessary to form a unidirectional muscle layers and suitable for quick 
vascularization and innervation [65].

Another main objectives is to prevent the regenerative bladder from rising the 
host immune response that leads to compromised efficiency and durability of the 
bladder [66].
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As a result, most biomaterials and issues, including acellular tissues, natural or 
artificial polymers, and composites, were used as substitutes for urinary bladder tis-
sue and matrix scaffolds.

7.4.2  �Bioreactors

Bioreactors are advanced modeling biosystems capable for controlling environment 
by influencing factors such as pH, oxygen concentration and temperature. Simulating 
the normal physiological functions (both filling and emptying) by bioreactor in vitro 
can improve the functional results after implantation [67, 68] and can strengthen the 
stability of the matures tissues. Another promising approach in the field of bladder 
regeneration is in vivo bioreactors which are used in target scaffold before the main 
implantation. This preconditioning can further enhance the bioengineered tissue 
growth, improve tissue vascularization and inhibit fibrosis and consequently prevent 
contractility loss [65]. Although discovery and use of different types of bioreactors 
and preconditioning before stem cell implantation in aim of enhancing the out-
comes are so interesting, but to date few studies have been conducted focusing on 
this specific field and more studies are yet required.

7.4.3  �Bioprinting

Bioprinting technology is a powerful computer-controlled method for generating 
cell-based living functional tissues and organs [69]. It needs stem cells for seeding 
into a biodegradable scaffolds as primary structure and different bioreactors such as 
growth factors for inducing tissue formation [70]. The great clinical benefit of trans-
planting such tissues is that they will not raise the host immune response, an issue 
that cause so many complications in other types of transplantation including 
allograft tissue transplant.

In this technique a bio-printer first produce a three dimensional (3 D) structure 
which will be then use as a scaffold for stem cell seeding. Different material can be 
used as the scaffolds. The most known material is hydrogels. Hydrogels are both 
biocompatible and biodegradable. In addition, they have specific sites that help cell 
adhesion that is needed for further cell growth and differentiation [71].

Bioprinting techniques were tested in many kinds of tissues, but some more spe-
cific human organs like trachea, bronchi [72], blood vessels [73], and bladder [74] 
have achieved clinical success in this area of bioengineering, so far. Therefore, we 
are hopeful that bioprinting will potentially offer an actual solution for shortage of 
organ donors and complications related to allograft transplantation, soon in 
future [69].
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7.5  �Conclusion

Stem cell therapy for treatment of bladder dysfunction is an interesting approach 
which seems work through the ability of stem cells including self renewal, differen-
tiation and also their paracrine effect. Inhibiting the bladder tissue fibrosis and 
restoring the detrusor muscle contractility seem to be the main stem cells’ mecha-
nisms of action in recovery of bladder dysfunction. Furthermore, this fact that stem 
cells potentially can differentiate into detrusor smooth muscle cells, offers new 
approaches for treatment of bladder dysfunction such as bladder regeneration and 
bladder bioprinting.
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